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a b s t r a c t

Acquisition of plant phenotypic information facilitates plant breeding, sheds light on gene action, and can
be applied to optimize the quality of agricultural and forestry products. Because leaves often show the
fastest responses to external environmental stimuli, leaf phenotypic traits are indicators of plant growth,
health, and stress levels. Combination of new imaging sensors, image processing, and data analytics per-
mits measurement over the full life span of plants at high temporal resolution and at several organiza-
tional levels from organs to individual plants to field populations of plants. We review the optical
sensors and associated data analytics used for measuring morphological, physiological, and biochemical
traits of plant leaves on multiple scales. We summarize the characteristics, advantages and limitations of
optical sensing and data-processing methods applied in various plant phenotyping scenarios. Finally, we
discuss the future prospects of plant leaf phenotyping research. This review aims to help researchers
choose appropriate optical sensors and data processing methods to acquire plant leaf phenotypes rapidly,
accurately, and cost-effectively.
� 2023 Crop Science Society of China and Institute of Crop Science, CAAS. Publishing services by Elsevier

B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

With the increase in world population and the improvement of
living standards, there is a growing need to ensure the quantity
and quality of plant products for food, feed, fiber, and fuel [1,2].
Studies aimed at associating genotypic with phenotypic informa-
tion are essential for plant yield and quality improvement. With
the development of next-generation sequencing technologies and
the rapid decline of genotyping costs, obtaining plant phenotypic
information with high throughput and resolution and low cost
has become a bottleneck. Because plant phenotype is controlled
by complex interactions between genotype and environment, com-
prehensive and accurate phenotypic information can lay the foun-
dation for in-depth analysis of plant gene functions and regulatory
networks and accelerated plant breeding pipelines [3]. Thanks to
technological advances in imaging sensors, image analysis, and
machine learning, plant phenotypic traits can be estimated at mul-
tiple scales ranging from cell, tissue, organ, and whole plant to field
populations of plants, such traits include morphological, physio-
logical and biochemical traits [4].

Leaves convert absorbed solar energy into organic matter in
green plants by photosynthesis, exchange water vapor and carbon
dioxide via stomata, obtain oxygen via respiration, and generate
the energy required for plant growth and metabolism. The leaf is
a dynamic organ that is affected by both internal (genotype) and
external (environmental) conditions. The phenotypic traits of
leaves reflect the response, adaptability, and self-regulation ability

of plants in constantly changing environments. For plant species
whose leaves are consumed by humans (lettuce, cabbage, spinach,
tea, etc.), leaf traits reflect the yield and nutritional value of the
products. Leaf morphological traits include area, inclination angle,
number, thickness, and phenology. Physiological and biochemical
traits include stomatal conductance (gs), maximum carboxylation
(Vcmax) and maximum electron transfer rates (Jmax), and contents
of water, chlorophyll, nitrogen (N), phosphorus (P), and potassium
(K) [5].

Conventionally, plant phenotypic information is obtained by
manual measurement, with the shortcomings of labor intensive-
ness, low efficiency, subjectivity, low accuracy and strong destruc-
tiveness. In recent years, imaging technology has become an
effective tool for studying plant phenotypes, including visible-
light, spectral (both multispectral and hyperspectral), thermal,
and fluorescence cameras. This technology can acquire plant phe-
notypes with high throughput, high accuracy, and nondestructive
methods, enabling a wide range of measurements and broad appli-
cation [6,7]. The need of spatial, spectral, and temporal resolution
is considered when imaging sensors are used to acquire plant color,
spectra, and texture information. Different phenotyping studies
have diverse requirements for the resolution of imaging sensors.
At the molecular, cell, and tissue levels, microscopic imaging tech-
nologies with higher resolution are needed, such as fluorescence
and Raman imaging. Remote-sensing imaging sensors offer lower
spatial resolution than proximal imaging sensors. Because a pixel
in a satellite remote sensing image usually represents multiple

Fig. 1. Schematic diagram of various imaging sensors operating in various regions of the electromagnetic spectrum and the plant leaf phenotypic traits at various
organizational levels that they measure.
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plants, studying plant phenotypes at multiple scales requires
selecting imaging sensors with corresponding resolution [8,9].
Fig. 1 shows various imaging sensor technologies for acquiring
plant leaf phenotypes.

The data collected by imaging sensors are rich and diverse, and
extracting meaningful phenotypic information from them requires
carefully designed data-processing methods. Selecting appropriate
optical sensors and data-processing methods can maximize the
efficiency and accuracy of the experiment and reduce its cost.
Given that leaves are vital organs that may represent the direct
economic yield of plants, we describe their morphological, physio-
logical and biochemical traits, summarize research progress in
optical sensors and data-processing methods for plant leaf pheno-
typing at multiple scales (cell, tissue, whole leaf, and whole plant),
and compare and discuss innovations and limitations of these tools
for plant leaf phenotyping. We describe the temporal and spatial
patterns of leaf growth as affected by internal and external condi-
tions. Finally, we describe future prospects in plant leaf phenotyp-
ing research.

2. Acquisition of phenotypic information of plant leaf
morphological traits

Measurement of morphological features is conventionally done
manually, by either direct or indirect methods. Direct leaf-area
measurement methods include drilling weighing, tracing weigh-
ing, and grid methods [10]. Indirect measurement methods involve
developing empirical regression models [11]. Leaf angles are mea-
sured mainly with a protractor, and leaf number is obtained by
counting. Leaf thickness of a leaf is calculated as the ratio of leaf
weight to leaf area, and leaf color of leaves is determined with a
color comparison card. These methods are limited by low effi-
ciency, low accuracy, destructiveness, and subjectivity. Modern
imaging sensors can reduce these shortcomings.

2.1. Leaf area

Leaves convert absorbed solar energy into organic matter in
green plants by photosynthesis, providing nutrients for plant phys-
iological activities. Leaves thus determine the growth rate and
health condition of plants. Reduction of leaf area will lead to a

reduction of chlorophyll content, affecting plant growth and ulti-
mately reducing productivity, in particular for plants whose leaves
are their economic product. Measuring leaf area is thus desirable
for improving crop performance and increasing crop yield. Leaf
area can be studied for a single leaf, a whole plant, or a group of
plants. The leaf area of a group of plants in the field is commonly
quantified by leaf area index (LAI) [12]. LAI refers to the total leaf
area in a unit of land area, calculated as the ratio of the total leaf
area of a plant population to the land area it covers, as shown in
Fig. 2E. LAI is closely related to total leaf size, canopy structure,
and light energy utilization, and is used for continuous monitoring
of plant growth and estimating yield [13,14]. The application of
modern imaging technologies in leaf area measurement at differ-
ent scales is shown in Fig. 2, and Table S2 describes the corre-
sponding imaging technologies and data-processing methods.

It is simpler to obtain the leaf area of a single leaf than that of a
whole plant of population. Two-dimensional (2D) image process-
ing permits estimating the leaf area of a single leaf. Using a smart-
phone to image and process a single leaf and a reference object of
known size yields a scaling factor used to estimate the actual leaf
area [15] (Fig. 2A). A study [16] of the relationship of the easily
obtainable parameters leaf length and leaf width with leaf area
in 2D images showed that a leaf-area prediction model based on
a combination of the two parameters yielded the highest accuracy.
When a smartphone was used to take a vertical top view image of a
plant and there was leaf occlusion, leaf area was underestimated
[17]. The accuracy of leaf area estimation for the whole plant can
be improved by use of multi-angle images and multiple features.
Jiang [18] collected images of single rice plants with a visible-
light imaging system, established a power-function model predict-
ing leaf area from side view average projection area, and investi-
gated the influence of the number of side view projections, top
view projection area, texture and morphological features on accu-
racy of model. The error caused by leaf curl, camera viewing angle,
and other factors in 2D images can be reduced by building a three-
dimensional (3D) model to estimate the area of a single leaf. The
visible light camera [19], RGB-D (Red, Green, Blue-Depth) camera
[20], and LiDAR [21,22] are used to acquire plant images that will
be used to generate 3D point clouds (Fig. 2B, C, D). The point clouds
are clustered and segmented, and a leaf grid model is recon-
structed. The leaf area is obtained by measuring the area of the sur-
face grid.

