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Abstract

The brain is a complex system of several interconnected components which can be cate-

gorized at different Spatio-temporal levels, evaluate the physical connections and the cor-

responding functionalities. To study brain connectivity at the macroscale, Magnetic Reso-

nance Imaging (MRI) technique in all the different modalities has been exemplified to be

an important tool. In particular, functional MRI (fMRI) enables to record the brain activity

either at rest or in different conditions of cognitive task and assist in mapping the functional

connectivity of the brain.

The information of brain functional connectivity extracted from fMRI images can be de-

fined using a graph representation, i.e. a mathematical object consisting of nodes, the brain

regions, and edges, the link between regions. With this representation, novel insights have

emerged about understanding brain connectivity and providing evidence that the brain net-

works are not randomly linked. Indeed, the brain network represents a small-world structure,

with several different properties of segregation and integration that are accountable for spe-

cific functions and mental conditions. Moreover, network analysis enables to recognize and

analyze patterns of brain functional connectivity characterizing a group of subjects.

In recent decades, many developments have been made to understand the functioning of the

human brain and many issues, related to the biological and the methodological perspective,

are still need to be addressed. For example, sub-modular brain organization is still under

debate, since it is necessary to understand how the brain is functionally organized. At the

same time a comprehensive organization of functional connectivity is mostly unknown and

also the dynamical reorganization of functional connectivity is appearing as a new frontier

for analyzing brain dynamics. Moreover, the recognition of functional connectivity patterns

in patients affected by mental disorders is still a challenging task, making plausible the

development of new tools to solve them.

Indeed, in this dissertation, we proposed novel methodological approaches to answer some

of these biological and neuroscientific questions. We have investigated methods for analyz-

ing and detecting heritability in twin’s task-induced functional connectivity profiles. in this

approach we are proposing a geodesic metric-based method for the estimation of similar-

ity between functional connectivity, taking into account the manifold related properties of

symmetric and positive definite matrices.
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Moreover, we also proposed a computational framework for classification and discrimination

of brain connectivity graphs between healthy and pathological subjects affected by mental

disorder, using geodesic metric-based clustering of brain graphs on manifold space. Within

the same framework, we also propose an approach based on the dictionary learning method

to encode the high dimensional connectivity data into a vectorial representation which is

useful for classification and determining regions of brain graphs responsible for this segre-

gation. We also propose an effective way to analyze the dynamical functional connectivity,

building a similarity representation of fMRI dynamic functional connectivity states, exploit-

ing modular properties of graph laplacians, geodesic clustering, and manifold learning.

Keywords: Neuroimaging, brain imaging, functional connectivity, dynamics functional

connectivity, connectome, graph theory, functional MRI, task-induced, resting state, schizophre-

nia, autism, multiple-sclerosis, laplacian, clustering, manifold, machine learning
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Chapter 1

Introduction

The human brain is among the most advanced and intricate network in nature which trans-

fer signals between different regions in order to respond to an external/internal event. The

anatomical structure of the brain enumerates a vast number of interlinked neurons (nervous

cells), which interpret brain composition at various levels. Responsibilities of this complex

system include mental processes, begin from basic sensorimotor processing to cognitive and

executive functions. The conception and advance exploration of such a composite structure

has drawn the attention of different fields of research, from biology, psychology and neuro-

science to mathematics, computer science and engineering. Of course, medical disciplines

played a vital role in this exploration and revealed most of the information regarding how

this complex system of brain works and how it manages the information flow. For the pur-

pose of analysis, this dense interchanging of information needs to be modelled and in the

field of neuroscience, the idea of describing the brain as a complex network has deep roots

[1].

The advancements made in the last century described the brain as a system where each region

is delegated to perform a specific function. Thanks to the developments in neuro-anatomy,

white matter connections became gradually more refined in the brain map, illustrating the

links between different anatomical regions of the brain. Later with the advent of neurophys-

iological methods, it became possible to explore the cortical architecture of the brain with a

precise functional meaning. Finally, now in the era of modern neuroscience, neuroimaging

methods such as Magnetic Resonance Imaging (MRI) have revolutionized the way to under-

stand and study the functional and anatomical connectivity, by providing multidimensional

(2D, 3D & 4D) images of the brain with different modalities. Morphometry measures have

been traditionally applied on 3D images, which allows the inspection of local differences

in brain anatomy. Differences in brain volumes have been commonly highlighted through

the drawing of Regions of Interest (ROIs). However, these methods can only provide a

computation of rather large areas and small differences in volume may be missed.

Later in [2], Voxel-Based Morphometry (VBM) has been suggested as an add-on of ROI

based approach, which focus on providing a whole-brain analysis over multiple subjects.

VBM has been widely acquired to define changes in the brain volumes, which is linked to
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the structural analysis of the brain. Comparably, functional analysis has been also carried

out using ROI based approach, trying to map functional connections from single regions

to the rest of the brain [3]. Moreover, simple data-driven or linear model-based methods

have been developed to explore the activated functional brain networks [4, 5, 6]. Even

though these methods have constituted and still represent an important strategy to study the

brain functionality, in the last decade, thanks to the introduction of novel developments in

medical imaging and to the growing interest in the network science, many major studies have

been proposed focusing at understanding the brain under different characteristics, taking into

account also the principle of network science.

The study of connectivity between different regions of the brain is known as "connectomics",

which is a relatively recent field of research that enable neuroscientists to explore the inter-

play between different regions of the brain by modelling it as a network or "connectome"

[7]. The term connectome recognizes a wide range of distinct connectivities, which are

mostly depending on the brain scale: the microscale expresses single neurons connectivity;

the mesoscale express the neuronal population connectivity; the macroscale describing the

connectivity at brain regions level. Concerning the connectome, there are different character-

istics that should be taken into consideration [8]. This term is mostly used to define structural

connectivity which describes the physical connections between neural elements, providing

an anatomical interpretation of the brain. Besides the structural connectome, the functional

connectome is referred to as functional connectivity between brain regions, which is mainly

considered as an undirected statistical estimate between neural elements that change over

time.

Indeed, the connectome is a way to describe brain connectivity and to compress the quantity

of brain data in an easy framework to emphasize the main goals. This way of describing is

independent of the scale, and the overall examination of the brain at different levels should

aim at structuring a full map of neural connections. Finally, the connectome is an illustration

of brain architecture but it is also a mathematical object that fit well with complex network

theory, focusing at exploration neuroscience process. As a matter of fact, graph theory-based

approaches have been successfully applied to analyze the connectome’s, bringing awareness

in studies of neuroscience and on biological system [9].

Nowadays, independently from scales, the construction of connectome depends on the imag-

ing method used to obtain brain/neuronal images. In spite of the advancements made in his-

tological segmentation and microscopic imaging, microscale connectome focus at mapping

the connectivity between every single neuron. This view is quite impractical considering the

whole brain, due to a vast number of neurons to be mapped (approx. 1011 neurons) [10].

However, considering the possibility to trace every single neuronal connection, it has been
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indicated that cognitive functions depend on the activity of a huge group of neurons forming

a network [11]. With the advent of multi-electrode array technology (MEA), it permits a

further step to distinguish the connections between patterns describing a mesoscale to study

neuronal connections activities. At mesocale, the analysis includes a local population of

neurons. The analysis of a small cluster of neurons, drawn out from a brain region manages

a specific brain process, provides proof of a specialized sub-networks organization [12, 13].

Stepping towards a higher level, the macroscale connectome makes it simpler to understand

cognition of brain functions. Neurons are clustered into anatomical and particular brain re-

gions focusing at simplifying the formation of the brain network. However, the lacking of

universal brain parcellation creates a significant barrier for such understanding. However,

an anatomical parcellation of brain regions and the recognition of the inter-region connec-

tions, integrate with the increasing interest in neuroinformatics and advancements in medical

imaging, made the macroscale a key tool to study the brain functions.

In fact, progress in MRI and especially in diffusion Magnetic Resonance Imaging (dMRI)

and functional Magnetic Resonance Imaging (fMRI) allow connecting basic biophysical

method with particular anatomical features of the brain, specifically the macroscopic archi-

tecture of the brain. These recent advances in neuroimaging, have made it feasible to exam-

ine human brain connectivity systematically and across the whole brain in large numbers of

individual subjects. At the macroscale, the functional and structural aspects of the brain have

drawn huge interest and researchers have initiated to exploration on the relationship between

these two connectivities. The structural (or anatomical) connectome defines the white mat-

ter fibre links between different regions of the brain (cortical and subcortical). Whereas, the

functional connectome is typically formulated as a representation of the statistical pairwise

measure between regional brain dynamics.

The development of advanced methods to understand the brain connectivity and indeed eval-

uation of integration or segregation (i.e. group detection) are important, both at a single-

subject level and also for group-wise studies. In recent years, there has been a rise in the

number of fMRI studies which includes patients affected by mental disorders and, aims to

classify between groups and identification of regions responsible for this segregation. Such

analysis requires advanced tools and framework to locate anomalous connections and a deep

understanding of the brain architecture underlying functional process in healthy and patho-

logical states. Moreover, the trending dynamical analysis of functional connectivity requires

advance tools to better understand the complex dynamic nature of brain connectivity and use

this information to identify/classify between groups of subjects.
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Motivations

In recent years with the development of advanced methods of analysing brain connectivity

characterization, the curiosity of the neuroscience community to explore more and more is

increasing. The concept that the brain could be narrated as a network is quite entrenched for

many years, however only in the last few years, there has been a rapid increase in the efforts

to analyze the brain connectivity. The structural or functional connectivity information can

be considered as a graph, a mathematical object which defines a set of complex networks.

In literature, the term “network” has several definitions. In the context of graph theory and

complex networks, "network" explicitly implies a bundle of nodes and pair-wise edges, by

which the nodes are linked. This perception is referred to as Graph theoretical exploration

of brain networks. "Network", in neuroimaging, may identify a group of voxels or Regions

of Interest (ROIs), that at resting state or in particular cognitive tasks, act identically [14].

The Connectome naturally acquired from this belief allows to use graph theory tools to

analyze the structure and the function of the brain. The expanding interest in brain connec-

tivity is also attributed to the recent advances made in Magnetic Resonance Imaging (MRI),

with particular regards to functional MRI (fMRI), which is used to compute the pair-wise

relations between brain dynamics of different regions using the formation of a functional

connectome. This estimation of brain networks do not have an arbitrary organization but

they show segregation and integration properties, which can be evaluated through topolog-

ical measures, like the modular structure [15]. Exploring the relation between these two

properties is still challenging and its interpretation is playing a crucial role in understanding

brain connectivity under different circumstances/pathologies. The structural connectivity is

almost static while functional connectivity has been revealed to be dynamic and highly task-

dependent [4]. This aspect makes functional connectivity highly variable between subjects

both during resting state and task analysis [14].

Although the graph presentation of connectivity focus at simplifying the complication of

fMRI data, the encoding of such data for analysis purpose in a more robust way is still

an active field of research. Indeed, the functional connectivity information of the brain

requires an in-depth analysis and with advanced tools to manage the complexity of this

multi-dimensional data. Moreover, a graph theory-based analysis applied to brain functional

connectivity graphs may enhance the knowledge about the working of brain network and the

corresponding structuring in healthy and pathological conditions for neuro-markers recogni-

tion’s. Identification of assessable neuro-markers may help the prompt diagnosis of mental

disorders, making feasible early access to clinical care. With connectomics-based meth-

ods it is possible to explore different brain alterations, identifying each of them in term of

connectivity alterations.
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However, the discussion about the relation between connectivity alterations linked with spe-

cific symptoms and cognitive impairments is still ongoing. Indeed many questions are still

unsolved, which are primarily related to the understating of the brain processes, like how the

changes in functional connectivity reflect the characterization of brain networking for differ-

ent brain disorders or understanding of brain modulation/integration during a cognitive task.

Such information can be helpful in understanding hidden aspects of brain functioning under

multiple scientific conditions e.g. effect of genetic heritability, integration of regions during

task etc. In this scenario, this thesis focus on establishing new methodological approaches

to address those questions.

Identification of brain sub-modular structuring might divulge the existence of interconnected

brain regions which might be included in different cognitive functions. A robust group-

analysis with functional data aiming at identifying distinct brain regions in response to a

specifically designed task to see the effect of genetic heritability in twin’s using neuroimag-

ing based functional connectivity is still missing and it has been tackled in this dissertation.

Moreover, the dynamical reorganization over time of brain modular structure has been dealt

with focusing at studying the changes in functional connectivity and verifying the genetic

effect in dynamic functional connectivity. To this aim, the embedding of functional connec-

tome by using geometrical properties of connectivity matrices and graph Laplacian on the

Riemannian Manifold has been explored to describe the dynamical and static reconfiguration

of fMRI functional connectivity.

Assuming that alterations in functional connectivity are directly related to the brain diseases

[16], classification and identification of functional neuro-markers in healthy and patholog-

ical subjects are becoming a very plausible exploration as it needs robust tools to quan-

tify such alterations. Geodesic methods on manifold properties of connectivity have been

implemented taking into account the geometrical and properties of graph Laplacians and

symmetric positive definite matrices. However, neuro-markers identification in functional

connectivity alterations are pretty difficult and challenging to analyze. To achieve this goal,

an automatic tool has been proposed which allows the identification of disruption in connec-

tivity between between brain regions in pathological condition avoiding the manual interven-

tion that is prone to errors. In this proposed method, a graph-based clustering method which

deploys Game Theory has been adopted at the multi-subject level to cluster the data and

then finding reference networks which help to encode high dimensional data into vectorial

representation. Such representation is meaningful and easy to adapt to perform classification

between groups and identifying the neuro-markers.
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Outline & Contribution

This dissertation is structured into five main chapters, mainly focused on brain functional

connectivity analysis. Basically, we have specified some current important issues (i.e. neuro-

markers detection, brain graphs classification) and propose novel methods based on graph

analysis combining the geometrical properties of functional connectomes, geodesic methods

on manifold approaches and clustering-based data encoding.

Chapter 2 contains a general introduction to functional-MRI techniques that permits the

study of brain connectivity. It follows a detail section on how to build a functional brain

connectome, introducing some methodological outlooks to deal with brain connectivity is-

sues. Then geometrical properties of functional connectivity matrices and implementation

of geodesic methods in analysis are discussed in greater detail.

Chapter 3 is primarily focused on the problem of analyzing the effect of genetic heritability

on twin’s using task-induced fMRI. First, a brief introduction and background related to

twins zygosity and genetics have been discussed. This is followed by the experimental part

which employs geodesic methods to analyze twins’ connectomes on a manifold and proves

the effect of genetics on functional connectivity. In the end, we compute the heritability

index using Falconer’s formula using the functional connectomes [17, 18].

In Chapter 4, we have extended the geodesic metric-based methodology explains in the pre-

vious chapter and is mainly focused on the classification of brain connectome. This chapter

explains insights on connectivity-based discrimination within groups, using data encoding

and machine learning methods. Then we introduce our contribution, a more general frame-

work based on geodesic clustering of functional connectome using manifold approaches with

the k-means algorithm with their application to perform classification between groups. The

proposed method has been tested on real data for functional brain connectivity classification

between healthy and pathological subjects [19].

Chapter 5 addresses another crucial problem in brain imaging, the identification of neuro-

markers responsible for segregation and integration of brain organization in multiple patholo-

gies. In this chapter, we further extend the methodology presented in previous chapters and

our contribution includes the introduction of a graph-based clustering algorithm, based on

Game Theory, which able to group the subjects in multiple clusters in a more efficient way.

Then centroid of such cluster serve as reference connectome and helps to encode the data

for neuro-marker identification and classification purpose. The proposed method has been

tested on real data of healthy and patients affected with multiple sclerosis [20, 21].

Chapter 6 extends the algorithm described in previous chapters to develop multiple ap-
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proaches which allow exploring the dynamic of functional connectivity. Following recent

evidence about the dynamical nature of functional connectivity, we propose an approach to

compute the similarity between multiple windows of dynamic functional connectivity and

then use this similarity measure as a feature to discriminate between two groups. In the

second method, we are using a geodesic metric based k-means to cluster dynamic func-

tional connectivity matrices and then encoding data using geodesic methods for classifica-

tion purpose. Both approaches were tested on task-induced twin’s data to classify two groups

[22, 23].

Finally, at the end in Chapter 7, conclusions and suggestions for future research are summa-

rized and discussed.
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Chapter 2

Background

2.1 Functional MRI

Functional MRI is a non-invasive technique which provides a means and advanced oppor-

tunity to understand connectivity organization and functioning of the brain. fMRI based

on the principle that, when the brain becomes active in response to particular stimuli (task

fMRI) or during resting-state analysis (no task), the amount of blood flow to the involved

brain regions increases. As a result, due to the increase in the metabolism of those regions

and more oxygenated blood flows in the regions. The fMRI measures the increase in oxy-

genated blood demand of a group of neurons. The changes in the proportion of oxygenated

and de-oxygenated blood are measured via the hemodynamic response in each voxel. Due

to the paramagnetic properties of blood, MRI can capture this act, which changes with the

activation of such regions. This effect is captured by MR as the Blood Oxygen Level De-

pendent (BOLD) signal, which is comparable to the haemodynamic response of the grouped

neurons activity.

In recent two decades, fMRI has been developed and considered as one of the most promi-

nent methods being used for functional brain imaging [24, 25] and it is growingly being

used to explore the functional integrity of brain networks. Besides fMRI, there are other

techniques which yield functional features as Magnetoencephalography (MEG) or Elec-

troencephalography (EEG). However, fMRI is more admired rather than MEG and EEG

since it is a non-invasive technique and it has a good trade-off between spatial and temporal

resolution. Typically an fMRI image is a 4D image where the fourth dimension illustrates

the time, each volume expresses brain functions at a definite time and after primary pre-

processing steps, the time-series data of each voxel are extracted. One of the main goals of

fMRI studies is the extraction of activation patterns during stimuli or in resting state.

General Linear Model (GLM) is one of the foundations of statistical analysis of task-based

fMRI data. The configuration of a GLM can be written in a matrix shape as Y = Xβ + ε,

where Y represent a matrix of time-courses in each voxel, X is a design matrix reflecting

the stimuli extracted at each time point and ε shows the error with constant or non-constant

variance [26]. In many cases, the evaluation of β can be acquired with ordinary least squares.
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Generally, the model is quite flexible and extendable to group analysis. However, GLM

needs some initial assumptions as of the independence of the voxels and time points which

are nearly impractical. For such reasons, alternatives and multi-variate approaches have been

proposed.

Indeed, advanced algorithms such as Independent Component Analysis (ICA) or Principal

Component Analysis (PCA) have been adopted to study the fMRI. ICA is one of the most

considered technique to explore fMRI and analyze the functional networks [27], which nor-

mally examine for linear combinations of the original data and assuming it to be non-normal

and maximally independent. It does not presume normality of the data, as in PCA, and it

does not apply any dimensionality reduction. Regarding the application of ICA on fMRI

data, studies related to temporal and spatial versions have materialized in literature. As an

example of temporal and spatial ICA check [28], while [29] for spatial ICA. Despite sev-

eral versions of ICA, a major step forward has been the development of group-ICA analysis

presented by [30] as a model for group inferences, where the individual subject results are

combined into a group-map.

