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Crop yields need to be improved in a sustainable manner 
to meet the expected worldwide increase in population 

over the coming decades as well as the effects of anticipated 
climate change. Recently, genomics-assisted breeding has 
become a popular approach to food security; in this regard, 
the crop breeding community must better link the rela-
tionships between the phenotype and the genotype. While 
high-throughput genotyping is feasible at a low cost, high-
throughput crop phenotyping methods and data analytical 
capacities need to be improved.

High-throughput phenotyping offers a powerful way to 
assess particular phenotypes in large-scale experiments, 
using high-tech sensors, advanced robotics, and image-
processing systems to monitor and quantify plants in 
breeding nurseries and field experiments at multiple scales. 
In addition, new bioinformatics platforms are able to em-
brace large-scale, multidimensional phenotypic datasets. 
Through the combined analysis of phenotyping and geno-
typing data, environmental responses and gene functions 
can now be dissected at unprecedented resolution. This will 

aid in finding solutions to currently limited and incremen-
tal improvements in crop yields. 

BACKGROUND
Worldwide demand for food will increase through 2050 
and beyond due to the increasing global human popula-
tion. This represents a huge challenge to crop researchers 
and agricultural policymakers because current yield gain 
rates will not be sufficient for the demands of population 
growth, while climate change will make the difficulty even 
greater. Today’s DNA sequencing, marker-assisted breed-
ing, transgenic technology, genome-wide association study 
(GWAS) approaches, and quantitative trait loci (QTL) iden-
tification have been applied, to a limited extent, to improve 
crop yields [1]–[4].

While it is now relatively easy to select for monogenic 
traits, current genome sequence datasets have not been 
sufficiently mined for more genetically complex (multi-
genic) performance characteristics, at least in part because 
of the lack of crop phenotypic information collected from 
real-world field situations. Furthermore, traditional crop 
growth analysis often involves destructive sampling that 
is time-consuming and prone to measurement error. At 
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present, the lack of traits amenable to high-throughput 
analysis restricts our ability to more thoroughly explore the 
quantitative genetic basis of complex characteristics corre-
lated to crop’s growth status, yield, and adaptation to en-
vironmental stress conditions. Thus, high-throughput phe-
notyping methods need to evolve to match the advances 
achieved in genotyping technologies.

The relatively recent availability of high-throughput 
crop phenotyping methods has influenced developments 
in crop selection and improvement [5], [6], and previous 
reviews have presented new opportunities for using ground 
and aerial phenotyping platforms that carry different sen-
sors [7], [8]. Compared with other recent publications, this 
article comprehensively introduces recent applications of 
high-throughput ground and aerial phenotyping platforms 
for the measurement of crop phenotyping traits in the field. 
It demonstrates how high-throughput crop phenotyping 
can benefit breeders and agronomists and help narrow the 
genome–phenome gap. In particular, it discusses the dis-
advantages and advantages of different sensors and their 
applications and analyzes how to quickly and effectively 
estimate crop traits using ground and aerial phenotyping 
platforms.

CROP PHENOTYPING
Phenotyping has been an important part of crop and elite-
variety selection since humans found the best traits of plant 
species for domestication [9]. The term phenotyping does not 
have a completely clear-cut definition [10]. Phenotyping has 
been described as the use of protocols and methodologies 
to obtain a particular trait linked to plant functions and 
structures, with characteristics ranging from cells to whole 
plant levels [11]. An individual genotype represents all ge-
netic characteristics, whereas a phenotype may include 
selected measured or all conceivable characteristics [12]. 
A complicated interaction between environmental condi-
tions and genotypes leads to the phenotypic performance 
of crops [13]. One genotype can express various phenotypes 
due to plasticity in response to the environmental condi-
tions in which plants grow. Thus, crop performance as an 
expression of genetic background requires an exploration 
of the relationship between phenotypes and genetics [14].

