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ABSTRACT 

 

 

 

 

Interactive model incorporates expert interpretation and automated 

segmentation.  However, cartilage has complicated structure, indistinctive tissue 

contrast in magnetic resonance image of knee hardens image review and existing 

interactive methods are sensitive to various technical problems such as bi-label 

segmentation problem, shortcut problem and sensitive to image noise.  Moreover, 

redundancy issue caused by non-cartilage labelling has never been tackled.  

Therefore, Bi-Bezier Curve Contrast Enhancement is developed to improve visual 

quality of magnetic resonance image by considering brightness preservation and 

contrast enhancement control.  Then, Multipurpose Interactive Tool is developed to 

handle users’ interaction through Label Insertion Point approach.  Approximate Non-

Cartilage Labelling system is developed to generate computerized non-cartilage 

label, while preserves cartilage for expert labelling.  Both computerized and 

interactive labels initialize Random Walks based segmentation model.  To evaluate 

contrast enhancement techniques, Measure of Enhancement (EME), Absolute Mean 

Brightness Error (AMBE) and Feature Similarity Index (FSIM) are used.  The results 

suggest that Bi-Bezier Curve Contrast Enhancement outperforms existing methods in 

terms of contrast enhancement control (EME = 41.44±1.06), brightness distortion 

(AMBE = 14.02±1.29) and image quality (FSIM = 0.92±0.02).  Besides, 

implementation of Approximate Non-Cartilage Labelling model has demonstrated 

significant efficiency improvement in segmenting normal cartilage (61s±8s, 𝑃 =

3.52 × 10−5) and diseased cartilage (56s±16s, 𝑃 = 1.4 × 10−4).  Finally, the 

proposed labelling model has high Dice values (Normal: 0.94±0.022, 𝑃 = 1.03 ×

10−9; Abnormal: 0.92±0.051, 𝑃 = 4.94 × 10−6) and is found to be beneficial to 

interactive model (+0.12).  
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ABSTRAK 

 

 

 

 

Model interaktif menggabungkan tafsiran pakar dan segmentasi automatik.  

Namun, struktur tulang rawan manusia yang rumit, perbezaan ketara tisu imej 

magnetik resonan yang tidak jelas menjejas tafsiran pakar dan teknik interaktif sedia 

ada menghadapi isu-isu teknikal seperti masalah segmentasi dua label, masalah jalan 

pintas dan sensitif terhadap hingar imej.  Selain itu, isu-isu bertindih disebabkan oleh 

pelabelan tisu bukan tulang rawan masih belum ditangani.  Maka, teknik Peningkatan 

Ketaraan Lengkung “Bi-Bezier” dibangunkan untuk meningkatkan kualiti 

penglihatan imej magnetik resonan dengan mengambilkira pemeliharaan kecerahan 

dan mengawal kadar peningkatan kontras ketaraan.  Kemudian, Alat Interaktif 

Serbaguna dibangunkan untuk mengendalikan interaksi pengguna melalui teknik 

sisipan titik label.  Sistem pelabelan anggaran “Non-Cartilage” dibangunkan bagi 

menjana label pengkomputeran untuk tisu bukan rawan tulang, sementara 

meninggalkan tisu tulang rawan untuk dilabel oleh pakar.  Input daripada kedua-dua 

label interaktif dan pengkomputeran akan memulakan model segmentasi berasaskan 

“Random Walks”.  Untuk menilai teknik peningkatan ketaraan, Ukuran Peningkatan 

(EME), Ralat Kecerahan Purata Mutlak (AMBE) dan Indeks Kesamaan Ciri (FSIM) 

telah digunakan.  Keputusan analisis menunjukkan bahawa teknik Peningkatan 

Ketaraan Lengkung “Bi-Bezier” mempunyai kelebihan dari segi kawalan 

peningkatan ketaraan (EME = 41.44±1.06), herotan kecerahan (AMBE = 

14.02±1.29) dan kualiti imej (FSIM = 0.92±0.02). Selain itu, model Pelabelan 

anggaran “Non-Cartilage” menunjukkan kelebihan dari segi kecekapan segmentasi 

tulang rawan normal (61s±8s, 𝑃 = 3.52 × 10−5) and tidak normal (56s±16s, 𝑃 =

1.4 × 10−4).  Akhirnya, model pelabelan yang dicadangkan mempunyai nilai “Dice” 

yang tinggi (Normal: 0.94±0.022, 𝑃 = 1.03 × 10−9; Tidak normal: 0.92±0.051, 

𝑃 = 4.94 × 10−6) dan ia didapati akan memanfaatkan model interaktif (+0.12).  
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction  

