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Summary

In today'’s society, the use of image and video data has bevenyevidespread,
due to the increasing availability of high-quality imagidgvices, such as digital
still image cameras. People use image and video data to #ieiredaily life
experiences with other people, for instance on social médkawise, immediate
remote communication has become very popular. For instarenigtomated video
conferencing, intelligent cameras employ face analysitesys with on-board face
databases. In this application, a compact face repregamtetl reduce processing
and storage cost. Ideally for video analysis, such a reptagen would be based
on a perfect segmentation of a face into all its major pants, forehead, nose,
eyes, lips, etc. For example, it is important that lip motfollows speech very
closely with almost no time delay, which is much easier tooagglish when the
image representation already contains the lips as sepiéeats. Furthermore,
encoding based on smart face segmentation will facilitdtitmnal tasks such as
recognizing faces, facial expressions, and gaze direction

This PhD research presents a solution for face segmentapproximation
and analysis in visual communication applications by medigemputer vision.

e Face segmentatioris the division of face images into physically meaningful
parts, such as the forehead, the cheeks, the lips, the eygbetc. In this
work, we propose to group contour pixels and image pixelsy(gralues,
image intensities) in images of faces with region growing aolynomial
fitting. Region growing is the process of examining neighioaypixels of
initial seed pixels and determining whether the neighlippiels should be
added to the region. Polynomial fitting fits geometric priveis to pixels.
A geometric primitive is a polynomial function describirftetgeometry of
an edge or the variation of grey values in a region. Thus, thblem we
study is that of finding a region of maximal size in which grejues can
be well approximated by a polynomial function and where oanpixels
can be well approximated by polynomials as well. Face seggtien in this
work considers the grouping of facial contour pixels intotour segments,
as well as the grouping of facial intensities into surfagmsents.

To find segments, we propose an adaptive region growingigigobased
on constructive polynomial fitting. This primitive extrémt algorithm finds
subsets of pixels that lie on a geometric primitive or clasé.t How well

a subset corresponds to a primitive is quantified by.anfitting cost (ap-
proximation error). An original contribution is the introction of adaptive
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thresholding for region growing, which allows a variabléypmmial degree
and a variable fitting cost, depending on the local propeiethe pixels.
The L, fitting cost is the maximum deviation between the pixels drel t
polynomial function. The novelty is that region growing e&ts outliers,
distinguishes between strong and smooth discontinuitidscansiders the
curvature, such as convexity or concavity. An outlier is gepdiffering
from its neighbours due to noise or small object speckles.région grow-
ing investigates the local variation of pixels in a segmendéntify outliers,
while the global variation of pixels in a segment is inveateyl to adapt the
degree of the polynomial function. The terms local and dglabger to a
part of the segment and the entire segment, respectively.cdmbination
of both is possible because we employ constructive fitting:global fitting
cost is calculated from local fitting costs. In this work, wentbnstrate how
local and global fitting costs can interact in an adaptivehoet

Whereas in face segmentation the focus of the research isoaipigg the
pixels, face approximation focuses on producing accurapecximations
of the pixels.

Face approximation is the estimation and the reconstruction of contour
pixels and grey values of face images to a desired degreeofay. In this
work, we propose to approximate faces with maps defined bynpatial
functions (geometric low-level features, geometric ptiveis) of low-degree
(e.g., 0, 1 or 2). One difficulty we study is that of finding trergmeters of
the best fit.

The contour model represents contour segments as polyhaumias, which
are either straight, convex or concave, in a Curve Edge M&MCThe sur-
face model represents surface segments as polynomiatssyfahich are
either flat, planar, convex, concave or saddle surfacesSurface Intensity
Map (SIM). Both models are simple, natural, useful and eiegepresen-
tations for objects in images, in particular for face imagHse low-degree
polynomial functions in these models provide good appratiom of mean-
ingful facial features, while preserving all the necess#atails of the face
in the reconstructed image.

The contour and surface models allow parametrizing a facthbycoef-

ficients of the polynomial curves and surfaces and the coatds of the
endpoints of the curves in a few hundred bytes. Transmittiege face pa-
rameters over the network is very efficient and the methoggmues all the
necessary details of the face in the reconstructed imagédfmore, these
face descriptors are suitable for automated face analysis.

Face analysisncludes recognition and tracking of faces and facial fiezgu
Face recognition identifies a person in a digital image oda@irame. Face
tracking follows the movements of a person’s head in a vidRexognition
and tracking of faces and facial features leads to the deteof specific
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human face behaviour, such as speaking, gaze directiod,hesements
(e.g. nodding) or facial expressions (e.g. happy/sadjésgnprised).

In order to compare faces in two different or consecutivegesawe present
a technique to find geometric feature correspondence paing goal of
a correspondence finding or matching algorithm is to ingidat a point
(feature) in one image which is the corresponding pointt(fieg in a second
image, where both image points must show the same 3-D woitd.po

Inthe contour model, we find correspondences by a technigigwnatches
polynomial curves, based on shape, relative position aietgity. \We pro-
pose a dissimilarity function for local curve matching adlwas a similar-

ity function for global curve matching. The difference liesthe applica-
tion: local matching is primarily used in tracking applicets, while global

matching focuses on recognition applications.

In the surface model, we perform curvature-based surfaapeshnalysis.
The curvatures of polynomial surfaces roughly classifydiafeatures into
flat, planar, convex, concave and saddle patches. Sincevghegs seen
from the outside represent reflected light, we will find careciunctions for
convex face parts. This classification facilitates manikgda automated
face analysis, demonstrated in this work by face verificatio the polyno-
mial representation. The task of face verification is tofyesiface detec-
tion by analysing an image of the face. As an extension, weinl@stigate
curvature-based surface shape analysis forimages anaswaflauman bod-
ies, in order to reconstruct the human body skeleton, tactiBiebs and to
estimate the human pose.

To summarize, the following enumeration gives a clear aegrof the main con-
tributions in this work:

e A novel face model where the face is seen as a flexible ellibs@isk with
cutouts for the eyes, the mouth, the nose and the nostrils.cdhtour pix-
els and the image intensities of the different facial pantsrapresented by
polynomial surfaces and curves that are convex or concalve.fl&xibility
of the model is obtained by allowing polynomials with a vateadegree and
a variable approximation error.

e Novel contour and image segmentation algorithms based aptiad region
growing and low-degree polynomial fitting to extract geoneelow-level
features from contour pixels and image intensities, raspdy. These algo-
rithms use a new adaptive thresholding technique with thefitting cost as
a segmentation criterion. The polynomial degree and theditrror are au-
tomatically adapted during the region growing process. maa novelty is
that the algorithms detect outliers, distinguishes betwati®ng and smooth
discontinuities and find segments that are bent in a certajn such as con-
vex or concave segments. Adaptive refers to the use of a @ighbour-
hood to add pixels, while adapting the shape (or degree)eofithction is
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based on global behaviour. In this sense there is some leg#ifity, while
the global behaviour is determined by a more straightfodvediaracteriza-
tion, such as being concave or convex. This work was puldisihéDe-
boeverie et al., 2010, Deboeverie et al., 2013c, Deboegtsk, 2013b].

e An original solution for the correspondence problem of polyial curves
approximating contours in different images. The main dbation is the
introduction of intensity variations in the matching fuioct. This work was
published in [Deboeverie et al., 2008b, Deboeverie et 8082, Deboeverie
et al., 2009b, Deboeverie et al., 2011].

e A new way of curvature-based surface shape analysis of fawg@$iuman
bodies in images. The main idea is to use the curvatures ghpoiial
surfaces to classify facial and human body features intpdlabar, convex,
concave and saddle patches. This classification fac8ittite analysis of
facial and human behaviour. This work was published in [[edie et al.,
2013c, Deboeverie et al., 2013b].

e A novel segmented face approximation algorithm to send toreé $mages
of faces at a low bit rate, such that the faces are still reizadpte and that the
compression does not prevent remote face analysis. Segdfewct approx-
imation with low-degree polynomial surfaces and curvesigagnatural and
offers a compact and reversible way to preserve the eskehéieacteristics
of the original face image. This work was published in [Delme et al.,
2013c].

e A practical framework for face analysis applications, ergcognition and
tracking of faces and facial features. We evaluate the pedace of face
analysis applications on alarge number of representagitabdses and video
sequences. Furthermore, we compare the proposed meththdseweral
techniques of the state of the art. In extension, we applatgarithms on
several other objects, such as vehicles. This work wasghdadiin [Deboev-
erie et al., 2008b, Deboeverie et al., 2008a, Deboeverle @089a, Deboev-
erie et al., 2009b, Deboeverie et al., 2011, Deboeverie,2@12].

In total, the research during this PhD resulted in three rsps first author
and one paper as second author in international peer-redigwarnals [Deboev-
erie et al., 2013c, Deboeverie et al., 2013b, Deboeverie, 2l 3a, Bo Bo et al.,
2014], of which two are published and two are submitted. Harrhore, ten con-
ference papers as first author were published in the praogedf international or
national conferences [Deboeverie et al., 2008b, Debozetl., 2008a, Deboev-
erie, 2008, Deboeverie et al., 2009a, Deboeverie et al9l2@eboeverie et al.,
2010, Deboeverie et al., 2011, Deboeverie, 2011, Debaegtdl., 2012, Deboev-
erie et al., 2014] and three publications as co-author [&eet al., 2009, Maes
et al., 2009, Eldib et al., 2014].

This work has led to important and critical contribution#tte finished projects
ISYSS (Intelligent SYstems for Security and Safety) andc@m (Immersive
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COmmunication by means of COmputer visiON). The experiegaieed in the
projects ISYSS and iCocoon is now being used to contributiedmecently started
projects LittleSister (low-cost monitoring for care antkih and SONOPA (SO-
cial Networks for Older adults to Promote an Active life).






Samenvatting

In de huidige maatschappij is het gebruik van beeld- en \gdgevens wijd ver-
spreid door de toenemende beschikbaarheid van hoogwedrekddvormingstoe-
stellen, zoals digitale fotocamera’s. Mensen gebruiketden videodata om hun
ervaringen in het dagelijkse leven te delen met andere mehgeoorbeeld op so-
ciale media. Ook directe communicatie op afstand is zeeulpgpgeworden. In
geautomatiseerde videoconferencing, bijvoorbeeld, makielligente camera’s
gebruik van gezichtsanalysesystemen met geintegreeritehtgglatabanken. In
deze applicatie zal een compacte representatie van hehgee verwerkings- en
opslagkosten verminderen. In het ideale geval voor videdyae zou een derge-
lijke representatie gebaseerd zijn op een perfecte segtieenan het gezichtin al
zijn belangrijke onderdelen, namelijk het voorhoofd, des)ale ogen, de lippen,
enzovoort. Het is bijvoorbeeld belangrijk dat de lip naungtede beweging volgt
van de spraak met vrijwel geen tijdsvertraging, wat veel gietalijker te berei-
ken is als de beeldrepresentatie de lippen als afzondedéglen bevat. Bovendien
zal het coderen op basis van een slimme gezichtssegmelnifatienende taken
eenvoudiger maken, zoals het herkennen van gezichterwhgezitdrukkingen en
kijkrichtingen.

Dit doctoraatsonderzoek brengt een oplossing voor de segities approxi-
matie en analyse van gezichten in visuele communicatiessépgen met behulp
van computervisie.

e Segmentatie van gezichters de verdeling van gezichtsafbeeldingenin be-
tekenisvolle fysieke onderdelen, zoals het voorhoofd, degen, de lippen,
de wenkbrauwen, enzovoort. In dit werk stellen we voor omtaorpixels
en beeldpixels (grijswaarden, beeldintensiteiten) inadezafbeeldingen te
groeperen met gebiedsuitbreiding en polynomiale fittingebi&dsuitbrei-
ding is het proces van het onderzoeken van naburige pixelsitéle zaai-
pixels en het bepalen of de naburige pixels moeten wordeyet@egd aan
het gebied. Polynomiale fitting past geometrische primdieaan pixels.
Een geometrische primitieve is een polynomiale functiediegeometrie
van een rand of de variatie van de grijswaarden in een gebigchbijft. Het
probleem dat we dus bestuderen is het vinden van een gehiethazi-
male grootte waar contourpixels enerzijds en grijswaaateterzijds goed
kunnen worden benaderd door een polynomiale functie. Setie van
gezichten in dit werk beschouwt het groeperen van contgelpin contour-
segmenten, evenals het groeperen van gezichtsinteasiteippperviakte-
segmenten.
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Om segmenten te vinden stellen we een adaptief algoritmevamagebieds-
uitbreiding gebaseerd op constructieve polynomiale {jttilit algoritme
voor extractie van primitieven vindt deelverzamelingen paels die op of
dichtbij een geometrische primitieve liggen. Hoe goed adrsst overeen
komt met een primitieve wordt gemeten door deyg fitting kost (benade-
ringsfout). Een originele bijdrage is de invoering van atse threshol-
ding voor gebiedsuitbreiding, die een variabele polyndenggaad en een
variabele fitting kost toelaat, afhankelijk van de lokalgegischappen van
de pixels. DelL fitting kost is de maximale afwijking tussen de pixels en
de polynomial functie. De vernieuwing is dat de gebiedseitling outliers
detecteert, onderscheid maakt tussen sterke en zachtatiisdteiten en
de kromming beschouwt, zoals convexiteit of concavitedn Butlier is een
pixel die afwijkt van zijn buren vanwege ruis of kleine okjepikkels. De
gebiedsuitbreiding onderzoekt de lokale variatie vanIpikeeen segment
om outliers te identificeren en de globale variatie van gixeleen segment
wordt onderzocht om de graad van de polynomiale functie@pagsen. De
termen lokaal en globaal slaan hier respectievelijk op esh ¢hn het seg-
ment en het volledige segment. De combinatie van beide i®hjlogmdat
we gebruik maken van constructieve fitting: de globale fittkost wordt
berekend op basis van de lokale fitting kosten. In dit werletowe aan
hoe lokale en globale fitting kosten kunnen interageren iketae in een
adaptieve methode.

Terwijl voor de segmentatie van gezichten de focus van heée@oek ligt
op het groeperen van de pixels, focust de appoximatie vaolgen op het
produceren van nauwkeurige benaderingen van de pixels.

Approximatie van gezichtenis de schatting en de reconstructie van con-
tourpixels en grijswaarden in gezichtsafbeeldingen naargewenste mate
van nauwkeurigheid. In dit werk stellen we voor om gezichitebenaderen
met mappen gedefinieerd door polynomiale functies (geascbt laagni-
veau features, geometrische primitieven) van lage graad(id of 2). Een
moeilijkheid die we bestuderen is het vinden van de paramesn de beste
fit.

Het contourmodel verzamelt contoursegmenten als polyalerourven, die
ofwel recht, convex of concaaf zijn, in een Curve Edge MapNG.EHet
oppervlaktemodel verzamelt oppervliaktesegmenten algpoliale opper-
vlakken, die ofwel plat, vlak, convex, concaaf of een zadehig zijn, in
een Surface Intensity Map (SIM). Beide modellen zijn eemhgunatuur-
lijk, handig en elegante representaties voor objecten @dea, in het bij-
zonder voor gezichtsafbeeldingen. De polynomiale fusctan lage graad
in deze modellen zorgen voor een goede benadering van laryettichts-
features, terwijl alle noodzakelijke details van het gkria het gerecon-
strueerde beeld behouden blijven.

De contour- en oppervlaktemodellen laten toe om een getaqgtarametri-



SAMENVATTING Xi

seren aan de hand van de coéfficiénten van de polynomialercerv op-
pervliakken en de codrdinaten van de eindpunten van de cumesm paar
honderd bytes. Het versturen van deze gezichtsparamédegsnw netwerk
is zeer efficiént en de methode behoudt alle noodzakelijkaildesan het
gezicht in het gereconstrueerde beeld. Bovendien zijn geziehtsdescrip-
toren geschikt voor geautomatiseerde gezichtsanalyse.

e Gezichtsanalyseomvat het herkennen en het tracken van gezichten en ge-
zichtsfeatures. Gezichtsherkenning identificeert eesquer in een digi-
tale foto of een videobeeld. Gezichtstracking volgt de lggagen van het
hoofd van een persoon in een video. Herkenning en trackingyeaich-
ten en gezichtsfeatures leidt tot de detectie van specigeglicgtsgedrag,
zoals spreken, de kijkrichting, hoofdbewegingen (bij\me®ld knikken) of
gezichtsuitdrukkingen (bijvoorbeeld blij/verdrietigibs/verbaasd).

Om gezichten in twee verschillende of opeenvolgende bedklgergelij-
ken, presenteren we een techniek om correspondenties wemegiesche
functies te vinden. Het doel van een algoritme voor corredpaties of
matching is om aan te geven voor een punt (feature) in eeteedbeelding
wat het overeenkomstige punt (feature) is in een tweedekfing, waarbij
beide beeldpunten hetzelfde 3-D wereldpunt moeten aaeduid

In het contourmodel vinden we correspondenties door eémielcdie poly-
nomiale curven matcht op basis van vorm, relatieve positiatensiteit. We
stellen een ongelijkheidsfunctie voor om lokaal curven sgahen, evenals
een gelijkheidsfunctie om globaal curven te matchen. Hetohgl zit in de
toepassing: lokaal matchen wordt vooral gebruikt bij tragkoepassingen,
terwijl globaal matchen zich richt op herkenningstoe pagsin.

In het oppervlaktemodel analyseren we de vorm van oppekelakeba-
seerd op kromming. De krommingen van de polynomiale oppkkén
classificeren gezichtsfeatures ruwweg in platte, viak&syexe, concave en
zadelvormige delen. Omdat grijswaarden gezien vanaf derdant gere-
flecteerd licht voorstellen, zullen we concave functiesieim voor convexe
gezichtsdelen. Deze classificatie maakt veel taken in geattseerde ge-
zichtsanalyse eenvoudiger, aangetoond in dit werk dodclyexerificatie
op de polynomiale representatie. De taak van het gezidtifisedie is het
controleren van een gezichtsdectectie door het analysareeen gezichts-
afbeelding. Als uitbreiding onderzoeken we de krommingwaperviakken
van het menselijk lichaam in afbeeldingen en video’s, omsketet te re-
construeren en zo ledematen te detecteren en de houding@vkchlaam in
te schatten.
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Om samen te vatten geeft de volgende opsomming een duideéjizicht van de
belangrijkste bijdragen in dit werk:

e Een nieuw gezichtsmodel waarbij het gezicht gezien wosleah flexibel

ellipsoidaal masker met uitsparingen voor de ogen, de naedeus and de
neusgaten. De contourpixels en de beeldintensiteiten @aredschillende
gezichtsonderdelen worden voorgesteld met polynomigbeiyakken en

curven die convex of concaaf zijn. De flexibiliteit van hetaebwordt be-

komen door het toelaten van polynomen met een variabela grageen

variabele benaderingsfout.

Nieuwe algoritmen voor segmentatie van contouren en beegieeaseerd op
adaptieve gebiedsuitbreiding en polynomiale fitting vayelgraad om geo-
metrische laagniveau features te extraheren uit respetifiecontourpixels
en beeldintensiteiten. Deze algoritmen maken gebruik gameuwe adap-
tieve thresholding techniek met de,, fitting kost als een criterium voor
segmentatie. De polynomiale graad en de fitting fout wordgoraatisch
in het gebiedsuitbreidingsproces aangepast. De bel&sigriyernieuwing
is dat de algoritmen outliers detecteren, onderscheid malgsen sterke en
zachte discontinuiteiten, en segmenten vinden die gebzgeap een be-
paalde manier, zoals convexe of concave segmenten. Atlepiieijst naar
het gebruik van een lokale omgeving om pixels toe te voegawiijt het
aanpassen van de vorm (of de graad) van een functie geb&seprglobaal
gedrag. In deze betekenis is er enige lokale flexibiliteitwtjl het globaal
gedrag bepaald is door bijvoorbeeld een concave of comvarakterisering.
Dit werk werd gepubliceerd in [Deboeverie et al., 2010, Delasie et al.,
2013c, Deboeverie et al., 2013b].

Een originele oplossing voor het correspondentieprobleigpolynomiale
curven die de contouren in verschillende afbeeldingen denesm. De be-
langrijkste bijdrage is de invoering van intensiteitvéiga in de matching-
functie. Dit werk werd gepubliceerd in [Deboeverie et a008b, Deboeve-
rie et al., 2008a, Deboeverie et al., 2009b, Deboeverie,2@11].

Een nieuwe manier van analyse van de vorm van opperviakietrasgerd
op kromming, in afbeeldingen van gezichten en menselijtealinen. Het
voornaamste idee is om de krommingen van de polynomial ofgiden
te gebruiken om gezichtsfeatures en lichaamsfeaturesdelén in platte,
vlakke, convexe, concave en zadelvormige delen. Dezeiimglelaakt de
analyse van het gezichtsgedrag en het menselijk lichaairegeenvoudi-
ger. Dit werk werd gepubliceerd in [Deboeverie et al., 2QIB#hoeverie
etal., 2013b].

Een nieuw algoritme voor gesegmenteerde gezichtsbengdem afbeel-
dingen van gezichten te versturen en op te slaan bij een lit¢geelheid,
zodat de gezichten nog steeds herkenbaar zijn en de zodangaessie
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gezichtsanalyse op afstand niet verhindert. Gesegmeletgezichtsbena-
dering met polynomiale oppervlakken en curven van lagedjimaeel na-
tuurlijk en biedt een compacte en reversibele manier om siengigle ken-
merken van de oorspronkelijke gezichtsafbeelding te badou Dit werk
werd gepubliceerd in [Deboeverie et al., 2013c].

e Een praktisch framework voor toepassingen met gezichligsaabijvoor-
beeld het herkennen en het volgen van gezichten en gezahisés. We
evalueren de prestaties van de toepassingen met gezialysaop een groot
aantal representatieve databanken en videosequentieder\Wergelijken
we de voorgestelde methoden met de technieken uit de stéte ait. In
uitbreiding passen we onze algoritmen toe op verschillemtkere objec-
ten, zoals voertuigen. Dit werk werd gepubliceerd in [Delsoe et al.,
2008b, Deboeverie et al., 2008a, Deboeverie et al., 200&m&verie et al.,
2009b, Deboeverie et al., 2011, Deboeverie et al., 2012].

In totaal heeft het onderzoek tijdens deze doctoraatssgetiesulteerd in drie
papers als eerste auteur en één paper als tweede auteuerimatiinale peer-
reviewed tijdschriften [Deboeverie et al., 2013c, Deboevet al., 2013b, Deboe-
verie et al., 2013a, Bo Bo et al., 2014], waarvan er twee gémérd werden en
waarvan er twee ingediend zijn. Verder zijn er tien conféeepapers als eerste
auteur gepubliceerd in de proceedings van internatiorfat@tionale conferen-
ties [Deboeverie et al., 2008b, Deboeverie et al., 2008apPeerie, 2008, Deboe-
verie et al., 2009a, Deboeverie et al., 2009b, Deboeverdt 2010, Deboeverie
etal., 2011, Deboeverie, 2011, Deboeverie et al., 20120Bwedrie et al., 2014] en
drie publicaties als coauteur [Geelen et al., 2009, Mae$ ,e2@09, Eldib et al.,
2014].

Dit werk heeft geleid tot belangrijke en kritische bijdraga de reeds beein-
digde projecten ISYSS (Intelligent SYstems for Security &afety) en iCocoon
(Immersive COmmunication by means of COmputer visiON). Beeng die is
opgedaan in de projecten Isyss en iCocoon wordt nu gebradthijdragen in de
onlangs gestarte projecten LittleSister (low-cost maimgpfor care and retail) en
SONOPA (SOcial Networks for Older adults to Promote an Agclife).
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Introduction

1.1 Content

In this introductory chapter, we situate the research pitesein this PhD thesis.
Computer vision includes the development of intelligenthmds for acquiring,

processing, analysing, and understanding images andssideorder to produce
numerical or symbolic information, e.g., in the forms of d&ns. Computer vi-

sion aims to imitate and extend the complex human brain, whiclerstands and
interprets images captured by the human eye. For instaaeerad models have
been proposed that attempt to explain how the brain idesififémple by looking

at their faces [Martinez, 2003]. Computer vision applimasimake our lives more
comfortable and safer, for instance with automated facegweition in surveillance

systems. In this work, we use computer vision to solve ingurproblems about
recognizing human identity and human behaviour in visuairmoinication appli-

cations.

A toy example for the work in this dissertation is automatetke conferenc-
ing. Video conferencing implies communication between twanore locations
by simultaneous two-way video and audio transmissionsuioraated video con-
ferencing, persons in a meeting are observed by severakaantégure 1.1 shows
an example of a meeting room setup for automated video ceméarg. In a meet-
ing, observed with several cameras, we use computer vigiind the identity of
the participants and to analyse their behaviour. Behawmludes activities, such
as entering/leaving, speaking, interaction with othespes, as well as emotions,
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Figure 1.1: Example of a meeting room setup for automated video conéargn

such as being happy/sad. Related problems are the dete€tibe participants’
viewing direction and selecting the camera with the bestv\da a person. Solv-
ing these problems with computer vision demands a compaetifaage repre-
sentation to transmit, store, visualize and analyse faffiegeatly. Thus, our final
purpose in this work is to develop a system for face segmentapproximation
and analysis. Therefore, we propose contour and surfaeenfiadels to segment,
approximate and analyse images and videos of faces.

e Face segmentatioris the division of face images into physically meaningful
parts, such as the forehead, the cheeks, the lips, the eygbetc. In this
work, we propose to group contour pixels and image pixelsy(galues,
image intensities) in images of faces with region growind golynomial
fitting. Region growing is the process of examining neighiaypixels of
initial seed pixels and determining whether the neighlappinels should be
added to the region. Polynomial fitting fits geometric priveis to pixels.
A geometric primitive is a polynomial function describifgetgeometry of
an edge or the variation of grey values in a region. Thus, tbblem we
study is that of finding a region of maximal size in which grefues can
be well approximated by a polynomial function and where ocanpixels
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(a) (b)

Figure 1.2: (a): A greyscale face image in the Georgia Tech Face Database
[GTFD, ]. (b): The face contours obtained with Canny edge detection [Zann
1986]. (¢): The face contours segmented into polynomial curves ofrekde-
gree.

can be well approximated by polynomials as well. Face seggtien in this
work considers the grouping of facial contour pixels intotour segments,
as well as the grouping of facial intensities into surfagmsents.

To find segments, we propose an adaptive region growingigigobased
on constructive polynomial fitting [Veelaert, 1997, Veetasnd Teelen, 2006,
Veelaert, 2012]. This primitive extraction algorithm fingisbsets of pixels
that lie on a geometric primitive or close to it. How well a sebcorresponds
to a primitive is quantified by af ., fitting cost (approximation error). An
original contribution is the introduction of adaptive tehelding for region
growing, which allows a variable polynomial degree and aakde fitting
cost, depending on the local properties of the pixels. Thefitting cost
is the maximum deviation between the pixels and the polyabfanction.
The novelty is that region growing detects outliers, diptiishes between
strong and smooth discontinuities and considers the auneaguch as con-
vexity or concavity. An outlier is a pixel differing from itseighbours due
to noise or small object speckles. The region growing ingasts the local
variation of pixels in a segmentto identify outliers, whthe global variation
of pixels in a segment is investigated to adapt the degreleeopolynomial
function. The terms local and global refer to a part of thexsegt and the
entire segment, respectively. The combination of both ssiibe because
we employ constructive fitting: the global fitting cost isaadhted from lo-
cal fitting costs. In this work, we demonstrate how local atabagl fitting
costs can interact in an adaptive method. Figure 1.2 ilitestran exam-
ple of the segmentation of facial contours into polynomiahves of second
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(0)

Figure 1.3: (a): A greyscale face image of the Stirling face database [Sgirl

]. (b): The face image intensities segmented into surface segmditite blue,
green and red colours in the segmented image correspontbtdiret and second
degree polynomial surfaces, respectivéty: The surface segments approximated
by low-degree polynomial surfaces.

degree.

Whereas in face segmentation the focus of the research isoaipigg the
pixels, face approximation focuses on producing accurapecximations
of the pixels.

e Face approximationis the estimation and the reconstruction of contour
pixels and grey values of face images to a desired degreeofaxy. In this
work, we propose to approximate faces with maps defined bynpahial
functions (geometric low-level features, geometric ptiveis) of low-degree
(e.g., 0, 1 or 2). One difficulty we study is that of finding therameters of
the best fit.

The contour model represents contour segments with poliaiauarves,
which are either straight, convex or concave, in a Curve Bdage (CEM).
The surface model represents surface segments as polyisonfiéees, which
are either flat, planar, convex, concave or saddle surfatesSurface In-
tensity Map (SIM). Both models are simple, natural, usefd alegant rep-
resentations for objects in images, in particular for fanages. The low-
degree polynomial functions in these models provide goga@gmation
of meaningful facial features, while preserving all the es=ary details of
the face in the reconstructed image.

The contour and surface models allow parametrizing a facthbycoef-
ficients of the polynomial curves and surfaces and the coatds of the
endpoints of the curves in a few hundred bytes. Transmittiege face pa-
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(a)

Figure 1.4: The images in Figure&:), (b) and(c) show a face from a webcam
video sequence, which is looking up, frontal and right, eetpely. Here, face
analysis includes face recognition, head movements detgctodding) and facial
features classification.

rameters over the network is very efficient and the methosguues all the
necessary details of the face in the reconstructed imagédfmore, these
face descriptors are suitable for automated face anali/gire 1.3 illus-
trates an example of the approximation of facial intensibg low-degree
polynomial surfaces.

e Face analysigncludes recognition and tracking of faces and facial fiessgtu
Face recognition identifies a person in a digital image oda@irame. Face
tracking follows the movements of a persons head in a videzoBnition
and tracking of faces and facial features leads to the deteat specific hu-
man face behaviour, such as speaking, gaze direction, heaehnents (e.g.
nodding) or facial expressions (e.g. happy/sad/angprsed). Figure 1.4
shows an example of face recognition, head movement detestid facial
feature classification of a face from a webcam video sequence

In order to compare faces in two different or consecutivegesawe present
a technique to find geometric feature correspondence paing goal of
a correspondence finding or matching algorithm is to ingidat a point
(feature) in one image which is the corresponding point(fies in a second
image, where both image points must show the same 3-D worntd.po

In the contour model, we find correspondences by a technigiehwnatches
polynomial curves, based on shape, relative position aedgity. \We pro-
pose a dissimilarity function for local curve matching adlwas a similar-

ity function for global curve matching. The difference liesthe applica-
tion: local matching is primarily used in tracking appliceats, while global

matching focuses on recognition applications.

In the surface model, we perform curvature-based surfaapeshnalysis.
The curvatures of polynomial surfaces roughly classifydiafeatures into
flat, planar, convex, concave and saddle patches. Sincevghegs seen
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Figure 1.5: (a): A greyscale human body imagédb): The segmented human
body. The convex, concave or saddle like behaviour of thgrmwhial surfaces,
indicated by the colours magenta, cyan and yellow, resgegti(c): Human body
skeleton reconstruction.

from the outside represent reflected light, we will find corcéunctions
for convex face parts [Wagemans et al., 2010]. This classifin facilitates
many tasks in automated face analysis, demonstrated invtiris by face

verification on the polynomial representation. The taslaoéfverification is
to verify a face detection by analysing an image of the faceaextension,
we also investigate curvature-based surface shape amétysmages and
videos of human bodies, in order to reconstruct the humaw bkeleton, to

detect limbs and to estimate the human pose. Figure 1.5 sliowgample
of curvature-based surface shape analysis of a human body.

1.2 Contributions

Todays most performant techniques in computer vision lati@mportance to
the way of summarizing the local image structure, wherelayesis a major fo-
cus. For instance, the face detector of Viola and Jonesd\Aaold Jones, 2001]
finds faces by repeating the classification at differentescafnother example is
the Scale-Invariant Feature Transform (SIFT) of Lowe [Lo2@04]. The SIFT
method returns scale invariant feature point locationgtasn measures derived
directly from local sampling of the intensity values. Anetlexample is the use
of Histograms of Oriented Gradients (HOG) to detect pedestrby Dalal and
Triggs [Dalal and Triggs, 2005]. The method counts occuresrof gradient ori-
entations in local image regions. Human detection perfomeds further im-
proved by combining HOG with Local Binary Patterns (LBP) Dt¥aoyu, 2009].
These features have also been employed in face recognlgontams [Zhang
et al., 2010, Déniz et al., 2011, Geng and Jiang, 2013]. A #malmple is the
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keypoint descriptor inspired by the human visual systemrande precisely the
retina, coined Fast Retina Keypoint (FREAK) [Alahi et aD12]. This descriptor
computes a cascade of binary strings by comparing imagesities over a retinal
sampling pattern. The basic idea of SIFT, HOG, LBP and FRE&kianalyse
the local structure in an image by comparing each pixel vi&meéighbourhood.

With this trend in mind, the purpose of this work is to showttblgler tech-
nigues, such as polynomial segmentation, can still compétestate-of-the-art
techniques, if we combine them with clever techniques thedtenuse of scale and
adaptive techniques.

