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ABSTRACT 

Face Detection and Lip Localization 

Benafsh Husain 

Integration of audio and video signals for automatic speech recognition has become 

an important field of study. The Audio-Visual Speech Recognition (AVSR) system is 

known to have accuracy higher than audio-only or visual-only system. The research 

focused on the visual front end and has been centered around lip segmentation. 

Experiments performed for lip feature extraction were mainly done in constrained 

environment with controlled background noise. In this thesis we focus our attention to a 

database collected in the environment of a moving car which hampered the quality of the 

imagery.  

We first introduce the concept of illumination compensation, where we try to reduce 

the dependency of light from over- or under-exposed images. As a precursor to lip 

segmentation, we focus on a robust face detection technique which reaches an accuracy 

of 95%. We have detailed and compared three different face detection techniques and 

found a successful way of concatenating them in order to increase the overall accuracy. 

One of the detection techniques used was the object detection algorithm proposed by 

Viola-Jones. We have experimented with different color spaces using the Viola-Jones 

algorithm and have reached interesting conclusions. 

Following face detection we implement a lip localization algorithm based on the 

vertical gradients of hybrid equations of color. Despite the challenging background and 

image quality, success rate of 88% was achieved for lip segmentation. 
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1. INTRODUCTION 

1.1. Background 

Speech and speaker recognition has become a popular field of research with its 

multitude of applications. Voice recognition softwares are commonly seen in car 

navigation systems and mobile phones. Research in speech recognition aims to increase 

the ease with which humans interact with machines. 

Early research on speech technology was primarily based on identification of the 

audio signal and hence the result depended on the quality of the audio signal available. 

Research now aims to integrate the audio information with the additional visual 

information, in order to eliminate the shortcomings of a distorted audio signal and 

enhance the accuracy of speech and speaker recognition [1]. The first work on audio-

visual speech recognition (AVSR) system was published by Petajan in 1984 [2]. Petajan 

applied gray-scale thresholding to obtain prominent regions such as the nose and lips. 

The method of nostril tracking was used to track the faces over a sequence of image 

frames. Moreover, he demonstrated a method of combining the audio and visual signals 

and showed improved speech recognition results over the audio-only solution.  

One of the widely accepted models for AVSR System is depicted in Figure 1.1 [3]. In 

this model, audio and video signals are separated and independently processed to extract 

relevant features. Once the relevant information is picked from each signal; they are 

fused together and then used for an improved speech or speaker recognition system. The 

preprocessing of audio signals includes signal enhancement, tracking environmental and 

channel noise, feature estimation and smoothing [3].  Preprocessing of the video signals 

typically consists of solving the challenging problems of detecting and tracking the face 
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along with the lips. Feature extraction is an important topic and is discussed in length in 

the following sections. Lastly, in the case of audio-visual fusion, there are several general 

approaches existing based on their discrimination ability and reliability. Fusion 

approaches are broadly classified as early integration (pre-mapping fusion), intermediate 

integration (midst-mapping) and late integration (post-mapping) [3]. 

 

Figure 1.1: Block Diagram for Audio-Visual Speech Recognition System [3] 

 

The aim of this thesis is to restrict ourselves to the visual front end of the entire 

system, more specifically, face detection and lip segmentation. The visual front end 

consists of preprocessing of the images (frames of the sequence) and feature extraction 

(lip region).The stage of feature detection and extraction is most essential in case of 

visual speech recognition. Without a robust detection algorithm, next stages of the system 

would automatically have low accuracy. Lip segmentation in unconstrained environment 

has proven to be a challenge. Various background noises such as light conditions, 

mechanical vibrations, and poor image quality lower the accuracy of segmentation 

algorithms. In this thesis, we address the issues introduced by such images and aim to 

achieve a high accuracy.   Figure 1.2 illustrates an example of the visual front-end. The 

algorithm starts by face detection within the image. Then, lip segmentation is applied to 

face detected image. The example utilized AAM (Active Appearance Model), which 
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combines the lip shape model with pixel statistical distribution around the mouth, to 

locate the lip contour. Visual features are then extracted for the recognizer. The 

applications of AVSR also include biometric speaker recognition, speech-to-text 

technology. 

 

Figure 1.2: Sample Visual Front-End of the AVR system [3] 

 

The in-car environment proves to be a challenge for both the audio and the visual 

feature extraction. The background noise and the mechanical vibrations introduce 

immense noise in audio signal. The non-uniformed lighting condition is particularly 

troublesome for the visual signal processing. The speech recognition system in modern 

cars today use only audio command signals which in certain cases are highly corrupted. 

Therefore, fusion of both the signal information becomes valuable in increasing the 

accuracy of the system. In this thesis, we utilize the AVICAR database for 

experimentation. The AVICAR database consists of 50 male and 50 female subjects in a 

car environment. Each subject travels at 5 different speeds and at each speed read scripts 

containing isolated digits, isolated letters, phone numbers, and sentences [4]. 

 

Figure 1.3: Sample Image of the AVICAR Database [4] 
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A video sequence of 86 subjects at all speeds is available [4]. For the purpose of 

converting the video into still shots, the freeware, ‘Free Video to JPG Converter 1.8.7’, 

was downloaded from the internet [5]. 

 

1.2. Previous Work in this Area 

1.2.1. Face Detection 

Research in the field of face detection gained immense popularity and several 

techniques have been experimented and published in the literature. Table 1-1 summarizes 

the 4 broad categories for face detection approaches [6]. See paper [6] for reference to the 

representative works listed in Table 1-1. There are clear overlaps in methods over the 

categories.  

Table 1-1: Categorization of methods for Face Detection [6] 

Approach Representative Works 

Knowledge-based  

 Multi-resolution rule-based method  

Feature invariant  

- Facial Features Grouping of edges 

- Texture Space Gray-Level Dependence Matrix (SGLD) of face pattern 

- Skin Color Mixture of Gaussian 

- Multiple Features Integration of skin color, size and shape 

Template matching  

- Predefined face templates Shape template 

- Deformable templates Active Shape Model (ASM) 

Appearance-based method  

- Eigenface Eigenvector decomposition and clustering  

- Distribution-based Gaussian distribution and multilayer perceptron 

- Neural Network Ensemble of neural networks and arbitration schemes 

- Support Vector Machine (SVM) SVM with polynomial kernel 

- Naïve Bayes Classifier Joint statistics of local appearance and position 

- Hidden Markov Model (HMM) Higher order statistics with HMM 

- Information-Theoretical 

Approach 

Kullback relative information 
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1) Knowledge-based methods: This approach uses the human knowledge of a face and 

its associated features to localize a face in the given image.  An example is to use the 

rules that capture the relationships between facial features [6]. 

2) Feature invariant approaches: This approach aims to locate constant features which 

are not affected by factors such as pose or orientation [6].  

3) Template matching methods: Templates or general patterns of faces are used to find 

the correlation between the template (stored patterns) and the input image [6].  

4) Appearance based methods: Instead of a general model/pattern in case of template 

matching methods, this method aims to ‘learn’ the model from training images. An 

example would be the use of neural networks [6]. 

 

It can be noted that similar techniques are used for lip segmentation; some of which 

are mentioned further. Several reviews and surveys for face detection techniques have 

been published [7-13]. 

One of the most popular techniques in face detection today is the rapid object 

detection by Viola-Jones, which uses features reminiscent of Haar wavelets in gray scale 

intensities.  It uses simplistic rectangular features to calculate difference in intensities 

[14]. Conversely, work done by Robert Hursig involves color information of the skin 

[15]. A boundary threshold is applied to the shifted hue color space as a skin detector.  In 

our face detection algorithm, the Viola-Jones algorithm and the algorithm applying color 

information was evaluated individually and eventually a new algorithm was developed to 

integrate both techniques, in order to eliminate the shortcoming of each single method.   



6 

 

1.2.2. Lip Localization 

To look into the previous work done in the topic of lip localization, the first topic is to 

explore the features used in lip localization. Features used in lip segmentation can 

broadly be divided into two main categories, appearance based features and shape-based 

features [16]. 

Appearance-based features can generally be obtained after face detection. Several 

techniques are employed to find facial features, such as eyes and nostrils, based on their 

relative position on the face. An example of eye localization algorithm can be found in 

[17]. Another example of appearance-based feature includes pixel color information or 

intensity value. Color information provides benefits in either extracting feature (such as 

lips) or suppressing the undesirable ones. The appearance-based features are typically 

extracted from region of interest (ROI) using image transforms, such as transformation to 

different color space component, where pixel values of the face/mouth ROI are used. 

Another powerful appearance-based feature is the Haar-like feature proposed by Viola-

Jones which we experiment with in this thesis. 

Shape-based features, which are generally divided into geometric, parametric and 

statistical models of the lip shape, are extracted using techniques such as snakes [18], 

template models [19-20] and active shape and appearance model [21-22]. This feature 

assumes that most of the information is contained in contours or shape of speaker’s lips. 

Geometric features, such as height, width, perimeter of mouth, can be readily extracted 

from the ROI. Alternatively, model- based features are obtained in conjunction with 

parametric or statistical feature extraction algorithm. The following paragraph, followed 

closely with the section in [16], describes the lip localization techniques further. 
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A) Region based Approach 

Region based segmentation methods can be divided into three main categories. The 

Deterministic approach is based on color distribution modeling and thresholding 

operations. The Classification approach (supervised or non-supervised) considers lip 

segmentation as pixel class problems, generally between skin pixel and lip pixel. Lastly, 

the Statistical method is based on mouth shapes and appearance. As all these methods are 

region-based, accurate lip segmentation around the lip contours is not always achieved. 

 

Deterministic Approach 

In this method, no prior knowledge and no prior models about the statistics of the lip 

and skin color distribution are used. The lip segmentation is performed with a 

thresholding step on luminance or particular chromatic component. Automatic 

computation of the robust thresholds in various lighting condition is the main challenge 

and limitation of this method [22]. One way to determine the threshold is shown in [23]. 

With a sample image data set, the histogram threshold value for each chrominance 

component varies from the lowest value to the highest value. For each threshold value, 

the skin and lip segmentation errors are calculated and plotted. The plots identify the 

threshold for the minimum error. 

 

Classification Approach 

With face detection as preprocessing step, the lip segmentation can also be viewed as 

a classification problem with two classes: the lip class and the skin class. Using different 

attributes characterizing each class, the classification method used in face detection 
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between the skin and non-skin class can also be applied for lip segmentation. The most 

frequently used methods include statistical techniques (Estimation theory, Bayesian 

decision theory and Markov random field), neural networks, support vector machine and 

fuzzy C-mean. They can be classified into supervised and unsupervised approach. 

Supervised methods utilize prior knowledge about the different classes. It involves the 

construction of the training data set that covers wide range of cases and environmental 

conditions. Then, the data set is used to train a classifier to distinguish lip pixels from 

skin pixels. By using predictive validation technique, [24] built a Gaussian Mixture 

Model with normalized RGB color value; then, Bayes classifier performs the 

segmentation. Viola-Jones algorithm falls into the supervised classification approach. 

Unsupervised methods require no training stage. As a result, no prior knowledge about 

the classes is taken into account. The most common unsupervised classification approach 

is K-mean clustering and fuzzy K-mean clustering. In terms of fuzzy clustering, [25] 

proposed a modified fuzzy clustering based algorithm which utilizes the lip shape 

information – fuzzy c-means with shape function (FCMS). 

 

Statistical Method 

Another supervised technique is the Statistical Shape Models in which the training set 

is compiled to describe the lip shape or appearance variation axes instead of the lip color 

distributions. In [20], Cootes and Taylor introduced the active shape models. A shape 

model is learned from a training set of annotated images. The principal component 

analysis (PCA) generates a small set of parameters to drive the model. By minimizing a 

cost function of the feature, the parameters are varied to track the lip contour. This 
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method is known as Active Shape Model (ASM) [21]. Active Appearance Model (AAM) 

was introduced by Cootes and Taylor to add grey-level appearance information in the 

training. Paper [21] is an example of Active Shape Model and Active Appearance Model. 

Gaussian Mixture Models are used to train the active shape model; then, the appearance 

feature is used to find the parameter to fit the unknown image. 

 

B) Contour Based Approach 

The algorithms in the contour-based approach are based on deformable models. An 

appropriate mathematical model of the contour (a spline or a parametric curve) is chosen 

and placed in the image space. The model energy terms, internal term for curve geometric 

properties and external term from image data, are then minimized to lock the initial 

contour to the object of interest.  

 

Active Contour and Snakes 

Active Contour doesn’t contain any priori information about the shape of the object. 

There are model points that define the active contour which are modified one by one to 

the edges. The Active Contours, known as “snake”, was first introduced by Kass [17]. An 

application of snake and a gradient criterion to detect lips is found in [26]. 

 

Parametric Model 

A parametric model, also known as deformable template, is similar to active contour 

in which an energy-minimizing algorithm is applied to deform and fit to the object 

contour. However, an explicit assumption about the object shape is utilized.  The 
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parametric model addresses the issue of active contour producing non-realistic lip shapes. 

Figure 1.4 below is the definition of the geometric lip model used in [27]. The parameters 

are then fitted to a skin/lip probability map by maximizing the joint probability. 

 

�� �  ����� � ������ �|� � ���| � ������

	 �� 
�� �  �� ��� � ���� ������ � �� 

  

Figure 1.4: Mathematical Model and its Graphic Representation [27] 

 

1.3. Organization of Thesis 

This thesis integrates different approaches of face detection and feature extraction. 

Chapter 2 deals with preprocessing techniques where we compare the three illumination 

compensation methods which are the Yavg, minimum Y interpolation and the Average 

Gray. Chapter 2 also includes face detection algorithms using Bayes classifier and 

template matching and finally a concatenation with Viola-Jones algorithm to improve 

accuracy. Chapter 3 discusses the lip enhancement method used for Hybrid Gradients 

which was developed as a lip segmentation technique. Chapter 4 summarizes the results 

of face and lip detection and recommends future improvements.  
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2. FACE DETECTION 

2.1. Illumination Compensation 

Before face detection or lip segmentation, some image processing steps can be 

performed to enhance the desired visual features while reducing the effect of the 

background noise, such as the varying lighting conditions. Previous face detection 

algorithms were developed based on constrained images, for images taken under 

controlled lighting conditions where the features of the subject were clearly visible. 

However, it is not the case for the in-car environment. Images captured in the moving car, 

are constantly subjected to changes in the light from the background. Also, since the light 

source is from one side of the subject, invariably the other half of the subject face is in 

shadow. This makes detection of the face difficult as the skin color range become very 

large.  To combat these problems, three Illumination compensation algorithms in the 

literature are discussed and examined using our data set. We implement the Yavg method 

[28], the minimum Y interpolation method [29], and the Average gray method 

[30].Source code is available in the Appendix. The objective of our experimentation is to 

determine their effectiveness for our chosen database.  

Color constancy is the ability to measure color of objects without the influence of the 

color of the light source. In the context of face segmentation, lighting can have significant 

impact on the result of segmentation, especially when color information is used for 

detection. Several illumination compensation techniques were proposed in the literature 

to address the issue, such as the adaptive Gamma correction method used for color image 

compensation. Paper [28] introduces a light compensation technique using the average 

luminance value (Y in YCbCr Color Space, further information on color space will be 
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discussed in the next section) in the image. According to the value of average luminance 

value (Yavg), the R and G components in RGB color space are adjusted based on the 

following equations (2.1). We apply this method to one of the images extracted from our 

database. The image contains a prominent effect of light which prevents the face 

detection algorithm to segment the face. The result is shown in Figure 2.1. 