Alternatives approach to analyze the fMRI, are based on Canonical Correlation Analysis,

Maximum Correlation Analysis and several modifications of ICA have been applied in func-

tional brain studies (see [31] for a review). All of these methodologies can be used with dif-

ferent fMRI protocols. However, resting-state or cognitive tasks analysis are the most widely

used. To analyze the information submerged in fMRI images, it requires advanced tools for

a precise examination. Many times functional alterations underlie brain disorders such as

Autism, Schizophrenia, Multiple-Sclerosis or Alzheimer. Indeed, the development of meth-

ods focusing at a complete mapping of functional connectivity might refine the knowledge

of such diseases allowing a translation into clinical studies.

2.2 Functional Connectome

Connectome has its basics in the concept of network. Nowadays network science has come

over different disciplines, from social science to neuroscience. In general, each connected

system with links is considered as a network. In neuroimaging, we refer the brain network to

describe a set of brain regions linked with each other, or as a group of brain regions activated

at the same time, [32]. In general, the term network is mostly appropriate for structural

connectivity since it represents physical connections, while the functional connectivity is

linked to statistical measures. However, we can use the word "graph" that is more general

and it describes the mathematical objects, over which, analysis of brain connectivity can be

done.
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Whenever a graph can model the association between objects, the choice of nodes and links

becomes the preeminent step. Nodes are objects with meaning, which explicate a part of

the entire system (i.e. anatomical or functional) while keeping an independent relationship

with each other. In brain graphs, with regards to the macro-scale connectome, each node

represents a brain region with a specified meaning. The major question concerns how these

brain regions should be defined. This problem of defining the brain in different regions based

on its functionality is known as brain parcellation and various attempts have been made to

steady the choice of the brain atlas. Typically, brain atlas depends on the modality; the first

basic method to define the nodes of the brain graph is to consider every single voxel of the

MRI image (structural, diffusion or fMRI) as a vertex. However, it prompts computational

problems due to the vast number of voxels in MRI images and it disobeys the presumption

that each node should be independent of each other.

Grouping voxels according to common behaviour has been presented to segment the brain in

notable regions; one of the most usual brain atlas used in functional studies is the Automated

Anatomical Labelling (AAL) [33], which mainly focus on anatomical features and does not

consider functional information. There are other brain atlas constructed using functional

features, probabilistic approaches or other anatomical features and also taking into account

the information on brain anatomy [34]. Predominantly, even though there are several ways

to define the nodes, the main advantage of the connectome approach is that once defined

the most suitable brain atlas, functional and structural connectivity analysis can be simul-

taneously performed through the forming of a connectivty matrix. The nature of the links

typically defines how we want to narrate our system. Binary links only indicate the presence

or absence of connections, while weighted links also denote the strength of the connection.

On the other side, links can indicate the directionality which makes a graph directed. How-

ever, undirected weighted graphs G = (V,E) is usually constructed to estimate the brain

connectivity, where a node/vertex (V ) in the graph delineates a brain region (i.e. ROI) and an

edge/link (E) between two nodes is indicative of brain regions being functionally connected

(connection weights) [35].

Functional connectivity graphs have different construction techniques. Considering the brain

parcellation, which recognizes the set of brain regions, functional links between nodes are

defined following different rudiments. After the acquisition, preprocessing of fMRI image

and extraction of corresponding time-series signal, which is extracted for each voxel and av-

eraged to describe a single time-series for each node in the graph (check [36] for a review on

fMRI pre-process), one of the ways to build the functional connectivity is through the com-

putation of covariance between each pair of time-series, which reflects signal transmission
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from one region to another via indirect links [37] and is defined as:

covx,y =

∑N
i=1(xi − x̄)(yi − ȳ)

N − 1
(2.1)

where x̄ and ȳ is the mean of time-series of regions x and y respectively. Covariance ma-

trices enjoy the property of being symmetric & positive semi-definite, however, in a real

scenario, they are almost always symmetric & positive definite (SPD) (described in detail in

section 2.3). Another and one of the most common way to compute functional connectivity

matrix is by using Pearson Correlation between each pair of time-series, defined as:

ρx,y =
covx,y
σxσy

(2.2)

where σx and σy is the standard deviation of time-series of regions x and y respectively. As

it can be seen in Eq. 2.2 that correlation matrix ρ, which is also symmetric and positive semi-

definite, is a normalized version of covariance and represent a subset or submanifold of SPD.

So, due to this reason, correlation can be considered as a constrained type of SPD matrix

that builds a submanifold, assuming generic geometric properties of normal SPD manifold.

This does not reduce the significance of SPD manifold and to study functional connectivity

since many depictions of functional connectivity are equipped with SPD properties and the

suggested methods in this dissertation are presented for a broader class of SPD matrices.

Hence, we construct the functional connectivity matrix which extract a statistical measure

of each pair of time-courses over time. However, to date, no accordance has been reached

about which functional connectivity measures is able to define the similarity between two

functional time-series. There are some alternative measures such as, partial correlation,

which reflects the direct level of interactivity between two regions removing the impact of

all other regions.

In recent years, Graph Laplacian has been widely used to analyze the brain connectivity

due to its geometrical properties based on symmetric & positive semi-definite nature of

graphs. Different graph laplacians exist and they can be computed from the corresponding

connectivity matrix. Assuming W as the functional connectivity matrix, which describes

the brain network as an undirected weighted and symmetric graph with positive weights

(wij > 0), we divide graphs Laplacian into two classes: unnormalized and normalized

graphs. The Unnormalized graph Laplacian is defined as follow:

L = D −W (2.3)

where D is the diagonal degree matrix (D = diag(
∑

iwij)).
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Figure 2.1: The pipeline to build functional brain connectome. a) A generic example of fMRI images of the
human brain. b) A generic brain parcellation of the human brain. c) fMRI functional connectivity matrix
computed using covariance, correlation and normalized graph Laplacian

Beside, there are two Normalized Graph Laplacian, defined as follow:

Lsym = D−
1
2 (D −W )D−

1
2 (2.4)

Lrw = D−1W (2.5)

where Lsym is the symmetrized version of the Laplacian and Lrw is the Random Walk

Laplacian. Figure 2.1 shows the pipeline to obtain the fMRI functional connectome using

multiple methods starting from the raw images.

However, fMRI functional connectome construction is undergoing change since recently it

has been demonstrated that functional brain connectivity has a dynamical behaviour [38],

and that along with an fMRI scan, different patterns of FC can occur [4, 39]. So, recently

the term "Chronnectome" has been lodged to identify the new frontier of studies related

with brain functionality, which should take into account the changes occur in the network

over time [40]. Basically, instead of providing only one connectivity matrix expressing the

correlation between each pair of the entire fMRI time-courses, scientists have started to
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ponder local correlations along with the temporal FC, sampling the whole time-series at a

different time point, allowing to define FC over time with multiple connectivity matrices.

The simplest and most widely used approach to build an fMRI functional chronnectome is

through sliding windows technique [38, 4], which allows capturing local FC correlations. In

the next two sections, we introduce one of the important property of functional connectivity

connectome and related approaches to study and explore brain connectivity.

2.3 Manifold Approaches

A crucial issue in brain connectivity analysis is related to the geometrical properties of orig-

inal connectivity matrices. Especially in the case of methods for classification and discrim-

ination task, a measure to define the similarity index is needed. Assuming as functional

weights the Pearson correlation or covariance between region time-series for functional con-

nectivity and/or the number of fibres connecting each pair of brain regions for structural

connectivity. In such space, the euclidean distance is the natural way to measure the similar-

ity between two objects. However, referring to brain graphs, this choice is suboptimal since

it does not well describe the complex geometry of the data input.

An alternative embedding of the input data is given by the properties of manifold. Of par-

ticular interest are the Riemannian Manifold with the corresponding geometrical properties.

In the following sections, we will revise the main properties of these approaches.

2.3.1 Riemannian Manifold

A manifold is a topological space which is locally similar to an Euclidean space. A Rieman-

nian manifoldM is a differentiable manifold which is outfitted with a smooth inner product

on each tangent space. The Geodesic distance on the manifold defines the distance between

two generic points as the length of the shortest curve connecting each other. Of our interest

is the Riemannian manifold defined by all symmetric & positive definite matrices (SPD) of

the same size. A typical example of SPD matrix is the covariance or correlation matrix,

which represents a possible way to describe the relations between fMRI region time-series

for functional connectome (see section 2.2). Hence, we introduce Riemannian manifold and

its properties for a generic set of SPD matrices.

Let Sym++
n denote the set of SPD matrices of size n×n, that is the set of all symmetric n×n

matrices W such that the quadratic form xTWx > 0 ,∀ x 6= 0 ∈ Rn. A crucial property

of the set Sym++
n is that it is not a vector space but forms a Riemannian manifold [41]. As

a consequence of the manifold structure of Sym++
n , computational methods that simply rely

on the Euclidean distances between SPD matrices are generally suboptimal [42]. Figure 2.2
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Figure 2.2: The conceptual difference between Euclidean distance (green line), Euclidean mean (green start)
and geodesic distance (red line), geodesic mean (red start) between two points P1 and P2 on a manifold.

visualizes the difference between geodesic and Euclidean distance on a manifold.

Over the last few years, geometric properties of Riemannian manifold of SPD matrices have

been exploited in brain connectomics but have not yet been fully recognized. The main use

of these properties was to capture and discriminate complex or non-linear patterns which

can occur in healthy or mental disorders. In [43], a probabilistic model based on the man-

ifold of covariance matrices has been used to separate post-stroke patients from a group of

healthy control. Also, taking into account the manifold structure, the concept of transport

on the manifold of covariance matrices of fMRI time-series has been successfully applied

in longitudinal studies to classify changes in functional connectivity after a particular task

[44].

In [45], Gaussian kernels based on Log-Euclidean and Stein divergence metrics on Rieman-

nian manifolds have been used to classify subjects between healthy and those with patho-

logical disorders. In [6], Grassmannian geometry on graph Laplacians have been used to

highlight sub-networks that, in turn, allow FC to be used for classification purposes. Sim-

ilarly, Riemannian geometry approaches allowed the classification of sub-connectivity pat-

terns [46], the diagnosis of mild cognitive impairment [47] and the identification of auditory

stimuli from the evoked functional states [48].

Moreover, in [49, 50, 51, 52, 53, 54] kernel-based methods and in [49, 54, 55] manifold

based methods related to supervised dictionary learning were used by assuming that all the

samples were on the Riemannian manifold of SPD matrices. In kernel-based dictionary

learning methods, [53] employed multiple kernels to get better results, unlike [50, 51, 52]

where only single kernels were used. Riemannian manifold based methods were defined in

[54, 55] and Grassman manifold based methods were deployed in [49].

Also in biomedical applications, some examples have demonstrated the advantages of those
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techniques. For example, in Brain-Computer Interface (BCI), Riemannian manifold kernel

classification has been adopted in EEG-based studies [56]. In [57] a combination of locally

linear embedding and Log-Euclidean Riemannian metric [58] was proposed to embed func-

tional brain network into a lower-dimensional space. Although recently, methods relying

on Riemannian geometry are receiving particular interest in functional connectivity, origi-

nally, Riemannian framework has first been applied on diffusion tensor imaging, aiming at

designing the tensor structure of white matter fibres [41, 58].

Riemannian metrics and kernel methods are quite adopted for image classification since the

combinations of such frameworks overcomes standard approaches in Euclidean space [59].

In computer vision tasks, as image classification, Riemannian manifold properties and kernel

methods are extensively used, thanks to the fact that their combination outperforms kernel

methods developed in Euclidean space [59]. The main reason for such improvement has

to ascribe to the metric and to the smoothness of such manifold defined by PSD matrices.

Riemannian metrics have the great advantages to describe much better the distances between

a point on the manifold and they easily allow to define a kernel matrix.

Graph Laplacian Recently, graph laplacian has been widely adopted to analyze the con-

nectivity of the brain. In [45, 6] Kernel-based method using graph laplacian has been

successfully deployed to perform classification between subjects and identifying discrim-

inative brain connection. Details regarding the computation of graph laplacian have already

been discussed in section 2.2. Focusing on the unnormalized and on symmetric normalized

Laplacian, we revise the main properties. Laplacian matrix is a semi-definte positive matrix

(PSD) and it can be decomposed in eigenvalues and eigenvectors as follow:

L = U ′ΛU (2.6)

where U = [u1, ....., un] is the eigenspace and Λ is the diagonal matrix with corresponding

eigenvalues. Since Laplacians are semi-definte positive matrices, λn are always positives

0 = λ1 ≤ ..... ≤ λn and can be easily regularized to a positive definite (PD) matrix by the

modification L̂t = Lt + γI , where γ > 0 is a regularization parameter and I is the identity

matrix.

2.4 Geodesic Metric on Manifold

To fully exploit the advantage of the manifold structure, it is essential to consider the no-

tion of geodesic distance, which measures the length of the shortest curve on the manifold

connecting two points (two matrices). Among the different Riemannian metrics that have

been considered on Sym++
n , the one that has been most studied and analysed is the classical
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affine-invariant metric, which is a full geodesic distance on the manifold between two SPD

matrices W1 and W2 is given by:

daffine(W1,W2) =

∥∥∥∥log

(
W
− 1

2
1 W2W

− 1
2

1

)∥∥∥∥
F

(2.7)

with log(·) denoting the principal matrix logarithm and ‖ · ‖F denoting the Frobeniuous

matrix norm. While being invariant concerning all affine transformations, a drawback of

the affine-invariant metric is that it is computationally intensive, especially for large scale

datasets. This latter problem might not be so relevant in neuroimaging, where usually the

amount of data available is not so large. However, a significant drawback of an affine metric

is its impossibility to generate any kernel matrix, which makes it useless as a similarity

function for kernel methods.

To overcome this problem, other metrics have been developed as approximation of full

geodesic distance on Sym++
n . The most common one is the Log-Euclidean distance [58],

which is simple and fast to compute. Equation 2.8 and 2.9 describe, respectively, the log-E

distance formula between two SPD matrices W1 and W2 and the closed form formula to

compute the mean [60] (illustrated in Figure 2.2) of two or more SPD matrices with this

metric.

dlogE(W1,W2) = ||log(W1)− log(W2) ||F . (2.8)

WL = exp

{
arg inf

W

K∑
i=1

‖ log(Wi)− log(W )‖2
}

= exp

{
1

n

K∑
i=1

log(Wi)

}
, (2.9)

The matrix can be described as a spectral decomposition W = UΛUT where U is an or-

thogonal matrix and, because W is positive definite, Λ is a diagonal matrix with strictly

positive entries. Hence, the logarithm of a matrix is given by logW = UlogΛUT, where the

logarithm of the diagonal Λ is computed as the logarithm of all elements in the diagonal.

Similarly, the exponential of a matrix can be computed as exp(W ) = Uexp(Λ)UT.

Log-Euclidean is a full geodesic distance on the Riemannian manifold. This metric is com-

putationally faster compared to the Affine distance (Eq. 2.7) and it defines a positive kernel

which can be easily combined with a kernel-based classification algorithm.

An alternative metric, which is much faster compared to Eq. 2.7 and 2.8 is the Stein Diver-
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gence between two SPD matrices. Stein Divergence [61] is defined as follows:

dstein(W1,W2) =

{
log det

(
W1 +W2

2

)
− log det(W1W2)

2

}1/2

(2.10)

Stein divergence is not a Riemannian metric and it is based on the convex structure of

Sym++
n . As well as the Log-Euclidean distance, it defines a positive kernel suitable for

kernel-based methods.

As in [62], instead, a component of the Frechet distance is describes known as Wasserstein

distance. The Wasserstein distance is defined between two Gaussian distributions, which is

built on two components. One component considers the means, and the other component is

between the covariance’s defined as:

d2
t (W(x),W(y)) = tr[W(x) +W(y) − 2(W(x)W(y))

1/2 (2.11)

Where W(x) and W(y) are the covariance’s of two distributions x and y respectively, and tr

is the trace operator. It has been proven that the distance expressed by Eq. (2.11) is a metric

on covariance, hence, on positive semi-definite matrices. The advantage of the Wasserstein

metric is that it allows the computation of the geodesic distance between two positive semi-

definite matrices without introducing the regularization and it is easy and fast to compute as

compared to other geodesic distances.
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Chapter 3

A Riemannian Framework for the Compari-
son of Brain Connectomes

3.1 Introduction

The study of Twins provides a foundational perception of the respective contributions of

genes and the environment on immeasurable aspects of the unfolding lifespan [63]. Conse-

quences of Heritability are as diverse as to incorporate (but not limited to) traits of personal-

ity [64], brain structure [65], intersection between regions of brain [66], and the functional

operations of the basic motor systems of brain [67]. Indeed, the genetic effect on human

behaviour is so considerable, extensive and replicable [68], that genetic impact on behaviour

is casually preserved in “first law of behavioural genetics [69]. As observed in some stud-

ies that mono (MZ)- and di-zygotic (DZ) twin samples are important with notable power

for concluding additional and non-additional contributions of genetic/environment effects

[70, 71, 72]. Generally, at the time of birth, MZ twins share 100% of their genetic data

(against 50% in DZ twins), and a simplifying presumption is that shared genetic material

will deploy effects throughout the lifespan.

Particularly, if on average, MZ pairs are more similar on some “biological trait” as compared

to DZ pairs, and given that the in utero and post-birth environmental histories are identical to

similar (between members of the pair), then mono-zygosity may be deduced to “cause” the

effect of that increased trait similarity. Customary methods of understanding brain activities

based on brain networks. Due to a variety of reasons related to genetics and formulation of

brain organization, a complex question is that either the functional brain networks can be

considered as “biological traits” or not? Typically, functional brain networks are inherently

dynamic [73].

Some recent studies in twins have addressed the heritability in brain networks using resting-

state fMRI data [74], proposing moderate to high heritability of intrinsic resting-state func-

tional connectivity[75, 76]. The heritability of task-induced brain network profiles may

themselves be highly contextual. To be more precise, a determined visuo-motor task (cou-

pled to a more general behavioural aspect such as visuo-motor function), will induce network
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connectivity in task-related sub-networks of regions [77]. In the case of twin studies, this

proposes that the resemblance in network profiles between MZ twin-pairs (as compared to

DZ pairs) may be greater for task-related sub-networks (in contrast with task-orthogonal

sub-networks). This can be suggested because the effect of genetics may be contextualized

by the properties of task, and arbitrate specific connectivity patterns. Use of such a provok-

ing and novel framework has not been suggested before. If task-relevant brain functioning

is dynamic itself, as is expected in an open system like the human brain[78], then conse-

quences of genetics on brain networks will also be sensitive to selective network effects.

Experimentally we have assessed this complex question within the conventional twinning

design structure (pairs of MZ and pairs of DZ twins).

A primary methodological novelty in this work, was the use of a concise analytical frame-

work [45] that allowed the mapping of covariance-based functional connectomes (which are

symmetric and positive semi-definite) induced by the task to Riemannian manifold space

(see chapter 2, subsection 2.3.1) [79]. This mapping to a smooth geometrical manifold

gives a simple outline of network activity within a manifold space. As discussed earlier

in section 2.4, the use of euclidean metric on such matrices is suboptimal and hence use

of geodesic distances between mapped connectome within the manifold space is suggested

which provide a metric of similarity between network profiles. A few studies of analysis

of functional connectomes on Riemannian manifolds of SPD matrices includes, evaluation

of average and variability of group-level covariance matrices and statistical testing [43, 80],

detection of change point [81], covariance matrix estimation on manifold for individual [82],

functional connectivity regression for estimating structural connectivity [83] and dimension-

ality reduction of connectivity data for machine learning application [55, 84, 57, 85].