Fig. 2. Application of modern imaging technology for leaf-area measurement at several scales. (A) Digital camera acquires the image of a single leaf and a calibration object
[15]. (B) Grape leaf extraction, point-cloud segmentation and surface reconstruction [19]. (C) 3D point-cloud and surface reconstruction of a single leaf (Reproduced from Yau
et al. [20] with permission from Elsevier). (D) LiDAR measurement of the crown leaf area of a single tree (Reproduced from Berk et al. [21] with permission from Elsevier). (E)
LAI schematic diagram. (F) RGB and NDVI images of plots ([24]). (G) LAI 3D images with multiple voxel sizes (Reproduced from Yin et al. [34] with permission from Elsevier).
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The total leaf area of a group of plants may be measured by LAI.
Because it is measured at the canopy level, remote sensing imaging
technology is widely used in LAI measurement, including imaging
sensors carried by unmanned aerial vehicles (UAVs), manned air-
crafts, and satellites. Compared with satellite remote sensing, UAVs
have the advantages of flexible operation and low cost, but satellite
remote sensing can acquire canopy data over a much larger spatial
extent. Cloud cover will impair the use of remote sensing imaging
by introducing occlusion and noise. In contrast to manned aircraft
and satellites, UAVs can fly below cloud cover. As an alternative,
images may be collected under sunny and cloudless weather con-
ditions, or cloud-cover interference may be reduced by atmo-
spheric correction, spectral pretreatment, and other techniques
[23,28].

Many researchers have used UAVs equipped with one or more
imaging instruments such as RGB [23,25], multispectral [24,25],
and thermal cameras [25,26] to image plant canopy. Estimation
models of LAI are established based on acquired color, spectral,
and thermal information using multiple linear regression, artificial
neural network (ANN) [23], random forest (RF), extreme gradient
boosting (XGBoost) [24,27], partial least squares regression (PLSR),
support vector regression (SVR), deep learning [25], and other
methods (Fig. 2F). Normalized difference vegetation index (NDVI)
is one of the vegetation indices (VIs) commonly used to estimate
LAI. For multispectral images, it is necessary to use a white refer-
ence plate to apply radiometric correction to estimate the true
reflectance of plants. In different growth stages, the canopy struc-
ture, leaf inclination angle and leaf surface characteristics of plants
will differ, strongly affecting canopy reflectance. Thus, phenology
affects LAI estimation based on canopy spectral data, especially

for plants with varying phenological characteristics (such as during
flowering, heading, and fruiting), including maize, rice, sorghum,
and wheat. In one study [25] the estimation accuracy of LAI was
increased by use of multi-source data but was reduced by the pres-
ence of maize ears. Using VIs to estimate LAI has led to phenology-
specific models. A prediction model combining VIs and vegetation
canopy height for rice increased the accuracy of LAI at heading
[28]. LAI can also be obtained by establishing 3D point clouds of
plant populations. Lin et al. [29] acquired images of Masson pine
forests using UAVs carrying RGB and multispectral cameras at var-
ious tilt angles. According to the voxel model obtained from the
generated 3D point clouds, they calculated the LAI of the forest
canopy. The 0� and 30� combined tilt angle scheme gave the best
result who’s R2 up to 0.9119.

A hyperspectral imaging sensor can collect high-resolution
images in a wide range of wavebands to obtain the reflection spec-
trum of the canopy, and establish a model for prediction of LAI
based on the hyperspectral information [30,31]. Compared with
the information from a multispectral camera, the band information
obtained by the hyperspectral imaging sensor is rich and complex,
and more VIs can be extracted. However, there are always spectral
bands with poor correlation with specific leaf phenotypes, and
these bands will reduce not only the accuracy of the LAI model
but the efficiency of model training. These problems can be solved
by feature band selection [32]. Many studies have shown that fea-
ture band screening followed by multivariate modeling is effective
for increasing the accuracy of model estimation. Based on
extracted key information, researchers [30,33] have used various
algorithms to establish LAI prediction models and then compared
and selected the models with the highest prediction accuracy.

Fig. 3. Application of modern imaging technologies in leaf inclination angle measurement. (A) Calculate the leaf inclination angle from leaf area and leaf projected area [41].
(B) The leaf inclination angle is estimated from the 3D point cloud obtained by LiDAR (Reproduced from Hosoi et al. [43] with permission from the Society of Agricultural
Meteorology of Japan). (C) Leaf inclination angle measurement of flat and curved leaves [38]. (D) Calculate the angle between leaf normal and z axis based on the three-
dimensional bounding box [39].
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Besides the use of UAVs to carry imaging sensors, satellite data
and laser scanning technology [34] are also applied (Fig. 2G). LAI
has been predicted from spectral data from the Sentinel-2 [35]
and Landsat 5 TM and 7 ETM+ [36] satellites and VIs generated
from them.

2.2. Leaf inclination angle

The inclination of plant leaves refers to the angle between the
normal line of the leaf surface and the zenith (z) axis. For flat
leaves, it can also be defined as the angle between the leaf surface
and the horizontal earth surface. Leaf inclination angle determines
the proportion of light intercepted by the leaves, thus affecting the
growth and biomass of plants [37].

Because the shape, size, softness and curvature of leaves of
plants differ, the complexity of measuring leaf inclination angle
varies. For plants with short and smooth leaves, leaf angle can be
directly determined from images captured by side-view cameras.
For plants with long, narrow, and curved leaves, the relative area
of leaf segments is taken as a weight to estimate the effect of grav-
ity on leaf inclination angle [38] (Fig. 3C).

Because quantifying angles of plant leaves involves measure-
ment in 3D space, most existing studies are based on 3D point
clouds of leaves, which can be reconstructed based on information
from digital cameras [39,40], RGB-D cameras [41], LiDAR [42–44],
and other sensors. The methods for constructing 3D point clouds
include structure from motion (SFM) [40], multi-view stereo
(MVS) [39] and iterative closest point (ICP) [43]. The SFM algo-
rithm is used mainly for sparse point-cloud, and MVS technology
mainly for dense point-cloud reconstruction. Most researchers first
perform preprocessing such as filtering and de-noising (depth
threshold or, statistical filtering) [41] on the reconstructed 3D
point cloud to optimize the cloud (Fig. 3A). A single leaf can be
clustered and segmented from it. Common point-cloud clustering
and segmentation algorithms include K-means clustering [41],
region growth [39], density-based spatial clustering of applications
with noise (DBSCAN) [42], and watershed algorithm [40]. For the
point cloud of segmented single leaf, delaunay triangulation [41],
least squares [43] and other methods are used to build the leaf sur-
face (Fig. 3B). Based on the built leaf surface, calculating the ratio of
the projected area of a single leaf to the leaf area [41], finding the
angle between the leaf normal and the z axis [39,42,43] (Fig. 3D) or
using a voxel-based 3D image processing method [40] can yield the
leaf inclination angle. Fig. 3 shows typical applications in leaf incli-
nation angle measurement, and details of the imaging technologies
and data processing methods are summarized in Table 1.

2.3. Leaf number

Leaf number can reflect plant health status and affect plant
growth rate. The conventional method to obtain the number of

leaves is manual counting, which is labor-intensive. Modern sensor
imaging technology and machine learning provide a high-precision
and high-throughput method for leaf counting.

Image-based leaf counting has the problems of leaf occlusion
and uneven in situ growth of leaf. Accurate leaf counting can be
performed by two main methods: deep learning and image pro-
cessing. Existing leaf counting methods are aimed mostly at corn
[48–52], sorghum [51], and rosette plants (such as Arabidopsis
thaliana) [52–55,58]. The commonly used deep learning models
in plant leaf counting are the convolutional neural network
(CNN) [49], Faster R-CNN [50,51], Mask R-CNN [50,52], deep con-
volutional neural network (DCNN) [58] models.

Owing to the leaf shape and growth characteristics of maize and
sorghum, leaves counting can be achieved based on detecting leaf
sheath points (connection point between leaf and main stem) [50]
or tip points [51] (Fig. S1C), instance segmentation based on pixel
level classification can distinguish different leaves and is also com-
monly used to complete leaf counting (Fig. S1A). For the problem of
occlusion by stems and leaves, using Mask R-CNN for instance seg-
mentation of plant stems and leaves, the scale invariant feature
transform (SIFT) algorithm can be used to complete feature match-
ing, after which the dynamic tracking (leaf tracking for images at
different time) and counting of leaf targets can be realized [52]
(Fig. S1D). The use of deep learning for leaf counting is based
mostly on RGB images of plant leaves. When RGB, fluorescent, or
near-infrared (NIR) images of top views of Arabidopsis and their
combinations were input separately into the deep learning net-
work, the accuracy of leaf counting based on multi-source data
was higher, the network was applicable to a variety of plant leaves,
and leaves could be counted at night based on NIR images [53].
Because of the difficulty in obtaining rich datasets of real plants,
the synthetic plants can be used to augment datasets for training
the model to improve the performance of leaf count, and the model
achieved satisfactory mean absolute count error[54].

