45 research outputs found

    sparsegl: An R Package for Estimating Sparse Group Lasso

    Full text link
    The sparse group lasso is a high-dimensional regression technique that is useful for problems whose predictors have a naturally grouped structure and where sparsity is encouraged at both the group and individual predictor level. In this paper we discuss a new R package for computing such regularized models. The intention is to provide highly optimized solution routines enabling analysis of very large datasets, especially in the context of sparse design matrices.Comment: 18 pages, 9 figures, 1 tabl

    Methods for analysis of brain connectivity : An IFCN-sponsored review

    Get PDF
    The goal of this paper is to examine existing methods to study the "Human Brain Connectome" with a specific focus on the neurophysiological ones. In recent years, a new approach has been developed to evaluate the anatomical and functional organization of the human brain: the aim of this promising multimodality effort is to identify and classify neuronal networks with a number of neurobiologically meaningful and easily computable measures to create its connectome. By defining anatomical and functional connections of brain regions on the same map through an integrated approach, comprising both modern neurophysiological and neuroimaging (i.e. flow/metabolic) brain-mapping techniques, network analysis becomes a powerful tool for exploring structural-functional connectivity mechanisms and for revealing etiological relationships that link connectivity abnormalities to neuropsychiatric disorders. Following a recent IFCN-endorsed meeting, a panel of international experts was selected to produce this current state-of-art document, which covers the available knowledge on anatomical and functional connectivity, including the most commonly used structural and functional MRI, EEG, MEG and non-invasive brain stimulation techniques and measures of local and global brain connectivity. (C) 2019 Published by Elsevier B.V. on behalf of International Federation of Clinical Neurophysiology.Peer reviewe

    Functional Connectome of the Human Brain with Total Correlation

    Get PDF
    Recent studies proposed the use of Total Correlation to describe functional connectivity among brain regions as a multivariate alternative to conventional pairwise measures such as correlation or mutual information. In this work, we build on this idea to infer a large-scale (whole-brain) connectivity network based on Total Correlation and show the possibility of using this kind of network as biomarkers of brain alterations. In particular, this work uses Correlation Explanation (CorEx) to estimate Total Correlation. First, we prove that CorEx estimates of Total Correlation and clustering results are trustable compared to ground truth values. Second, the inferred large-scale connectivity network extracted from the more extensive open fMRI datasets is consistent with existing neuroscience studies, but, interestingly, can estimate additional relations beyond pairwise regions. And finally, we show how the connectivity graphs based on Total Correlation can also be an effective tool to aid in the discovery of brain diseases

    Investigating Brain Functional Networks in a Riemannian Framework

    Get PDF
    The brain is a complex system of several interconnected components which can be categorized at different Spatio-temporal levels, evaluate the physical connections and the corresponding functionalities. To study brain connectivity at the macroscale, Magnetic Resonance Imaging (MRI) technique in all the different modalities has been exemplified to be an important tool. In particular, functional MRI (fMRI) enables to record the brain activity either at rest or in different conditions of cognitive task and assist in mapping the functional connectivity of the brain. The information of brain functional connectivity extracted from fMRI images can be defined using a graph representation, i.e. a mathematical object consisting of nodes, the brain regions, and edges, the link between regions. With this representation, novel insights have emerged about understanding brain connectivity and providing evidence that the brain networks are not randomly linked. Indeed, the brain network represents a small-world structure, with several different properties of segregation and integration that are accountable for specific functions and mental conditions. Moreover, network analysis enables to recognize and analyze patterns of brain functional connectivity characterizing a group of subjects. In recent decades, many developments have been made to understand the functioning of the human brain and many issues, related to the biological and the methodological perspective, are still need to be addressed. For example, sub-modular brain organization is still under debate, since it is necessary to understand how the brain is functionally organized. At the same time a comprehensive organization of functional connectivity is mostly unknown and also the dynamical reorganization of functional connectivity is appearing as a new frontier for analyzing brain dynamics. Moreover, the recognition of functional connectivity patterns in patients affected by mental disorders is still a challenging task, making plausible the development of new tools to solve them. Indeed, in this dissertation, we proposed novel methodological approaches to answer some of these biological and neuroscientific questions. We have investigated methods for analyzing and detecting heritability in twin's task-induced functional connectivity profiles. in this approach we are proposing a geodesic metric-based method for the estimation of similarity between functional connectivity, taking into account the manifold related properties of symmetric and positive definite matrices. Moreover, we also proposed a computational framework for classification and discrimination of brain connectivity graphs between healthy and pathological subjects affected by mental disorder, using geodesic metric-based clustering of brain graphs on manifold space. Within the same framework, we also propose an approach based on the dictionary learning method to encode the high dimensional connectivity data into a vectorial representation which is useful for classification and determining regions of brain graphs responsible for this segregation. We also propose an effective way to analyze the dynamical functional connectivity, building a similarity representation of fMRI dynamic functional connectivity states, exploiting modular properties of graph laplacians, geodesic clustering, and manifold learning