By mapping the connectome profiles of task-relevant and task-orthogonal sub-networks in-

duced by the visuo-motor integration task, it enables us to evaluate similar metrics of pro-

files in MZ and DZ twin pairs. The resultant findings were further confirmed using a sup-

portive (and established) method for evaluating heritability (H0) index, based on Falconer’s

formula[86]. H0, the heritability of any trait is built on the difference between correlations

of pairs of twins (where it is expected that the correlations in MZ twins on an inheritable

trait are higher than in DZ twins). In this work, H0 was computed for each component in the

functional connectome of task-relevant and task-orthogonal networks Figure 3.1.

For comparison purpose, the heritability was explored in the same sub-networks using task-

evoked fMRI data in twins from the Human Connectome Project (HCP) data set [87]. We

specifically considered two task domains: a) visually guided motor mapping (henceforth

HCPMotor) wherein similar to the primary analyses, visual stimuli were used to evoke ef-

fector responses (hand, foot or tongue) and b) a standard working memory task (with verbal
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and visual stimuli; henceforth HCPWM). Across twin samples of our dataset, tasks, and an-

alytic methods, the accumulation of results (Figure 3.5 - 3.10), presents clear validation that

the heritability of brain network profiles is contextual.

3.2 Material and Methods

3.2.1 Data Acquisition

Thirteen twin pairs (7 MZ, 6 DZ) have been recruited from the population-based Italian

Twin Registry. MRI data were acquired on a 3-Tesla MR imaging unit Siemens Allegra

system (Siemens, Erlangen, Germany) with a standard head coil. T2*-weighted images were

acquired using a gradient-echo EPI-BOLD pulse sequence (TR: 2000 ms; TE: 30 ms; flip

angle 75°; FOV: 92x192; 31 axial slices; thickness: 3 mm; in-plane: 3 mm2; matrix: 64x64).

High-resolution MPRAGE T1-weighted structural images were acquired in the same session

(TR: 2300 ms; TE: 3.93 ms; flip angle 12°; FOV: 256x256; 160 axial slices; slice thickness:

1 mm; matrix 256x256).

During fMRI, subjects were positioned with adjustable padded restraints employed for head

stabilization. Details of basic visuo-motor paradigm and stimuli are given in [88]. Re-

sponses were made with either the Right or Left hand and the use of hand was blocked

across scans; Thus, two separate scans (182 volumes each) were consecutively acquired and

blocking response hand across scans was designed to preempt ancillary effects of excitatory

and inhibitory signalling response competition [88], as these processes were tangential to

the goals of the study.

3.2.2 Data Pre-Processing

Pre-processing of MRI data for investigating network profiles across the entire cerebrum

was performed using a combination of MATLAB and shell scripts. These scripts collec-

tively integrated the functionalities of AFNI [89], FSL [90], and FreeSurfer [91]. T1 struc-

tural images were processed using the FreeSurfer recon-all command-line tool to obtain the

grey matter (GM), white matter (WM) and Cerebrospinal fluid (CSF) masks. This method

identified ROIs from the Destrieux atlas [12, 13, 92], and then GM masks were created by

integrating the resulting ROIs accordingly. GM for all subjects was parcellated using the

AAL atlas defined in MNI space [33]. Each subject’s T1 image of each subject was trans-

formed to the T1 MNI152 template with FSL FNIRT Non-linear transformation [93]. The

transformed T1 GM mask was directly applied to the AAL atlas to match the subject’s GM

anatomy.

For the purpose of computing the functional connectivity (FC) matrices, we considered the
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Figure 3.1: A) Parcellation of 90 cerebral ROI of AAL atlas (top) into task-relevant MV (blue) and task-
orthogonal NMV (red) sub-networks. B) Division of FC matrices into task-relevant (blue bracket, black inset)
and task-orthogonal (red brackets, grey inset) sub-networks.

set of 90-ROI in the cerebrum only as defined in the AAL atlas. The visuo-motor attributes of

the task prompt a priori clustering of the ROI set into two classes of sub-networks. First, the

task-relevant sub-network was influenced by two criteria: a) an ALE-based meta-analyses

of motor paradigms [94] acquired from visual-guided finger tapping studies and b) previous

work documenting effects associated with probe detection tasks using a similar paradigm

[88]. This task-relevant motor vision (MV) sub-network was composed of n=28 bilateral

ROIs and was complemented by a task-orthogonal non-motor vision (NMV) sub-network

comprising of n=62 bilateral ROIs that were orthogonal to task-induced activity. The re-

sultant classification of sub-networks (as illustrated in Figure 3.1) was maintained for the

remainder of the study and established the bases for the main analyses of network profiles.

From each of these 90 ROIs, the mean time series across voxels in unsmoothed fMRI images

were extracted using FSLMEANTS [95], individually for each task acquisition (Left-hand

and Right-hand tasks). These time series were then used to construct two symmetric 90 x 90

FC matrices for each subject ( CRighti and CLefti ) by using the covariance coefficient (Eq.

2.1) between each possible pair of ROIs. Hence, These matrices represent the functional

connectomes showing co- and counter-activations of ROIs, including self-connections in

the diagonal which indicates the overall variance of ROIs. The estimated spatial variance-

covariance matrices were configured in a manner that cleaved apart rows (and columns) into

Task-Relevant and Task-Orthogonal sub-networks. For this analysis, we did not exclude any

negative values from the connectome and used the whole connectome with all positive and

negative covariance values.

23



3.2.3 Manifold Mapping of Functional Connectome

The advantage of using covariance-based functional connectomes is that they form a set of

symmetric positive semi-definite matrices [79] and can be easily made symmetric positive

definite (SPD) with a small regularization (see section 2.3 for derails). In practice, most

of the time covariance-based matrices are already SPD, and regularization is not needed.

The set of SPD matrices of size enjoys the important property of being represented by a

Riemannian manifold [41] which is a smoothed manifold that in our case described the set

of connectomes with nodes. An advantage of the Riemannian manifold representation is that

the distance between the mapped points on its curved structure can be captured and measured

using the notion of geodesic distance, that is the length of the shortest curve connecting

two points on the manifold and the use of the Euclidean distance metric is sub-optimal for

capturing true distance in this space [42].

For this work, we have deployed the Log-Euclidean distance (Log-E) to quantify the dis-

tance between profiles. The estimation of Log-E distance is characterized by computational

simplicity as it can be estimated using matrix logarithms (as described in Eq. 2.8 of sec-

tion 2.4). Moreover, formula describing the geodesic mean of matrices w.r.t Log-E distance

is described in Eq. 2.9 in section 2.4.

3.2.4 Normalizing Log-E Distance Estimates Based on Sub-Network Size

Suppose two sub-networks of N brain regions, with their covariance-based functional con-

nectivity matrices mapped to a manifold space. The distance dNlogE in the manifold space

between any two corresponding (e.g. Task-RelevantTwin1 and Task-RelevantTwin2) func-

tional connectivity matrices ĈN1 and ĈN2 is based on the Log-E distance distance defined

as

dNlogE = ||logĈN1 − logĈN2 ||F . (3.1)

The computed dNlogE is an increasing function of N , indicating that the estimated distance

of this metric can be confounded by sub-network size (i.e., N ). Due to the differences in

the size of sub-network (N=28, Task-Relevant; N=62, Task-Orthogonal), it was essential to

quantify the effects of network size N on computed distance dNlogE to make sure that the

computed distance was not affected by differences in network size N .

To evaluate how dNlogE varied with changing network size N and to avoid any confounding

effects of zygosity, we computed dNlogE between pairs of random unrelated subjects, after

selecting random connectivity matrices of size N , where N varied from 1 to 90 (the total

number of cerebral regions in the AAL atlas). More precisely, we set up an iterative exper-

iment in which we selected each pair of unrelated subjects (from a total of 312 unrelated
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Figure 3.2: A) The mean Log-E distance from the experimental procedures (for 10 unrelated subjects) is plotted
as a function of sub-network size (green open circles). The red curve depicts the power law function fit to
the data (see text) to use parameters for subsequent normalization. B) The SEM from the data for 10 unrelated
subjects (Figure 3.4) is plotted as a function of sub-network size. As seen, the SEM (as the mean Log-E distance)
increased as a function of sub-network size.

pairs of subjects). Then, for each pair, we randomly selected 10 groups of N regions for

which we computed dNlogE , while iteratively increasing N from 1 to 90. For each value of

N , we therefore had 100 dNlogE measurements. The resulting data were fit to estimate the

relationship between dNlogE and N .

In Figure 3.2, A) depicts the mean Log-E distance as a function of N , and b) depicts the

standard error of the mean, derived from the experimental simulations. As observed both

the estimated mean Log-E distance and the SEM were confounded by increases in the sub-

network size (N ) of the connectivity matrices.

We fitted a power law function defined below to the data shown in Figure 3.2.A,

y = a× xb (3.2)

where the parameter a represent the proportionality constant and the parameter b is the

power (or exponent). Both were considered functions ofN . The fitting procedure was based

on the least squares method. The parameters a and b were selected to minimize the squared

difference between the measurements and the fitted data. The least square fit resulted in

coefficients a = 1.053(1.036, 1.069) & b = 1.171(1.168, 1.175). The fit parameters from

Eq. 3.2 were used to obtain the normalization factor for each number of region N , such that

the distance between the connectivity matrices of size N was divided by the normalization

factor 1.053×N1.171.
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Figure 3.3: A) The Log-E distance (Figure 3.2) expressed after applying the normalization (for network size)
factor. As seen, the Log-E distance estimate is impervious to network size for N ≥ 15. B) The SEM of
normalized data. As seen, the SEM values are very small and no changing for N ≥ 15 as a function of sub-
network size.

Figure 3.3.A depicts the data after applying the normalization factor to the data in Fig-

ure 3.2.A. As observed following normalization, Log-E distance was invariant of sub-network

size for N ≥ 15, indicating that normalization of the true obtained data for each of the task-

relevant and task-orthogonal sub-networks corrected for confounds related to network size

and hence, Log-E distance were normalized to make them comparable on task-relevant and

task-orthogonal networks. Figure 3.3.B depicts that SEM of normalized data and it can be

seen that SEM values area very small and unchangeable for N ≥ 15.

3.3 Experiments and Statistical Analysis

In this work, our dependent variable of interest was the Log-E distance between functional

networks. We used the Log-E distance to estimate the similarity in network profiles between

twin pairs (MZx - MZy; DZx - DZy), because the metric represents the shortest path in the

manifold between pairs. Log-E distance between each twin pair was independently calcu-

lated for the a priori selected Task Relevant (MV) and Task Orthogonal (NMV) networks,

and when responding with either the Right or Left hand. Thus, each pair contributed four

Log-E distance values forwarded for subsequent analyses.

A three-way mixed Analyses of Variance was employed to evaluate the effects of the three

independent variables of interest on the calculated Log-E distance. The three modelled

factors were 1) Zygosity (Mono vs. Di) modelled as a between subject’s factor; 2) Network

sub-type (Task Relevant vs. Task Orthogonal) modelled as a within subject’s factor and 3)

Response hand (Right vs. Left) modelled as a within subject’s factor. To achieve our aims,
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we were focused on the main effects of Zygosity and Network sub-type, and second-order

interactions (Zygosity x Network). The task-relevant (MV) and task-orthogonal (NMV)

networks of interest included 28 and 62 ROIs respectively, both of which larger than the

minimum threshold required for the Log-E distance to be comparable across networks (see

subsection 3.2.4 and Figure 3.3). The factor of Response hand was not of specific interest

but was modelled to ensure no contribution from hypothesis-neutral sources. All significant

effects were clarified in a post-hoc analysis using non-parametric paired t-tests (Wilcoxon).

3.3.1 Alternative Approach using Graph Laplacian:

To validate the result & findings, we suggested using an additional approach, where we

have used correlation matrices instead of covariance matrices for analysis. As defined in

section 2.2 correlation matrices define a submanifold of SPD matrices as it is a normalised

version of the covariance matrix. So, for all given subjects we computed person correlation-

based functional connectomes and applied r-z transform to normally distribute the data and

only retaining the positive correlation values as commonly practised in functional connec-

tivity analysis [96].

For these symmetric undirected weighted connectivity graphs, it is possible to define Graph

Laplacian (GL) which enjoys some useful properties of being symmetric and positive semi-

definite. Specifically we used Normalized Symmetric Laplacian (see section 2.2 and Eq.

2.4). Once matrices were obtained we implemented to these graph Laplacian based connec-

tivity matrices the same method defined in subsection 3.2.3 but using Wasserstein distance

(see section 2.4 and Eq. 2.11). We also applied normalization of the distance values process

(see subsection 3.2.4 and Figure 3.3) on the data obtained with Wasserstein distance, to make

them normalize and comparable. For this comparison we applied post-hoc analyses using

non-parametric paired t-tests (Wilcoxon) on the data achieved with this alternate analysis

method and results are illustrated in Table 3.2.

3.4 Results

3.4.1 Characterization of Network Profiles (Covariance matrices)

Figure 3.4 illustrate covariance matrices for all the subjects (n=26) in the initial study.

For each participant, the task-relevant and task-orthogonal network are delineated (see Fig-

ure 3.1). Within each matrix, the covariance between time series across all pairs of regions

within the task-relevant sub-network (MV, 28 regions) and the task-orthogonal sub-network

(NMV, 62 regions) are portrayed. Visual inspection suggests higher similarities in covari-

ance a) between corresponding regions of the task-relevant (MV) relative to task-orthogonal

27



Figure 3.4: The Covariance matrices of all 26 subjects, for each of the monozygotic (left) and dizygotic (right)
twin pairs are shown. The color scale represents the covariance between each of the sub-network pairs. Visual
inspection suggests greater similarity in covariance between mono-zygotic twins, and particularly within task-
relevant (MV) sub-networks.
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Figure 3.5: The symmetric heat maps summarize similarities in the cross-covariance matrices (See Figure 3.4)
across all pairs of mono-zygotic twins (a) and di-zygotic twins (b). The heat maps were obtained after first
computing for each twin pair the absolute difference in covariance matrices, and then, computing the difference
in the geodesic mean across twin pairs. This was done separately for the monozygotic (a) and dizygotic group
(b). The greater similarity between twin covariance matrices is represented by a lower value on this metric
(coded by cooler colours). Mono-zygotic pairs are characterized by greater similarity across the network space
overall, with highly salient effects in the task-relevant sub-network (black inset). These data were submitted for
subsequent manifold mapping to optimally reduce the comparison between network profiles to a single scalar
distance metric, hence facilitating the assessment of global differences between groups.

(NMV) sub-matrices, and b) between mono-zygotic twins, relative to di-zygotic twins.

These visual intuitions are formalized in Figure 3.5. We calculated the similarities of the

covariance matrix elements between twins of each pair, and then averaged the results (using

the geodesic mean, Eq. 2.9) for each group (i.e. the mono- and di-zygotic groups). For each

twin pair, the similarity between their covariance matrices (from Figure 3.4) was computed

as a simple absolute difference. The (geodesic) mean similarity was then computed for each

group (i.e. the mono- and di-zygotic groups) as shown on Figure 3.5. Greater similarity

(i.e., the smaller absolute difference in covariances between pairs of twins) is represented

by a lower value on this metric (cooler colours). As seen, mono-zygotic twins show greater

similarity across space in general, with highly salient effects in the task-relevant (MV) sub-

space.

To evaluate the similarity of whole covariance matrices rather than matrix element by ele-

ment, the same data were utilized for subsequent manifold mapping (see subsection 3.2.3).

In brief, manifold mapping allows summarization of network profiles (based on covari-

ance matrices) into a single point on a geometrical manifold using geodesic distance in-
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Figure 3.6: Boxplot’s represent the distribution of Log-E distance of each twin pair of each group (Monozygotic
(MZ) vs Dizygotic (DZ)) and for given task (R=Right and L=Left) and for task-relevant (MV) (left plot) and
task-orthogonal (NMV) (right plot)

stead of Euclidean distance computations. The distance between points on the manifold

(Log-Euclidean distance in our case) provides an efficient scalar description of the similar-

ity between network profiles for a given pair of twins subjects (e.g., MZ1(Task Relevant) ←→
MZ2(Task Relevant)). Moreover, geodesic calculations allow computing the mean of a set of

covariance matrices more optimally than a simple Euclidean mean. The geodesic mean

(Eq. 2.9) was therefore used to compute the mean similarity for each group as shown in

Figure 3.5.

3.4.2 Manifold Mapping Analysis of Twin Profiles

To perform the Analyses of Variance (see Methods), the unit of analyses was the Log-E

distance between each twin pair. Thus, in initial analyses for each Network of Interest (NoI:

Task Relevant vs. Task Orthogonal), Log-E distance between pairs was estimated separately

for each Response Hand (Right or Left). In these initial analyses, each pair contributed four

Log-E distance’s to the overall analyses of variance (52 Log-E distance’s estimated across

pairs). This approach permitted examination of the effects of three distinct factors and their

potential interactions.

These Log-E distance’s data were submitted to a mixed repeated measures analyses of vari-

ance and illustrated in Figure 3.6 in the form of boxplot for task relevant (left) and task-

orthogonal (right) for each group (Mono- vs. Di-zygotic) and given task (Right or Left).

In the 2nd level model, Network of Interest and Response Hand were modelled as repeated

measures factors, and Zygosity (Mono- vs. Di-zygotic) as a between pairs factor. In these

analyses, we observed a highly significant effect of NoI, F 1,11 = 25.31, p < .0001,MSe =

.03, with a very large effect size (Partial η2=.697). A second significant effect was the ef-
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Figure 3.7: The heatmap represents the mean LogE Distance between twin pairs (columns) estimated in each
of the Task-Relevant and Task-Orthogonal networks (rows). The data are re-expressed for each group and
network in the adjoining bar graph (Error bars are ± SEM). The bars are colour-coded for consistency with
the corresponding cells in the heatmap. As seen, smaller LogE distances between pairs were observed in task-
relevant networks, relative to task-orthogonal networks. This indicates that network profiles in task-relevant
networks mapped to locations that were closer in manifold space, than network profiles in task-orthogonal
networks. In addition, the effect of Zygosity was significant (see text). As can be seen in the bar graphs, network
profiles in monozygotic (MZ) twin pairs mapped to locations closer in manifold space, than network profiles in
dizygotic (DZ) twin pairs. Finally, the Zygosity x Nol interaction was marginally significant. As can be inferred
from the graphs, this interaction resulted from the similarity between monozygotic twins compared to dizygotic
twins being higher in Task Relevant, compared to Task Orthogonal networks.

fect of Zygosity, F 1,11 = 7.09, p < .02,MSe = .29, with a moderate effect size (Partial

η2=.39). Notably, none of the effects associated with Response Hand (main effect or any of

the 2- or 3-way interactions involving this variable) were significant (.79 ≤ F ≤ 1.12) and

were characterized by small effect sizes (.02 ≤ Partial η2 ≤ .09).

Following this clarification of effects, Log-E distance was re-computed by averaging (using

the geodesic mean) across the covariance matrices associated with the Response Hand.