 

 

Osteoarthritis (OA) is the most prevalent joint disease (Brooks, 2006) and the 

second most debilitating global disease after cardiovascular disease in western 

society (McCauley and Disler, 1998; Haq et al., 2003).  Aged population, especially 

women aged 65 years old and above, is typically prone to be affected by OA 

(Lawrence et al., 2008).  Since human knee cartilage is innervated, affected patients 

at early stage will endure gradual loss of cartilage without any apparent symptoms 

(Bijlsma et al., 2011).  As OA worsens, knee cartilage has been exhausted and the 

bone surface is exposed.  Some patients will rush to seek medical treatments after 

realizing the disease, but it is already too late (Bijlsma et al., 2011).  Given that OA 

is a biomechanical related disease (Englund, 2010), joint pain is the most common 

and predominant characteristic (Bauer et al., 2006).  Unbearable pain forces patients 

to favour normal side of their knee over the abnormal side as well as addicted to pain 

relieving drugs.  Eventually, chronic OA patients will experience loss of function 

which severely degrades their qualities of life (Brooks, 2002; Losina et al., 2011).   

 

 



2 

 

Patients can fall easily into depression and sleep disorder on the ground that 

no existing OA drugs or treatment can provide effective solution to implications 

associated with the disease (Breedveld, 2004).  Patients with sleep disturbance due to 

agonizing joint pain cannot depend on pain relieving drugs because the drugs will 

only bring short term relief to them.  Besides, human’s level of self-efficacy is 

gauged by their capabilities to carry out a task independently but chronic OA patients 

are hindered by physical limitation.  As a result, these patients will incline to develop 

low self-esteem and pessimistic personalities that encourage them to isolate 

themselves from the society.  Negative social effects, in turn, contribute to massive 

and direct economic downturn in multiple ways (Reginster, 2002).   

 

 

Besides, economic losses are caused by huge medical expenditures spend on 

total knee replacement (TKA) surgeries and other pain relieving treatments.  TKA is 

the last and few option recommended for chronic OA patients who cannot bear with 

excruciating joint pain.  According to compiled statistics, more than 615,000 TKA 

surgeries have been performed annually in the United States (Eckstein et al., 2013).  

Hence, medical insurers worldwide need to spend approximately $3,108.698 on 

women and $3,040.444 on men annually, which translate into $149.4 billion each 

year.  In addition, evidence shows that men have to spend $612.120 while women 

have to spend $770.077 each year on OA associated medical costs (Kotlarz et al., 

2009).  Furthermore, productivity of affected people are expected to reduce 

dramatically due to physical movement constraint.  In some cases, affected patients 

are forced out of their jobs because their employers do not want to cover their 

medical fees.  Given that the dreadful economic implications associated with OA, 

understanding the progression of OA will promote future development of preventive 

measures. 
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1.2 Pathophysiology of Osteoarthritis 

 

 

OA is also known as degenerative arthritis or hypertrophic arthritis.  

Anatomically, the disease is characterized by inevitable structural change of 

diarthrosis joint (Loeser et al., 2012) resulted from continual loss of articular 

cartilage when attempted repair of articular cartilage is constantly outpaced by 

degradation of cartilage tissue.  At the onset of OA progression, cartilage 

irregularities evolves into fissure and roughens the articular surface.  The fissure will 

slowly extend toward the subchondral bone and expose knee bone to erosion.  Figure 

1.1 explains the fissure extending through different cartilage layers (wear and tear). 

 

 

 

Figure 1.1 Degradation of cartilage (Pearle et al., 2005) 

 

 

OA are characterized by clinical symptoms like appearing sclerosis of 

subchondral bone, formation of subchondral bone cysts and marginal osteophytes.  

Palpable signs such as joint pain, restriction of motion, knee crepitus, joint effusion 

or swelling and deformity reaffirm one is being affected by OA.   