R"#$ � %R&'()* 
G"#$ � %G&'()* 

in which,  τ �  - 1.4        Yavg 5 64  0.6        Yavg 8 1921             otherwise C           (2-1) 

  
(a) (b) 

Figure 2.1: (a) original image (b) illumination compensated image by Yavg  

 

As can be seen, this method does not produce any difference in the result. The 

threshold is selected on the basis of only the average Y value of the image. The 

underexposed or overexposed images in the test data set which required illumination 

compensation, also had Yavg values which fell inside the range of 64 to 192. Therefore, 

this method is not suitable for our dataset. 

The central idea behind the minimum Y interpolation method is to use minimum Y 

values of subsets of the image and create a new image. This method tries to equalize the 

Y component throughout the image. Figure 2.2 below provides a flow chart for the 

method. Masking involves dividing the entire image (MxN) into smaller 20 x 20 pixel 
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sub images. The minimum Y value of each sub image was calculated. Using all the 

minimum values of the sub image, a smaller version of the image (M/20 x N/20) was 

constructed. Bilinear interpolation is then used to expand the image to its original size. 

Next, image subtraction is performed to find the difference image between the Y 

component of the original image and the expanded interpolated image. Finally, the 

subtracted image is histogram equalized, which forms the new Y component of original 

image [29].  

 

Figure 2.2: Illumination compensation method [29] 

 

The minimum Y interpolation method is applied to our dataset. Figure 2.3 shows the 

results for one sample image. It can be seen that this illumination compensation technique 

significantly degenerates the image, and do not work well for our dataset as a large part 

of the skin region is lost. In certain cases though, it is observed that very dark pictures are 

lightened to a great extend as shown in Figure 2.4. Although still not beneficial for our 

face detection as the image is still too noisy, this illumination compensation technique 

seems to have potential to work with underexposed images.  
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(a) (b) 

Figure 2.3: (a) Original Image (b) Illumination compensated image by minimum Y interpolation 

method 

  
(a) (b) 

Figure 2.4: Underexposed Original Image (b) Lightened Illumination compensated image by 

minimum Y interpolation method 

 

Our last examined method deals with images in the RGB color space. The principle 

of this method assumes that the average reflectance of the surface in the image is grey. 

Any shift from the gray of the measured average corresponds to the color of the 

illuminant. Therefore, we aim to modify the value of the components of all pixels to 

achieve the average grey [30]. 
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DEFG � HIJKLMJ 
JN IL�OJ �P L�� ��J 
Q�J�� QR ��J QSLMJ 

TDEFG � HIJKLMJ TKJJR IL�OJ �P L�� ��J 
Q�J�� QR ��J QSLMJ 

UDEFG � HIJKLMJ U�OJ IL�OJ �P L�� ��J 
Q�J�� QR ��J QSLMJ 

HIJKLMJTKL� �  
DEFG 	 TDEFG 	 UDEFG3  


WXFYEZFY[E � HIJKLMJTKL�
DEFG ;    
 TWXFYEZFY[E � ]ZE^F_E`^Fa`bcde ;       (2-2) 

UWXFYEZFY[E � HIJKLMJTKL�UDEFG  

�J�
 � 
WXFYEZFY[E f 
;     �J�T � TWXFYEZFY[E f T;    �J�U � UWXFYEZFY[E f U 

 

Figure 2.5 (a) and (b) shows the effects of illumination correction on of the test 

images. It is observed that the original image has a paler yellow. However, after the 

illumination correction algorithm, the lighting effect on the face is eliminated. We verify 

the effectiveness of this compensation method by applying the skin detection technique 

on the illuminated corrected image. The difference between the detected results is shown 

in the Figure 2.5 (c) and (d). It is apparent that without illumination compensation face 

detection would have completely failed in this case. 
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(a) (b) 

  
(c) (d) 

Figure 2.5: (a) Original Image (b) Illumination compensated image by Average Gray method (c) 

Application of Bayes classifier on (a) (d) Application of Bayes classifier on (b) 

 

  
(a) (b) 

  
(c) (d) 

Figure 2.6: (a) Original Over-exposed Image (b) Illumination compensated image by Average Gray 

method (c) Application of Bayes classifier on (a) (d) Application of Bayes classifier on (b) 
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(a) (b) 

  
(c) (d) 

Figure 2.7: (a) Original Under-exposed Image (b) Illumination compensated image by Average Gray 

method (c) Application of Bayes classifier on (a) (d) Application of Bayes classifier on (b) 

 

In Figure 2.6 and Figure 2.7 we show an example of over- and under-exposed images. 

In both images, it can be noticed that the face region comes closer to skin color range. 

The over-exposed image, where a large area of the face was not classified as skin in the 

original image, was remedied by illumination compensation with the trade off of extra 

noise. Conversely, in the under-exposed image, fewer background pixels were wrongly 

classified as skin. Thus it can be concluded from our experimentation, the last method 

(using the concept of average gray) gave the most satisfactory results for our data and 

will be used  in future algorithms.  Therefore, from this section onward all images under 

consideration have been illumination compensated by the average gray method. 
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2.2. Face Detection 

Lips comprise a very small part which is volatile and constantly in motion for a 

speaker. Therefore, to limit the area in which lips need to be searched, it is a popular 

practice to perform face detection first. It then becomes important to have a robust face 

detection algorithm in order to correctly locate the lips. Face Detection is defined as 

‘Given an arbitrary image, the goal of face detection is to determine whether or not there 

are any faces in the image, and if present, return the image location and extent of each 

face [7]. There are several challenges associated with face detection, some of which were 

faced during the process of this thesis; namely, pose of the face which indicates if the 

face to be detected is frontal, profile, tilted at an angle etc. Another hindrance is when 

part of the face is occluded as for example through beards, sunglasses or overlapped faces 

which does not leave the entire face exposed. Another important criterion is the imaging 

condition. In our data set the lighting and mechanical vibrations included by the moving 

car add significant noise to the images. 

In this thesis, we first analyze the color spaces in order to select one with maximum 

potential. Using the color space selected we train a Bayes classifier to detect skin pixels 

in the image. The images which could not be classified as a face is further passed through 

template matching. 

We independently summarize and evaluate the implementation of the Viola-Jones 

algorithm and compare the results. The final detection algorithm concatenates all three 

techniques to give better accuracy. 

In order to develop a robust face detection algorithm, there are several components in 

the algorithm. The first step is skin classification, which helps to locate the general face 



 

location. Section 2.2.1 discusses the color spaces which can be used for skin detection.

Section 2.2.2 selects a color space and trains a 

classification. Then, Section 2.2.3 d

morphological operations and template matching. 

operations and template matching is to extract the exact face location. Section 2.2.5 

records the results of the detection algorithm. In Section 2.2.5

and compare results with the 

our final detection algorithm

 

2.2.1. Color Space Analysis

Five hundred images 

care was taken such that equal 

skin color. Each image contained 4 sub

placed in the car as shown in 

selected and stored as a mask as displayed in 

 

Figure 2.8: Original Image of AVICAR database
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Section 2.2.1 discusses the color spaces which can be used for skin detection.

Section 2.2.2 selects a color space and trains a Bayes classifier for the purpose of skin

classification. Then, Section 2.2.3 details face localization methods such as 

morphological operations and template matching. The purpose of morphological 

operations and template matching is to extract the exact face location. Section 2.2.5 

ecords the results of the detection algorithm. In Section 2.2.5, we introduce

and compare results with the developed face detection algorithm. Lastly, in Section 2.2.6, 

our final detection algorithm is developed by combining the two algorithms

Color Space Analysis 

images from AVICAR database were selected as training data

equal numbers of images were selected to represent

. Each image contained 4 sub-images representing the four camera angles 

placed in the car as shown in Figure 2.8. The skin region for each image was manually 

selected and stored as a mask as displayed in Figure 2.9. 

 

Original Image of AVICAR database Figure 2.9: Mask of Image in 

Section 2.2.1 discusses the color spaces which can be used for skin detection. 

classifier for the purpose of skin 

ethods such as 

The purpose of morphological 

operations and template matching is to extract the exact face location. Section 2.2.5 

we introduce Viola-Jones 

rithm. Lastly, in Section 2.2.6, 

is developed by combining the two algorithms. 

as training data where 

selected to represent different 

images representing the four camera angles 

The skin region for each image was manually 

 

Mask of Image in Figure 2.8 
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The original image and its corresponding mask were used to determine the color 

space best representing the face. Ideally, the skin and the non-skin cluster should be 

separate with a clear threshold between them and each cluster individually should have a 

very small variance. That is, we require a small intra cluster variance and a large inter 

cluster variance between skin and non-skin pixels in their feature space. 

In the following section we plot the histograms of skin pixels vs. the non-skin pixels 

in several color spaces to evaluate which color space can be used as a classifier. There are 

two conditions we require from the histograms of a good color space. It should be 

possible to draw a boundary between the skin and the non-skin cluster and both clusters 

should have a low intra-class variance. As it was observed that illumination 

compensation on images improved the classification result, it may be noteworthy to 

compare if histograms of illumination compensated images differ from the original image 

histogram and result in better classifiers. Therefore, for each color space we plot 

histograms of original and illumination compensated images. 

 

RGB Color Space 

Commonly viewed images are in the RGB color space which is represented as a 3D 

cube (Figure 2.10). The origin forms the black color, which represents the absence of all 

color. The three axes of the cube form the red, green and blue color components. The 

maximum value of all components combined, forms a pure white. The histogram of skin 

vs. that of background pixels in the RGB color space is shown in Figure 2.11. 
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Figure 2.10: The RGB Color Cube [31] 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 2.11: Skin v/s non skin histogram (a) Red component (b) Green component (c) Blue 

component (d) Illumination compensated Red component (e) Illumination compensated Green 

component (f)Illumination compensated Blue component. In the figure Red signifies non skin 

pixels and green signifies skin pixels 

 

 

It is obvious that the RGB color space does not satisfy either of those requirements. 

There is no clear boundary that can be found between the skin and the non-skin pixels. 

Therefore, RGB color space is not suitable for the purpose of face detection. Applying 
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illumination compensation on the training images before plotting the histograms does not 

make a difference in the eligibility of the RGB color space to train a classifier. 

 

HSV Color Space 

Although the color spaces, HSV (Hue Saturation Value), HSI (Hue Saturation 

Intensity) and HSL (Hue Saturation Lightness) are transformed from the RGB color cube 

differently[32], the chrominance component of all three color spaces (Hue) describes 

similar information while it is separated from luminance channels (SV, SI and SL 

channels). The transformation equation is shown below: 

g � LKhh�� i �%jk`)�%jkl)�m%%jk`) �%jkl)%`kl))  (2-3) 

Hue component lies on the top circle of the HVS cone or the ‘color wheel’ shown in 

Figure 2.10. Therefore, in angular measurement Hue ranges from 0° to 360° which means 

it experiences the wrap around effect where the two extreme angles, 0° and 360°, are of 

the same hue value.  

This effect is noticed during evaluation of the hue component for skin. As skin is in 

the range of red, the hue values are either extremely high (>0.8) or extremely low (<0.1), 

therefore we introduce shifted hue, which shifts the cluster by 0.2 units to the right. The 

resulting histogram is for the shifted Hue component. 
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Figure 2.12: The HSV Color Model [33] 

 

 
(a) (b) (c) 

(d) (e) (f) 
 

  

   

Figure 2.13: Skin v/s non skin histogram (a) shifted-Hue component (b) Saturation component (c) 

Intensity component (d) Illumination compensated shifted-Hue component (e) Illumination 

compensated Saturation component (f) Illumination compensated Intensity component. In the figure 

Red signifies non skin pixels and green signifies skin pixels 

 

 

In the Saturation and Intensity component the skin and non-skin pixels completely 

overlap each other. No definite boundary can be drawn to distinguish between the two. . 

It can be confirmed by the histograms in Figure 2.13 that S and I channel should not be 

considered, whereas for the shifted-Hue component a definite boundary for the two 

classes can be constructed as shifted-hue is concentrated between 0 to 0.25. 
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It is noticed in Figure 2.13 (d) that after compensation by the Average Gray method 

the overlap between the skin and non-skin cluster is reduced in hue space. At the same 

time it also seems that the variance on the skin cluster is reduced. Training a classifier 

with the illumination compensated shifted-hue space might lead to better results than 

using the original images.  

 

Normalized RGB 

Figure 2.14 represents the normalized red, green and blue components 

K �  jj�`�l ; M �  `j�`�l ; o �  lj�`�l (2-4) 

As r+g+b=1, the third component is redundant in the mathematical sense and can be 

eliminated. Also, the dependence of brightness seems to be reduced in the normalized r 

and g components [34-35]. Also it is observed from Figure 2.14 that although the skin 

and non-skin pixels overlap, they seem to have a very small intra class variance and do 

not spread out too much. All three components of this color space have the potential in 

skin classification. 
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(a) (b) (c) 

 
(d) (e) (f) 

 

  

Figure 2.14: Skin v/s non skin histogram (a) norm red component (b) norm green component (c) 

norm blue component (d) Illumination compensated norm red component (e) Illumination 

compensated norm green component (f) Illumination compensated norm blue component. In 

the figure Red signifies non skin pixels and green signifies skin pixels 

  

 

Histograms of images with and without illumination compensation seemed to have 

negligible difference. 

 

YCbCr Color Space 

In Figure 2.15, YCrCb can be transformed from the RGB color space according to the 

following equation. 

� � 0.299 f 
 	 0.587 f T 	 0.114 f U 

sK � 
 � � 

so � U � � 

 

(2-5) 

Y represents the luminance component whereas Cr and Cb represent chrominance. 

Due to the separation of luminance and chrominance components, Cb and Cr are 

independent of illumination effect. Cr and Cb have a small variation and the two clusters 
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don’t completely overlap and can be considered for skin classification. Y component on 

the other hand is rejected as both clusters completely overlap. 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

  

Figure 2.15: Skin v/s non skin histogram (a) Y component (b) Cb component (c) Cr component (d) 

Illumination compensated Y component (e) Illumination compensated Cb component (f) 

Illumination compensated Cr component. In the figure Red signifies non skin pixels and green 

signifies skin pixels 

 

  

The Cb component of the YCbCr color space shows improvement due to illumination 

compensation. The skin cluster is ‘taller and skinnier’ which means the class variance 

becomes smaller. 

 

Other Color Conversions 

We also implement popular color spaces suggested in paper [16]. 

t � 0.5 %
 � T) 


T KL�Q� � 
/T 


TU h�SoQRL�Q�R � 
T 	 TU 	 U
 

 

(2-6) 
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These color components did not have good results for our dataset as defining a 

boundary between the classes was not possible. Histograms of the illuminated 

compensated images seemed to have similar results.  