When image processing is used for leaf counting, appropriate
methods should be used to extract the leaves from the background,
and single leaves should be segmented from the leaf group. Many
researchers, based on plant leaf images acquired by RGB [55], infra-
red [56], and multispectral [57] cameras, removed the image back-
ground and extracted the region of interest (ROI) using various
segmentation algorithms. Circular hough transform (CHT) was
used to achieve leaf counting [55] (Fig. S1B) or a watershed algo-
rithm was used to achieve the marking and segmentation of a sin-
gle leaf [56,57], laying the foundation for achieving correct leaf
counting. Fig. S1 shows typical applications of various modern pro-
cessing methods in leaf counting.

2.4. Leaf thickness

Leaves vary in thickness among plants, regions, and altitudes,
reflecting the influence of environment on this leaf trait. Estimat-

Table 1
Typical modern imaging technologies and data-processing methods in leaf inclination angle measurement.

Plants Sensors Dimension Processing method Reference

Wheat, etc. Digital camera 2D ImageJ software Zou et al. [38]
Maranta arundinacea, etc. Smartphone 3D MVS, region growing algorithm, minimum 3D enclosing box Li et al. [39]
Pothos, etc. Digital camera 3D SFM, Watershed algorithm, voxel-based 3D image processing Itakura and Hosoi [40]
Soybeans RGB-D camera 3D K-means algorithm, Delaunay triangular dissection Zhang et al. [41]
Crape myrtle, etc. TLS 3D Sphere neighborhood model, DBSCAN algorithm, 3D Watershed algorithm Xu et al. [42]
Camellia japonica, etc. LiDAR 3D ICP, least squares method Hosoi and Omasa [43]
Maize and sorghum LiDAR 3D Voxelization, clustering, triangulation, surface fitting, etc. Thapa et al. [44]
Strawberry RGB-D camera 3D RANSAC, total least squares Fu et al. [45]
Corn TLS 3D Triangular mesh model, Skeleton point cloud, LSR Su et al. [46]
Corn TLS 3D SVM, SE Lei et al. [47]

MVS, multi-view stereo; TLS, terrestrial laser scanning; RANSAC, random sample consensus; SE, skeleton extraction.
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ing leaf thickness can permit early monitoring of leaf stress,
improving timely management decisions [59]. However, it is diffi-
cult to measure leaf thickness. The conventional method is based
on the ratio of leaf weight to leaf area, and requires direct measure-
ments of these two parameters. The multiplication of data errors
reduces measurement accuracy and the operation is complex,
time-consuming, and labor-intensive. The value of leaf thickness
is small, and the measurement accuracy must be high. New imag-
ing technologies have begun to see frequent use in measurement of
leaf thickness.

Pfeifer et al. [60] used computed tomography (CT) to measure
the leaf area and leaf thickness of soybean leaves, finding that daily
relative growth rates differed, and estimated changes in leaf vol-
ume from measured leaf area and leaf thickness. Optical coherence
tomography (OCT) is a recently developed imaging technology.
Scanning yields 2D or 3D images of biological tissues. OCT can per-
form high-resolution tomographic measurement of biological tis-
sues non-invasively. Water infiltration by leaf injection can
improve the quality of leaf images acquired by OCT. The axial dis-
tance of the optical path length is measured by OCT and converted
into leaf thickness using the refractive index of the infiltrated leaf
tissue, thereby realizing the estimation of leaf thickness on the
basis of 3D OCT images [61]. The infrared spectra of plants reflect
a variety of leaf traits. PLSR can be used to fit models of corre-
sponding spectral bands and leaf traits, and leaf thickness has been
shown to be highly correlated with short wave infrared (SWIR)
bands [62]. Some researchers have used a digital thickness gauge
[63] and a magnetic field sensor [64] to estimate leaf thickness.
Afzal et al. [64] studied a segmented linear regression model relat-
ing relative thickness (RT) to relative water content (RWC), incor-
porating the effects of drought resistance, salt resistance,
monocotyledonous and dicotyledonous plant type, and leaf posi-
tion on the RWC–RT model. However, the water content of plant

leaves is affected by species and various environmental factors.
To improve the accuracy, universality, and practicality of using
the model to estimate RWC from RT, the effect of species and envi-
ronment on the model should be further investigated.

2.5. Phenology

Plant phenology refers to the seasonal cycle stages (leaf color-
ing, leaf expansion, flowering and leaf falling, etc.) that occur
repeatedly throughout the plant life cycle. Plant phenology is clo-
sely related to carbon, nutrients, and water cycles in the ecosys-
tem, which reflect plant response to environmental and climate
change. Conventional phenological research includes manual
observation and eddy covariance technique which is based on
the turbulent exchange between the ecosystem and the atmo-
sphere [65]. With global climate change, acquiring accurate,
multi-level, and long-term continuous plant phenological informa-
tion may allow monitoring plant growth status and optimizing
ecosystem structure. Conventional phenological research methods
cannot meet this requirement [66].

Based on information obtained from modern imaging sensors,
corresponding data processing methods can accurately and effi-
ciently analyze plant phenology. One can use a digital camera to
acquire plant images, and seek the relationship between various
factors and phenology [67–69,71]. A prediction model of plant phe-
nology was established (Fig. 4A), and mixed linear models were
used [67,69] to estimate the effects of various climatic factors
and environmental factors on plant phenology (Fig. 4C). Using
RGB images of plant canopy, the proposed DCNN with various
training strategies can also identify phenological periods, and
images from a wide range of perspectives and multiple angles have
been shown to improve recognition performance with a high accu-
racy of 0.913 [70] (Fig. 4B). Based on the spectral characteristics of

Fig. 4. Some applications of modern imaging technology in phenological measurement. (A) Digital cameras and their records of canopy phenological changes throughout the
growing season [68]. (B) Using DCNN to monitor rice leaf phenology based on images from multiple perspectives [70]. (C) Phenological characteristics expressed by excess
green (ExG) index [69]. (D) Phenological changes of hyperspectral images based on spectral mixture analysis (SMA) [73]. (E) Monitoring start of season (SOS), peak of season
(POS), end of season (EOS), and length of season (LOS) at five locations by remote sensing [77].
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plants in various phenological periods, spectral imaging sensors
are also used in phenological research. In comparison of RGB cam-
eras and infrared cameras in phenological monitoring, it is found
that owing to the light environment and separation of bands, the
phenological monitoring accuracy of infrared modified cameras is
not as good as that of RGB cameras [72]. Hyperspectral imaging
sensors can gain more comprehensive and abundant spectral data
than RGB cameras. Based on the relationship between hyperspec-
tral data and phenological parameters, the phenological state and
changes of plants can be quantified. Selecting sensitive spectral
bands and VIs makes the prediction of phenological parameters
more accurate and efficient [73] (Fig. 4D).

In addition to various proximally deployed imaging sensors (the
imaging sensors are deployed within 10 m above plants) [74] to
monitor phenology, the moderate-resolution imaging spectrora-
diometer (MODIS) is used to gain mangrove canopy reflectance,
and the estimation of mangrove phenological parameters based
on the multi-year time series of VIs has achieved accurate results
[75]. Many researchers use SOS, EOS [76,77] and other indicators
to describe phenology. Species have diverse phenological times:
the SOS of mangrove is in April–June and the EOS is in January–
February of the next year. Cumulative rainfall has been found
[77] to be the largest climatic factor affecting mangrove phenology
(Fig. 4E). The current status of phenology research based on mod-
ern imaging sensors and data processing is shown in Fig. 4.

