314 research outputs found

    Automated Speaker Independent Visual Speech Recognition: A Comprehensive Survey

    Full text link
    Speaker-independent VSR is a complex task that involves identifying spoken words or phrases from video recordings of a speaker's facial movements. Over the years, there has been a considerable amount of research in the field of VSR involving different algorithms and datasets to evaluate system performance. These efforts have resulted in significant progress in developing effective VSR models, creating new opportunities for further research in this area. This survey provides a detailed examination of the progression of VSR over the past three decades, with a particular emphasis on the transition from speaker-dependent to speaker-independent systems. We also provide a comprehensive overview of the various datasets used in VSR research and the preprocessing techniques employed to achieve speaker independence. The survey covers the works published from 1990 to 2023, thoroughly analyzing each work and comparing them on various parameters. This survey provides an in-depth analysis of speaker-independent VSR systems evolution from 1990 to 2023. It outlines the development of VSR systems over time and highlights the need to develop end-to-end pipelines for speaker-independent VSR. The pictorial representation offers a clear and concise overview of the techniques used in speaker-independent VSR, thereby aiding in the comprehension and analysis of the various methodologies. The survey also highlights the strengths and limitations of each technique and provides insights into developing novel approaches for analyzing visual speech cues. Overall, This comprehensive review provides insights into the current state-of-the-art speaker-independent VSR and highlights potential areas for future research

    Face Detection And Lip Localization

    Get PDF
    Integration of audio and video signals for automatic speech recognition has become an important field of study. The Audio-Visual Speech Recognition (AVSR) system is known to have accuracy higher than audio-only or visual-only system. The research focused on the visual front end and has been centered around lip segmentation. Experiments performed for lip feature extraction were mainly done in constrained environment with controlled background noise. In this thesis we focus our attention to a database collected in the environment of a moving car which hampered the quality of the imagery. We first introduce the concept of illumination compensation, where we try to reduce the dependency of light from over- or under-exposed images. As a precursor to lip segmentation, we focus on a robust face detection technique which reaches an accuracy of 95%. We have detailed and compared three different face detection techniques and found a successful way of concatenating them in order to increase the overall accuracy. One of the detection techniques used was the object detection algorithm proposed by Viola-Jones. We have experimented with different color spaces using the Viola-Jones algorithm and have reached interesting conclusions. Following face detection we implement a lip localization algorithm based on the vertical gradients of hybrid equations of color. Despite the challenging background and image quality, success rate of 88% was achieved for lip segmentation

    Semi-automatic video object segmentation for multimedia applications

    Get PDF
    A semi-automatic video object segmentation tool is presented for segmenting both still pictures and image sequences. The approach comprises both automatic segmentation algorithms and manual user interaction. The still image segmentation component is comprised of a conventional spatial segmentation algorithm (Recursive Shortest Spanning Tree (RSST)), a hierarchical segmentation representation method (Binary Partition Tree (BPT)), and user interaction. An initial segmentation partition of homogeneous regions is created using RSST. The BPT technique is then used to merge these regions and hierarchically represent the segmentation in a binary tree. The semantic objects are then manually built by selectively clicking on image regions. A video object-tracking component enables image sequence segmentation, and this subsystem is based on motion estimation, spatial segmentation, object projection, region classification, and user interaction. The motion between the previous frame and the current frame is estimated, and the previous object is then projected onto the current partition. A region classification technique is used to determine which regions in the current partition belong to the projected object. User interaction is allowed for object re-initialisation when the segmentation results become inaccurate. The combination of all these components enables offline video sequence segmentation. The results presented on standard test sequences illustrate the potential use of this system for object-based coding and representation of multimedia

    Adaptive techniques with polynomial models for segmentation, approximation and analysis of faces in video sequences