(a) (b) (c) 

(d) (e) (f) 
 

  

   

Figure 2.16: Skin v/s non skin histogram (a) E = 0.5(R-G) (b) R/G component (c) R/G + G/B + R/B 

(d) Illumination compensated E = 0.5(R-G) (e) Illumination compensated R/G component (f) 

Illumination compensated R/G + G/B + R/B. In the figure Red signifies non skin pixels and green 

signifies skin pixels 

 

Another popular color space is CIE-Luv[35]. CIE-Luv is the modification of the CIE-

XYZ color space which also aimed to separate the brightness and chromaticity of color. 

The transformation from RGB to CIE-Luv is a set of complicated equations and an 

inbuilt Matlab function was used for the conversion. The results of skin v/s non-skin class 

for the components of the CIE-Luv color space is shown in Figure 2.17. Although it did 

not yield satisfactory results for our dataset, based on the histograms it seems it could 

prove to have interesting results. Illumination compensation also did not improve the 

results. CIE-Luv color space is also computationally more expensive compared to other 

color spaces due to its transformation.  
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(a) (b) (c) 

   
(d) (e) (f) 

 

  

   

Figure 2.17: LUV skin v/s non skin histogram (a) L component (b) u component (c) v component (d) 

Illumination compensated L component (e) Illumination compensated u component (f) Illumination 

compensated v component. In the figure Red signifies non skin pixels and green signifies skin pixels 

 

Through experimentation, we observed that 1D color spaces did not yield satisfactory 

results. Using only one color component as a classifier in our data set left too much noise 

detected as skin.   Therefore, we tried combinations of color components in 2D as the 

classifier conditions get more restricted and the noise can be partially eliminated. Figure 

2.18 depicts a few examples of the 2D combinations implemented. Of all the 

combinations tried Shifted Hue vs. normalized green gave the best results for a Bayes 

classifier.  
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(a) (b) 

(c) (d) 

 
(e) 

Figure 2.18: (a) 2D histogram of Shifted Hue on the x-axis and Saturation on the y axis. (b) 2D 

histogram of Shifted Hue on the x-axis and normalized red on the y axis. (c) 2D histogram of Shifted 

Hue on the x-axis and normalized green on the y axis. (d) 2D histogram of Shifted Hue on the x-axis 

and normalized blue on the y axis. (e) 2D histogram of Cb on the x-axis and Cr on the y axis. In the 

figure Red signifies non skin pixels and green signifies skin pixels 
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Once the color component of the classifier is decided, we define and train the 

classifier. The next section describes the principle of the classifier, the training procedure 

and the parameters obtained.  

 

2.2.2. Skin Classification 

The Bayesian Classification theory is a fundamental statistical approach in pattern 

classification [36]. The decision is based on probabilistic terms assuming all relevant 

probabilities were known. In the case of skin detection two cases exist for pixel 

classification. The pixel can be classified as either a skin pixel or a background/ non-skin 

pixel. 

Let Skin be the class that the pixel belongs to skin and non-skin the class that the 

pixel belongs to non-skin. As we have only two possibilities v%�wQR) 	 v%R�R�wQR) � 1 

where P(skin) and P(non-skin) are known as prior probabilities, representing the 

probability that the pixel is skin and the probability that the pixel is non-skin. . We use 

the training data collected for color space analysis to calculate these prior probabilities. 

The probability of skin pixels is calculated by summing the mask pixels in all 500 images 

and dividing it by the number of all the pixels present in to 500 images.  
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Figure 2.19: Shifted-Hue and normalized green scatter plot projected in 3D 

 

As mentioned in the previous section, the approach here is one based on 2-D cluster 

(shifted-hue vs. normalized green) of the training data. The feature space used here is 

hence a 2D feature space, containing a feature vector c = [c1 c2], in which c1 is the pixel’s 

shifted-hue value whereas c2 is the pixel’s normalized green value. We assume the 2D 

cluster of skin pixels to be Gaussian based on the general shape observed in Figure 2.19. 

According to Bayes rule, a pixel is classified as skin if    P(c/skin) v%�wQR) > 

P(c/non-skin) v%R�R�wQR) otherwise the pixels is classified as non-skin. 

The conditional probabilities P(c/skin) and P(c/non-skin) also known as likelihood of 

skin/non-skin indicate that. If under the condition of equal prior probabilities, conditional 

probabilities become the deciding factor. 

In the implementation, the Bayes Classifier (minimum-error-rate) can be represented 

by the discriminant function Mx%y), i = skin or non-skin, where feature vector c gets 

assigned to class skin if MWzxG%y) 8 MG�GkWzxG%y) 
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where  

MWzxG%y) � ln v�y �wQR} � 	 ln v%�wQR) (2-7) 

The v�y �wQR} � can be modeled as multivariate normal – the basis for the normal 

distribution is due to its analytical tractability and as an appropriate model for the 

continuous-valued, randomly corrupted case. The v�y �wQR} � is modeled according to the 

general multivariate normal densities in d dimensions as shown below, in which c is the 

dx1 feature vector,  µ is the dx1 mean vector whereas Σ is the d x d covariance matrix. |Σ| 

and Σ
-1

 are its determinant and inverse, respectively. The superscript t represents the 

transpose.  


%y) � 1%2~)�/�|�|�/� exp �� 12 %y � �)��k�%y � �)� 
in which (2-8) 

� �  � y
%y) Nh     LRN    � �  �%y � �)%y � �)� 
%y)Nh    
The discriminate function can be modified to 

MWzxG%y) � � 12 %y � �����)��WzxGk� %y � �����) � N2 ln 2~ � 12 ln|�WzxG| 	 ln v%�wQR) (2-9) 

In the general multivariate normal case, the covariance matrices for each class are 

different and the term 
�� ln 2~ can be dropped. The resulting equation is  

MWzxG%h) � h��WzxGh 	 �WzxG� h 	 �WzxG � 

where, 

�WzxG � � 12 �WzxGk�  (2-10) 

�WzxG � �WzxGk� �WzxG 

�WzxG � � � 12 �WzxG� �WzxGk� �WzxG � 12 ln|�WzxG| 	 ln v%�wQR) 
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To calculate the parameters required to train the classifier, we use the 500 images 

used previously for the color space analysis training. We first calculate the mean �  and 

the covariance matrix �  of all the pixels values (normalized green and shifted hue) for 

the skin and non-skin class. This was achieved by using inbuilt Matlab functions. The 

three key values Wskin, wskin and wskino for MWzxG%y) and MG�GWzxG%y)  can be obtained 

from the mean vector and covariance matrix according to equation (2-10). The 

probability P(skin) is calculated based on the number of skin pixel in the training set over 

the total number of pixels used. The values of the parameters obtained were: 

�WzxG �  ��33.6276 �0.2695�0.2695 �0.0119� 

�G�GkWzxG �  ��26.8821 0.05810.0581 �0.0273� 

�WzxG � �77.69572.3478 � 
�G�GkWzxG � ��1.91194.8943 � (2-11) 

�WzxG � �  �123.8033 

�G�GkWzxG � �  �215.5282 

v%�wQR) � 0.242734 

v%R�R � �wQR) � 1 � v%�wQR) � 0.757266 

With those parameters, the skin and non-skin discriminate function values can be 

calculated for each pixel under test (a feature vector c). The feature vector c gets assigned 

to the skin class if MWzxG%h) 8 MG�GkWzxG%h); otherwise, it gets assigned to the non-skin 

class. 

The input image (I) is first read and passed through the illumination compensation 

algorithm discussed in the previous section. The output (NewI as shown in Figure 



 

2.20(a)) is passed through the 

or as background pixel (SkinImg

 

(a) 

Figure 2.20: a) Illumination Compensated image (NewI) and b) Skin detected image after 

 

 

2.2.3. Face Localization

Using the 2D color space and the 

skin. In most cases, not all 

background pixels are mis

The next stage of face detection involves

and eliminating the rest. Here, we

clusters of pixels joined together and determine if they match face dimension. We 

continue with morphological operations

that exist within the face or separating the face cluster from the surrounding background 

noise. Lastly, for the images which are extremely noisy and the face and cluster cannot be 

separated, we perform face template matching.
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) is passed through the Bayes classifier where each pixel is either classified as skin 

or as background pixel (SkinImg, Figure 2.20(b)). 

 
(b) 

a) Illumination Compensated image (NewI) and b) Skin detected image after 

classifier (SkinImg) 

Localization 

Using the 2D color space and the Bayes classifier we obtain the pixels classified as 

skin. In most cases, not all pixels belonging to the face are correctly classified. Similarly, 

background pixels are mis-classified as skin.  

f face detection involves selecting the pixels which comprise the f

and eliminating the rest. Here, we first perform blob analysis, in which we c

together and determine if they match face dimension. We 

hological operations which are responsible for completing the holes 

that exist within the face or separating the face cluster from the surrounding background 

noise. Lastly, for the images which are extremely noisy and the face and cluster cannot be 

ed, we perform face template matching. 

classifier where each pixel is either classified as skin 

 

a) Illumination Compensated image (NewI) and b) Skin detected image after Bayes 

classifier we obtain the pixels classified as 

pixels belonging to the face are correctly classified. Similarly, 

selecting the pixels which comprise the face 

we consider 

together and determine if they match face dimension. We 

which are responsible for completing the holes 

that exist within the face or separating the face cluster from the surrounding background 

noise. Lastly, for the images which are extremely noisy and the face and cluster cannot be 
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A) Blob Analysis and Golden Ratio 

On the skin detected images, we perform the ‘Blob analysis’ function in Matlab. A 

blob is referred to as a cluster of all the pixels connected to each other in a binary image. 

Using the Blob analysis function, Matlab draws a smallest rectangle possible which 

encompasses all the connected pixels. 

 

Figure 2.21: Binary image of SkinImg used to perform blob analysis 

 

We need to distinguish if the blob or the connected components form a face or not. 

The key assumption in our dataset is that each image has one face and in fact all images 

have a face. Therefore, we limit all our discussions to the largest connected components 

or the cluster with the maximum number of pixels in the bounding box. 

It was observed, that in certain cases the largest bounding box consists of a perfect 

face. In order to isolate these regions we use dimension of the faces as a restriction. We 

restrict the ratio of the height to the width of the detected bounding box to be close to the 

golden ratio (1.61803). To include the variations of the face sizes and also to consider the 

fact that the neck region is very likely to be part of the connected components if exposed, 

we introduce a tolerance. Through experimentation we set the threshold as 

1.2 5 gJQM�� �QN��} 5 1.78 



 

Figure 2.22: Flowcha

Figure 2.22 summarizes the first stage of the face localization algorithm. The input to 

the system is an illumination compensated image, which we pass through the 

classifier for skin detection. All

all non-skin pixels are set as binary 0 (black). We then draw a bounding box around all 

the clusters of pixels and select the largest cluster. The height to width ratio of the largest 

bounding box is measured and if it falls in the range of the 

is classified as a face. Figure 

(a)

Figure 2.23: a) Largest blob of skin detected image b

For the purpose of experimentation of our face detection algorithm we create a set of 

181 test images from the AVICAR database. Each image consists of 1 face. The test set 

contains subjects of all ethnicities present in the AVICAR database. We have also 

Binary Skin Detected 
Image (SkinImg)

Blob Analysis:

Draw Bounding Box 
around all blobs
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Flowchart representing the blob analysis and Golden Ratio 

summarizes the first stage of the face localization algorithm. The input to 

the system is an illumination compensated image, which we pass through the 

classifier for skin detection. All pixels detected as skin as set as binary 1 (white), 

skin pixels are set as binary 0 (black). We then draw a bounding box around all 

the clusters of pixels and select the largest cluster. The height to width ratio of the largest 

x is measured and if it falls in the range of the threshold equation

Figure 2.23(b) represents a correctly classified cluster as

 
(a) (b) 

st blob of skin detected image b) Cropped image of the largest blob

For the purpose of experimentation of our face detection algorithm we create a set of 

181 test images from the AVICAR database. Each image consists of 1 face. The test set 

contains subjects of all ethnicities present in the AVICAR database. We have also 

Blob Analysis:

Draw Bounding Box 
around all blobs

Select the largest 
blob

Calculate 
Height/Width of 

largest blob

Detect

 

Ratio  

summarizes the first stage of the face localization algorithm. The input to 

the system is an illumination compensated image, which we pass through the Bayes 

pixels detected as skin as set as binary 1 (white), whereas 

skin pixels are set as binary 0 (black). We then draw a bounding box around all 

the clusters of pixels and select the largest cluster. The height to width ratio of the largest 

equation that cluster 

(b) represents a correctly classified cluster as face. 

 

) Cropped image of the largest blob 

For the purpose of experimentation of our face detection algorithm we create a set of 

181 test images from the AVICAR database. Each image consists of 1 face. The test set 

contains subjects of all ethnicities present in the AVICAR database. We have also 

Detect blob as face if 
height/width is 

between 1.2 and 
1.78
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included underexposed and overexposed images to test our algorithm on severe 

lightening conditions. 

We run the first stage of the face detection algorithm as described by Figure 2.22 on 

the 181 test images and tabulate the results in Table 2-1. 

Table 2-1: Results of implementing the Bayes Classifier on 181 test images 

Face 

Detection 

Technique 

Color 

Space 

Total 

Faces 

Faces that pass 

the Golden 

Ratio 

Faces that 

miss the 

Golden 

Ratio 

Percentage 

Detected 

Percentage 

Failed 

Bayes 

Classifier + 

Golden Ratio 

Hue and 

nG 
181 71 110 39.22% 60.773% 

 

Seventy-one images of the data set contained the largest bounding box which fell in 

the threshold range of the golden ratio and were segmented as faces. All 71 images were 

correctly classified without the presence of excessive noise. It is obvious that the percent 

of images which pass the restriction of the golden ratio is very low; nonetheless, it 

eliminates a large chunk of images which do not require any further modifications. 

 

B) Morphological Operation and Constraints (Binary Filtering) 

For the 110 images which do not meet the golden ratio criteria, we need further 

modifications in order to localize the face. 

The largest blobs in images which do not match the human face dimensions may be 

for the reasons that, either the face is incomplete, that is the face is divided into disjointed 

two clusters and do not fall into one bounding box. Another reason is the fact that several 

non-skin pixels which were falsely classified as skin are part of the largest cluster and are 

distorting the dimensions of the blob. 



38 

 

We perform morphological operations in order to address these challenges, separate 

the noise from the face cluster and complete the face if necessary. 

The basic two processes of morphological operations are: 

a) Erosion: It is the shrinking or thinning of a binary image controlled by the 

structuring element. 

b) Dilation: It is the growing of thickening of a binary image controlled by the 

structuring element. 

A structuring element is a shape, used to probe or interact with a given image, with 

the purpose of drawing conclusions on how this shape fits or misses the shapes in the 

image. Through experimentation, it was found that the best combination of 

morphological operations is depicted in Figure 2.24. On the images which failed the 

golden ratio criteria, the first operation performed was closing which is basically dilation 

followed by erosion. Closing is performed to fill all the gaps in the face region so as to 

ensure that the face in considered as 1 blob and does not break away,  followed by 

performing erosion to eliminate the small blobs surrounding the face and lastly 

performing opening,   Opening is also erosion followed by dilation by the same 

structuring element. Opening is performed to eliminate the small objects which are noise 

in the background. Also it will break away thin connections between objects which is 

important as it will help in preserve the dimension of the face in order to separate the face 

blob from the connected background blobs. The typical example is depicted in Figure 

2.25. 