3. Acquisition of phenotypic information for plant leaf
physiological and biochemical traits

Physiological and biochemical traits of plant leaves include
stomatal conductance, maximum carboxylation rate and maxi-
mum electron transfer rate, and contents of water, chlorophyll,
N, P, and K. The physiological and biochemical traits of plant leaves
are reflected in healthy plant growth. Abnormal ranges of these
traits are caused by biotic stress (diseases, insect pests, etc.) and
abiotic stress (water, drought, and salt stress, etc.) suffered by
plants. Dynamic monitoring of the physiological and biochemical
phenotypic information of plant leaves can lay a foundation for
early detection of biotic and abiotic stresses, reveal the health sta-
tus of plant leaves, and support management strategies. In recent
years, the development of various imaging technologies has pro-
vided technical support for the measurement of these traits, and
improved the accuracy and efficiency of information acquisition.

3.1. Stomatal conductance

Plant leaves exchange gases with the environment during
growth. Plant stomata are channels for gas exchange that regulate
the balance between water loss and carbon assimilation. The gs
measures the degree of stomatal opening. Air temperature, humid-
ity, and soil moisture are all factors influencing plant stomatal con-
ductance and thereby photosynthesis, respiration, and
transpiration. When plants are subjected to drought stress, gs will
decreases. Conventional estimation of gs is performed by measur-
ing the amount and rate of leaf gas absorbed and dissipated.
Recently, various imaging technologies have been applied to the
measurement of gs, improving the accuracy and efficiency of mea-
surement, and realizing high-throughput and non-destructive
measurement [78]. Current research on leaf stomatal conductance
using modern imaging technologies and data processing methods
is descried in Table S3.

The conventional measurement of leaf stomatal conductance is
performed mainly with hand-held stomatometers [79] and porta-
ble gas-exchange measurement systems [80]. These methods yield
accurate measurements but suffer from high cost and low effi-

ciency. Hyperspectral imaging systems have shown great potential
for acquiring spectral information associated with leaf gs accu-
rately and effectively. Using PLSR, RF, SVM, and other methods to
establish prediction models based on extracted effective spectral
bands and VIs allows estimating leaf gs [80,81]. Among the predic-
tion models of leaf gs established by various methods, RF showed
better prediction whose R2 = 0.92 [80], and a yellow band was
found to improve the accuracy of prediction of gs [81].

Leaf gs reflects plant water stress. Under short-term water
stress, a decrease in gs increases leaf temperature. When plants
are under long-term water stress, irreversible water-stress symp-
toms will occur. The combination of hyperspectral imaging and
thermal imaging technologies [82] is widely used in the study of
leaf gs [83]. Based on the use of a hyperspectral camera and a ther-
mal imager, Sobejano Paz et al. [84] established a PLSR prediction
model for multiple photosynthetic parameters based on hyper-
spectral data, radiometric temperature (TL,Rad), canopy height (hc)
and other comprehensive data, overcoming the saturation problem
with VIs used alone.

In comparison with conventional methods of measuring gs,
modern imaging technology has the advantages of flexibility and
wide range of use scenarios, and gs can be measured at multiple
scales, by both proximal and remote sensing. Espinoza et al. [85]
used a multi-spectral camera and a thermal infrared camera car-
ried by a UAV to image the grape canopy, finding that NDVI, green
normalized difference vegetation index (GNDVI), and canopy tem-
perature were correlated with leaf gs and that gs differd with irriga-
tion level. In addition to the water supply of plants, some plant
hormones produced endogenously or applied externally can also
affect gs, abscisic acid promotes stomatal closure. Vis/NIR spectra,
multispectral images, and thermal images can be used to evaluate
the effects of exogenous abscisic acid on leaf gs, and crop water
stress index (CWSI) shows an increasing trend with the decrease
of gs [79].

3.2. Maximum carboxylation rate, maximum electron transfer rate

Vcmax and Jmax of plant leaves are plant photosynthetic parame-
ters. Vcmax refers to the maximum number of moles of CO2 assim-
ilated by plant leaves per unit area in unit time. When plants are
exposed to light, pigment molecules absorb light energy and
undergo photochemical reactions and charge separation, thus
forming electron flow [86]. On the thylakoid membrane of the
chloroplast matrix in leaves, the light reaction that converts light
energy into chemical energy occurs. After light absorbs pigment
to capture light energy, a special pigment molecule will excite elec-
trons and these electrons enter the electron transfer chain in pho-
tosynthesis. Jmax refers to the maximum transfer speed of electrons
in the photosynthetic electron transfer chain [87]. Vcmax and Jmax

are affected by temperature, light and other factors, and are closely
related to leaf nitrogen content, chlorophyll, and other physiologi-
cal and biochemical parameters, the relationship between them
will vary with seasons and species changes [88].

Photosynthesis of plants is very important in the whole ecosys-
tem. Photosynthesis underlies the accumulation of plant biomass,
thus becoming the energy source and material basis of life activi-
ties in the entire ecosystem. It mitigates global warming by
absorbing carbon dioxide. The effect of photosynthesis is jointly
determined by environmental factors and the photosynthetic
capacity of plants. Photosynthetic capacity refers to the carbon fix-
ation capacity of plants under optimal water and light conditions,
Vcmax and Jmax are the parameters most commonly used to evaluate
the photosynthetic capacity of plants. The conventional method for
measuring Vcmax and Jmax is via gas exchange. The CO2 response
curve of leaves is measured with a gas exchange system (e.g., LI-
6400 (LI-COR, USA)), and then Vcmax and Jmax are estimated from
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the Farquhar photosynthesis model [97]. This method has the dis-
advantages of high cost, low efficiency, and complex operation. The
application of modern imaging technology to estimating photosyn-
thetic parameters can effectively solve this problem. Hyperspectral
imaging technology is most widely used to estimate Vcmax and Jmax.
PLSR is used to establish estimation models of Vcmax and Jmax by
combining plant spectral information obtained by hyperspectral
instrument and real values measured by gas exchange [89,90]. In
comparison with using only the original hyperspectral data, the
accuracy, efficiency and stability of the model can be improved
by changing the spectral data form (reflectivity, spectral derivative,
etc.) and extracting effective wavebands [91]. Plants are full of rich
phenotypic variation due to complex growth environments and
species. To improve the applicability and reliability of the Vcmax

and Jmax prediction models, Buchaillot et al. [92] collected hyper-
spectral data of soybean and peanut leaves under multiple growth
environments, and used four methods to estimate photosynthetic
parameters of leaves, of which PLSR was the best, the prediction
accuracy for Vcmax and Jmax is 70% and 50%, respectively. In previous
studies, leaf Vcmax and Jmax were closely associated with nitrogen,
chlorophyll, and phosphorus contents. Based on this observation,
some studies estimated leaf nitrogen content from PLSR based on
plant hyperspectral [93] and LiDAR [94] data, and then performed
indirect estimation of Vcmax and Jmax via linear model based on leaf
nitrogen content. Combining the comprehensive characteristics of
multiple spectral indexes and physiological parameters (leaf nitro-
gen content, chlorophyll, etc.) to predict leaf Vcmax, has also given
satisfactory results [88]. The gas exchange method can measure
Vcmax and Jmax only at the leaf level, and most studies also use mod-
ern imaging technology to achieve the estimation of Vcmax and Jmax

at the leaf level. There are few studies of estimating Vcmax and Jmax

at the canopy level and ecosystem level, and these tasks remain
challenging. Meacham-Hensold et al. [95] used a visible near
infra-red (VNIR) camera, a NIR/SWIR camera, and a hyperspectral
instrument to acquire reflectance spectra of tobacco leaves at the
canopy and leaf levels. Based on the reflectance spectra, PLSR
was used to establish an estimation model for eight leaf traits (in-
cluding Vcmax and Jmax). The prediction model using a single VNIR
hyperspectral camera at the canopy level achieved excellent pre-
diction accuracy. Based on the information obtained by an airborne
hyperspectral instrument [96] and sun-induced chlorophyll fluo-
rescence (SIF) remote sensing technology [97], the Vcmax and Jmax

can be retrieved at the ecosystem level. Based on the above
research, detailed techniques and methods for estimating Vcmax

and Jmax are listed in Table S4.

3.3. Water content

Leaf water content (LWC) reflects water stress (drought and
waterlogging stress) in plants, and the plant growth environment
and soil water potential may be adjusted according to leaf water
content. Conventionally LWC is measured by weighing. The fresh
and dry weights of the leaves are recorded and the water content
calculated by difference. Other indicators of leaf water content
are relative water content (RWC) [112], equivalent water thickness
(EWT) [100], fuel moisture content (FMC) [108] (Fig. S2D) and
CWSI [111].