Figure 3.7, represents the results of the analyses of the Log-E distance for each of the task-

relevant and task-orthogonal sub-networks. The factorial nature of the analyses (Group x

Sub-Network) is represented in the heat map (top left) where the colours code the mean

Log-E distance (see accompanying colour bar) between pairs of mono- or di-zygotic twins.

The data are re-expressed for each group and network in the adjoining bar graph (Error bars

are ± SEM). The colour coding is maintained for consistency.

In these summative analyses, each twin pair contributed two Log-E distance (one for each
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Repeated Measure Two-Way ANOVA
Source Log-E Euclidean
Zygocity 0.029100 0.0943
NoI 0.000026 0.0056
Zygocity x NoI 0.045000 0.7107

Table 3.1: Result of Repeated Measure Two-Way ANOVA for comparing Zygocity (MZ vs DZ), sub-networks
(NoI) (MV & NMV) and two way affect.

Non-Parametric Paired t-tests P Values
Covariance Graph Laplacian

Pair Log-E Euclidean Wasserstein Euclidean
DZ-MV - MZ-MV 0.00081 0.1375 0.00031 0.0526
DZ-NMV - MZ-NMV 0.1014 0.1806 0.11792 0.6307
DZ - MZ 0.0126 0.0526 0.00014 0.0795

Table 3.2: Result of non-parametric paired t-tests (Wilcoxon) for comparing sub-networks (NoI) (MV & NMV)
of two groups (MZ & DZ), for Covariance matrices with Log-E and Euclidean distances and for Graph Laplacian
with Wasserstein and Euclidean distances.

NoI) to the overall mixed repeated measures analyses of variance with two factors, Zygos-
ity, and NoI (again modeled as the repeated measures factor, Table 3.1). The main effect

of Zygosity was significant, F 1,11 = 5.85, p < .03,MSe = .076, with a moderate ef-

fect size (Partial η2=.35). The main effect of NoI was also significant,F 1,11 = 47.5, p <

.0001,MSe = .005, with a very large effect size (Partial η2=.89). Finally, and notably, the

interaction between Zygosity and NoI was significant, F 1,11 = 3.97, p < .05, one-tailed,

MSe = .005, with a moderate effect size (Partial η2=.28).

For the sake of comparison, we have also run the statistical tests on the data acquired using

the Euclidean distance. Table 3.1 show the results of mixed repeated measure analysis of

variance obtained with Log-E distance and Euclidean distance and Table 3.2 shows the re-

sults for non-parametric paired t-tests (Wilcoxon). It can be seen that, a highly significant ef-

fect between two groups of (MZ vs DZ) in task-relevant (visuomotor, MV) network has been

observed when analyzing covariance-based functional connectome using Log-E distance and

also with the Wasserstein distance on graph Laplacian. Whereas for task-orthogonal (non-

visuomotor, NMV) there is no significant effect observed with any metric. A significant

effect can also be seen when comparing overall groups (MZ vs DZ) with Log-E and Wasser-

stein distance. Whereas with Euclidean distance no significant effect has detected. These

findings strongly support our hypothesis that genetics mediation has an affect on brain FC,

which can be analyzed only when using correct representation of data (manifold mapping)

along with an appropriate metric to compute similarity on the manifold.
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3.4.3 Heritability Analysis (H0)

Traditional estimates of heritability derived from mono- and di-zygotic twin designs rely on

Falconer’s formula [86] and is defined as

H0 = 2(rMZ − rDZ) (3.3)

H0 is a measure designed to estimate the respective contributions of genetics and the envi-

ronment to alteration in any trait, where heritability of any trait is based on the difference

between trait correlations in mono-zygotic twins (rMZ) compare to dizygotic-twins (rDZ)

(where it is expected that for an inheritable trait the correlations in mono-zygotic twins is

higher than in dizygotic twins). From the mass univariate data (406 matrix elements from

the 28 cerebral regions in the task-relevant motor vision network; 1953 elements from the

62 cerebral regions in the task-orthogonal non-motor vision network), the heritability of all

these matrix elements were computed. To achieve this, first, the correlations of covariances

were computed (from the data presented in Figure 3.4) from the set of mono- and di-zygotic

twin pairs.

The resultant maps (Figure 3.8.a, first and second columns) encode the network (i.e., trait)

similarities within each group of twins (MZ and DZ, see colour bar at the bottom). From

these correlations (uncorrected for significance across the mass univariate space), we com-

puted H0 for each matrix element in each sub-network. As seen in the resultant H0 maps

(Figure 3.8.a, third column), higher heritability values are observed across the task-relevant

motor vision, than the task-orthogonal sub-network (see the colour bar at right). These ef-

fects are formalized in subsequent statistical analyses (below and Figure 3.11).

Given the mass univariate nature of these analyses, additional H0 analyses were restricted

only to matrix elements that survived Bonferroni correction. To achieve this, non-significant

correlations (null hypothesis of r = 0) from each of the MZ and DZ (Figure 3.8.a) were fil-

tered out (p < .05, Bonferroni). The Bonferroni corrected probability maps for each of the

MZ and DZ groups ( Figure 3.8.b, top row) represent only those cells with significant corre-

lations. The intersection of these p-maps (MZ ∩ DZ, Figure 3.8.b, bottom row) was used as

a statistical filter. Figure 3.8.c, represents the probabilistically filtered matrix elements from

Figure. The resultant H0 map (Figure 3.8.c, third column) exhibited similar features than the

uncorrected analyses, with higher heritability observed in the task-relevant, compared to the

task-orthogonal sub-network. The estimated mean heritability within motor vision networks

was expectedly greater (0.97) than in non-motor vision networks (0.52).
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3.4.3.1 Extending the framework to twin data in the Human Connectome Project
(HCP):

The exploration of the heritability of network profiles was extended to an independent sam-

ple of fMRI data collected in 21 pairs of mono and di-zygotic twins in the HCP dataset

[87, 97]. The aim was to expand this framework to an independent data set that would

permit assessment of H0 in tasks with degrading levels of similarity to our original model.

Accordingly, two distinct task domains in the set were chosen satisfying the criteria for level

of similarity (and dissimilarity) with the originally employed paradigm: a) A visually guided

motor mapping task(henceforth HCPMotor)[74]. As with the initially employed task, stim-

ulus presentation during the HCPMotor was used to evoke effector responses (hand, foot

or tongue) and is expected to have some overlap with the relative specificity of the as-

signed sub-networks; b) a standard working memory task (with verbal and visual stimuli;

henceforth HCPWM) with extensive sub-network engagement not pinched to our a priori

motor-vision network [98]. The pipeline for estimating H0 (initially with uncorrected data,

followed by Bonferroni correction) was identical to that presented in Figure 3.8.

Analyses for HCPMotor are presented in Figure 3.9 and for HCPWM in Figure 3.10. Vi-

sual inspection of the H0 maps in each figure are suggestive of a graded effect of heritabil-

ity in task-relevant sub-networks (H0:HCPMotor > H0:HCPWM). Within the HCPMotor

task (Figure 3.9), visual inspection suggests that H0 within task-relevant sub-networks was

greater than task-orthogonal sub-networks.

We pursue to formally investigate the H0 data across Figure 3.8, 3.9 & 3.10 within a single

unified parametric analysis. The goal of this analysis was to assess the effects of the task

(Visuo-motor, HCPMotor and HCPWM) and each of the sub-networks (Task-Relevant vs.

Task-Orthogonal) on H0. To achieve this, each matrix element was treated as the primary

unit of analyses, and the estimated H0 data were submitted to a two-factor mixed analysis

of variance. The task was modelled as a within-units factor (each matrix element had an

H0 estimate from each of the three tasks) and sub-network was modelled as a between-units

factor (each matrix element was uniquely assigned to one or the other sub-network).

The results of this analysis of variance was unequivocal and are illustrated in Figure 3.11. A

significant main effect of task was evident, F 2,4714 = 470.67, p < .0001,MSe = .606, with

a medium effect size (Partial η2=.167)(Figure 3.11.a). Pairwise comparisons (based on LSD)

indicated a graded effect of Task on H0 (Visuo-motor > HCPMotor > HCPWM). The main

effect of Sub-Network was also significant, F 1,2357 = 114.34, p < .0001,MSe = .586,

with a small effect size (Partial η2=.046) (Figure 3.11.b). Finally, we observed a significant

interaction, F 2,4714 = 32.71, p < .0001,MSe = .606, with a small effect size (Partial

η2=.014) (Figure 3.11.c).
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3.4.4 Discussion

In this work, we proposed a computational framework to analyze the influence of genetics on

twins in term of similarity between brain functional network profile. To this aim, we exploit

the property of functional connectome to be symmetric and positive definite which allows

analyzing these connectomes on Riemannian manifold using the notion of geodesic distance

along the curves of manifold instead of a vector space representation with the euclidean dis-

tance which is suboptimal to use on such data. For a better comparison of analyzing genetic

influence, we implemented this framework using two different approaches of connectome

representation and with two different geodesic metric.

In the first approach (section 3.3), the similarity between covariance-based functional con-

nectome of twins pairs is being computed using Log-E distance. One advantage of this

method is that we used all values of connectome (including negative and positive covari-

ances) for this analysis. Hence a combination of these SPD matrices forms a wider Rieman-

nian manifold which allows an appropriate analysis of brain connectivity. Statistical tests

(Table 3.2) suggested that, in the task-relevant regions, functional connectivity of monozy-

gotic twins is more similar as compared to dizygotic twins (the difference is statistically

significant) when analyzed with Log-E distance as compared to the Euclidean distance.

Whereas for the task-orthogonal regions there was no significant difference between two

groups of twins.

In the second approach (subsection 3.3.1), graph Laplacian of correlation-based functional

connectome (positive values only) were used along with Wasserstein distance to compute the

similarity between brain connectivity profiles. The advantage of Wasserstein distance is that

it can also be used for symmetric and positive semi-definite matrices. Statistical tests results

(Table 3.2) suggested that monozygotic twins are more similar in task-relevant regions as

compared to dizygotic twins (the difference is statistically significant), only when analyzed

with Wasserstein distance as compared to Euclidean distance.

To evaluate the plausibility of this framework, we relied on a combination of a) multiple

analytic methods that could efficiently summarize profiles of large brain networks, applied

these to b) task-based fMRI studies where task-loading on the brain networks varied in a

priori known ways and where c) the data were collected in independent sets of mono- and

di-zygotic twin samples.

Our salient results were: 1) Using manifold mapping (Figure 3.4 & 3.5) to compute similar-

ities in network profiles between mono- and di-zygotic twins, we demonstrated that profiles

in mono-zygotic (compared to di-zygotic) twins were significantly more similar in visuo-

spatial task-relevant, than in task-orthogonal sub-networks (Figure 3.7)[88]. We demon-
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strated, that these computations of manifold mapping were independent of differences in

sub-network size. 2) These effects were corroborated computing mean H0 across regions

within task-relevant and task-orthogonal networks (Figure 3.8) before and after statistical

correction of correlation coefficients. 3) In an independent data set of mono- and di-zygotic

twins, we confirmed that H0 was higher in MZ twins for task-relevant sub-networks during

tasks with strong visual-spatial compared to working memory demands (Figure 3.9 & 3.10).

4) Finally, we collated the analyses of H0 (Figure 3.11) and using an omnibus statistical

analysis, confirmed contextual effects on the heritability of brain network profiles.

These results obtained with both approaches, clearly show the influence of genetics and we

can conclude that the brain network of monozygotic twins is genetically and functionally

more similar as compared to dizygotic twins. The results of this work also clearly demon-

strate that use of Euclidean distance is not the best choice, as it is not properly managing

the complex structure of graphs, indeed the similarity effect is more visible when using the

geodesic distance. This allowed us to discover scientifically relevant questions related to

genetics, and its impact on brain network function e.g. analysis of heritability index. In

subsection 3.4.3 we presented our approach to explore the heritability in twins data by us-

ing Falconer’s formula. Heritability values obtained in monozygotic twins are significantly

higher as compared to dizygotic twins specifically in task-relevant regions.
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Figure 3.11: We sought to formally investigate the H0 data across Figure 3.8 - 3.10 within a single unified om-
nibus repeated measures parametric analysis. Here we assessed the effects of the task (Visuo-motor, HCPMotor
and HCPWM) and each of the sub-networks (Task-Relevant vs. Task-Orthogonal) on H0. Because each cell
in the adjacency matrices was treated as the primary unit of analyses, data from the uncorrected estimates of
H0 were used. The task was modelled as a within-units factor (each cell had an H0 estimate from each of the
three tasks) and sub-network was modelled as a between-units factor (each cell was uniquely assigned to one
or the other sub-network). The bar graphs represent the significant effects of (a) Task, (b) Network and c) the
interaction of Task x Network. As is evident, the original task from which network classification was derived
expectedly exerted the strongest effects on H0 (a). Regardless of the task, the effects were strongly driven by the
network (b). Finally, the relative effects of network on H0 were strongest for the original motor-vision task, in
less evidence for HCPMotor, and non-existent for HCPWM (c).
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Chapter 4

Geodesic Clustering of SPD Matrices for Data
Representation

4.1 Introduction

An important task in functional connectome studies aims at classifying pathological states

from healthy controls (HC). Traditionally, univariate statistical hypothesis testing on con-

nectivity graphs focus on analyzing changes in the functional connectivity. Nowadays FC

plays an important role to characterize brain connectivity in many psychiatric and neurode-

generative disorders. With the growing importance of machine learning approaches, the task

of classification in neuroimaging took the name of “neuroimaging data encoding” and it

has been proved in various studies that it is possible to exploit more precise relationships

compared to standard statistical approaches.

From a methodological perspective, an adequate classification algorithm should be able to

discriminate as much as possible between samples belonging to different classes. In terms

of classification, there are two main lines to obtain good performances: the development

of new algorithms which use standard features or the extraction of novel features to embed

in a richer feature space to be used as input of a standard classifier, for example, Support

Vector Machine (SVM), k-nearest neighbour (k-NN), Linear Discriminant Analysis (LDA)

or Random Forrest (RF).

Many classification studies on brain disorders affecting connectivity such as schizophrenia,

autism or Alzheimer have been carried out and most of the time a unique description of

the features has been preferred rather than the evolution of a new classifier. Support Vector

Machine [99] is considerably used in neuroimaging for classification of mental disorder,

often combined with dimensionality reduction or feature selection algorithms. For example,

in [100, 101] have performed classification of functional graphs using SVM classifier and the

vectorization of functional connectivity matrices. However, since a given brain graph withN

nodes has N(N − 1)/2 connections, authors also come up with feature selection strategy to

decrease the number of connections, focusing at extracting only the most appropriate. [102]

and [103] have also adopted SVM classifier along with an univariate analysis as feature
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selection.

To reduce the number of features, sparsity techniques have been also used. An example is

L1-norm on the connections which force sparsity defining a Gaussian graphical model [104].

In [105], authors proposed a combination of SVM classifier and the sparse inverse covari-

ance matrix to classify the mental disorder. Another novel technique is the identification

and classification of "sparse" networks using matrix decomposition/factorization focusing at

describing the connectivity matrix as an amalgamation of sub-patterns [106]. The resultant

framework, when combined with SVM, gives promising results which are comparable to

traditional approaches but with much fewer features.

Dimensionality reduction algorithms have also been introduced to attenuate the high dimen-

sionality of the connectomes data. In [107], Local Linear Embedding (LLE) has been used

to express fMRI data in three dimensions over which, k-NN classifier has been adopted. In

[108], an alternative method for brain connection discrimination was presented, which re-

lies on classification trees (an RF version) and learns a discriminative weight wi for each

connection and then it fit a hyperplane using the most discriminative feature. The algorithm

learns the most discriminative feature through a statistical step of feature selection, defining

complex and non-linear boundaries.

Different methods have been proposed to classify groups of subjects using the geometrical

properties of symmetric positive definite (SPD) matrices. The set of all SPD matrices of

the same size forms a Riemannian manifold, so several approaches have been developed

to leverage this manifold structure during the analysis. In [43], a probabilistic model for

covariance matrices was used to distinguish post-stroke patients from HC. In [85] mani-

fold transportation of covariance matrices was applied in longitudinal studies to determine

changes in FC after a task. In [45] a kernel-based classification approach has been deployed

which analyzed the FC matrices using Log-Euclidean Gaussian kernel and Stein Gaussian

kernels. In [6], an approach based on Grassmannian geometry and low-rank graph Laplacian

has been used for a classification task exploiting a set of sub-networks that was then used

to identify connectivity biomarkers. Correctly taking into account the properties of positive

semi-definite matrices allowed to classify sub-connectivity patterns [46], functional states

generated from auditory stimuli [47] or mild cognitive impairment [48].

In this work, we employ a geodesic clustering algorithm which uses geodesic metrics on

a Riemannian manifold to cluster FC matrices. The computed centroids are then used to

generate a representation allowing to discriminate between classes. More specifically, using

a two-fold approach, functional connectivity matrices of brain activity during rest are clus-

tered in a “predefined” number of clusters and in a second step, the geodesic distances of the
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Figure 4.1: The pipeline of proposed method start with clustering of FC matrices on manifold, followed by
feature vector extraction in term of distance of each FC from each centroid and then training and testing of SVM
based classifier

connectivity matrices from the cluster centroids are used as features to train a linear-SVM.

The proposed method has been tested on two different problems: HC vs. subjects affected by

Autism Spectrum Disorder (ASD), and HC vs. subjects affected by Schizophrenia (SCHZ).

To show the benefit of using the Riemannian properties, the same experiments have been

done using the Euclidean metrics, comparing the results in terms of both clustering and

classification performance. The Figure 4.1 show the pipeline of the proposed methodology.

4.2 Methods

4.2.1 Manifold Representation of Connectivity Matrices

Let Xρ = {ρ1, . . . , ρn} be the set of correlation matrices describing the brain functional

connectivity of all N subjects. The correlation matrices are symmetric and positive semi-

definite in nature and can be easily regularized into SPD matrices by adding a small constant

to the main diagonal (ρi = ρi + λI, with λ very small, e.g., λ = 10-5). As described in

subsection 2.3.1, the set of all SPD matrices of the same size form a Riemannian manifold,

which allows the analysis of such matrices on a manifold space. To take the full advantage

it is recommended to use the notion of geodesic distances which allows a description of this

data better than using Euclidean metrics [45, 6].

There are several possible alternative geodesic distances on the Riemannian manifold of SPD

matrices which are defined in section 2.4; we decided to adopt the Log-Euclidean (Log-E)

distance, which is simple and fast to compute. Equation 2.8 and 2.9 describe, respectively,

the log-E distance formula between two SPD matrices and the closed-form formula to com-

pute the mean [60] of two or more SPD matrices with this metric.