 

Figure 2.24

 

 

(a) 

(c) 

Figure 2.25: (a) Image after application of 

closing on image (a) (c) Performing Erosion on image (b) (d) Performing Opening on Image (c)

 

Golden Ratio 
Failed Images
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24: Flowchart representing the morphological operation

 
(b) 

 
(d) 

Image after application of Bayes Classifier (skin detected image) (b

closing on image (a) (c) Performing Erosion on image (b) (d) Performing Opening on Image (c)

Morphological 
Closing

Morphological 
Erosion

Morphological  
Opening

Output of 
morphological 

operations 
detected as Face

 

morphological operation 

 

 

Classifier (skin detected image) (b) Performing 

closing on image (a) (c) Performing Erosion on image (b) (d) Performing Opening on Image (c) 

Output of 
morphological 

operations 
detected as Face
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Figure 2.26: Flowchart representing face detection algorithm using Bayes Classifier and 

Morphological Operations 

 

Flowchart represented in Figure 2.26 depicts the first two stages of the face detection 

algorithm. We start with the input image which we correct for illumination. After passing 

through the Bayes classifier we select the largest cluster of pixels. If the cluster falls in 

the golden ratio range we segment the cluster as a face. If the cluster fails the golden ratio 
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threshold, the skin classified image is passed through a series of morphological operation. 

We once again select the largest blob and segment the blob as a face. 

Table 2-2 contains the results of passing the 181 test images through the first two 

stages of the face localization algorithm as represented in Figure 2.26. 

 

Table 2-2: Results of face detection using Bayes classifier with Morphological operations on 181 test 

images 

Face Detection 

Technique 

Color 

Space 

Total 

Faces 

Faces 

correctly 

classified 

Faces 

incorrectly 

classified 

Percentage 

Detected 

Percentage 

Failed 

Bayes Classifier 

+ Golden Ratio + 

Morphological 

Operations 

Hue and 

nG 

+ Gray 

Scale 

181 119 62 65.745% 34.254% 

 

 

Of the 181 images, seventy-one images passed the golden ratio in the first stage, and 

110 images were passed through the morphological operations after which 48 images 

were correctly segmented as faces.  
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(a) (b) 

 
 

(c) (d) 

Figure 2.27: (a) and (b) Correctly classified as faces after Bayes classifier and Morphological 

Operations (c) and (d) Incorrectly classified faces with excessive background noise 

 

Figure 2.27 displays the images which were correctly classified as faces after Bayes 

classifier and morphological operations and the images which do not pass the golden 

ratio criteria due to excessive noise are shown in Figure 

The result solely after the Bayes classifier and morphological operation is fairly poor 

with only 65% detection rate.  It was observed that the 62 images which were falsely 

segmented as faces contained a large number of background pixels incorrectly classified 

as skin. Due to the large amount of noise present in the image, only skin color and 

morphological operations were not enough to detect faces.  
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In the last stage of the face localization method, we focus our attention to template 

matching. Template matching does not use the color information of the image, but 

instead the intensity component which highlights the features of the face. We aim to 

remove the shortcomings of the skin detector due to difficult background conditions by 

implementing the template matching algorithm. 

 

C) Template Matching 

The concept of template matching is fairly simple. We create a sample face known as 

a template using training data. This template is then passed over the test data and any 

region which resembles the template the most is selected as the face region. 

 

Creating the Template: 

 It was noticed that due to difference in position of the cameras, one template might 

not work for all test images, for example in cases with a turned face with some parts 

occluded. We created templates for all four camera angles but the run time of the 

algorithm significantly increased. Therefore, we restricted to two templates which gave 

the same accuracy as four templates. 

For the training of the template, we take 315 images from camera angles 3 and 4 each 

and manually select the face region. The selected region is cropped and placed on a black 

background. The sample face used for the training is depicted in the Figure 2.29. 



 

Figure 2.28: Original Image of AVICAR database representing the four camera angles. The bottom 

 

Figure 

 

To create the face template, each image is first resized 

normalized through the following equation to reduce the error due to lighting conditions 

and backgrounds [37]: 

where the  is the mean of the image and 

the image.  and  are variables, which are chosen as values as close to the mean and 

standard deviations as most images. By experimentation, the values were chosen 

. 
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Original Image of AVICAR database representing the four camera angles. The bottom 

two images represent camera 3 and 4. 

 

Figure 2.29: Sample image for creating the template 

To create the face template, each image is first resized to the size 200 x 150 and then 

through the following equation to reduce the error due to lighting conditions 

 

is the mean of the image and  is the standard deviation of 

are variables, which are chosen as values as close to the mean and 

standard deviations as most images. By experimentation, the values were chosen 

 

 

Original Image of AVICAR database representing the four camera angles. The bottom 

to the size 200 x 150 and then 

through the following equation to reduce the error due to lighting conditions 

(2-12) 

is the standard deviation of 

are variables, which are chosen as values as close to the mean and 

standard deviations as most images. By experimentation, the values were chosen as 



 

The mean of all normalized images forms the face template. The two face templates 

used for template matching 

Figure 

 

Applying the Template: 

We use a Matlab function

function computes the normalized cross correlatio

where the result is the correlation coefficient with values ranging from 1 to 

Before the application of the function, we resize all the test images so that the ratio of 

their sides is 4:3, in proportion to the si

compensate for difference in face sizes in comparison to the template, we run the 

function at different image sizes.  We resize the test image using the following equation

The variable  is increased

individually on the test image and determine the template and its size with the largest 

correlation coefficient. A bounding box of t

Figure 2.31 represents correctly
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The mean of all normalized images forms the face template. The two face templates 

used for template matching are indicated in Figure 2.30. 

 
a) b) 

Figure 2.30: Resulting template for camera a) 3 and b) 4 

lab function, Normxcorr2, to run the templates over the test image. This 

function computes the normalized cross correlation of the test image and the template, 

where the result is the correlation coefficient with values ranging from 1 to 

Before the application of the function, we resize all the test images so that the ratio of 

their sides is 4:3, in proportion to the size of the template which is 200 x150.  To 

compensate for difference in face sizes in comparison to the template, we run the 

function at different image sizes.  We resize the test image using the following equation

 

is increased from 1 to 15 in steps of 1. We run both the templates 

individually on the test image and determine the template and its size with the largest 

correlation coefficient. A bounding box of that size is drawn around the detected region. 

correctly classified faces and incompletely detected face

The mean of all normalized images forms the face template. The two face templates 

 

to run the templates over the test image. This 

n of the test image and the template, 

where the result is the correlation coefficient with values ranging from 1 to -1. 

Before the application of the function, we resize all the test images so that the ratio of 

150.  To 

compensate for difference in face sizes in comparison to the template, we run the 

function at different image sizes.  We resize the test image using the following equation 

(2-13) 

from 1 to 15 in steps of 1. We run both the templates 

individually on the test image and determine the template and its size with the largest 

hat size is drawn around the detected region. 

and incompletely detected faces.  
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(a) (b) 

  
(c) (d) 

Figure 2.31: (a) and (c) Correctly detected face through template matching and (b) and (d) 

Incomplete face detected through template matching 

 

To evaluate the accuracy of the template matching algorithm alone without the first 

two stages of skin classification and morphological operations, we pass the illumination 

corrected 181 images through the template matching algorithm. 

Table 2-3: Results of face detection using Template Matching on 181 test images 

Face 

Detection 

Technique 

Color 

Space 

Detected 

Faces 

Incomplete 

Faces 

Missed 

Faces 

Mis-

classified 

Faces 

Percentage 

Detected 

Percentage 

Failed 

Template 

Matching 

Gray 

Space 
135 36 0 10 74.585% 25.414% 

 

Of the 181 test images 135 images were correctly classified without excessive 

background noise. The 36 incomplete faces refer to any image where only a part of the 
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face was detected, or where any part of the lips was missed. Mis-classified faces refer to 

cases where none of the important features, such as the eyes, nose, and mouth region was 

detected and large part of the face was missed.  

 

2.3. Face Detection Results 

The results of face detection by template matching are also much lower than desired. 

Therefore, in order to increase the accuracy we concatenate Bayes classifier with the 

template matching technique.  
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Figure 2.32: Flowchart representing face detection algorithm using Bayes Classifier, Morphological 

Operations and Template Matching 

 

In Figure 2.32 the flowchart represents the concatenation of Bayes classifier with 

template matching. At the end of the second stage of face localization we obtain images 
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after performing morphological operations. These images are once again checked for the 

golden ratio criteria, only the images which don’t fall within the threshold the second 

time also, are passed through the template matching algorithm. 

Table 2-4: Results of face detection using Bayes Classifier followed by the Template Matching on 181 

test images 

Face 

Detection 

Technique 

Color 

Space 

Detected 

Faces 

Incomplete 

Faces 

Face with 

excessive 

noise 

Mis-

classified 

Faces 

Percentage 

Detected 

Percentage 

Failed 

Bayes 

Classifier 

+Morpholo

gical 

Operations 

+ Template 

Matching 

Hue 

and Ng 

+ Gray 

Space 

160 5 16 0 88.39% 11.60% 

 

The result of the concatenated algorithm for 181 test images is tabulated in Table 2-4. 

Of the 181 images, seventy-one images were correctly classified with the Bayes classifier 

and the golden ratio. After performing morphological operations, 48 more images passed 

the golden ratio threshold. Of the remaining 62 images on which template matching was 

performed, 41 images were accurately detected.  

 

2.4. Viola-Jones Algorithm 

A) Viola-Jones Description 

With the first approach, 88.4% detection rate was achieved. In order to further 

improve the detection rate, another famous face detection algorithm is examined, Viola-

Jones algorithm [14]. Viola-Jones algorithm is currently one of the most robust face 

detection techniques in implementation. We aim to compare our concatenated face 

detection algorithm with the Viola-Jones technique. This method is essentially a rapid 
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object detection algorithm. Contrary to popular methods of object detection using color 

information, [14] uses monochromatic information to compute ‘Haar like’ features. 

The basic principle of Viola-Jones algorithm is to scan a sub-window (detector) 

capable of detecting faces across a given input image. This detector is rescaled and run 

through the input image many times, each time with a different size. The detector 

constructed contains some simple rectangular features reminiscent of Haar wavelets. 

 

Integral Image: 

The first step was to convert the input image into an integral image. Each pixel is 

made equal to the entire sum of all pixels above and to the left of the cornered pixel. 

 

Figure 2.33: Input Image and the Integral Image proposed by Viola-Jones [14] 

 

This allows for the calculation of any given rectangular area within the desired region 

using only four values. 

 

Figure 2.34: Example to show the calculation via the integral image [14] 
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Feature Discussion: 

This object detection procedure classifies images based on the value of simple 

features. The value of a two-rectangular feature is the difference between the sum of the 

pixels within the two rectangular regions as in Type 1 and Type 2.  A three rectangular 

feature computes the sum within two outside rectangles subtracted from the sum in the 

center rectangle as shown in Type 3 and Type 4. Finally, as represented by Type 5, a four 

rectangle feature computes the difference between diagonal pairs of rectangles. 

 

Figure 2.35: The types of 'Haar like' features used in the training the Viola-Jones classifier [38] 

 

The concept of integral image makes the calculation of all features significantly 

faster. Implementation of the Viola-Jones algorithm for face detection has resulted in 

determining that the detector size of around 20 x 20 pixels gives satisfactory results. 

Therefore, allowing for all possible sizes and positions of the features approximately 

180,000 different features can be constructed. The objective now is to construct a mesh of 

features capable of detecting faces. 

 

Modified AdaBoost Algorithm: 

 

From the 180,000 features present in the detector, some features give consistently 

high values when over a face than the others. Viola-Jones uses a modified version of the 

AdaBoost algorithm to find these features. 
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AdaBoost algorithm is based on constructing a strong classifier through a weighted 

combination of weak classifiers. 

A weak classifier is mathematically represented as: 

 

�%�, P, 
, �) � �1   QP 
P%�) 8 
�0         ���JK�Q�J C (2-14) 

 

Where x is the 20 x 20 pixel sub-window, f is the applied feature, p the polarity and � the 

threshold that decided whether x should be classified as a positive (a face) or a negative 

(a non-face). 

As only a small number of features are expected to be potential classifiers, the 

algorithm is modified to select only the best features. The method to select the best 

feature, polarity and threshold used by Viola-Jones is of brute force. Which means that to 

determine each weak classifier, each feature is evaluated on all training examples in order 

to find the best performing feature. This is expected to be the most time consuming 

procedure of the training.  

The best performing feature is chosen based on the weighted error it produces. As 

seen in part 4 the weight of the correctly classified example is decreased and the weight 

of the misclassified example is kept constant. Therefore, it is more expensive for the 

second feature to misclassify an example also misclassified by the first feature, than an 

example classified correctly.  
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Figure 2.36 shows the features which are generally chosen as the first and second by 

the modified AdaBoost learning algorithm. The first feature takes advantage of the 

difference in intensity between the region of the eye and the region of the upper cheek. 

The second feature calculates the difference between the two eyes and the center bridge 

of the nose. 

 

Figure 2.36: The most common first and second feature obtained by the modified AdaBoost 

algorithm for the Viola-Jones classifier [38] 
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Cascaded Classifier: 

 

Viola-Jones utilized cascaded classifier in order to approach the face detection 

problem from another point of view. Instead of finding face, the algorithm should discard 

non-faces. Therefore, the idea of the detector using only one strong classifier seemed 

inefficient.  

 

Figure 2.37: The cascaded classifier [38] 

 

The cascaded classifier is composed of stages, where each stage contains a strong 

classifier. Each stage determines if the given sub-window is definitely not a face or 

maybe a face. The sub-window is immediately discarded when classified as a non-face, 

but if the sub-window is classified as maybe face, it is passed on to the next stage in the 

cascade.  

 

Implementation of Viola-Jones Algorithm for Face Detection: 

 

The Viola-Jones algorithm was obtained from OpenCV (Open Source Computer 

Vision). OpenCV is a library on Computer Vision created by Intel. The algorithms from 

OpenCV can be accessed using Visual Studio C++.  

OpenCV already contains an implemented version of the Viola-Jones algorithm with 

a trained classifier which can be directly implemented. We download this classifier from 
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openCV and extract the xml file through Visual Studio C++ which is explained later. 

This xml file can be implemented as a classifier on the images through Matlab (attached 

Matlab algorithm in Appendix).  The parameters of the classifier were not altered from 

[39] except the window size was restricted to 20 X 20. Training of the classifier is a 

lengthy and time consuming process which takes anywhere between 5 days to 2 weeks. 

OpenCV also provides a way to train and create your own classifier using Haar-like 

features in HaarTraining. The result of the training is an xml file that contains the 

definitions of the classifier. The details of training a classifier are discussed later. 