In comparison with the conventional method of obtaining LWC
indirectly by measuring soil water content, canopy temperature,
transpiration rate and other parameters, the measurement of
LWC based on modern imaging technology has the advantages of
real-time application, efficiency, and non-destructiveness. Hyper-
spectral imaging technology is widely used for measuring LWC.
Some studies show that the spectral absorption capacity of water
are stronger in the infrared bands than other bands, especially at
970, 1200, 1440, and 1950 nm. The VIs synthesize the information

at the wavebands related to LWC and have the advantages of gen-
erality, simplicity, and convenience. They are widely used for esti-
mating physiological and biochemical parameters such as LWC.
Rodriguez-Perez et al. [98] achieved the best prediction model of
LWC within the spectral range centered at 1465 nm. Since the cor-
responding VIs are based on the combination of individual specific
wavebands, part of the relevant spectral information cannot be
included, and there are differences between plant species in spec-
tral absorption characteristics, impairing the ability of the corre-
sponding VIs to predict LWC [99,100]. Because spectral data
acquired by hyperspectral imaging are rich and comprehensive,
but there are spectral noise and spectral data with little correlation
with LWC, there will be problems such as long training time and
redundant information interference when the full spectrum is used
for modeling, reducing the accuracy and efficiency of the estima-
tion model. To solve this problem, preprocessing techniques taking
into account the spatial and the spectral structure of hyperspectral
images have been used to increase resolution. Correlation analysis
between the original spectrum and phenotypic parameters can be
performed to remove noisy spectral bands with little or no correla-
tion. VIs obtained by combining spectral bands can also strengthen
useful spectral information. Spectral preprocessing and feature
band extraction methods have been developed [101], including
normalization, derivative, multivariate scattering correction
(MSC) and convolution smoothing. Bruning et al. [102] used a
hyperspectral imaging system to collect hyperspectral information
of wheat, combined with a variety of spectral preprocessing tech-
niques to predict the water and nitrogen content of wheat by
regression, estimated the visual distribution of water and nitrogen
in wheat plants based on the PLSR model (Fig. S2C), and found that
SWIR bands increased model precision.

By combining image and spectral information, one can better
study the relevant parameters of plant leaf water [103]. For exam-
ple, canopy structure will affect the reflectivity of the plant canopy,
further affecting the accuracy of estimating LWC based on the
canopy spectrum. Canopy cover information can be obtained by
airborne LiDAR, and the canopy structure optimizes the effect of
using hyperspectral data to estimate LWC [104] (Fig. S2A). At the
leaf level, Murphy et al. [105] used hyperspectral imaging sensors
to conduct a detailed study of longleaf lettuce. They established
water content estimation models for midrib, green part and whole
leaf based on VIs respectively. Each spectral index fitted better
with LWC per unit leaf area than with per weight of wet plant
material. The accuracy of estimating the water content of green
part of leaves was the highest, and the prediction model of water
content of each leaf component cannot be used universally. For sin-
gle plants or groups of plants, most studies are performed only at
the canopy level. But one study found that some biochemical
parameters of plants are unevenly distributed along the plant
height, and used a hyperspectrometer to record the reflectance of
wheat plants with or without wheat spike, they used linear regres-
sion to estimate the LWC of vertical distribution of wheat based on
the VIs, and found that the middle layer of the plant had the high-
est LWC, with a linear relationship with the upper and lower LWC
[106]. It was also found that wheat spikes reduced the accuracy of
LWC prediction based on spectral data, which affects mainly NIR-
SWIR. Most studies of LWC are performed at the whole-leaf or
canopy level. The common ground hyperspectral imaging technol-
ogy involves a small area in a single shot, limiting the application
of hyperspectral imaging technology at the regional level. To over-
come this problem, a combination of ground-based hyperspec-
trometers and satellite spectral response functions can be
considered [107].

Although satellite remote sensing observation technology has
been shown to be effective for monitoring plant water content
and water stress status in real time, its relatively coarse spatial res-
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olution limits the scale of obtaining plant water indicators, and
there are complex steps in acquiring and processing data. In con-
trast to satellite remote sensing, small imaging sensors carried by
UAVs can acquire plant data in real time with high resolution,
and can hover in the proximal end for fine sampling of the area
of interest. Because the band with strong correlation with LWC is
the infrared band, the best vegetation index for predicting LWC
can be derived by using the red edge and near-infrared channels
of the multispectral camera [109]. The multispectral imaging sen-
sor carried by UAV is thus widely used to monitor vegetation mois-
ture status in real time. When plants are subjected to water stress,
stomata will be closed to reduce transpiration, thereby increasing
leaf temperature. Because thermal imaging technology reveals
plant canopy temperature and other parameters, it is considered
an effective tool for monitoring plant water status [110]. Mwinuka
et al. [111] imaged eggplant canopy through a thermal imaging
sensor and multi-spectral camera carried by a UAV, and found that
CWSI, NDVI, and optimized soil adjusted vegetation index (OSAVI)
showed good correlation with leaf moisture content.

Given that the sensitive spectral band of leaf water is in the
infrared region, infrared spectrometers are also widely used in
research on LWC [62,112,113]. Some new imaging technologies
are also gradually being applied to the measurement of LWC, such
as THz-QCL and NC-RUS [114] (Fig. S2B). When THz-QCL is used to
estimate LWC, THz-QCL can be used to estimate s, and a RGB image
of the leaf can be used to estimate LA. Linear regression reliably

predicts LWC based on s�LA [115] (Fig. S2E). The difference of
THz-QCL radiation absorption of plant leaves at different frequen-
cies can also be used to determine the thickness of the leaf water
layer and then the RWC of leaves [116] (Fig. S2F). Cecilia et al.
[117] used a new type of leaf water meter to measure the dehydra-
tion level of the leaf, and found a negative linear correlation
between dehydration level and RWC. Details of imaging technolo-
gies and data processing methods are listed in Table 2, and Fig. S2
shows a representative of the current research status of LWC
estimation.

3.4. Chlorophyll content

Plants contain a variety of leaf pigments. Chlorophyll is the
main pigment used by green plants for photosynthesis. Photosyn-
thesis of plants is divided into three parts: (1) light energy absorp-
tion, transmission, and conversion; (2) electron transfer and
photophosphorylation; and (3) carbon assimilation. Because
chlorophyll mediates the light absorption part, leaf chlorophyll
content (LCC) affects the photosynthetic reaction rate, the synthe-
sis of organic compounds and ultimately the biomass of plants
[118]. Usually, LCC presents a downward trend under stress such
as drought and salinity, so monitoring of it can indicate plant
health status [119]. Various imaging sensors, data analysis, and
modeling techniques for LCC are detailed in Table S5.

Table 2
Typical modern imaging technologies and data processing methods in LWC estimation.

Plants Sensors Data analysis Models Reference

Grape Hyperspectral imaging VIs, reflectance OLSR; FLR Rodríguez-Pérez
et al. [98]

Three data sets Hyperspectral imaging SAC–SWI Linear regression Fang et al. [99]
Camphor trees, etc. Hyperspectral imaging VIs Linear regression Li et al. [100]
Winter wheat Hyperspectral imaging CA, x-Lw; VIs PLSR, RFR, ERT, KNN, Linear regression Zhang et al.

[101]
Wheat Phenotyping platform

(hyperspectral cameras)
Pre-processing; regression
coefficient, feature selection

PLSR, PCR, MLR, SVM, RF Bruning et al.
[102]

Corn RGB, hyperspectral imaging – (1) RGB images: daily water consumption, WUE(2)
Leaf reflectance + PLSR: LWC

Ge et al. [103]

Forest Airborne
hyperspectral + LiDAR

Spectral information, canopy cover INFORM model Zhu et al. [104]

Lettuce Hyperspectral imaging VIs Nonlinear model, OLSR Murphy et al.
[105]

Wheat Hyperspectral imaging VIs Linear regression Kong et al. [106]
Winter wheat Hyperspectral imaging VIs Linear, exponential, etc. Jin et al. [107]
Corn UAV + multispectral camera VIs RFR, SVR, DTR, ANN, PLSR Ndlovu et al.

[108]
Corn Multispectral camera – BPNN (L-M theory improvement) Peng et al. [109]
Sugar cane Thermal sensor – Image processing + Thermal imaging Watanabe et al.

[110]
Eggplant Thermal imaging;

UAV + multispectral imaging
CWSI, VIs ANOVA Mwinuka et al.

