2,407 research outputs found

    Use of consumer-grade cameras to assess wheat N status and grain yield

    Get PDF
    Relationships between (a) fractional Intercepted PAR (fIPAR), and (b) aboveground biomass (Biomass) and (c) grain yield at harvest with the Normalized Difference Vegetation Index (NDVI) derived either from a spectroradiometer or a conventional camera at final grain filling (n = 12).Postprint (published version

    High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing

    Get PDF
    Acquisition of plant phenotypic information facilitates plant breeding, sheds light on gene action, and can be applied to optimize the quality of agricultural and forestry products. Because leaves often show the fastest responses to external environmental stimuli, leaf phenotypic traits are indicators of plant growth, health, and stress levels. Combination of new imaging sensors, image processing, and data analytics permits measurement over the full life span of plants at high temporal resolution and at several organizational levels from organs to individual plants to field populations of plants. We review the optical sensors and associated data analytics used for measuring morphological, physiological, and biochemical traits of plant leaves on multiple scales. We summarize the characteristics, advantages and limitations of optical sensing and data-processing methods applied in various plant phenotyping scenarios. Finally, we discuss the future prospects of plant leaf phenotyping research. This review aims to help researchers choose appropriate optical sensors and data processing methods to acquire plant leaf phenotypes rapidly, accurately, and cost-effectively

    Leaf nitrogen determination using non-destructive techniques–A review

    Full text link
    © 2017 Taylor & Francis Group, LLC. The optimisation of plant nitrogen-use-efficiency (NUE) has a direct impact on increasing crop production by optimising use of nitrogen fertiliser. Moreover, it protects environment from negative effects of nitrate leaching and nitrous oxide production. Accordingly, nitrogen (N) management in agriculture systems has been major focus of many researchers. Improvement of NUE can be achieved through several methods including more accurate measurement of foliar N contents of crops during different growth phases. There are two types of methods to diagnose foliar N status: destructive and non-destructive. Destructive methods are expensive and time-consuming, as they require tissue sampling and subsequent laboratory analysis. Thus, many farmers find destructive methods to be less attractive. Non-destructive methods are rapid and less expensive but are usually less accurate. Accordingly, improving the accuracy of non-destructive N estimations has become a common goal of many researchers, and various methods varying in complexity and optimality have been proposed for this purpose. This paper reviews various commonly used non-destructive methods for estimating foliar N status of plants

    Quantitative estimation of plant characteristics using spectral measurement: A survey of the literature

    Get PDF
    There are no author-identified significant results in this report

    High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms

    Get PDF
    Crop yields need to be improved in a sustainable manner to meet the expected worldwide increase in population over the coming decades as well as the effects of anticipated climate change. Recently, genomics-assisted breeding has become a popular approach to food security; in this regard, the crop breeding community must better link the relationships between the phenotype and the genotype. While high-throughput genotyping is feasible at a low cost, highthroughput crop phenotyping methods and data analytical capacities need to be improved. High-throughput phenotyping offers a powerful way to assess particular phenotypes in large-scale experiments, using high-tech sensors, advanced robotics, and imageprocessing systems to monitor and quantify plants in breeding nurseries and field experiments at multiple scales. In addition, new bioinformatics platforms are able to embrace large-scale, multidimensional phenotypic datasets. Through the combined analysis of phenotyping and genotyping data, environmental responses and gene functions can now be dissected at unprecedented resolution. This will aid in finding solutions to currently limited and incremental improvements in crop yields

    Remote Sensing for Precision Nitrogen Management

    Get PDF
    This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment

    Remote sensing of biotic stress in crop plants and its applications for pest management