Table 2-5: Results of implementing the in-built Viola-Jones Classifier on 181 test images 

Face 

Detection 

Technique 

Color 

Space 

Detected 

Faces 

Incomplete 

Faces 

Missed 

Faces 

Mis-

classified 

Faces 

Percentage 

Detected 

Percentage 

Failed 

Viola-

Jones 

Gray 

Space 
164 5 12 1 90.6077% 9.3923% 

 

The 181 test images were passed through the in-built gray scale classifier in order to 

compare the results with the concatenated face detection algorithm of Bayes classifier 

and template matching. For the 5 incomplete faces, it was due to the fact that not the 

entire lip region was included. With 90% detection rate, the Viola-Jones algorithm results 

in slightly better accuracy than the Bayes classifier and template matching algorithm 

which achieve an accuracy of 88%. 
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Figure 2.38: Correctly classified face by the Viola-Jones Algorithm 

As noticed, the accuracy of the Viola-Jones algorithm is around 90%. Although by 

itself the performance is acceptable, this algorithm completely misses 12 out of the 181 

images. In order to further improve the detection rate, we examined the possibility of 

using color information as opposed to Viola-Jones monochromatic gray scale intensities 

as the training data. 

 

Figure 2.39: Example of an image missed by the Viola-Jones Algorithm 

 

Viola-Jones Algorithm (Modification) 

 

The rapid object detection algorithm proposed by Viola-Jones uses the gray scale 

images for its positive and negative image training. The basic principle of the method 
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requires at least the positive training data set to have distinct features in order to train the 

‘Haar like’ wavelets. This makes an interesting study, as to if there is a color space better 

suited than the gray space for the implementation of Viola-Jones.  

In this experiment, we train our own classifier in OpenCV and compare it to the 

inbuilt classifier obtained from OpenCV. For training the classifier we used 7096 positive 

images and 3138 negative images as represented in the figure.  

 

Training a Classifier [39]: 

The training of a classifier is divided into 4 parts. 

1) Data Preparation: The first step to training the classifier is the preparation of the 

positive and negative data. The positive data consists of only the object desired to be 

detected. In this case the positive data is face. It has been determined that to achieve 

desired results at least 5000 positive images are required. The negative data should 

consist of several background images as varied as possible without including any 

faces. The first step is complete when all the data is acquired and placed into the 

respective folders. 

2) Creating Sample Images and Generating .vec: This step is performed only on the 

positive data set. The createsample.exe is used to create the .vec file for the faces, 

where the size of every positive image is defined.  

3) Training the classifier: The executable available in OpenCV called Haartraining.exe 

is used for the next step which is the actual training of the classifier using the negative 

data and the positive samples created in step 2. Depending on the number of 
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negatives and positives collected, the time of the training varies. This may take for 

several hours to several days. It is a lengthy and time consuming process. 

4) Testing: Once the training of the cascaded classifier, the last step is to run the 

classifier on the test images.  

 

For the sake of our face detection algorithm, we have used the in-built pre trained 

classifier in the gray scale. We have also trained classier in different color spaces, whose 

results are summarized and analyzed in the results section. 

Below is the tabulated result of the Viola-Jones face detection algorithm. From the 

results it could be observed that, the boundary across the detected faces did not include 

any background noise and perfectly encompassed the face region. A very small 

percentage of faces were incomplete, and only 1 image had a misclassification.  

 

 

 
(a) (b) 

Figure 2.40: a) Sample positive image and b) sample negative image for the training of the Viola-

Jones classifier 
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Table 2-6: Results of face detection of 181 images by trained Viola-Jones Classifier 

Color space Detected 
Incomplete 

Faces 
Missed 

False 

Detection 

Percent 

Faces 

Detected 

Gray inbuilt 164 5 12 1 90.6077% 

Red 168 12 1 7 92.8177% 

Gray 162 17 2 12 89.50% 

Green 167 11 3 12 92.265% 

Saturation 151 5 25 33 83.425% 

Green 

(Illumination 

Compensated) 

170 10 1 16 93.92% 

 

Our objective was to compare results between the classifiers trained in different color 

spaces and to observe if a color space other than gray scale can improve the detection 

rate.  

The inbuilt gray scale classifier in OpenCV used positive and negative images to 

train which exceed the number of images we use in our training by a great number. In 

order to have a fair comparison between all color spaces, we first train the classifier using 

our training images in gray scale.  

In the color spaces without illumination compensation it can be observed that the 

classifier trained in the red color space gives the best performance for true positives. It is 

also interesting to note that the red color space classifier had the least amount of false 

detection rate. The performance of the green color space trained classifier was very 

similar to that of the red which outperformed the gray scale classifier. As noticed red and 

green classifiers outperformed even the in-built classifier from OpenCV for correct face 

detection but performed more false detections and incomplete faces, which might indicate 

that a larger training data set might improve the performance. 

Lastly, we trained a classifier in the green color space with all the positive and 

negative images first illumination compensated. It is apparent that the detection rate for 
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illumination compensated green outperforms all other classifiers. Future work can 

investigate different color spaces with and without illumination compensation to achieve 

the highest detection rates. 

 

2.5. Final Face Detection Algorithm 

 

Figure 2.41: Flowchart for the final face detection algorithm 
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The concatenation of Bayes Classifier with the template matching algorithm, 

although yielding respectable results, is slightly lower than the Viola-Jones technique 

previously discussed. Therefore, each method on its own is not capable of providing 

desired face detection results. Hence, we first perform the Viola-Jones technique on a set 

of Test Images. This technique contained very ‘few incomplete face’ images, and more 

‘missed face’ images. The images which were completely missed by the Viola-Jones 

technique are then passed through the Bayes classifier and if need be the morphological 

operations. Any image, which finally fails the golden ratio, is then passed through the 

template matching algorithm.  

It is essential to note that we use the in-built Viola-Jones classifier even though the 

red color space trained classifier gave a better face detection result. Due to its large 

training set of the in- built classifier, it results in fewer false detected images and more 

missed images, which in the case of red is more false detected and almost none missed 

which means it would be impossible to concatenate further with any other technique. 

  



62 

 

  
(a) (b) 

  
(c) (d) 

 

 

(e) (f) 

Figure 2.42: a) Face detected by the in-built Viola-Jones algorithm b) Face missed by the in-built 

Viola-Jones algorithm c) Face which was missed by Viola-Jones is correctly detected my Bayes 

Classifier d) Face missed by Viola-ones algorithm and Bayes Classifier e) Face Missed by Viola-Jones 

algorithm and Bayes classifier and correctly detected by Template matching f) Face missed by all 

methods. 

Final Face Detection Result: 

Step 1: Inbuilt Viola Jones:  Detected: 164/181 (90.6077%)  

             Missed: 12/181 (6.628%) Incomplete: 5/181 (2.762%) 

Step 2: Detection using Bayes Classifier:  Detected: 6/12 (50%)    

Missed: 6/12(50%) 

Step 3: Template Matching:  Detected: 2/6 (33.33%) Incomplete: 4/6 (66.66%) 

Overall Face Detection Result: 

Faces Detected: 172/181 (95.027%)   Faces Missed: 9/181 (4.972%) 
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3. LIP LOCALIZATION 

The stage after successful face detection is mouth localization. Several techniques 

have been under survey and experimentation.  

In this thesis we focus on a lip enhancement technique which defines the contours of 

our lips. We further isolate the lip contour using multiple restrictions.  

In Section 3.1 we perform color space analysis to evaluate if any space can be used to 

train a classifier. In Section 3.2 we discuss different lip enhancement techniques and 

define our lip localization algorithm. In Sections 3.3 and 3.4 we perform operations to 

isolate the lips. Lastly, in section 3.5 we discuss the results and scope of improvement. 

 

3.1. Color Space Analysis 

Several color spaces have been discussed for the problem of face detection such as 

RGB, normalized RGB, HSV, YCbCr as shown in section 2.2.1. Color space for lip 

segmentation, on the other hand, poses a greater challenge, due to the small variation 

between the color of the skin and the color of the lips.  

Similar to the process in face detection, we collect training data from about 1500 

images including all skin color and lightening conditions available in the data set. The 

background image in this instance consists of only the face, as the primary objective is to 

determine a boundary between lip pixels and face pixels. The lip region is manually cut 

out from each face as shown in the Figure 3.2. 

 



 

Figure 3.1: Face or background image

 

We plot histograms of face pixels vs. the lip pixels in 

evaluate their potential for lip segmentation.

 

RGB Color Space 

The color distributions between skin and lip pixels samples overlap each other along 

with low inter-class variances for each R, G and B component. As a result, 

space is not suitable for direct lip segmentation as it demonstrates a strong correlation 

between light and color information.

(a) 

Figure 3.3: Lip v/s face histogram (a) Red 

the figure Red signifies face pixels and green signifies lip pixels

 

Normalized RGB 

In the case of normalized RGB, although the intra class cluster deviation is much 

smaller than RGB, the two color space
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background image Figure 3.2: Mask of a lip from 

We plot histograms of face pixels vs. the lip pixels in several popular color spaces to 

evaluate their potential for lip segmentation. 

The color distributions between skin and lip pixels samples overlap each other along 

class variances for each R, G and B component. As a result, 

space is not suitable for direct lip segmentation as it demonstrates a strong correlation 

between light and color information. 

(b) 

Lip v/s face histogram (a) Red component (b) Green component (c) Blue component. In 

the figure Red signifies face pixels and green signifies lip pixels

In the case of normalized RGB, although the intra class cluster deviation is much 

smaller than RGB, the two color spaces almost completely overlap. Variations have also 
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ask of a lip from Figure 3.1 

several popular color spaces to 

The color distributions between skin and lip pixels samples overlap each other along 

class variances for each R, G and B component. As a result, RGB color 

space is not suitable for direct lip segmentation as it demonstrates a strong correlation 

(c) 

component (b) Green component (c) Blue component. In 

the figure Red signifies face pixels and green signifies lip pixels 

In the case of normalized RGB, although the intra class cluster deviation is much 

Variations have also 

100 150 200 250

Blue Color Space: Skin(Green) and Lip(Red)
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been experimented in papers which investigate the result of histogram thresholding using 

maximized intensity normalization, in which instead of dividing by the sum of the RGB 

component at each pixel location, the denominator is the maximum value of R+G+B over 

the entire image, or max(R+G+B). The paper concludes that this transformation of 

maximum intensity thresholding achieves better results for both skin and lip 

segmentation. Another variation is mentioned in [40] in which a weight of 1/3 is applied 

to the denominator; instead of R+G+B as denominator, it becomes  

 
�� %
 	 T 	 U) 

(a) (b) (c) 

Figure 3.4: Lip v/s face histogram (a) normalized Red component (b) normalized Green component 

(c) normalized Blue component. In the figure Red signifies face pixels and green signifies lip pixels 

 

YCbCr Color Space 

The Y component in the YCbCr color space does not satisfy the criteria of low intra 

class variance and the two clusters completely overlap. Cb and Cr, on the other hand, do 

not directly seem to have a boundary that can be defined between the two clusters, it is 

considered that lip region have high Cr and low Cb values [41]. This can be used to 

enhance the lips in an image, which is later discussed. 
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(a) (b) (c) 

Figure 3.5: Lip v/s face histogram (a) Y component (b) Cb component (c) Cr component. In the 

figure Red signifies face pixels and green signifies lip pixels 

 

Other Color Transformations:  

The other popular color spaces experimented include Hue, which proves to be a 

valuable component in face detection but does not have the same results in lip 

segmentation. The U and V space have been used to model curves for lip detection but do 

not work well with Bayes classifier. The RGB combination techniques do not prove 

useful by the histograms whereas the ‘a’ space might have potential. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 3.6: Lip v/s face histogram (a) Shifted Hue component (b) U component (c) V component (d) a 

component (e) R+G-6B combination (f) nr+nb-2ng combination. In the figure Red signifies face 

pixels and green signifies lip pixels 

 

Based on our experiment, appearance-based classification approach, such as Bayes 

Classifier using various color spaces, to classify the lip and face did not yield satisfactory 

results; therefore, we experiment with these color spaces to enhance the lips against the 

skin.  

Commonly used equations for either lip color or lip boundary enhancement include 

Pseudo Hue given by the equation [42] 

v�JON� gOJ �g�� � 

 	 T 
(2-14) 
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(a) (b) 

Figure 3.7: (a) Lip v/s face histogram for pHue. In the figure Red signifies face pixels and green 

signifies lip pixels (b) Image displayed in pHue color space for lip enhancement. 

 

The lip region is represented by pixels of much higher intensity values than the rest of 

the face. Although, lip region represented higher intensity values, determining a threshold 

was difficult. 

A combination of RGB color spaces represented by the equation 

 0.5774 f 
 � 0.7887 f T 	 0.2113 f U is used to enhance the outer boundary of the 

upper lip [16]. 

 

 
 

(a) (b) 

Figure 3.8: (a) Lip v/s face histogram for RGB combination. In the figure Red signifies face pixels 

and green signifies lip pixels (b) Image displayed in RGB combination color space for lip 

enhancement. 
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The RGB combination technique yielded poor results as, the lip region was generally 

not defined, and a very large area around the mouth contained higher intensity values.  

In paper [44], they have followed the principle that lip regions have high Cr and low 

Cb values and have used the formulas below which aims at brightening pixels with high 

Cr and low Cb. 

�Q
�L
 �  s�̂ �s�̂ � � s^s���
 

(3-1) 

where  � � 0.95 ib ∑ ��%�,a) 
ib ∑��%�,a) � %�,a)¡  

  

(a) (b) 

 

(c) 

Figure 3.9: (a) Lip v/s face histogram for CrCb combination. In the figure Red signifies face pixels 

and green signifies lip pixels (b) Image displayed in CrCb combination color space for lip 

enhancement (c) Image where CrCb combination fails for lip enhancement. 

 

The result of this enhancement technique is impressive as the lip region is 

significantly brighter than rest of the face image, but the drawback is that it is not 
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consistent with all the test images and variations in lighting conditions severely affect the 

results.  

The U� Component, a simplification of the LUX color space, has been used in paper 

[45] and [46] for lip segmentation. The equation to calculate the U� component is shown 

below. 

�� �  £ 256 ¤  j̀       QP 
 8 T 255               ���JK�Q�JC (3-2) 

  

(a) (b) 

Figure 3.10: (a) Lip v/s face histogram for ¥�  componnt. In the figure Red signifies face pixels and 

green signifies lip pixels (b) Image displayed in ¥�  component color space for lip enhancement. 

 

One of the most promising results for lip boundary enhancement was observed in the 

color-based gradients mentioned in the paper [46] and [47] discussed in section 3.2. 

 

3.2. Lip enhancement Techniques 

Often times, only color space transformation is not sufficient for lip extraction. When 

the algorithm tries to extract the lip contour, the gradient information between lips and 

the other face features can be very useful and can be first used to enhance the lip 
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boundary. There are several techniques used to provide the strong gradient – high 

variation values between skin and lip regions.  

 

A) Intensity-based Gradient 

Intensity-based gradient is the most extensively used gradient, which aims to detect 

the illumination changes between the skin and lips. If the illumination changes between 

the skin and lips are enhanced, the lip boundary becomes more obvious to the detection 

algorithm. For example, if the light source is from above, the upper boundary of the 

upper lip is bright whereas the upper lip itself is dark, similarly the lower lip is bright but 

the lower lip boundary is in the dark. Lip boundary enhancement can hence be achieved 

by utilizing the intensity-based gradient caused by the light source effect on the upper and 

lower lip. The gradient consists to horizontal and vertical components, but the vertical 

components are more frequently used. One example is the use of gradient-based Canny 

edge detector for the mouth corner detection in [48]. The drawbacks consist of the 

shadow effect generally due to the lower lip which results in false contours. Also, the 

lower lip contour has a weaker gradient and is more difficult to extract. In cases with the 

open mouth, the oral cavity, teeth, tongue will make a strong gradient along with the lip 

contour and the algorithm needs to be able to extract the right contours. 