    Get PDF

    Visual Speech Recognition

    Get PDF
    In recent years, Visual speech recognition has a more concentration, by researchers, than the past. Because of the leakage of the visual processing of the Arabic vocabularies recognition, we start to search in this field. Audio speech recognition concerned with the acoustic characteristic of the signal, but there are many situations that the audio signal is weak of not exist, and this will be a point in Chapter 2. The visual recognition process focuses on the features extracted from video of the speaker. These features are to be classified using several techniques. The most important feature to be extracted is motion. By segmenting motion of the lips of the speaker, an algorithm has manipulate it in such away to recognize the word which is said. But motion segmentation is not the only problem facing the speech recognition process, segmenting the lips itself is an early step in the speech recognition process, so, to segment lips motion we have to segment lips first, a new approach for lip segmentation is proposed in this thesis. Sometimes, motion feature needs another feature to support in recognition the spoken word. So in our thesis another new algorithm is proposed to use motion segmentation by using the Abstract Difference Image from an image series, supported by correlation for registering images in the image series, to recognize ten words in the Arabic language, the words are from “one” to “ten” in Arabic language. The algorithm also uses the HU-Invariant set of features to describe the Abstract Difference Image, and uses a three different recognition methods to recognize the words. The CLAHE method as a filtering technique is used by our algorithm to manipulate lighting problems. Our algorithm based on extracting the differences details from a series of images to recognize the word, achieved an overall results 55.8%, it is an adequate result for our algorithm when integrated in an audio-visual system

    Making microscopy count: quantitative light microscopy of dynamic processes in living plants

    Get PDF
    First published: April 2016This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Cell theory has officially reached 350 years of age as the first use of the word ‘cell’ in a biological context can be traced to a description of plant material by Robert Hooke in his historic publication “Micrographia: or some physiological definitions of minute bodies”. The 2015 Royal Microscopical Society Botanical Microscopy meeting was a celebration of the streams of investigation initiated by Hooke to understand at the sub-cellular scale how plant cell function and form arises. Much of the work presented, and Honorary Fellowships awarded, reflected the advanced application of bioimaging informatics to extract quantitative data from micrographs that reveal dynamic molecular processes driving cell growth and physiology. The field has progressed from collecting many pixels in multiple modes to associating these measurements with objects or features that are meaningful biologically. The additional complexity involves object identification that draws on a different type of expertise from computer science and statistics that is often impenetrable to biologists. There are many useful tools and approaches being developed, but we now need more inter-disciplinary exchange to use them effectively. In this review we show how this quiet revolution has provided tools available to any personal computer user. We also discuss the oft-neglected issue of quantifying algorithm robustness and the exciting possibilities offered through the integration of physiological information generated by biosensors with object detection and tracking

    Multi-Sensory Emotion Recognition with Speech and Facial Expression

    Get PDF
    Emotion plays an important role in human beings’ daily lives. Understanding emotions and recognizing how to react to others’ feelings are fundamental to engaging in successful social interactions. Currently, emotion recognition is not only significant in human beings’ daily lives, but also a hot topic in academic research, as new techniques such as emotion recognition from speech context inspires us as to how emotions are related to the content we are uttering. The demand and importance of emotion recognition have highly increased in many applications in recent years, such as video games, human computer interaction, cognitive computing, and affective computing. Emotion recognition can be done from many sources including text, speech, hand, and body gesture as well as facial expression. Presently, most of the emotion recognition methods only use one of these sources. The emotion of human beings changes every second and using a single way to process the emotion recognition may not reflect the emotion correctly. This research is motivated by the desire to understand and evaluate human beings’ emotion from multiple ways such as speech and facial expressions. In this dissertation, multi-sensory emotion recognition has been exploited. The proposed framework can recognize emotion from speech, facial expression, and both of them. There are three important parts in the design of the system: the facial emotion recognizer, the speech emotion recognizer, and the information fusion. The information fusion part uses the results from the speech emotion recognition and facial emotion recognition. Then, a novel weighted method is used to integrate the results, and a final decision of the emotion is given after the fusion. The experiments show that with the weighted fusion methods, the accuracy can be improved to an average of 3.66% compared to fusion without adding weight. The improvement of the recognition rate can reach 18.27% and 5.66% compared to the speech emotion recognition and facial expression recognition, respectively. By improving the emotion recognition accuracy, the proposed multi-sensory emotion recognition system can help to improve the naturalness of human computer interaction