The following overview summarizes the main contributiomghis work:

e A novel face model where the face is seen as a flexible ellips@isk with
cutouts for the eyes, the mouth, the nose and the nostrils.cdhtour pix-
els and the image intensities of the different facial pantsrapresented by
polynomial surfaces and curves that are convex or concalve.fl&xibility
of the model is obtained by allowing polynomials with a vateadegree and
a variable approximation error.

e Novel contour and image segmentation algorithms based aptiad region
growing and low-degree polynomial fitting to extract geonelow-level
features from contour pixels and image intensities, respgy. These al-
gorithms use a new adaptive thresholding technique witli.thditting cost
as a segmentation criterion. The polynomial degree andttmgferror are
automatically adapted during the region growing procedse main nov-
elty is that the algorithms detect outliers, distinguistw@en strong and
smooth discontinuities and find segments that are bent inrtaicevay,
such as convex or concave segments. Adaptive refers to thefus lo-
cal neighbourhood to add pixels, while adapting the shapelégree) of
the function is based on global behaviour. In this sensestisesome local
flexibility, while the global behaviour is determined by a mastraightfor-
ward characterization, such as being concave or conves.\Wdrk has been
published in [Deboeverie et al., 2010, Deboeverie et all320Deboeverie
etal., 2013b].

e An original solution for the correspondence problem of polyial curves
approximating contours in different images. The main dbation is the
introduction of intensity variations in the matching fuioct This work has
been published in [Deboeverie et al., 2008b, Deboeveri¢,e2@08a, De-
boeverie et al., 2009b, Deboeverie et al., 2011].

e A new way of curvature-based surface shape analysis of fat@$iuman
bodies in images. The main idea is to use the curvatures ghpoiial
surfaces to classify facial and human body features intpfdlabar, convex,
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concave and saddle patches. This classification fac8ittite analysis of
facial and human behaviour. This work has been publisheDé@bpeverie
et al., 2013c, Deboeverie et al., 2013b].

e A novel segmented face approximation algorithm to send toreé $mages
of faces at a low bit rate, such that the faces are still reizadpe and that the
compression does not prevent remote face analysis. Segdfact approx-
imation with low-degree polynomial surfaces and curvesiigagnatural and
offers a compact and reversible way to preserve the eskenéieacteristics
of the original face image. This work has been published iaj@everie
etal., 2013c].

e A practical framework for face analysis applications, egcognition and
tracking of faces and facial features. We evaluate the pmdaoce of face
analysis applications on a large number of representagitzhadses and video
sequences. Furthermore, we compare the proposed methtidseveral
techniques of the state of the art. In extension, we applyatgorithms
on several other objects, such as vehicles. This work has peelished
in [Deboeverie et al., 2008b, Deboeverie et al., 2008a, Pete et al.,
2009a, Deboeverie et al., 2009b, Deboeverie et al., 20ldo®rie et al.,
2012].

1.3 Outline

This section gives an overview of the work and the differdrapters in this thesis,
as visualised in Figure 1.6.

e Chapter 2: Contour and surface models
In Chapter 2, we propose algorithms that use adaptive ragioning and
polynomial fitting to group pixels into segments and to apprate them
by polynomial functions. We investigate adaptive regioovgng for con-
tour segmentation as well as for image segmentation. IniDecase, we
firstly group contour pixels into contour segments. Thenremesent the
contour segments by polynomial curves, which are eithaigit, convex
or concave. In the 2-D case, we firstly segment image iniessitto sur-
face segments (intensity patches). Then, we representitfees segments
as polynomial surfaces, that are either flat, planar, convexcave or be-
have like saddle surfaces. The polynomial curves and ssfae grouped
into two novel compact features: the Curve Edge Map (CEM)taedsur-
face Intensity Map (SIM), respectively. Adaptive regioroging in both
cases is based on the same principles of local and globallisangd the
region. However, mainly due to the different spatial ordgrof contour
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Figure 1.6: Block diagram with an overview of the different chaptergiisthesis

pixels and image pixels, both need their own modificationad#ptive re-
gion growing. Where region growing groups pixels along oimeehsion
for connected contour pixels, region growing groups pietsg two di-
mensions for connected image pixels. In both cases, thigresdifferent
strategies when selecting elemental subsets. Moreofferatit polynomial
fitting functions for contour regions and image regions iyifferent com-
putations for constructive fitting. This work was publisiiedDeboeverie
etal., 2010, Deboeverie et al., 2013c, Deboeverie et al32PD

e Chapter 3: Polynomial curve matching

In Chapter 3, we find correspondences in Curve Edge Maps (G EAds
proposed in Chapter 2, by a technique which matches polyalararves,
based on shape, relative position and intensity. We propaissimilarity
function for local curve matching as well as a similarity étion for global
curve matching. The difference lies in the application:alomatching is
especially used in tracking applications, while global chatg focuses on
recognition applications. This work was published in [Deberie et al.,
2008b, Deboeverie et al., 2008a, Deboeverie et al., 200&tmeverie et al.,
2011].
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e Chapter 4: Face analysis applications

In Chapter 4, we evaluate the matching techniques for pahyalecurves, as
proposed in Chapter 3, by face recognition and trackingeHse consider
a top-down approach. Firstly, faces are recognized an#ie¢dhby match-

ing all geometric features in face images. Then, individaalal features

are classified and further analysed. The applications dersil are people
identification, best view selection and behaviour analgpiglications, such
as entering/leaving detection, head movement detectidrspeaker detec-
tion. We evaluate the performance of face analysis apicaton a large
number of representative databases and video sequenagéiserfmore, we

compare the proposed methods with several techniques ctalte of the

art. This work was published in [Deboeverie et al., 2008h@xverie et al.,

2008a, Deboeverie et al., 2011, Deboeverie et al., 2012].

Chapter 5: Tracking of other objects

In Chapter 5, we evaluate the matching techniques for paohyalocurves,

as proposed in Chapter 3, by tracking of other objects thassfasuch as
vehicles, heart walls and water currents. This work wasipét! in [De-

boeverie et al., 2009a, Deboeverie et al., 2009b].

Chapter 6: Applications of segmented face approximation

In Chapter 6, the main purpose is to obtain a complete faceesepta-
tion. We group face image intensities into meaningful stefaegments
and approximate them with maps defined by low-degree polyaiosar-
faces (SIMs), as proposed in Chapter 2. Then, we segmeniititewrs
separating the surface segments into contour segmentsepresent them
with maps defined by low-degree polynomial curves (CEMspraposed in
Chapter 2. We also examine curvature-based surface shalysiarior face
images, demonstrated by face verification on the polynorefaksentation.
This work was published in [Deboeverie et al., 2013c].

Chapter 7: Human body analysis

In Chapter 7, we aim to reconstruct the human body skeletwmletect
limbs and to estimate the human pose. Therefore, we segmeydagle
images of human bodies into smooth surface segments, asgadm Chap-
ter 2. Then, we approximate these human body parts by nednhddcal

surfaces, of which the axes of minimum curvature accurattypnstruct
the human body skeleton. This work was submitted in [Deboe\ al.,

2013a].
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1.4 Publications

In total, the research during this PhD resulted in three rsgefirst author and one
paper as second author in international peer-reviewed@sifDeboeverie et al.,
2013c, Deboeverie et al., 2013b, Deboeverie et al., 2013&8® et al., 2014],
of which two are published and two are submitted. Furtheentan conference
papers as first author have been published in the proceedingternational or
national conferences [Deboeverie et al., 2008b, Debozetl., 2008a, Deboev-
erie, 2008, Deboeverie et al., 2009a, Deboeverie et al9l2@eboeverie et al.,
2010, Deboeverie et al., 2011, Deboeverie, 2011, Debaegtsdl., 2012, Deboev-
erie et al., 2014] and three publications as co-author [€&eet al., 2009, Maes
et al., 2009, Eldib et al., 2014].

1.4.1 Publications in international journals

e [Deboeverie et al., 2013c] Francis Deboeverie, Peter ¥eetand Wilfried
Philips, Segmented Face Approximation with Adaptive Reg@rowing
based on Low-degree Polynomial Fitting, Signal, Image aildé&Process-
ing, 2013.

e [Deboeverie et al., 2013b] Francis Deboeverie, Peter ¥eetand Wilfried
Philips, Image Segmentation with Adaptive Region Growigdd on a
Polynomial Surface Model, Electronic Imaging, 2013.

e [Deboeverie et al., 2013a] Francis Deboeverie, Peter ¥etedad Wilfried
Philips, Human body parts segmentation in physiotheragh &daptive
curvature-based region growing, International Journ&afputer Vision,
2013, submitted.

e [Bo Bo et al., 2014] Nyan Bo Bo, Francis Deboeverie, MohamEDiB,
Junzhi Guan, Xingzhe Xie, Jorge Nifio Castefiada, Dirk Varrétamsorgh,
Maarten Slembrouck, Samuel Van de Velde, Heidi Steendater Peelaert,
Richard Kleihorst, Hamid Aghajan and Wilfried Philips, HamMobility
Monitoring in Very Low-Resolution Visual Sensor Network [N?| special
issue on Ambient Assisted Living (AAL): Sensors, Architeets and Ap-
plications, 2014, submitted.

1.4.2 Publications in international conferences

e [Deboeverie et al., 2008b] Francis Deboeverie, Peter éegldristof Tee-
len and Wilfried Philips, Face Recognition Using Parabalg&Map, Ad-
vanced Concepts for Intelligent Vision Systems, 2008.
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[Deboeverie et al., 2008a] Francis Deboeverie, Peter ¥eiedand Wilfried
Philips, Parabola-based Face Recognition and TrackimdRIBIC 2008.

[Maes et al., 2009] Frédéric Maes, Francis Deboeverie@iiudhry, Peter
Van Ransbeeck, Pascal Verdonck, Tools to understand theipgmech-
anism of embryonic hearts, International Conference on @dational Bi-
ology, 2009.

[Deboeverie et al., 2009a] Francis Deboeverie, FrédériedyiReter Vee-
laert and Wilfried Philips, Linked Geometric Features foodiéling the
Fluid Flow in Developing Embryonic Vertebrate, Internaté Conference
on Image Processing, 2009.

[Deboeverie et al., 2009b] Francis Deboeverie, KristofldeePeter Vee-
laert and Wilfried Philips, Rigid Object Tracking Using Geetric Features,
Advanced Concepts for Intelligent Vision Systems, 2009.

[Geelen et al., 2009] Bert Geelen, Francis Deboeverie atel Reelaert,
Mapping of Parabola Edge Map Canny Preprocessing to thd Xetart-
Cam Architecture, International Conference on Distridugenart Cameras,
2009.

[Deboeverie et al., 2010] Francis Deboeverie, Kristof @aePeter Veelaert
and Wilfried Philips, Adaptive Constructive Polynomiattirig, Advanced
Concepts for Intelligent Vision Systems, 2010.

[Deboeverie et al., 2011] Francis Deboeverie, Peter Vetetae Wilfried
Philips, Face Analysis using Curve Edge Maps, InternatiGoaference on
Image Analysis and Processing, 2011.

[Deboeverie et al., 2012] Francis Deboeverie, Peter Veetanr Wilfried
Philips, Best View Selection with Geometric Feature basaceFRecogni-
tion, International Conference on Image Processing, 2012.

[Deboeverie et al., 2014] Francis Deboeverie, Gianni Adkth, Dirk Van
Haerenborgh, Peter Veelaert and Wilfried Philips, Edgeeda-oreground
Detection with Higher Order Derivative Local Binary Patterfor Low-
resolution Video Processing, International Conferenc€omputer Vision
Theory and Applications, 2014.

[Eldib et al., 2014] Mohamed Eldib, Nyan Bo Bo, Francis Delmree,
Jorge Nifio Castafieda, Junzhi Guan, Samuel Van de Velde, $teehdam,
Hamid Aghajan and Wilfried Philips, A Low Resolution Muliamera Sys-
tem For Person Tracking, International Conference on Infgeessing,
2014.
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1.4.3 Publications in national conferences

e [Deboeverie, 2008] Francis Deboeverie, Shape matchinly ggometric
primitives, 9th Firw Doctoral Symposium, 2008.

e [Deboeverie, 2011] Francis Deboeverie, A Uniform Approfcti-ace Seg-
mentation and Coding with Adaptive Region Growing, 12th\FiDoctoral
Symposium, 2011.

1.5 Research activities

This work has led to important and critical contributionshe finished projects
ISYSS and iCocoon. The experience gained in the projectS&and iCocoon
is now being used to contribute in the recently started ptsjkittleSister and
SONOPA.

Contributions to projects:

e ISYSS:Intelligent SYstems for Security and Saféty
iMinds GBO project:1 January 2008 - 31 December 2009
Consortium:UGent/TELIN/IPI, Barco, NXP, Tele Atlas, Vito, Z-monitorg,
UGent-MMLab, VUB-ETRO, Imec-NES.

Brief description:During crisis situations, emergency services have to make
many crucial decisions based on data gathered from varmuses. Wire-
less mobile camera networks are a good solution for setingnuergency
information networks, as they do not rely on fixed infrastoue, can be
set up quickly, and provide the necessary communicatioduiith. How-
ever, the information overload that is generated from casen land and
airborne vehicles and surveillance cameras in the fieldgpesrious chal-
lenges for operators in a control room to maintain a clearvoee of a sit-
uation and to quickly respond to crisis events. In complesesaoften 50+
cameras need to be monitored putting severe strain on thatopeThere
is a clear need for automated support in the management ahtft@éude
of videostreams in order to make split second decisions S5 #ddressed
this problem by focusing on intelligent information extiiaa and manage-
ment of video data from mobile camera-platforms in crisisnagement.
Advanced processing rendered the video information lonadind context
aware.

The work in this thesis contributed to ISYSS by means of poigial curve
extraction [Deboeverie et al., 2010], polynomial curve chatg [Deboev-

IMore details can be found at http://ww.ininds. be/ en/research/
overvi ew projects/p/detail/isyss
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erie et al., 2008b] and tracking and recognition of rigidemit$, such as
vehicles [Deboeverie et al., 2009b].

e iCocoon: Immersive COmmunication by means of COmputer visiON
iMinds ICON project:1 January 2010 - 31 December 2011
Consortium:Alcatel-Lucent Bell, VITO NV, Eyetronics, UGent/TELIN/IP
UGent/ELIS/MMLab, VUB/ETRO, VUB/SMIT, KULeuven/PSI-VIES.

Brief description: The purpose of iCocoon was to drastically change the
way people communicate remotely. This was realized by icrgdhird-
generation video conferencing applications based on wadsis video tech-
nologies (such as Computer Vision, Scene Understanding@hdCocoon
provides a much better immersive sensation to the commtimicpartners
and better understand and take into account the contextichvihe com-
munication is taking place.

The work in this thesis contributed to iCocoon by means ofypomial
curve extraction [Deboeverie et al., 2010], polynomiaMeumatching [De-
boeverie et al., 2008b] and applications by analysis offasech as people
identification, best view selection, entering/leavinged#ibn, head move-
ment detection and speaker detection [Deboeverie et &8t2Meboeverie
et al., 2009b, Deboeverie et al., 2011]. A second part of tgreribution
included the segmentation, approximation and analysiaags with poly-
nomial surfaces [Deboeverie et al., 2013c, Deboeverie &2@13b].

e LittleSister: low-cost monitoring for care and retdil
iMinds ICON project:1 January 2013 - 31 December 2014
Consortium:Xetal, NIKO, Seris, JFOceans, CM, UGent-IPI, UGent-
MMLab, UGent-MICT, VUB-ETRO, UA-PATS.

Brief description: Many elderly citizens, even though affected by chronic
disabilities, wish to retain their autonomy and enjoy tlwim home for as
long as possible. This leads to a need for Electronics andsiStems capa-
ble of detecting alarming situations that require intetia@n or collecting
data to anticipate complications in domestic health catee general idea
is to create a cheap and low maintenance sensor system fatomiog be-
haviour of elderly in their homes, with minimal intrusion @nivacy and
minimal cabling for ease of installation, to develop distited algorithms
for processing and transmitting data in this sensor netwankl to corre-
late behavioural changes with changes in health. An impodaallenge is
to minimize power usage in the system. This is achieved usiogscaded

2More  details can be found at http://ww.ininds.be/en/research/
overvi ew projects/p/detail/icocoon-2

SMore details can be found at http://ww.ininds. be/ en/research/
overvi ew projects/p/detail/littlesister
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approach. Very low power sensors are active all the timejesohthe low

resolution sensors are activated frequently, but then salgophisticated
distributed video processing algorithms to avoid powerdrywideo trans-
mission. At crucial times, and very infrequently, centralgr hungry video
processing is performed.

e SONOPA: SOcial Networks for Older adults to Promote an Active fife
AAL Joint Programmel1 May 2013 - 30 April 2016
Consortium:Docobo Limited, University of Twente, Smart Signs, Univer-
sity of Deusto, SpringTechno, Abotic, E-seniors, Cameoat&ct, iMind-
s/Ghent University, CM.

Brief description:Sonopa aims to employ a set of available ICT technolo-
gies to develop an end-to-end solution for stimulating argpsrting activ-
ities at home. SONOPA aims to achieve its objective througlata col-
lection and fusion infrastructure which merges real measents of the
users’ activities in order to encourage activities withitpeers. Reminders
and recommendations come through personalized easetealkdisplays
placed at the user home. SONOPA will employ data analysknigoes to
derive a model for the wellness of the user along four dinwrssi social,
eating, leisure habits and mobility. This model will enatiie system to
track variations in the daily activities over time in orderdetect the right
time to provide a recommendation. This allows for timelyessto quan-
titative data from the user and allows the activation of vidlial and so-
cial recommendations. Technologies include: (i) measergrsystems that
monitor and register the activities of the user at home anld thieir peers,
(i) behavior modeling and user profiling techniques, da&iing a pattern
of the users’ activities over time by analyzing and sumniagizhe large
sensory data and registered logs; and (iii) a user integeaading person-
alized recommendations and reminders, encouraging t&sito the user.
The offered recommendations can be in the form of suggestafigidual
activities at home, such as preparing meals or social ictiers with peers,
such as setting up a board game at home.

“More details can be found ht t p: / / www. sonopa. eu/






Contour and surface models

2.1 Introduction

In this chapter, we propose an adaptive fitting techniquedpresenting sets of
contour pixels and image pixels with geometric primitivAggeometric primitive
is a polynomial function describing the geometry of an edgh@variation of grey
values in a region. The problems of extracting such priregigrises in various
contexts in computer vision: segmentation, approximadiot analysis of objects
in images.

The problem we study is that of finding a region of maximal gwehich grey
values can be well approximated by a polynomial function aere contour
pixels can be well approximated by polynomials as well. W alonsider the
related problem of finding the best degree of the polynomiatfion. Once the
segments found, another problem is finding the fitting patara@f the best fit.

To achieve above-mentioned purposes, we propose an agleggion growing
algorithm based on constructive polynomial fitting. Regjoowing is the process
of examining neighbouring pixels of initial seed pixels atetermining whether
the neighboring pixels should be added to the region. Pafyalditting fits geo-
metric primitives to pixels. This primitive extraction aldthm determines subsets
of pixels that lie on a geometric primitive or close to it. Hevell a subset cor-
responds to a primitive is quantified by &n, fitting cost (approximation error).
This fitting cost can be computed without computing the bé#di polynomial.
The best fit has only to be computed when the grouping of thmeatis finished.
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In this work, L fitting costs are computed by constructive fitting. The em-
phasis of constructive fitting is on the calculation andnaation of the fitting cost
from elemental subsets. Elemental subsets are the smaltestts that have a non-
trivial fitting cost. Estimating the fitting cost with elemahsubsets boils down to
a sampling of the region. Sampling in this context refers &aguring the fitting
cost in only a few pixels of the region and then estimatingfittieg cost of the
entire region based on these measurements. The selectelaméntal subsets
in a region can be performed locally as well as globally. Wenaea local ele-
mental subset as an elemental subset which has been sdtectethe pixels in a
small part of the region. Likewise, a global elemental sulssan elemental subset
which has been selected from the pixels in the entire rediocom local and global
elemental subsets we compute so-called local and glohagfitbsts, respectively.
Local and global fitting costs can be combined in several whythis work, our
key idea is to combine local and global fitting costs with atslgy for contour
segmentation and image segmentation in a region growingepsowith adaptive
thresholding. The proposed region growing method examaueas fitting costs to
decide if a new point is to be added to a segment (to identiffeednd outliers),
while global fitting costs control if the polynomial degreesidapted. Because the
method is adaptive, it bears some resemblance to defornmadalels [Yuille et al.,
1992]. In our case, however, adaptive refers to the use afad feeighbourhood to
add pixels, while adapting the shape (or degree) of the immct based on global
behaviour. In this sense there is some local flexibility, le/tfie global behaviour
is determined by a more straightforward characterizasoich as being concave
Or convex.

We investigate adaptive region growing for contour segat@n as well as
for image segmentation. Adaptive region growing for botbased on the same
principles of local and global sampling of the region. Hoagwnainly due to the
different spatial ordering of contour pixels and image fsxboth need their own
modifications of adaptive region growing. Where region grmgagroups pixels
along one dimension for connected contour pixels, regi@wirg groups pixels
along two dimensions for connected image pixels. In botegahis requires dif-
ferent strategies when selecting elemental subsets. Mergatifferent polynomial
fitting functions for contour regions and image regions iynglifferent computa-
tions for constructive fitting.

In this work, the focus is on the segmentation of images addos of faces.
In order to find segments that coincide well with meaninghaiél features in the
image, we investigate the grouping of pixels into meanihgagments and the
approximation of segments by low-degree polynomial fuureti The 1-D case
firstly segments contour pixels in face images into contegngents. Then, these
contour segments are represented by polynomial curveshvelne either straight,
convex or concave. The 2-D case firstly segments image ititengf face images



CONTOUR AND SURFACE MODELS 19

into surface segments (intensity patches). Then, thedacgusegments are rep-
resented as polynomial surfaces, which are either flatapl@onvex, concave or
saddle surfaces. The polynomial curves and surfaces ampegdnto two novel
compact features: the Curve Edge Map (CEM) and the Surfaemsity Map
(SIM), respectively.

The work in this chapter was published in [Deboeverie e28l1,0, Deboeverie
et al., 2013c, Deboeverie et al., 2013b].

This chapter is structured as follows: in Section 2.2, weuss related work.
In Section 2.3, we explain the basic principles of consivegbolynomial fitting.
In Section 2.4, we propose an adaptive region growing alyorbased on con-
structive polynomial fitting. This method is applied and leesed for (part A)
contour segmentation into polynomial curves and (part BAgensegmentation
into polynomial surfaces in Sections 2.5 and 2.6, respelgtiv

2.2 Related work

This section gives an overview of existing point, curve agglon extraction meth-
ods. Feature detection is the extraction of salient strastin images. A feature
is any location in the image which indicates a region, lingpoint of interest.
Significant regions, curves (region boundaries) or poirggi¢n corners, line in-
tersections, points on curves with high curvature) are idensd as features here.
They should be distinct, spread all over the image and efigieletectable in
images. Thus, the main purpose of feature extraction islersgeatures in the
image that are likely to be useful candidates for higheell@perations, such as
matching, tracking or shape analysis. In practice, aredntefest often corre-
spond to meaningful object parts, in order to describe,geize or track objects
over different images. An overview of the wide variety oftig@ detectors that
exist in literature is given by Schmid [Schmid et al., 200Q]ytelaars [Tuytelaars
and Mikolajczyk, 2008] and Nixon [Nixon and Aguado, 2012]s & this work,
polynomial fitting is one useful way for feature extraction.

Point features. In this paragraph, we give an overview of point extraction
methods. Related with the work in this thesis, point featae of interest as in-
put for 1-D polynomial fitting. There are two well-known cé&s of feature point
extraction methods: contour-based and intensity-basemtodr-based methods
examine the curvature of edges in the image. Mostly, an eétectbr is used
as a pre-processing stage to obtain the point set for theedesontour. There
is an abundance of edge detectors in use these days, likeotied, $he Lapla-
cian of Gaussian and the Canny edge detector [Canny, 1986&aFch along the
connected edge chains returns meaningful locations, ssigoiats with special
characteristics, e.g., highest (change in) curvatureith or intersection points,
junctions, endings, etc. Interesting points can also beotied on an approximation
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Figure 2.1: (a): The standard test imagena (b) and(c): The point feature de-
tection output of the Harris corner detector and the SIFiufeadetector, respec-
tively. The SIFT features are plotted with an indication cdile and orientation as
indicated vector.

by curves or splines. Intensity-based methods return feddeations based on a
measure derived directly from the intensity values. Initgrsased feature point
detectors examine small image regions to see whether thpegasance mimics
that of a corner. These methods check whether the intereitgtions in a prede-
fined structure verify a set of similarity rules. Differergnations of similar rules
are applied in different methods, such as the Moravec detfdioravec, 1977],
the Harris detector [Harris and Stephens, 1988], the SUS@&tsador [Smith and
Brady, 1997] or the FAST detector [Rosten and Drummond, 2B0Sten and
Drummond, 2006]. The advantage of these types of methoksirscomputational
efficiency. Whereas the above detectors achieve translatid rotation invariance
up to some extent, most recent feature detection methodsasiSIFT [Lowe,
2004] and SURF [Bay et al., 2006, Bay et al., 2008] consideradesspace ap-
proach to obtain (at least) scale invariance. Other deteeixplore region-based
methods to obtain affine invariance, such as MSER [Matas dwnuinC2004] and
ASIFT [Morel and Yu, 2009]. Figures 2.(b) and(c) show the point feature de-
tection output of the Harris corner detector and the SIFTuf@adetector when
performed on the standard test imdgeain Figure 2.1(a). An evaluation of the
performance of several feature descriptors is given by Mijkayk [Mikolajczyk
et al., 2005, Mikolajczyk and Schmid, 2005].

Existing techniques examine local behaviour on the bagis¥atives or local
transitions of grey values, such as in the SUSAN detectar tire FAST detector.
Our approach, where fitting is an essential part, is an iotlisay to know where
the derivatives are zero. The difference is that we work artallbasis as well as
on a global basis.

Curve features. Several solutions exist to find geometric shapes in edge data
such as straight lines or conics (circles, ellipses, pdaashoFor faces curves cor-
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Figure 2.2: (a): The standard test imageameraman (b) and (¢): The line
feature detection output of the Hough transform and the RABGI&Igorithm, re-
spectively.

respond to boundaries between segments. Due to imperisati@ither the image
data or the edge detector, there may be outliers for theatksindel, such as spa-
tial deviations from noisy edge points to the geometric nho@ieerefore, it is of-
ten non-trivial to group the extracted edge pixels to an apipate set of geometric
primitives. Common methods to robustly fit a geometric mpkete straight lines,
to the edge maps are the Hough transform [Hough, 1962, Dutdart, 1972, Bal-
lard, 1981] and the RANSAC algorithm [Fischler and Bolle331]. Characteristic
for these techniques is their use of parameters of geonpeiniitives. The Hough
transform maps each point of the data set onto a manifoldeip#iameter space.
A minimal subset is the smallest subset that uniquely defiremitive; e.g., two
points define a straight line. A minimal subset based extmcilgorithm will
repeatedly choose a minimal subset, compute the corresgppdmitive param-
eters, generate the primitive, and verify whether a sufficirmimber of points in
the data set lie sufficiently close to this primitive [Rotlddrevine, 1993]. In com-
puter vision, the RANSAC algorithm was one of the first welblam techniques
based on this principle. Figures 2(2) and (c¢) show the line feature detection
output of the Hough transform and the RANSAC algorithm wherfgemed on
the standard test imagameramarin Figure 2.2(a).

In our approach, we use elemental subsets instead of mirsnmets. An
elemental subset includes one extra pixel. As such it ngt takdes into account
the parameters of the primitive, but also includes a mar§imoav far the pixels
can be from a primitive.

Region features.Region feature extraction methods fit a parametric intgnsit
model to local image regions. These parametric model msthequire image
segmentation to divide an image into image regions. Ovepé#st few decades,
2-D image segmentation has been studied extensively witiya humber of algo-
rithms being published in the literature [Fu and Mui, 198arilick and Shapiro,
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(b)

Figure 2.3: (a): A face image of the BSDS300b) and(c): The region feature
output of the normalized cuts algorithm and the mean stgfir@hm.

1985, Nevatia, 1986, Pal and Pal, 1993, Mufioz et al., 2008jagk segmenta-
tion approaches are often divided broadly into three categofeature-based
[Otsu, 1979, Kapur et al., 1985, Deng and Manjunath, 200fn&dciu and Meer,
2002, Chen et al., 2005, Aujol and Chan, 2006, Tao et al., 2a@hotte, 2008],
region-basedVincent and Soille, 1991, Shih and Cheng, 2005, Makrogsetal.,
2005, Yang et al., 2008, Tarabalka et al., 2010, Liu et all,1®) andgraph-based
[Shi and Malik, 2000, Wang and Siskind, 2003, Couprie et2011]. Feature-
based image segmentation collects the main charactsristian image by ex-
tracting image features, which are usually based on colotexture. The feature
samples are represented as vectors. The objective is tp trewextracted feature
vectors into well-separated clusters by using a speciftanée metric. Drawbacks
of these methods are the non-preservation of spatial ateieind edge informa-
tion and the possible grouping of pixels from disconnectgians of the image
with overlapping feature spaces. In the spatial domairiprebased image seg-
mentation preserves edge information and spatial relstiipnbetween pixels in
an image. The objective is to detect regions that satisfgedfiieed criteria in
a region-growing, region-merging or region-splitting pess. An example of a
region-based image segmentation criterium is based ompuiial fitting. Graph-
based image segmentation groups the feature-based aod-tegged information.
Grouping is based on several important elements, such aksusiyn proximity,
and continuation. A weighted graph can be constructed, evbach vertex cor-
responds to a pixel or region, and the associated weightatf edge connecting
two adjacent pixels or regions depends on the likelihoot ttiay are belonging
to the same region. The weights are often related to coloditexture features.
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Figures 2.3b) and(c) show the region feature detection output of the normalized
cuts algorithm [Shi and Malik, 2000] and the mean shift ailipon [Comaniciu and
Meer, 2002] when performed on an image of the BSDS300 [Maitial., 2001]

in Figure 2.3(a). In our method, grouping is mainly based on a rigorous form of
similarity and continuity.

As in this work, segmentation of intensity images with palymial fitting is
originating from Segmented Image Coding (SIC) [Eden andh€oc1985, Kunt
etal., 1987, Gilge et al., 1989, Philips, 1996, Christopew@t al., 1997, Reid et al.,
1997, Biswas, 2003, Kassim et al., 2009]. The main idea ofiSK0 divide the
image into segments that coincide as well as possible withnmgful parts in
the image. Each region is represented by two codes. The diften(a chain
code) describes the location of contour pixels. The secepdesents the best
approximation of the region enclosed by this boundary. Resé techniques, the
main purpose was image compression.

In literature, researchers have mainly been investigatimtace segmentation
in range images [Fan et al., 1989,Lim et al., 1990, Taubi@11®/ang et al., 2012].
One popular approach for surface segmentation is regiomigge for which sev-
eral segmentation criteria have been proposed. A distinésimade between seg-
mentation based on normal vectors [Rabbani et al., 200&:H2es! and Goulette,
2006], curvatures [Besl and Jain, 1988, Vieira and Shimadas, Lavoué et al.,
2005, Jagannathan and Miller, 2007, Wang and Yu, 2011] atiagfipolynomi-
als [Kocher and Leonardi, 1986, Wang et al., 2003, Cohem&tet al., 2004].
Existing techniques using low-degree polynomial fitting $arface segmentation
consider planar patches [Cohen-Steiner et al., 2004] aadrgtic patches [Wang,
2002, Petitjean, 2002, Yan et al., 2012], such as circulamadgrs [Wu and Kobbelt,
2005] and ellipsoidal surfaces [Simari and Singh, 2005]esehtechniques are
often not suited to segment intensity images. This is cabgeatie different be-
haviour of range images and intensity images. Range imagestan smooth and
represent the real object, while grey values in intensitgges are more textured
because they represent reflected light. Therefore, segmentensity images
with region growing [Zucker, 1976, Adams and Bischof, 19¢dnga et al., 2012]
requires an adaptive approach which can handle the locajjlabal variation of
grey values [Pohle and Toennies, 2001, Qin and Clausi, 2010]

2.3 Constructive polynomial fitting

In this section, we discuss the main aspects of construptignomial fitting.

Constructive fitting is a technique for curve and surfacénfit and the related
problem of the extraction of geometric primitives from ineagVeelaert, 1997,
Veelaert and Teelen, 2006, Veelaert, 2012]. A geometricltogl feature or prim-
itive is a polynomial function describing the geometry ofetige or the variation
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of grey values in a region. Primitive extraction arises inaas contexts in com-
puter vision: segmentation, approximation and analysab{cts in images [Roth
and Levine, 1993, Taubin, 1991, Bolle et al., 1992]. A privaitextraction algo-
rithm finds subsets of pixels that lie on a geometric pringitdr close to it. How
well a subset corresponds to a primitive is measured by adittost. Thus the
extraction algorithm essentially determines subsets Mithfitting cost.

In its most general form the problem can be described asislifind a subset
D of a given data sef such that a geometric primitive can be fitted to the pix-
els of D with a fitting cost below a given threshold. Depending on toetext,
additional constraints may be imposed on the subsetuch as either being con-
nected, convex, have a minimal or maximal size, or it mussfyatertain distance
constraints.

A primitive extraction process based on merging tries to iggéometric prim-
itive in a large data set by first extracting parts or segmefijgsimitives from small
subsets of the data set, and then combining them into laegts. o formalize this
process, it is possible to derive from the parameters anfittosts of the small
parts the parameters and fitting costs for the combined péattaert, 1997]. This
is called constructive fitting. The purpose of constructittang can be formulated
as generally as the primitive extraction problem. From alksodsetD that has a
lowest fitting cost, we try to construct a larger subset wath fitting cost.
Constructive fitting involves the following principles:

e Constructive fitting is based upon uniform fitting (also edliminimax, Cheby-
shev orL ., fitting).

e The smallest subsets that have a nontrivial fitting costhéltalledelemen-
tal subsetgStromberg, 1993]. The fitting cost of an elemental subsetbea
computed by a simple formula.

e The fitting cost of a data sét is equal to the maximum of the fitting costs
of all its elemental subsets.

e The fitting cost of a data set can beestimatedrom the fitting costs of a
few of its elemental subsets provided the elemental subs®tsa so-called
rigid collection [Veelaert, 1997].

¢ Rigid collections of elemental subsets can be built as ¥igdtoconstruct an
ordered sequence of elemental subsets that ¢Hsach that the intersection
of each subsequent pair in the sequence is a minimal sutessltiaft, 1997].

e The fitting parameters of the best fit are equal to the fittimgpeeters of the
elemental subset that has the largest fitting cost [Veelh@®i7].

Figure 2.4 illustrates linear polynomial fitting for a da&t 8 whose points
have been marked by dots. The fitting cost can be found by aftigha line
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Figure 2.4: Best linear fit according to the., metric. Parallel enclosing lines are
shown as dashed lines.

y = o + aox until max, (a1 + sz —y|) is minimal. Figure 2.4 also shows the
resulting best fitting line, with fitting cost/5. The best fit has a simple geometric
interpretation. It can be found by letting two parallel kneove towards each
other until they enclose the data set points as tightly asiples that is, until the
vertical distance between lines is as small as possible b&kgfit is the line that
bisects the region between the enclosing lines, as is atsorsim Figure 2.4.