    Blending generative models with deep learning for multidimensional phenotypic prediction from brain connectivity data

    Get PDF
    Network science as a discipline has provided us with foundational machinery to study complex relational entities such as social networks, genomics, econometrics etc. The human brain is a complex network that has recently garnered immense interest within the data science community. Connectomics or the study of the underlying connectivity patterns in the brain has become an important field of study for the characterization of various neurological disorders such as Autism, Schizophrenia etc. Such connectomic studies have provided several fundamental insights into its intrinsic organisation and implications on our behavior and health. This thesis proposes a collection of mathematical models that are capable of fusing information from functional and structural connectivity with phenotypic information. Here, functional connectivity is measured by resting state functional MRI (rs-fMRI), while anatomical connectivity is captured using Diffusion Tensor Imaging (DTI). The phenotypic information of interest could refer to continuous measures of behavior or cognition, or may capture levels of impairment in the case of neuropsychiatric disorders. We first develop a joint network optimization framework to predict clinical severity from rs-fMRI connectivity matrices. This model couples two key terms into a unified optimization framework: a generative matrix factorization and a discriminative linear regression model. We demonstrate that the proposed joint inference strategy is successful in generalizing to prediction of impairments in Autism Spectrum Disorder (ASD) when compared with several machine learning, graph theoretic and statistical baselines. At the same time, the model is capable of extracting functional brain biomarkers that are informative of individual measures of clinical severity. We then present two modeling extensions to non-parametric and neural network regression models that are coupled with the same generative framework. Building on these general principles, we extend our framework to incorporate multimodal information from Diffusion Tensor Imaging (DTI) and dynamic functional connectivity. At a high level, our generative matrix factorization now estimates a time-varying functional decomposition. At the same time, it is guided by anatomical connectivity priors in a graph-based regularization setup. This connectivity model is coupled with a deep network that predicts multidimensional clinical characterizations and models the temporal dynamics of the functional scan. This framework allows us to simultaneously explain multiple impairments, isolate stable multi-modal connectivity signatures, and study the evolution of various brain states at rest. Lastly, we shift our focus to end-to-end geometric frameworks. These are designed to characterize the complementarity between functional and structural connectivity data spaces, while using clinical information as a secondary guide. As an alternative to the previous generative framework for functional connectivity, our representation learning scheme of choice is a matrix autoencoder that is crafted to reflect the underlying data geometry. This is coupled with a manifold alignment model that maps from function to structure and a deep network that maps to phenotypic information. We demonstrate that the model reliably recovers structural connectivity patterns across individuals, while robustly extracting predictive yet interpretable brain biomarkers. Finally, we also present a preliminary analytical and experimental exposition on the theoretical aspects of the matrix autoencoder representation