    Multi-Sensory Emotion Recognition with Speech and Facial Expression

    Get PDF
    Emotion plays an important role in human beings’ daily lives. Understanding emotions and recognizing how to react to others’ feelings are fundamental to engaging in successful social interactions. Currently, emotion recognition is not only significant in human beings’ daily lives, but also a hot topic in academic research, as new techniques such as emotion recognition from speech context inspires us as to how emotions are related to the content we are uttering. The demand and importance of emotion recognition have highly increased in many applications in recent years, such as video games, human computer interaction, cognitive computing, and affective computing. Emotion recognition can be done from many sources including text, speech, hand, and body gesture as well as facial expression. Presently, most of the emotion recognition methods only use one of these sources. The emotion of human beings changes every second and using a single way to process the emotion recognition may not reflect the emotion correctly. This research is motivated by the desire to understand and evaluate human beings’ emotion from multiple ways such as speech and facial expressions. In this dissertation, multi-sensory emotion recognition has been exploited. The proposed framework can recognize emotion from speech, facial expression, and both of them. There are three important parts in the design of the system: the facial emotion recognizer, the speech emotion recognizer, and the information fusion. The information fusion part uses the results from the speech emotion recognition and facial emotion recognition. Then, a novel weighted method is used to integrate the results, and a final decision of the emotion is given after the fusion. The experiments show that with the weighted fusion methods, the accuracy can be improved to an average of 3.66% compared to fusion without adding weight. The improvement of the recognition rate can reach 18.27% and 5.66% compared to the speech emotion recognition and facial expression recognition, respectively. By improving the emotion recognition accuracy, the proposed multi-sensory emotion recognition system can help to improve the naturalness of human computer interaction

    Visual Tracking: An Experimental Survey

    Get PDF
    There is a large variety of trackers, which have been proposed in the literature during the last two decades with some mixed success. Object tracking in realistic scenarios is difficult problem, therefore it remains a most active area of research in Computer Vision. A good tracker should perform well in a large number of videos involving illumination changes, occlusion, clutter, camera motion, low contrast, specularities and at least six more aspects. However, the performance of proposed trackers have been evaluated typically on less than ten videos, or on the special purpose datasets. In this paper, we aim to evaluate trackers systematically and experimentally on 315 video fragments covering above aspects. We selected a set of nineteen trackers to include a wide variety of algorithms often cited in literature, supplemented with trackers appearing in 2010 and 2011 for which the code was publicly available. We demonstrate that trackers can be evaluated objectively by survival curves, Kaplan Meier statistics, and Grubs testing. We find that in the evaluation practice the F-score is as effective as the object tracking accuracy (OTA) score. The analysis under a large variety of circumstances provides objective insight into the strengths and weaknesses of trackers

    Knee cartilage segmentation using multi purpose interactive approach

    Get PDF
    Interactive model incorporates expert interpretation and automated segmentation. However, cartilage has complicated structure, indistinctive tissue contrast in magnetic resonance image of knee hardens image review and existing interactive methods are sensitive to various technical problems such as bi-label segmentation problem, shortcut problem and sensitive to image noise. Moreover, redundancy issue caused by non-cartilage labelling has never been tackled. Therefore, Bi-Bezier Curve Contrast Enhancement is developed to improve visual quality of magnetic resonance image by considering brightness preservation and contrast enhancement control. Then, Multipurpose Interactive Tool is developed to handle users’ interaction through Label Insertion Point approach. Approximate NonCartilage Labelling system is developed to generate computerized non-cartilage label, while preserves cartilage for expert labelling. Both computerized and interactive labels initialize Random Walks based segmentation model. To evaluate contrast enhancement techniques, Measure of Enhancement (EME), Absolute Mean Brightness Error (AMBE) and Feature Similarity Index (FSIM) are used. The results suggest that Bi-Bezier Curve Contrast Enhancement outperforms existing methods in terms of contrast enhancement control (EME = 41.44±1.06), brightness distortion (AMBE = 14.02±1.29) and image quality (FSIM = 0.92±0.02). Besides, implementation of Approximate Non-Cartilage Labelling model has demonstrated significant efficiency improvement in segmenting normal cartilage (61s±8s, P = 3.52 x 10-5) and diseased cartilage (56s±16s, P = 1.4 x 10-4). Finally, the proposed labelling model has high Dice values (Normal: 0.94±0.022, P = 1.03 x 10-9; Abnormal: 0.92±0.051, P = 4.94 x 10-6) and is found to be beneficial to interactive model (+0.12)
    • 

    corecore