The focus of constructive fitting is on the calculation antineation of the
fitting cost. The fitting parameters are only computed whested explicitly (after
we have determined a subgetwhose fitting cost we are interested in), because
it is possible to estimate the fitting cost without calculgtthe parameters. This
is in clear contrast with the Hough Transform or the minimddset approach. A
typical constructive fitting process starts from small paftgeometric primitives
and assembles them into larger parts. The calculation ofittitey costs of the
large parts is avoided whenever possible. Instead thendittosts are estimated
from the costs of the smaller parts. Eventually, when a Igae of a primitive
has been found with a sufficiently low estimated fitting castfitting parameters
are estimated, and if necessary, the parameters and thg fitist are computed
exactly. In this way, constructive fitting is well suited fxploring many possible
ways to fit models to the data.

When assembling small parts of primitives it is essentiat the start from
uniform fits, i.e. L fits. In contrast with least-squares fitting, a uniform fieias
some information about the actual positions of the pixefavd uniformly fit a
primitive to a given set of pixels, we also have precise imfation about the region
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in which the pixels lie. Furthermore, there is always an @etal subset that has
the same uniform best fit as the entire data set [Veelaerf{]19bhis property
ensures that the elemental fits can be used as building bloclesger fits.

Each time part of a primitive has been extracted, there iaydvone elemen-
tal subset that holds sufficient information about the paisét of the pixels of the
part. Sufficient information here means that we can use twmahtal subset to
estimate the resulting fitting cost when we start mergingithwther elemental
subsets. As mentioned by Stromberg, the importance of el&hsubsets in uni-
form fitting was already known for linear regression [Strard) 1993]. We use
elemental subsets to more general fitting problems, usingnaegjuence of one
of Helly’s theorems on convex sets [Stoer and Witzgall, 1&%&lley and Weiss,
1979, Veelaert, 1993, Veelaert, 1994].

Apart from its suitability for merging, constructive fitinbased on théd.
fitting cost has some advantages over ihefitting cost [Watson, 1998, Cadzow,
2002], which makes it also suitable as a stopping criterimmdgion growing and
to detect outliers and edges. We demonstrate this with d exeiple. Suppose
we use a region growing process to fit lings) = ax + b to segmentsS =
{(zo, f(x0)), (x1, f(x1))s- -, (Xm, f(xm))} Of & Noisy step functiorf (), as in
Figure 2.5(a). The first point of the step function at the left is taken asedse
point. The corresponding., and L, fitting costs are shown in Figure 2(5).
The L, fitting cost ofg(z) over a segmertt is defined as

rr,(Sig) = > (9(x) = f(2))2. (2.1)

TS

The L, fitting cost ofg(x) over a segment is defined as
"L (53 9) = max |g(z) — f(2)]. (2.2)

The step function causes a much faster and more direct sem#dhe consecutive
L, fitting costs than the consecutiVe fitting costs. Moreover, once the step
occurs, thelL, costs gradually decrease. The obvious reason islthaakes an
average over all deviations between the pixels and thedilitire, while L, looks

at the maximum deviation. Consequently, when making deessduring region
growing about adding a new pixel, discarding an outlier opptng at an edge, the
direct response of the, fitting costs yields more sensitivity as well as accuracy.

2.4 Adaptive region growing

In this work, we propose a novel technique to group pixels gthooth segments
with adaptive region growing. Before going into detail ire tegion growing pro-
cesses for contour segmentation into polynomial curveseictiéh 2.5 and for
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Figure 2.5: (a): A noisy step function. (b): The correspondifg, and L, fitting
costs.

image segmentation into polynomial surfaces in Sectionvethighlight the con-
cepts of the proposed region growing techniques which argesifor both contour
segmentation and image segmentation.

The purpose of region growing is to group contour pixels andge pixels
into segments that satisfy a certain criterion, such asgegiraight or smooth. To
find such segments, a typical region growing algorithm sthdm a small seed
segment, and then repeatedly tries to add new pixels to égiment, while veri-
fying whether the segmentation criterion is still satisfiedthe enlarged segment.
If not, a new segment is started, or another pixel is chosen.région growing,
we propose adaptive thresholding of the, fitting cost as a stopping criterion
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Figure 2.6: Flow chart of one iteration step in our adaptive region grawiTwo
key phases are distinguished: the first determines if a neel isito be added to a
segment, while the second phase controls if the polynoregiet is adapted.

and to distinguish outliers and edges from gently risingatem. An outlier is a

grey value differing from its neighbours due to noise or dimlajlect speckles. The
novelty is that region growing investigates the local viéoia of grey values in a
segment to identify edges and outliers, while the globalatian of grey values
in a segment is investigated to adapt the degree of the paolgidunction. The

terms local and global refer to a part of the segment and tlieeesegment, re-
spectively. The combination of both is possible becausemgl@y constructive
fitting: the global fitting cost is also calculated from loditting costs, which is
more economical. The greatest advantage, however, istia is a clear relation
between local and global fitting costs. As we will show, thebgll fitting cost is

computed by evaluating all possible elemental subsetwhe local fitting cost is
computed from a small subcollection. Adaptive thresha@dilfows for a variable
polynomial degree and a variable fitting error, dependintheriocal properties of
the pixels. We find regions of maximal size that satisfy/ap fitting cost crite-

rion, such that grey values can be approximated well by potial functions of

low degree (e.g., 0, 1 or 2).

In this work, region growing is made adaptive to accommodatesmooth
variation of the grey values over a segment. Two key phasesliatinguished,
which are visualised in the flowchart in Figure 2.6. The filsage determines if
a new pixel is to be added to a segment. The second phaselsdftre poly-
nomial degree is adapted. These phases are driven by agltiptagholding of the
L fitting cost. In the following sections, we explain adaptiggion growing with
constructive polynomial fitting for 1-D contour as well as 8D image segmen-
tation. The methods in both cases are based on the samepfe#oi local and
global sampling of the region. However, mainly due to théedént spatial order-
ing of contour pixels and image pixels, both need their ownlifications of adap-
tive region growing. Where region growing groups pixelsnglmne dimension
for connected contour pixels, region growing groups pigétéig two dimensions
for connected image pixels. In both cases, this requirdsrdift strategies when
selecting elemental subsets. Moreover, different polyiabfitting functions for
contour regions and image regions imply different compaoret for constructive
fitting.
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2.5 Contour segmentation into polynomial curves

In this section, we propose a simple, linear-time algorifoml-D segmentation
of digitized contours into polynomials of variable degresich we illustrate for
linear and parabolic segments. The main purpose is to shawduoal and global
fitting costs can interact in an adaptive method. Linear toraplexity, simplicity
and generality do not come for free, however. The methodsedan the estima-
tion of the fitting error, not the exact computation, and d¢fiere the segmentation
will only approximately estimate the criterion. The deigatfrom optimality can
be reduced, however, by increasing the number of sampldfpamost applica-
tions the error probability can be made sufficiently smaliisiwork was published
in [Deboeverie et al., 2010].

2.5.1 Contour extraction

Mostly, in contour segmentation an edge detector is usedtectedges in a pre-
processing step to obtain the pixel set for the desired conibhere is an abun-
dance of edge detectors in use these days, like the Sobkhpiecian of Gaussian
and the Canny edge detector [Canny, 1986]. Beside an edgetaletcontours can
also be obtained from the contours separating image segment

In our work, the edge map is derived from the Canny edge dmtebihe Canny
edge detector is suitable for us, because it results in tihie® of one pixel thick-
ness and it is less sensitive to noise. Connected contoerstaained from the
edge map by a simple boundary scan algorithm. A typical exawifpthe output
of an edge detector is given in Figure 2.7.

2.5.2 Constructive polynomial curve fitting

In this section we give the mathematical formulation of ¢ordive polynomial
curve fitting on which the region growing processes in thisknare based.

Letp;, = (x;,y:) € Z* be the pixels of a finite contout, = {po,...,pr}-
Let G be a vector space of fitting functions, for instance, (ifhe- 1)-dimensional
vector space of polynomial curves of the form

g(x) = ap + a1z + ...+ agz’. (2.3)
To simplify the properties that follow, we impose the milchstraint that the seg-
mentC,, = {po,...,pm}, Which is part ofC}, contains at leasf + 1 distinct
pixels,d + 1 < m < k, whered denotes the dimension of the vector space of the
fitting functionsG or d denotes the polynomial degree of the fitting functions. The
cost of uniformly fittingg(z) to the contoul’,,, is defined as

ra(Cm) = (o, DX lg(zi) — il (2.4)
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Figure 2.7: (a): A greyscale image of a facéb): The result after Canny edge
detection.

(a)

Note that this is also called the Chebyshev, minimax, grfitting cost. The best
fitis the functiong(x) in G for whichr,4(C),) is minimal. We denote this minimal
cost as’4(Cy,), and we call it the fitting cost oveT;,,,. To be precise,

fd(cm) = gggrd(cm)' (25)

The best fit is unique if the pixels are in general position.e Bolution is not
unique if the pixels are in an algebraic relation, such afingrity. The first
property of constructive fitting that we need is that the Ifiéstnd its fitting cost
can be computed from fits to the so-called elemental sub$et$,0 These are
subsets of the curv&,,, that contain precisely + 2 pixels and have a nontrivial
fitting cost. The fitting cost over an elemental subset itsaif be computed in a
straightforward manner. To be precise, I18t= {(z1,41), ..., (Td+2,Ya+2)} be
an elemental subset @f,,,. Let E; denote the cofactor af; of the augmented
matrix:

1 X1 Ce xl Y1
(Ap|Bp) = [+ : : : (2.6)

L Zgpo oo X9 |Yat2)

Then one can show [Veelaert, 1997, Veelaert and Teelen] 20@6the fitting
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cost of an elemental subsBtcan be computed by

det(AD|BD)
(IE1] + ...+ [Eas2l)
(|Evyr + ... + Eayoyaya|)
(IE1| + ...+ [Ea+2l)

provided the denominator is non-vanishing. The denominateanishing when
the pixels in an elemental subset are not in general positiohin an algebraic
relation, such as collinearity. One can prove that the jttost overC,, is the
maximal value of the elemental fitting costs over all elerakstibsets of the con-
tour C,,, [Veelaert, 1997, Veelaert and Teelen, 20086].

fa(D) =
2.7)

74(Cm) = maxiq(D), (2.8)
where M is the collection of all elemental subselfs of C,,, for which |E;| +
...+ |Eat2| > 0. We can obtain a reliable estimate of the fitting cost with far
fewer computations than required for computing the fittiogtdtself [Veelaert,
1997, Veelaert and Teelen, 2006]. The fitting cost of a dataa® be estimated
from the fitting costs of a few of its elemental subsets. kdtef calculating
74(Cp,), Wwe compute

a(Cm) = maxia(D), (2.9)

DeNI
where)M forms a rigid subcollection of elemental subsets\bfVeelaert, 1997].
The rigidity of a collection of elemental subsets is relatedhe rigidity of me-
chanical constructions [Veelaert, 1997]. To be rigid it é&xeassary that each pixel
is covered by at least one elemental subset, and that eanbr subset, which
hasm pixels, has at least — 1 pixels in common with all of the other sets. (Hen-
neberg sequences [Graver, 1991]). In a region growing peotteese conditions
are met automatically. One can prove thatC,,) < 74(Cy.) < v74(Cyn), for
some valuey that only depends on the way in which the elemental subsets ar
chosen, not on the pixels themselves [Veelaert, 19914 the maximal estimation
error and can be calculated by solving a mathematical pnogiag problem with
constraints that depend on the elemental subset collesfioriThe best way to
select elemental subsets is related to the extrema of Cheby®lynomials (min-
imax property of de la Vallée-Poussin) [Watson, 2000]. Aexample, Figure 2.8
shows a subcollection @felemental subsets, indicated by crosses in different col-
ors, selected on a set of contour pixels. For polynomial €siiof degreel = 2,
the number of pixels in an elemental subset is 2 = 4. On the left is shown the
best fit polynomial curve.
The property that the fitting cost(C,,) is equal to the maximum of the ele-

mental fitting costs, as expressed in Eq. (2.8), is of prinabichportance for our
method. It means that the fitting cost can only increase wheadd more pixels
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Figure 2.8: Left: a set of contour pixels. Middle: a subcollectiondoélemental
subsets, indicated by crosses in different colors. Rigihe Best fit polynomial
curve.

to a region, which is not always the case for fitting. Furthermore, if the new
pixel falls within the current margir,;(C,,, ) will not increase. On the other hand
if the new pixel does not fit well, we will notice a sudden irase in the cost. This
property is ideal for segmentation. Suppose that a largé sdtpixels contains
several segments and a number of outliers. Each elemebisgtdul corresponds
to a random sample &. By comparing the fitting cost of’ with a threshold, we
will know whether 1) all pixels inZ belong to a common segment 2) the pixels
in £ belong to distinct segments @f contains at least one outlier. Although we
cannot distinguish between elemental subsets that bebangitiple segments and
elemental subsets that contain outliers, this propertylissry suitable for region
growing. If we have a small seed of a segment, we can replag®bthe pixels
in an elemental subset by a new pixel, and see whether theixeligpeither part
of a new segment or an outlier. A second difficulty is that wendb know the
shape beforehand. A contour may be straight or curved, acsugatch may be
flat, concave or convex. Fortunately, the models that we teseat independent.
By increasing the degree of a polynomial we can alter its shdjis is done by
comparing a global fitting cost with a threshold.

2.5.3 Contour segmentation with adaptive region growing

In this section, we describe thie,, based adaptive segmentation method. We
explain how region growing works and how it is made adaptivthé local contour
properties, such that contour segments are representedya®mial curves with
a variable polynomial degree and a variable fitting error.

We give an overview of the reasons to introduce an adaptyiemegrowing
algorithm instead of region growing by simple thresholdihg fitting cost. Two
main drawbacks occur by region growing with simple fixed shi@dding.
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Firstly, due to a fixed threshold on the fitting cost in nonsztde region grow-
ing, the maximum deviation between the contour segmentstangolynomial
curves is fixed. In this case, we detect endpoints of the setgfier instance in
the middle of a contour. Figure 21 shows the first degree polynomial fitting
costsi; (Cyy,), as defined in Eq. (2.9), when running through the contoum fiioe
red cros®; to the blue plugs, via the green circlgs, as shown in Figure 2(8).

A fixed threshold on the fitting cost incorrectly segmentsabitour inps, which
corresponds to the blue dotted lines. Instead, we prefegraeatation of the edge
in p2, which corresponds to the green dotted lines. In adaptyiemnegrowing, we
propose to detect endpoints of the segments at locationsewlnedirection or the
regularity of the contours changes (e.g. at corners). Sodafitpare of interest,
because they can be used ase feature points in for instanmespondence prob-
lems and object recognition. These changes in directiorreguaarity correspond
to discontinuities in fitting costs.

Secondly, the polynomial curves have a fixed polynomialegr non-adaptive
region growing. When using a fixed polynomial degree undeeven overfitting
could occur. First degree polynomials underfit curved corgowhile higher de-
gree polynomials overfit straight contours. Figure 2(aB(b) and(c¢) show the
segmentation results for a car image from the MPEG7 datab&s@olynomial
functions of degred ,2 and3, respectively. The polynomials are represented
with red dotted lines, green dashed lines and blue solig Jinespectively. The
polynomial functions of degreé = 1 underestimate the curved contours of the
wheels of the car, while the polynomial functions of degiee 3 overestimate
the straight contours at the back of the car. In adaptiveregiowing, we propose
to determine the polynomial degree by observing the regyland the increase
of fitting costs. Variable degrees for polynomial functia@s potentially avoid
under- and overfitting: straight contours are expected @gpeoximated by lines,
while higher degree polynomials are used for curved costour

In this work, we propose a solution for these problems by m@akhe seg-
mentation of the contours and the decision of the polynodegree adaptive. We
extend constructive polynomial fitting by allowing a valiapolynomial degree
and variable maximum deviation between the contour segyand the polyno-
mial curves.
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Figure 2.9: (a): The contour of a carimage obtained from the canny edgeetec
Indication of a run through the contour from the red crps$o the blue plus,

via the green circlg.. (b): The first degree polynomial fitting costs(C,,,), as
defined in Eq. (2.9). The blue plys indicates the location of segmentation after
thresholding. The green circle indicates the preferred location of segmentation.
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Figure 2.10: Figures(a),(b) and(c) show the segmentation results into polyno-
mial functions of degreé ,2 and3, respectively. The polynomial are represented
with red dotted lines, green dashed lines and blue solic Jinespectively. The
polynomial functions of degreé = 1 underestimate the curved contours of the
wheels of the car, while the polynomial functions of degiee 3 overestimate
the straight contours from the back of the car.
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The segmentation algorithm starts its run through the aonteap in three
consecutive pixels of the digitized contour, at a randonfigsen starting pixel.

At first we attempt to fit first degree polynomial functionstke initial parameter
values arel = 1 andCy = {po, p1,p2}. When extending the curvé,, with a

new pixel,;m = m + 1, we evaluate the value and the regularity of the consecutive
fitting costsrq(Cy,) (Eq. 2.9), in order to make decisions about segmentation and
polynomial degree.

The segmentation is made dependent on the regularity ofecatige fitting
costs. More precisely, we segment contours in locationsrevtiee direction or
the regularity of the contours change, which corresponddecodtinuities in the
consecutive fitting costs. To avoid discontinuities in thignfy costs due to noise,
we perform mean filtering with a sliding window.

The current moving averagé; (C,,,) of the fitting costs is

1
A4(Cm) = 1 > a(Conugi), (2.10)
=1

whereu is the window size of the current moving average, e.g= 5. To detect
discontinuities in the fitting costs, we also observe tharimoving average

Ag(Crm) = ﬁ > Fa(Crna), (2.11)
=1

wherew is the window size of the future moving average, evg= 5. Discon-
tinuities in the fitting costs are detected in the evaluatibthe valuel;, which
we define as the difference in future moving averagéC,,,) and current moving
averagedy (C,),

I = A(Cp) — Ay (Chn). (2.12)

A new segment is found, if the value exceeds the threshold, e.g.7; = 0.6.
The process starts a new segment with the remaining pixéteafontour map for
polynomial functions with degre¢ = 1. Figure 2.11(a) indicates a run through
the contour from the red cross to the green circle, for whieHitting costs’; (C,,)
are plot in Figure 2.11b). The magenta dashed line, the orange dotted line and
the blue dashed-dottted line correspond to the currentmgoaveraged’ (Cy, ),
the future moving averagé?! (C,,,) and the valudy, respectively.

The degree of the polynomial function is determined by olisgrthe value
I», which is defined as the current moving averageC,, ),

I = A%(C)). (2.13)
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Figure 2.11: (a): A run through the contour from the red crgssto the green

circle po. (b): The corresponding first degree fitting cogt$C,,,). The magenta
dashed line, the orange dotted line and the blue dashetddititte correspond to
the current moving averag# (C,,), the future moving averagé?! (C,,) and the

valuel;, respectively.
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Figure 2.12: (a): Arunthrough the contour fromy to p». (b): The corresponding
first degree fitting costg, (C,,). The same notations, markers and colors are used
as in Figure 2.11. The valuk corresponds to the green dashed-double dotted
line.
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Figure 2.13: (a): A run through the contour from the red crgssto the green
circle p. (b): The corresponding second degree fitting costs’,,). The same
markers and colors are used as in Figure 2.11. The notatiotissf current moving
average and future moving average agC,,,) and Ag (Cy), respectively. The
valuels is again within the limit ofl5.
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(a) (b) (c)

Figure 2.14: (a): A greyscale image of a facgb): The result after Canny edge
detection. (¢): The face contours segmented into polynomial curves ofreco
degree.

If the value I> exceeds the thresholf,, e.g. 7> = 1.3, the degree of the
polynomial function is increased by oné,= d + 1. The degree is increased
until the valuel, is again within the limit of the threshol@,. The segmentation
process continues with the remaining pixels of the digitizentour. Figure 2.12
(a) indicates a run through the contour from the red cfas® the green circle-,
for which the fitting costs, (C,,,) are plot in Figure 2.12b). The green dashed-
double dotted line corresponds to the valge When the degree is increased, as
shown in Figure 2.13, the valug is again within the limit of7%.

For each extension of the segmékt with a new pixel, we evaluate if; and
I, exceedI; andTs;, respectively. The first value is responsible for a segmenta
tion of the contour, while the second value is responsibteafoincrease of the
polynomial degree.

2.5.4 Best fit polynomial curve - Curve Edge Map

After segmentation the coefficients of polynomial curves aptimized by poly-
nomial regression. Recall that during region growing, dig fitting cost was
computed. The output of the fitting algorithm is a list of paodynial curves that
approximate the contour map. We introduce a compact featueeCurve Edge
Map (CEM), which integrates structural information andtsganformation by
grouping pixels of an contour map into contour segments.wBeh 20 and 50
polynomial curves are sufficient to describe a face.
As illustrated in Figure 2.14c), many polynomial curves in a face CEM cor-

respond to physically meaningful features such as eyehrcveskbones or lips.
The polynomial curves approximate the contours very cfoSEEM is a simple
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Figure 2.15: Examples of the MPEG-7 core experiment CE-Shape-1 datalbaise
B [Jeannin and Bober, 1999].

and natural description which still preserves sufficiefidimation about the fa-
cial position and expression. CEM is expected to be lesstaent® illumination
changes, because they are intermediate-level image espagions derived from a
low-level contour map representation.

2.5.5 Evaluation of contour segmentation and approximatio

We evaluate the proposed contour segmentation and appat&mon the MPEG-
7 core experiment CE-Shape-1 database part B [Jeannin amer,BI999] con-
taining binary images of shapes with single closed contoifew examples are
shown in Figure 2.15.

We denote segmentation with region growing by thresholdswyon-Adaptive
Constructive Polynomial Fitting (NACPF) and the proposegisentation with re-
gion growing by adaptive thresholding as Adaptive Consivad?olynomial Fit-
ting (ACPF).

The values for the parameters of ACPF in Section 2.5.3uate 5, v = 5,

Ty = 0.6 and7Ty = 1.3. These parameters have been manually tuned on a small

number ofimages. The system is implemented in C++ as ancapipln running on
a 2.80 GHz processor, 4.00 GB RAM and 64-bit operating syst€onsidering
an image size of 200x200, the CEM computation time is appnatély one 35
milliseconds per image.
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Figure 2.16: Figure(a) and(b) show the segmentation and approximation results
on a car image using ACPF and NACPF, respectively. The reddines and
the green dashed lines correspond to first and second degye®mmials, respec-
tively. Considering the result of ACPF, the contours arerapimnated accurately

by polynomials of variable degree. Also, the segments argdg which are more
accurate approximations to the contour map, when compar®thCPF. Figure

(¢) and(d) show similar results on a cup image using ACPF and NACPFgeresp
tively.

Car

Cup
ACPF NACPF ACPF NACPF
Average fitting cost per contour pixel 1.25 1.25 1.16 1.16
Average degree per contour pixel 1.84 2 1.76 2
Average length of the segments

53.54 39.42 9044  52.23
Average Hausdorff distance per segment  2.36 2.92 3.58 3.83

Table 2.1: Values for the average fitting cost per contour pixel, theaye degree
per contour pixel, the average length of the segments andvitimge Hausdorff

distance per segment, when comparing ACPF to NACPF, for@mafthe car and
the cup in Figure 2.16.
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We look at a few segmentation and approximation results aagés of the
MPEG-7 database. Figure 2.16) and(b) show the results on a car using ACPF
and NACPF, respectively. The red dotted lines and the grasheatl lines corre-
spond to first and second degree polynomial curves, respbctConsidering the
result of ACPF, the contours are approximated accuratefyabynomials of vari-
able degree. It is satisfying to see that the wheels are aeghaapproximated by
parabolas, while the contours at the back of the car are appabted by straight
lines. The endpoints of the segments correspond to the piméhe contour and
are suitable as feature points. Values for the averagedfittist per contour pixel,
the average degree per contour pixel, the average lengtreafedgments and the
average Hausdorff distance per segment can be found inZabl&rom these val-
ues, we can conclude that ACPF gives longer segments, wheamare accurate
approximations to the contour map, when compared to NACRRFRil&8 results
on a cup image using ACPF and NACPF are shown in Figure @:1&nd (d),
respectively.
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2.6 Image segmentation into polynomial surfaces

In this section, we describe how we segment a greyscale ffiaags into smooth
surface segments. This work was published in [Deboevedk,&2013b].

Adaptive region growing for image segmentation into polyal surfaces is
based on the same principles of local and global samplindv@frégion as in
the previous section of contour segmentation into polybmirves. However,
mainly due to the different spatial ordering of contour féxand image pixels,
we present a modified version of adaptive region growing. hegion growing
groups pixels along one dimension for connected contowglpixegion growing
groups pixels along two dimensions for connected imagelgix€herefore, we
present a different strategy when selecting elementaletsib®oreover, because
of different polynomial fitting functions, we present thedifted computations for
constructive fitting.

The segmentation is based on the property that, becausamfdrés cosine
law [Lambert, 1760], when the light comes mainly from onediion, the intensity
surface (image intensities) of a face image has the same sisajhe skin surface
itself. According to Lambert’'s law the light intensity olvged from a diffusely
reflecting surface is only determined by the angle betweestinface normal and
the direction of the incident light. Since skin is a relaljvenatte surface with
uniform texture, we do not have to consider distinct typesaferial, illumination
and shape as in [Maxwell and Shafer, 2000]. The head, whagmmbles a convex
sphere with small concavities, will be seen as a collectibminsity patches
of concave functions, and smaller patches of convex funstfgVagemans et al.,
2010]. A functiong is convex ifg(A1p1 + Aap2) < Aig(p1) + Aa2g(p2) for all
convex combinatiom\; + A2 = 1, \; > 0. A function g is concave, if—g is
convex. Figure 2.17a) shows an example of a greyscale face image of the Stirling
face database [Stirling, ]. In this image, as is often theecasost of the light
comes from a direction close to the viewing direction. F@arl7(b) shows the
grey values in 3-D, partially clustered in face segmentshss the forehead, the
cheeks, the chin and the nose. These are convex body patsasentensity
patches of concave functions.

2.6.1 Constructive polynomial surface fitting

In this section, we present the mathematical foundatioreoétructive polyno-
mial surface fitting on which the region growing processe$iswork are based.
The problem we study is that of finding a region of maximal sizevhich a sur-

face can be approximated well by a polynomial function, giea initial seed
region. We also consider the related problem of finding teggan with minimal

computational effort.
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Figure 2.17: (a): A greyscale image of the Stirling face database [StirlIngb):
The grey values in 3-D, partially clustered in face segmesnish as the forehead,
the cheeks, the chin and the nose. These are convex bodygesisas intensity
patches of concave functions.

In this work, we find regions of maximal size in which a low-deg polyno-
mial approximation using a specifidd,, fitting cost criterion exists. Lef(x;, ;)
represent the image intensities. l@the a vector space of fitting functions, for
instance, the vector space of bivariate polynomial fumgtiof total degreé:

d k
g(zy) =D > anz'y (2.14)

k=0 1=0

where each polynomial is characterizedby= (d + 1)(d + 2)/2 coefficients
Q1

The accuracy of fittingy(z, y) over the segment is measured with thé .,
fitting cost. This fitting cost is defined as

r(S;9) = max_|g(z,y) — f(z,y)]. (2.15)
(z,y)€S
The best fit is the polynomial functiog(x, ) in G for whichr(S; ¢) is minimal.
We denote this minimal cost a$5), i.e,
= mi i 9)- 2.16
r(5) = min r(S; 9) (2.16)
The L, fitting cost over any segmeirst can be estimated (but not computed

exactly) very efficiently in terms of so-called elementabsets [Veelaert, 1997,
Veelaert and Teelen, 2006]. Elemental subsets of cartinaliare subsets of
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that contain precisely + 1 pixels. Introducing elemental subsets will bring the
advantage of minimizing the time to compute the fittings €egten adding new
pixels to large segments during a region growing procese ifiportance of an
elemental subset lies in the fact that the fitting cost oveelamental subset can
be computed in a straightforward manner. et= {(z1,y1), .- -, (Tm,ym)} be

an elemental subset. Lét; denote the cofactor (signed minor) of the element at
the intersection of the last column and itk row of the following matrix:

L oar oy o oz yio | flznmn)
(Ap|Bp)=1: : : : S : (2.17)
1 Ym xfn TmYm y72n T f(xma ym)

Then one can show that the fitting cost over an elemental suibsan be com-
puted by

’I“(D) _ det(AD|BD)
|Er| + ...+ |Enl
(2.18)
_ |E1f($17y1) + ...+ Emf(xmvym”
B+ ...+ | Bl ’

provided the denominator is non-vanishing [Veelaert, 198@élaert and Teelen,
2006]. Furthermore, the fitting cost over any segmeihat contains more than
m pixels is [Veelaert, 1997, Veelaert and Teelen, 2006]:

r(S) = max r(D) (2.19)
whereU is the collection of all elemental subséisof S for which |Eq| + ... +
|E..| > 0. Expression (2.19) holds whénis non-empty, which is the case as soon
as not all the pixels of the segment lie exactly on a commowesyfz, y) = 0.

Figure 2.18 shows an example of the pixels of an elementaksiigrey squares)
of a segmenf (grey and white squares) of the forehead. In this exampéefith
ting costs are computed for polynomial functions of degtee 2. Consequently,
the number of pixels in the elemental subsehis-= 7.

In principle, to findr(S) we must evaluate(D) over all possible elemental
subsets of5, a collection that grows a@(|S|™) when the segment grows larger.
However, we can obtain a reliable estimate of the fitting @agt far fewer com-
putations than those required for computing the fitting @sictly. The fitting
cost of a data set can be estimated very reliably from a fewsaflemental sub-
sets [Veelaert, 1997, Veelaert and Teelen, 2006]. Instéadloulatingr(S), we
compute the estimate

7(S) = max r(D), (2.20)

DeWw
wherel¥V forms a rigid subcollection af/ elemental subsets f[Veelaert, 1997,
Veelaert and Teelen, 2006]. In the experiments, we achiel@bie estimation
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Figure 2.18: An example of the pixels of an elemental subset (grey squafes
segments (grey and white squares) of the forehead.

of the fitting cost by randomly selecting a small fixed numigeg (A = 10) of
elemental subset®. Decreasing the number of elemental subsets will decrease
the computation time. However, the fitting cost will be estied less accurately.
Since the number of elemental subsets used to estimate) fittists is constant
during the entire region growing process, the resultingitigms have linear time
complexity. This means that the time to add a pixel to a segriseconstant,
although the number of pixels to which a new pixel has to bepamed grows.

During region growing, thd. fitting cost shows direct response to intensity
discontinuities, since the., norm looks at the maximum deviation between pixel
values and the fitting polynomial. This is advantageous @giore growing when
making decisions about adding a new pixel, discarding alleoatr stopping at an
edge. For each pixel to be added in region growing, the fitos in Eq. (2.20) is
computed when fitting a low-degree polynomial surface topitxel and the seg-
ment. The fitting cost is an indicator of whether the pixebogjs to the segment
according to the polynomial surface. It is computed withoarhputing the actual
best fitting polynomial. The best fit has only to be computeémvthe segment is
finished.

The region growing algorithm, which is described in the daling section,
uses adaptive thresholding of the, fitting costr(.S) as a segmentation criterion.

2.6.2 Surface segmentation with adaptive region growing

In this section, we describe the algorithm to segment a gedgdmage into smooth
surface segments with adaptive region growing based ordkgvee polynomial
fitting. We explain how the region growing is made adaptivéhi® local image
properties, such that surface segments are representetyaemial surfaces with
a variable polynomial degree and a variable fitting error.
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Figure 2.19: Topologies of region growing in our approach): Region growing
groups connected pixel&h): Region growing can grow around outliers and larger
regions. (¢) Region growing can group pixels along a thin regidd): Region
growing cannot group disconnected pixels.

Computing the fitting cost with elemental subsets boils déwa sampling
of the image region. Sampling allows us to find out how eaclelpixan image
region contributes to the fitting cost when fitting a polynahto that region. Sam-
pling with elemental subsets and region growing fit well thge, since they both
treat regions with connected pixels and a closed contogur€i2.19(a) shows a
topology of region with connected pixels and a closed contf@eagion growing in
this work can also treat the topologies in Figures Zi)%nd(c), where pixels are
still connected and contours are still closed, but wher@regrowing has grown
around outliers and larger regions, or where region grolwwaggrown along a thin
region, respectively. Figures 2.18) shows a topology which cannot be treated
by region growing because pixels are disconnected.

Also in 2D case, fitting costs can be computed for local regias well as
for a global region, where the corresponding global fittingtds calculated from
the corresponding local fitting costs. The terms local awotallrefer to a part of
the segment and the entire segment, respectively. Morgihneelocal and global
fitting costs can be combined in several ways. In the exammpleigure 2.20,
we use the same local fitting cost when fitting a polynomiahi® pixels of the
regionsS; and.S,. This local cost is computed once and is used in estimating
the cost of the regiotss. In fact, for the estimated fitting cost we hakss) =
max{lljnag( r(D), max r(D)}, wherelV; corresponds t@5; andS; ¢ Sy C

Wa e
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S2

Figure 2.20: Computing the fitting cost with elemental subsets allowsnd 6ut
how each pixel in an image region contributes to the fittingtaehen fitting a
polynomial. In this example, we compute the local fittingtasken fitting a poly-
nomial to the pixels of the regions, andS,. At the same time, this local fitting
cost is part of the global fitting cost when fitting a polynohtéathe pixels of the
regionsSs.

53.

In this work, we demonstrate the key idea of combining local global fit-
ting costs with a strategy for image segmentation in a regiowing process with
adaptive thresholding. The proposed region growing meéxaanines the thresh-
olding of local fitting costs to decide if a new pixel is to bedad to a segment
(to identify edges and outliers), while the thresholdingylobal fitting costs con-
trols if the polynomial degree is adapted. This will becoreacwhen we explain
the region growing based on the segmentation of the imadacsin Figure 2.21.
Segmenting this image surface covers all the possiblemegimwving problems we
have to deal with. Five items are considered.