 

 

OA can be classified into primary OA and secondary OA.  Primary 

osteoarthritis is alternatively referred as idiopathic OA because its cause remains 

unidentified.  Recently, substantial amount of researches have related the 

pathogenesis of primary OA to mechanical stress (Brandt et al., 2009), aging (Shane 
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Anderson and Loeser, 2010), genetic predisposition (Valdes and Spector, 2009), 

influence of sex hormones (Linn et al., 2012) and inflammatory .  Secondary OA is 

mainly attributed to joint injury, infection, or one of a variety of hereditary, 

developmental, metabolic and neurologic disorder (Creamer and Hochberg, 1997).  

One recent finding indicates that the degradation of knee cartilage is also driven by 

multiple synovial tissues inside knee joint (Scanzello and Goldring, 2012).  The 

synovial tissues include articular cartilage, subchondral and metaphyseal bone, 

synovium, ligaments, joint capsule and various muscles that act across the joint.  

Involvement of these tissues, combined with complex sequence of factors mentioned 

above, degrades the integrity of human knee joint.  Hence, it is appropriate to call 

OA as a “whole joint disease” (Lories and Luyten, 2011).   

 

 

There are two groups of natural enzymes responsible for the construction of 

cartilage matrix such as collagens, proteoglycans non-collagenous proteins and 

membrane protein and degradation of cartilage matrix such as metalloproteinases, 

aggrecanase and other proteinases (Goldring, 2000). Under normal consequence, 

both types of enzymes will balance each other.  However, external disruption to this 

metabolism such as mechanical stress and insult will cause degradation mechanism 

to outpace cartilage synthesis.  Chronology of the irreversible damage to knee 

cartilage is generally presumed to occur in three distinct stages i.e. disruption to 

cartilage matrix structure, imbalance chondrocyte-MMP response which contributes 

to tissue damage and decline of chondrocyte synthetic response that eventually leads 

to progressive loss of tissue.  Nevertheless, current research on the intriguing 

cartilage degradation remains far from full-fledging.   

 

 

Due to limited understanding, effective medical options remain available 

(Wang et al., 2012).  Existing pain relieving therapeutic treatments can only provide 

short term solution but fail to check on the progression of OA.  Intuitively, one 

possible long term solution is to predict disease progression using biomarker, 

identify patient most likely to progress and then develop efficacious disease 

modifying osteoarthritis drug (DMOAD) (Eckstein et al., 2012).  In next section, 

identification of potential imaging is presented. 
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1.3 Imaging Biomarker  

 

 

Traditional studies using clinical end points of morbidity and mortality are 

standard to study a disease’s progression.  Traditional clinical studies follow strict 

reference standard, so their findings are very reliable.  Nonetheless, traditional 

approach inherits serious drawbacks.  First, continual monitoring on the disease’s 

development will consume long span of years and large amount of resources.  

Besides, subjective issue is often associated with the traditional endpoint because this 

approach obtains data by using scaling measure, questionnaire and observation 

(Kraus et al., 2011).  For example, morbidity is derived from measuring the degree 

of severity of a disease but the measurement of disease severity’s level may vary 

according to different definitions.  So the measure itself may not reflect the whole 

situation appropriately (Smith et al., 2003).  In addition, maintaining a clinical study 

requires great financial support over number of years so most pharmaceutical 

companies often shun such high risk investment.   

 

 

Biomarker is presumably a very good replacement to traditional end points 

studies.  It can be anything that can indicate a particular disease state, a healthy 

biologic process or pharmacologic responses to a therapeutic intervention (Atkinson 

et al., 2001; Kraus et al., 2011).  General biomarkers can use molecules, gene, body 

temperature, blood pressure or image to quantify the development of a specified 

disease.  Biomarkers can be categorized into “wet” biomarker and “dry” biomarker 

(Kraus et al., 2011).  Wet biomarker refers to fluid such as serum, urine or blood that 

can indicate the change of response while dry biomarker usually refers to imaging 

modalities, questionnaires and other visual analog scales.  Imaging biomarker, 

defined as “any anatomic, physiologic, or molecular parameter detachable with one 

or more imaging methods used to help establish the presence and/or severity of 

disease (Smith et al., 2003), offers great potential to osteoarthritis research. 