A common approach in crop breeding is to select the 
best genotype based on a phenotypic expression under vari-
ous environmental conditions [15], [16]. Some traits (Table 
1) considered in the field are green-area indexes (GAIs)  
[17]–[27], chlorophyll content [17], [18], [25], [27]–[33], ni-
trogen content [8], [17], [27], [29], [34]–[38], plant density 
at emergence [39]–[45], ear density [46]–[52], grain number 
and size [53]–[56], fraction of absorbed photosynthetically 
active radiation (FAPAR) [57]–[61], staygreen/senescence 
[62]–[66], crop dynamics monitoring [19], [67]–[73], phe-
nology (e.g., at anthesis) [74]–[90], canopy coverage [62], 
[91]–[97], plant diseases and pests [8], [98]–[106], canopy 
height [107]–[112], canopy temperature [113]–[123], leaf 
rolling [124]–[126], leaf angle [112], [127]–[130], leaf wilting 

[131]–[133], lodging [134]–[145], chlorophyll fluorescence 
[6], [146]–[153], photosynthetic status [152], [154]–[160], 
biomass [23], [24], [107], [161]–[171], water content [114], 
[150], [172]–[179], grain quality [180]–[188], water use ef-
ficiency [168], [189]–[196], canopy structure [112], [197]–
[204], weed infestation [41], [205]–[210], light use efficiency 
[211]–[218], nitrogen use efficiency [219]–[226], nitrogen 
nutrition index [227]–[233], and yield [170], [234]–[245].

Crop phenotyping aims to accurately and precisely ob-
tain traits linked to crop growth status, yield, and resilience 
to environmental stress, at various scales ranging from cell 
to canopy [11]. To achieve this goal, scientists and engineers 
from crop breeding, electronic engineering, molecular biol-
ogy, computer image processing, mathematics and statis-
tics, and agronomy cooperate to develop high-throughput 
crop phenotyping platforms that are operational in the 
field. These crop phenotyping platforms use combinations 
of unmanned aerial vehicles (UAVs), robotics, remotely 
controlled systems, and image-processing and analysis 
technology to monitor crops’ growth status and perfor-
mance. Current field crop phenotyping platforms will con-
tinue to be developed for the simultaneous evaluation of 
multiple crop phenotyping traits for numerous plant spe-
cies at various scales.

SENSOR DEVELOPMENT FOR FIELD  
PHENOTYPING TRAITS
Enablers of the monitoring of crop phenotyping traits in the 
field include rapidly developing sensor technologies, includ-
ing red–green–blue (RGB), multispectral, hyperspectral, and 
thermal cameras; photosynthesis and fluorescence sensors; 
stereo cameras; and lidar devices. These sensors are usually 
divided into leaf-level, near-canopy, and airborne sensors, 
based on their application scale for crop phenotyping traits. 
In general, RGB, multispectral, and hyperspectral technolo-
gies and thermal cameras are airborne sensors, while photo-
synthesis and fluorescence sensors are leaf-level instruments 
and stereo cameras and lidar are near-canopy devices.

LEAF-LEVEL SENSORS

PHOTOSYNTHESIS SENSORS
Photosynthesis sensors are passive instruments used in 
the visible spectral region to measure the response of a 
crop photosynthesis status to different stress treatments 
[154]. This technology has been widely used in physiologi-
cal and ecological studies [152], [159]. Photosynthesis sen-
sors can be used to study the response of crop photosyn-
thesis under different environmental conditions to better 
understand crop photosynthetic adaptation mechanisms 
[154]. As an example, the LI-COR 6400 is an open system, 
which means that transpiration and photosynthesis esti-
mations are based on the differences in water ( )H O2  and 
carbon dioxide ( )CO2  in an air stream flowing through 
the leaf cuvette [155]. The net photosynthesis is computed 
using (1) [246]
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TABLE 1. SENSORS FOR ESTIMATING CROP PHENOTYPING TRAITS UNDER FIELD CONDITIONS, WITH THE LEVEL OF POTENTIAL 
APPLICATION.