Item 1: Start region growing

Region growing starts with a seed pixel, and then repeataditis new pixels
to the segment, as long as the segmentation criterion lisatisfied on the en-
larged segment. Seed pixels are chosen as local grey valaenexof the image
and where the gradient remains small (e.g. grey value eztieia 30 by 30 neigh-
bourhood and a gradient magnitudd).5). This avoids the selection of seed pixels
at an edge, since seed pixels at an edge offer fewer oppiesitt grow. For each
new seed pixel we start with the polynomial degree set equadito in Eq. (2.14).
Item1 in Figure 2.21 shows an example of such a seed pixel. Pixethan added
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Figure 2.21: An example of image intensities which we segment into smooth
surface segments with adaptive region growing and polyabfitiing. Item 1:
Seed pixels are chosen as local extrema of the image.2téhe region growing
stops at edges. Itedr The algorithm grows around outliers. Edge pixels and
outliers are not added to the segment because that woulé tanigast and too
direct increases in thé fitting cost. Itemd: The polynomial degree is adapted
when the variation of grey values is smooth, but too largeajoture it with the
current polynomial degree. Itefn The segmentation starts with a new segment
when the variation of grey values becomes too large to cajitwith a flat, planar,
convex, concave or saddle like surface.

one by one. Pixels to be added are selected from pixels néxetboundaries of
the segment using morphological dilation with a circulausturing element.

Item 2 and 3: Stop at edge pixels and grow around outliers

For each pixep; already added to the segméht ; = {po,p1,-..,pi—1}, the
region growing keeps track of the fitting cost when fitting\a-degree polynomial
surface toS;_; andp;. To this end we define

7(Si—1; i)

as the cost of adding; to S;_1.
The decision to add a new pixgj is then based on

1

Xt = 7(Sk—1;pk) — m

Z F(Si—13pi) < Tx, (2.21)

pi€ Ry

which measures the local behaviour of the consecutivedittiosts. The term
local refers to a small part of the segméht A segment will grow until the local
variation of the grey values change, giving rise to disgarities in the consecutive
fitting costs. However, to avoid overreaction to discorities due to noise and
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Figure 2.22: (a): An example of a new pixel;, (black square) and a local neigh-
bourhoodR), (grey squares) in the segme#it_; (white and grey squaresjb):
1-D example of a strong transition in the variation of pixeibich causes a fast
and direct increase in the,, fitting costs. A pixel is added to the segment if the
local behavioutX}, of the fitting costs is lower than the threshdlg.

small speckles, the increase of the fitting cost is compaoetthé mean of the
previous fitting costs in a local neighbourhaoBg of py, (e.g. a 2 pixel deep square
neighbourhood). Figure 2.22) shows an example of;, (black square) and;,
(grey squares) b1 (white and grey squares). The new pixglis added to
Sr—1 whenXy is lower than the thresholfiy. When X, exceedd 'y, i.e. when
addingp;, would increase the fitting cost significantly more than onrage,py.
is not added tab,.—;. Figure 2.22(b) shows a 1-D example of a strong transition
in the variation of pixels, which causes a fast and direatgase in thd. fitting
costs. This occurs whep), is an outlier or lies on an edge. g, is an outlier the
segment will grow aroungl,. Iltems2 and3 in Figure 2.21 show examples of such
an edge and outlier, respectively.

Thus, as a stopping criterion during region growing we exantine local dif-
ferences between the fitting costs, not their magnitudecdbisnuities (outliers
and edges) are distinguished from gently rising variation.

Item 4: Adapt the polynomial degree
The decision to increase the degree of the polynomial sesfecbased on

1 -
Yi = B Z 7(Si—13pi) < Ty, (2.22)

pi €B

which measures the global behaviour of the fitting costs. t€hm global refers
to the entire segmerfi;,. It is determined by the mean of the fitting costs when
fitting a low-degree polynomial surface to the segmgnt; and the pixel®; on
the boundaryB. These fitting costs contain all recent information (fittizmsts
which were computed last) about the maximum deviation betwbe pixels of
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(a) (b)

Figure 2.23: (a): An example of the pixelp; on the boundarys3;, (grey squares)
in the segmens), (white and grey squares)): 1-D example of a smooth transi-
tion of pixels, which causes a smooth increase inlthefitting costs. The polyno-
mial degree is increased by one, when the global behavipwof the fitting costs
exceeds the threshold, .

Sk and the polynomial surface;, grows whensS), gets larger. Only the fitting
costs which were computed when adding pixel$gpfare considered to increase
the polynomial degree, since for previous added pixels E§2( was already met.
Furthermore, we consider the fitting costs which were coegputhen adding all
pixels of By, since we do not allow to let the addition of only one pixeluefhce
the polynomial degree. Figure 2.23) shows an example of the pixels on By,
(grey squares) i¥;, (white and grey squares). The polynomial degree is inctease
by one, when the global variation of grey values is becomamlarge. This is
whenY), exceeds the threshold,. Then,Y}, is recomputed for this new degree.
In fact, the degree increases until eithgris again within the limit of the threshold
Ty, or a maximum degree is exceeded. A maximal polynomial aegféwo is
sufficient to expand the segment along smooth flat, planayeq concave and
saddle intensity functions. Figure 2.28) shows a 1-D example of a smooth
transition of pixels, which causes a smooth increase irLthditting costs. Iltemt

in Figure 2.21 shows a pixel where the variation of grey valisesmooth, but too
large to capture it with the current polynomial degree.

Thus, for the adaption of the polynomial degree we examieegtbbal be-
haviour of the fitting costs. The global behaviour at the latarg reveals whether
a smooth segment is slowly evolving towards either a flapaaiaconvex, concave
or saddle surface.

Algorithm 1 describes the apdaptive region growing processdiscussed
above.



54 CHAPTER?2

Algorithm 1 Adaptive Region Growing

input: a greyscale image

output: a list of segments

begin

while new seed pixebs do

new segmen$, « {ps}
polynomial degred <+ 0
while new pixelp; to be addedlo

compute fitting cosf(Sk—_1;p) < max r(D)
Dew

update local measure:
X < 7(Sp—1;pK) — ‘R—lk‘ > 7(Si—13pi)
pi€ERg
if X <Tx then
add pixel to segmerfly, « Sx_1 U {px}
end if

update global measure:
Yi ¢ 157 2 7(Si—1:p)
pi€By

while criterionto adaptthe degree, i}, > Ty do
increase degregé <« d + 1
recomputé’;, for new degree

end while

end while
end while

end

Item 5: Finish segment

When no more pixels can be added along the boundary, the ségnsom-
pleted, and the segmentation process starts a new segmemteat seed pixel.
Item 5 in Figure 2.21 shows a pixel where a new segment is createdpbe the

variation of grey values becomes too large to capture it witingle flat, planar,
convex, concave or saddle like surface.

The growing process has been designed to find smooth segmamsmage.
It will grow around outliers and it will stop at edges. Howewviere is no guar-
antee that two segments sharing a common boundary will siatlg at the same
edge. The treatment of this issue requires some additiooaeépsing.

To force segments to stop at the same common boundary we ddlowtthe
segments to grow over pixels where the Gradient is stroagsirong edges of an
edge map. The Canny edge detector [Canny, 1986] is suitadtause it results in
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(a) (b)

Figure 2.24: Image segmentation result by region growing without post-
processing. The blue, green and red colours in the segmieméggg correspond to
zero, first and second degree polynomial surfaces, respBctia) A segmented
face image by region growing without stopping at canny edd&se region grow-
ing finds sometimes segments that do not stop at the real éatewrs. In these
cases, we find additional segments to the real face cont@jr# segmented face
image without morphological closing and segment merginige flegion growing
finds a lot of small segments.

thin edges of one pixel thickness, similar to the segmenntaties in the region
growing. In addition to the edges of the edge detector, tgesatation will find
additional edges at the segment boundaries, which are mmobtker than the
edges found by an edge detector. These additional edgeseaessary in the
segmentation. They represent smooth meaningful transitioa surface, e.g., the
gradual transition from a concave surface into a convexaserfFigure 2.24a)
shows a segmented face image by region growing without Bigah the edges of
the Canny edge map. The region growing finds sometimes segiet do not
stop at the real face contours. In these cases, we find atalisegments to the
real face contours.

Since large segments in an image often represent impotgettdeatures, at
a smooth transition a new segmedts allowed to grab pixels from an existing
segmentB. For this to happen, we require thatmust already be larger thas
and the polynomial degree af must not be higher than the polynomial degree of
B, since for a higher polynomial degree the fitting cost hagyaéri probability to
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Figure 2.25: This figure shows a segmented face image with image size 322x1
The face is segmented in 23 surface segments. The blue, gnelered colours
in the segmented image correspond to zero, first and secardedpolynomial
surfaces, respectively.

be lower.

Finally, morphological closing is used to fill the gaps in 8egments. Thus
outliers, for whichX; > Tx, but which are enclosed by a segment, are added to
the segment. Similarly, we prevent the segmentation tdtresmany small seg-
ments (e.g< 10 pixels). Therefore, if possible, we add small segmentsrigela
adjacent segments under less strong conditions (€< 1.27). Figure 2.24
(b) shows a segmented face image without morphological closimysegment
merging. The region growing finds a lot of small segments.

Figure 2.25 shows a segmented face image with image sizel 822X he face
is segmented in 23 surface segments. The blue, green andlceoiscin the seg-
mented image correspond to zero, first and second degrergmigl surfaces,
respectively. Many surface segments correspond to mefahiparts of the face,
such as the cheeks, the forehead, the chin and the eyebrowmptes of addi-
tional smooth edges are the edges separating the cheeklseactuir.

2.6.3 Best fit polynomial surface - Surface Intensity Map

Our face segmentation with adaptive region growing resnlesface which is di-
vided into several surface segments. In this segmentatioh surface segment
can be approximated by a low-degree polynomial surface &s|irf2.14). Then,
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the image intensities of a segment can be computed from tlyaquial coef-
ficients. The coefficients are computed after all segments baen found and
post-processed. Remember that during region growing, thielyiitting cost was
computed. The best fit can be computed witharfit or an L, fit. A method for
computing the best ., fit is described here.

The bestL, fit is defined as

Jmin = argmir’beGr(S;g).
In [Veelaert and Teelen, 2006] it has been shown that
gmin = ArgMiN,c 7 (Dmax; 9)
whereD,, . is the elemental subset fiwith the largest cost, i.e.,
Diax = argma@gsr(D).

Thus the computation of the best fit consists of two stepst,Rire have to deter-
mine the elemental subsBf of maximum cost.

Computing the fitting cost for all elemental subsetsimould be very com-
putationally expensive. Therefore we propose an alteraatigorithm described
in [Veelaert, 2012], which starts with an arbitrary subBetwith fitting costr(D;).

For this subset we compute the bestfit (z,y). Lete; = r(D;), then the func-
tions g’ . (z,y) — ¢; andg’ , (z,y) + ¢; are called the two supporting polyno-
mials of the elemental subset. It can be shown that the imatgasity at each
pixel (x;,y;) in D; either satisfiesf (z;,y;) = gﬂlin(zi,yi) — € 0or fzi,y) =

gl . (i, yi)+¢;. If Djis notthe elemental subset with largest cost, there is sit lea
one pixel(zy, yx) in S for which we either havef (xy, yr) < gf;lin(:z:k,yk) — €

or f(xr,yx) > gi(Tk,yx) + ¢;. It follows that D; U {(x,yx)} contains at
least one elemental subges..; with larger cost tharD;. Here aren + 2 of these
subsetsD;. of D; U {(zx,yx)}. Thus the elemental subset with largest cost can
be found iteratively, by selecting an arbitrary elementiblset, computing its sup-
porting surfaces. If there is still a pixel not enclosed by supporting surfaces,
we can immediately find a new elemental sulig¢twith larger cost.

Furthermore, one can show that the begifit, can be easily found by solving
the system of linear equations

g,jnin(xi,yi) = f(@i,yi) +sign(Ei)e;, Y(zi,yi) € D

where sigiiF;) is the sign of the cofactor of the fitting matrix in Eq. (2.17h
fact, these signs determine whether a pikel, v;, f(x;,y;)) either lies on the

supporting surfacgfnin + ¢; = 0 or the supporting surfa%in —¢€; = 0.

We introduce a compact feature, the Surface Intensity Méd)Svhich in-
tegrates structural information and spatial informatigngibouping pixels of an
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Figure 2.26: The best fit polynomial surfaces for the surface segmentsgn F
ure 2.25

intensity map into surface segments. It describes polyabsairfaces with a flat,
planar, convex, concave or saddle shape in a surface mapeR2g26 shows the
best fit polynomial surfaces for the surface segments inreigu25. The image
size is 142x182. The face is represented by 23 polynomiéses. The result
is an approximated image of the original image in Figure 24)7 It is satis-
fying to see that the facial features are nicely reconstdifitom the low-degree
polynomial surfaces.

2.6.4 Curvature of polynomial surfaces

Our face model uses the curvatures (flat, planar, convexgasenor saddle like
behaviour) of the polynomial surfaces to perform face asialy

Convex, concave or saddle like behaviour of a second-degigaomial sur-
faceg(x,y) as in Eq. (2.14) is defined by the signs of the eigenvalueseHes-
sian matrix:

8%g 8%g

_ | 8%z Ox01
H(g)= | 2 22| (2.23)

Oxdy 0%y

The entries of the matrik/ (¢) are the second order derivatives of the surface with
respect tor andy coordinates. For a quadratic surface, the second debgadixe
constant and hendé (g) is independent of the location of the pixel in the segment.
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From Eq. (2.14), we find

2000 Q11
H(g) = {041,1 20&0,2} . (2.24)

The maximum and minimum curvatures are determined by trene@ues of this
matrix, which are found by solving the following characstid equation:

Hk = \k. (2.25)

The homogeneous systdiff — AI)k = 0 has a non-zero solution if the determi-
nant of its coefficient matrix is zero:

20000 — A i1 o

o1 2002 — A| ~ 0. (2.26)
The matrix H is symmetric, hence the solution yields two redliesh; and As.
Both \; and)\, are positive for a convex surface and negative for a concavace.
Eigenvalues have opposite signs for a saddle surface. Otiee afigenvalues is
zero for a cylindrical surface.

The product of the two eigenvalues gives the Gaussian aue/at = A\ \s.
The Gaussian curvature is an intrinsic measure of curvatergits value depends
only on how distances are measured on the surface, not onahé 8 isometri-
cally embedded in space. The Gaussian curvature is zero arfenf the eigen-
values is zero, which corresponds to a cylindrical surfaseyhen both are zero,
which indicates a plane.

The eigenvectors from the characteristic Eq. (2.26) pairthe direction of
maximum and minimum curvatures. The azimuth of maximum @wmef is
given by

12

0 = arctan (%) , (2.27)

wherek;; andk,, are components of the eigenvector corresponding to thedarg
eigenvalue. The direction of minimum curvature is orthaglda the direction of
maximum curvature.

An example of the curvatures of polynomial surfaces in a fianages is shown
in Figure 2.27. The magenta, cyan and yellow colours cooedpo convex, con-
cave and saddle like behaviour, respectively. We find campalynomial surfaces
for the forehead, the cheeks, the chin and the nose, whiléhtbat is a saddle
surface. Convex, concave and saddle like behaviour cansherloied by specular
reflection on the skin, or by diffuse light coming from alleitions, we have found
that in normal circumstances the effect is sufficientlysgrto find segments that
correspond to meaningful parts of the face.
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Figure 2.27: The convex, concave or saddle like behaviour of the polyabmi
surfaces, indicated by the colours magenta, cyan and yagkmpectively.

2.6.5 Evaluation of image segmentation and approximation

In this section we evaluate our segmentation technique @\ face database
[Martinez and Benavente, 1998] and the Berkeley segmentddtaset and bench-
mark (BSDS300) [Martin et al., 2001].

Most of the computation time of the region growing methogisrg on the cal-
culation of the fitting cost. We developed a partially optimized program, which is
implemented in C++ and running on a 2.8 GHz processor, 4 GB R&l64-bit
operating system. For images of size 200x200, the computétne of our pro-
gram is approximately.0 second per image. As a comparison, the computation
time of the power watershed algorithm [Couprie et al., 204 Bpproximatelyl .2
seconds per image.

To find the optimal parameter set of adaptive region growiveymeasure the
image approximation accuracy with a surface area weightshrof thel ., fitting
costsr(.S) of the polynomial surfaces . Figure 2.28 shows segmentedppix-
imated face images with different approximation accuracléne mean fitting cost
varies from 0.83 at the upper left, to 9.53 at the lower righthigh approxima-
tion accuracy (low mean fitting cost) gives a high number oaléen segments,
providing a good approximation quality. On the other hankbwaapproximation
accuracy (high mean fitting cost) gives a low number of lasggmments, provid-
ing approximation quality less well. Depending on the dabipurpose (approx-
imation or segmentation), one has to find a good balance ketti® size of the



CONTOUR AND SURFACE MODELS 61

Figure 2.28: Segmented and approximated images with different appratiam
accuracies. The mean fitting cost varies from 0.83 at therdpfieto 9.53 at the
lower right.

segments and the quality of the approximated images.

To demonstrate the advantages of usinglthenorm in a region growing pro-
cess, we apply a variation of our method, where fhenorm is used instead of
the L, norm. Figures 2.29z) and(b) show segmented face approximations pro-
duced byL, and L., based adaptive region growing, respectively. In compariso
with the L, norm, we can clearly ascertain that the segment boundagenare
arbitrary and that the segment approximations are lessaecwhen using the
Lo norm. This confirms that the usage of thg, fitting cost in a region growing
process allows us to make more accurate decisions aboutigpadiew pixel, dis-
carding an outlier or stopping at an edge. Note that, detipgtéimitations of the
Lo norm, the proposed strategy for image segmentation withtadehresholding
is still successful.

Face image segmentation

We visually compare several segmentation techniques arearfaage. Columns
(b), (¢), (d) and (e) on the second row in Figure 2.30 show segmented face
approximations of the face image in Figure 220, produced by normalized
cuts [Shi and Malik, 2000], mean shift [Comaniciu and Me@Q2], power water-
sheds [Couprie et al., 2011] and the proposed segmentatbnifue based on a
polynomial surface model, respectively. The power watighethod is a seeded



62 CHAPTER?2

Figure 2.29: (a) and(b): segmented face approximations produced’byand
L., based adaptive region growing, respectively. In comparisgh the L,
norm, we can clearly ascertain that the segment boundamemare arbitrary
and that the segment approximations are less accurate girentheL, norm.

image segmentation algorithm that includes the graph catgjom walker, and
shortest path optimization algorithms. In this comparjgbe power watershed
algorithm uses the same seed pixels as produced by the pebpwthod. We can
clearly ascertain that in contrast to the proposed meth@dségments produced
by existing segmentation techniques do not always coingitte facial features
and the contours separating the surface segments oftent@omespond to real
image face edges. Furthermore, the polynomial segmenbzippations do not
accurately reconstruct the face image.

The AR face database consists of two series of thirteen faegeés of 136
persons under various circumstances, with 76 males andré@lds. The face
images have an image size of 192x144. For this dataset, wlessegmentation
parameterd’y = 1.0 andTy = 2.0, preserving a good balance between the
size of the segments and the approximation quality. Thesmmeters have been
manually tuned on a small number of images. Segmentatiaitsesn the AR
face database are shown in Figure 2.31. The colufans(b) and(c) show the
original greyscale images, the segmented images and thexamated images,
respectively. The blue, green and red colours in the segrdémiages correspond
to zero, first and second degree polynomial surfaces, régplgc Table 2.2 gives
an overview of the mean and standard deviation of the cortipntéme perimage,
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Figure 2.30: Visual comparison of image segmentation techniques onaifac
age. Column$b), (¢), (d) and(e) on the second row show segmented face approx-
imations of the face image ifu), produced by normalized cuts [Shi and Malik,
2000], mean shift [Comaniciu and Meer, 2002], power watedsCouprie et al.,
2011] and the proposed segmentation based on a polynonnfateumodel, re-
spectively. In contrast to existing segmentation techesgthe segments produced
by the proposed method correspond more to facial featuregdntours separat-
ing the surface segments coincide with real image face ealygshe low-degree
polynomial approximations accurately reconstruct the fatage.

the mean fitting cost (2.6.5) and the number of surfacesentisgly.

The graph in Figure 2.32 plots the numbers of surface segnveimén seg-
menting images of the AR face database in function of meandittosts (2.6.5).
We conclude that for mean fitting costs of two or higher, whichresponds to
low approximation accuracies, the mean numbers of surfacesurves is rela-
tively constant. This means that there is a small stablefdatge segments. Note
that for these approximation accuracies, the faces in theoapnated images are
still recognizable. For mean fitting costs of two or lower,igthcorresponds to
high approximation accuracies, the mean number of surfandscurves grows
exponentially. This means that there are many small sudagments. Note that
the introduction of an edge map, over which the surface satgrannot grow, is
responsible for a lower limit on the number of segments fghhr fitting costs.
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Figure 2.31: (a): The original greyscale image&): The segmented images:):
The approximated images.

AR face database [Martinez and Benavente, 1998] perforenstatistics

image size 192x144
computation time (ms) 96& 121
mean fitting cost 2.04+ 0.63
#surfaces 11.20+ 4.49

Table 2.2: This table gives an overview of the mean and standard dewiafithe
computation time, the mean fitting cost and the number obsed, respectively.

General image segmentation

The BSDS300 consists of 300 natural images, delivered wihrd truth hu-
man annotations. To compare a segmentation with multigdergt truth images
we examine the Probabilistic Rand Index (PRI) [Pantofaditdebert, 2005]. The
PRI measures the fraction of pixel pairs, whose labels ansistent in the test
segmentation and the ground truth one. The PRI averagesmyéple ground
truth segmentations and takes values in the interval [Qigre O means that the
acquired segmentation has no similarities with the grouutth tand 1 means that
the test and ground truth segmentations are identical.

Segmentation results on the BSDS300 are shown in Figure 2588 this
dataset, we set the segmentation paramédtgrs= 1.3 and7y = 2.8. As we
will show further on in the results, these parameters résalimaximum PRI. The
columns(a), (b), (¢) and(d) show the original greyscale images, the segmented
images, the approximated images and the images with aratiaficof the convex,
concave or saddle like behaviour, respectively. The PRisraticated under the
images. The blue, green and red colours in the images in eo{tjrcorrespond
to zero, first and second degree polynomial surfaces, régplyc We ascertain
that many surface segments correspond to meaningful pattedmage. The
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Figure 2.32: This graph plots the numbers of surface segments when séigignen
images of the AR face database in function of mean fittingscasor low mean
fitting costs, there is a small stable set of large segments.

polynomial surfaces in the images in colurfi) provide good approximation of
the image, while preserving all the necessary details obHjects in the approxi-
mated images. In the images in coluffah), the cyan, magenta and yellow colours
correspond to concave, convex and saddle surfaces, reghecFor instance in
the face image, the head is a convex body part, seen as asifpteatch of a con-
cave function. This rough segment classification can ses\enanput for a face
detection algorithm.

Table 2.3 gives an overview of the mean and standard dewiafithe compu-
tation time, the mean fitting cost, the number of surfaceglaa®RlI, respectively.
When considering the number of surfaces, we find that oumnigale divides an
image in a small number of surface segments. The graph iré-&34 plots the
numbers of surface segments when segmenting images of D8E&® in function
of mean fitting costs. We find that for mean fitting costs of 3ighkr, which cor-
responds to low approximation accuracies, the mean nurobstsface segments
decreases slowly. This means that there is a small stabtd Eetje segments. In
contrast, for mean fitting costs of 3 or lower, which corregg®to high approx-
imation accuracies, the mean number of surface segmenis grgponentially.
This means that there are many small segments.
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Figure 2.33: (a): Greyscale images with image size 240x160): The seg-
mented images with the corresponding PRIs. The blue, gneémeal colours in
the segmented image correspond to zero, first and seconeledeglynomial sur-
faces, respectively. Many surface segments corresponeamimgful parts of the
image. (c¢): The surface approximated images. Objects are nicely appated
by the low-degree polynomial surfacel): The convex, concave or saddle like
behaviour of the second degree polynomial surfaces, itetlday the colours ma-
genta, cyan and yellow, respectively. Convex object paitis diffuse reflecting
surfaces are seen as intensity patches of a concave fusiction
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BSDS300 [Martin et al., 2001] performance statistics

image size 240x160
computation time (ms) 1156 185
mean fitting cost 2.5% 0.93
#surfaces 35.52 8.91
PRI 0.74+ 0.16

Table 2.3: This table gives an overview of the mean and standard denia
the computation time, the mean fitting cost, the number dases and the PRI,
respectively.

mean fitting cost versus #surfaces
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Figure 2.34: This graph plots the numbers of surface segments when ségmen
ing images of the BSDS300 in function of mean fitting costsr Rean fitting
costs of 3 or higher, the mean numbers of surface segmeriatvely constant.
For mean fitting costs of 3 or lower, the mean number of surfagenents grows
exponentially.

We compare the proposed segmentation algorithm based dgreopaal sur-
face model, with segments produced by normalized cuts [&thiNalik, 2000],
mean shift [Comaniciu and Meer, 2002] and power watersh€dsifjrie et al.,
2011]. To demonstrate the difference between the propostdan and existing
techniques, we perform three tests. The first test is peddrom all images of the
BSDS300. The remaining two tests are performed on two ssilideimages of
the BSDS300. The first subset includes highly textured irmagéile the second
subset contains images of objects with diffuse reflectinfpses. Examples for
both subsets are the desert image and the face image in Ri@&gerespectively.
These subsets were carefully selected by computer visiperex

A visual comparison of segmentation on a fish image with défueflecting
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PRI (higheris better) BSDS300 Subsetl Subset2

Human 0.87 0.83 0.90
Polynomial surfaces 0.74 0.67 0.84
Power watersheds 0.77 0.74 0.79
Mean shift 0.76 0.72 0.77
Normalized cuts 0.72 0.69 0.74

Table 2.4: Comparing results in terms of the PRI when segmenting imafies
the BSDS300 with polynomial surfaces, power watershedsip@e et al., 2011],
mean shift [Comaniciu and Meer, 2002] and normalized cuts f&d Malik,
2000], respectively. Three test are performed. One testldmages and two
tests on subsets of images. The first subset includes telximnages, while the
second subset contains images of objects with diffuse teftesurfaces. For this
last subset, segmentation with polynomial surfaces sagifly outperforms the
other techniques.

surfaces is shown in Figure 2.35. Colunib§ (¢), (d) and(e) on the second row
in Figure 2.35 show segmentations of the fish image in Figu8®(2), produced
by normalized cuts, mean shift, power watersheds and th@peal segmentation
technique based on a polynomial surface model, respegctivet these segmenta-
tion techniques, columny), (¢), (h) and(¢) on the third row show the segment
approximations with polynomial surfaces of second degseie &q. (2.14). The
power watershed algorithm uses the same seed pixels asggebdy the proposed
method. We can clearly ascertain that in contrast to theqeeg method method,
the segments produced by existing segmentation technapest always coin-
cide with object features and the contours separating tfiecisegments often do
not correspond to real image object edges. Furthermorexisting techniques,
the polynomial segment approximations do not accuratelgnstruct the image.

An overview of the PRIs are given in Table 2.4. When testing émtire
database, the segmentation results are comparable in tdrthe PRI. As ex-
pected, the PRIs decrease when segmenting the more tektuagds of the first
subset. For this subset, the proposed method performs kbsvinen compared
to the existing techniques. However, as for the desert inmagégure 2.33, the
segmentation result is visually still acceptable. Nextewlsegmenting images
of the second subset, segmentation with polynomial susfaigmificantly outper-
forms the existing techniques. This confirms that our meibgatimarily aimed
at segmenting images into flat, planar, convex, concave addle patches that
correspond to meaningful parts of objects with diffuse miihgy surfaces. More
comparative results on the BSDS300 in terms of the PRI anedan [Arbelaez
etal., 2011].
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Figure 2.35: Visual comparison of image segmentation techniques on arfish
age with diffuse reflecting surfaces. Colum(a$, (¢), (d) and(e) on the second
row show segmentations of the fish image with diffuse refiecturfaces ifa),
produced by normalized cuts [Shi and Malik, 2000], meant $@8ibmaniciu and
Meer, 2002], power watersheds [Couprie et al., 2011] angrimhial surfaces, re-
spectively. For these segmentation techniques, coldifingg), (h) and(i) on the
third row show the segment approximations with polynomiafaces of second
degree as in Eq. (2.14). In contrast to existing segmemtétichniques, the seg-
ments produced by the proposed method correspond moredotdeatures, the
contours separating the surface segments coincide withimeae object edges
and the low-degree polynomial approximations accuragdpmnstruct the image.
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Figure 2.36: The graph in this Figure plots the mean fitting cost versustRe
The PRI is maximal for a mean fitting cost of 2.5.

As a last result, the graph in Figure 2.36 plots the meandittiost versus the
PRI for testing the entire database. We conclude that for annfiting cost of
2.5 the PRI is maximal. As mentioned earlier, this maximumesponds to the
threshold parameters of adaptive region growing that aed irsthis work.

2.7 Conclusion

In this chapter, we presented novel 1-D and 2-D segmentalimrithms based on
adaptive region growing and low-degree polynomial fittingektract geometric
low-level features from contour pixels and image intemsitirespectively. These
algorithms use a new adaptive thresholding technique Wit t, fitting cost as
a segmentation criterion. The polynomial degree and thaditrror are auto-
matically adapted during the region growing process. Thaamavelty is that
the algorithms detect outliers, distinguish between gframmd smooth discontinu-
ities and find segments that are bent in a certain way, suchragx or concave
segments. The polynomial curves and surfaces are groupethio novel com-
pact features: the Curve Edge Map (CEM) and the Surfacedityelap (SIM),
respectively. The polynomial functions approximate theefs very closely. For
faces, a representation with polynomial surfaces and susrquite natural and
offers a compact and reversible way to preserve the eskensieacteristics of the
original face image.

This research was published in two papers [Deboeverie,é2@l 3c, Deboev-
erie et al., 2013Db] in international journals and one papebjoeverie et al., 2010]
in the proceedings of an international conference. Onengysublication was
submitted [Deboeverie et al., 2013a].



Polynomial curve matching

3.1 Introduction

In this chapter, we propose algorithms for finding corresigmtes between low-
level geometric features. Finding correspondences lsosid of the fundamental
problems in computer vision research, as many image prioceapplications re-
quire a solid and robust solution for matching problemshssobject recognition,
object tracking and image registration. The purpose of eespondence finding
or matching algorithm is to indicate for a feature in one imadich is the corre-
sponding feature in a second image, where both image poisshow the same
3D world point or shape.

Currently, the common approach for solving correspondgmoblems for
static images consists of the following steps [Teelen, 2010) First a subset
of characteristic features is extracted from both imageddtgcting remarkable
patterns in the image intensity information. We assumetthiatsets of features
(point features, curve features or region features) in tistirett images have been
detected. In this work, we consider geometric low-levetdess, such as poly-
nomial curves and surfaces. (2) The next step involvesrgpthie features from
one image to their counterparts in the other image. The thtdeatures in two
distinct images can be matched by means of a (dis)similarégsure exploiting
the image intensity values in their close neighbourhodusféature spatial dis-
tribution, or the feature symbolic description. Dissimitiaor distance is defined
as a quantitative degree of how far apart two features areisgindilarity mea-
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sure produces a higher value as two features become moirectliimilarity or
proximity quantifies the strength of relationship between features. A simi-
larity measure produces a higher value as two features beowone similar. (3)
The best match according to some similarity measure is ragssarily the correct
match. One must additionally verify the spatial consisyesfdhe pairs of similar
features. Therefore, one must verify that each relatiowéen a corresponding
pair in both images follows the rules of some geometric fiamsation.

In this work, we propose methods to find correspondencesiingEdge Maps
(CEMSs). The method to extract CEMs is described in Sectién\&e introduce a
dissimilarity function for local curve matching as well asieilarity function for
global curve matching. The proposed functions match patyabcurves, based
on shape, relative position and intensity. The main coutidgin is the introduction
of intensity variations in the matching functions.

Representative applications for polynomial curve matglaire object recogni-
tion and object tracking. Object recognition is the task ofliing an object in an
input image or video sequence from the images of objects iatabdse. Object
tracking is the problem of identifying and following imagements moving across
a video sequence automatically. In this thesis, we focuserrécognition and
tracking of faces in images and video sequences. For obg@ltihg purposes, in
this chapter we propose a method to construct motion veftiopolynomial curve
correspondence pairs. Furthermore, we will explain howrtag the polynomial
curve correspondence pairs in order to register the mofiobjects.

The work in this chapter was published in [Deboeverie et28l08b, Deboev-
erie et al., 2008a, Deboeverie et al., 2009b, Deboeverie @04 1].

This chapter is structured as follows: in Section 3.2, weubs related work.
In Section 2.3, we explain the basic principles of consivegbolynomial fitting.
In Section 2.4, we propose an adaptive region growing alyorbased on con-
structive polynomial fitting. This method is applied and leeéed for contour
segmentation into polynomial curves and image segmentaitio polynomial sur-
faces in Sections 2.5 and 2.6, respectively.

3.2 Related work

The relationship between features can be exploited intiody(dis)similarity func-
tions for feature matching. Similarity measures are anrggdengredient in fea-
ture matching. Although the term similarity is often usedssimilarity corre-
sponds to the notion of distance: small distance means sisaiimilarity, and
large similarity. The algorithm to compute the (dis)simtiaoften depends on the
precise measure, which depends on the required propevties) in turn depends
on the particular matching problem for the application. $jxgtem can then either
use the (dis)similarity measure to decide if the two featuratch or to form a
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probability of the match. (Dis)similarity functions for nthing often exploit the
image intensity values in their close neighbourhoods, ¢la¢ufre spatial relation-
ship, or other feature invariant descriptions.

Intensity-based methods include correlation-like me#iigulatt, 1991, Kaneko
et al., 2003], Fourier methods [Bracewell, 1965, Loncar@98] and mutual infor-
mation methods [Viola and Wells, 1997,Rangarajan et a@91Rluim et al., 2001].
Cross-correlation methods directly match image intessitvithout any structural
analysis. Consequently, they are sensitive to intensayghs introduced by noise,
varying illumination, ...and/or by using different sensgpes. Fourier methods
exploit the Fourier representation of the features in teqdency domain. Mutual
information methods originate from the information theokutual information
is a measure of statistical dependency between two datarseti is particularly
suitable for matching of features from different modatitie

Methods using spatial relations exploit the informationattthe distance be-
tween features and their spatial distribution. A commohmégue is graph match-
ing. Graphs are a general and powerful data structure forgpeesentation of
objects and concepts [Bunke, 2000]. A grapk= (V, E) in its basic form is com-
posed of vertices and edgég.is the set of vertices (also called nodes or points)
and E is the set of edges (also known as arcs or lines) of gi@phn a graph
representation, the nodes typically represent objectsuds pf objects, while the
edges describe relations between objects or object paréphG have some inter-
esting invariance properties. For instance, if a graphctvig drawn on paper, is
translated, rotated, or transformed into its mirror imags,still the same graph in
the mathematical sense. These invariance properties lessiiee fact that graphs
are well suited to model objects in terms of parts and thédtimns, make them
very attractive for various applications.