 

B) Color-based Gradient 

Paper [47] proposes two specific color gradients for the outer lip contour extraction 

whereas in [49] two gradients are proposed for the inner lip contour. The gradient 
��¦ in 
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[47] characterizes the upper boundary and 
�����D is used for the lower one. The 

equations are as follows where I is the luminance 


��¦%�, �) � § ¨
T %�, �) � ©%�, �)ª and 
�����D%�, �) � § ¨
T %�, �)ª (3-3) 

The reasons behind selecting R/G are mentioned in the Part E of Section III. 

Similarly, in [49], T� is used for the upper inner boundary of the lip and T� is for the 

lower one. In the equation g� is pseudo-hue and u is the component of the CIELuv color 

space. 

T�%�, �) � § �
%�, �) � O%�, �) � g�%�, �)� 
T�%�, �) � § �©%�, �) 	 O%�, �) 	 g�%�, �)� 

(3-4) 

Another example of upper, middle and lower lip color-based gradient (Pseudo-Hue and Y 

component) can be found in [50].   

 

3.3. Thresholding the Lip Gradient 

It has been experimented and observed that pseudo hue is higher for lips than for 

skin; hence, we utilize pseudo hue in our definition of upper and lower lip contour [45]. 

Intensity is another important factor to be taken into account. Generally, the illumination 

source is above the speaker. Therefore the top frontier of the upper lip is well illuminated 

while the lower part of the upper lip is in shadow.  For the lower lip, the bottom contour 

is in light whereas the central lower boundary is in shadow. Thus using, the gradient of 

the hybrid edges, it is possible to define the contours of the lips. 
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Figure 3.11: Indicate the higher and lower values of pseudo Hue and Luminance for lip boundaries 

[47] 

 
��¦%�, �) � §��«%�, �) � �«%�, �)� 


Y�¬%�, �) � §��«%�, �) 	 �«%�, �)� 

(3-5) 

Where �« is pseudo hue and Y is from the color space YCrCb. 

Therefore, the first step in our lip detection implementation is the application of 

the gradient hybrid equations on the face detected images. 

 

  
(a) (b) 

Figure 3.12: (a) Image after application of ­®%¯, °) � ±®%¯, °) equation (b) Image after application 

of ­®%¯, °) 	 ±®%¯, °) 
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We are interested in only the vertical gradient of the hybrid equations. For a function 

P%�, �), the gradient of f at coordinates (x,y) is defined as the two-dimensional column 

vector. 

²P � �M�Ma� � ³´�´�´�´a
µ , ��JKJ ´�´a  P�KS� ��J IJK�QhL� MKLNQJR�  (3-6) 

 

  
(a) (b) 

Figure 3.13: (a) Vertical gradient of image in Figure 3.12(a) (¶·¸¹%¯, °)) and (b) Vertical gradient of 

image in Figure 3.12(b) (¶º¸�%¯, °))  

 

As depicted by the images, using the hybrid lip contour equations, the upper and 

lower lip are highlighted in comparison to the surrounding area of the mouth. The next 

step involves thresholding to isolate the mouth contour from the rest of the skin. With 

optimization, the threshold is set as below. 

©P 
��¦%�, �) 8 0.028, 
��¦%�, �) � 1; otherwise, Rtop (x,y) = 0 

©P 
Y�¬%�, �) 8 0.03, 
Y�¬%�, �) � 1; otheriwise, Rlow(x,y) = 0 

(3-7) 
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(a) (b) 

Figure 3.14: (a) and (b) Images obtained after thresholding images in Figure 3.13(a) and (b) 

 

 

3.4. Lip Localization 

Once the thresholded images are obtained, we observe several connected components 

or blobs. We need to differentiate between the blobs belonging to lips from the ones 

belonging to the face. We draw a bounding box around all blobs and pass then through 

certain restrictions. 

a) Orientation: Assuming the lips are primarily horizontal, or slightly inclined if 

considering a tilted face, we apply the threshold limits to the orientation. This is 

successful in eliminating any vertically inclined blobs. Orientation is calculated by 

measuring the angle between the x-axis and the major axis that has the same second 

moments as the origin. 

�18° » ¼KQJR�L�Q�R » 	18° 

b) Blob Area: It was determined through data that the lip area is approximately 2% of 

the entire face. Hence to eliminate larger blobs, we apply a threshold restriction. We 

also apply a lower area limit to eliminate small blobs. 

0.02 5 U��o HKJL½��L� HKJL 5 0.002  
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c) Height to width: following through the assumption that the lips are primarily 

horizontal, we restrict the blobs which have the height greater than the width. 

gJQM�� �P ��J U�ORNQRM U�� 5 �QN�� �P ��J U�ORNQRM U�� 

d) Location Constraints: This restriction is applicable subjected to satisfactory face 

detection. We estimate the position of lips in the image firstly by limiting the blobs 

only in the lower half of the image, and secondly by rejecting the blobs in the lower 

1/8
th

 of the image. This successfully eliminates the cases where we can mistake eye 

boundaries or then chin boundary as lips. 

e) Overlapping Threshold: Lips are normally symmetrical along its vertical bisector. 

Therefore, we use the overlap threshold to eliminate random blobs which don’t 

satisfy the overlap criteria. 

To determine the percent of overlap, we first create a mirror image of the cluster in 

the bounding box. We then add the original and the mirror image. Now, we consider only 

the overlapped region between the original and mirrored cluster and divide it by the total 

area of the bounding box. Therefore, the higher the value of the division is, the higher the 

overlap percent is. The values for the thresholds were obtained through experimentation 

and may need to be varied for a different test set. 

0.08 5 ¼IJK�L
 ½�KJ����N 5 0.7 

Based on these restrictions, we finally obtain our vertical gradient hybrid images of 

lip contours. The next step is to add the two hybrid images. 
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(a) (b) 

Figure 3.15: (a) Upper lip boundary after restrictions. (b) Lower lip boundary after restrictions. 

 

In the Figure 3.15, it can be observed that (a) preserved the boundary of the upper lip 

and the (b) preserved the contour of the lower lip along with the lower boundary of the 

upper lip. We perform addition on (a) and (b) in order to complete the contour of lips as 

shown in Figure 3.16 (a). At this stage, in order to achieve a blob comprising of the entire 

mouth, we can perform closing. Through experimentation it was concluded that a disk 

shaped structuring element gave best results.  

Assuming the restrictions mentioned above were successful in eliminating blobs other 

than lips, the only blob present should be of the lips. In cases where small clusters passed 

through all restrictions, we detect the largest blob as the mouth region. 

  
(a) (b) 

Figure 3.16: (a) Addition of images (a) and (b) in Figure 42 (b) Image after performing closing. 
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Figure 3.17: Correctly Detected Lip Region 

 

3.5. Lip Detection Results 

 

Figure 3.18: Flowchart representing the lip segmentation algorithm 
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Figure 3.18 summarizes the lip localization algorithm. Figure 3.19 (a) and (c) 

displays the correctly classified lip regions, whereas Figure 3.19 (b) and (d) shows 

images where the lip region detected was incomplete. 

  
(a) (b) 

  
(c) (d) 

Figure 3.19: (a) and (c) Correctly detected lips (b) and (d) Incomplete lips detected 

 

Similar to face detection, we implement Viola-Jones in-built classifier for mouth 

detection on our test set of 169 images. We also train a classifier in gray scale using the 

training images shown in Figure 3.20. 

  
 

 

(a) (b) (c) (d) 

Figure 3.20: (a) example of the images used for training of the Viola-Jones classifier for lip detection 

(a) positive training image (b), (c) and (d) negative training image 
 

fkls 
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The negative images we collected consisted of parts of the face other than the mouth 

area. For the positive training data we collected images only around the mouth making 

sure to avoid the chin of the nose region. We used 7080 positive images and 6539 

negative images for the training.  

We recorded and compared the results of lip localization from the in-built Viola-

Jones classifier and the classifier trained by us to the Gradient thresholding lip 

segmentation technique described in this paper.  

The test set contained 169 images of faces. These face images were the successful 

output of the face detection algorithm. We ran this test set through the lip localization 

method proposed in this thesis, the in-built Viola-Jones mouth detection algorithm and 

the gray-scale trained Viola-Jones. The classifiers were obtained in the same way as the 

face detection Viola-Jones algorithm. The Gray Scale classifier we trained also had 

unaltered parameters except the window size was defined as 20 X 20. 

The classifier we trained gave results much worse than expected. We attained 

detection rates of only 45% which was much lower than the other methods. The in-built 

classifier and our gradient thresholding lip segmentation methods results were similar, 

although the in-built classifier had several misclassifications. It is important to note, that 

the input image to the Viola-Jones classifiers (both Gray Scale Trained and In-built gray 

scale) were only lower half of the face detected image. This was done to limit the mis-

classifications by the classifier. For input as the whole image in almost all cases the eyes 

were detected as mouth. 
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Table 3-1: Comparison of Lip Detection results of 169 Images 

 Color space Detected 
Incomplete 

Lips 
Missed 

False 

Detection 

Percent 

Faces 

Detected 

Viola Jones Gray Scale Trained 77 12 80 8 45.56% 

Viola Jones In built gray scale 146 1 22 35 86.39% 

Gradient 

Thresholding 
Pseudo Hue and Y 149 4 16 0 88.16% 

 

The gradient thresholding lip localization method proposed gave accuracy of about 

88% which was also higher than the Viola-Jones’ mouth detection algorithm. The 

gradient thresholding technique works well with our dataset but may not be universal. 

Therefore, although a crude method, it attains impressive results and can be utilized with 

modification for a more robust algorithm. 
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4. CONCLUSION AND FUTURE WORK 

4.1. System Performance 

The object detection technique proposed by Viola-Jones is widely accepted as one of 

the most robust face detection algorithms. In the car environment of our images, with 

different lighting conditions and poor image quality in certain cases, the detection result 

was 90%, which leaves room for improvement.  

The skin detection using Bayes classifier followed by template matching comes close 

to the detection rates of Viola-Jones. It had become apparent that a single method using 

only one type of information from the image may not be sufficient to correctly classify 

faces from the background. By means of simple concatenation of the three different 

detection techniques we have reached detection rates of 95%, which results in higher 

probability of better lip segmentation. 

Table 4-1: Summary of the Face Detection Algorithms implemented with 181 face test images 

Face 

Detection 

Technique 

Detected 

Faces 

Incomplete 

Faces 

Missed 

Faces 

Mis-

classified 

Faces 

Percentage 

Detected 

Percentage 

Failed 

Viola-Jones 164 5 12 1 90.6077% 9.3923% 

Bayes 

Classifier + 

Golden Ratio 

71 N/A 110 N/A 39.22% 60.773% 

Bayes 

Classifier + 

Golden Ratio 

+ 

Morphological 

Operations 

119 N/A 62 N/A 65.745% 34.254% 

Template 

Matching 
135 36 0 10 74.585% 25.414% 

Bayes 

Classifier 

+Morphologic

al Operations 

+Template 

Matching 

160 5 16 0 88.39% 11.60% 

Final Face 

Detector 
172 9 0 0 95.027 4.972 
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For the case of lip segmentation, we use a simplistic approach of enhancing the lip 

contours and isolating them based on the feature information known on the face. It also 

seemed to slightly surpass the in-built Viola-Jones classifier, which might indicate 

extracting color information from the image for lip localization might be essential along 

with other features.  

 

4.2. System Limitation and Suggestions 

4.2.1. Face Detection 

One of the biggest drawbacks that can be noted in the concatenated face detection 

technique is that only missed faces are considered for the next stage. In the case of 

incomplete faces that were detected, they do not get rectified. There is no straightforward 

way to avoid such a situation. One possibility for future research is to experiment with 

different concatenation possibilities. 

 

4.2.2. Modification Viola-Jones Classifier 

Through the test results of red and green color space trained classifier it could be 

observed that color spaces other than gray could also be experimented with. As the 

principle of Viola-Jones is to use Haar like features to calculate the values across the 

face, a color space which gives a higher contrast to the face image is desired. We have 

experimented with only a few of them in this thesis. Color spaces which were good for 

skin detection through a classifier seem to give terrible results, as all features are lost and 

the entire region combines to form one color blob. The color space analysis performed in 
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2.2.1 can be an indicator as to which color spaces might not work well and which should 

be considered.  

Other factors, that can be considered, are the change in the size of detector window 

for different color spaces and the implementation of illumination compensation.  

 

4.2.3. Lip Localization 

Our lip localization technique works well with our dataset, but with the inclusion of 

hard thresholds on the gradient of the hybrid equation, these values may not be applicable 

universally. One of the methods to eliminate hard thresholding is to evaluate that 

generally in what range of intensities for that image does the lip region fall. For example, 

if the lips area falls in the top 10% of the intensities, the threshold need not be hard for all 

images but is constantly modified per image. 