SENSOR
POTENTIAL  

APPLICATION LEVEL

REFERENCE
PHENOTYPING 
TRAITS RGB

MULTI/ 
HYPERSPECTRAL THERMAL PHOTOSYNTHESIS FLUORESCENCE STEREO LIDAR 1 2 3 4 5 6 7 8 9 10

GAI [17]–[27]

Chlorophyll 
content

[17], [18], [25], 
[27]–[33]

Nitrogen 
content

[8], [17], [27], 
[29], [34]–[38]

Plant density 
at emergence

[39]–[45]

Ear density [46]–[52]

Grain number 
and size

[53]–[56]

FAPAR [57]–[61]

Staygreen/
senescence

[62]–[66]

Crop dynamic 
monitoring

[19], [67]–[73]

Phenology 
(e.g., anthe-
sis)

[74]–[90]

Canopy  
coverage

[62], [91]–[97]

Plant diseases 
and pests

[8], [98]–[106]

Canopy height [107]–[112]

Canopy  
temperature

[113]–[123]

Leaf rolling [124]–[126]

Leaf angle [112],  
[127]–[130]

Leaf wilting [131]–[133]

Lodging [134]–[145]

Chlorophyll 
fluorescence

[6], [146]–
[153]

Photosyn-
thetic status

[152], [154]–
[160]

Biomass [23], [24], [107], 
[161]–[171]

Water content [114], [150],  
[172]–[179]

Grain quality [180]–[188]

Water use 
efficiency

[168], [189]–
[196]

Canopy  
structure

[112], [197]–
[204]

Weed  
infestation

[41], [205]–
[210]

Light use  
efficiency

[211]–[218]

Nitrogen use 
efficiency

[219]–[226]

Nitrogen  
nutrition 
index

[227]–[233]

Yield [170], [234]–
[245]
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 ,sa u c u ci i o o= -  (1)

where s is the leaf area ( ),m2  a is the assimilation rate 
( ),mol CO m s2

2 1- -  co  and ci  are the outgoing and incom-
ing mole fractions of the CO2  ( ),mol CO m air2

2 1- -  and uo  
and ui  are the incoming and outgoing flow rates ( ).mol s 1-  
The transpiration is obtained using (2) [246]

 ,sE u w u w sE uo o i i == -  (2)

where E is the transpiration rate ( )mol m s2 1- -  and wo  and 
wi  are the outgoing and incoming water mole fractions 
( ).mol H O mol air2

1-

The LI-COR 6400 contains a computing and storage 
section; an infrared CO2  analyzer; and temperature, hu-
midity, and light sensors. The moisture and CO2  of the LI-
COR 6400 instrument should be cleared and checked to 
obtain a value equal to zero to calibrate the sensor before 
measuring crop leaves [157]. Figure 1(e) shows an example 
of cotton measured from an LI-COR 6400 instrument. The 
exported calculated parameters include the photosynthetic 
rate, conductance to ,H O2  intercellular CO2  concentration, 
transpiration rate, and so forth [158]. These parameters can 

be used to carry out studies of crop growth analyses, gas 
exchanges, and stable isotope examinations [159]. At pres-
ent, photosynthesis sensors do not provide any images and 
cannot be combined with ground and aerial imaging plat-
forms [156]. The specific model, sensor parameters, details, 
estimated phenotyping traits, imaging environment, and 
limitations of the photosynthesis sensor are summarized 
in Table 2. New technologies will be required for rapid, 
image-based photosynthesis sensors to better explore the 
response of crop photosynthesis to environmental changes 
in the future.

FLUORESCENCE SENSORS
Fluorescence sensors are passive or active in the ultravio-
let, visible, and near-infrared spectral regions, which are 
sensitive to fluorescence signals [153]. They are commonly 
used to detect the resilience of the crop metabolic status 
in stressed environments [147]. The fluorescence sensor 
provides an image for exploring the spatial patterns of the 
leaf photosynthetic status [151] and for the early detec-
tion of crop stress symptoms, as influenced by diseases 
and pests [98]. Fluorescence is light that is emitted in the 
ultraviolet, visible, and near-infrared spectral wavelengths 

FIGURE 1. Example images from different sensors, including (a) an RGB camera, (b) a multispectral camera, (c) a hyperspectral camera, (d) 
a thermal camera, (e) a photosynthesis sensor, (f) a fluorescence sensor, (g) a stereo camera [254], and (h) lidar.