In applications such as pattern recognition and compusévj object similar-
ity is an important issue. Given a database of known objealsaaguery, the task
is to retrieve one or several objects from the database taaimilar to the query.
If graphs are used for object representation this problenstinto determining the
similarity of graphs, which is generally referred to as d¢rapatching. Standard
concepts in graph matching include graph isomorphism, rsydbgisomorphism,
and maximum common subgraph. However, in real world apfiioa we can-
not always expect a perfect match between the input and otte afraphs in the
database. Therefore, what is needed is an algorithm for-er@rant matching, or
equivalently, a method that computes a measure of sinyilagtween two given
graphs. For instance, Lades et al. [Lades et al., 1993] ptede dynamic link
structure for distortion invariant object recognition whiemploys elastic graph
matching to find the closest stored graph. Thus dynamic Inckigecture is an
extension of classical artificial neural networks. Memeddbjects are repre-
sented by sparse graphs, its vertices are labelled with resdlution description
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in terms of a local power spectrum and the edges are labeligdgeometrical
distance vectors. Object recognition can be formulatedastie graph match-
ing, which is performed by stochastic optimization of a rhatg cost function.
Wiskott and von der Malsburg [Wiskott and von der Malsburg98] extended
the technique. In general, the dynamic link architecturguigerior to other face
recognition techniques in terms of rotation invariant iggrutions.

Methods using invariant descriptors estimate the cormedgoce of features
can using their description, preferably invariant to thpested image deforma-
tion. The description should fulfill several conditions. €Ttmost important ones
are invariance (the descriptions of the correspondingufeatfrom two distinct
images have to be approximately the same), uniqueness (ffeoedt features
should have different descriptions), stability (the dgg@yn of a feature which
is slightly deformed in an unknown manner should be closéé¢odiescription of
the original feature), and independence (if the featurer@son is a vector, its
elements should be statistically independent). Howegrally not all these con-
ditions have to (or can) be satisfied simultaneously andneisessary to find an
appropriate trade-off. Features from two distinct imagéh e most similar in-
variant descriptions are paired as the corresponding oftes.choice of the type
of the invariant description depends on the feature chariatits and the assumed
geometric deformation of the images. Two well-known exasf invariant de-
scriptors (scale invariance) are SIFT [Lowe, 2004], SURB)[Bt al., 2006, Bay
et al., 2008], BRISK [Leutenegger et al., 2011] and FREAKdWilet al., 2012].
While searching for the best matching feature pairs in tlaespf feature descrip-
tors, the minimum distance rule with thresholding is usuafiplied. An overview
of several distance metrics, such as the Euclidean distesabe City block dis-
tanceL, the Chebyshev distande,,, the Bhattacharyya distance, the Chi-square
distancey?, etc., is found in the work of Cha [Cha, 2007].

In this work, we propose a local and a global 1-d polynomiaVewlescriptor
based on the image intensities, the shape and the spasifibnship. Closely re-
lated to our work, Takécs [Takacs, 1998] used edge maps teureethe similarity
of face images. The faces were encoded into binary edge nsipg the Sobel
edge detection algorithm. The Hausdorff distance was c¢hasea measure for
the similarity of the two point sets, i.e., the edge maps af taces, as it can be
calculated without an explicit pairing of points in theispective data sets. The
Hausdorff distance between point sets uses only the sjpEtamation of an edge
map without considering the inherent local structure arapstof the edges. Gao
and Leung [Gao and Leung, 2002a] have successfully recedriaces by seg-
menting the edges into lines. The recognition system matttieelines of a Line
Edge Map (LEM) of the query image with the LEM of the model iraagsing the
Line Segment Hausdorff Distance. The LEM technique endinashe sensitiv-
ity for noise and small changes in pose and expression isgitroeduced. LEM
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achieves a good recognition rate under pose and illumingatiariations, with one
model per person. The performance can degrade abruptlgvenywhen the face
is occluded, rotated or the facial expression differs gflpifrom the expression
stored in the database.

3.3 Polynomial curve matching

In this section, we present two techniques to find correspooel pairs of polyno-
mial curves in CEMs. The method to extract CEMs is describ&kiction 2.5. We
introduce a dissimilarity function for local curve matchias well as a similarity
function for global curve matching.

Local curve matching finds correspondence pairs of polyabeuirves in con-
secutive images of a video sequence. A representativecafiph is the tracking
of a face or facial feature in a video sequence. Therefor&eiction 3.3.1, we
present a dissimilarity measure for local curve matchindctvifinds correspon-
dence pairs of polynomial curves in aligned images withredi objects. This
work was published in [Deboeverie et al., 2008b]. This matghechnique is
very useful in applications where the main purpose is tdktradividual polyno-
mial curves or groups of polynomial curves on a moving objeatonsecutive
images of one video sequence, e.g. face tracking. Objextiigis the problem
of identifying and following image elements moving acrossdeo sequence au-
tomatically. Therefore, in this section we propose a metioocbnstruct motion
vectors for polynomial curve correspondence pairs. Funbee, we will explain
how to group the polynomial curve correspondence pairs dermto register the
motion of objects. This work was published in [Deboeverialet2009b].

Global curve matching finds correspondence pairs of polyabourves in
database images and input images. A representative ajptiéa the recogni-
tion of a face of a person in an input image from the face imag¢®rsons in a
database. Therefore, in Section 3.3.1, we present a sityifanction for global
curve matching which finds correspondence pairs of polyabmirves in non-
aligned images with non-aligned objects. This work was ishleld in [Deboeverie
et al., 2011]. Here, the viewing orientation on the objecifien slightly different.
This matching technique is very useful in applications vehtie main goal is to
recognize objects in two different images, e.g. face reitmgn

3.3.1 Local matching

We introduce a polynomial curve distance measure that tadtesaccount the
distance and intensity differences along a polynomial eurvor example, each
second degree polynomial curve defines a convex region,atdttmakes sense
to compute the difference between the average intensiéas the boundary of
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Figure 3.1: The matching process of polynomial curves. On top: two séts o
polynomial curves\/ andT'. Below: comparison of two polynomial curves;
andt, under different viewing orientations = {1 | 1, Y2, 93, ¥4 }.

this convex region. We will show that the matching rate iny@oconsiderably by
measuring intensity variations.

Let M = {mi,ma,....my,...,my} andT’ = {t1,ta, ..., tg, ..., t, } De two sets
of low-degree (e.g. second degree) polynomial curves frifardnt images, as
shown on top in Figure 3.1. First, we define a distance mea&urg,?,) for
matching the polynomial curve:; to the polynomial curve,. We propose a
combined measure of position, shape and intensity, whitdrggly independent
from rotation, translation, scale, and global illuminaticAlthough this is not es-
sential for the definition ofl(m , t,), to facilitate the computation of the distance
measure, we subsample the polynomial curve We choose a collection of
equidistant viewing pointg = {z1, 22, . . ., 2, } on the parabolic segment.

To obtain position, rotation and scale independency we ewewp ; with ¢,
under different viewing angles, as shown in Figures 3.1.9Let {1, ¢, ..., ¥,
1, } be a collection of- + 1 viewing orientations, wheré , 1o, ..., ¥, denoter
viewing angles and; denotes a viewing angle perpendicular to the paratgla
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3.3.1.1 Shape distance measure

Let ¢); be one of the viewing angles. The following steps are thereee for
eachy;. We determine the points of intersectio® = {q1, ¢, ..., ¢s} Of the
straight lines with orientatiow; through the points; with the parabola segment
ty. Thatis, the intersection points are the pointg pas seen from the points in
the directiony; . In this work we usex = 10 viewing points and we require that
s > 5, which means that the polynomial curves have to intersett atileast 50%
of the lines. The process of building the distance measudessribed below is
illustrated for a vertical viewing orientation in Figure23.

The average distance is

1 S
da(my, tg) = ;dew 3.1)
k=1

whered), are the distances between the points of intersecfiea {q1, ¢2, ..., ¢s}
and the viewing point¥ = {z1, 2o, ..., 2z, } measured along the viewing orienta-
tion. Let

s
Ty, tg) =+ Sk~ da)?, (32)
k=1
denote the variance of the distances, which we will use tosoreashape dissimi-
larity betweenn ; andt,,.

The proposed distance measure also takes into account holefaegments
have been shifted relative to each other. Therefore, we atertpvo distances p,
anddp, between the corresponding end-points of the polynomialesiand per-
pendicular on the viewing orientation, as shown in Figug& Jhen, the minimal
distance measured perpendicular on the viewing oriemtéio

dp(mf,tg) :min(dpl,dpz). (33)

We define
Dq,(mf,tg) = (dAUDw>2+d§3- (3.4)

as a shape dissimilarity measure for two segments comparttiviewing di-
rections. By multiplying the average distance with the variance, weaysmall
value forDy (my, t,) when the polynomial curves are parallel and translated, and
a large value otherwise.

3.3.1.2 Intensity distance measure

For the second, intensity dependent, part of the distanesune, we consider the
intensities above and below the polynomial curve. One o&thentages of second
degree polynomial curves over first degree polynomial clivéhat second degree
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Figure 3.2: Local curve matching based on distance for a vertical vigvari-
entation. On the polynomiah ; there are selected ten viewing points. On the
polynomial curvet, eight points of intersection are shown. The distances are
measured parallel with and perpendicular on the viewingraaition.

polynomial curves have a more clearly defined concave andezaide. We first
introduce a dissimilarity measure for the intensity valaethe convex side of the
polynomial curve. The comparison of intensities as in thecdption below is
illustrated for a vertical viewing orientation in Figure33.

Let ¢ be a viewing direction. For each viewing poitjton the parabola seg-
mentm s, we compute a weighted average intensity val{f&” (m ) at the convex
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Figure 3.3: Local curve matching based on intensity for a vertical vieyorien-
tation. On the parabola ¢ ten viewing points are selected. On the paraligla
eight points of intersection are shown. The pixels below alpadve the parabola
segments which are taken into account for colour matchieglown as circles.

side,

I;mw(mf) = Z’wkizmw(mf) and Zwk =1, (35)
k=1 k=1

whereif°""(my) are the intensities (pixel values) at the convex side of tiatp
z; along the viewing direction. In this work we used= 5. The intensities are
weighted, because the pixels closest to the polynomiaksjiand thus close to the
edge map, can disturb the result. In this work we have usediasga kernel for
the weightswy, to increase the importance of pixels located centrally enabnvex
region.
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Similarly, for each intersection poin on the polynomial curve, correspond-
ing with z;, we compute a weighted average intensity vdlife" (t,) at the convex
side,

I;onv Z wy ,Lconv (36)

whereif""(t,) are the intensities (pixel values) at the convex side of tietg;.
The difference in average intensity at the convex sidesap#rabola segments
for the corresponding points andg; is

15 (g, ) = |17 (mg) = 157 (1) (3.7)

The average difference in weighted average intensity atdhgex sides of the
polynomial curves is

159 (my t, ZI"’"”” my, ty (3.8)

The variance for the differences in intensity is

1 ¢ conv conv
U2Awm, (mfatg) = EZ(II@ (mfvtg) 7IA (mfatg>)2' (39)
k=1
Similarly, we definel§°"“(my, t,) ando?%  (my,t,) at the concave side.
The intensity dissimilarity function is ‘defined as

I‘Il (mf’ tg) = \/(Iﬁonvo-Aconv)Q + (Izonco-Aconc)Q' (310)

By multiplying the average differences in intensity withethvariances, we re-
duce the value of the intensity measure when the polynomiabs have the same
relative transition in intensity between their convex andaave side.

3.3.1.3 Matching cost

Finally, the disparity between the segment and the segmenf, along the direc-
tion ¢ is defined as

dy(my.t, :( ) \/ Dulimy. tg)? + Tu(my. 1,)2. (3.11)

Scaling by1/s? reduces the disparity value for a higher number of inteisect
points.

The disparity between the segmentg andt, is defined as the minimum of
the disparity over all viewing directions originating framy,

Clmy,tg) = H:gn(dw(mfvtg))- (3.12)
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The polynomial curven; matches with the polynomial curve from the set
T, for which the matching measure is minimal. The match is piat®e if this
distance is below a certain threshold(e.g. an experimentally defined value is
A =10):

C(my, T)= trneu%(c(mfv tg)) < A (3.13)
g

Let M’ C M be the set of polynomial curves for which there are acceptabl
matches. The matching measure between the set of segiieatsd the set of
segmentd’ is defined as

Z (lme(mf,T)) ,
S(M,T):mfeM' (|M|—|M|)7 (3.14)

N7, | M]|

’rnfe]\/f/

wherel,, , is the length of the segment;, and|M| and|A’| represent the size of
the two sets. Large polynomial curves have a larger weigdrt 8mall segments.
The measure for matching the segmentsith segmentd” is made symmetrical
by introducing the matching measure which will be used to gara faces:

H(M,T) = max(S(M, T), S(T, M)). (3.15)

An example of local curve matching in faces is shown in Figdie Corre-
sponding second degree polynomial curves are indicatedeébgetme colour. The
graph in Figure 3.5 presents the result of local curve matchihen testing an
entire database [GTFD, ]. The distribution on the left siésatibes the density
of the matching cost for matching faces of the same persoe.didtribution on
the right side describes the density of the matching costsnftching faces of
different persons.

We evaluate the local matching technigue by the applicaifqreople identi-
fication in Section 4.2.

3.3.1.4 Motion vectors

For tracking purposes, we construct motion vectors for pagial curve corre-
spondence pairs.

The tracking technique for the parabola segments in theesooitise frames is
based on a matching method for individual parabola segnusitig both distance
and intensity information as described in the previousi8e& 3.1. Since tracking
is performed on consecutive frames, we introduce timingrimgtion in the nota-
tions. LeW() = {m01, sy MOy ,mou} and]V[1 = {mu, s, Mg,y mlv}
be two sets of parabola segments from consecutive framesevidr each parabola
segment the first indexs a time indicator, with each frameiat i, and the second
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Figure 3.4: Result of local curve matching in faces. The figure shows ¢reisd
degree polynomial curves of two different faces of the sasregn. Correspond-
ing polynomial curves are indicated by the same colour.

index is the index of the parabola segment in the set. Thehimafcost of two dif-

ferent parabola segments is a combined function of positbape and intensity.

To obtain position, rotation and scale independengy; andm,, are compared

underk + 1 different viewing angles, = 0, 7 /k, 27 /k, ..., (k—1)x/k andy .
For each viewing angley,, the shape dissimilarity functio,, is

Dy, (mog,mag) = \/ (@702 )2 + (d°7)2, (3.16)

whered;"" is the average of the distances measured parallel alongi¢iéng
orientationyy,, o.*" denotes the variance of the distances, &fitlis the minimum
distance measured perpendicular to the viewing oriemtatio

The intensity dissimilarity functiod,, in the viewing orientation);, is de-
fined as

Iy, (mog, mag) = \/(i505)? + (15052, (3.17)

whereif” ando(’ are the average differences in average intensity and tlie var
ance for the differences in intensity at the convex sidesi@fparabola segments,
respectively:{¢ andog¢ are defined similarly at the concave side.

We search for a one-to-one match for each of the parabolaesggnn the
current frame by a minimization of the dissimilaritiés,, andl,, between two
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Figure 3.5: Result of local curve matching in faces when testing an edtitabase
[GTFD, ]. The distribution on the left side describes the signof the matching
cost for matching faces of the same person. The distribuiioithe right side
describes the density of the matching costs for matchiresfatdifferent persons.

segmentsng ¢ andm, over ally,. An example of matching parabola segments in
two consecutive frames of a vehicle is shown in figure 3.6:asponding parabola
segments are indicated by the same colour.

The motion vecto ¢ {posg, Azose, Ayosge . att = 0 for the unique parabola
correspondence pafting s, m1,} is then defined by three parameters,

e alocation indicatop s, = ¢, with ¢ the center point of the segment ¢;
e amovement along the x-axiSzo ¢, = di*" cos ix;

e and a movement along the y-axig)gr, = d}*" sin ¢;

3.3.1.5 Motion registration

Now the individual motion vectors for the polynomial cun@iespondence pairs
must be grouped so that we can define the motion of the objectpased of
clusters of polynomial curves.

For every polynomial curven,; in the current frame = 0, we construct
a chainCy = {(moyf, mig), (m1g, man), ..., } of polynomial curve correspon-
dences over maximum the lagt,, frames, i.e. we look in each previous frame
for the single best matching polynomial curve. If there iscoorespondence in a
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Figure 3.6: Result of local curve matching in vehicle&:): The second degree
polynomial curves of the same vehicle in two consecutivefraand the matching
results, corresponding polynomial curves are indicatethbysame colour.

previous frame, the chain is broken. For each chain, weadte motion vectors
m forall Q@ < @, correspondence pairs in the chain, wita- 0,1,...,Q — 1.
We denote this set of motion vectors By for the polynomial curve chai@’;. Sy
is characterized by three parametérs,, Azs,, Ays, }:

e alocation parameters, = poy,;
e an average movemenirs, along the x-axis over the lagl frames, i.e.

Q-1
1
Azs, = ) Z AZttg; (3.18)
t=0

e and an average movemehys, along the y-axis over the lagl frames,
1 e
Ays, = 3 > Ayigg. (3.19)
t=0

Among the advantages of using the chain of polynomial cuares first, a
smoothing effect on the trajectory of the object, i.e. ofitidividual polynomial
curve clusters, second, longer chains get more weight icdhgputations of the
cluster parameters, and third, we could introduce a legrparameter for a more
advanced foreground/background segmentation algorithm.

In afirst step we do foreground/background segmentatioollasvs: we verify
whether the polynomial curveyo; has actually moved during the lagtframes.
Therefore we check whether its average distapé\z s, ) + (Ays, )? is higher
than a preset thresholfl. In our experiments, we choodé = 0.5, so that we
only take those parabola segments into account which afieisafly moving.
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Otherwise, the polynomial curve is assigned to the set dfdracind polynomial
curves of the current scene.

In the second step we cluster the moving polynomial curviesiidividually
moving objects. The criteria for clustering are:

e the segments are in each others neighbourhood, temponallgatially,
e the segments are moving with the same velocity,
e and in the same direction.

Initially, there are no clusters, so the first polynomiaha&ichainC; defines
a new clustetv; in the cluster sef2. The clustew; has center poing,,, = ps,,
an average movement along the x-a&is,,, = Axg, and an average movement
along the y-axi\y,,, = Ayg,, i.e. it has a cluster motion vecton(pw1 y ATy,
Ay ).

For each new chai@’'y, we verify whether it belongs to an existing clusigy
from the set of cluster® = wy,...,wj,...,w,. Otherwise,Cy defines a new
clusterw,4+1. Cr belongs to a clustes; when it satisfies three conditions.

1. The Euclidean distande;; from ps, to the current cluster center point,
must be below the user specified radiis

2. The polynomial curves in a cluster must move with the saghacity. When
including C'y with movementsAzs, andAys,, we can compute the new
movement along the x-axis as

old
A — mAzgT + Az,

3.20
Wi m+1 ( )

with m the number of parabola segment chains in the clusteiSimilarly,
we computeﬁyﬁjw, the new movement along the y-axis.

After inclusion, the variancefj of the lengths for allS,. in the clusterw;
must be below/, i.e.

m—+1

> (VBas, P+ (Bys,)? — \/(Azew)? + (Ayze»)?)* < Vi
! (3.21)

2 1
Ulj:m—i—l

3. The polynomial curves in one cluster must move in the saineetébn. Therefore,
the variancefij of all directions for allS, in the clustew; must be below/,, i.e.,

2 1 s -1 AyST -1 yzjw 2 v 3.22
Uﬁ/j = m—H Z (tan m — tan A:E"ew) < - ( . )
3 w;

r=1
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Figure 3.7: (a): A cluster of moving polynomial curves, indicated by theaol
red. The background polynomial curves are indicated by theuc green. (b):
The minimal enclosing bounding boxc) and(d): The histograms of directions
and lengths from the polynomial curve chains in the red elyuséspectively.

WhenC' satisfies the requirements for more than one cluster, théication
aRyj + bof; + co?; is minimized. WherC' is added to the cluster;, we update
its motion vectonfj}, i.e. its center point and its average movements along the x-
and y-axis as defined above.

Figure 3.7(a) shows an example of a detected cluster of moving polynomial
curves. The polynomial curves are indicated by the colodr wehile the back-
ground polynomial curves are green. In Figure &Y the minimal enclosing
bounding box is defined for a cluster of polynomial curves.

The main direction in which the vehicle moves can also beatietein the
histogram in Figure 3.7c), in which the directions for alb,. in the bounding box
of Figure 3.7(b) is shown. There are 32 bins in the histogram, so the widthdf ea
bin is {5. The average direction of the cluster corresponds to thiipo®f the
peak in the histogram.

The cluster translation distance can also be estimated finenmistogram of
the lengths for allS, in the bounding box, projected perpendicular on the axis
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of the main direction. The width of the bins is 0.5 pixels ire thistogram of
Figure 3.7(d). The first blob is caused by background polynomial curves,tdu
the representation of the rigid object by a bounding box,there are also some
background polynomial curves included.

We will evaluate motion registration by the application ehicle tracking in
the next chapter in Section 5.2.

3.3.2 Global matching

In this section, we employ global matching of polynomial\as in different
CEMs to find corresponding polynomial curves. For globalahitg, the poly-
nomial curves do not have to be in each others neighbourh@beé. matching
technique we propose here does not require that the CEMdigine@ It consid-
ers two characteristics of the polynomial curves.

e The first characteristic is the intensity difference betwibe inner and outer
side of the polynomial curve. Each polynomial curve definesrvex re-
gion, so that it makes sense to distinguish polynomial cufvem facial
features with intensity histograms between the inner atera@ide.

e The second characteristic is the relative position of tHgrgamial curve in
the face CEM, found by the characteristic positions of theghlynomial
curves from the facial features in the face CEMs. This togpls modelled
by a histogram of relative positions in log-polar space chilis based on the
work of shape contexts from Belongie et. al. [Belongie et2002].

The two characteristics classify an individual polynonaiatve in the face CEM,
which is useful for facial feature classification.

3.3.2.1 Intensity histograms

One of the discriminative properties in our system is théedénce in intensity be-
tween the inner and outer side of the polynomial curve. Fohsale we construct
a normalized intensity histogram.

When estimating a histogram from one side of the polynomiaVe, the re-
gion of interest for intensities is in the area between thgimmal polynomial and a
duplicate which is translated parallel to the main axis effiblynomial curve.

Figure 3.8 shows on the left two intensity histograms fromitiner and outer
side from the polynomial curve of the left eyebrow for a fadeghe Bern Uni-
versity Face Database [Bern, ]. The histogram represettimgpper side has its
intensities on the bright side, while the histogram repnéeg the lower side has
its intensities on the dark side.

To match the intensity histograms from one side of two déferpolynomial
curves, we use the Bhattacharyya distance metric or Brutistaneasure, which
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Figure 3.8: Histograms of intensities and relative positions. On tffiealee shown
the intensity histograms from the inner and outer side ofptblgnomial curve,
which describes the left eyebrow. On the right is plottedltigepolar histogram
of relative positions of the polynomial curve, which debes the right eyebrow.
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measures the similarity of two probability distributionsdais a value between
0 and 1. This measure is chosen for its good classificatiopgrties [Cha and
Srihari, 2002]. The B-distance between two intensity lgsaonsf andg is

L

B(f,9)=1=>_/f)g(), (3.23)

=0

whereL is the number of bins in the histogramis,= 255 for gray images. The
matching of intensity histograms is done for the inner angioside of the poly-
nomial curves, resulting if3;,, and B,,;.

3.3.2.2 Histograms of relative positions

A polynomial curve in the CEM is characterized by its relatposition. The
relative position becomes important when classifying vitilial facial features,
for example to distinguish between polynomial curves friwa ¢yebrow and the
upper lip, which have similar transitions in intensitiesvibeen the inner and the
outer side. In our work, the topology of the face CEM is maeilusing shape
contexts. In the original shape context approach [Beloag#., 2002], a shape is
represented by a discrete set of sampled pdiis py, po, . .., p,. For each point
p; € P, acoarse histogray; is computed to define the local shape contexi;of
To ensure that the local descriptor is sensitive to nearbytgpdahe local histogram
is computed in a log-polar space. The best matching resudtslatained with a
histogram computed for the center point of the polynomiaveun the face CEM.
When considering such a center point, the sampled pdirgse the discretized
points on the other polynomial curves in the face CEM. An eplarof a histogram
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of relative positions is shown in Figure 3.8, on the right listied the log-polar
histogram of the polynomial curve of the right eyebrow. Imagiice, the circle
template covers the entire face.

Assume thap; andg; are the center points of the polynomial curves of two
different faces. The shape context approach defines theotositching the two
polynomial curves by the following? test statistic:

K
C(pi ;) =
1

1~ [hi(k) — hy(R)]?

z 24

2 kz:: hi(k) + hj(k) (3.24)
whereh; (k) andh;(k) denote the K-bin normalized histograms of relative posi-
tions ofp; andg;, respectively.

3.3.2.3 Matching cost

We look for a one-to-one match for each of the polynomial earyy a minimiza-
tion of the linearly combined cod?,,, = a(Bi, + Bout)/2 + bC, for a pairm of
matching polynomial curves, wherg,, andB,,; are costs for matching intensity
histograms and’ is the cost for matching histograms of relative positionsnfr
the pairs of matching polynomial curves, a global lengthgh#d matching cost
E'is computed, with

M M
E= Z_l Dol / Z_l L, (3.25)

whereM is the number of unique pairs of polynomial curves gpds the av-
erage length of the matching polynomial curves pairThen, a face is recognized
when the global matching cost reaches a minimum.

We will evaluate the global matching technique by the apitns of people
identification and best view selection in the next chapte®éctions 4.2 and 4.3,
respectively.

3.4 Conclusion

In this chapter, polynomial curve correspondence pairgared by a technique
that matches polynomial curves from different faces, basedistance and in-
tensity. We make a distinction between a local and a globatimrag technique.
The difference lies in the application: local matching isexgally used in tracking
applications, while global matching focuses on recognitipplications.

This research was published in four papers [Deboeverie,&2@8b, Deboev-
erie et al., 2008a, Deboeverie et al., 2009b, Deboeverig @04.1] in the proceed-
ings of international conferences.






Face analysis applications

4.1 Introduction

Automatic, reliable and fast face analysis is becoming aa af growing interest
in computer vision research. This chapter presents an atitoand real-time
system for face analysis, which includes recognition aadking of faces and
facial features, and may be used in visual communicatioticgtipns, such as
video conferencing, virtual reality, human machine intéicn, surveillance, etc.

In this chapter, we evaluate the matching techniques forsrojpolynomial
curves (CEMs) that were introduced in the previous chaptereecognition and
tracking of faces. The method to extract CEMs is describeSdation 2.5. A
local and a global matching method for CEMs are describeaatiéns 3.3.1 and
3.3.2, respectively. We use a top-down approach. Firsilges are recognized
and tracked. Then, individual facial features are clasbified tracked. The ap-
plications considered are people identification, best \gelgction and behaviour
analysis applications, such as entering/leaving detecliead movement detec-
tion and speaker detection. These applications are extdnsvaluated on a large
number of representative databases and video sequenct®ermore, our meth-
ods are compared to several techniques of the state of théartinstance, we
make a comparison with a technique that uses line featukachieve better re-
sults in experiments on different databases.

The work in this chapter was published in [Deboeverie e28lQ8b, Deboev-
erie et al., 2008a, Deboeverie et al., 2011, Deboeverie, & 2].
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This chapter is structured as follows: people identificatiod best view selec-
tion are treated in Sections 4.2 and 4.3, respectively.i@edt4 treats behaviour
analysis applications, such as entering/leaving detedtiead movement detection
and speaker detection in Sections 4.4.1, 4.4.2 and 4.43ctvely.

4.2 People identification

Although face recognition systems are already used inlifeadypplications, such
as identification with bank cards, access control, secadhyrol and supervision
systems, reliable and fast recognition of faces in variotgimstances is still a
challenging scientific problem. Current research is aimeflidher improving
the reliability, efficiency and applicability of face readtion algorithms. Faces
are similar in structure and show only small differencesrfrperson to person.
Aspects like differences in lighting, the large variety @tohct face expressions,
the orientation and relative position of the face, changdsirstyle or the pres-
ence of glasses make the recognition still more complicaféte difference in
appearance of a single face due to pose, expression andnidltion are often
larger than the differences between two faces of two diffepersons under simi-
lar circumstances. In addition, efficient coding is needetiuce the size of face
model databases, which should contain a single descriftioeach face [Mar-
tinez, 2002, Kim and Kittler, 2005]. Another desirable peady, becoming promi-
nent in recent applications, is that the recognition andrgpéelgorithms can also
be used to solve more general problems such as the recogoitfmose and face
expression, occluded or imprecisely localized faces, geretognition or age es-
timation [Cevikalp et al., 2005].

4.2.1 Related work on people identification

In this work, we model the face as a flexible ellipsoid maskhveititouts for the
eyes, the mouth, the nose and the nostrils. The contourspaxel the image inten-
sities of the different facial parts are represented bypafyial surfaces and curves
that are convex or concave. The flexibility of the model isaiid by allowing
polynomials with a variable degree and a variable approtianarror. Our model
is inspired by different face models proposed in literatux@ille et al. [Yuille
et al., 1992] proposed deformable templates based on sigeplmetrical shapes
that can deform and move for locating eyes and mouths. Bliwgtell. [Brunelli
and Poggio, 1993] introduced two models, the first one withhgetrical features,
such as nose width and length, mouth position and chin slaapthe second one
based on grey-level template matching. Lanitis et al. [tisuait al., 1995, Lanitis
et al., 1997] proposed a flexible model that represents Bwthesand grey-level
appearance in a point distribution model. Xu et al. [Xu et 2008] proposed a
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hierarchical model of faces as a three-layer graph to takedaocount structural
variabilities over multiple resolutions. The first layeedts each face as a whole,
the second layer refines the local facial parts jointly ag afsadividual templates,
and the third layer further divides the face into 15 zonesrandels facial features
such as eye corners, marks, or wrinkles. Ding et al. [Ding ldadtiinez, 2010]
introduced a model based on texture patterns. To improvedtextion of internal
facial features, i.e., eyes, brows, nose, and mouth, thégddontext information
of each facial feature correlated with the surroundingfeint from these meth-
ods is that we allow local as well as global flexibility in ounodel by adaptive
sampling of the face region with constructive fitting. Instishapter, we apply our
face model to several face analysis applications, suchcasréognition.

There exist a large number of face recognition algorithmanfutilizing the
facial properties and relations, such as areas, distaacesangles [Cox et al.,
1996] to projecting face image to feature spaces, such anféige [Turk and
Pentland, 1991], Fisherface [Belhumeur et al., 1997], deiphface [He et al.,
2005] and derivative domain [Kim et al., 2005, Zhao et alQZJ0 However, those
methods were designed for well aligned, uniformly illumexd and frontal face
images. In practice, itis almostimpossible to satisfy ¢hresjuirements, especially
in security surveillance system. Consequently, many &ffoave been made to
develop algorithms for unconstrained face images [Wrigiat ldua, 2009, Dreuw
et al., 2009, Wolf et al., 2008, Ruiz-del Solar et al., 2008%tead of using global
features, they advocated using local appearance degssrimich as Gabor jets
[Zou et al., 2007, Tan and Triggs, 2007], SURF [Bay et al.,&]08IFT [Lowe,
2004], HOG [Albiol et al., 2008] and Local Binary Patterngd(@ et al., 2000].
Local appearance descriptors are more robust to occlusigmession and small
sample sizes than global features.

Traditionally, face recognition algorithms are classifexibeing either holis-
tic or feature based. Holistic techniques based on Prih€panponent Analysis
(PCA), can obtain high recognition rates, but are senditiw@riations in pose and
facial expression. Techniques based on Linear DiscrintiAaalysis (LDA) [Kim
et al., 2005] try to cope with the shortcomings of the techagbased on PCA.
These approaches, however, still require a large datalfafsees with various
poses and expressions for training. Martinez uses locameghat become more
robust for variation of expression and occlusion [Martir2202]. Multimodal al-
gorithms try to combine local and global analysis techngfoémprove robustness
and reliability [Mian et al., 2007].

Facial analysis has generally been addressed by algorithemhsise models
based on shape and texture. The Active Shape Model (ASM)pgeapby Cootes
et. al. [Cootes et al., 1992] is one of the early approachasattempts to fit the
data with a model that can deform in ways consistent withiaitrg set. The Ac-
tive Appearance Model (AAM) [Cootes et al., 2001] is a popetegension of the
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ASM. AAM is an integrated statistical model which combinesadel of shape
variation with a model of the appearance variations in a slrapmalized frame.
The recently proposed Boosted Appearance Model (BAM), gsed by Liu et.
al. [Liu, 2007,Liu, 2009], uses a shape representatioriaitd AAM, whereas the
appearance is given by a set of discriminative featuremsetdato form a boosted
classifier, able to distinguish between correct and incbfeee alignment. Liang
et. al. [Liang et al., 2008] proposed a component-basedidistative approach
for face alignment without requiring initialization. A seflearned direction clas-
sifiers guide the search of the configurations of facial camepts among multiple
detected modes of facial components. In Elastic Bunch Gkégatiching (EBGM),
proposed by [Wiskott and von der Malsburg, 1996], all huneeé share a simi-
lar topological structure. Faces are represented as gnafthsiodes positioned at
fiducial points and edges labelled with 2-D distance vectBexh node contains
a set of 40 complex Gabor wavelet coefficients at differeakescand orientations
(phase, amplitude). They are called jets. Recognitionseth@n labelled graphs,
which are sets of nodes connected by edges, nodes are thvéhgets, edges are
labelled with distances.

In this work, faces are represented with Curve Edge Maps;twéie collec-
tions of polynomial segments with a convex region. As exy@diin Chapter 2, the
segments are extracted from edge pixels using an adaptireniental linear-time
fitting algorithm based on constructive polynomial fittings explained in Chap-
ter 3, we find correspondences in CEMs by a technique thath@sigolynomial
curves, based on shape, relative position and intensigyfade analysis system in
this work has the advantages of simplicity, real-time perfance and extensibility
to the different aspects of face analysis.