Also the last step of lip localization assumed the largest blob as lips, which is a 

rudimentary technique and leaves a large area for error. Hence, integrating it with a 

technique which uses lip shape information such as parametric models might improve 

accuracy and may allow this technique to be extended to other data sets. 
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APPENDIX A: PROJECT ALGORITHM  
 

A.1: Color Space Anlaysis (1D and 2D) 
 

function y = MakeMask (directory) 
%----------------------------------------------------------------------

- 
%PURPOSE:   This function is used to create masks (binary images) for 
%           face or lip in color space analysis or trainning 
%INPUT:     The directory where the original JPEG images are (for 

example, 
%           image\) 
%OUTPUT:    Masks BMP images into the folder \masks 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

- 

  
    files = dir ( [directory '*.jpg'] ); 
    mkdir('masks'); 

     
    for n = 1:1:length(files) 
        disp(['Images:' int2str(n) '/' int2str(length(files))]) 
        img = imread ( [directory files(n).name] ); 

         
        figure(1), imshow(img); 
        FaceNum = input('How many faces are there?'); 

         
        masktot = logical(zeros(size(img(:,:,1)))); 
        for m = 1:1:FaceNum 
            mask = roipoly (img); 
            img(mask)=0; 
            masktot = masktot | mask; 
        end 

             

  
        for c = length(files(n).name):-1:1 
            char = files(n).name(c); 
            files(n).name(c) = []; 

             
            if char == '.' 
                break; 
            end 
        end 

         
        imwrite (masktot,[directory 'masks/mask_' files(n).name 

'.bmp'],... 
                                                                    

'BMP');     
    end 
    y = 1; 
end 
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%----------------------------------------------------------------------

- 
%PURPOSE:   This code performs the color space analysis, plotting the 
%           histogram between skin and nonskin 
%REQUIREMENT: The images are stored in the folder 'images' and the  
%           associated masks are created and stored in the subfolder 
%           'masks' 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

- 
clear all 
filename = dir ('images\*.jpg');  

  
% This loop takes away the file extension of the filename. 
for n = 1:1:length(filename) 
    for c = length(filename(n).name):-1:1 
        char = filename(n).name(c); 
        filename(n).name(c) = []; 

  
        if char == '.' 
            break; 
        end 
    end 
end 

  
SkinArray = []; 
NonSkinArray = []; 

  
% This loop create the overall histogram arrays 
for n = 1:1:length(filename) 

     
    disp (['Image: ' num2str(n) '/' num2str(length(filename))]); 
    imgrgb = imread (['images\' filename(n).name '.jpg']); 

     
    imgmsk = imread (['images\masks\mask_' filename(n).name '.bmp']); 

     
    % Shifted Hue Space 
    SkinArrayH = FindHueHalfArray(imgrgb,imgmsk); 
    NonSkinArrayH = FindHueHalfArray (imgrgb,~imgmsk); 
    SkinArray = [SkinArray SkinArrayH']; 
    NonSkinArray = [NonSkinArray NonSkinArrayH']; 

            
end 

  
doubleHist(SkinArray,NonSkinArray,'Shifted Hue',0,1); 
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function ResultArray = FindHueHalfArray (img1, img1msk) 
%----------------------------------------------------------------------

- 
%PURPOSE:   This function finds the shifted hue color space 
%INPUT:     The image and the associated mask (skin vs. nonskin) 
%OUTPUT:    A array containing the shifted hue values for each pixels 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%---------------------------------------------------------------------- 
% Resize the image 
imga = imresize(img1,0.05); 
imgb = imresize(img1msk,0.05); 

  
% Find the Hue Space Array 
hsvdata = rgb2hsv(imga); 
imgahue = hsvdata (:,:,1); 
hueofface = imgahue(imgb); 

  
 % Shift to the right by 0.2. 
        imghueshift = hueofface + 0.2; 
        imghueshift (find(imghueshift > 1)) = ... 
                            imghueshift (find(imghueshift > 1)) - 1; 

  
ResultArray = imghueshift;     

  
end 

 
function y = doubleHist(img1, img2, colspa, min, max) 
%---------------------------------------------------------------------- 
%PURPOSE:   This function plot two histograms into the same plot. 
%INPUT:     Image #1 (Skin) and Image #2 (Non-Skin) 
%           colspa: the name for the color space 
%           min:    minimum x-axis value 
%           max:    maximum x-axis value 
%OUTPUT:    A figure with both histograms 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

- 

  
[c1,x1] = imhist(img1); 
[c2,x2] = imhist(img2); 

  
figure(1) 
stem (x2, c2, 'r','MarkerSize',1); 
hold on; 
stem (x1, c1, 'g','MarkerSize',1); 
hold off; 
xlim([min max]) 
title(colspa)  
grid 

  
y=1; 

  
end 
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%----------------------------------------------------------------------

- 
%PURPOSE:   This code performs the color space analysis, plotting the 
%           2D scatter plot between skin and nonskin 
%REQUIREMENT: The images are stored in the folder 'images' and the  
%           associated masks are created and stored in the subfolder 
%           'masks' 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

- 
clear all 
filename = dir ('images\*.jpg');  

  
% This loop takes away the file extension of the filename. 
for n = 1:1:length(filename) 
    for c = length(filename(n).name):-1:1 
        char = filename(n).name(c); 
        filename(n).name(c) = []; 

  
        if char == '.' 
            break; 
        end 
    end 
end 

  
ArraySkinCoSp1 = []; 
ArrayNonSkinCoSp1 = []; 
ArraySkinCoSp2 = []; 
ArrayNonSkinCoSp2 =[]; 

  
% This loop create the overall histogram arrays 
for n = 1:1:length(filename) 

     
    disp (['Image: ' num2str(n) '/' num2str(length(filename))]); 
    imgrgb = imread (['images\' filename(n).name '.jpg']); 

     
    imgmsk = imread (['images\masks\mask_' filename(n).name '.bmp']); 

     
    % Shifted Hue Space 
    SkinArrayH = FindHueHalfArray(imgrgb,imgmsk); 
    NonSkinArrayH = FindHueHalfArray(imgrgb,~imgmsk); 
    ArraySkinCoSp1 = [ArraySkinCoSp1 SkinArrayH']; 
    ArrayNonSkinCoSp1 = [ArrayNonSkinCoSp1 NonSkinArrayH']; 

     
    % Normalized Green Space 
    SkinArrayNG = FindNormGArray(imgrgb,imgmsk); 
    NonSkinArrayNG = FindNormGArray(imgrgb,~imgmsk); 
    ArraySkinCoSp2 = [ArraySkinCoSp2 SkinArrayNG']; 
    ArrayNonSkinCoSp2 = [ArrayNonSkinCoSp2 NonSkinArrayNG']; 

            
end 

  
SkinArray = [ArraySkinCoSp1; double(ArraySkinCoSp2)]; 
NonSkinArray = [ArrayNonSkinCoSp1; double(ArrayNonSkinCoSp2)];  
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% Plot the sample 
figure(1) 
plot(ArrayNonSkinCoSp1,double(ArrayNonSkinCoSp2),'.r','MarkerSize',4) 
hold on; 
plot(ArraySkinCoSp1,double(ArraySkinCoSp2),'.g','MarkerSize',4) 
hold off; 
title(['Two Dimension Feature Space']); 
xlabel ('Shifted Hue Feature'); 
ylabel ('Normalized Green Feature'); 
grid 
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function ResultArray = FindNormGArray (img1, img1msk) 
%----------------------------------------------------------------------

- 
%PURPOSE:   This function finds the normalized green color space 
%INPUT:     The image and the associated mask (skin vs. nonskin) 
%OUTPUT:    A array containing the normalized green values for each 

pixels 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%---------------------------------------------------------------------- 
imgnrgb = Createnrgb(img1); 

  
imga = imresize(imgnrgb,0.05); 
imgb = imresize(img1msk,0.05); 

  
% Find the Normalized Green Space Array 
imgnormg = imga(:,:,2); 
imgng = imgnormg(imgb); 

  
ResultArray = imgng;               

  
end 

 
function imgnrgb = Createnrgb (img) 
%----------------------------------------------------------------------

- 
%PURPOSE:   This function takes in an RGB image and create a normalized  
%           RGB image as the output. 
%INPUT:     RGB Image 
%OUTPUT:    Normalized RGB Image 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%---------------------------------------------------------------------- 
% Red Space 
imgr = img(:,:,1); 

  
% Green Space 
imgg = img(:,:,2); 

  
% Blue Space 
imgb = img(:,:,3); 

  
% To normalized rgb space. 
rgbsum = double(imgr) + double(imgg) + double(imgb); 
rgbsum(rgbsum == 0) = 1; 

  
imgnr = uint8 (double(imgr)./ rgbsum * 255); 
imgng = uint8 (double(imgg)./ rgbsum * 255); 
imgnb = uint8 (double(imgb)./ rgbsum * 255); 

  
% Construct the final color image 
imgnrgb = cat(3, imgnr, imgng, imgnb); 

  
end 
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A.2: Bayes Classifier Training Stage 
%----------------------------------------------------------------------

- 
%PURPOSE:     This is the m-file which performs MLE for two feature 

space 
%             case (skin classification).  
%PROCEDURE:   It takes the orignal image and its masked file, the  
%             parameters for the Gaussian Distribution will then be  
%             generated based on all the testing sample. 
%REQUIREMENT: The images are stored in the folder 'images' and the  
%           associated masks are created and stored in the subfolder 
%           'masks' 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%--------------------------------------------------------------------- 

  
clear all 
filename = dir ('images\*.jpg');  

  
% This loop takes away the file extension of the filename. 
for n = 1:1:length(filename) 
    for c = length(filename(n).name):-1:1 
        char = filename(n).name(c); 
        filename(n).name(c) = []; 

  
        if char == '.' 
            break; 
        end 
    end 
end 

  
HueArraySkin = []; 
HueArrayNonSkin = []; 
NormGArraySkin = []; 
NormGArrayNonSkin =[]; 

  
% This loop create the overall histogram arrays 
for n = 1:1:length(filename) 

     
    disp (['image' num2str(n) '/' num2str(length(filename))]); 
    imgrgb = imread (['images\' filename(n).name '.jpg']); 
%   imghsv = rgb2hsv (imgrgb);   
%   imgnrgb = Createnrgb (imgrgb); 

     
    imgmsk = imread (['images\masks\mask_' filename(n).name '.bmp']); 

     
    % Hue Space 
    SkinArrayH = FindHueHalfArray(imgrgb,imgmsk); 
    NonSkinArrayH = FindHueHalfArray(imgrgb,~imgmsk); 
    HueArraySkin = [HueArraySkin SkinArrayH']; 
    HueArrayNonSkin = [HueArrayNonSkin NonSkinArrayH']; 

     
    % Normalized Green Space 
    SkinArrayNG = FindNormGArray(imgrgb,imgmsk); 
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    NonSkinArrayNG = FindNormGArray(imgrgb,~imgmsk); 
    NormGArraySkin = [NormGArraySkin SkinArrayNG']; 
    NormGArrayNonSkin = [NormGArrayNonSkin NonSkinArrayNG']; 

            
end 

  
SkinArray = [HueArraySkin; double(NormGArraySkin)]; 
NonSkinArray = [HueArrayNonSkin; double(NormGArrayNonSkin)]; 

  
[ParaWi Paraw_i Parawi0] = TwoDMLEstimation(NonSkinArray',SkinArray'); 

  
SumPix = numel(HueArraySkin)+ numel(HueArrayNonSkin)+... 
                            

numel(NormGArraySkin)+numel(NormGArrayNonSkin); 

                                                 
SkinProb = double(numel(HueArraySkin)+ numel(NormGArraySkin))... 
                                                        

/double(SumPix); 
NonSkinProb = 1 - SkinProb; 
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function [ParaWi Paraw_i Parawi0] = TwoDMLEstimation (r1, r2) 

  
%----------------------------------------------------------------------

- 
%PURPOSE:   This function helps to locate the decision boundary for  
%           the Two Feature case.  
%INPUT:     r1: NonSkin, r2: Skin (D X 2 matrix contains both feature 
%           training data 
%OUTPUT:    Parameters for the discriminating function 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

- 

  
% Plot the sample 
plot(r1(:,1),r1(:,2),'.g') 
hold on; 
plot(r2(:,1),r2(:,2),'.r') 
hold off; 
title(['Two Dimension Feature Space']); 
xlabel ('Hue Feature'); 
ylabel ('Normalized Green Feature'); 

                             
% For the means and variance using ML estimation 
sum1 = [0;0]; 
sum2 = [0;0]; 
varsum1 = [0 0;0 0]; 
varsum2 = [0 0;0 0]; 

  
DataLengthr1 = length(r1); 
DataLengthr2 = length(r2); 

  
r1 = double(r1); 
r2 = double(r2); 

  
for n=1:1:DataLengthr1 
    sum1 = sum1 + r1(n,:)'; 
end 
% sum1 = sum(r1(n,:)'); 

     
for n=1:1:DataLengthr2   
    sum2 = sum2 + r2(n,:)'; 
end 
% sum2 = sum(r2(n,:)'); 

  
mean1 = sum1 / DataLengthr1; 
mean2 = sum2 / DataLengthr2; 

  
for n=1:1:DataLengthr1 
    varsum1 = varsum1 + (r1(n,:)' - mean1) * (r1(n,:)' - mean1)'; 
end 
% varsum1 = sum((r1(n,:)' - mean1) * (r1(n,:)' - mean1)'); 

  
% Convariance Matrix 
varb1 = varsum1 / DataLengthr1; 
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% varub1 = varsum1 / (DataLengthr1-1);    

  
for n=1:1:DataLengthr2   
    varsum2 = varsum2 + (r2(n,:)' - mean2) * (r2(n,:)' - mean2)'; 
end 
% varsum2 = sum((r2(n,:)' - mean2) * (r2(n,:)' - mean2)'); 

  
varb2 = varsum2 / DataLengthr2; 
% varub2 = varsum2 / (DataLengthr2-1); 

  
% Calculating the parameters for the discriminant functions 
W1 = (-1/2) * (inv(varb1)); 
w_1 = (inv(varb1)) * mean1; 
w10=(-1/2) * (mean1)' * (inv(varb1)) * (mean1) - (1/2) * log 

(det(varb1)); 

  
W2 = (-1/2) * (inv(varb2)); 
w_2 = (inv(varb2)) * mean2; 
w20=(-1/2) * (mean2)' * (inv(varb2)) * (mean2) - (1/2) * log 

(det(varb2)); 

  
ParaWi = [W1 W2]; 
Paraw_i = [w_1 w_2]; 
Parawi0 = [w10 w20]; 

  
end 
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A.3: Face Detection 
%----------------------------------------------------------------------

- 
%PURPOSE:       This program outputs the face bounding box  
%REQUIREMENT:   The candidate BMP images are stored in the folder  
%               'FinalTestSetOld'  
%OUTPUT:    Results in different detection stage are sorted into 

different 
%           folders 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

-  

  
clear all 
mkdir('Gold_rat_fail'); 
mkdir('Gold_rat_pass'); 
mkdir('ResComp'); 
mkdir('ResComp1'); 
mkdir('Gold_rat_fail_1'); 
mkdir('Gold_rat_pass_1'); 
Count = 0; 

  
filename = dir ('FinalTestSetOld\*.bmp');  

  
for n = 1: 1: length(filename) 

     
    disp(['Images: ' int2str(n) '/' int2str(length(filename))]) 

     
    inImage = imread (['FinalTestSetOld\' filename(n).name]); 

     
    newI = ColorComp(inImage); 

     
    % 2D SPM Method using Hue and Normalized Green 
    % Parameters are calculated using FindTwoDPara.m and 

TwoDMLEstimation.m       
    ParaWi = [-33.6276,-0.2695,-26.8821,0.0581;-0.2695,-

0.0119,0.0581,... 
                                                                -

0.0273;]; 
    Paraw_i = [76.1414,-0.9345;2.3888,4.8455;]; 
    Parawi0 = [-123.8033,-215.5282;]; 
    SkinProb = 0.242734075770451; 

                
    % Skin Classification 
    maskbw = ApplyTwoDClasf(newI,ParaWi,Paraw_i,Parawi0,SkinProb); 

                    
    imgray = rgb2gray(newI);          
    imgray(~maskbw) = 0; 

  
    imwrite(imgray, ['ResComp\' filename(n).name]);   
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    % Blob Analysis (Golden Ratio, Passed image to 'Gold_rat_pass' 

folder,  
    % Failed images to 'Gold_rat_fail' folder. 
    imopmsk = (imgray > 0); 
    [L num]= bwlabel(imopmsk); 

  
    s  = regionprops(L, 'all'); 
    bdbox = cat(1, s.BoundingBox); 

  
    imarea =  cat(1,s.Area); 
    maxarea = find(imarea == max(imarea)); 

  
    ratio = bdbox(maxarea,4)/bdbox(maxarea,3); 

         
    if (ratio > 1.2) && (ratio < 1.78) 
        cropim = imcrop(newI,bdbox(maxarea,:)); 

  
        if (~isempty(cropim))    
            imwrite(cropim, ['Gold_rat_pass\' filename(n).name]); 
        else 
            temp = zeros(size(imgray)); 
            imwrite(temp, ['Gold_rat_pass\' filename(n).name]); 
        end 

  
    else  
        imopmsk = (imgray > 0); 
        [L num]= bwlabel(imopmsk); 

  
        s  = regionprops(L, 'all'); 
        bdbox = cat(1, s.BoundingBox); 

  
        if (~isempty(bdbox)) 
            imarea =  cat(1,s.Area); 
            maxarea = find(imarea == max(imarea)); 
            cropim = imcrop(newI,bdbox(maxarea,:)); 
            imwrite(cropim, ['Gold_rat_fail\' filename(n).name]); 
        else 
            temp = zeros(size(imgray)); 
            imwrite(temp, ['Gold_rat_fail\' filename(n).name]); 
        end 
    end 

     
end 

  
% Process the images in 'Gold_rat_fail' folder that failed the golden  
% ratio test. 