 

 

Information from medical image allows us to test on numerous quantitative 

metrics that best descripts progression of OA.  Initial attempt includes joint space 

width (JSW) using X-ray image of knee to diagnose OA (Roemer et al., 2011).  
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Measurement of JSW is performed by using ruler, callipers or computer software to 

where measurement less than the minimal JSW indicates joint space loss (Wright, 

1994).  The joint space loss signals loss of knee cartilage.  However, reliability of 

radiography technology is confined by numerous constraints.  In terms of safety, 

radiography technology exposes subjects to radiation and present long term health 

hazard to subjects.  In terms of flexibility, radiography is a 2D imaging technology, 

which hinders an overall assessment of the cartilage loss.  

 

 

More important, reliability of JSW as indicator for cartilage loss has raised 

intense concern after evidences from other studies have pointed out that JSW may 

not solely reflect cartilage loss.  Intriguingly, meniscal extrusion has been reported to 

contribute significantly to the narrowing of knee joint in the absence of cartilage 

thinning (Adams et al., 1999; Sharma et al., 2008).  Alas, the degree of medial 

meniscal subluxation has direct influence on the amount of medial JSW in both 

genders (Gale et al., 1999) and technical error during image acquisition will alters 

the measurement of JSW based on the fact that this biomarker is sensitive to 

malpositioning (Segerink et al., 2006).  Consequently, credibility of JSW as imaging 

biomarker for OA has been discounted. 

 

 

Unlike 2D radiography, magnetic resonance (MR) imaging delineates knee 

cartilage in 3D view; allowing direct monitor of OA progression (Augat and 

Eckstein, 2008).  Besides, MR imaging is non-invasive and non-radiation; thus 

presents no safety hazard to patients.  Quantification of MR image of knee through 

morphometric analysis in MRI (Eckstein et al., 2006) and T2 measurement in 

functional MRI (fMRI) (Carballido-Gamio et al., 2008) are potential biomarkers to 

examine the progression of OA based on clinical variables like cartilage thickness, 

volume, surface area and curvature (Hayashi et al., 2012; Eckstein et al., 2013). 
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1.4 Problem Statements 

 

 

Development of an intuitive segmentation model is challenging.  Major 

problems associated with cartilage segmentation have been identified as follows: 

 

 

1) Inferior visual appearance of the MR image of knee.  MR image of knee 

has low intensity value and indistinctive tissue contrast; thus contribute to 

high degree of ambiguity during image review (Fripp et al., 2007)  

2) Existing interactive methods fail to provide convenient segmentation.  As 

such, current interactive algorithms have reported various types of 

implementation problems.  For example, popular graph cuts are typically 

sensitive to smallcut problem while livewire depends heavily on 

excessive human guidance to achieve desirable results (Couprie et al., 

2011). 

3) Redundancy in traditional interactive model.  Redundancy issue in knee 

cartilage segmentation model is caused by tedious non-cartilage labelling, 

but the problem has never being tackled (Wenxian et al., 2010). 

4) Cartilage has exhibited great anatomical variation.  Thin, irregular 

cartilage structure and pathological characteristic demands expert 

supervision (Tamez-Pena et al., 2012; Dodin et al., 2010; Fripp et al., 

2010). 
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1.5 Research Objective 

 

 

In order to address aforementioned problems, several objectives have been 

identified as follows: 

 

 

1) To propose a spline derived tissue contrast improvement method.  The 

proposed method utilizes Bezier curve to curb degree of contrast 

improvement ignored by most contrast improvement methods. 

2) To develop an adaptive and convenient multilabel random walks 

segmentation method.  The versatility of random walks method is 

further strengthened with interactive features so it can be used 

dynamically by clinicians for cartilage segmentation. 

3) To propose an efficient approximate label generation method based on 

fuzzy cluster centroid.  The concept of computer-aided labelling is 

introduced by learning from human feature integration theory in order to 

replace manual labelling to maximum degree. 

4) To develop a highly reproducible expert-guided cartilage 

segmentation model and study the effect of factors in the model on 

reproducibility.  Although the proposed segmentation model highlights 

on shift from traditional paradigm, high reproducible property remains 

essential and should co-exist with expert control property.  Then, 

interactive factors of this model is further studied in order to better 

understand the interactive model. 