4.2.2 Method of people identification

In this work, we perform face recognition for each persondatabase by compar-
ing the input face model to the face models of all other pes$othe database. We
consider face CEM as face model. The method to extract fadé iSEhoroughly
explained in Section 2.5. Then, a person is recognized cityrié the matching
cost between its input face model and the person’s own fackehimthe database
is a minimum and below a predefined threshold. We considemitehing cost
(Eg. 3.15) as defined for local matching of face CEMs in Sec83.1, as well
as the matching cost (Eq. 3.25) for global matching of facé€Fas defined in
Section 3.3.2. The method overview of people identificat®also represented
in a block diagram in Figure 4.1. Note that input face imagegdeo sequences
are firstly detected using the cascade-based face detadgjorithm of Viola and
Jones [Viola and Jones, 2001].
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Input face Database of
image face images
v v
Extraction of Extraction of
Curve Edge Map Curve Edge Maps

(Section 2.5) (Section 2.5)
Input face Database of
CEM face CEMs

Face CEM matching
locally (Section 3.3.1) or
globally (Section 3.3.2)

Matching cost
ocally (Eq. 3.15) or
globally (Eq. 3.25)
is a minimum and
< threshold

Face not in Face recoanized
database °

Figure 4.1: This block diagram represents the method overview of peidgleti-
fication. We perform face recognition for each person in aliaée by comparing
the input face model to the face models of all other persortisérdatabase. We
consider face CEM as face model. Then, a person is recogoareelctly if the
matching cost of its input face model and the person’s owe faodel in the
database is a minimum and below a predefined threshold.
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We evaluate the local and global matching of face CEMs forcatiditions
of human face recognition, i.e., face recognition undetradied/ideal condition,
varying lighting condition, varying facial expressiongararying pose. This work
was published in [Deboeverie et al., 2008b, Deboeverie.eP8ll1]. Here, the
CEM s consist of collections of second-degree polynomialesior parabolas. The
system performances are compared to the LEM method [Gao eunaig, 2002b].

Our system applications are evaluated on different facabdaes and video
sequences, considering variations in scale, lightingafaxpressions and pose.
The publicly available databases considered are the Ge®degh Face Database
(GTFD) [GTFD, ], the Database of Faces (ATT) [ATT, ], the Bddniversity
Face Database (BERN) [Bern, ], the AR Face Database (AR)t[ivarand Be-
navente, 1998], the Yale University Face Database (YFD)e[Yleand the BiolD
face database (BiolD) with ground truth marker points [d&spet al., 2001].

4.2.3 Evaluation of people identification

Local curve matching

For each person in a database we compare a face input to thentatels of all
other persons. A person is recognized correctly if the nmagchost (Eq. 3.15)
of its face input and the person’s own face model is a minimémexample of
face CEM matching obtained from the method in 3.3.1 is showFigure 4.2a),
corresponding parabolas are indicated by the same colberrdsult of the LEM
method is shown in Figure 42). The graphs in Figures 4(3) and(b) show the
face recognition results of matching CEM and LEM, respetyiwhen testing an
entire database. The distributions at the left side of eaaplydescribe the density
of the matching cost for matching faces of the same persoa.didiributions on
the right side of each graph describe the density of the nragdosts for matching
faces of different persons. For CEM the distributions areerseparated, which
indicates that the CEM method performs better than the LENhote

Recognition results on all databases are shown in TableThé.second and

the third column show the results for the method based on Pl@&[and Pent-
land, 1991] and the LEM method, respectively. The fourth tnedfifth column
show the results for CEM matching using the distance meamuidhe intensity
measure, respectively. The sixth column shows the ressiltg)@ combination of
the distance and the intensity measure. The results ark ¢tgssification, the cor-
rect match is only counted when the best matched face fromdzhthe correct
person.
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Figure 4.2: Result of face recognition using local curve matchin@.): The
second-degree polynomial curves or parabola segments $L&Mwo different
faces of the same person. Corresponding parabola segnoenis &re indicated
by the same colou(d): The corresponding line segments (LEM) of two different
faces of the same person.
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Figure 4.3: The graphs in(a) and (b) indicate the face recognition results of
matching CEM and LEM, respectively, when testing an enta@base [GTFD, ].
The distributions on the left side of each graph describeémsity of the matching
cost for matching faces of the same person. The distribsitionthe right side
of each graph describe the density of the matching costs &tching faces of
different persons. For CEM the distributions are more s&pdr, which indicates
that the CEM method performs better than the LEM method.
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PCA LEM CEM CEM CEM
based Distance Intensity Combination
Controlled conditions
GTFD 86,00% 84,00% 72,00%  96,00% 98,00%
ATT 94,00% 95,00% 90,00%  97,50% 100,00%
BERN 86,66% 80,00% 93,33% 100,00% 100,00%
AR 96,60% 96,40% 88,10% 100,00% 98%
Pose variation
BERN Right 57,14% 55,00% 68,34%  90,00% 93,34%
BERN Left 51,87% 48,33% 68,34% 91,67% 86,67%
BERN Up 44,12% 46,67% 70,00%  88,33% 86,67%
BERN Down 44,03% 45,00% 68,34%  78,34% 73,34%
Size variation
AR with size variation 55,69% 53,80% 70,56%  85,30% 90,21%
Lighting condition variation
AR with left light on 70,32% 92,86% 80,12%  93,27% 96,34%
AR with right light on 71,73% 91,07% 82,10%  94,40% 94,84%
AR with both lights on 68,56% 74,11% 78,30% 88,67% 92,10%
Facial expression variation
AR with smiling expr. 74,92% 78,57% 85,26%  98,34% 96,53%
AR with angry expr. 77,56% 92,86% 82,30%  96,11% 97,30%
AR with screaming expr. 59,06% 31,25% 71,62%  98,34% 96,21%

Table 4.1: Face recognition results using local curve matching: %eatly rec-
ognized faces. We test face recognition under controlledlition and size varia-
tion, under varying lighting condition, under varying fakcexpression and under
varying pose. The proposed face recognition techniqueped consistently su-
perior to (or equally well as) the LEM method and the methagkllaon Eigenfaces
(PCA) in all comparison experiments. In general, CEM corabion can achieve
the best performance level. However, in some cases, CEMsdityeoutperforms
CEM combination: this is when the relative rotation of thedais too large.

We test face recognition under controlled condition ané sariation, under
varying lighting condition, under varying facial expremsand under varying pose.
It is encouraging that the proposed face recognition tegheperforms consis-
tently superior to (or equally well as) the LEM method and itethod based on
Eigenfaces (PCA) in all comparison experiments. In gen€&&M combination
can achieve the best performance level. However, in somesc&EM intensity
outperforms CEM combination: this is when the relative tiotaof the faces is too
large. On average the recognition rate increases by 10.46f4de recognition un-
der controlled condition, by 36.41% for face recognitiomensize variation, by
35.84% for face recognition under varying pose, by 8.41%fdoe recognition
under varying lighting and by 29.12% for face recognitiordenvarying facial
expression.
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Figure 4.4: Result of facial feature classification using local curvdachang. We
match the face input of a person with the face model of the gaer®on and with
eight other persons. For matching the faces of the samerpersaget the parabo-
las of the mouth with a very low cost, when we match with fadestioer persons
we mostly get the parabolas of the mouth, but with a highet. cos

We assume that the main reason for the better results of CEihing are the
larger and more stable parabolas, where each parabolalsesarsignificant part
of the face. Many parabolas correspond to physically megnifeatures, which
is illustrated in Figure 4.4 where we match the face inputpéeson with the face
model of the same person and with eight other persons. Farthinagtthe faces
of the same person, we get the parabolas of the mouth withydawrcost, when
we match with faces of other persons we mostly get the passhaflthe mouth,
but with a higher cost. Since a parabola has a more distmstiape than a line
segment, matching parabolas is more reliable. Furthermeand parabola defines
a convex region, so that it makes sense to compute the avietagsity difference
between the convex and concave side of a parabola. The ridoogate improves
considerably by the introduction of intensity variationghe distance measure.

Global curve matching

The face recognition rates for global curve matching aremin Table 4.2.
A distinction is made between matching using histogramset#tive positions,
matching using intensity histograms and matching using@imal linear com-
bination of both. In the results, a match is only correct wkien best matched
face from a model is the correct person. We test face redogninder controlled
condition and size variation, under varying lighting cdmati, under varying fa-
cial expression and under varying pose. As we expect, thehimat of histograms
with relative positions is more sensitive to varying pose &arying facial ex-
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(%) Hist. of Intensity  Lin.
rel. pos. hist. comb.
Controlled conditions
GTFD 82.00 98.00  100.00
ATT 77.50 95.00 98.50
YFD 86.66 100.00 100.00
BERN 93.33 96.67  100.00
AR 78.65 96.02 98.44
Pose variation
BERN Right 70.33 87.00 91.33
BERN Left 70.67 88.33 91.67
BERN Up 72.00 86.67 90.33
BERN Down 69.00 80.33 83.67
Size variation
AR with size variation 77.83 89.20 94.35
Lighting condition variation
AR with left light on 73.53 91.89 96.60
AR with right light on 73.43 89.16 95.63
AR with both lights on 75.15 90.63 96.38
Facial expression variation
AR with smiling expr. 71.13 93.70 97.13
AR with angry expr. 71.59 94.14 97.46
AR with screaming expr. 72.08 91.40 96.65
Average 76.18 91.76 95.51

Table 4.2: The columns in this table show the face recognition ratesiofreethod

using histograms of relative positions, matching usingnstty histograms and
matching using an optimal linear combination of both, resipely. We test face
recognition under controlled condition and size variationder varying lighting

condition, under varying facial expression and under vayyiose. The matching
of histograms with relative positions is more sensitivedoying pose and varying
facial expressions, while the matching of intensity hisémgs is more sensitive to
varying lighting conditions. The average face recognifionthe linearly com-

bined cost i95.51%.

pressions, while the matching of intensity histograms isens@nsitive to varying
lighting conditions. The average face recognition for thhearly combined cost
is 95.51%. When compared to the results described for the local cuatemng
technique in Table 4.1, the average face recognition rateases with2.21%.
Furthermore, we gain the advantage of facial feature deteathich involves fa-

cial action recognition, such as recognition of facial @gsions, speaker detection
and head movement detection.
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4.2.4 Facial feature classification

As mentioned in Chapter 1, we consider a top-down approathtiyFfaces are
recognized. Then, individual facial features are clagsifieacial features such as
the eyebrows, the eyes, the nose and the lips, are detechexhtal face images
by matching face CEMs with polynomial curve models. This kwvas published
in [Deboeverie et al., 2011].

Firstly, polynomial curves from the facial features of irgst have been mod-
elled by atraining process on a database, consistihgofaces, considering small
variations in pose, variations in lighting conditions ardiations in facial expres-
sions. The polynomial curve model of a facial feature cdasi$ two intensity
histograms from the inner and outer side of the polynomialeand a log-polar
histogram describing the relative positions in the face CEM

Secondly, the polynomial curve models are matched withrtpatiface CEM.
The histograms of intensities and the histograms of redgbiesitions are com-
pared. E.g. for the upper polynomial curve of a left eyebranexpect a transition
in intensity from bright to dark and with a relative positiorthe left upper corner
in the face CEM. In this way, we classify the polynomial cie¥em the left and
right eyebrow, the left and right eye, the left and right sidehe nasal bone and
the upper and the lower lip.

We evaluate this facial feature classification on the tetgttitsses by verifying
whether or not the polynomial curve models classify theexinpolynomial curves
in the face CEMs. We classify the polynomial curves from #ife &nd the right
eyebrow, the left and the right eye, the left and the right sifithe nasal bone and
the upper and the lower lip, as shown in Figures @pand (b). The results of
facial feature detection, as presented in Table 4.3, shatittle developed system
can detect on average the individual facial features sstaigsin 91.92% cases,
when applied to the test databases. We compare our resutistivei work of
Cristinacce et. al. [Cristinacce and Cootes, 2008], in Whitey use the Viola
and Jones face detector [Viola and Jones, 2001] to inigalizet of facial feature
points. The Viola and Jones face detector fifdl% of facial feature points within
20% of the inter-ocular separation on the BIOID Database. Oeraye facial
feature detection rate on the BiolD Databas@3is0%, which is comparable with
the facial feature detection rate by applying the Viola amue} face detector.

The accuracy in position of the facial features with the polyial curves is
determined by the accuracy in position of the edges delivbyethe Canny edge
detector and the fitting cost allowed during contour segatent. \We compute this
accuracy on the BiolD Database, by comparing the availatdergl truth marker
points with the locations of the facial features. In Figurg @), the ground truth
marker points are indicated by red coloured crosses. Weddifgaccuracy in po-
sition of the facial features by the distance between thatpan the polynomial
curves closest to the ground truth markers and the grounk tarkers them-
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(%) YFD BERN AR GTFD ATT BiolD
Lefteyebrow  100.00 90.00 87.91 96.00 9250 93.12
Righteyebrow 100.00 80.00 90.47 94.00 90.00 94.65

Left eye 93.33 90.00 86.20 86.00 85.00 91.39
Right eye 93.33 93.33 87.91 88.00 87.50 90.94
Left nose 100.00 90.00 88.03 96.00 9250 94.10
Right nose 100.00 96.67 87.18 90.00 95.00 92.94
Upper lip 93.33 90.00 89.20 86.00 97.50 9551
Lower lip 100.00 96.67 90.60 86.00 92.50 93.77
Average 97.50 90.46 88.44 90.25 9156 93.30

Table 4.3: An overview of the facial feature detection rates of theaeiftl the right
eyebrow, the left and the right eye, the left and the right sifithe nasal bone and
the upper and lower lip. The system can detect on averagetlivdadual facial
features successfully #1.92% cases.

Figure 4.5: (a): The polynomial curves of the eyebrows, the eyes, the naséhan
lips detected in a face image of the BiolD face Database. Tl truth marker
points are indicated by red coloured crosgég. Facial feature classification using
global curve matching in a face image from a webcam videoesazp!

selves. When using the Euclidean mean distance as the bemicreasurement,
the mean error i$.53 pixels with a standard deviation df15 pixels, which is
2.18% in terms of the size of the face. On the same database and aathe
image resolution, we compare our results to the work of Dingaé [Ding and
Martinez, 2010], in which they achieve facial feature détecwith SubAdaBoost
by learning the textural information and the context of theidl feature to be de-
tected. Here, the mean errordd) pixels with a standard deviation af3 pixels,
which is2.8% in terms of the size of the face.
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4.3 Bestview selection

Nowadays, an important problem in multi-camera system® to select the
camera with the best frontal view of a person. Therefore, reggnt a minimum
score based criterion for best view selection, based onrfs®gnition with geo-
metric features. In this approach, faces are representadd&Ms, as described
in Section 2.5. Face recognition is performed by matchirng fl@EMs driven by
histograms of intensities and histograms of relative s as described in Sec-
tion 3.3.2. The resulting face recognition scores are eygol@s quality-of-view
measures. The face recognition scores reach a minimumdbtalrface views.
They indicate whether or not persons are seen by cameramirafview. Experi-
ments show that the method is robust and efficient when ggdeibie best view in a
multi-camera system. Furthermore, our method outperfeiavs selection based
on face detection only. This work was published in [Deboevetral., 2012].

In automated video conferencing, persons are observedvsyadecameras.
Algorithms for behaviour analysis deliver information abbavho is attracting at-
tention, for instance someone who is making hand gesturem this information,
a virtual director can decide which person has to be visedliZrhe question re-
maining is: which camera has the best frontal view of the@erf interest? In
this section, we show that for each person-camera combimatface recognition
score, obtained with geometric features, is a good quafityiew measure. This
information can be used for visualization or it can be fed tdoge-up face analy-
sis system, which uses it to only selectively process somasasf interest within
some video streams, for example to detect a speaker, talateeye gaze and to
refine the face orientation analysis.

4.3.1 Related work on best view selection

Viewpoint selection has been studied in the fields of compyraphics and robot
navigation [Vazquez et al., 2003, Roberts and Marshall819®lore directly re-
lated to this work is [Feris et al., 2007], where a single canwellects key frames
of people in surveillance video based on face detectionsw\éelection for ob-
servability is treated in [Daniyal et al., 2010, Jiang et2008, Kelly et al., 2009, Li
and Bhanu, 2009, Tessens et al., 2008]. The authors in [BEetiyl., 2010] assign
a score to the content of each view by measuring the actiitgl) the number of
objects, events, etc. The size of the bounding box of an bigersed as a quality
of view measure in [Jiang et al., 2008], where dynamic pnogming is used to op-
timize the selection over time. The object size and cemyradithe camera image
are considered in [Kelly et al., 2009], complemented by & fdetection measure
in [Li and Bhanu, 2009]. In [Tessens et al., 2008], view paiglection was based
on the position and motion of observed persons and on tHeleifsice area.

In this work, we propose to use a face recognition religbititeasure with
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geometric features as a criterion for view selection. Thisnéw because face
recognition has not been successfully exploited yet fomgelection.

4.3.2 Method of best view selection

The goal of best view selection is to determine a view that blesws a person
from many available views in a vision network. The system wesider consists
of multiple cameras in a meeting room. The cameras are dehgtée’; for i =
1,..., N, with N the total number of sensors. The image captured byi-the
camera at a certain time instanis denoted by/;(¢). The different persons are
denoted byP; for j = 1,..., L, with L the total number of persons in the scene.
The key or principal camera is the camera with the view thatrdautes most to
the desired observation of the person at a certain timerifsta., that captures a
frontal view of a person in the scene. Persons observed wittipie cameras will
almost always be seen by one of the cameras in frontal oryniearital view.

The algorithms for CEM extraction and face recognition Wébe CEMs are
run on the images;(¢) captured at a certain time instanfor each camera’;.
At each time instant, the face recognition algorithm returns the following \esgu
zi(t) andQl(t), for I = 1,...,2(t). 2(t) is the number of faces recognized in
the framel;(t). Q.(¢) is a measure of the quality of theth recognized face. In
our implementation@’(¢) is the matching score of the face recognition with face
CEMs. The higher this value, the less certain the recognitio

In this method for best view determination the face recagniscoreQ(t) is
used to select the principal view per person. To deal withiepa face recogni-
tions and to obtain smoothness over time, the selectioneokdly camera at time
instantt not only depends on the current face recognition outputatsa on the
previous observations. For each cam@yrathe temporally filtered face recognition
scoreR!(t) is an exponentially weighted moving average of the curréseova-
tion and the previous temporally filtered face recognitioars R.(t — 1), with
RL(0) = 0:

RL(t) = aQ'(t) + (1 — a)RL(t — 1),Vt > 1 (4.1)

where« is a constant between zero and one that determines the emgerbf
previous observations. Then, the best view camera for apétsat time instant
t>1is

S(t) = argcminRﬁ(t) (4.2)

4.3.3 Evaluation of best view selection

In this paragraph, we assess the performance of the propesédiew selection
method for observability.
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Figure 4.6: This graph plots the view measure scofést) for a head which is
rotated right, left, up and down, respectively. The facegaition keeps working
when the face is not parallel to the camera. HoweiRé(t) clearly increases in
that case. Consequently, the more frontal a face view, tadlenk! (¢).

For arotating head, we examine the face view measure sBo(gsn Eq. (4.1).
The images in Figure 4.6 show a face which is rotated rigfit,ue and down, re-
spectively.R!(t) is plotted in the graph in Figure 4.6. The face recognitioegee
working when the face is not parallel to the camera. HoweRéft) clearly in-
creases in that case. Consequently, the more frontal a fawetite smaller.(t).

Test case

Experimental video data for testing the method on, was dEzbwith a camera
setup as shown in Figure 4.7. This test case considers angeeth . = 8 per-
sons, recorded wittv. = 4 HD-cameras in the corners. In this meeting there was
a lot of interaction between the persons, accompanied bycétpead gestures.

The temporal filtering parameters of the best view seledieet too: = 0.05.

This parameter has been manually tuned on a small numbexroéB.« has been
set to a small value, such that previous observations arghtesl heavily. When
the value of« is increased, the best view will be switched more frequenity
evaluate the quality of the best view selected by our meth@duse sequences
labelled by human observers as a benchmark. The total nuvhlzdrelled frames
is 5000.
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Figure 4.7: Test scenario: a meeting with 8 persons, recorded with 4 Bideras
in the corners.

We compare our algorithm with an algorithm which uses @etectionrather
than recognition as a measure for best view selection [LiBtmahu, 2009]. The
face detection detects the frontal faces with the objeadlet that was initially
proposed in [Viola and Jones, 2001]. The visible face ar#aeisneasure for best
view selection.

Some typical examples of correct and incorrect camera tiatesa’; of the
best view per persof; are shown in the graphs in Figure 4.8. The face recogni-
tion scores in the camerdsl, ..., C, are indicated by distinct grey values. The
dotted, dashed and dash-dotted vertical lines indicateecaswitches based on
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Scenario as in Figure 4.7 P | P | P | Py | P | Ps| Pr| Ps
Face detection 73|72 | 75|61 |51|55|72]| 75
Face detection + recognition81 | 87 | 84 | 90 | 64 | 69 | 86 | 80

Table 4.4: The percentage of frames in which the view selected as bestpér

person by the methods based on face detection cues and ba&stkaletection
and recognition cues were labelled as a best one by a humanvebsThe best
view selection based on face recognition cues achievester It rate for each
person in the scene than best view selection based on fasetidatcues.

face recognition, face detection and ground truth, respeygt Ground truth is
obtained by best view labelling per person by a human obsefhe graph in Fig-
ure 4.8(a) shows a correct camera switch whBnturns his head froni; to Cy
and back again. The graph in Figure 463 shows a correct camera switch when
P7 is turning his head front’; to C5 and back again. The graph in Figure 4¢3
shows that the recognition df; in C3 andC} is nearly equal. In the beginning,
there are a lot of undesirable camera switches for the obsertiese are avoided
by allowing only one camera switch over a short time interval

Table 4.4 indicates the percentage of frames in which the gelected as
best view per person were labelled as best by a human obs&weerparing the
results from the method based on face detection cues andathothbased on face
detection and recognition cues, we conclude that our mgthmddes a powerful
means to boost the hit rate. We can also observe in Table dt4hé best view
selection based on face recognition cues achieves a godénfor each person in
the scene, or in other words, that it very often selects tee which also a human
observer judges as providing a good observation of the psiisca scene.
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Figure 4.8: Some examples of correct and incorrect selections of thevies

per person. The face recognition scores in the camg@tas. ., C, are indicated
by distinct grey values. The dotted, dashed and dash-deésital lines indi-
cate camera switches based on face recognition, face idetectd ground truth,
respectively.
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(a) (0)

Figure 4.9: Result of entering/leaving detection. In consecutive anwe suc-

cessfully track the faces of two persons (green bounding®oxThe bounding
boxes are getting larger, such that the behaviour of theopsris classified as en-
tering the room. Sometimes the face detection algorithmi@\and Jones [Viola

and Jones, 2001] detects non-faces (false positives). , Therracking does not
find corresponces in consecutive frames for these non-face$ that they are
classified as outliers (red bounding boxes).

4.4 Behaviour analysis applications

In this section, we present a few visual results of behavéoalysis applications,
such as detection of people entering or leaving a room, heagment detection
and speaker detection.

4.4.1 Entering/leaving detection

Entering/leaving detection is firstly performed by faceckiag using polynomial
curve matching as described in Section 3.3.1. Next, a bagndox which is
getting larger or smaller defines if a person is entering avileg, respectively.
A visual example of entering detection is found in Figure. 418 consecutive
frames, we successfully track (find correspondences) tofabes of two persons
(green bounding boxes). The bounding boxes are getting@rasgich that the
behaviour of the persons is classified as entering the roamme8mes the face
detection algorithm of Viola and Jones [Viola and Jones,12@@tects non-faces
(false positives). Then, the tracking does not find corrasps in the consecutive
frames for these non-faces, such that they are classifiedthsrs (red bounding
boxes).
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Figure 4.10: Result of head movement detection. Images (b), (¢) and (d)
show a head from a webcam video sequence, which is movingifgftlown, and
right, respectively.

4.4.2 Head movement detection

Head pose estimation is the process of inferring the oriiemtaf a human head
from digital imagery [Murphy-Chutorian and Trivedi, 2009h this work, head
pose estimation or head movement detection is firstly peréarby face tracking
using polynomial curve matching as described in Sectiorl3Brom the motion
vectors of the curve segment pairs, an average motion veefiimes in which
direction a person’s head is moving, as described in Se&i8rL.5. Then, if
the length of the head motion vector is larger than a predéfineeshold, the
head is classified as moving, otherwise the head is classifietbt moving. The
direction of the head motion vector classifies if the head &vinmg up, down,
right or left. For a face size d00x200 pixels and a frame rate df5 frames
per second, an actual value of the threshold for head movistessification is
pixels. Figures 4.10Qa), (b), (¢) and(d) show visual results for head movement
detection of a face, which is moving left, right, up and dovespectively.

We evaluate head movement detection on an video sequencedrier dur-
ing a news interview. We manually annotated 130 head moveEmneiwhich 45
are moving up, down, left or right and 85 are not moving. Thapgrin Figure 4.11
(a) diplays the lengths of the average head motion vectors @@ frames. When
listening to questions, the reporter is sometimes noddirigdicate that she has
understood the question. The nodding is also clearly \asiblthe directions of
the average head motion vectors, as shown in Figure @J11An example of
the head of the reporter that is moving down and up during imadid shown in
Figures 4.12) and(b), respectively. When answering questions, the reporter is
making small head gestures to reinforce her response.
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Figure 4.11: (a) and(b): Lengths and directions of the head motion vectors during
an interview. When listening to questions, the reporteoimatimes nodding to
indicate that she has understood the question. When amgmguiestions, the
reporter is making small head gestures to reinforce heoresp
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Figure 4.12: (a) and (b): An example of the head of a reporter that is moving
down and up during nodding, respectively.

Head movementdetection TP FN TN FP
Ours 39 6 75 10
[Cootes et al., 2002] 37 8 76 9

Table 4.5: The results of TP, FN, TN and FP for head movement detection pe
formed by our method and head pose estimation based on the Agipearance
Model (AAM) [Cootes et al., 2002]. Our method classifies heaation correctly

in 87,69% cases, which is comparable with the correct ¢laason percentage of
86,92% of the method based on AAM.

Table 4.5 shows the results of True Positives (TP), Falsatiegs (FN), True
Negatives (TN) and False Positives (FP) for head movemeattien performed
by our method and for head pose estimation based on an Agtigeadance Model
(AAM) [Cootes et al., 2002], where a TP is a correct clasdificaof a head that
is moving up, down, left or right, a FN is an incorrect classifion of a head
that is moving up, down, left or right, a TN is correct clagsifion of a head that
is not moving, and a FP is an incorrect classification of héatlis not moving.
The AAM learns the primary modes of variation in facial shape texture from
a 2D perspective. Then, an estimate of head pose can be @dtaynmapping
the appearance parameters to a pose estimate. Our metissiietahead mo-
tion correctly in 87,69% cases, which is comparable withctiieect classification
percentage of 86,92% of the method based on AAM.
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Figure 4.13: (a) and(b): Two examples of automated speaker detection.

4.4.3 Speaker detection

Visual Voice Activity Detection (VAD) is the detection of epch frow a video se-
guence by means of visual cues [Aubrey et al., 2010]. In tligkywisual VAD
or speaker detection is firstly performed by detection of gb/nomial curves
approximating the lips, as described in Section 4.2. Thé step is motion regis-
tration of the polynomial curves describing the lips, axdégd in Section 3.3.1.5.
Then, if the absolute difference between the vertical lergtthe motion vectors
of the upper lip and the lower lip is larger than a predefinedgshold, the person
is classified as speaking. For a face siz@fx200 pixels and a frame rate @b
frames per second, an actual value of the threshdldpizels. A visual example
of automated detection of a speaking person is shown in Eigur3(a).

We evaluate speaker detection on the same video sequentéhasprevious
section of head movement detection. We manually annotéi@dsfieaking ac-
tions, of which 54 are speaking and 96 are not speaking. Ampleof the speak-
ing reporter is shown in Figure 4.{13. The reporter shows increased lip motion
when answering questions as displayed in the graph in Figuir4. Table 4.6
shows the results of True Positives (TP), False NegativBg, (Frue Negatives
(TN) and False Positives (FP) for speaker detection peddrby our method and
for speaker detection based on an Active Appearance ModdWfAubrey et al.,
2007]. The method based on AAM uses appearance parametarspgaker’s
lips. Then, a Hidden Markov Model (HMM) dynamically modefetchange in
appearance over time. Our method classifies speaker aetectirectly in 74,00%
cases, which is comparable with the correct classifacteyngntage of 73,33% of
the method based on AAM. In general, the results of head memedetection are
better than those of speaker detection. This is becauserheaeiment detection
considers a large movement of the entire face, while spadtection considers
only a small movement of a small part of the face.
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Figure 4.14: The absolute difference between the vertical length of tleéian
vectors of the upper lip and the lower lip while speaking dgrn inteview.

Speaker detection TP FN TN FP
Ours 42 12 69 27
[Aubreyetal.,2007] 40 14 70 26

Table 4.6: The results of TP, FN, TN and FP for speaker detection. Ouhatet
classifies speaker detection correctly in 74,00% casegwhicomparable with
the correct classification percentage of 73,33% of the nteltlased on AAM.

4.5 Conclusion

In this chapter, we evaluated the matching techniques foympmial curves, as
proposed in Chapter 3, by face recognition and tracking. @veiclered security
applications, such as people identification and best viéecgen, and behaviour
analysis applications, such as entering/leaving detedtiead movement detection
and speaker detection. We evaluated the performance o&fedgsis applications
on a large number of representative databases and videerszegs Furthermore,
we compared the proposed methods with several techniqueee aftate of the
art. The face analysis results are comparable with or bistéer existing methods.
The advantages of our methods are simplicity, real-timpg@ries and many face
analysis tasks are handled by the same approach.

This research was published in four papers [Deboeverie,2@8b, Deboev-
erie et al., 2008a, Deboeverie et al., 2011, Deboeverie,é2@l2] in the proceed-
ings of international conferences.






Tracking of other objects

5.1 Introduction

Object tracking is the problem of identifying and followingage elements mov-
ing across a video sequence automatically. It has attrawtexh attention due to
its many applications in computer vision, including sultegice, perceptual user
interfaces, augmented reality, smart rooms, driver @suist, medical imaging and
object-based video coding. Since many applications haletirae requirements,
very low computational complexity is a highly desirable peay. However, also
accuracy is very important. Thus, it is of interest to depedm object tracking
framework that can address all of these diverse requiresnent

In this chapter, we propose a method for moving object dieteeind tracking.
Firstly, we represent scene observations with CEMs, agithestcin Section 2.5.
Secondly, we obtain motion vectors for these polynomialzesiin consecutive
frames by a matching technique based on distance and ityieasidescribed in
Section 3.3.1. Then, moving objects are detected by amaligiethod that clus-
ters comparable motion vectors, as described in Sectiad.3.3The result is a
robust detection and tracking method, which can cope withllsthanges in view-
point on the moving object. In this chapter, we considerkirag of other objects
than faces, such as vehicles, heart walls and water currents

The work in this chapter was published in [Deboeverie eP@l09a, Deboeverie
et al., 2009b].

This chapter is structured as follows: tracking of vehiclesart walls and
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water currents is considered in Sections 5.2, 5.3 and Sgentively.

5.2 Vehicle tracking

Applications such as traffic surveillance require a realketiand accurate method
for object tracking. We propose detection and tracking dficles with CEMs.
This work was published in [Deboeverie et al., 2009b]. We msdion vectors
to describe the motion of polynomial curves, which are madicbne-to-one by
a technique that considers both geometric distance andsityeprofile similar-
ity, as described in Section 3.3.1. Moving vehicles are atettand tracked by
a cluster algorithm for sets of comparable curve motionamsgtas described in
Section 3.3.1.5. We will show by experimental results thatroethod is stable for
small angle and scale changes, which is advantageous irattiértg of vehicles
in bends.

Related work on vehicle tracking

An overview of general object detection is described in JR&garding vehi-
cles, a large number of studies have been devoted to veletdetibn and track-
ing. Jelaca et al. [Jelaca et al., 2013] represent vehigheajances using sig-
nature vectors composed of Radon transform like projestafrthe vehicle im-
ages and compare them in a combination of 1-D correlationsderl with ap-
pearance changes they include multiple observations in eglticle appearance
model. Rios-Cabrera et al. [Cabrera et al., 2012] use Hiafdatures for vehicle
matching. These features are often successfully used fectothetection [Viola
and Jones, 2001], so reusing the same features for mat@doges the computa-
tional cost of the matching itself. The most informative Heeatures are selected
by a supervised Ada-Boost training in several cascadesarBivehicle finger-
prints embedded from those same Haar features are used ¢tb nedticles, as
well as to track vehicles in a tracking-by-identificatiosli&n. Shan et al. [Shan
et al., 2008] has proposed a measurement vector and an umisepleapproach to
learn edge measures for matching vehicle edge maps. Theneaige are com-
pared after spatial alignment. Wang et al. [Wang and Yagd82@xtended the
standard mean-shift tracking algorithm to an adaptivekeaby selecting reli-
able features from colour and shape-texture cues accotditigeir descriptive
ability. Using the shape for image understanding is a grgwapic in computer
vision and multimedia processing and finding good shaperigtscs and match-
ing measures is the central issue in these applications.t Al Xu et al., 2009]
proposed a shape descriptor of planar contours which reptethe deformable
potential at each point along a contour. Ferrari et al. et al., 2008] pre-
sented a family of scale-invariant local shape featureséar by chains of con-
nected roughly straight contour segments, and their usebject class detection.
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Xiong et al. [Xiong and Debrunner, 2004] examined real-tirakicle tracking by
combining a colour histogram feature with an edge-gradiased shape feature
under a sequential Monte Carlo framework. The difficultiest tthese methods
have to face are mainly viewpoint, illumination changes apgdearance changes,
which in some applications have to be addressed in real time.

Method of vehicle tracking

In this work, vehicle tracking is initialized by moving olsfedetection. A block
diagram with the method overview of moving object detectfoshown in Figure
5.1. Firstly, we extract CEMs in two consecutive framesragtinstances— 1 and
t, respectively. The method to extract CEM is thoroughly akpd in Section 2.5.
Then, two CEMs of the scene are matched using local curvehingtes described
in Section 3.3.1. As last step, moving vehicles are detdayealcluster algorithm
for sets of comparable curve motion vectors, as describ&ation 3.3.1.5. The
result is a CEM of the vehicle at time instanceA resulting bounding box which
encloses all polynomial curves of the CEM is computed.