[111]
Olive tree Portable NIR spectrometer PCA; SNV, DT, FD MPLS Torres et al.

[112]
Various plants Infrared spectroscopy Iteration PLSR; PLSRred Buitrago et al.

[62]
Miscanthus Near infrared spectroscopy WT, normalization, MSC, etc. PLS, lin_LSSVR, RBF_LSSVR, RBF_NN Jin et al. [113]
Viburnum tinus NC–RUS – CNN, RF Fariñas et al.

[114]
Quercus ilex L., etc. THz-QCL + RGB camera s�LA Linear regression Pagano et al.

[115]
Grape, etc. THz radiation – Differential absorption characteristics of THz

radiation at multiple frequencies
Li et al. [116]

Maple trees, etc. Leaf water meter – Linear regression Cecilia et al.
[117]

Note: OLSR, ordinary least squares regression; FLR, functional linear regression; SAC, spectral angle cosine; SWI, spectral similarity water indices; CA, correlation coefficient
method; x-Lw, x-Loading weight; RFR, random forest regression; ERT, extreme random trees; PCR, principal component regression; WUE, water use efficiency; DTR, decision
tree regression; BP, back propagation; L-M, Levenberg-Marquardt; ANOVA, Analysis of variance; PCA, principal component analysis; SNV, standard normal variate transform;
DT, detrending; MPLS, modified partial least squares; MSC, multiplicative scatter correction; LSSVR, least squares support vector machine regression; RBF, radial basis
function; NN, neural network; NC–RUS, non-contact resonant ultrasound spectroscopy; THz-QCL, terahertz quantum cascade lasers; s, leaf optical depth; LA, leaf surface area.
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Conventional methods for measuring LCC include spectropho-
tometry and chlorophyll meter. Spectrophotometry requires grind-
ing, filtering, and adding organic solvent to the leaves, followed by
measurement of the absorbance of chlorophyll in a specific wave-
length range. The method is destructive, complex, and inefficient.
SPAD-502 (Konica Minolta, Japan) is a commonly used chlorophyll
meter. It can accurately obtain the SPAD value representing the rel-
ative LCC by measuring leaf absorbance at 650 and 940 nm. How-
ever, the SPAD meter can measure only at a certain point on leaves.
To obtain a representative SPAD value of leaves, it is necessary to
measure at different points of leaves and calculate the average
value. The conventional methods are inefficient and the application
environment is limited, whereas modern imaging instruments can
accurately, quickly, and nondestructively estimate plant chloro-
phyll content at multiple scales [120]. Using RGB images, estima-
tion of plant chlorophyll content by SVM, PLSR, ridge regression,
and other methods has been shown [121] to be a simple and reli-
able method based on various color features extracted from
images. Among these researches, in view of the diversity in plant
phenotype traits viewed from different angles, Zhang et al. [122]
used a phenotyping platform equipped with a charge coupled
device (CCD) camera to perform multi-angle imaging on a single
Duspan willow seedling, increasing the estimation accuracy of
the best ridge regression model and realizing the visualization of
the distribution of chlorophyll content. Considering the influence
of light environment on imaging effect, optical devices can be set
to ensure stable light conditions, so as to improve the accuracy
of LCC estimation [123].

In addition to the estimation of LCC using image information
obtained by visible light camera, one-dimensional spectral infor-
mation is also widely used in the determination of chlorophyll con-
tent. Building prediction models based on spectral information is
one of the most common methods. The spectral information
obtained by hyperspectral imaging technology is comprehensive
and rich, but there are problems such as noise and spectral baseline
shift. Spectral preprocessing can solve this problem. Feature band
extraction algorithms can remove spectral bands with low correla-
tion with LCC and highlight spectral bands that are highly corre-
lated with LCC. These two methods improve the prediction
performance of the model [124]. The second-derivative-partial
least squares regression (2-Der-PLSR) model [125] based on the
optimal wavelength has achieved outstanding results in estimating
the content of chlorophyll a and b and carotenoids in tea. The
chlorophyll content prediction model based on the spectral band
data related to chlorophyll content is vulnerable to influence by
external factors such as soil, light, and leaf structure, but VIs
obtained by combining two or more corresponding spectral bands
by differencing, normalization, and other methods can effectively
eliminate these impacts. Chlorophyll prediction based on VIs gives
better performance than prediction based on a single relevant band
[126,127].

The reflectance spectrum of plant leaves reflects not only phys-
iological and biochemical parameters inside the leaves, but also
affected by leaf morphology (such as leaf inclination angle and leaf
surface characteristics). The specular reflectance of leaves with
several tilt angles is considered to be a factor reducing the perfor-
mance of the LCC estimation model of the leaves by some research-
ers. To solve this problem, researchers have used reflectance
difference ratio (MDATT) [128], improved MDATT index (IMDATT)
[129], and other indexes. The LCC linear regression model based on
MDATT and IMDATT is not affected by observation angle or leaf
surface traits.

At the whole-plant level, LCC varies by vertical leaf position,
usually increasing first and then decreasing with the increase of
leaf positions. This is because the leaves in the top layer are not
fully developed, and the photosynthesis of the leaves at the bottom

layer is reduced by the shading effect of the upper layer. Plant yel-
lowing diseases usually first appear in lower leaves and gradually
extend to upper leaves, leading to low chlorophyll in the upper
leaves. For this reason, it is desirable to study the vertical distribu-
tion of plant chlorophyll at the whole-plant level. Wu et al. [130]
used a monitoring device equipped with a hyperspectral radiome-
ter to collect spectral data of corn at multiple tilt angles, estimated
the correlation between each vegetation index and the SPAD value
of each layer of leaves in the vertical direction, and identified the
optimal monitoring angle of LCC of each leaf layer at different
growth stages.

Commonly used imaging technologies for LCC measurement,
such as RGB camera and spectral imaging technology, are based
on 2D image information and one-dimensional spectral informa-
tion to establish the estimation model of LCC. Because a single
plant has complex and diverse 3D morphology, more accurate
and reliable phenotypic information can be obtained by use of
3D point clouds. However, conventional 3D point clouds of plants
include only color and coordinate information, LCC cannot be effec-
tively attained based on superior VIs. Using RGB, depth, and multi-
spectral images of plants at multiple angles, Sun et al. [131]
constructed a multispectral 3D point cloud of tomato plants using
Fourier transform and ICP registration, obtained VIs from the point
cloud, and established a prediction model for leaf SPAD value, and
quantified the spatial distribution of SPAD values of a tomato plant
canopy. Remote sensing technology can monitor plant chlorophyll
content and its changes in a wide range of time and space. It has
higher throughput and flexibility than ground-proximity imaging
technology. Commonly used remote sensing technologies in esti-
mating plant chlorophyll content include satellite remote sensing
and UAV remote sensing. Multispectral data from Sentinel-2 com-
bined with a PLSR model has been used to evaluate various chloro-
phyll contents in a forest canopy [132]. Sentinel-2 multispectral
data has high spatial and temporal resolution, which can provide
long-term and continuous spectral information about a plant
canopy. UAV platforms can carry a variety of imaging sensors (hy-
perspectral camera [133,134], RGB camera [136], and multispectral
camera [135,136]), affording high flexibility, low cost, and versatil-
ity. With a UAV platform, a linear model based on NDVI [135,136]
and renormalized difference vegetation index (RDVI) [136]
achieves satisfactory prediction of chlorophyll content.

Chlorophyll content information can be captured by chlorophyll
fluorescence signals. A modern imaging sensor for measuring
chlorophyll fluorescence information is based on pulse amplitude
modulation (PAM), which employs modulation and pulse technol-
ogy. Commonly used instruments are PAM-2000/PAM-2100,
IMAGING-PAM, and DUAL-PAM-100. They can acquire chlorophyll
fluorescence information in a light environment and measure pho-
tochemical and non-photochemical quenching. For this reason, flu-
orescence imaging is also widely used in chlorophyll content
estimation [137]. In comparison with data from a single sensor,
the chlorophyll prediction model based on combined data from
multiple imaging sensors was better [138], and inclusion of the
day after sowing and specific leaf weight in image-based models
further improved chlorophyll prediction accuracy.