    Mapping connections in the neonatal brain with magnetic resonance imaging

    Get PDF
    The neonatal brain undergoes rapid development after birth, including the growth and maturation of the white matter fibre bundles that connect brain regions. Diffusion MRI (dMRI) is a unique tool for mapping these bundles in vivo, providing insight into factors that impact the development of white matter and how its maturation influences other developmental processes. However, most studies of neonatal white matter do not use specialised analysis tools, instead using tools that have been developed for the adult brain. However, the neonatal brain is not simply a small adult brain, as differences in geometry and tissue decomposition cause considerable differences in dMRI contrast. In this thesis, methods are developed to map white matter connections during this early stage of neurodevelopment. First, two contrasting approaches are explored: ROI-constrained protocols for mapping individual tracts, and the generation of whole-brain connectomes that capture the developing brain's full connectivity profile. The impact of the gyral bias, a methodological confound of tractography, is quantified and compared with the equivalent measurements for adult data. These connectomes form the basis for a novel, data-driven framework, in which they are decomposed into white matter bundles and their corresponding grey matter terminations. Independent component analysis and non-negative matrix factorisation are compared for the decomposition, and are evaluated against in-silico simulations. Data-driven components of dMRI tractography data are compared with manual tractography, and networks obtained from resting-state functional MRI. The framework is further developed to provide corresponding components between groups and individuals. The data-driven components are used to generate cortical parcellations, which are stable across subjects. Finally, some future applications are outlined that extend the use of these methods beyond the context of neonatal imaging, in order to bridge the gap between functional and structural analysis paradigms, and to chart the development of white matter throughout the lifespan and across species

    Mapping connections in the neonatal brain with magnetic resonance imaging

    Get PDF
    The neonatal brain undergoes rapid development after birth, including the growth and maturation of the white matter fibre bundles that connect brain regions. Diffusion MRI (dMRI) is a unique tool for mapping these bundles in vivo, providing insight into factors that impact the development of white matter and how its maturation influences other developmental processes. However, most studies of neonatal white matter do not use specialised analysis tools, instead using tools that have been developed for the adult brain. However, the neonatal brain is not simply a small adult brain, as differences in geometry and tissue decomposition cause considerable differences in dMRI contrast. In this thesis, methods are developed to map white matter connections during this early stage of neurodevelopment. First, two contrasting approaches are explored: ROI-constrained protocols for mapping individual tracts, and the generation of whole-brain connectomes that capture the developing brain's full connectivity profile. The impact of the gyral bias, a methodological confound of tractography, is quantified and compared with the equivalent measurements for adult data. These connectomes form the basis for a novel, data-driven framework, in which they are decomposed into white matter bundles and their corresponding grey matter terminations. Independent component analysis and non-negative matrix factorisation are compared for the decomposition, and are evaluated against in-silico simulations. Data-driven components of dMRI tractography data are compared with manual tractography, and networks obtained from resting-state functional MRI. The framework is further developed to provide corresponding components between groups and individuals. The data-driven components are used to generate cortical parcellations, which are stable across subjects. Finally, some future applications are outlined that extend the use of these methods beyond the context of neonatal imaging, in order to bridge the gap between functional and structural analysis paradigms, and to chart the development of white matter throughout the lifespan and across species

    Apprentissage d'atlas fonctionnel du cerveau modélisant la variabilité inter-individuelle

    Get PDF
    Recent studies have shown that resting-state spontaneous brain activity unveils intrinsic cerebral functioning and complete information brought by prototype task study. From these signals, we will set up a functional atlas of the brain, along with an across-subject variability model. The novelty of our approach lies in the integration of neuroscientific priors and inter-individual variability in a probabilistic description of the rest activity. These models will be applied to large datasets. This variability, ignored until now, may lead to learning of fuzzy atlases, thus limited in term of resolution. This program yields both numerical and algorithmic challenges because of the data volume but also because of the complexity of modelisation.De récentes études ont montré que l'activité spontanée du cerveau observée au repos permet d'étudier l'organisation fonctionnelle cérébrale en complément de l'information fournie par les protocoles de tâches. A partir de ces signaux, nous allons extraire un atlas fonctionnel du cerveau modélisant la variabilité inter-sujet. La nouveauté de notre approche réside dans l'intégration d'a-prioris neuroscientifiques et de la variabilité inter-sujet directement dans un modèles probabiliste de l'activité de repos. Ces modèles seront appliqués sur de larges jeux de données. Cette variabilité, ignorée jusqu'à présent, cont nous permettre d'extraire des atlas flous, donc limités en terme de résolution. Des challenges à la fois numériques et algorithmiques sont à relever de par la taille des jeux de données étudiés et la complexité de la modélisation considérée
    corecore