Once detected, vehicles are tracked in consecutive framdgock diagram
with the method overview of object tracking is shown in Fg®:2. In a frame
at time instance, we extract a CEM in the spatial neighbourhoud of the vehicle
at time instance — 1. Then, the CEM of the vehicle @t— 1 is matched with
the local CEM at. From the curve correspondences, the CEM of the vehidle at
is extracted by an update of curves in the CEM of the vehicte-ail: curves at
t — 1 without correspondences are removed from the clustergweliives at with
correspondences are introduced in the cluster.

Evaluation of vehicle tracking

The proposed methods for vehicle detection and trackinguaieated on differ-
ent video sequences. We consider real traffic surveillaidzog in tunnels (Seq.
1 with a video resolution 0f20x576 pixels), as well as moving vehicles moni-
tored in a parking area (Sef.with a video resolution 01920x1080 pixels). An
example of a vehicle passing of front of the camera in a tuim®éq.1 is given in
Figure 5.3a). As ground truth, we manually annotat&tland20 passing vehicles
in Seq.1 and Seq2, respectively.
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Figure 5.1: This block diagram represents the method overview of mogljgct
detection. Firstly, we extract CEMs in two consecutive fegnat time instances
t — 1 andt, respectively. Then, two CEMs of the scene are matched Usazj
curve matching. As last step, moving objects are detecteal dyster algorithm
for sets of comparable curve motion vectors. The result i€ ¥ ©f the object at
time instance.
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Figure 5.2: This block diagram represents the method overview of oljacking.

In a frame at time instancg we extract a CEM in the spatial neighbourhoud of
the object at time instange— 1. Then, the CEM of the object at- 1 is matched
with the local CEM at. From the curve correspondences, the CEM of the object
att is extracted by an update of curves in the CEM of the objettat: curves

att — 1 without correspondences are removed from the clustergvehiives at

CEM matching
(Section 3.3.1)
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with correspondences are introduced in the cluster.
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Figure 5.3: (a): An application example of tunnel surveillance: a vehicdsging
by in the camera view in a tunnéhb): An example of occluding polynomial curve
clusters.

Vehicle detection (%) Vehicle tracking (%)

Seql Seq2 Seql Seq2
Based on CEM features 84,29 95,00 78,57 85,00
Based on Haar-like features 72,86 85,00 67,14 70,00

Table 5.1: Results of vehicle detection and tracking on two video sageg (Seq.

1 and Seq.2) of our method based on CEM features and of a method based on
Haar-like features, respectively. We can clearly noticg the method based on
CEM features outperforms the method based on Haar-likeifest The reason

for this is that the method based on CEM features can bettetl@ahanges in
viewpoint, illumination changes and appearance changes.

We count a correct vehicle detection if 1) the vehicle is cleig correctly in
the first25 frames (withinl second) since the vehicle was entirely visible, 2) the
enclosing bounding bounding box at the entrance zone hasstt 80% overlap
with the bounding box from the ground truth. Beside, we caunbrrect vehicle
track if 1) the vehicle is detected correctly at the entrancee, 2) the vehicle
is followed correctly from the entrance zone to the exit zoBjethe enclosing
bounding bounding box at the exit zone has at least 80% qweith the bounding
box from the ground truth. We make a comparison with vehideection and
tracking based on Haar-like features. Table 5.1 preseetsesults for vehicle
detection and tracking. We can clearly notice that the ntkthased on CEM
features outperforms the method based on Haar-like featditee reason for this
is that the method based on CEM features can better handigeba viewpoint,
illumination changes and appearance changes.
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Figure 5.4: Graphs plotting the length and direction estimates of thecle mo-
tion vectors for the trajectory of a vehicléz): Length estimates in pixels of the
vehicle motion vectors for the trajectory of a vehicle (bine) against the ground
truth (red line). The RMSE for the length estimation is 0.¥gfs. (b): Direction
estimates in radians of the vehicle motion vectors for thgttory of a vehicle
(blue line) against the ground truth (red line). The RMSEtfer direction estima-
tion is 0.07 radians.
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Figure 5.5: Tracking polynomial curve clusters in which the polynongatve
appearance significantly changes throughout the sequence.

The accuracy of the algorithm for clustering computatiors waed and eval-
uated on the example application in which a sequence shoasdriging in one
lane. Our method is evaluated by comparison to ground trat, dvhich is man-
ually created by indicating the position of the car througiitbe image sequence.
To assess the accuracy of the vehicle motion vectors forafectory of a vehicle,
we compute the RMSE of the length and direction estimatessigéne ground
truth. The graph in Figure 5.4) plots the length estimates in pixels of the ve-
hicle motion vectors for the trajectory of a vehicle (blugel against the ground
truth (red line). The RMSE for the length estimation is 0.4egté. The graph in
Figure 5.4b) plots the direction estimates in radians of the vehicle arotiectors
for the trajectory of a vehicle (blue line) against the grdaruth (red line). The
RMSE for the direction estimation is 0.07 radians.

The tracking algorithm for clusters of polynomial curvesaaproves the work
in situations where the visual appearance of the objecslisally changing through-
out the video sequence. An example is given in Figuregd).and(b), where the
vehicle takes a turn, and our method succeeds in trackinghidueging polynomial
curves.

Our method can be still improved, e.g. one of the problemscoatipletely
solved at the moment is occlusion. When part of the vehicts gbscured by
other objects, we cannot keep track of the polynomial culvsters. An example
is shown in Figure 5.3b). In our experience throughout experiments, a minimal
fraction of the object surface must be visible for our mettmdiork. A possible
solution could be offered by a linear prediction of the obgeposition and size
using previous parameters of the affine transformation peded when a sufficient
part of the object is still visible.
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5.3 Heart wall tracking

In vivoimaging introduces challenges in automated analysis dhgtolevels of
noise and the variability in appearance of the specimentover Breathing of the
living animal causes additional complications. Automatadking of blood cells
for intravital microscopy is necessary to increase theiefiicy of inflammation
research by significantly reducing the number of hours reguio analyze data.
Automated analysis can also provide more accurate displcemeasurements
and velocity calculations by removing investigator biasr@ntly, the automated
analysis of video data of the pumping heart and the link betwfuid flow and
morphological heart diseases in developing embryoniebeate hearts is a hot
topic. Specifically, extracting meaningful velocity dibtrtion is a difficult re-
search challenge, which requires the analysis of hundridasad cells.

In the human embryo, the heart begins to pump blood abou theeks post
conception. At this stage the heart has neither chambengafas but only con-
sists of a contractile tube. Little is still known about theévihg forces behind
cardiac development. One hypothesis states that the mgeplesis of the heart
is guided by blood flow patterns. To validate this hypothesisearchers study
optically transparent zebrafisB&nio rerio) embryos, which are morphologically
comparable to human embryonic hearts at this early stageceS$hey are opti-
cally transparent, they are of obvious scientific use toythd beating heart. The
tracking of blood cells and heart walls is used to assessfteete of medication
for premature fetuses.

Method of heart wall tracking

In this section, we propose a new fast and reliable algorithderive the cardiac
output by tracking the motion of blood cells and heart wallsnhage sequences.
An important property of our algorithm is that the trackinglee heart walls and
blood cells are treated jointly and become linked procedafespropose to model
the bent heart walls with polynomial curves, as describe8antion 2.5. The
polynomial curves are tracked over time using a technigaé ¢bnsiders both
geometric distance and intensity, as described in Sect®i.3As we will show
in the results, this leads to an accurate estimation an#litgof the heart walls.
Compared to active contours we achieve a reduction of the RMigh 14% for
the position of the heart walls. Subsequently, this esénimused to define the
region of interest for the blood cell intensity correlatiofo segment blood cells,
we model them as circular regions and find them with the Cidagh Transform
(CHT) on greyscale images for a limited range of radii. Theles are tracked
with intensity correlation techniques, from which the @ty in the fluid flow is
estimated. To improve the reliability, the region of intran which correlation
takes place for each blood cell depends on the position dighet walls.
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The main contribution in this work is that we show that thedalaells and
heart walls can be detected and tracked with relatively Emgpometric features.
The reliability of the tracking comes in part from the coupliof blood cell track-
ing and heart wall tracking. In the velocity of the fluid flowdam the position
of the heart walls, we can distinguish three phases of theppjugmechanism
of the heart, namely the suction, the compression and thgatbn phase. The
fluid flow reacts with a delay to the motion of the heart wallse We this rela-
tion to achieve a significantly decrease of false matchds 56t5%. This results
in a much improved estimation of the velocity in the fluid flowhis work was
published in [Deboeverie et al., 2009a].

We evaluate our methods with a ground truth, which is magpuatde by
selecting and linking the blood cells and the heart wallse €éll detection and
tracking are evaluated over 91 frames, since a cell crossehedart tube in 91
frames average. However, the heart walls detection andlihg@re evaluated
over 148 frames, since the position of the heart walls aregierin 148 frames
average.

Related work

Jeong et al. [Jeong et al., 2006] have proposed a method gfidorg the veloc-
ity and deformation of Red Blood Cells (RBCs) in capillarywerks. Recently,
Sbalzarini et al. [Sbalzarini and Koutmoutsakos, 2005kdmved a feature track-
ing algorithm for the analysis of particle motion in biologl systems. Particles
are tracked by minimizing the association cost computeédas distance and
trajectory. Eden et al. [Eden et al., 2005] proposed a metfi@dmputing flow
characteristics of circulating particles by automatic&thcking circulating leuko-
cytes in in vivo in larger vessels than capillaries. Thescalle detected based on
color and temporal features using neural networks. Intieiglg, none of these
papers treated both the heart wall motion and the blood fldacitg to derive the
cardiac output.

Measurement of the position of the heart wall

We measure the positions of the heart wall over time on a nigndefined
line segment, as shown in Figure &f. The position is initialized and updated
by the intersection point of the outer polynomial curve df treart wall with the
line segment. In a new frame, the motion vectors of the patyiabcurves which
intersect the line segment, are projected on this line. Timeent position of the
heart wall is the previous position added with an averagénefléngths of the
projected motion vectors. The resulting curve is shown iguFé 5.60). We
distinguish the three phases in the positions of the hedlit wee suction, the
relaxation and the compression phase.
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Figure 5.6: (a): The heart wall modelled with polynomial curves, indicated
red colour. We measure the positions of the heart wall ovee tn the blue line
segment.(b): The blue and the red curve correspond to the position etsad
the heart wall and the ground truth, respectively. We digtish the three phases
in the positions of the heart wall: the suction, the relaxaand the compression
phase.
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To assess the accuracy, we compute the RMSE of the posititimedieart
wall obtained with polynomial curves against the grounthirChe RMSE is 1.43
pixels, when computed over 148 frames.

Comparison with active contours

We use the technique from Chunming et al. [Li et al., 2005p@ometric active
contours that forces the level set function to be close t@aesl distance func-
tion, and therefore completely eliminates the need of tretlgee-initialization
procedure. The variational formulation consists of anrimiéenergy term that
penalizes the deviation of the level set function from a s@ydistance function,
and an external energy term that drives the motion of the leee set toward the
desired image features, such as the heart wall. The positibthe heart wall are
measured as the positions of the active contour on the ligeeset, as shown in
Figure 5.7a) and(b).

To assess the accuracy of the positions of the heart wallngatavith active
contours, we compute the RMSE of the positions of the activeaur against the
ground truth. The RMSE is 1.63 pixels, when computed overfita@®es. This
is 14% higher than for polynomial curves. As for trackings thansformation in-
variance of the dissimilarity functions used for matchir@ymomial curves are
difficult to extend to closed active contours. In fact, $pli contours into the
segments necessary for tracking heart walls would regeigengntation criteria
similar to those we use for contour segmentation. Polynbouieves offer sim-
plicity and at the same time are sufficiently accurate to rhbdart walls.

Modelling blood cells with circles using the CHT

The general idea of the Hough transform is to define a mapporg the pre-
processed feature space to a parameter space, the so calledwuator, where
each pixel that belongs to the contour of an object in the ersgace is mapped
to the same point in the accumulator. The objects in the insageletected by
post-processing local maxima in the accumulator. We us€Hi€ for greyscale
images, based on the gradient field of an image. The rangalibfisdimited to
r =6,7,8,9 pixels. The result of the CHT on a frame is shown in Figuré&).8
The circles on locations with no motion are excluded. Thidiomois obtained
with Basic Background Subtraction.

The detection rate of cells is about 98.90%, this is an awe0d§0 detections
over 91 frames, for each of five cells that we follow. Compuiedr 148 frames,
the average percentages of true and false positives ar&é%and 26.47%, respec-
tively. The false positives are not a real problem for thanestion of the velocity.
They can be excluded either because they have a match onrtieelseation or
because the correlation is too low.
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Figure 5.7: (a): The heart wall segmented using an active contour, indicate
red colour. We measure the positions of the heart wall on lixe lme segment.
(b): The blue and the red curve correspond to the position essraf the heart
wall and the ground truth, respectively.
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Figure 5.8: (a): The result of the CHT(b): The circles with their motion vectors
that remain after matching. The motion vectors are progeotethe red lineseg-
ment, which is a rough approximation for the moving direatio the fluid flow.
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Figure 5.9: The velocity estimates in the fluid flow over 148 frames. Theé¢h
phases of a pumping heart are indicated: the relaxatiorcdhmpression and the
suction phase.

Tracking of circles with local intensity correlation

Since we have well-contrasted, spatially isolated cellx&d shapes we can
use intensity correlation for the matching of circles. Tviegles A and B in con-
secutive frames have a match, if the Euclidean distanceedf tientres is lower
then a radiug? and if they have a maximized correlation coefficient highenta
thresholdC', the remaining circles in the result are shown in Figuréig.8Actual
values forR andC' are 15 pixels and 0.85. The sizef the square correlation
window depends of the radiug, of the circle A:l = 2r4 + 1.

The main direction of the fluid flow is roughly estimated frdme histogram of
directions in which the cells move. Projection of the motiaators of the circles
on this main direction gives us the spatial velocity of thédflilow, as shown in
Figure 5.8b).

We define the success rate of cell tracking as the ratio ofdsaimwhich the
cell is detected and tracked, to the total number of frameakénsequence. We
have a tracking percentage of 90.11%, this is an average @d8@ tracks over 91
frames, for each of five cells that we follow.



132 CHAPTERS

Blood flow velocity

Pixels/frame
121
10F
»
iy
8+ ® xx
% ® %
x ®
6 x * %
% o X * %
LB
al x %
x hgE % % o
] xR
®
b xx
2+ X
Py
e
%
0 1 1 1 1 1 »e 1 1
8 10 12 14 16 18 20
Position heart wall Pixels
_ (a)
Pixels/frame
12
101 q
8 L 4
6 L .
4 L .
Al Relaxation Suction |
M“Zompressi ONn WA
0 . . , . . .
20 40 60 80 100 120 140
Frames
(0)

Figure 5.10: (a): The correspondences between the positions of the hedrt wal
and the velocities in the fluid flow. The velocities in the fldliolv are ten frames
delayed.(b): The improved velocity estimates in the fluid flow.
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Measurement of the velocity in the fluid flow

Figure 5.9 shows the velocities for one cycle of the fluid fldw.this curve,
we can indicate the three phases of the pumping mechanisimedfdart: the
relaxation, the compression and the suction phase.

Improved fluid flow estimation

In the graphs of the velocities in the fluid flow and the posisi@f the heart
wall, we can distinguish three similar phases of the pumpimeghanism of the
heart, namely the suction, the compression and the retaxpliase. The velocity
in the fluid flow react with a delay of ten frames to a change isitgm of the
heart wall. The correspondences over time between thdqgusitf the heart wall
and the velocities in the fluid flow are plotted in Figure 5(40. We use these
correspondences to achieve a significantly higher matchtegor circle matching
by introducing a region of interest. In our results, cirdlesonsecutive frames at
timest — 1 and¢ can match, if the Euclidean distance between their cerdriesa
certain range of radik;, whereR, is dependent to the average positiBnof the
heart wall in tk}le frame at time

R, =1[0,5]if > P(t — 10— q)/5 € [15,20] and

q=0
4

Ry =[3,15]if > P(t—10—q)/5 € [5,15[.
=0
Through tf;]is simple criterion, the tracking percentageciaeles increases to
95.60%. This is an average of 87 good tracks, when followweg d¢ells over 91
frames. The percentage of false matches is decreased wito5Eigure 5.1Qb)
shows the much more smoothed velocity estimates in the flovd When com-
pared to the velocity estimates in Figure 5.9.

5.4 Water current tracking

In this section, we demonstrate that polynomial curve modet not only suited
to model and track rigid objects, but also to registrate amtif non-rigid objects,
such as water currents. Firstly, CEMs are extracted in twtseoutive frames
of water current. The method to extract CEM is thoroughlylaixed in Section
2.5. Figure 5.11 shows the segmentation of water currentiataral scene into
polynomial curves. Then, the two CEMs of the scene are mdtciseng local

curve matching as described in Section 3.3.1. Figure 5.d%/stthe matching
of polynomial curves in two consecutive frames of water eatr Corresponding
polynomial curves are indicated by the same colour. As k&g, snoving water
current is detected by a cluster algorithm for sets of cowplarcurve motion
vectors, as described in Section 3.3.1.5. Figure 5.13 shmusiotion registration
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(a)

Figure 5.11: (a): A frame of a water current sequence in a natural scéneThe
segmentation of a frame of a water current sequence intopotial curves.

Figure 5.12: (a) and(b): Polynomial curve matching in two consecutive frames
of a water current sequence. Corresponding polynomialesuave indicated by
the same colour.

of water current. The moving and stationary polynomial egrare indicated by
the colours red and green, respectively. The polynomialesirepresenting the
water current are nicely separated from the other part af¢keee.

5.5 Conclusion

In this chapter, we evaluate tracking of other objects tlaaed, such as vehicles,
heart walls and water currents, based on fitting, matchirnignaotion registration
of polynomial curves. The result is robust tracking of rigiad non-rigid objects,
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SN

Figure 5.13: Motion registration in a water current scene. The moving stad
tionary polynomial curves are indicated by the colours medigreen, respectively.
The polynomial curves representing the water current aelyiseparated from
the other part of the scene.

which can cope with small changes in viewpoint on the movibigat.

This research was published in two papers [Deboeverie,&2@9a, Deboev-
erie et al., 2009b] in the proceedings of international eogrices. This work is
part of a contribution to [Maes et al., 2009].






Applications of segmented face
approximation

6.1 Introduction

Segmented face approximation has its applications in Vramunication. The
objective in visual communication is to send and store ilagfefaces at a low
bit rate, such that the faces are still recognizable andtiieatompression does
not prevent remote face analysis. For instance in automaded conferencing,
intelligent cameras employ face analysis systems with@ardbface databases. In
this application, a compact face representation will reduocessing and storage
cost. ldeally for video analysis, such a representationivbe based on a perfect
segmentation of a face into all its major parts, i.e., foeghaose, eyes, lips, etc.
For example, itis important that lip motion follows speeeyclosely with almost
no time delay, which is much easier to accomplish when thgémapresentation
already contains the lips as separate items.

In this chapter, we approximate facial contour pixels araialamage inten-
sities with maps of polynomial curves (CEMs) and maps of poiyial surfaces
(SIMs), respectively. The polynomial representation jfes good approximation
of facial features, while preserving all the necessaryildatéthe face in the recon-
structed image. When compared with different compressiethads, we achieve
higher compression ratios and better recognizable fackesvabit rates. This is
confirmed by correct identification percentages obtainefbg recognition algo-
rithms on the compressed data. Furthermore, the curvhaased surface shape



138 CHAPTERG

information facilitates many tasks in automated face aislylemonstrated in this
chapter by face verification performed on the polynomiatespntation.

The work in this chapter was published in [Deboeverie eal13c].

This chapter is structured as follows: in Section 6.2, weuss related work.
In Section 6.3, we shortly explain the method of segmented &pproximation.
In Section 6.4, we thoroughly evaluate the proposed method.

6.2 Related work

We give an overview of the most recent approaches that useesggtion-based
image approximation. Biswas [Biswas, 2003] proposed a seggtion based
lossy image compression (SLIC) algorithm. The segmentatbeme recursively
uses an object/ background thresholding algorithm basexboditional entropy.
SLIC encodes images through approximation of segmentéanely 2-d Bezier-
Bernstein polynomials, contours by 1-d Bezier-Bernsteitypomials (line and
arc segments) and texture by a Huffman coding scheme usitbgritdiscan on
texture blocks. Other popular approaches to segmentatised image approx-
imation are curvilinear-based and region-based. Cuealirbased approxima-
tion produces tree representations that specify the beigsdaf regions. Some
examples are curvelets [Candés and Donoho, 1999], weddBlehoho, 1999],
beamlets [Donoho and Huo, 2001], contourlets [Do and Met@003], platelets
[Willett and Nowak, 2003], bandelets [Pennec and MallaD%tand geometric
wavelets [Alani et al., 2007]. Region-based approximatiglies on tree struc-
tures to describe the interior of the regions. It includeade quadtree decom-
position and binary space partitioning. In image quadtespchposition [Samet,
1984, Sullivan and Baker, 1994], each partition is recelgigubdivided into more
homogeneous quadrants. In binary space partitioning (BS&jha et al., 1996,
Shukla et al., 2005], the image plane is recursively biipanted along arbitrarily-
orientated linear boundaries, constrained by a leastregtgaror measure or a
contour-matching criterion. In the latter two techniquéhe image data within
each convex polygonal image region can be approximatedvipylegree polyno-
mials. More recently, Kassim et al. [Kassim et al., 2009kpreed the quad-binary
(QB) tree, which is a compromise between the rigidity of thse space structures
of quadtrees, which allows spatial partitioning for locaalysis, and the generality
of BSP tree, which facilitates the creation of more adaive accurate represen-
tations of image discontinuities.

A number of algorithms are available for image segmentadioth compres-
sion, but relatively few algorithms consider the treatmeihface images [Pap-
pas, 1992, Li et al., 1993, Moghaddam and Pentland, 1995t Blu 4996, Lanitis
etal., 1997, Sakalliand Yan, 1998, Ruppertsberg et al.8 19@ns and Akamatsu,
1998, Bartlett et al., 2000, Gerek and Cinar, 2004, VilaeEaret al., 2006, Elad
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etal., 2007,Brytand Elad, 2008, Somasundarama and Ppsria2011]. Among
the segmentation methods, only a very few algorithms aréndeaith the seg-
mentation of face images into meaningful regions. Pappas §Pappas, 1992]
considered segmentation of face images into smooth ssrizing a generaliza-
tion of the K-means clustering algorithm [Tou and Gonzale¥/4]. Gerek et al.
[Gerek and Cinar, 2004] presented segmentation of faceamango face regions
with vector quantization clustering [Yoo et al., 2002]. Mageneral techniques
to segment the face image into different regions are mar&etrolled watersheds
[Jackway, 1996], morphological operators [Bosworth antbAc2000, Salembier
et al., 1996], region growing [Adams and Bischof, 1994, Yemieal., 1997, Pohle
and Toennies, 2001, Qin and Clausi, 2010, Kanga et al., 2@&REtic algorithms
[Aravind et al., 2002] combined with gradient informatiomean shift [Comaniciu
and Meer, 2002], normalized cuts [Shi and Malik, 2000], powatersheds [Cou-
prie et al., 2011] and many other strategies [Mufioz et aD3P20

Among the compression methods, Elad et al. [Elad et al., p@@mpressed
face images using vector quantization (VQ) [Gersho and Gta95]. Bryt et
al. [Bryt and Elad, 2008] compressed face images based oK+4B¥D algo-
rithm [Aharon et al., 2006]. Both techniques train dictidea on predefined face
image patches, and compress each new face image accordmgstodictionar-
ies. An essential pre-processing stage for these methadadce image alignment
procedure, where the handled images are geometricallyrdefbinto a canonical
form, in which facial features are located at the same dpatations. In con-
trast to above-mentioned techniques, our method does edttn@ning and face
alignment, which is advantageous in real-time face amalysplications.

6.3 Method

Greyscale face images are segmented into meaningful suségments with an
adaptive region growing algorithm based on low-degreerpmtyial fitting, as de-
scribed in Section 2.6. We represent the grey values inceigagments as polyno-
mial surfaces of zeroth, first or second degree, as desdritiettion 2.6.3. These
polynomials are either flat, planar, convex, concave orbelike saddle surfaces,
as described in Section 2.6.4. In order to obtain a compéete fepresentation,
the contours separating the surface segments are segnm@ntedntour segments
and represented by low-degree polynomial curves, as thestin Section 2.5.
The contour segments are represented by their straighteg@md concave parts,
which are polynomial curves of zeroth, first or second degreelescribed in Sec-
tion 2.5.4.

We represent each coefficient of the polynomial curves anhses with a
variable bit length by performing uniform quantization afdffman entropy cod-
ing. Firstly, polynomial coefficients are quantized by tration to four bytes in
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fixed point notation, including ten bits for the mantissaspiwvhich we experi-
mentally decided to be sufficient to capture the full rangpassible polynomial
coefficients (the quantization error is approximately yerdhis means in fixed
point notation that we have a range[ef23! /210 (231 — 1)/219]. Then, we re-
move coding redundancy by applying a straight-forward hhaif table, such that
the polynomial coefficients get a variable bit length. Hudfmcoding [Huffman,
1952, Gonzalez and Woods, 2001] is an entropy encodingitiigoused for loss-
less data compression. The term refers to the use of a vadliadth code table
for encoding a source symbol, where the variable-lengtke ¢adle has been de-
rived in a particular way based on the estimated probaluificcurrence for each
possible value of the source symbol. The coordinates ofritigoixels of the poly-
nomial curves are represented by the number of bits neeaegbtore the maximal
image size. For instance twelve bits is sufficient to captumgaximal image size
of 212 pixels.

In this chapter, we show that surface and contour segmentalliows parame-
trizing a face by the coefficients of the polynomial curved aorfaces and the
coordinates of the endpoints of the curves in a few hundreesbyTransmitting
these face parameters over the network is very efficientladniethod preserves
all the necessary details of the face in the reconstructagém

Curvature-based surface classification, as describeddtioBe2.6.4, delivers
relevant information to perform face analysis, demonsttat this section by face
verification performed on the polynomial representatiohe Task of face verifi-
cation is to verify a claimed face detection by analysinganeéd image of the
face. In our case, face verification is performed on the pmiyial representation.
It uses two simple statistics from the output of our face espntation, namely the
number of segments and the curvatures of the polynomiadsest To detect if a
bounding box contains a face if we use the following hewrigtie number of seg-
ments is low (e.g< 20) and there are four large concave polynomial surfaces (e.g.
> 225 pixels) of the forehead, the cheeks and the chin in a crosigeoation. An
example of such a cross configuration is shown in Figure @lpractice, four
segments are in a cross configuration, if the connecting lieéween their centres
of gravity intersect each other in the middle (e.g. betwdgardd 60 percent of the
length of the lines) and at a certain angle (e.g. between 8088 degrees).

We evaluate segmented face approximation on the AR facdasga{Mar-
tinez and Benavente, 1998] and different video sequences, as the standard
video test sequenc&alesmanClaire andCarphone For compression ratios be-
tween 10 and 65, we achieve a PSNR between 40dB and 30dB, tikeafthe
lossy image compression techniques. We also demonstedtiatie detection and
recognition performs better on images reconstructed wittsegmentation-based
approximation than reconstructions with different conggien methods, such as
the JPEG2000 [Taubman and Marcellin, 2002], the VQ methtaf[Et al., 2007],
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Figure 6.1: The convex, concave or saddle like behaviour of the polyabsuir-
faces in a face image, indicated by the colours magenta, aydryellow, respec-
tively. Four large concave polynomial surfaces of the feh the cheeks and the
chin are in a cross configuration.

the K-SVD method [Bryt and Elad, 2008], the QB-tree methodg&im et al.,
2009] and anL» variant of our method. For low numbers of bytes, we achieve
higher PSNR and better recognizable faces. This is confitmgezbrrect identi-
fication percentages on the approximated images obtainétebyiola and Jones
face detector (VJ) [Viola and Jones, 2001] and face recmgnitsing Principal
Component Analysis (PCA) [Turk and Pentland, 1991]. Cocivig results for
face analysis based on the curvatures of the polynomiasesfare demonstrated
by face verification on faces found by the VJ face detectoris Tdce detector
is widely used. However, it produces many false positivasortler to reduce the
fraction of false positives, we use segmented face anatyserify if the bounding
boxes produced by this face detector actually contain faces

6.4 Evaluation

Segmented face approximation evaluation

In this paragraph, we evaluate the proposed segmenteddpoexdmation with
polynomial surfaces and curves (PSC) on the AR face datgbéasdinez and
Benavente, 1998]. The AR face database consist of two sefitdgrteen face
images of 136 persons under various circumstances, withal€smand 60 females.
The face images have an image size of 192x144. The resubksriesl in this
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(a)

Figure 6.2: (a) and(b): Approximated face images with PSC and JPEG2000,
respectively. They both need an equal number of bytes. Hemvew) is sharper
than(b).

chapter are obtained by evaluating the entire databaset, Wexcompare our
method with different compression methods, consideringmession ratio, face
detection and face recognition performance.

We compare our PSC representation with the JPEG2000 [TaubrhMar-
cellin, 2002], the VQ method [Elad et al., 2007], the K-SVDthal [Bryt and
Elad, 2008], the QB-tree method [Kassim et al., 2009] and.awariant of our
method, for faces of the AR face database. Under the saméticorscof PSNR
and the number of bytes, we consider face detection usinglifiece detector [Vi-
ola and Jones, 2001] and face recognition using PCA [TurkRerttland, 1991]
on the approximated images. Figures 6.2 and (b) show approximated face
images with PSC and JPEG2000, respectively. They both meedwaal number
of bytes. However(a) is sharper thaii).

The graph in Figure 6.3 plots the compression ratio versi®8NR. For low
PSNR, which corresponds to low approximation accuraciescbmpression ra-
tios with PSC compression are higher than those produceldgigthniques con-
sidered in our comparison. When examining the relationsbtpveen the number
of bytes and image quality, we find that PSC compression ofatpes existing
techniques for low approximation accuracies.

The following results demonstrate that faces in coded fatages are still
recognizable. Thisis important for instance when we penfiemote face analysis
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Figure 6.3: PSC compression is compared with the JPEG2000, the VQ method
the K-SVD method, the QB-tree method and & variant of our method, for
faces of the AR face database. The graph plots the compnesgio versus the
PSNR. When compared with existing techniques, PSC conipreashieves bet-

ter compression ratios for low approximation accuraciesrédver, thel, ., norm
outperforms thd., norm.

algorithms on coded face images in automated video corfargn

The graphs in Figures 6(4) and(b) plot the VJ face detection rate on approx-
imated face images versus the PSNR and the number of byspgatazely. At the
core of this face detector is a cascade of complex classifi@sh complex classi-
fier consists of several simple classifiers that detect fipétaarlike features. An
image region is classified as being a face if the region hasepleall classification
stages of the cascade. The graphs show that for low numbérdes as well as
low PSNR, the face detection rates with PSC compressioniginehthan those of
the techniques considered in our comparison.

The graphs in Figures 6(&) and(b) plot the PCA-based face recognition rate
on approximated face images versus the PSNR and the numbgtesf, respec-
tively. In this experiment of PCA-based face recognitiong geries of thirteen
available face images per person is used for training. Aedutisten eigenfaces
(principal components) that correspond to the highestrwiglees is selected to
recognize face images. These eigenfaces define the faoe raipal compo-
nent space).
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Figure 6.4: PSC compression is compared with the JPEG2000, the VQ method
the K-SVD method, the QB-tree method and & variant of our method, for
faces of the AR face database. Grapsand (b) plot the VJ face detection rate
on approximated face images versus the PSNR and the numbgtesf respec-
tively. When compared with existing techniques, PSC cosgioa achieves better
results for face detection for low numbers of bytes as welbasapproximation
accuracies. Moreover, the,, norm outperforms thé, norm.
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Figure 6.5: PSC compression is compared with the JPEG2000, the VQ method
the K-SVD method, the QB-tree method andiarvariant of our method, for faces

of the AR face database. Graphg and(b) plot the PCA face recognition rate
on approximated face images versus the PSNR and the numbgtesf respec-
tively. When compared with existing techniques, PSC cosgioa achieves better
results for face recognition for low numbers of bytes as waellow approximation
accuracies. Moreover, the,, norm outperforms thé, norm.
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(a)

Figure 6.6: (a), (b) and(c): The convex, concave and saddle polynomial surfaces
in segmented face images, indicated by the colours mageydaa, and yellow,
respectively.

For each known person, the training face images are projécte the face
space to obtain the training eigenfeature vector of thagrer Then, another se-
ries of thirteen available face images per person is firsedahd then used for
testing. Therefore, we project a test face image into the §pace to get the test
eigenfeature vector. Face recognition is performed by @ispn of a test face
image and a set of training face images of a person by cailegltite Euclidean
distance between the training eigenfeature vector andettecigenfeature vec-
tor. We determine which person provides the best descnigti@n input test face
image by finding the set of training face images of the perkahminimizes the
Euclidean distance. The face recognition counts a cordecttification when the
best set of training face images is the correct person. Tapghgrshow that for
low numbers of bytes as well as low PSNR, the face recognitites with PSC
compression are higher than those of the techniques caadigeour comparison.

When compared with existing techniques, PSC compressibie\as better
results for face detection and face recognition for low narstof bytes as well
as low approximation accuracies. In contrast to existicgrieues, our approxi-
mated face images are better recognizable. When compaengstige of thé
and theL, fitting cost in an adaptive region growing process, we cahelhat the
L, norm outperforms thé, norm.

Face verification evaluation

In this section, we demonstrate that curvature-basedmistaape classification
facilitates automated face analysis, demonstrated ind®gyvarification performed
on the polynomial representation. The method of face vaiifia is explained in
Section 6.3. Figures 6.G:), (b) and (¢) show the concave, convex and saddle
surface segments, indicated by the colours cyan, magedtgediow, respectively.
We find concave polynomial surfaces for the forehead, thelch¢he chin and the
nose, while the throat is often a saddle surface.
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Face detection TP FN FP
VJ without verification 946 379 235
VJ with PWS verification 946 379 78
VJ with PSC verification 946 379 17

Table 6.1: The results of TP, FN and FP for face detection performed ewnitheo
test sequenceSalesmanClaire and Carphone The total number of frames is
1325, of which each frame contains a face. Face verificaiance performed
with the segments produced by the PSC method as well as otitéhwisegments
produced by the power watersheds method (PWS) [Couprie,e2Gl1]. Face
verification drastically decreases the number of FP.