4.2.2 Geodesic Clustering Analysis

In this proposed approach, the aim is to divide FC matrices into homogeneous groups of sub-

jects presenting similarities in their connectivity. The underlying assumption is that there are
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Figure 4.2: The difference between Euclidean distance and Euclidean mean of two points (brown straight line
and star) on manifold and the corresponding geodesic distance and geodesic mean (black curve and star along
the manifold)

some alterations in brain connections of the patients [109] that can be grasped by the orga-

nization of the cluster. To this aim, we have opted to use the ideas from the k − means
clustering algorithm with geodesic metric [110] to cluster the FC matrices into k disjoint

clusters C = {c1, . . . , ck} (different groups). The k−means clustering algorithm is a popu-

lar and widely used method for clustering [111]. In dynamic FC analysis (dFC), k−means
has been deployed as baseline approach to estimate the set of highly replicable patterns of

whole brain dFC which is also known as dFC brain states [40, 112, 113, 114, 115]. Some lit-

erature that attempt to use geometric structures, such as in [116] they consider a soft geodesic

kernel k−means algorithm that adapts to geodesic distance to cluster when the data have a

geometric structure. In [117], proposed clustering and dimensionality reduction on Rieman-

nian manifolds. In [118] introduce a class of geodesic distances and extend the k −means
clustering algorithm using this metric. In[119] use k−means clustering algorithm in order

to cluster the summary data of different stocks by their Realized Trading Volatility (RTV)

model

In order to describe a k −means clustering algorithm, one need to define a similarity mea-

sure for any two data points and centroids of observations in clusters. Since the FC matrices

are SPD and define the a Riemannian structure, we can choose a similarity measure and

centroids based on this structure. So, the k−means clustering algorithm was implemented

using the Log-E distance [45] as defined in Eq. 2.8, with the centroids computed as the

geodesic mean, which can be computed in the closed-form by Eq. 2.9. Figure 4.2 shows

the conceptual difference between geodesic distance and geodesic mean as compared to Eu-
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clidean distance and Euclidean mean on a manifold.

In order to choose the optimal number of clusters (K) we used the Davies-Bouldin (DB)

index as criterion [120, 121]. This index evaluates the consistency using the distance of all

points within a cluster to the corresponding centroids and the separation between clusters

using the distance between centroids. The lower is the index, the better are the clustering

results. In this work, the DB index is computed for every considered number of clusters (i.

e. K=[2,3,4,5,6]) and the minimum value suggests the natural partition of data.

Given a set of correlation matrices Xρ = {ρ1, . . . , ρn} and a set of clusters C = {c1, . . . , ck}
partitioning Xρ in K groups, cluster representatives are defined as

ck =
1

|ck|
∑
ρi∈ck

ρi (4.1)

and the distance between matrices d(ρi, ρj) used in our analysis is the Log-E distance. The

equation for the DB index is given as follow

S(ck) =
1

|ck|
∑
ρi∈ck

d(ρi, ck) (4.2)

and

DB(C) =
1

K

∑
ci∈C

max
cj∈C\ci

{
S(ci) + S(cj)

d(ci, cj)

}
(4.3)

Since the goal is to achieve minimum within-cluster dispersion and maximum between-

cluster separation, the number of clusters C that minimizesDB index is taken as the optimal

value of C [122].

4.3 Experiments

The working hypothesis is that we can cluster the FC matrices preserving the alteration

of brain connectivity characterizing the groups. This would allow therefore compression of

graphs into a smaller vectorized representation retaining the group differences while filtering

the intrinsic variability of subjects in the same group. Indeed, using the cluster representa-

tives as a dictionary, we built a vector representation for each subject, computing the features

as the distances of the subject FC matrix from all cluster centroids.
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4.3.1 Feature Extraction and Classification

In our experiments, we performed geodesic clustering multiple times with a variable number

of clusters ranging from K = 2 to K = 6 to find the best K. Once convergence was

achieved we computed the Log-E distance between the samples in the training set and all K

centroids (e.g. for K = 2 each sample was described by 2 distance values and for K = 4

each sample was represented by 4 features). These distance values were used as feature

vectors to train a classifier. In the test phase, each sample in the test set was described by

the distances of the corresponding FC matrix from all cluster centroids computed during

training. For classification purpose we opted to use linear-SVM [99] which classify the data

by generating a separation model [123]. Selection of linear-SVM is based on the several

facts, e.g. it works well and in-line with some other classifiers in term of accuracy and speed

when the data is based on the numerical attributes [124], also SVM is based on geometrical

properties of the data which makes it more suitable for the data acquired through clustering

on manifold [125, 126]. According to the literature [45, 6, 101, 5], for two class classification

problem, SVM also works well when there are mild number of samples and features are more

sparse, and under such conditions selection of a more complex or simpler classifier can leads

towards either over-fitting or under-fitting. Furthermore, unlike the traditional statistical

parametric mapping approaches, SVM is a multivariate approach that combines information

from multiple features for the purpose of classification [127]. So, for being widely used in

the field of neuroscience with considerable performance [128, 129, 130, 131, 132], we opted

systematically to use linear-SVM classifier in this work.

To avoid double-dipping we made all the experiments using 5-fold cross-validation, ran-

domly selecting the samples and preserving the proportion between the classes in each fold.

For statistical reasons, we repeated this cross-validation process 100 times with a random-

ized selection of folds. The Figure 4.3 illustrate the process of extracting training and testing

distance vector from clustered data and feeding them to train the SVM classifier.

In the end, we evaluated the results in terms of average accuracy and confusion matrix av-

eraging over all 100 iterations. In our experiments, all distances were computed using the

Log-E distance (Eq. 2.8) and the corresponding geodesic mean (Eq. 2.9). Also, to show the

advantage of using the geodesic distance on the manifold containing the data, we conducted

the same experiments using Euclidean metrics, allowing them to evaluate the differences

in performance. To check the significance level of the performance of our classifier we

performed a permutation test on labels. For this purpose, we generated a null distribution

by randomly shuffling the labels 1000 times and in each iteration, we performed L-SVM

classification using 5-fold cross-validation and computed the mean cross fold accuracy.
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Figure 4.3: An illustration of division of FC data into training and testing using 5-folds CV and using training
data to perform clustering of FC matrices into different clusters using k-means, followed by computing the
distance of each training sample from each cluster centroid to encode the data into vectorial representation.
whereas testing fold data is only being used to compute the test vector in term of distance from each centroid.
Finally, this train and test data were used to train a linear SVM for classification purpose.

4.3.2 Dataset

To test the proposed method, we have used two publicly available functional connectivity

datasets. The first dataset is from the ASD connectome database released by UCLA [133].

This dataset is composed of the rs-fMRI of 37 HC and 42 ASD patients. Further details of

the acquisition and pre-processing are described in [96]. FC matrices were obtained from

the Power atlas, which defines 264 regions of interest (ROIs) in the brain [134]. These

264x264 FC matrices are estimated for each subject by computing the pairwise Pearson

correlation between average time-series of brain ROIs. Furthermore, we analyzed the FC

dataset released by the Network-Based Statistic (NBS) toolbox. It is composed of 15 HC

and 12 SCHZ subjects [135]. In this dataset, FC matrices were built using a subset of

regions from the AAL atlas (90 ROIs without cerebellum) using the same pairwise Pearson’s

correlation approach. In our method, we are considering the whole connectivity matrix

including negative values.

4.4 Results

The Figure 4.4 depicts box plots showing the classification accuracy over 100 iterations

with the proposed method on the ASD dataset (Figure 4.4.A) and on the SCHZ dataset

(Figure 4.4.B). Blue and orange bars represent results obtained with geodesic and Euclidean

metrics respectively. The grey line shows the average over 100 iterations of the DB index for

the geodesic clustering. For the ASD dataset (Figure 4.4.A) it can be seen that the highest

mean accuracy (67.12%) is achieved with Log-E distance for K = 4 clusters, whereas with

Euclidean distance the maximum obtained mean accuracy is 61.59% with K = 6 clusters.
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Figure 4.4: Boxplot representing the mean classification accuracy for A) HC vs ASD and B) HC vs SCHZ
dataset with geodesic (blue box) and Euclidean (orange box) metrics based k-means clustering. Line plot shows
the mean DB index value for each cluster of geodesic k-means clustering. selection. Stars on the bar shows the
significance level obtained through permutation test.

Figure 4.4.A also shows that the DB index (line plot) has a minimum value in K = 4,

suggesting that this is the optimal number of clusters. This is reinforced by the fact that this

is the same number of clusters with peak accuracy for geodesic clustering. Results from

the proposed methodology also outperform the results presented in [45, 6] using the same

dataset, where achieved accuracy was 60.76% & 63.29%.

For the Schizophrenia dataset, (Figure 4.4.B) shows that, with the geodesic metric, maxi-

mum mean accuracy (75.33%) is achieved with K = 2. Similarly, in (Figure 4.4.B), the

DB index (silver line) for this dataset also has the minimum value for K = 2. On the other

hand, for Euclidean metrics, the maximum accuracy is achieved (70.03%), on this dataset,

for K = 4. Results from the proposed methodology also outperform the result presented
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Mean Confusion Matrix of HC vs ASD (for K=4)
Predicted Class

HC Pathological Subjects
Actual HC 22 15
Class Pathological Subjects 12 30

Mean Confusion Matrix of HC vs SCHZ (for K=2)
Predicted Class

HC Pathological Subjects
Actual HC 10 5
Class Pathological Subjects 2 10

Table 4.1: Confusion matrix of average classification results for the proposed approach based on geodesic clus-
tering for HC vs. ASD and HC vs. SCHZ datasets

in [45] using the same dataset, where achieved accuracy was 74.07%. The embedded tables

in both figures summarize these results. Table 4.1 shows the average confusion matrix for

geodesic clustering results for both datasets between HC and pathological subjects.

In order to assess the statistical significance of our obtained results, we implemented a per-

mutation test. The results of the permutation test are represented in form of p-values in

Figure 4.4. The p-value is computed as the ratio between the number of accuracy values

greater than the tested accuracy and the total number of permutations (1000 in our case).

These results strongly support the principle according to which the use of geodesic metric

on SPD matrices, which form a Riemannian manifold, gives better results in term of accu-

racy, whereas the use of Euclidean metric on SPD matrices is suboptimal.

4.5 Discussion

In this chapter, we have presented a Riemannian manifold based computational framework,

which allows the classification of HC and patients using static FC matrices obtained from

rs-fMRI. To achieve this goal, we performed k −means clustering by taking advantage of

the properties of SPD matrices: in this context, using geodesic metrics proved to be superior

to the Euclidean approach.

In particular, classification features have been constructed with a subject-wise graph similar-

ity representation by using a geodesic metric (Log-E) based on k−means clustering. In or-

der to evaluate our proposed algorithm, we made a similar experiment but using k−means
clustering with Euclidean metric instead of the geodesic metric. The results of this study

noticeably reveal that the use of Euclidean metrics on the manifold of SPD matrices is sub-

optimal, as it is causing a data representation leading to decreased accuracy. Indeed, the

classification performance improved when using the geodesic metric which computes the
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shortest possible distance along the curvature of the manifold, thus offering an optimal data

representation. Hence to compare and analyze FC SPD matrices it is suggested to consider a

geodesic metric exploiting the properties of the Riemannian space on which these matrices

lie. This study also reveals that a specific encoding of the FC matrices, describing them ac-

cording to their distances from cluster centroids, allows good performance in distinguishing

between HC and patients.

K-means algorithm is one of the traditional and widely being used algorithm to perform the

clustering. Besides the good classification results, k-means clustering algorithm has some

disadvantages e.g. it needs prior information about the number of clusters ’K’ which make

it rigid and computationally expensive when it comes to choosing multiple numbers of clus-

ters. K-means clustering is sensitive to initialization (Initial data points to start clustering)

and outliers present in the data. These reasons can make the k-means algorithm to give

different shapes of clusters if run multiple times with different initialization as it tends to

terminate at local optimum. So this approach with these disadvantages is not suitable to

distinguish aberrant brain connectivity patterns in pathological subjects. Hence we need a

better clustering algorithm which overcomes all these issues and performs the clustering in

a more appropriate way.
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Chapter 5

Encoding Brain Connectome for Classification
and Neuromarkers Identification

5.1 Introduction

Multiple sclerosis (MS) is a chronic, inflammatory and neurodegenerative disease of the cen-

tral nervous system (CNS) which mainly affects young adults and is characterized by non-

uniform clinical manifestations and a variable progression [136]. In most patients, reversible

episodes of neurological deficits characterize the first phase of the disease, called relapsing-

remitting (RRMS). Over time, the development of permanent neurological deficits and the

progression of clinical disability become prominent; this phase is known as secondary pro-

gressive (SPMS). A minority of patients experience a progressive disease course from the

clinical onset: this phenotype is referred to as primary progressive (PPMS). Recent studies

suggested that PPMS and SPMS share similar characteristics in terms of disease activity

and disease progression [137]; as such, they can be grouped together when investigating

functional brain reorganization. Studies applying connectomic techniques highlighted that

functional reorganization occurs in MS, and varies according to disease phenotype [138].

The application of functional MRI (fMRI) techniques to the study of patients with MS holds

great promise to provide an accurate characterization of brain injury across different disease

stages and to improve the understanding of brain response to the progressive accumulation

of disease-related damage. In the last two decades, the advent of resting-state (RS) fMRI

allowed to avoid the behavioural confounds of task-based studies, and to study functional

connectivity (FC) abnormalities also in severely disabled patients. RS fMRI studies of MS

patients often showed trajectories of FC changes mirroring those detected by task-based

studies. Among the more advanced approaches introduced to the analysis of neuroimaging

data, network-based analysis has recently received great attention. In the field of Connec-

tomics main focus is the exploration of brain FC [139], in order to characterize the alter-

ations in the functional organization of the brain. A common approach adopted in these

studies is to discriminate healthy subjects from those suffering from a neurological condi-

tion e.g. MS. To achieve the aim of discriminating between two groups of subjects, for

instance, healthy controls (HC) and MS patients, different methods have been proposed re-
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cently which take into account the geometrical properties of SPD matrices and discussed in

detail in section 2.3

In this work, as the first step towards classification, participating subjects were clustered

into a limited number of groups with similar FC covariance matrices, in order to reduce

the impact of individual variability on the characterization of MS phenotype. Dominant set

clustering has been adopted as the technique of choice, in which intrinsic data properties are

used to define the “natural” number of clusters and it does not require the definition of the

number of clusters, which is unknown a priori in this case. All that is required for clustering

is, instead, the similarity matrix between subjects, easily defined once the geodesic distance

(Log-Euclidean, section 2.4) on a Riemannian manifold is computed between subjects. For

comparison, we also used the geodesic version of k-means (chapter 4), which requires a

fixed number of clusters decided a priori and is also sensitive to the initialization.

Once clusters have been assigned, the centroids of each cluster are subsequently used as

a dictionary (reference point) to build a low-dimensional representation: the FC of each

subject, at this stage, is described by the distance from each centroid (typically between 5

and 7 in number), as opposed to the covariance matrix itself, which is defined by several

thousand independent values. The resulting low-dimensional representation is then fed to a

linear SVM which provides the actual classification. This sequence of operations is carried

out both on the entire covariance matrix at once and on specific sub-networks (defined by

neuroscientists/collaborators), in order to evaluate the impact of specific brain-regions on the

classification accuracy (and hence their relevance in MS progression). Finally, for compari-

son of classification performance, we repeated the same procedure using euclidean distance

in both clustering algorithms. Similarly, the weights of the trained SVMs have been ana-

lyzed in order to extract the connections most likely to be affected and provide the definition

of possible neuro-markers to monitor in order to evaluate MS evolution.

5.1.1 Dataset Acquisition and Pre-Processing

Subjects used for the current analysis are part of a prospective cohort followed at the Neu-

roimaging Research Unit (Hospital San Raffaele, Milan, Italy). To be included, subjects

had to satisfy the following criteria: 1) right-handedness; 2) have no other major systemic,

psychiatric or neurological disorders; 3) no history of drug/alcohol abuse; 4) for patients, to

be relapse- and steroid-free for at least 3 months before MRI acquisition and have a stable

disease-modifying treatment during the past 6 months. Within 48 hours from MRI acqui-

sition, MS patients underwent a complete neurological evaluation, with a rating of clinical

disability using the Expanded Disability Status Scale (EDSS) score [140].

MRI scans used in this analysis were collected from all study subjects using a 3.0 T Philips
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Intera scanner (Philips Medical Systems, Eindhoven, The Netherlands) and included the fol-

lowing MRI sequences: a) T2*-weighted single-shot echo-planar imaging (EPI) sequence

for RS fMRI (repetition time [TR]=3000 ms/echo time [TE]=35 ms, field-of-view=240

mm2, matrix=128x128, slice thickness=4 mm, 200 sets of 40 contiguous axial slices); and

b) 3D T1-weighted turbo field echo (TR/TE=7/3.2 ms, inversion time [TI]=900 ms, field-of-

view=256x240 mm2, matrix=256x240, slice thickness=1 mm, 192 sagittal slices).

For RS fMRI, standard preprocessing, including motion correction and registration to MNI

space, was performed using fMRIPrep [141] and selecting the non-aggressive ICA-based

Automatic Removal Of Motion Artifacts (AROMA) denoising output [142]. 3D T1-weighted

scan was processed using FSL FAST [143] for tissue segmentation and grey matter (GM)

tissue mask was matched with a subset of regions derived from the AAL atlas (n = 86

regions considering cerebrum only, and excluding bilateral putamen and insula for misreg-

istration issues) and applied to the processed fMRI scan of each subject to extract the mean

time-series signal of all ROIs. The 86× 86 RS FC matrices Σi were computed for each sub-

ject using the covariance between time-series, describing in this way the brain connectivity

in term of both signal co-activation between ROIs and its amplitude.

5.2 Methods

5.2.1 The Riemannian Manifold of SPD Matrices

Let S = {Σ1, . . . ,ΣK} be the set of covariance matrices describing the brain connectivity

of all subjects. As described in detail in section 2.3 of chapter 2, covariance matrices enjoy

the property of being symmetric positive semi-definite, however, in a real scenario, they

are almost always symmetric positive definite (SPD). To fully exploit the advantage of the

manifold structure, it is essential to consider the notion of geodesic distance section 2.4, we

opted to use the Log-Euclidean (Log-E) distance Eq. 2.8 which is simple and fast to compute

and the related mean is defined in a closed-form Eq. 2.9

5.2.2 Encoding and Classification

Recent studies (discussed in section 2.3) proved that there is some alteration in FC of the

brain due to the pathological condition, which in principle, can be useful for classification

between HC and MS patients. These alterations are concealed behind the intrinsic high vari-

ability between subjects which makes them problematic to recognize. So, the underlying

hypothesis of this work is to reduce this high variability by collecting all subjects into ho-

mogeneous groups and compute a unique representative connectome for each group. Hence,

the problem can be considered as a clustering task on the FC matrices and the resulting
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cluster centroids of each cluster become reference networks, representing groups of people

with similar conditions. The ensemble of these reference networks represents, therefore, a

dictionary that can be used to compress the high dimensional connectivity patterns into a

lower-dimension vectorial descriptor retaining the difference between groups while filtering

the intrinsic variability of subjects in the same group. More specifically, the FC matrix of

each subject can be represented by the set of distances from all cluster centroids (As shown

in previous chapters).

With such representation, any classifier can be employed for classification. In particular,

in all our experiments, we have used a linear SVM and logistic regression with LASSO

regularization for comparison and analysis of features. This approach is similar to [39],

where PCA was adopted to determine the representative brain networks. This work is based

on the speculation that being a complex and geometrical nature of data structure, FC ma-

trices cannot be fully characterized using Euclidean metric and can be better expressed by

a geodesic distance on the manifold of FC matrices. Moreover, we have deployed the DS

clustering algorithm, which has two main advantages: it is easily adaptable to any metric,

and it automatically determines the number of clusters. Another interesting property of DS

clustering is that it does not only consider the points in isolation with respect to the cen-

troids (as in k-means), but it also exploits the relations with all other nodes in the graph.