    Get PDF
    Not AvailableRemote sensing (RS) of biotic stress is based on the assumption that stress interferes with photosynthesis and physical structure of the plant at tissue and canopy level, and thus affects the absorption of light energy and alters the refl ectance spectrum. Research into vegetative spectral refl ectance can help us gain a better understanding of the physical, physiological and chemical processes in plants due to pest and disease attack and to detect the resulting biotic stress. This has important implications to effective pest management. This review provides an overview of detection of various biotic stresses in different crops using various RS platforms. Previous work pertaining to the use of RS technique for assessing pest and disease severity using different RS techniques is briefl y summerized. The available sources of ground based, airborne and satellite sensors are presented along with various narrow band vegetation indices that could be used for characterizing biotic stress. Using relevant examples, the merits and demerits of various RS sensors and platforms for detection of pests and diseases are discussed. Pest surveillance programs such as fi eld scoutings are often expensive, time consuming, laborious and prone to error. As remote sensing gives a synoptic view of the area in a non-destructive and noninvasive way, this technology could be effective and provide timely information on spatial variability of pest damage over a large area. Thus remote sensing can guide scouting efforts and crop protection advisory in a more precise and effective manner. With the recent advancements in the communication, aviation and space technology, there is a lot of potential for application of remote sensing technology in the fi eld of pest management.Not Availabl

    Estimating foliar nitrogen in Eucalyptus using vegetation indexes

    Get PDF
    Nitrogen (N) has commonly been applied in Eucalyptus stands in Brazil and it has a direct relation with biomass production and chlorophyll content. Foliar N concentrations are used to diagnose soil and plant fertility levels and to develop N fertilizer application rates. Normally, foliar N is obtained using destructive methods, but indirect analyses using Vegetation Indexes (VIs) may be possible. The aim of this work was to evaluate VIs to estimate foliar N concentration in three Eucalyptus clones. Lower crown leaves of three clonal Eucalyptus plantations (25 months old) were classified into five color patterns using the Munsell Plant Tissue Color Chart. For each color, N concentration was determined by the Kjeldahl method and foliar reflectance was measured using a CI-710 Miniature Leaf Spectrometer. Foliar reflectance data were used to obtain the VIs and the VIs were used to estimate N concentrations. In the visible region, the relationship between N concentration and reflectance percentage was negative. The highest correlations between VIs and N concentrations were obtained by the Inflection Point Position (IPP, r = 0.97), Normalized Difference Red-Edge (reNDVI, r = 0.97) and Modified Red-Edge Normalized Difference Vegetation Index (mNDI, r = 0.97). Vegetation indexes on the red edge region provided the most accurate estimates of foliar N concentration. The reNDVI index provided the best N concentration estimates in leaves of different colors of Eucalyptus urophylla × grandis and Eucalyptus urophylla × urophylla (R2 = 0.97 and RMSE = 0.91 g kg−1)

    Effect of Cultivar on Chlorophyll Meter and Canopy Reflectance Measurements in Cucumber

    Get PDF
    Optical sensors can be used to assess crop N status to assist with N fertilizer management. Differences between cultivars may affect optical sensor measurement. Cultivar effects on measurements made with the SPAD-502 (Soil Plant Analysis Development) meter and the MC-100 (Chlorophyll Concentration Meter), and of several vegetation indices measured with the Crop Circle ACS470 canopy reflectance sensor, were assessed. A cucumber (Cucumis sativus L.) crop was grown in a greenhouse, with three cultivars. Each cultivar received three N treatments, of increasing N concentration, being deficient (N1), sufficient (N2) and excessive (N3). There were significant differences between cultivars in the measurements made with both chlorophyll meters, particularly when N supply was sufficient and excessive (N2 and N3 treatments, respectively). There were no consistent differences between cultivars in vegetation indices. Optical sensor measurements were strongly linearly related to leaf N content in each of the three cultivars. The lack of a consistent effect of cultivar on the relationship with leaf N content suggests that a unique equation to estimate leaf N content from vegetation indices can be applied to all three cultivars. Results of chlorophyll meter measurements suggest that care should be taken when using sufficiency values, determined for a particular cultiva

    Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications

    Get PDF
    The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed.This research was funded by the Spanish projects AGL2016-76527-R and IRUEC PCIN-2017-063 from the Ministerio de Economía y Competividad (MINECO, Spain) and by the support of Catalan Institution for Research and Advanced Studies (ICREA, Generalitat de Catalunya, Spain), through the ICREA Academia Program
    • …
    corecore