 

 

 

 

 

 

 

 

 

 



9 

 

1.6 Research Scope 

 

 

OA researches can be further divided into cartilage analysis, bone analysis 

(Karsdal et al., 2008; Dodin et al., 2011; Li et al., 2013), muscles analysis (Frobell et 

al., 2009; Prescott et al., 2011), clinical morphologic analysis (Schneider et al., 2012; 

Joseph et al., 2012) and other types of OA researches (Wildi et al., 2011).  This study 

focuses on cartilage analysis.  Intuitively, the MR image of knee was first enhanced 

with tissue contrast improvement method, then cartilage was segmented interactively 

with the support of computerized non-cartilage label and adaptive segmentation 

algorithm.  Lastly, evaluation on the proposed model was performed by experts.  

Details of research scope of this study are given below: 

 

 

1) Use of dual echo steady state (DESS) with water excitation (we) MR 

image of knee from medical ethical compliant Osteoarthritis Initiative 

(OAI) dataset.  All OAI DESSwe MR Images were acquired in sagittal 

view and has magnetic strength of 3 Tesla (T). 

2) Classification of MR image into normal and diseased classes based on 

Kellgren-Lawrence grades. 

3) Division of cartilage computation into global cartilage and individual 

cartilage. 

4) Exclusion of advanced clinical considerations such as weight bearing 

regions. 

5) Algorithms are developed using MATLAB 2014a (Mathworks, Natick, 

MA).   

6) Segmentation is performed in 2-dimensions (2D). 

7) Exclusion of advanced clinical evaluation metrics such as change of 

cartilage volume and cartilage thickness.  
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1.7 Research Contributions 

 

 

Most existing interactive methods adhere strictly to traditional ideology.  

Hence, conventional model is not comprehensive enough to address various 

problems reported during interactive segmentation.  By analysing the problems from 

different perspective, a new type of segmentation model can potentially serve as 

stimulus for future interactive segmentation model.  For instance, development of 

tissue contrast enhancement that emphasizes on curbing the degree of contrast 

elevation using Bezier transform curve has proven to produce resultant image with 

natural appearance and excellent image quality, which is essential for clinicians to 

review the image.  Besides, generation of approximate label using cluster centroid 

represents another significant paradigm shift from traditional interactive cartilage 

segmentation model.  The model effectively reduce the degree of human interaction 

while preserve the desirable expert control over final cartilage segmentation result. 

 

 

 Development of an expert based-interactive cartilage segmentation model 

that supports the insertion of several types of interactive label and pre-generated 

label with swift computation present a straightforward approach for clinicians to 

insert their intentions easily.  Although it is not emphasized in current segmentation 

model, this is utter important given that expert role remains indispensable in medical 

research, where there are many ambiguities and uncertainties that demand expert 

interpretation.  Moreover, the proposed model is robust to image noise; thus allows 

direct implementation of MR image.  Lastly, the study on numerous factors of 

interactive model is performed in order to acquire comprehensive understanding of 

interactive segmentation.  The findings unveil important clues that can help improve 

future interactive procedures and method development.   
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1.8 Thesis Organization 

 

 

This thesis describes the development of an improved interactive knee 

cartilage segmentation model.  Chapter 1 provides general overview of the study.  

Problem statements establishes research objectives of this study and research scope 

defines the study’s boundary.  Finally, contributions of study are elaborated.   

 

 

Chapter 2 reviews different types of method implemented in tissue contrast 

enhancement as well as manual, interactive and automated cartilage segmentation 

models.  Through the review, conceptual development, advantage and disadvantage 

of relevant methods are discussed.   

 

 

Chapter 3 describes the study’s methodology in three sections.  The first 

section focuses on development of pre-segmentation methods i.e. label pre-

generation model and tissue contrast improvement.  The second section focuses on 

development of interaction tool and implementation of graph based segmentation 

method.  The last part focuses on refinement procedures.   

 

 

Chapter 4 presents the results and discussion about the performance of the 

proposed model.  In first part, properties of tissue contrast enhancement techniques 

are evaluated and compared.  In second part, efficiency of the proposed interactive 

tool and human interactive behaviour are studied.  In third part, performance of the 

proposed segmentation model and its implications are evaluated.   

 

 

Chapter 5 concludes the significance of study and gives meaningful 

recommendations in future work.  
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