This property generates more robust-to-noise clusters which are completely explicit to the

initialization (contrary to k-Means). Furthermore, in the past, DS clustering algorithm has

been successfully applied in other partially related contexts [144, 5, 145].

5.2.3 Geodesic Dominant Set Clustering

The Dominant Set (DS) clustering [146] is a graph-based method that generalizes the prob-

lem of finding maximal cliques in edge-weighted graphs. For this reason, the DS can be

used for partitioning (clustering) a graph into coherent, well-separated and compact disjoint

sets. To perform data clustering [147]1, the dataset at hand is modeled as an undirected

edge-weighted graph G = (V,E,w) with no self loops, in which the nodes V are the items

of the dataset (SPD matrices in this case), the edges E ⊆ V × V are the pairwise relations

between nodes and the weight function ω : E → R≥ 0 calculates pairwise similarities:

ω(i, j) =

{
1− dL(Σi,Σj)

γ if (i, j) ∈ E
0 otherwise.

(5.1)

γ = max(dL(Σi,Σj)) ∀i, j ∈ {1, . . . n}

where dL is defined in Eq. 2.8 and γ is the maximum pairwise geodesic distance in the entire
1we used the implementation available here: https://github.com/xwasco/DominantSetLibrary
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graph. The n× n adjacency matrix A = (ωij) summarizes G.

To obtain a well separated and compact cluster, the DS method optimizes the so-called cohe-

siveness, a quadratic function considering the similarity matrix of the graph and the cluster

assignment of all nodes. Such measure quantifies the goodness of a cluster based on the

elements within it and all the other items in the graph. Optimizing the cohesiveness means

that, once an optimal solution (local/global) is found, no other nodes can enter the cluster

without lowering such measure. This explicitly satisfies two assumptions for good clusters:

have a high intra-cluster homogeneity while having a low inter-cluster homogeneity. This

is one of the main motivation for choosing this method over other alternatives.

The optimization problem is formalized as:

maximize xTAx (5.2)

s.t. x ∈ 4n

where xTAx is the cohesiveness, A is the similarity matrix of the graph and x is the so-

called characteristic vector. The vector x lies in the n-dimensional simplex 4n, defined as∑
i xi = 1, ∀i xi ≥ 0. The entries of the vector x represent the likelihood of each node of

being assigned to the cluster.

The optimization of Eq. 5.2 is performed through a dynamical system which mimics a Dar-

winian selection process. Such dynamical system is an important result from evolutionary

game-theory [148] and is known as replicator dynamic (RD) expressed by Eq. 5.3).

xi(t+ 1) = xi(t)
(Ax(t))i

x(t)TAx(t)
(5.3)

The RD operates a selection process over the components of the vector x. At convergence of

Eq. 5.3 (|| (x(t)− x(t+ 1)) ||2 ≤ ε), certain components will emerge (xi > 0) while others

get extinct (xi = 0). The support σ(x) = {i ∈ V |xi > 0} is a dominant set. The dynamical

system starts at the barycenter of the simplex, giving all the nodes the same probability of

being part of a cluster, thus letting groups emerge spontaneously from the data. The com-

ponents of the characteristic vector are iteratively updated using Eq. 5.3. At convergence,

a dominant set is extracted and its subsets of nodes are removed from the graph (peeling-

off strategy) making the algorithm faster at each extraction. The process starts again on

the remaining nodes extracting the next cluster. This procedure is performed until all nodes

are clustered, hence the number of clusters is automatically found. DS algorithm extracts

the clusters in a sequential manner and determines the number of clusters automatically.
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Figure 5.1: Illustration of full FC matrix (86 x 86) of a subject (left) and division of regions into different
subnetwokrs (right)

Since its ability to preserve the internal coherency, DS grouped data into a cluster with high

pairwise similarity which prevents the outliers to be grouped into any clusters.

To compare the proposed method using geodesic DS clustering algorithm, we also tested

geodesic k-means clustering, which is already discussed in detail in chapter 4. In this ap-

proach we used Log-Euclidean distance Eq. 2.8 as distance metric and Log-E based mean

formula Eq. 2.9 to compute the group centroid. We tested the k-means clustering with a

number of clusters ranging from 2 to 10 whereas with DS clustering number of clusters

were automatically determined by the algorithm.

5.3 Experiments

The working hypothesis is that the FC matrices can be clustered into groups while preserv-

ing the alterations in brain connectivity which characterize these groups. So, in the proposed

pipeline, clustering of FC matrices is the first step and we used DS clustering with geodesic

distance because the number of clusters is not known a priori. In our experiments we used

the FC data in two ways: 1) using the full FC matrix for whole-brain connectivity analy-

sis (Figure 5.1, left) and 2) using 5 sub-networks for the analysis of within sub-networks

connectivity (Figure 5.1, right). Moreover, we addressed the task in two steps with the clas-

sification task followed by the identification of discriminative neuro-markers.

5.3.1 Classification Experiments

For classification purpose, we have deployed a 5-fold cross-validation (CV) setup with the

constraint of preserving the proportion between classes. In each iteration of the CV setup, we
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used DS clustering to cluster the training data and computing the centroid of each cluster.

Then we computed the geodesic distance of each training and testing sample from these

centroids and represented these matrices as a set of distance vectors (features). We used these

distance vectors to train and test classifiers. For classification purpose we opted to use linear-

SVM [99] which classify the data by generating a separation model [123], which has relative

weights associated to each input feature that represent their importance for distinguishing

between groups, thus contributing to the characterization of the data [127]. This way, instead

of analyzing predefined regions, there is an objective evaluation of the whole brain, which

may highlight relevant features (reference network/cluster) which can leads toward the brain

regions that might not have been otherwise considered. Selection of linear-SVM is for the

same motivations discussed in subsection 4.3.1

The number of features depends on the number of clusters extracted automatically by the DS

algorithm (usually in the range of 5-7). We repeated this task only once for full FC matrices

analysis and one by one for each sub-network and concatenating the features obtained from

each sub-network together in the end. In these experiments all distances were computed

using Log-Euclidean distance Eq. 2.8 and corresponding geodesic mean Eq. 2.9. In order

to evaluate the impact of the fold selection procedure, this process was repeated 100 times

and results reported are the averages over these iterations. To check the significance level of

classification results we also performed a permutation test on labels: a null distribution was

generated by randomly changing the labels 1000 times (generated 1000 random labelling

sequences) and for each distribution, we performed the same linear SVM classification using

5-folds CV approach.

5.3.2 Neuro-marker Identification Experiments

A neuro-marker can be interpreted as a region of the brain whose connections are espe-

cially relevant for a classification task. To this aim, as a first step, we considered the whole

connectome to compute the group representatives (cluster centroids) using DS clustering.

Distances of all subjects from these representative networks were then used in a 5-fold CV

setup to train linear SVM and LASSO regularized logistic regression (LR). Finally, feature

weights were observed in each repetition. Indeed, for statistical reasons, CV was repeated

100 times. We repeated this task only once for full FC matrices analysis and one by one

for each sub-network and concatenating the features together in the end. Two types of the

classifier were used so that a better understanding and comparison about feature weights can

be developed.

To select the set of relevant features, we applied a permutation test on feature values (by

randomly shuffling features value for each subject) and selecting only those features having
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weight value higher than 95 percentile of permutation test value Selected features actually

describe the network which has most discriminant connections, i.e., contributing most in

classification For each selected feature we determined the threshold best separating the two

group of the subjects. We then used the subjects correctly separated by this univariate crite-

rion to compute for each group the mean FC matrix by Eq. 2.9, which actually represent the

reference connectomes for the two groups corresponding to the selected feature. By comput-

ing the difference of these reference connectome we can actually identify the neuro-markers

which shows the difference of FC between two groups that contributed to the classification.

5.4 Results

We applied our proposed algorithm to classify between HC and MS patients with the differ-

ent disease phenotype, i.e., HC versus RRMS, HC versus progressive MS (PMS) and RRMS

vs PMS. DS clustering resulted in a different number of clusters in considered experiments

ranging between 5-7 for both, full FC matrices and sub-network matrices.

5.4.1 Classification Results

Figure 5.2 shows the boxplot of classification accuracy over 100 iteration of CV. Blue and

orange boxplot represent the results for geodesic and euclidean k-means respectively. Green

and brown boxplot shows the result for geodesic and euclidean DS clustering. Moreover

table Table 5.1, 5.2 and 5.3 show the average confusion matrix, precision, recall and F1

score for HC vs RRMS, HC vs PMS and RRMS vs PMS respectively. In Figure 5.2.A it can

be seen that, for HC vs RRMS achieved accuracy with geodesic DS is 72.51% and precision,

recall and F1 score of 72.85%, 66.50% and 69.40% respectively (Table 5.1). With geodesic

k-mean, Euclidean k-mean & Euclidean DS achieved accuracy is less. For HC vs PMS

average accuracy achieved with geodesic DS is 85.19% with precision, recall and F1 score

of 87.11%, 88.38% and 87.21% respectively (Table 5.2), whereas with geodesic k-means

and Euclidean k-means and DS achieved accuracy is far lower. For RRMS vs PMS achieved

accuracy with geodesic DS is 76.04% and precision, recall and F1 score of 77.85%, 77.83%
and 74.65% respectively (Table 5.3), with geodesic k-means and Euclidean k-means and DS

it is, again, lower.

Figure 5.3 shows the comparison of mean accuracy achieved with two types of classifiers,

SVM (yellow) and logistic regression (green), and for two types of analysis A) full FC

matrices analysis and B) analysis with sub-network connectivity only. It can be seen that the

mean accuracy achieved with SVM is slightly higher as compared to logistic regression, as

the latter is a probabilistic method, which produces highly interpretable statistical models,

but also make it vulnerable to overfitting. On the other hand, SVM is based on geometrical
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Figure 5.2: Boxplots represent the average cross-fold validation accuracy (with SVM, full FC matrices) with
geodesic DS (green), Euclidean DS (brown), geodesic k −means (blue) and Euclidean k −means (orange)
with K = 2 : 10) for A) HC-RRMS, B) HC-PMS and C) RRMS-PMS. ’x’ show the mean of accuracy
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Figure 5.3: Mean accuracy achieved with SVM (yellow) and logistic regression(green) for full FC analysis (top)
and subnetwork analysis (bottom).

properties of the data which makes it more suitable for the data acquired through clustering

on manifold [125]. The difference in accuracy achieved by the two types of analysis (full

FC matrices vs. sub-networks only) is due to the fact that in full FC matrices we are using

values of all nodes as input (within sub-network and also between network connections

values), hence providing more information to the classifier, whereas, in the sub-networks

analysis, we are only providing the node values of within sub-networks connection as input

and hence providing less information to the classifier.

To check the statistical significance of our results, we have performed a permutation test on

labels. Figure 5.4 shows the distribution of performance of the proposed method (green)

in comparison to the permutation test (red). Permutation results are also summarized in

form of p_values, which show the ratio of a total number of accuracy values greater than

the accuracy value with the true label divided by the total number of permutation (1000 in

our case). For HC vs RRMS, HC vs PMS & RRMS vs PMS p_val is zero, because there

is no accuracy value from permutation test that is higher than the mean accuracy with our

experiment. These results strongly support the hypothesis that alteration in brain FC can be

utilized to discriminate between HC and MS phenotype especially when using an appropriate
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Table 5.1: Average Confusion matrix of classification results for HC vs. RRMS

Confusion matrix for HC-RRMS
Predicted Class

HC (-ve) RRMS (+ve)

Actual
Class

HC (-ve) 25.68 11.32
Recall
66.50

RRMS (+ve) 11.92 37.08
Precision

72.85
F1 Score

69.40

Table 5.2: Average Confusion matrix of classification results for HC vs. PMS

Confusion matrix for HC-PMS
Predicted Class

HC (-ve) PMS (+ve)

Actual
Class

HC (-ve) 29.84 7.16
Recall
84.18

PMS (+ve) 5.93 45.07
Precision

89.11
F1 Score

86.71

Table 5.3: Average Confusion matrix of classification results for RRMS vs. PMS

Confusion matrix for RRMS-PMS
Predicted Class

RRMS (-ve) PMS (+ve)

Actual
Class

RRMS (-ve) 35.01 13.99
Recall
77.83

PMS (+ve) 9.97 41.03
Precision

77.85
F1 Score

74.65

61



Figure 5.4: Histogram of accuracy (with SVM) distribution achieved with permutation test(red) obtained shuf-
fling 1000 times the labels as compared to geodesic DS (green). Blue line represents the mean accuracy achieved
with geodesic DS, which is always higher than the overall permutation distribution, demonstrating our algorithm
accuracy was significantly higher than the accuracy obtained by chance only.
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encoding technique which follows the manifold nature of SPD matrices

5.4.2 Neuro-marker Identification

Figure 5.5 shows the boxplot of classifier weights for 100 iterations for full FC analysis.

Yellow bar represent the weights of the features for SVM classifier and green bar represent

the weights of the features for LR classifiers for a combination of experiments A) HC-

RRMS, B) HC-PMS and C) RRMS-PMS. Gray and orange lines show the threshold obtained

with permutation test for SVM and LR classifier respectively. Figure 5.7, 5.9 and 5.11 show

the classifier weights for subnetwork analysis of HC v RRMS, HC vs PMS and RRMS vs

PMS experiments respectively. It can be seen that weights values obtained with SVM and

LR look quite stable and identical. In LR we are using an L1 regularization which shrinks

the weights of irrelevant features to zero and hence only provide high values to the weights

which has significance importance in classification.

So for feature selection, we have considered the feature weights obtained with LR analysis

and we have selected the features which have the maximum distance from the threshold. So

in full FC matrices analysis, for HC vs RRMS, HC vs PMS and RRMS vs PMS we have

selected the cluster number 1, 2 and 4 respectively. Figure 5.6 shows the selected features

and the distribution of subjects in term of distance from centroid for each combination of

phenotype classification. For HC vs RRMS and HC vs PMS, we are selecting only HC

subjects below the threshold and RRMS & PMS subjects only above the threshold to form

two separate groups. For RRMS vs PMS, we are selecting RRMS subjects only below

threshold and PMS subjects only above the threshold for distinguishing groups formation.

For subnetwork matrices analysis we have selected feature number 5, 8, 19 and 32 for HC

vs RRMS, feature number 1, 8, 22 and 29 for HC vs PMS and feature number 12, 16 and 22

for RRMS vs PMS. Red line over distribution shows the threshold to divide the subjects into

two groups. Figure 5.8, 5.10 and 5.12 shows the distribution of subjects around the centroid

of selected clusters for HC vs RRMS, HC vs PMS and RRMS vs PMS respectively. For

HC vs RRMS (Figure 5.8), for cluster number 5,8 & 32 we are selecting HC subjects before

threshold and RRMS subjects after the threshold. whereas in cluster 19 we are selecting

RRMS before threshold and HC after the threshold. For HC vs PMS(Figure 5.10), for cluster

1 and 8 we are selecting HC subjects only before threshold and PMS subjects only after the

threshold. whereas for cluster 22 & 29 we are selecting PMS subjects only before threshold

and HC subjects after the threshold. For RRMS vs PMS (Figure 5.12), for cluster 12 &

22 we are selecting PMS subjects only before thresholding and RRMS subjects only after

the threshold. For cluster 16 we are selecting RRMS subjects only before the threshold and

PMS subjects after the threshold.
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Figure 5.5: Results of sensitivity analysis (Full FC matrix) for feature weights of SVM classifier (in yellow,
left side) and logistic regression classifier (in green, right side) for each combination of experiments A) HC vs
RRMS, B) HC vs PMS and C) RRMS vs PMS. Gray lines represent the threshold obtained with permutation of
features values for SVM classifier and orange line show the threshold for logistic regression classifier
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Figure 5.6: Distribution of all subjects around the selected centroid for selected cluster 1 of HC vs RRMS (top),
cluster 2 of HC vs PMS (middle) and cluster 4 of RRMS vs PMS (bottom). Blue and orange color shows
the subjects of two groups distributed around the centroid of selected cluster in term of their geodesic distance
(log-E). Red doted line show the calculated threshold to separate two groups.
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As described in subsection 5.3.2, for each cluster identified by sensitivity analysis, we are

computing the difference between reference connectomes of two groups to highlight the

neuro-markers mainly responsible for discrimination between two groups. Figure 5.13, 5.14

and 5.15 shows the results obtained for the analysis of HC vs RRMS, HC vs PMS and

RRMS vs PMS respectively. Part A of each figure shows the reference connectome of each

group along with the identification of subnetworks. Part B shows the significant connection

changes obtained with the subtraction of two reference connectomes given in part A. Re-

gions with blue colour represent a decrease of connectivity in the connectome of the second

group whereas red colour represents an increase in the connectivity. Brain network im-

ages illustrate the mapping of connectivity changes within subnetworks (left) and between

subnetworks (right). Part C shows the subnetworks with significant changes selected from

sub-network analysis. Connecting arrows between part B and C show the resemblance of

connectivity changes detected between full FC analysis and sub-networks analysis.

As shown in Figure 5.13 and 5.14, RRMS and PMS patients were mainly characterized by

increased RS FC in the basal ganglia subnetwork (especially between the bilateral thalami)

vs HC, as well as by decreased RS FC within the temporal, frontal and parietal subnetworks.

In these networks, RS FC decrease mainly involved the fusiform gyrus for the temporal

network and the medial frontal cortex for the frontal network, respectively. Conversely, an

increased RS FC between the bilateral paracentral lobule and other regions of the frontal

subnetwork was detected. With regards to the parietal subnetwork, decreased RS FC among

the posterior cingulate cortex, angular gyrus and precuneus were detected. Finally, both

RRMS and PMS patients showed decreased RS FC within the occipital subnetwork vs HC.

When looking at the comparison between PMS patients and HC, as highlighted in Fig-

ure 5.14, the increased RS FC in the basal ganglia subnetwork was more extensive than

that in RRMS vs HC and involved also the bilateral caudate nuclei. Moreover, in the parietal

subnetwork, evidence of increased RS FC between the superior parietal lobule and other

parietal regions was detected.

The direct comparison of PMS vs RRMS patients showed, as highlighted in Figure 5.15, a

stronger decrease of RS FC within occipital and temporal sub-networks in PMS vs PPMS

patients, and a higher RS FC between the posterior cingulate cortex and precuneus. Interest-

ingly, as shown in Figure 5.13, connectivity among sub-networks was markedly increased in

RRMS patients vs HC, while between-network RS FC increase was not so evident in PMS

patients vs HC (Figure 5.14). This was reflected by a decreased RS FC between parietal, oc-

cipital, temporal and frontal networks in PMS vs RRMS (Figure 5.15). The neuro-scientific

results presented in this section is analyzed, verified and approved for presentation by our

collaborators in Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
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5.5 Discussion

In subsection 5.2.3 we have presented our contribution of a computational framework to dis-

tinguish between HC and MS subjects based on the FC matrices computed from rs-fMRI.

In chapter 4 we presented a k-means clustering algorithm based framework, along with the

limitations that make it a sub-optimal choice in this context. We then proposed a computa-

tional framework of graph clustering which deploys DS clustering algorithm to cluster FC

graphs on Riemannian manifold and considering the properties of SPD matrices we used

geodesic metric, which, in this context, proved to be superior to the Euclidean metric. We

also used k-means for comparison purpose. Beside this clustering approach, a novel idea of

data encoding was also suggested.