3.5. N, P, K content

N, P and K influence plant growth and physiological metabo-
lism. N is a major component of chlorophyll and other compounds.
When plants are short of nitrogen, photosynthesis of plants will be
weakened, leading to yellowing of plant leaves and reduction of
photosynthetic products and reducing yield and quality. The defi-
ciency of P will lead to slowed or stopped plant growth, green
and lusterless leaves, and poor root development. K activates var-
ious enzymes and protein synthesis, maintains cell osmotic poten-
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tial, and acts on gs, supporting plant drought resistance. Its defi-
ciency will lead to yellowing, scorching, necrosis, and abscission
of plant leaves. However, excessive fertilizer application will cause
seedling burning and reduced survival. Overuse of fertilizer causes
environmental pollution, and residues in agricultural and forest
products as well as soils and waterways [139]. To avoid these prob-
lems, it is desirable to optimize the content of N, P and K in plant
leaves (LNC, LPC, LKC) in real time. Table S6 summarizes the imag-
ing sensors and data analysis methods used for various applica-
tions in LNC, LPC, and LKC prediction.

As the main nutrient elements in plant growth, N, P and K are
measured mainly by visual observation and chemical analysis.
Visual observation method is used by trained technicians to judge
LNC, LPC, LKC stress abnormal leaf color. This method requires
them to have professional knowledge, but the leaf color and symp-
tom types are very complex. Moreover, humans are often subjec-
tive in judging the type and degree of stress, which increases the
difficulty in diagnosing the stress of LNC, LPC and LKC. The chem-
ical analysis method requires destructive sampling of leaves, and
the chemical reagents used produce toxic gases and pollute the
environment, with low efficiency, complex operation, destructive-
ness, and other shortcomings. Many studies have shown that some
nutrient elements in leaves are highly correlated with plant photo-
synthesis and chlorophyll content. For this reason, it is more desir-
able to indirectly study LNC of plant through chlorophyll meter
(SPAD-502, etc.), but SPAD can conduct point sampling only on
plant leaves, and chemical analysis and chlorophyll meter can
measure nutrient element content only at the leaf level, with lim-
ited application scope.

Before N, P and K stress can be seen with the naked eye, the
interaction between light and leaves also varies with changes in
LNC, LPC, and LKC, reflected mainly in changes in leaf reflectivity
and transmittance. Exploiting this feature, modern spectral imag-
ing technology has been widely applied to the measurement of
nutrient element content at all scales of plants [140,141]. As men-
tioned above, hyperspectral imaging sensors can acquire a wealth
of information, but there are spectral noise, data redundancy, and
collinearity problems. For this reason, the preprocessing of original
spectral data and the extraction of characteristic bands have been
used in many studies [142–147] to improve the performance and
accuracy of prediction of LNC, LPC, and LKC. Among these studies,
the prediction model is constructed mainly from PLSR, SVR and
MLR [148]. On this basis, researchers have realized visualization

of LNC distribution at the leaf level [142,143] and crown level
[143] (Fig. 5B, D). For leaves with large petioles (such as lettuce),
the K content is higher in petioles than in green leaves [146]. As
with the vegetation index for predicting the chlorophyll content
of leaves, the VIs are formed according to the combination of mul-
tiple bands associated with LNC, LPC and LKC. The nutrient element
content can also be estimated with reasonable accuracy by linear
regression based on VIs containing more spectral information
[149–152]. Li et al. [152] also investigated the effect of LAI and
chlorophyll, N, and K content, and other parameters on the P esti-
mation model. Because wheat leaves are too narrow to fully cover
the measuring points of the hyperspectral leaf clip, the measured
spectral data are noisy. To solve this problem, Yang et al. [153]
used a normalization method to correct the spectral reflectance
of the narrow leaves, and estimated the K content in wheat leaves
per unit weight and per unit area respectively using PLSR and RF.
PLSR gave the highest accuracy, the normalized spectrum
improved the accuracy of the model, and the R2 of the per unit area
model was lower than that of the per-unit weight model. The sen-
sitive bands of LKC in rice are in the SWIR region, the dual-band VIs
based on this area effectively predict rice LKC, and a three-band
index with 700 nm and 704 nm (red edge band) added increased
the accuracy and reliability of rice LKC estimation [150]. The above
studies focused on the LNC, LPC, and LKC of plants at the leaf or
near- canopy level. Remote sensing can realize the research at
the level of the plot area. In particular, data with fine spatial and
temporal resolution can be acquired with the UAV platform,
advancing precision agricultural management [154,155].

Phenology affects the reflectivity of plant leaves. The absorption
and reflection of plant leaves at specific wavelengths differ among
growth stages. Plant cell states, canopy structures, and biochemical
functions differ among growth stages. The accuracy of prediction
can be improved by analyzing specific optimal spectral variables
in each growth stage and establishing a prediction model for nutri-
ent element content in corresponding stages [156–158]. Wang
et al. [159] used a hyperspectral camera carried by UAV to obtain
rice canopy reflectance, estimated the LNC, plant nitrogen content
(PNC), and other parameters of rice using five methods, including a
VI-based linear regression model and the PLSR model, and evalu-
ated the impact of growth stage on estimation accuracy, PLSR
and ML performed better in full growth stages. According to the
above research, the prediction model of N, P, and K content based
on various spectral characteristics has become mature and widely

Fig. 5. Some applications of modern imaging technology in N, P, and K content estimation. (A) Spectral measurement of N content at several tilt angles [166]. (B) Nitrate
content distribution in spinach leaves [142]. (C) CH.D distribution map (Reproduced from Shi et al. [167] with permission from Elsevier). (D) N content distribution map of
apple leaves and trees (Reproduced from Ye et al. [143] with permission from Springer Nature). (E) Spatial distribution of LNC in wheat at plot level [161].
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used in modern agricultural management. It appeared that VIs
could be susceptible to the impact of background, canopy struc-
ture, etc., and lacked wide applicability to varying growth stages.
When canopy density is high, prediction models of physiological
and biochemical parameters based on spectral characteristics tend
to be saturated, reducing the reliability of the model. Plant leaves
have varying proportions of N, P and K, which will affect the color,
roughness and other characteristics of the leaves. Texture features
can reflect the spatial distribution of image color or brightness.
Thus, texture features can increase the sensitivity of image data
to N, P and K content, thus improving the accuracy and stability
of the prediction model [160,161] (Fig. 5E). In addition to consider-
ing texture features, some researchers have also studied the impact
of ecological factor [162], sampling season and sampling location
[163] on the prediction model of nutrient contents in plant leaves.
These factors further optimized the model performance.

The quality of images and spectral data is greatly affected by
light conditions. Owing to leaf occlusion and light incidence angle,
the solar radiation received by canopy leaves is uneven, leading to
sunlit and shaded leaves. Most studies ignore shaded leaves and
focus on sunlit leaves, and elements such as N are closely associ-
ated with photosynthesis. Often N is mobilized to upper leaves
with higher photosynthetic rate, giving rise to higher N content
than in lower leaves. For the same reason, symptoms associated
with N deficiency occur in lower leaves first. Jiang et al. [164] stud-
ied winter wheat LNC using a near-ground hyperspectral imaging
system, evaluating spectral indices (SIs), textural indices (TIs),
and spectral and textural indices (STIs) of the whole images, all
leaves, sunlit leaves, and shaded leaves. The linear regression
model based on the STIs index of all leaves was the best, showing
that texture features could improve the performance of LNC pre-
diction models. The vertical distribution of LNC in winter rape
was studied using a hyperspectral radiometer, which showed that
it decreased from top to bottom. Characteristic bands were
extracted based on the original spectrum and first derivative
reflectance (FDR), and LNC regression models for each layer were
established. The FDR-PLS model and SVM-FDR model were supe-
rior [165]. Most studies obtain spectral data only from a vertical
angle. To optimize the richness and reliability of spectral data col-
lection and study the correlation between multi angle spectral data
and LNC, Li et al. [166] measured the multi-angle spectral reflec-
tance of winter wheat leaves using a Vis/NIR spectral imager, and
found that LNC showed the highest correlation with 0� spectral
reflectance. The accuracy of the LNC estimation model established
by multi-angle composite vegetation index (MACVI) based on con-
ventional VIs and multi-angle spectral data has been improved
(Fig. 5A).