Figure 6.7: Three bounding boxes produced by the VJ face detector, afvihio
(blue ones) are rejected after face verification.

Face verification is performed on the bounding boxes prodlbgehe VJ face
detector. As a comparison, face verification is once peréormith the segments
produced by the PSC method as well as once with the segmettsgad by the
power watersheds method (PWS) [Couprie et al., 2011]. Bestperformed on
different video sequences, such as the standard videoggaescesSalesman
Claire andCarphone The total number of frames is 1325, of which each frame
contains a face. Table 6.1 shows the results of True PosifiMe), False Negatives
(FN) and False Positives (FP). Face verification signifiyatecreases the number
of FP produced by the VJ face detector, which indicates thatproposed face
verification is meaningful. However, the segments prodwegiiithe PSC method
are more suited to perform face verification, since the nurobEP decreases the
most. Figure 6.7 shows three bounding boxes produced by dhHfadé detector,
of which two (blue ones) are rejected after face verificatsgmerformed. Because
FP are discarded, face verification contributes to the tataipression.
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6.5 Conclusion

Segmented face approximation with polynomial surfacescainges is quite natu-
ral and offers a compact and reversible way to preserve gengal characteristics
of the original face image. Face images are represented thyanar, convex,
concave and saddle polynomial surfaces with a variabladitirror. The bound-
aries are represented by straight, convex and concavescurkies way, we are able
to represent recognizable faces using a few hundred byttesrdnan a few hun-
dred kilobytes, which is very useful in visual communicatapplications, such as
automated video conferencing. Moreover, the polynomigbses correspond to
meaningful facial features. When compared to existing @xipration techniques,
we achieve higher compression ratios and better recogeifates. Furthermore,
the polynomial surfaces are well suited to automated faatysis. Future research
will focus on compression of the polynomial coefficients Ingrepy minimization
and huffman encoding.

This research was published in an international journabfigeerie et al.,
2013c].



Human body analysis

7.1 Introduction

Human body segmentation divides images of human bodieggntis that coin-

cide with limbs, like torso, arms or legs. Segmenting humadybimages is a
first step to computer vision-based analysis of human mongatterns [Ag-

garwal and Ryoo, 2012]. Furthermore, it facilitates mansfulapplications such
as surveillance, human action understanding, pose ctzgifi, etc. [Juang et al.,
2009, Liang et al., 2009, Hou and Pang, 2011]. Reliable satatien leads to

good qualitative movement analysis, for instance in phjsi@apy. Movement
analysis helps athletes, for instance gymnasts, to impttmie performance and
to reduce the risk of injury [Bartlett, 2007]. Analysis ofthan movements is often
performed by finding human body configurations in human bdayeson recon-

structions [Mori et al., 2004]. However, in order to accetatreconstruct these
human body skeletons, human body parts segmentation istetllenging.

In this chapter, greyscale images of human bodies are segthietio smooth
surface segments and then approximated with maps of polhsunfaces (SIMs).
These human body parts are approximated by nearly cylialdricfaces, of which
the axes of minimum curvature accurately reconstruct threambody skeleton.
For the reconstructed human body skeleton, the branchesajlyncoincide with
the real human body bones, because the cylindrical surfenasthe same shape
as the limbs. Human body segmentation is qualitatively .atald with a line
segment distance between reconstructed human body skeketa ground truth
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skeletons. When compared with human body segmentatioesl lmesmean shift,
segmentations based on normalized cuts and segmentatised bn watersheds,
our method achieves more accurate segmentations and tettarstructions of
human body skeletons.

The work in this chapter has been submitted to an internatijournal [De-
boeverie et al., 2013a].

This chapter is structured as follows: in Section 7.2, weubs related work.
In Section 7.3, we shortly explain the method of segmented &pproximation.
In Section 7.4, we thoroughly evaluate the proposed method.

7.2 Related work

Many methods related to the segmentation of a human bodytindiifferent parts
have been proposed by researchers. The most recent papsidezdiuman body
segmentation imideogJuang et al., 2009,Hsieh et al., 2010, Liu et al., 2011a9Sha
et al., 2012] as well as istatic imagegCour and Shi, 2007, Srinivasan and Shi,
2007, Barnard and Heikkila, 2008, Li et al., 2011]. For viglethe methods are
performed on human bodies which are segmented by using aytmacid model
and motion information, which make them infeasible foristahages. The meth-
ods for static images are further classified into matchiagell [Mori and Malik,
2002, Mori and Malik, 2006], part-based [Mori et al., 2004, et al., 2006] and
model-based [Lee and Cohen, 2006, Hu et al., 2009] methodscHihg-based
methods compare human body features (such as shape cqmMexitand Malik,
2006]) in a test image with those in a large set of labelledyesa Part-based ap-
proaches detect the candidates of each body part (suctsasatwd limbs) and con-
struct the best assembly according to some predefined huatgnconfiguration
constraints. Model-based methods firstly generate a langger of hypotheses
of human body configurations and then recover the human baafjgriration by
minimizing the errors between the hypotheses and the image.

Different from these methods, the approach in this work du@srequire a
training test scheme or a model hypothesis on the human Bodthermore, none
of these techniques consider a segment curvature approasbegdmentation. As
we will show in the results, considering the curvature ingbgmentation process
enhances the reconstruction of human body skeletons.

7.3 Method

Greyscale human body images are segmented with curvaasedisegmentation,
as described in Section 2.6. Curvature-based segmentatitsnsurface segments
that are folded in a certain way. The grey values in surfageneats are repre-
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sented as polynomial surfaces of zeroth, first or secondedegs described in
Section 2.6.3. These polynomials represent either flahapJaconvex, concave
or saddle surfaces, as described in Section 2.6.4. Furtiierrwhen examining
the Gaussian curvature (Section 2.6.4) of second-degigequials, we find that

many human body parts are represented as nearly cylingricices. For these
cylindrical surfaces, the axes of minimum curvature adelyaeconstruct the hu-
man body skeleton.

Human body segmentation is evaluated on images of an afpéeferming
different exercises. As a measure for segmentation qualigyexamine a line
segment distance [Gao and Leung, 2002a] between human keldyan recon-
structions and ground truth skeletons. Considering thadityumeasure, we find
that the proposed segmentation outperforms human bodyesggtion techniques
based on mean shift [Comaniciu and Meer, 2002, Porikli areel2003], seg-
mentations based on normalized cuts [Shi and Malik, 2000j ktaal., 2004, Li
et al., 2011] and segmentations based on marker-contnobéersheds [Vincent
and Soille, 1991, Beucher and Meyer, 1993, Beucher, 198kwdey, 1996, Park
etal., 1999].

7.4 Evaluation

Experimental video data includes an athlete performingfi€dnt exercises. Fig-
ure 7.1(a) shows a greyscale human body image of the athlete with image s
130x180. As usual in physiotherapy, the athlete only weaostpants. The avail-
ability of a diffuse reflecting skin surface makes these iesagery suitable to test
the segmentation method on. Ground truth skeleton dataeohtiman body is
obtained from markers which are labelled on the joints ofdtidete by physio-
therapists. An example of a ground truth skeleton is shovwigare 7.1(b). This
ground truth data is used to evaluate the method for humap segimentation.
Figure 7.1(c) shows a first segmentation result of a human body image. The im
age is segmented into 40 surface segments. The blue, grdeadoolours in the
segmented image correspond to zero, first and second degyeemial surfaces,
respectively. We ascertain that many surface segmentsspwnd to meaningful
parts of the human body, such as the arms, the legs and the figgire 7.1(d)
shows the best fit polynomial surfaces approximating théasarsegments. The
result is a reconstructed image of the original image. Theadwbody parts are
nicely reconstructed from the low-degree polynomial stefa An example of
convex, concave or saddle like behaviour is shown in Figut¢¢j. The magenta,
cyan and yellow colours correspond to convex, concave afdleséike behaviour,
respectively. We find concave polynomial surfaces for timesaithe legs and the
torso. We experimentally found that human body parts whiehshadowed by
other human body parts are often approximated by convexpatyal surfaces.
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Figure 7.1: (a): A greyscale human body image with image size 130x180.
The ground truth human body skeletdn): The human body image is segmented
into 40 surface segments. The blue, green and red colouns segmented image
correspond to zero, first and second degree polynomialcesfaespectively.d):
The surface reconstructed human body imagg: The convex, concave or sad-
dle like behaviour of the polynomial surfaces, indicatedtioy colours magenta,
cyan and yellow, respectivelyf): The axes of minimum curvature of the nearly
cylindrical surfaces approximating the human body parts.

Figure 7.1(f) shows the axes of minimum curvature of the polynomial segac
These axes go through the center points of the segmentshé-butnan body seg-
ments, these axes coincide with the real human body bongstHer, they form a
reconstructed human body skeleton. In these Figures, theos(a), (), (¢) and

(d) show the original greyscale images, the segmented imduesetonstructed
images and the images with the axes of minimum curvaturesgbttynomial sur-
faces, respectively. In the images in colufhp the surface segments of the human
body are separated from the background by considering tiraesgs close to the
markers.

To find the optimal parameter set of adaptive region growivegymeasure the
image approximation accuracy with a surface area weighteahnof thel ., fit-
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Performance statistics

image size 180x130
mean fitting cost 3.9% 0.42
#surfaces 17.83 3.14

Table 7.1: This table always shows the mean and standard deviatioreohttan
fitting cost and the number of surfaces, respectively. Orly ¥ew surface seg-
ments are needed to represent a human body image.

ting costs of the polynomial surfaces . A high approxima#toouracy (low mean
fitting cost) leads to a high number of smaller segments,igiog a good approx-
imation quality. On the other hand, a low approximation aacy (high mean
fitting cost) leads to a low number of larger segments, piogiépproximation
quality less well. Depending on the desired purpose (appration or segmen-
tation), one has to find a good balance between the size oktiraents and the
quality of the approximated images. For the results in troskwwe set the seg-
mentation parametefBy = 0.8 andTy = 4.8, preserving a good size of the
segments to perform analysis. These parameters have berralgguned on a
small number of images. When considering a set of 200 humdy intages, Ta-
ble 7.1 always shows the mean and standard deviation of tha fiténg cost and
the number of surfaces, respectively. We find that our teplendivides a human
body image in only very few surface segments.

The graph in Figure 7.2 plots the numbers of surface segmdrgs segment-
ing human body images in function of different mean fittingtsa(7.4). We find
that for mean fitting costs above 5, which corresponds to Ememstruction accu-
racies, the mean numbers of surface segments remains mess @onstant. This
means that there is a small stable set of large segmentsntrast for mean fit-
ting costs below 5, which corresponds to high reconstra@xuracies, the mean
number of surface segments grows exponentially in funatiotihe mean fitting
cost. This means that there are many small segments.

Figure 7.3 shows the axes of minimum curvature of the secaulee polyno-
mial surfaces approximating the human body parts in Figurées. For these sur-
faces, Table 7.2 always shows the minimum and maximum aunesitthe Gaus-
sian curvatures (Section 2.6.4) and the azimuths of minimunaatures, respec-
tively. From these values, we conclude that the polynonuidbses approximating
human body parts are nearly cylindrical, since the Gaussiarature is zero when
one of the eigenvalues is zero. The corresponding axes afmain curvature re-
construct the human body skeleton. They coincide with tleengd truth human
body skeleton in Figure 7.(b).

In order to qualitatively evaluate human body segmentatienmatch the re-
constructed human body skeleton to the ground truth skeléabta with a Line
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Figure 7.2: The numbers of surface segments of human body images indanct
of mean fitting costs.

Figure 7.3: This figure shows the axes of minimum curvature of the neaflip-c
drical surfaces approximating the human body parts. Whenohed to the ground
truth skeleton, the LSD is 3.90.

Segment Distance (LSD) as proposed in [Gao and Leung, 20028 LSD is
useful in skeleton matching, because it encourages ooed¢anapping of sim-

ilar lines. Given two sets of line segmenmt$ = {mi,ma,...,mp} andT =
{t1,t2,...,t,}, the distance between two line segmentsandt; is defined as
d(mi, tj) = \/dg(m“tJ) + dﬁ(mi,tj) + dﬁ_(mi,tj) (71)

wheredy (m;, t;)is the orientation distancé; (m;, t;) is the parallel distance and
di(m,t;) is the perpendicular distance between andt; [Gao and Leung,
2002a]. The line segments; andt; form a corresponding pair i(m;,t;) is

a minimum over all combinations of. From the pairs of matching line segments,
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A1 Ao G 0
lowerleg -0.0063 -0.3668 0.0044 81
upperleg -0.0020 -0.1750 0.0004 -2
lowerarm -0.0058 -2.0147 0.1907 -75
upperarm -0.0150 -0.1815 0.0076 -53
torso -0.0054 -0.1184 0.0007 -87

Table 7.2: This table always shows the minimum and maximum curvatuhes,
Gaussian curvatures and the azimuths of minimum curvatditee second-degree
polynomial surfaces approximating the human body partsgare 7.1(e).

a length weighted matching caS{(M, T') is computed:

1
C(M,T) = ————— Z L, min d(m;, t;), (7.2)
Z lm7 m; €M e
mi;EM

wherel,,,, is the length of line segment,. This matching cost is used as a quality
measure for human body segmentation, where a lower LSDspnels to a better
segmentation quality. For instance, matching the axesgargi7.1(f) to the
ground truth skeleton in Figure 7(&) results in a LSD of 3.90.

To compare the proposed method with existing techniquesithaot provide
a reconstructed human body skeleton from curvature infoomaf the surface
segments, we also reconstruct the human body skeleton fr@axes of an ellipse
model for the surface segments. The difference between idrody skeleton
reconstruction from cylinders and ellipses is shown in tleekbdiagrams in Fig-
ure 7.4. We obtain ellipses from least-squares fits. Ansdlimodel for human
body parts was earlier proposed in [Park and Aggarwal, 20@4and Aghajan,
2007]. An example human body surface segments represen&diipses and their
axes is shown in Figure 7(&). To measure the quality of a human body segmen-
tation, we match the axes of the ellipses with the groundhtsiieleton using the
LSD. Figure 7.5¢) shows the axes of the ellipses that match with the ground trut
skeleton in Figure 7.%). The corresponding line segment pairs are indicated by
the same colour. Here, the LSD is 6.34. The correct axes atehetw they fol-
low almost the same directions as the groundtruth skelétdditional results are
shown in Figure 7.6. The row) to (f) show the input images, the segmented
images, the surface reconstructed images, the recoredriagtnan body skeletons
from the axes of minimum curvature, the ground truth humadytsieletons and
the axes of the ellipses representing the segments thalhmétcthe ground truth
skeletons, respectively. The corresponding line segmerg pre indicated in the
same colour. The surface segments of the human bodies amtEpfrom the
background by considering the segments close to the markers
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Human body skeleton reconstruction with the proposed method

degree

nearly cylindrical

Segments Polynomial .
represented as surfaces Axez:lar:ramtml;num
2-d polynomial approximating |
Image reconstruct the
surfaces of zeroth, human body parts [~
: human body
first or second are concave and skeleton

Human body skeleton reconstruction with comparing methods

Axes of ellipses
Image ) Segments 1 Ellipses b rizor:::utgél;e

skeleton

Figure 7.4: Two block diagrams which indicate the difference betweeméam
body skeleton reconstruction from cylinders and ellip3é® reconstruction from
the axes of minimum curvature of cylinders only applies ® phoposed method.
In order to compare, the reconstruction from the axes qfsd applies to methods
that do not provide curvature information of the surfacensewgts.

(©)

Figure 7.5: (a): The human body image segments represented by ellipses and
their axes. (b): The ground truth human body skeletof): The axes of the
ellipses that match with the ground truth skeleton. Theesgonding line segment
pairs are indicated by the same colour. The LSD is 6.34.
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Figure 7.6: (a): Input images.(b): The segmented images. Many surface seg-
ments correspond to meaningful parts of the human body, asi¢he arms, the
legs and the torso. The magenta, cyan and yellow colourggpond to con-
vex, concave and saddle like polynomial surfaces. We finat@as polynomial
surfaces for the arms, the legs and the torso, while shadbwexdn body parts
are often approximated by convex polynomial surfade$: The surface recon-
structed human body imagel): Reconstructed human body skeletons from the
axes of minimum curvature of the polynomial surfaces apipnaking the human
body. (e): The ground truth human body skeletorig): The axes of the ellipses
representing the segments that match with the groundtkafletens. The corre-
sponding line segment pairs are indicated by the same colour
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Line Segment Distance (lower is better)
Polynomial surfaces (cylinders) 4.871.21
Polynomial surfaces (ellipses) 6.312.17
Mean-shift 10.73t 2.99
Normalized cuts 11.64 3.25

Marker-controlled watersheds 16.373.28

Table 7.3: This table always shows the means and standard deviatiotige of
LSDs for segmentation with polynomial surfaces, mean shiftmalized cuts and
marker-controlled watersheds, respectively. For our putibeside the human
body skeleton reconstructions from the axes of cylindeesalgso make a variant
of our method which produces human body skeleton recoriginsfrom the axes
of ellipses.

We compare our segmentation based on polynomial surfagéimman body
segmentation algorithms based on mean shift [Comaniciuvéeeat, 2002, Porikli
and Tuzel, 2003], segmentations based on normalized chigfs Malik, 2000,
Mori et al., 2004, Li et al., 2011] and segmentations basetharker-controlled
watersheds [Vincent and Soille, 1991, Beucher and Mey&31Reucher, 1994,
Jackway, 1996, Park et al., 1999]. Output examples of hurody begmentation
with mean shift, normalized cuts and marker-controlledengtieds are shown in
column(a) in Figure 7.7. Columr(b) in Figure 7.7 shows the segments repre-
sented by ellipses and their axes. Colufanin Figure 7.7 shows the axes of the
ellipses that match with the ground truth skeleton usinglteB. The LSDs for
human body segmentation with mean shift, normalized cudsveatersheds are
10.56, 12.14 and 17.61, respectively.

Table 7.3 always shows the mean and standard deviation b&he of human
body segmentations based on polynomial surfaces, meatn sbimalized cuts
and marker-controlled watersheds, respectively. For @athod, beside the human
body skeleton reconstructions from the axes of cylindeesalgso make a variant
of our method which produces human body skeleton recoriginsfrom the axes
of ellipses. We find that the LSDs of other segmentation nugttewe higher than
the LSD of our segmentation. Furthermore, a human body &keteconstruction
with the axes of cylinders is more accurate than a recongtruwith the axes of
ellipses. When we consider the means of the LSDs for segm@mts individual
human body parts in Table 7.4, we see that our method outpesfthe other
techniques in all cases, especially for the skeleton reénarigon of the torso.
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Figure 7.7: (a): The segmentation of a human body image with mean shift, nor-
malized cuts and marker-controlled watersheds, resgdygtiyb): The segments
represented by ellipses and their axe$: The axes of the ellipses that match with
the ground truth skeleton. The LSDs are 10.56, 12.14 andL1i&6pectively.
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LSD (lower is better) lowerleg upperleg lowerarm upperarnorse
Polynomial surfaces (cylinders) 1.94 1.81 2.26 1.13 4.12
Polynomial surfaces (ellipses) 2.56 2.48 2.88 181 7.55
Mean-shift 4.17 3.64 4.05 2.83 19.83
Normalized cuts 4.69 3.25 4.54 2.21 27.33
Marker-controlled watersheds 5.03 4.86 5.39 2.96 24.84

Table 7.4: This table always shows the means of the LSDs for segmentatio
individual human body parts with polynomial surfaces, mshiit, normalized
cuts and marker-controlled watersheds, respectively.

Figure 7.8 shows the segmentation of an athlete bowing rés torhe atlete
bows his torso once in a correct way and once in an incorregtimvehe images
on the second and the third row, respectively. The differesyy of bowing is
clearly visible by the red line indicated on the back of thelete. By sharing
this information with the physiotherapist and the athléte, athlete can improve
the way he is performing excercises in order to obtain ogdtsparts or recovery
results. We present additional results of human body setatien of an athlete
raising his arm, raising his knee, stretching his leg andpju in Figures 7.9,
7.10, 7.11 and 7.12, respectively. In these Figures, thenwa$(a), (b), (¢) and
(d) show the original greyscale images, the segmented imduesetonstructed
images and the images with the axes of minimum curvature eftilynomial
surfaces, respectively. These experiments show that tivatcwes of the surfce
segments are valuable information to reconstruct the hurody skeleton.

R 1

Figure 7.8: Segmentation of an athlete bowing his torso. The atlete ihiswu®rso
once in a correct way and once in an incorrect way in the imagethe second
and the third row, respectively. The different way of bowiaglearly visible by
the red line indicated on the back of the athlete in the imag#se last column.
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Figure 7.11: Segmentation of an athlete stretching his leg.
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Figure 7.12: Segmentation of a jumping athlete
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7.5 Conclusion

In this work, we perform human sports activity analysis watimputer vision by
reliable segmentation of the human body into meaningfukpauch as arms, torso
and legs. Human body segmentation is performed on greyboab@n body im-
ages by adaptive region growing based on constructive patyai fitting. Human
body images are represented by flat, planar, convex, corasaysaddle polyno-
mial surfaces with a variable fitting error. The low-degredypomial surfaces
correspond to meaningful human body features. We find thaiamubody parts
are often represented as nearly cylindrical surfaces, aftwthe axes of minimum
curvature reconstruct the human body skeleton accuratbbyproposed method,
which provides human body skeleton reconstructions fromature information
of the surface segments, outperforms existing segment@ahniques that do not
provide this information.

This research has been submitted in an international jo[[Dedoeverie et al.,
2013a].






Conclusion

8.1 Overview

In this thesis, we deployed computer vision techniquesha@smportant problems
about recognizing human identity and human behaviour inalisommunication
applications, such as automated video conferencing. Welalgod a system for
face segmentation, approximation and analysis with patyabcontour and sur-
face face models.

Face sementationis the division of face images into physically meaningful
parts, such as the forehead, the cheeks, the lips, the eygletc. In Chapter 2,
we proposed to group contour pixels and grey values in imafésces with re-
gion growing and polynomial fitting. Region growing is thepess of examining
neighboring pixels of initial seed pixels and determininigether the neighboring
pixels should be added to the region. Polynomial fitting feasmetric low-level
features, so-called geometric primitives, to pixels. Amgetric primitive is a poly-
nomial function describing the geometry of an edge or thatian of grey values
in a region. Thus, the problem we studied is that of findinggiome of maximal
size in which grey values can be well approximated by a patyiabfunction and
where contour pixels can be well approximated by polynosraal well. We con-
sidered the grouping of facial contour pixels into contegreents, as well as the
grouping of facial intensities into surface segments.

To find segments, we proposed an adaptive region growingitigobased
on constructive polynomial fitting. This primitive extram algorithm finds sub-
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sets of pixels that lie on a geometric primitive or close toHtow well a subset
corresponds to a primitive is measured by/ag fitting cost (approximation er-
ror). This fitting cost is computed without computing thettféiing polynomial.
The best fit is only computed when the segment is finished. Ayinal contribu-
tion is the introduction of adaptive thresholding for reggrowing, which allows
a variable polynomial degree and a variable fitting erropesheling on the local
properties of the pixels. The novelty is that region growitegects outliers, dis-
tinguishes between strong and smooth discontinuities ansiders the curvature,
such as convexity or concavity. The region growing invesgg the local varia-
tion of pixels in a segment to identify outliers, while thelgél variation of pixels
in a segment is investigated to adapt the degree of the palidunction. The
combination of both is possible because we employ constaiiitting: the global
fitting cost is calculated from local fitting costs. In this skpwe demonstrated
how local and global fitting costs can interact in an adaptiethod.

Face approximationis the estimation and the reconstruction of contour pixels
and grey values of face images to a desired degree of accuradghapter 2,
we proposed to approximate faces with maps defined by poliaiddomctions
(geometric low-level features, geometric primitives) ofvtdegree (e.g., 0, 1 or
2). One difficulty we studied is that of finding the fitting pareters of the best fit.

The contour model represents contour segments as polyhouniges, which
are either straight, convex or concave, in a Curve Edge M&MCThe surface
model represents surface segments as polynomial surfabéd) are either flat,
planar, convex, concave or saddle surfaces in a Surfaaesittélap (SIM). Both
models are simple, natural, useful and elegant repregemsefor objects in im-
ages, in particular for face images.

Segmented face approximation with polynomial surfacesamdes is quite
natural and offers a compact and reversible way to presbeessential char-
acteristics of the original face image. Face images areesepited by flat, pla-
nar, convex, concave and saddle polynomial surfaces witariable fitting er-
ror. The boundaries are represented by straight, convex@mchve curves. The
low-degree polynomial functions in these models providedyapproximation of
meaningful facial features, while preserving all the neeegdetails of the face in
the reconstructed image.

The contour and surface models allow to parametrizing a ligcthe coeffi-
cients of the polynomial curves and surfaces and the coatelrof the endpoints
of the curves in a few hundred bytes. Transmitting these f@zameters over
the network is very efficient. Furthermore, these face digtses are suitable for
automated face analysis.

Face analysisincludes recognition and tracking of faces and facial fiesstu
Face recognition identifies a person from a digital image widao frame. Face
tracking follows the movements of a person’s head in a videecognition and
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tracking of faces and facial features leads to the detedfi@pecific human face
behaviour, such as speaking, gaze direction, head mover(eegt nodding) or
facial expressions (e.g. happy/sad/angry/surprised).

In order to compare faces in two different or consecutivegesawe presented
a technique to find geometric feature correspondence plirs.goal of a corre-
spondence finding or matching algorithm is to indicate foomp(feature) in one
image which is the corresponding point (feature) in a sedoratje, where both
image points must show the same 3D world point.

In the contour model in Chapter 3, we proposed to find corredences by a
technique that matches polynomial curves, based on shelpéye position and
intensity. We proposed a dissimilarity function for localree matching as well
as a similarity function for global curve matching. The di#nce lies in the ap-
plication: local matching is especially used in object king applications, while
global matching focuses on object recognition application

In Chapter 4, we evaluated the matching techniques for pohyal curves by
face recognition and tracking. We considered securityiegibns, such as people
identification and best view selection, and behaviour asisigpplications, such as
entering/leaving detection, head movement detection padker detection. We
evaluated the performance of face analysis applicatiorsslarge number of rep-
resentative databases and video sequences. Furtherneommypared the pro-
posed methods with several techniques of the state of theThd face analysis
results are comparable with or better than existing methddie advantages of
our methods are simplicity, real-time properties and mag fanalysis tasks are
handled by the same approach.

In Chapter 5, we evaluated the matching techniques for potyal curves
by tracking of other objects than faces, such as vehiclest lvealls and water
currents. The result is robust tracking of rigid and nonerigbjects, which can
cope with small changes in viewpoint on the moving object.

In the surface model, we perform curvature-based surfagpeshnalysis, as
described in Chapter 2. The curvatures of polynomial sedaoughly classify
facial features into flat, planar, convex, concave and sagdiches. Since grey
values seen from the outside represent reflected light, wiecimcave functions
for convex face parts. This classification facilitates mtasks in automated face
analysis, demonstrated in this work by face verificationf@golynomial repre-
sentation. The task of face verification is to verify a faceedgon by analysing an
image of the face.

The surface model was evaluated for segmented face appati@imin 6. We
are able to represent recognizable faces using a few huryted rather than
a few hundred kilobytes, which is very useful in visual conmication applica-
tions. Moreover, the polynomial surfaces correspond tonimegdul facial fea-
tures. When compared to existing approximation technigwesachieve higher
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compression ratios and better recognizable faces.

The surface model was evaluated for human body analysiswe®laborated
curvature-based surface shape analysis for images anasvidldauman bodies, in
order to reconstruct the human body skeleton, to detectsliama to estimate the
human pose. Human body images are represented by flat, ptanaex, concave
and saddle polynomial surfaces with a variable fitting efftie low-degree poly-
nomial surfaces correspond to meaningful human body featuwe found that
human body parts are often represented as nearly cylindtictaces, of which
the axes of minimum curvature reconstruct the human bodigtekeaccurately.
The proposed method, which provides human body skelet@mstrictions from
curvature information of the surface segments, outper$axisting segmentation
techniques that do not provide this information.

8.2 Future research

The methods and results presented in this PhD thesis deratngtat the key
idea of face segmentation, approximation and analysis pdllgnomial curves
and surfaces is a well chosen strategy. However, some peets to be further
investigated to expand the possibilities of the system.

In future research, one should improve the extraction ofparhial curves and
surfaces, as described in Chapter 2, in video sequencese Bia results in this
work are obtained on a frame by frame basis, the polynomrabksiand the bound-
aries of the polynomial surfaces suffer from temporal ditgbin video sequences.
The models should be further improved by including tempimf@rmation of the
shape and the location of the polynomials in the segmentatioces. A first pos-
sible solution to achieve temporal stability is to retaie gupporting elemental
subsets (Section 2.6.3) for corresponding surfaces inecotive frames as long a
possible. In addition, mean filtering of the polynomial daéénts over time can
help to achieve stability in videos.

The methods presented in Chapter 2 and Chapter 3 are degdtopgeyscale
images and videos. A valuable extension would be to let thbods work in the
colour domain. The polynomial curve matching in Chapter 3ilddghen include
colour information in the matching function.

The applications with polynomial curves presented in Ceiagpand Chapter 5
should be further tested for other commercial and indugttigposes. An exam-
ple is to use automated face analysis in a monitoring systemeople watching
advertisements on screen or watching products in a shopidéhaeds to automat-
ically find out what people are interested in, in order to aasapersonalize the
presented advertisements or products.

The compression factor and the temporal stability of sedetkface approx-
imation as presented in Chapter 6 can be further improvedlgovsequences by
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not coding the 2D boundaries of the surface segments, budding the projected
3D intersection curves (conics) which are found in the seetion areas of the
supporting polynomials of neighouring polynomial surfaice

The applications with polynomial surfaces, presented iaglér 6 and Chapter
7, should be used as a helping tool to solve difficult problémaspop up in other
methods. For instance in sports analysis, one problem isggmentation of the
convex hull into arms and legs. The convex hull [Slembroucil.¢ 2014] is the
3D reconstruction of the shape of the human body with métigimeras. To solve
this problem, one could use the segmentation into polynlccur@es and surfaces
as a starting tool to find arms and legs in the 3D representatio

8.3 Summary of contributions

To summarize, the main contributions of this thesis are:

e A novel face model where the face is seen as a flexible ellibs@isk with
cutouts for the eyes, the mouth, the nose and the nostrils.cdhtour pix-
els and the image intensities of the different facial pantsrapresented by
polynomial surfaces and curves that are convex or concalve.fl&xibility
of the model is obtained by allowing polynomials with a vateadegree and
a variable approximation error.

e Novel 1-D and 2-D segmentation algorithms based on adafgien grow-
ing and low-degree polynomial fitting to extract geomewiglevel features
from contour pixels and image intensities, respectivelile§e algorithms
use a new adaptive thresholding technique withlihefitting cost as a seg-
mentation criterion. The polynomial degree and the fittimgieare automat-
ically adapted during the region growing process. The mairelty is that
the algorithms detect outliers, distinguish between gfrand smooth dis-
continuities and find segments that are bent in a certain suety) as convex
or concave segments. Adaptive refers to the use of a locghheurhood
to add pixels, while adapting the shape (or degree) of thetimmis based
on global behaviour. In this sense there is some local fltyibivhile the
global behaviour is determined by a more straightforwarmtatterization,
such as being concave or convex. This work was published éb@Bverie
etal., 2010, Deboeverie et al., 2013c, Deboeverie et al.32PD

e An original solution for the correspondence problem of polyial curves
approximating contours in different images. The main dbation is the
introduction of intensity variations in the matching fuioct. This work was
published in [Deboeverie et al., 2008b, Deboeverie et 8082, Deboeverie
et al., 2009b, Deboeverie et al., 2011].
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e A new way of curvature-based surface shape analysis of fatgsiuman
bodies in images. The main idea is to use the curvatures ghpoiial
surfaces to classify facial and human body features intpdlabar, convex,
concave and saddle patches. This classification fac8ittite analysis of
facial and human behaviour. This work was published in [(edie et al.,
2013c, Deboeverie et al., 2013b].

e A novel segmented face approximation algorithm to send toreé $mages
of faces at a low bit rate, such that the faces are still reizadpte and that the
compression does not prevent remote face analysis. Segdfect approx-
imation with low-degree polynomial surfaces and curvesiigagnatural and
offers a compact and reversible way to preserve the eskenéieacteristics
of the original face image. This work was published in [Delme et al.,
2013c].

e A practical framework for face analysis applications, ergcognition and
tracking of faces and facial features. We evaluated theopmdnce of
face analysis applications on a large number of represeatidtabases and
video sequences. Furthermore, we compared the proposéxasetvith
several techniques of the state of the art. In extension ppbeal our algo-
rithms on several other objects, such as vehicles. This waskpublished
in [Deboeverie et al., 2008b, Deboeverie et al., 2008a, Pedxie et al.,
2009a, Deboeverie et al., 2009b, Deboeverie et al., 20ldo®erie et al.,
2012].

In total, the research during this PhD resulted in three gEape first author
and one paper as second author in international peer-redigwarnals [Deboev-
erie et al., 2013c, Deboeverie et al., 2013b, Deboeverie,é2Gl3a, Bo Bo et al.,
2014], of which two are published and two are submitted. Harrhore, ten con-
ference papers as first author were published in the praogedf international or
national conferences [Deboeverie et al., 2008b, Deboeetal., 2008a, Deboev-
erie, 2008, Deboeverie et al., 2009a, Deboeverie et al9l2@eboeverie et al.,
2010, Deboeverie et al., 2011, Deboeverie, 2011, Debaegedl., 2012, Deboev-
erie et al., 2014] and three publications as co-author [&eet al., 2009, Maes
etal., 2009, Eldib et al., 2014].

This work has led to important and critical contributionghie ISYSS project
(Intelligent SYstems for Security and Safety), the iCocquaject (Immersive
COmmunication by means of COmputer visiON). The experiegaiaed in the
projects ISYSS and iCocoon is now being used to contribusanmore responsible
position to the recently started projects LittleSistemdcost monitoring for care
and retail) and SONOPA (SOcial Networks for Older adultstonfote an Active
life).
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