Blue Red Red Edge

Green Near Infrared

(a) (b) (c)

(d) (e)

(g) (h)

(f)

Left Right
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during radiation absorption [148]. Irradiating chloroplasts 
with actinic or blue light will produce some reemission of 
absorbed light by chlorophyll [149]. Compared with inci-
dent radiation, the fraction of reemission light is variable 
and relies on the crop’s ability to convert harvested light 
to metabolic activity [247]. The reemitted light is termed 
fluorescence, and it is a good indicator of a crop’s capacity to 
assimilate actinic light [247].

Furthermore, the combination of actinic light and brief, 
saturating blue pulses can be used to measure the efficien-
cy of photoassimilation, nonphotochemical quenching, 
and other physiological crop parameters [247]. Fluores-
cence sensors use a charge-coupled-device camera that is 
very sensitive to fluorescence signals, where fluorescence 
signals occur by illuminating crops with ultraviolet or vis-
ible light using pulsed lasers, pulsed flashlight lamps, or 
light-emitting diodes [150]. The image pixel value of the 
fluorescence indicators is presented by a false color code 
ranging from zero to one [248]. Ultraviolet illumination 
produces two kinds of fluorescence, that is, blue-to-green 
and red-to-far-red regions, which is the principle of multi-
color fluorescence images [248]. This method can capture 
the simultaneous fluorescence emission from four spectral 
bands [blue (440 nm, F440), green (520 nm, F520), red 
(690 nm, F690), and far-red (740 nm, F740)] by excitation 
with a single wavelength [249]. The fluorescence sensor 
does not need to be calibrated before measuring crops, but 
it is better used under uniform illumination conditions to 
reduce the effect of the light source on the measurement 
results [250].

Figure 1(f) presents an example of soybeans provided 
through PlantExplorer, and the corresponding exporting 
fluorescence parameters include the initial fluorescence 
( ),Fo  maximum fluorescence ( ),Fm  photosynthetic system 2 
original light-energy conversion efficiency ( ),F /Fv m  photo-
synthetic quantum yield, photochemical-quenching coeffi-
cient, nonphotochemical-quenching coefficient, apparent 
electron transfer rate, and so forth [251]. These parameters 
can be used to carry out studies of crop stress analyses, pho-
tosynthetic functions, and chloroplast content estimations 
[250].

Current fluorescence sensors are focused mainly at the 
leaf scale. Chlorophyll fluorescence at the canopy scale is 
restricted by sensor and background noise, decreasing the 
signal-to-noise ratio [150]. Table 2 contains more infor-
mation about photosynthesis sensor models, parameters, 
phenotype estimation traits, imaging environments, im-
aging techniques, and limitations. Therefore, fluorescence 
sensors are generally not available for integration with 
ground and aerial phenotyping platforms. However, chlo-
rophyll fluorescence sensing on ground phenotyping plat-
forms was used to assess the nitrogen status and biomass of 
wheat, barley, and colza [146], [147], [252]. There is a need 
for further development of fluorescence sensors and pro-
tocols for fluorescence image-based, high-throughput crop 
phenotyping to enhance field applications in the future.

NEAR-CANOPY SENSORS

STEREO CAMERAS
A stereo camera has two or more lenses, with separate imag-
ing sensors for each [167]. Structures are observed in 3D be-
cause of the parallax effect of human eyes [253]. Due to the 
distance between a person’s eyes, the two images formed 
at the fundi are basically similar but slightly different, and 
there is a certain disparity [130]. The brain then computes a 
3D image. Stereo cameras with charge-coupled device chips 
take advantage of the parallax characteristics of both eyes 
[46]. In general, the stereo camera is very similar to the tra-
ditional digital camera but with two or more lenses. Some 
scientists use two identical, unmodified cameras to obtain 
3D images [130], [254].

To maintain the accuracy and stability of a stereo cam-
era, the device should be calibrated during experiments 
[254]. The calibration of a stereo camera is performed as 
follows:
1) The instrument needs to be tuned to obtain internal and 

external parameters and the homographic matrix.
2) The calibration results are used to correct the original 

image so that the two adjusted pictures are located on 
the same plane and parallel to each other.