More in detail, classification features have been obtained as the geodesic distances between

each subject’s FC matrix and the centroids of the clusters defined either through k-means or

dominant set clustering. In both cases, log-Euclidean distances on the Riemannian manifold

space of SPD matrices of subjects were adopted. Both clustering and classifier training

occurred on training folds, in order to prevent double-dipping. In testing, we computed the

distances of each test sample to the centroids defined on the training set and then used these

distance values to test the performance of the trained classifier. In order to minimize the

impact of fold selection, the results presented in this work are relative to 100 repetitions of

the training algorithm.

In order to evaluate our proposed algorithm, we performed the same comparison relying on

Euclidean rather than geodesic distances for clustering. The result of this study supports

the hypothesis that using Euclidean metric on manifold space is sub-optimal and generates

lower system performance, whereas geodesic metric offers an optimal data representation

allowing a better system performance. This study also proved the viability of the encoding

scheme of FC matrices by using DS clustering and then defining a vector space represen-

tation according to their distance from cluster centroids. Results defined in Figure 5.2 also

supports the fact that encoding of FC matrices using DS clustering algorithm always gives

better results as compared to the k-means clustering algorithm.

From a clinical point of view, the results of this study showed that MS patients, considered

as a whole, were well distinguished from HC in terms of FC. This reinforces the notion that

FC reorganization does occur in MS, probably to counteract the accumulation of structural

damage. When looking at disease phenotypes, PMS patients were better classified from HC

than RRMS patients. This is also not surprising since PMS is characterized by longer disease

duration and a worse clinical disability. Overall, classification of MS according to their con-

nectivity profiles seems to be a rewarding strategy to characterize MS clinical heterogeneity.
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Figure 5.7: Results of sensitivity analysis (Subnetwork analysis) for feature weights of SVM classifier (in yellow,
top) and logistic regression classifier (in green, bottom) for HC vs RRMS. Gray lines represent the threshold
obtained with permutation of features values for SVM classifier and orange line show the threshold for logistic
regression classifier

This approach might be rewarding in monitoring disease evolution and optimizing patients’

management.
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Figure 5.8: Distribution of all subjects (HC vs RRMS) around the selected centroid of subnetworks 1 cluster
5, subnetwork 2 cluster 8, subnetwork 3 cluster 19 and subnetwork 5 cluster 32. Blue and orange color shows
the subjects of two groups (HC and RRMS) distributed around the centroid of selected cluster in term of their
geodesic distance (log-E). Red doted line show the calculated threshold to separate two groups.
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Figure 5.9: Results of sensitivity analysis (Subnetwork analysis) for feature weights of SVM classifier (in yellow,
top) and logistic regression classifier (in green, bottom) for HC vs PMS. Gray lines represent the threshold
obtained with permutation of features values for SVM classifier and orange line show the threshold for logistic
regression classifier.
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Figure 5.10: Distribution of all subjects (HC vs PMS) around the selected centroid of subnetworks 1 cluster 1,
subnetwork 2 cluster 8, subnetwork 4 cluster 22 and subnetwork 5 cluster 29. Blue and orange color shows the
subjects of two groups (HC and PMS) distributed around the centroid of selected cluster in term of their geodesic
distance (log-E). Red doted line show the calculated threshold to separate two groups.
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Figure 5.11: Results of sensitivity analysis (Subnetwork analysis) for feature weights of SVM classifier (in
yellow, top) and logistic regression classifier (in green, bottom) for RRMS vs PMS. Gray lines represent the
threshold obtained with permutation of features values for SVM classifier and orange line show the threshold
for logistic regression classifier
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Figure 5.12: Distribution of all subjects (RRMS vs PMS) around the selected centroid of subnetworks 2 cluster
12, subnetwork 3 cluster 16, subnetwork 4 cluster 22 and subnetwork 5 cluster 29. Blue and orange color shows
the subjects of two groups (RRMS and PMS) distributed around the centroid of selected cluster in term of their
geodesic distance (log-E). Red doted line show the calculated threshold to separate two groups.
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Figure 5.13: A) Reference connectome of HC and RRMS group along with the division of full FC matrix
into subnetworks. B) Showing the difference between reference connectomes with only significantly changing
connections, where blue colour represents the decrease in the connectivity of RRMS and red colour show the
increase in connectivity of RRMS group. Mapping of significant connections on brain image is illustrated for
within subnetwork connections (left side) and between subnetworks (right side). C) visualizing the significant
connection changes for selected subnetworks and comparing the significant changes with full FC analysis
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Figure 5.14: A) Reference connectome of HC and PMS group along with the division of full FC matrix into
subnetworks. B) Showing the difference between reference connectomes with only significantly changing con-
nections, where blue colour represents the decrease in the connectivity of PMS and red colour show the increase
in connectivity of PMS group. Mapping of significant connections on brain image is illustrated for within sub-
network connections (left side) and between subnetworks (right side). C) visualizing the significant connection
changes for selected subnetworks and comparing the significant changes with full FC analysis
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Figure 5.15: A) Reference connectome of RRMS and PMS group along with the division of full FC matrix
into subnetworks. B) Showing the difference between reference connectomes with only significantly changing
connections, where blue colour represents the decrease in the connectivity of RRMS and red colour show the
increase in connectivity of RRMS group. Mapping of significant connections on brain image is illustrated for
within subnetwork connections (left side) and between subnetworks (right side). C) visualizing the significant
connection changes for selected subnetworks and comparing the significant changes with full FC analysis
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Chapter 6

Exploring Dynamic Brain Connectivity using
Riemannian Framework

fMRI functional connectivity (FC) is being widely used to investigate the functionality of the

brain and there is emerging evidence of the dynamic nature of FC. Recent studies showed

that the human brain is intrinsically organized into the large-scale functional network by

measuring the Spontaneous spatiotemporal fluctuations in the brain connectivity [149]. Usu-

ally, fMRI data has been examined by using a mean of time-average statistics. Pair-wise

Pearson correlation or covariance between regions of the brain is widely used to describe

FC, which enable to represent the modular structure of the brain. In past studies, a common

assumption was that the FC doesn’t change its pattern over the data acquisition time period

although brain roams between different states of brain connections, known as brain states

and hence FC is non-stationary in nature. In several recent studies, growing importance has

been given to explore the dynamical features of fMRI data to study non-stationary changes

in connectivity and to discover the relevant organization of brain function during the fMRI

data acquisition period which is typically from 5-15 minutes [150, 151, 152].

Initial studies demonstrated the reiteration of specific brain regions over time [38] that was

not only changing during the task-related activity but also while resting. With the non-

stationary assumption of FC, analyzing whole-brain connectivity becomes more complex

and hence required a different framework as compared to those commonly used. The most

widely used method to compute dynamic functional connectivity (DFC) consist of sliding

a temporal window across time points across the fMRI sequence and compute a correlation

matrix within each resultant window [151, 153]. This gives a three-dimensional stack of FC

matrices, which then analyze by using several available methods to summarize statistics of

brain DFC. In a state-based approach, DFC matrices are concatenated across the subjects and

then being clustered by using some algorithm e.g. k-means to identify canonical centroids

which represent different "brain-states"[114, 154]. By using the states as the fundamental

unit, this approach allows analyzing higher-order summary statistics such as dwell time in

computed states [155, 156] or computing meta-state vector which shows the contribution of

various states to each DFC matrix[157].

In [39] proposed another sliding window-based data-driven approach to extract coherent
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FC patterns by applying principal component analysis (PCA) on concatenated FC matri-

ces over time and subjects. In [158] dictionary learning approach has been used to extract

meaningful dynamic-FC (DFC) patterns in healthy subjects or in specific patients group.

Moreover, [159] have proposed a total activation based method to extract innovation-driven

co-activation (iCAPs) maps from resting-state fMRI which are both spatially and temporally

overlapping. Cognition needs complex and dynamic interplay between distributed regions

of the cortical and subcortical area because the brain at rest us usually defined in terms of

significantly less number of networks compared to the number of functions it can perform

[160, 114]. So to explore the whole brain FC in a more systematical way, in this study, on the

contrary, we emphasize to analyze task-based DFC, which help to investigate the integration

mechanism between task-related regions of the brain and is useful to exploit reorganization

of whole-brain network[34, 108].

Specifically, in this chapter we have analyzed DFC on task-based fMRI dataset acquired

on twins (same as in chapter 1), to investigate the relationship between genetic heritability

and dynamic functional brain networks. Indeed, in chapter 1 we have shown that MZ twins

pair are more similar in term of FC connectivity because MZ twins share the 100% of their

genetics, as compared to the DZ twins which share 50% of genetics information. The main

focus here is to evaluate whether the alterations of FC based on genetic heritability captured

by dynamics can be meaningful to discriminate one group of twins from the other. For such

reason, in next sections we will introduce our two contributions of design of frameworks 1)

to classify between MZ and DZ twin pairs and 2) to classify a given pair as twin or unrelated

pair. These frameworks are based on the utilization of Riemannian manifold properties

of symmetric & positive definite (SPD) matrices to measure the similarity between DFC

overtime at untangling patterns of FC.

6.1 Classification of Twins Pairs through Graph Laplacian on
Manifold

Based on the results presented in chapter 1, it is possible to differentiate the overall func-

tional connectivity of brain networks between monozygotic (MZ) and dizygotic (DZ) twins

and then exploit this property to perform classification between twin pairs. In this section,

we addressed the discrimination task of twin pairs with the help of machine learning algo-

rithms applied to dynamic functional networks. Use of Machine learning in this task is not

novel. For example, in [113] linear support vector machines (SVMs) have been used on

DFC analysis based on k-means clustering, to discriminate traumatic brain injury. Also, in

[161] enhanced FC variability has been used as a feature to classify autism spectrum disorder

subjects from healthy controls using machine learning algorithms.
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To this aim we used graph Laplacians representations of DFC matrices, to move the problem

to the Riemannian space of semi-positive definite matrices (see section 2.2 and 2.3) This al-

lowed us to compare the connectivity matrices using a geodesic distance. In our approach,

we have used the dynamics of a component of the Frechet distance [62] known as Wasser-

stein distance. Each pair was represented as a sequence of differences (features) between the

dynamic connectomes and linear SVMs have been used to discriminate the two groups. To

get improved results and to reduce the dimensionality of our feature set we have also used

the Laplacian Score to perform an unsupervised feature selection. Our result suggests that

the use of geodesic distance on graph Laplacian based DFC matrices is a valuable method

to evaluate the variations in the brain regions.

6.1.1 Dynamic Functional Connectivity Estimation

After applying the preprocessing steps including realignment, time slice correction, motion

correction, normalization and smoothing, we extracted the time-series of regions defined

from the Automated Anatomical Labeling atlas [33] (90 ROIs in the Cerebrum). Based on

prior studies (chapter 1), the 90 ROIs were classified into two groups [88]. The first sub-

group included task-relevant visuomotor (MV) ROIs (28 regions), whereas the second sub-

group included complementary task-orthogonal non-visuomotor (NMV) ROIs (62 regions).

The working hypothesis is that being the first group task-relevant, the designed protocol

should allow to better highlight the networks similarities between genetically identical twins.

We computed the DFC matrices using Pearson correlation ρ = corr(x[t, t+4t], y[t, t+4t])
with a sliding window of 4t=30 TR (60 sec) and a step size of 8 TR (16 sec) [162]. This

resulted in 41 DFC matrices Wt describing the modulation of connectivity along the entire

recorded sequence. In total, we had (N × N) × T matrices for each subject, where T

is the total number of window (41 in our case) and N is the number of regions (N=90

when considering ALL ROI’s, N=28 for MV ROI’s and N=62 for NMV ROI’s). We then

applied the Fisher r-z transform to normally distribute the data, keeping only positive values

of correlations as commonly done in FC analysis [96]. Figure 6.1. shows how dynamical

functional connectivity is built compared to the common approach which is usually known as

static functional connectivity. As described in chapter 1, there was no effect of task between

the two groups. So, for each subject, we averaged the DFC matrices across tasks. Taking the

average led to higher SNR and hence more stable results.

6.1.2 Graph Laplacian and Riemannian Manifold

Several methods allow us to take advantage of graph modularity from symmetric undirected

weighted matrices Wt [163, 164]. In our case, we transformed DFC matrices into graph

Laplacian to enjoy some properties. Specifically, for each temporal window, we used the
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Figure 6.1: An illustration of brain parcellation, extraction of time series signal and computation of Dynamic
Functional Connectivity using sliding window based approach

Normalized Symmetric Graph Laplacian [165] defined as:

Lt = D
−1/2
t (Dt −Wt)D

−1/2
t (6.1)

where Dt=diag(Σjwij) is the degree matrix of Wt. The main advantage of graph Laplacian

matrices is that they are symmetric and positive semi-definite(PSD) and it can be easily reg-

ularized to a positive definite (PD) matrix by the modification L̂t = Lt + γI , where γ > 0 1

is a regularization parameter and I is the identity matrix. The set of PD matrices describe a

Riemannian manifold, which is a descriptor richer than a vector space [41]. The advantage is

that graphs can be compared with a geodesic distance. Indeed, a metric based on Euclidean

distance is suboptimal when applied to positive semi-definite matrices [42], because this

metric is not responsive to the geometry in the data. For this reason we used a component

of Frechet distance, which is a metric in the space of positive semi-definite matrices [62]

known as Wasserstein distance (for details check section 2.4):

d2
t (Wt(x),Wt(y)) = tr[Wt(x) +Wt(y) − 2(Wt(x)Wt(y))

1/2] (6.2)

Where Wt(x) and Wt(y) are two DFC matrices of subject x and y respectively, and tr is

the trace operator. By using Equation 2.11, we determined the distance between each paired

DFC matrices for each twin couple. So for each twin pair, we have a distance-vector of

length T=41 which actually represent the evolution in time of connectivity similarity. For the

sake of comparison, we have also performed the same experiments with Euclidean distance.

The temporal dynamics of the distribution of Wasserstein distances (mean and standard de-

viation) of the two groups is shown in Figure 6.2 (above), which shows that connectivity

of MZ pairs is closer in each time-epoch as compared to DZ pair. Smaller distance repre-

sents more similar connectomes. In particular, this figure shows that MZ twins are more

similar to each other than DZ twins independently of the networks considered. Figure 6.2
1Imposing γ = 10−9 in our settings [22]
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(below), shows the distribution of Euclidean distance of two groups. It can be seen that with

Euclidean distance-based difference between two groups is not considered good.

Moreover, with Wasserstein distance, independently of the twin class, when considering the

task-related network (middle) the distances are generally smaller than distances between

networks including task-orthogonal ROIs (bottom) and all ROIs (top). Finally, not only the

distances are generally smaller when considering the MV ROIs, but also the variance is

much smaller, especially for MZ twins.

6.1.3 Feature Selection and Classification

In this analysis, our working hypothesis was that connectivity between MZ twin pairs would

be more similar than between DZ pairs, and particularly for the MV sub-network. By en-

coding similarity as the distance between functional networks, we, therefore, expected to

predict twin groups using DFC network distances as features. The classification was per-

formed on all possible combination of ROIs (ALL, MV & NMV) using the linear support

vector machine (SVM) classifier with leave-one-out cross-validation (LOOCV).

Laplacian Score for Feature Selection: To address the curse of dimensionality in our

dataset characterized by a number of features (41) greater than the number of observations

(13), we adopted Laplacian Score (LS) based unsupervised feature selection [166]. Our aim

was to choose the DFC time-epochs best differentiating the two groups. In this feature, se-

lection approaches each feature was ranked by computing relevance based on variance and

separability e.g. by computing the Laplacian score of each feature in the nearest neighbour

graph by their formula and then ranking the features based on highest score e.g. feature with

highest Laplacian score will be ranked 1st and vice versa. The LS worked on the basic idea

of assessing the features according to their locality preserving power. We choose the top 10

feature using this method and tested the classifier with different numbers of selected feature

(3 to 10) to check the stability of the system.

Due to the small number of samples, we did not use any supervised feature selection ap-

proach as not enough data was available. In order to check the significance level of the

performance of our classifier, we also implemented a permutation test on labels (twin class).

For this, we generated a null distribution by randomly changing the labels 8000 times and

in each iteration, we performed SVM classification using LOOCV and computed the cross

fold accuracy. This test was useful to validate the selection of features and to quantify the

significance of classification accuracy. Figure 6.3 Illustrate the pipeline used for this analy-

sis.
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Figure 6.2: (Mean graph distance & standard error of each DFC matrix computed through the sliding window
over fMRI time-series with Wasserstein distance(top) and Euclidean distance(bottom). Marker in blue color
shows the mean distance and standard error for MZ group and red square shows mean distance and standard
error for DZ group. The plots are respectively for the network with (top) all nodes (middle) visuomotor nodes
(bottom) non-visuomotor nodes.
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Figure 6.3: Proposed pipeline start with conversion of dFC into dynamic Laplacian connectivity, then compu-
tation of distance between each dFC of each pair on Riemannian manifold (distance vector building) and then
classification based on distance vector.

6.1.4 Results and Discussion

Figure 6.4 shows the SVM classification accuracy for different combinations of networks

and feature selection with Wasserstein distance (above) and Euclidean distance (below).

The plot in the Figure 6.4.a (above) describes the cross fold SVM accuracy when using all

41 distances as a feature for the three networks (All, MV & NMV). As seen the DFC of

task-relevant ROI (MV) are giving better accuracy (77%) as compared to task-orthogonal

(NMV) & All ROIs (62%) with Wasserstein distance. For Euclidean distance, it can be seen

that accuracy with all type of network is below chance level (50%) and also with feature

selection accuracy is very less. Due to the high dimensionality issue of the data (more

features than observations) these results are not statistically significant. So feature selection

was performed for all three networks, selecting from 3 to 10 features by using unsupervised

Laplacian Score. The classification was then performed using the same schema (linear SVM

with LOOCV).

The cross-fold classification accuracy of SVM classifier with a different number of features

for all three networks with Wasserstein distance and Euclidean distance can be seen in Fig-

ure 6.4.b (above) It can be observed that with a small number of features (3 to 5) when com-

paring the network with task-relevant nodes only there is a surprising rise of performance

(accuracy of 92%) whereas this doesn’t happen when using task-orthogonal nodes. This

shows that task-relevant ROIs are playing a vital role in discriminating the two groups. FOr

Euclidean distance accuracy with the selected feature is still not compare with the Wasser-

stein distance approach. It can also be seen that as the number of features increases, the

cross-validation SVM accuracy declines. This is due to the integration of some redundant

83



Figure 6.4: (a) Classification accuracy obtained with Wasserstein distance (above) and Euclidean dis-
tance(below) for all features for networks composed of different sets of ROIs: (b) Classification performance
with feature selection with Wasserstein distance and Euclidean distance. Stars on bar represent the significance
level obtained through permutation test.

features.

In order to assess the significance of our results obtained with feature selection, we im-

plemented a permutation test on labels. The results of the permutation test along with the
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accuracy with each feature selection are represented in figure 2 with ** on the bars having

significance level p_value <0.005 and * with p_value <0.05. P values represent the ratio of

the total number of accuracy values greater than the accuracy value with true label divided

by the total number of permutations (8000 in our case). These results support the hypothesis

that genetic similarity has an impact on brain network similarity which can be examined

using the DFC especially for the purpose of classification between two groups.