As mentioned above, LNC is highly correlated with chlorophyll
content, and leaf chlorophyll content can be estimated based on
hyperspectral data, thus indirectly revealing the content of each
nutrient element. A diagnostic model of N/Mg/K deficiency was
established according to the leaf chlorophyll distribution for timely
fertilization management [167] (Fig. 5C). It is a reliable method to
estimate LCC based on color features acquired from RGB images
[168]. However, in contrast to spectral imaging technology, visible
light cameras acquire only three channels of R, G, and B, and
because the range of wavelengths acquired is relatively small, it
is rarely used for estimation of nutrient content. Different plants
and different growth stages of the same plant have different spec-
tral sensitivity to certain nutrients, reducing the universality of the
model. Chlorophyll fluorescence technology can overcome this
shortcoming and produce different fluorescence intensities under
different nutrient stresses. Researchers have used laser-induced
fluorescence (LIF) systems [169,170] and chlorophyll fluorometers
[171] to estimate fluorescence parameters of leaves and establish
estimation models of LNC and LPC. The combination of multiple

sensors can collect more abundant multivariate data, and obtain
color features, spectral features, canopy structure and other infor-
mation from image, spectral and depth data. Combining these data
can further optimize model performance [172,173]. Fig. 5 shows
representative applications in LNC, LPC, and LKC estimation.

4. Outlook

In recent years, imaging sensor technologies for plant pheno-
typing have emerged and advanced rapidly, but still face problems
and limitations. Here are some prospects for addressing these
problems.

4.1. Multi-sensor fusion

Existing phenotypic information collection systems can mea-
sure only single or a few phenotypic data, while external factors
such as global climate change make plant phenotypes more com-
plex and diverse. For developing crop varieties with resistance to
drought, waterlogging, disease, and insects as well as salt, alkalin-
ity, and other stresses, it is necessary to combine multiple kinds of
phenotypic information. Multi-sensor fusion can be achieved using
a phenotypic information collection system to complete parallel
measurement of multiple phenotyping information. At present,
most of the fusion achieved in plant phenotyping research is at
the data level. There is less research on feature-level fusion and
decision-level fusion. Much data have yet to be fully mined. Fused
multi-sensors used by most researchers are similar and have limi-
tations (such as visible image and depth information fusion).
Future multi-sensor fusion technology needs to continue to move
towards feature fusion and decision fusion, and continue to explore
the fusion of multiple types of sensors (such as spectrum and
LiDAR fusion, and chlorophyll fluorescence and depth information
fusion), so as to provide technical and information support for
determining more accurate plant breeding strategies.

4.2. Optimization of data processing methods

With the continuous enrichment of data collected by plant phe-
notype information monitoring systems, the demands for process-
ing of phenotypic data will also increase drastically, including
image processing, feature extraction and model building. Optical
sensors are readily affected by the light environment, and an
unstable light environment will reduce the accuracy of acquired
images and spectral information. It is desirable to improve the
accuracy and efficiency of phenotypic data processing, as well as
flexibility when light and background changes. Optimization of
phenotypic data processing requires a combination of multidisci-
plinary knowledge. The establishment of a multidisciplinary team
of experts and decision support system can lead to real-time high-
throughput monitoring of phenotypic information and high-
precision and efficient phenotypic data processing.

4.3. Unification of phenotype monitoring system application standards

One limiting factor for some existing portable leaf-monitoring
devices is their weak ability to gather as much data per leaf as pos-
sible because of the inter-leaf water and nutrient distribution vari-
ances. Besides, the development and application standards of
many plant phenotype monitoring systems are applicable only to
themselves. There are no unified development and application
standards among the systems, reducing their universality. It is
desirable to specify the development and application technical
standards of plant phenotype monitoring system in detail.
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4.4. Development of new flexible sensors

The measurement accuracy of most conventional imaging sen-
sors is readily affected by the imaging environment (light, temper-
ature, humidity), and unfavorable weather (rain, snow) will limit
the outdoor use of conventional imaging sensors. Some imaging
sensors are bulky and not easy to carry. New flexible sensors
should be applied to leaf phenotype monitoring to achieve flexible,
multi-functional and continuous acquisition of leaf phenotype
information. For example, wearable sensors with the advantages
of lightweight, high elasticity can meet the needs of long-time con-
tinuous monitoring of plant leaf traits, and have received much
attention. As a new type of flexible material, hydrogel has excellent
mechanical properties, high flexibility, good fit with leaf surface,
and high biocompatibility, and is expected to become a platform
for a new generation of wearable sensors.

4.5. Phenotype research of multiple organs and multiple levels

In the whole growth cycle of plants, leaves are important organs
with long residence time, sensitive and strong response. The leaf
phenotype can be used to evaluate plant growth status of plants.
Multi-scale spatial and temporal phenotyping has revealed that
leaf growth changes at a given scale cannot be directly inferred
from a lower scale or easily scaled up to the whole-plant level.
However, roots and stems are crucial in plant nutrition transmis-
sion, transpiration, and other processes. Flowers, fruits, seeds and
other organs play a decisive role in the specific growth stage of
plants, for example, plants reproduce through flowers. Combining
plant genomics and cytology to deeply study plant phenomics,
the internal causes of plant phenotypes can be illuminated. Study-
ing plant phenotypes from the perspective of multiple organs and
multiple levels would lead to more comprehensive and accurate
analysis of plant growth status.

4.6. Forest phenotype research

Existing plant leaf phenotypic information analysis technology
is used mostly for crop phenotypic analysis. Compared with crops,
trees are characterized by large height, large numbers of leaves,
and long growth cycle. It is more challenging to obtain complete
and accurate leaf phenotypic information for trees. The shape
and characteristics of the leaves of coniferous forest species further
increase the difficulty of collecting phenotypic information. The
measurement of leaf angular distribution for trees with large and
curvy leaves could be very time-consuming, if not impossible
[174]. However, forests have high ecological and economic value.
It is desirable to increase research on phenotyping of forest trees,
break through the research bottleneck of coniferous species, and
develop phenotype monitoring systems suitable for forests with
the aim of selecting and cultivating excellent tree varieties.

4.7. Accurate identification of stress with similar symptoms

Plants are faced with various biological stresses (diseases, insect
pests) and abiotic stresses (drought, salt stress, high temperature
stress). One major problem of applying images for pathogen infec-
tion is that, in the field, several disorders can occur, including other
diseases, nutrition and water problems. Because these problems
usually produce similar effects in multispectral images, in general
it is not possible to pinpoint their cause using a single method, and
rather it is possible only to infer that there is something wrong. The
limitations can be targeted in future research by collecting com-
prehensive information such as plant images, spectra, temperature,
and gas molecule release intensity and rate. Machine learning—the
science of programming computers so they can learn from data—

has been applied to identifying specific stress types from observed
phenotypes.

5. Conclusions

The development of imaging sensor technologies has advanced
plant leaf trait phenotyping. The key advantages of image-based
methods include high throughput, high efficiency, high accuracy,
and non-destructiveness, overcoming the shortcomings of conven-
tional measurement methods.

Plant leaf morphological traits are generally acquired with
visible-light cameras, while physiological and biochemical traits
are usually acquired via spectral imaging technology. Thermal
imaging is frequently used for stomatal conductance and water
content parameters associated with drought stress. Spectral imag-
ing technology offers abundant data and high efficiency, but it is
expensive, redundant and complex to process, and especially when
it is acquired by a UAV, complex offline processing of data is
required. Visible light imaging technology has the advantages of
low cost and simple data processing, but its low spectral resolution
has limited its use in the analysis of leaf physiological and bio-
chemical parameters. Other modern imaging technologies, such
as CT, OCT, and terahertz imaging, are superior in efficiency and
accuracy, but their high cost prevents their widespread use.
Multi-sensor fusion technology can combine the advantages of var-
ious imaging technologies for leaf trait estimation. As the cost of
imaging sensors continues to decline, sensor combination is antic-
ipated to play a more important role in leaf phenotyping.

Data processing technology involves image processing, data
analysis, and model building. Image processing can be divided into
2D and 3D. Image processing in 2D includes ROI extraction, noise
removal, and image segmentation. Image processing in 3D includes
3D point cloud reconstruction and point cloud clustering and seg-
mentation. Data analysis includes correlation analysis, spectral
data preprocessing, and feature band extraction. The most com-
monly used statistical analyses are ANOVA and Pearson correlation
analysis. Spectral data preprocessing methods include normaliza-
tion, differentiation, SNV, and savitzky-golay smoothing (SG).
Because feature band extraction is based on the contribution of
bands to the prediction of phenotypic parameters, it is related to
correlation analysis. PLSR, SVR, RF, and MLR are commonly used
in model building.
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