3) The two corrected images must be matched according to 
the same pixel.

Figure 1(g) provides example rice seed images from a pair of 
cameras (Canon EOS 7D) [254]. The exported data of a ste-
reo camera contain RGB images and a 3D structure [130], 
[254] that can be used to obtain crop growth and develop-
ment information [130].

The model, parameters, estimated phenotypic traits, im-
aging environments, imaging techniques, and limitations 
of the stereo camera are presented in Table 2. The advan-
tage of the stereo camera is that it provides 3D structures 
at a relatively low cost, but the spatial resolution is limited 
and sensitive to variable outdoor illumination conditions 
[247]. These restrictions have become major challenges for 
the stereo camera’s application to crop phenotyping in the 
field. Currently, the stereo camera is used mostly to obtain 
the 3D structure of single plants; with it, estimating cano-
py-level traits in the field remains difficult [130]. Improve-
ments in the stereo camera’s resolution and sensitivity to 
illumination will be needed in the future.

LIDAR
Lidar has an active sensor that determines the distance to 
an object using pulses of laser light in the 600–1,000-nm 
region [129]. Lidar is an Earth-observation technology 
that can directly obtain the 3D coordinates of object sur-
face points through data such as positions, distances, and 
angles, and it realizes the extraction of the surface infor-
mation and the reconstruction of the 3D scene [112]. Lidar 
includes a single-beam narrowband laser and a receiving 
system. The laser generates and emits a light pulse, which 
hits the target object and reflects back to a receiver [199]. 
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The receiver accurately measures the propagation time of 
the light pulse from emission to reflection [112]. Because 
the pulse travels at the speed of light, the receiver always 
obtains a reflected pulse before the next one is sent. Given 
that the speed of light is known, the time of flight can be 
converted into a measurement of distance [200].

The laser itself has a very accurate ranging ability, and its 
ranging accuracy can reach the millimeter level. In general, 
an airborne lidar system integrates three technologies: laser 
scanning, GPS/differential GPS, and an inertial navigation 
system. This combination can locate with high accuracy 
a laser beam spot hitting an object [255]. The principle of 
measuring the ground from a flying carrier concerns the 
“two-way” time measurement method [200]. That is to 
say, we need to record only the time between a laser sig-
nal’s emission and its return. Combined with other data, 
we can accurately calculate the x-, y-, and z-coordinates of 
the ground spot. Lidar does not need to be calibrated, but 
known referenced objects are necessary to accurately ob-
tain crop structure information.

Figure 1(h) shows an example image of sunflowers that 
was acquired with a Sick LMS400. Lidar can provide a 3D 
point cloud to describe the crop canopy structure [129]. The 
point cloud can be used to monitor dynamic crop changes 
during the growing season [197], [200]. Table 2 describes a 
typical lidar model and its parameters, phenotype estimat-
ing traits, imaging environment, imaging techniques, and 
limitations. Compared with other sensors, lidar is less in-
fluenced by environmental conditions, and it has a relative-
ly high estimation accuracy for several crop phenotyping 
traits because it is an active sensor [198]. However, the price 
of lidar is generally higher than that of passive sensors. Li-
dar is sensitive to small differences in the path length, al-
though the data processing is more complex (Table 2). Lidar 
has been integrated with ground and aerial phenotyping 
platforms to estimate crop phenotyping traits [112], [197], 
[200], [220], [255]. However, in the future, the density of 
the achievable 3D point cloud needs to be increased to 
better describe 3D crop structures.

AIRBORNE SENSORS

RGB CAMERAS
RGB cameras record red, green, and blue spectral bands in 
the visible spectral regions [39]. An RGB camera produces 
digital images and can mimic human visible perception to 
obtain information for estimating crop phenotyping traits 
in plant breeding [74]. The most common implementation 
of RGB cameras is based on silicon sensors with charged-
coupled devices or CMOS arrays that are very sensitive to 
visible bands of light and show images in 2D; this is the 
simplest imaging technique for crop phenotyping traits 
[247]. RGB camera images are typically shown in spatial 
matrices of intensity values (from zero to 255) correspond-
ing to photon fluxes in blue, green, and red spectral bands 
of the visible region [46]. To obtain better high-quality RGB 

images, a color calibration plate is commonly used to adjust 
images using algorithms to reduce the effect of different il-
lumination conditions on the photo quality [256], [257].