  
filefail = dir ('Gold_rat_fail\*.bmp');  

  
for m = 1: 1: length(filefail) 

     
    disp(['Images: ' int2str(m) '/' int2str(length(filefail))]) 

  
    inImg = imread (['ResComp\' filefail(m).name]); 
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    % Morphological Operation for face detection 
    se = strel('disk',10);  
    imgcl = imclose(inImg,se); 

  
    se1 = strel('line',10,90); 
    imgero = imerode(imgcl,se1); 

  
     se2 = strel('line',10,90); 
    imgop = imopen(imgero,se2); 

     
    imwrite(imgop, ['ResComp1\' filefail(m).name]); 

  
    imopmsk1 = (imgop > 0); 
    [L1 num1]= bwlabel(imopmsk1); 

  
    s1  = regionprops(L1, 'all'); 
    bdbox1 = cat(1, s1.BoundingBox); 

     
    imarea1 =  cat(1,s1.Area); 
    maxarea1 = find(imarea1 == max(imarea1)); 

  
    ratio1 = bdbox1(maxarea1,4)/bdbox1(maxarea1,3); 

     
    inImage = imread (['FinalTestSetOld\' filefail(m).name]); 

     
    % Another golden ratio test (after morphological operation)  
    if (ratio1 > 1.0) && (ratio1 < 1.78) 
        cropim = imcrop(inImage,bdbox1(maxarea1,:)); 

  
        if (~isempty(cropim))    
            imwrite(cropim, ['Gold_rat_pass_1\' filefail(m).name]); 
        else 
            temp = zeros(size(imgray)); 
            imwrite(temp, ['Gold_rat_pass_1\' filefail(m).name]); 
        end 

  
    else 
        cropim = imcrop(inImage,bdbox1(maxarea1,:)); 

  
        if (~isempty(cropim))    
            imwrite(cropim, ['Gold_rat_fail_1\' filefail(m).name]); 
        else 
            temp = zeros(size(imgray)); 
            imwrite(temp, ['Gold_rat_fail_1\' filefail(m).name]); 
        end 
    end 

     
end 

  
% The failed images in 'Gold_rat_fail_1' folder are passed through  
% Template Matching Algorithm 
imgfilename = dir ('Gold_rat_fail_1\*.jpg'); 
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for m =1: 1: length(imgfilename) 

  
    disp(['Image: ' int2str(m) '/' int2str(length(imgfilename))]); 
    inImage = imread(['Gold_rat_fail_1\' imgfilename(m).name]); 

  
    newI = ColorComp(inImage); 

     
    % Apply the template (the templates are in 'Template' folder) 
    % The template is the mean image from the following program: 
    % Face recognition by Santiago Serrano 
    % http://www.pages.drexel.edu/~sis26/Eigencode.htm 
    filename = dir ('Template\*.bmp'); 
    Result = struct('CCMax',{},'CenX',{},'CenY',{},'Rec',{}); 

  
    for n =1: 1: length(filename) 

  
        disp([' Template: ' int2str(n) '/' int2str(length(filename))]); 

  
        Temp =imread(['Template\' filename(n).name]); 
        img1 = imresize(newI,.5); 
        img2 = rgb2gray(newI); 

  
        Result(n) = MatchTemp(img2,Temp); 

  
    end 

  
    CCMax = cat(1,Result.CCMax); 
    SelCCMax = find(CCMax == max(CCMax(:))); 
    imshow(inImage),hold on, 
    plot(Result(SelCCMax).CenY,Result(SelCCMax).CenX,'x'); 
    rectangle('Position',Result(SelCCMax).Rec,'EdgeColor','r'); 
    hold off 

  
    pause(1) 

  
end 
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function out = ColorComp(inImage) 
%----------------------------------------------------------------------

- 
%PURPOSE:   This function applies illumination compensation.  
%INPUT:     RGB image 
%OUTPUT:    Illumination compensated Image 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

- 

  
        r=inImage(:,:,1); 
        g=inImage(:,:,2); 
        b=inImage(:,:,3); 

  
        avgR = mean(mean(r)); 
        avgG = mean(mean(g)); 
        avgB = mean(mean(b)); 
        avgRGB = [avgR avgG avgB]; 
        grayValue = (avgR + avgG + avgB)/3; 
        scaleValue = grayValue./avgRGB; 

  
        out = cat(3,round(scaleValue(1)*r),round(scaleValue(2)*g),... 
            round(scaleValue(3)*b)); 

  
 end 

         
function imgout = ApplyTwoDClasf(img,ParaWi,Paraw_i,Parawi0,SkinProb) 
%----------------------------------------------------------------------

- 
%PURPOSE:   This function apply the Bayes classifier to the image.  
%INPUT:     RGB image and the Parameters of discrimiant function  
%OUTPUT:    Classified Image 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

- 

  
    % 1: Skin Pixel and 2: NonSkin Pixel 
    W1 = ParaWi(1:2,1:2); 
    W2 = ParaWi(1:2,3:4); 
    w1 = Paraw_i(:,1); 
    w2 = Paraw_i(:,2); 
    w10 = Parawi0(1); 
    w20 = Parawi0(2); 
    NonSkinProb = 1-SkinProb; 

  
    imghsv = rgb2hsv(img); 
    imghue = imghsv(:,:,1); 

  
    %Shift to the right by 0.2. 
    imghueshift = imghue + 0.2; 
    imghueshift(find(imghueshift > 1)) = ... 
                            imghueshift(find(imghueshift > 1)) - 1; 
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    imgnrgb = Createnrgb(img); 
    imgng = double(imgnrgb(:,:,2)); 

  
    Siz = size(imgng); 

  
    gx1 = zeros(Siz); 
    gx2 = zeros(Siz); 
    for m = 1:1:Siz(1) 
        for z = 1:1:Siz(2) 
            x = [imghueshift(m,z);imgng(m,z)]; 
%             x = [imghue(m,z); imgng(m,z)]; 
            gx1(m,z) = x'*W1*x + w1'*x + w10 + log(NonSkinProb); 
            gx2(m,z) = x'*W2*x + w2'*x + w20 + log(SkinProb); 
        end 
    end 

  
    % Compute the discrimiant function 

  
    imgout = (gx1 <= gx2); 

     
end 

 
function ResultSt = MatchTemp(img,AvgFaceT) 

  
%----------------------------------------------------------------------

- 
%PURPOSE:   This function applies template matching algorithm  
%INPUT:     RGB image and the template 
%OUTPUT:    The bounding box for the face is shown 
%REQUIREMENT:  The face template was created and as the input 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

- 

  
    imgratio = 3/4; 

  
    if (ceil(size(img,1)*3/4)>= size(img,2)) 
        LengRS = size(img,2); 
        WidRS = ceil(size(img,2)*1/imgratio); 
    else 
        WidRS = size(img,1); 
        LengRS = ceil(size(img,1)*imgratio); 
    end 

  
    AvgFaceRS = imresize(AvgFaceT,[WidRS LengRS]); 

  
    Result = struct('CCMax',{},'CenX',{},'CenY',{},'Rec',{}); 

  
    for i = 1:1:15 

  
        imtemp = imresize(AvgFaceRS,0.95-0.015*i); 

  
        CC = normxcorr2(imtemp,img); 
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        crop = imcrop(CC,[ceil(size(imtemp,2)/2) 

ceil(size(imtemp,1)/2)... 
                                            size(img,2)-1 size(img,1)-

1]); 

  
        crop1 = imcrop(crop,[floor(size(imtemp,2)/2) ... 
                floor(size(imtemp,1)/2) size(img,2)-size(imtemp,2)-1 

... 
                size(img,1)-size(imtemp,1)-1]); 
        [Mx My] = find(crop1 == max(max(crop1))); 

  
        MxFinal = Mx + floor(size(imtemp,1)/2)+1; 
        MyFinal = My + floor(size(imtemp,2)/2)+1; 

  
        Result(i).CCMax = max(crop1(:)); 
        Result(i).CenX = MxFinal; 
        Result(i).CenY = MyFinal; 
        Result(i).Rec = [MyFinal-floor(size(imtemp,2)/2) ... 
        MxFinal-floor(size(imtemp,1)/2),size(imtemp,2)-1 

size(imtemp,1)-1]; 

  
    end 

  
    CCMax = cat(1,Result.CCMax); 
    SelCCMax = find(CCMax == max(CCMax(:))); 
    ResultSt = Result(SelCCMax);  

  
end 
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A.4: Lip Detection  
%----------------------------------------------------------------------

- 
%PURPOSE:       This program outputs the lip bounding box 
%REQUIREMENT:   The candidate JPEG images are stored in the folder  
%               'lipdettest'  
%OUTPUT:    The image with lip bounding box outlined and images from 
%           different lip detection stage are also sorted into 

different 
%           folders. 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

-  

  
clear all 
close all 
clc 

  
filename = dir ('lipdettest\*.jpg');  
mkdir('BW'); 
mkdir('CloseBW'); 
mkdir('CropRe'); 

  
for n = 1: 1: length(filename) 

     
    disp(['Images: ' int2str(n) '/' int2str(length(filename))]) 

     
    inImage = imread (['lipdettest\' filename(n).name]); 

               
    [result1 gXt gYt] = gradHnL(inImage); 
    [result2 gXb gYb]= gradHnLlow(inImage); 

     
    gradtht = im2bw(gYt,0.028); 
    gradthb = im2bw(gYb,0.03); 

  
    se = strel('line',1,90); 
    bw = imopen(gradtht,se); 
    bw1 = imopen(gradthb,se); 

     
    outLipsMaskdb= restrMask(bw1); 
    outLipsMaskdt= restrMask(bw); 

     
    outLipsMaskd = outLipsMaskdb | outLipsMaskdt; 

     
    imwrite(outLipsMaskd, ['BW\BW_' filename(n).name],'JPEG'); 

     
    se = strel('disk',4); 
    closeBW = imclose(outLipsMaskd,se); 
    imwrite(closeBW, ['CloseBW\CloseBW_' filename(n).name],'JPEG'); 

     
    L = bwlabel(closeBW); 
    s  = regionprops(L, 'all'); 
    bdbox = cat(1, s.BoundingBox); 
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    imarea = cat(1,s.Area); 
    maxarea = find(imarea == max(imarea)); 

     
    figure(1), imshow(inImage); 
    hold on 

     
    if (~isempty(bdbox))  
        crop = imcrop(inImage,bdbox(maxarea,:)); 
        imwrite(crop,['CropRe\crop_' filename(n).name],'JPEG'); 
        rectangle('Position',bdbox(maxarea,:),'EdgeColor','r'); 
        hold off 
    else 
        imwrite(inImage,['CropRe\crop_' filename(n).name],'JPEG'); 
    end  

     
    pause(); 

     
end 

 
 

function [outimg gX gY] = gradHnL(inimg) 

  
%----------------------------------------------------------------------

- 
%PURPOSE:   This program creates the gradient after the algorithm  
%           emphasizing upper lips 
%INPUT:     RGB Image 
%OUTPUT:    The gradient after the algorithm emphasizing upper lips  
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

-  

  
    R = inimg(:,:,1); 
    G = inimg(:,:,2); 

  
    YCRCB = rgb2ycbcr(inimg); 
    Y = double(YCRCB(:,:,1)); 

  
    pH = double(R)./(double(R)+double(G)); 

  
    pH(isnan(pH))=0; 

  
    Ynorm = Y./ max(max(Y)); 

  
    outimg = pH - double(Ynorm); 

  
    [gX gY] = gradient(outimg); 

  
end 
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function [outimg gX gY]= gradHnLlow(inimg) 

  
%----------------------------------------------------------------------

- 
%PURPOSE:   This program creates the gradient after the algorithm  
%           emphasizing lower lips 
%INPUT:     RGB Image 
%OUTPUT:    The gradient after the algorithm emphasizing lower lips  
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

-  

  
    R = inimg(:,:,1); 
    G = inimg(:,:,2); 

  
    YCRCB = rgb2ycbcr(inimg); 
    Y = double(YCRCB(:,:,1)); 

  
    pH = double(R)./(double(R)+double(G)); 

  
    pH(isnan(pH))=0; 

  
    Ynorm = Y./ max(max(Y)); 

  
    outimg = pH + double(Ynorm); 

      
    [gX gY] = gradient(outimg); 

  
end 

 
function outMask = restrMask(bw) 

  
%----------------------------------------------------------------------

- 
%PURPOSE:   This program provides the constraints in selecting lips 
%INPUT:     The binary image containing lip 
%OUTPUT:    The binary image after the impossible lip candidate is 
%           eliminated based on the constraints 
%AUTHOR:    Benafsh Husain, Cal Poly San Luis Obispo 
%DATE:      August 1, 2011 
%----------------------------------------------------------------------

-  

  
    L = bwlabel(bw); 

     
    s  = regionprops(L, 'all'); 
    bdbox = cat(1, s.BoundingBox); 
    orent = cat(1, s.Orientation); 
    imarea = cat(1, s.Area); 

     
    orthl = -18; 
    orthr = 18; 
    Siz = size(bw); 
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    outLipsMaskd = zeros(Siz); 
    TotArea = double(Siz(1)*Siz(2)); 

     
    for k=1:1:size(bdbox,1) 

         
        bwcrop = imcrop(bw,bdbox(k,:)); 
        bwcropMir = fliplr(bwcrop); 
        overlap = bwcrop & bwcropMir; 
        percent = 

sum(sum(double(overlap)))/(size(bwcrop,1)*size(bwcrop,2)); 

         
        if (orent(k)>= orthl) && (orent(k)<= orthr)  && ... 
               (imarea(k)/TotArea < 0.02) && (bdbox(k,4)< bdbox(k,3)) 

&&... 
                 (imarea(k)/TotArea > 0.002)&& (bdbox(k,2)> 

Siz(1)*1/2)&&... 
                 (percent > 0.08) && (percent < 0.7) && ... 
                 (bdbox(k,2)< (Siz(1)-Siz(1)/8)) 

  
             for a = round(bdbox(k,1)):1:(round(bdbox(k,1))+bdbox(k,3)) 
                for b = 

round(bdbox(k,2)):1:(round(bdbox(k,2))+bdbox(k,4)) 
                    if (b <= Siz(1))&& (a <= Siz(2)) 
                        outLipsMaskd(b,a) = bw(b,a); 
                    end 
                end 
            end 
        end 

     
    end 

  
    outMask = (outLipsMaskd > 0);     

     
end 

 

 