To conclude, the results of our study demonstrate that genetic influences on brain network

profiles can be detected using dynamic functional connectivity. In MZ twin pairs, the task-

relevant visuomotor networks are more similar than they are in DZ twin pairs and this genetic

difference is very useful to be used as a feature to classify a pair of twins either MZ or DZ.

On the other hand, when considering only the task- orthogonal non-visuomotor network or

whole network, they don’t play a significant role in terms of classification. These findings

imply that Zygocity modulates the connectivity of task-relevant networks which can be used

to distinguish one group from others.

In summary, in this work, we have presented a computational framework to compare the

dynamic functional connectivity of twins. The proposed approach includes a novel method

to computes the difference between two graphs by finding the graph Laplacian of DFC ma-

trices (considering only positive correlations) and then applying Wasserstein distance to find

the similarity between DFC matrices. This similarity information was adopted to compute

the features in the classification task, where the aim was to discriminate between MZ and

DZ twins. To address the issue of dimensionality an unsupervised feature selection based

on Laplacian score was used to reduce the number of features. This approach allowed us to

obtain better accuracy with linear SVM classifier.
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6.2 Classification of Dynamic Brain Connectivity through Geodesic
Clustering

In this section, we have investigated Twin’s task-based fMRI, which encourages the identi-

fication of integration mechanism between specific task-related brain regions and is useful

to identify task-related networks in brain connectivity [34, 108]. The main purpose of this

study is to evaluate if there are DFC patterns shared among twins, allowing discriminat-

ing twin pairs from unrelated pairs and to investigate the effect of genetic heritability on

the dynamics of functional brain networks. In [Chapter 2 reference], we have shown that

differentiation between two groups was measurable when using the graph Laplacian rep-

resentation of non-dynamic FC matrices, which transforms the representation of data into

the smoothed space of positive semi-definite matrices [167]. In section 6.1 we have further

extended the use of graph Laplacian and Wasserstein metric to classify between MZ & DZ

twin pairs using DFC matrices. In this section, we want to investigate the DFC analysis ex-

ploiting the concept of brain states. To perform this investigation, we exploited the similarity

of DFC patterns associated with the brain states of the two groups (twins and non-twins). To

this aim, we clustered the DFC matrices into reference states and then we used a compact

representation to perform classification.

Methods described in [113, 161], exploiting clustering to generate a set of reference states

and are based on similarities computed in a vectorial space. Using metrics on the vectorial

space – like the Euclidean distance frequently used in k-means – is sub-optimal section 6.1.

We know, however, that FC matrices can be managed to form a manifold of positive definite

matrices, and a more appropriate choice of similarity is to use a geodesic metric defined on

the smooth manifold. Therefore, in our approach, we used a geodesic metric both to cluster

the matrices with k-means and to extract the features to be used by the classifier. For this

analysis, we used the same twin’s task-based data defined in [chapter 2 reference] which

includes 13 Twin pairs. We made some experiments both using the Euclidean metric in a

vectorial space and a geodesic metric (Log Euclidean distance) on the Riemannian space of

symmetric positive definite matrices.

6.2.1 Dynamic Functional Connectivity Estimation

GivenN the number of regions in the atlas (in our case AAL is made byN=90) we estimated

the N × N covariance matrices Σi(w), for all subject i = 1. . .M , (M is the total number

of subjects) and for all sliding windows w = 1. . .W over the fMRI time-series (W is the

total number of windows). In our experiments, we used a sliding window of size 4t=30

TR (60 sec) and a step size of 4 TR (8 sec) [167]. This resulted in W=83 DFC matrices Σi

describing the modulation of connectivity along the entire recorded sequence. Due to the
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relatively small windows size, the estimation of the covariance matrices might be unstable

and heavily affected by the limited amount of information. To overcome this issue a more

robust estimate of the covariance with small data can be obtained from the estimate of a

sparse version of the inverse of the covariance matrix Σ−i 1(w) [168, 169, 37]. This sparse

precision matrix can be obtained regularizing the estimated parameters with the graphical

LASSO as described in [23]. This method has proven to be very effective when there is a

limited number of observations at each node [114, 170], such as in our case where we have

small intervals of fMRI scan.

The covariance matrices are always guaranteed to be symmetric & positive semi-definite

(SPD), however, in real applications they are frequently also symmetric & positive definite

(PD). If some matrices are not PD we can apply a small regularization (Σi = Σi + λI, λ =

10−9 in our settings) making them PD. In this way, they form a Riemannian manifold of

PD matrices [170] which enable us to analyze the DFC matrices on the manifold instead of

using the vector space [45]. To take full advantage of the manifold structure of PD matrices,

it is essential to consider a geodesic distance, which measures the shortest path between two

points (two matrices in our case) along the smooth and curved manifold [45]. There are

some possible alternative geodesic distances on the Riemannian manifold of PD matrices

[45, 6], we decided to adopt the Log-Euclidean distance (see Eq. 2.8), which is simple, and

fast to compute.

As described in our previous work chapter 2, there is no effect of task (left and right hand)

between the two groups. So, for each subject, we averaged the DFC matrices across tasks

by using geodesic mean Eq. 2.9 [60] so that the geometric nature of matrices is maintained.

6.2.2 The Dynamic States and Geodesic Clustering Analysis

In order to define a set of states describing intrinsic brain network patterns, we have used

geodesic k-means clustering on SPD matrices [110] to associate a state to each cluster. To

initialize the cluster centroids, we first selected a set of exemplar matrices [114] from the data

(8 matrices per subject in our case) maximizing the distance from the rest of the exemplars of

the same subject. The geodesic k-means was then applied on the set of exemplars to obtain

the initial centroids, which were then refined running again the geodesic k-means on all DFC

matrices of all subjects. In order to run the geodesic k-means, we used the Log-Euclidean

distance [45] as defined in Eq. 2.9 for which the mean of multiple covariance matrices can

be computed in a closed form:

In order to choose the optimal number K of clusters we used two criteria. The first criterion
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was based on the minimization of the Sum of Squared Error (SSE):

SSE =
k∑
i=1

∑
Σ∈Ci

d2(mi,Σ), (6.3)

where Σ is a dFC matrix associated to cluster Ci and mi is the corresponding centroid.

The second criterion was based on the necessity of having in any cluster some matrices for

all subjects, due to the encoding framework explained below. We, therefore, computed the

SSE by using Eq. 6.3 ranging over a number of clusters (K = 2. . .10). In our case, the

best solution fulfilling with the two criteria resulted to be with K = 2. This result also

supports the hypothesis that in a task-based fMRI there appear at least two macrostates, one

is a task-related state and the second one is a no-task state.

6.2.3 Feature Extraction and Classification

The working hypothesis is that dynamic connectivity between twin pairs would be more

similar than between unrelated pairs, and based on this we can classify pairs either as twins

or as unrelated. Therefore, we need to encode the subject’s similarity taking into account

the brain state. To this aim, subjects’ representatives were computed for all clusters. More

specifically, the subset of all DFC matrices of a subject associated with a cluster was aver-

aged with a geodesic mean Eq. 2.9 creating a subject representative for that cluster. In this

way, a subject has a representative for each cluster.

At this point, we could compute the features characterizing the similarity between the sub-

jects. For each pair of subjects, we measured the inter-subject geodesic distance between

the two subject representatives of each cluster. In addition, we computed the geodesic dis-

tance of each subject representative from the cluster centroids. Therefore, for each pair of

subjects (twins or unrelated), there are 3 distances per cluster (features) and in our experi-

ments, the data representation included a total of 6 features because we have K=2 clusters.

Figure 6.5 illustrate the phenomena of extracting the features in term of distance from each

centroid. In our data set, we have 13 twin pairs, corresponding to 26 subjects that can be

recombined to form 312 unrelated pairs. In short, we have a dataset composed of 13 samples

from the twin’s class and 312 samples from the unrelated class. Due to the high unbalanced

dataset, we opted to use the weighted SVM [171] with three cross-fold validation. To this

aim, we divided our data into 3 chunks randomly selecting the samples while maintaining

the proportion between the classes (each fold was composed by 104 samples from the un-

related pairs and 4 from twin’s pairs). For statistical purpose, we repeated 100 times this

cross-validation procedure with the randomized selection of folds. We evaluated the results

in terms of average accuracy, precision, recall, F1 score and confusion matrix.
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Figure 6.5: An illustration of extraction of feature in term of the distance between each subject representative,
and between-subject representative and cluster centroid.

In all our experiments, all distances between graphs and means of graphs were computed

using the Log-Euclidean distance Equation 2.8 and the corresponding geodesic mean 2.9

respectively. However, for the sake of comparison, we performed identical experiments

using the Euclidean distance and the corresponding Euclidean mean.

6.2.4 Results and Discussion

Figure 6.6 shows the results of classification with the weighted SVM when using the Log-

Euclidean distance (blue bars) and the Euclidean distance (red bars). It can be observed

that using the geodesic metric to describe the data considerably boosts the performance

during classification, i.e., during the exploitation of the encodings. In particular, the accuracy

with “geodesic encoding”, 87.21%, is much higher than the “Euclidean encoding” accuracy,

66.35%. Similar differences can be observed for the precision (88.35% versus 67.42%) and

F1 score (92.92% versus 79.14%). Higher and similar recall for both metrics could be due to

the higher unbalance in the classes. The embed table in Figure 1 summarizes these results.

The mean confusion matrix for both distance metrics is given in Table 6.1. It can be ob-

served that when using geodesic distance during the data encoding the rate of correctly clas-

sified pairs is much better than using Euclidean distance. These results strongly support the

fact that the use of Euclidean metric on symmetric positive definite matrices is suboptimal.

Hence, a better way to compare and process the undirected weighted graphs described by

SPD is to use a geodesic distance on the Riemannian space. Figure 6.7 show the centroid of

both cluster and it can be observed that activation of connection between different regions

of the brain is more prominent in cluster 2 as compared to cluster 1. These connectivity

matrices also support our assumption of two brain states for this task-based fMRI, one with

no-task (cluster 1) and second is task state (cluster 2).
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Figure 6.6: Comparison of average performance of classification with weighted linear SVM classifier with Log-
Euclidean distance (blue bars) and with Euclidean distance (Red bars)

Log-Euclidean Distance Euclidean Distance
Predicted Class Predicted Class

Non-Twin Pair Twin Pair Non-Twin Pair Twin Pair
Actual Non-Twin Pair 275 37 Non-Twin Pair 210 102
Class Twin Pair 4 9 Twin Pair 8 5

Table 6.1: Average confusion matrix showing the performance of classification when using the Log-Euclidean
distance or the Euclidean distance

To conclude, in this work, we have presented a novel computational framework, which al-

lows distinguishing between twins and unrelated pairs of subjects using their dynamic func-

tional brain connectivity. To this aim, we designed a specific encoding of graphs into sub-

jects’ similarities, exploiting the concept of geodesic metric on the Riemannian manifold of

SPD matrices. In particular, for the encoding of data, we derived a subject-wise graph sim-

ilarity representation exploiting a geodesic k-means clustering. Indeed, the algorithm uses

the Log-Euclidean metric on the space of functional brain graphs. Once the clusters were

generated, the Log-Euclidean metric was also used to calculate the similarity of two subjects

in terms of the distance between subjects and distance from cluster centroid. These distances

were used as features for the data representation. Due to the highly unbalanced dataset to

solve the classification task we used the weighted SVM.

In order to evaluate whether, beyond having a good estimation of covariance matrices, it

is important to use metrics working on the space of data, we made an identical experiment

using the Euclidean distance in place of the geodesic distance. The results of our study

clearly demonstrate that use of Euclidean distance is not the best choice, as it is not properly

managing the complex structure of graphs, indeed the classification performance is boosted

when using the geodesic distance. This study also reveals that a careful encoding of the
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dynamic functional connectivity allows a clear distinction of twin pairs from non-twin pairs.

Figure 6.7: Mean Connectivity matrix of A) cluster 1 and B) cluster 2 computed by using Equation 2.9
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

This thesis is motivated by the increasing interest in brain network analysis. The emerging

advances in magnetic resonance imaging allow obtaining multiple images associated with

different characteristics of the brain, like the networks functional or structural organization.

All of these aspects can be investigated with graph-based approaches, which however have

some constraints or are not able to respond to all neurological questions. Indeed, the key goal

of this work has been the implementation of new methods to cover open questions in brain

connectivity. Regardless of the different applications covered in this thesis, the common

insight between them is the graph-based inspection carried out to study the brain functional

connectivity.

A first contribution regards the investigation of functional connectome (FC) of twin’s task-

induced data in terms of analysing the effect of genetic heritability on the functional orga-

nization of the brain. Taking into account the symmetric and positive definite properties of

covariance-based functional connectivity matrices which allow considering these matrices

on Riemannian manifold, we performed a similarity analysis between pairs using geodesic

methods on Riemannian manifold. Geodesic approaches follow the geometry of manifold

and hence gives a more appropriate estimation of similarity between connectome as com-

pared to Euclidean distance which is suboptimal to use. Moreover, we have also introduced

a framework to compute heritability of twin’s based on falconers formula using functional

connectome. The results of this study demonstrate how our analytic innovations reveal ge-

netic influences on brain network profiles. In monozygotic twin pairs, the task-relevant

networks are more similar than they are in dizygotic twin pairs which clearly depicts the

influence of genetic sharing. On the other hand, there is no significant difference between

these two groups when considering the task-orthogonal network. These findings imply that

zygosity modulates the connectivity of task-relevant networks, emphasizing a value of task-

based fMRI. The result of the heritability index computed using the proposed method for

the task-orthogonal network is comparatively high as compared to task-orthogonal network.

Which support the effect of genetic mediation in twins especially in the task-induced net-

work.
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As a second aim of this work, we have developed a novel classification framework to dis-

criminate brain functional connectome between healthy and pathological subjects. Classi-

fication of brain graphs between healthy and pathological subjects is an important task to

solve. In order to obtain a classifier able to capture the discriminative patterns of brain con-

nectivity, we have worked out on a computational framework, which allows the classification

of HC and patients using static functional connectome. In this work, we proposed geodesic

k−means clustering method which clusters the covariance-based functional connectome by

taking advantage of the properties of SPD matrices: in this context, using geodesic metrics

proved to be superior to the Euclidean approach. In particular, cluster centroid considered as

reference connectome and classification features has been constructed with a subject-wise

graph similarity representation by using a geodesic metric between each sample and each

reference connectome. This scheme surpasses standard approaches for graph classification

and it is also effective to find irregular connectivity patterns which can be potentially notable

in patients affected by some syndromes like Autism or Schizophrenia.

Furthermore, as an extension to our previous work, we suggested another computational

framework to distinguish between HC and different phenotype of patients affected by mul-

tiple sclerosis using resting-state functional connectome. The descriptors to be used by the

classifier were determined with dominant set clustering approaches, again considering the

properties of SPD matrices we used geodesic metric. Data encoding was performed in a sim-

ilar way by computing the similarity between each sample and reference networks (cluster

centroids). For classification purpose, geodesic metric offers an optimal data representa-

tion allowing a better system performance. Results also support the fact that encoding of

functional connectivity matrices using DS clustering algorithm always gives better results as

compared to the geodesic k-means clustering algorithm. To highlight the variations between

two groups of HC and MS, a difference of reference connectome of both groups in each

prominent clusters (selected based on sensitivity analysis) was computed. These variations

show the prominent changes in functional connectivity between two groups and helped to

identify neuro-markers. From a clinical point of view, the results of this study showed that

MS patients, considered as a whole, were well distinguished from HC in terms of func-

tional connectivity and this approach might be rewarding in monitoring disease evolution

and optimizing patients management

Finally, we developed a framework to analyze the dynamic functional connectivity (DFC).

Furthermore, sub-network interpretation in dynamical systems, as fMRI functional connec-

tivity, allows revealing different patterns of connectivity can arise over time, especially dur-

ing the task-induced fMRI. To deal with this problem, our proposed method is to inspect such

dynamics by computing the similarity between connectome in each time frame window of

dynamic functional connectivity, which also allows measuring the temporal variability of the
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brain organization. In particular, for the encoding of DFC data, we derived a subject-wise

graph similarity representation between twin’s pair (to classify between MZ & DZ twin pair)

and we also consider exploiting a geodesic k-means clustering (to classify between Twin’s

and un-related pair). The results of our study clearly demonstrate that, that a careful en-

coding of the dynamic functional connectivity allows a clear distinction of combinations of

pairs, especially when using the geodesic distance on SPD representation of data.

7.2 Future Directions

One of the primary challenges in connectomics is the interpretation of alteration occurs in

functional connectivity under different circumstances. Our work on a geodesic method based

functional connectivity analysis is an attempt to describe the modular structure of the brain

in term of functionality. Besides functional, structural connectivity also plays a vital role in

term of comparing the alterations occurs in brain networking. Neurological studies, indepen-

dently from the scale, indicate that the two connectivities (structural and functional) are not

directly associated, suggesting an intense restructuring of the information flow among the

brain regions. Indeed, till today very few efforts have been made to implement mathematical

models which could be able to merge the two aspects of the brain connectivity. Despite the

capacity of each proposed model, the key constraints are the prior assumptions which have

to be made to define a relation between the connectomes. This reality makes it essential to

continue the analysis of brain connectivity focusing at obtaining multiple-views of the brain,

in order to test predictive models with the real connectivity estimated from MRI images.

In future, we can extend the current framework of clustering based encoding to perform

identification of neuro-marker and analysing alteration in structural connectivity between

HC and patient affected with multiple phenotypes of multiple-sclerosis disease. Moreover,

we can merge the encoding results obtained with functional and structural connectivities

and try to implement a better classification method. Connectivity data is usually very high

dimensional which is normally difficult to process and analyze. So as a future perspective

we can implement a dimensionality reduction method applied on SPD matrices of functional

or structural connectome directly on manifold (without projecting to a tangent space, which

is normally being practised). With this approach, we will be able to reduce the amount of

data and hence can perform the clustering and encoding in a more appropriate way.

Regarding functional connectivity, recently, it has been revealed that spontaneous fluctua-

tions can arise across time, showing the strong dynamical nature of brain functional connec-

tivity even at resting. This view of functional connectivity opened a new era of research and

could be helpful in answering many unsolved questions, such as how to model these fluctua-

tions in order to investigate the dynamical restructuring of the brain. Our proposed method of
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comparing the dynamic functional connectivity matrices using geodesic metric-based meth-

ods goes in that direction and introductory results show that the functional connectivity is

influenced by the brain states during task-induced fMRI. We intended to extend our anal-

ysis of comparing HC group with multiple-sclerosis patients using the dynamic functional

connectivity method. In this approach, we want to implement DS clustering to perform clus-

tering on dynamic matrices and to compute the cluster which represents unique brain pattern

(brain state). Then we can compare obtained brain states of two groups to get the neuro-

markers occurring at different brain states and hence can easily find the regions responsible

for discrimination.

In conclusion this dissertation proposed novel methods to carry out different connectivity

analysis. Each of the suggested solutions takes into account the graph-based properties of

the functional connectome, and of course, they lay strengths and limitations. However, the

proposed methods can be extended both from a methodological perspective and from the

neurological side, making them suitable for different problems.
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