Figure 1(a) gives an example image of maize taken with 
a Sony Alpha 7 camera. The RGB camera can export im-
ages that include gray value, color, and texture informa-
tion [39]. The applications of RGB cameras for crop pheno-
typing traits are shown in Tables 1 and 2, including GAI, 
plant density, ear density, FAPAR, canopy coverage, canopy 
height, leaf rolling, leaf angle, lodging, and so on, during 
the whole crop growing season. In addition, a typical cam-
era model and its parameters, phenotype estimating traits, 
imaging environment, imaging techniques, and limitations 
are presented in Table 2. RGB cameras have been widely ap-
plied to evaluate crop phenotyping traits in the field to pro-
vide measurements at an affordable price [46], [47], [162], 
[164], [258].

Compared with other sensors, the advantage of the RGB 
camera relates to its affordable price and high-spatial-reso-
lution imagery [237]. However, it remains a huge challenge 
to get good image segmentation results when adjacent plant 
leaves overlap [39]. In addition, the gray values and color 
information are limited to three visual spectral bands. New 
technologies are required to solve these shortcomings and 
improve the application of the RGB camera for crop phe-
notyping trait estimation [7]. Currently, a modified RGB 
camera [the so-called color–infrared (CIR) camera] with 
near-infrared, red, and green bands may be applied to ob-
tain spectral vegetation images when it is radiometrically 
calibrated [259], [260]. The pseudonormalized-difference 
vegetation index (pseudo-NDVI) from a CIR camera has 
been applied for crop phenotyping [7], [258], [261], [262]. 
CIR cameras can be used to obtain high-spatial-resolution 
imagery with a limited number of wide spectral bands at a 
relatively low cost. However, CIR cameras may be unstable, 
and they have a limited application, as they are not de-
signed for precise radiometric measurements [263].

MULTISPECTRAL AND HYPERSPECTRAL CAMERAS
Multispectral and hyperspectral cameras depend on the 
interaction between solar radiation and crops [71]. The re-
flectance of single leaves or canopies is low in the visible 
spectral ranges (400–700 nm) because solar radiation is 
absorbed by leaf pigments (such as chlorophyll), with a 
peak of reflectance in the green spectral region of roughly 
550 nm [45]. The reflectance (so-called red-edge region) 
is sharply increased with the transition from the visible to 
near-infrared spectral region [32]. A large fraction of the 
incident solar radiation is reflected by leaves because of 
scattering within the leaf structure and mesophyll in the 
near infrared (700–1,200 nm) region [24]. Furthermore, 
near-infrared radiation is transmitted from the upper to the 
lower leaves of the canopy, which can reflect solar radiation 
back to the upper section of the leaf cover [168]. Therefore, 
the leaf thickness and growth status as well as the canopy 
architecture primarily influence the reflectance pattern in 
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this spectral region [27]. The reflectance is gradually de-
creased with increasing wavelengths of up to 2,500 nm be-
cause the absorption of solar radiation is increased by the 
water in crop leaves [59].

Multispectral cameras commonly include several spec-
tral bands in the visible and infrared spectral regions [34]. 
Spectral bands are generally sensitive to leaf pigments and 
the leaf and canopy structure [45], [67]. Compared with 
their multispectral counterparts, hyperspectral cameras 
have a higher spectral resolution, with continuous or dis-
crete spectral bands in the visible and infrared spectral re-
gions [17], [264]. Hyperspectral bands are more sensitive to 
small changes in leaf pigments, such as carotenoids, chloro-
phyll a and b, and xanthophylls as well as leaf and canopy 
structures [265]. Multispectral or hyperspectral bands are 
used to obtain VIs through band calculations. More ad-
vanced methods based on radiative transfer model inver-
sion techniques can also be employed [266].

To reduce the effects of illumination conditions on mul-
tispectral and hyperspectral cameras, radiometric image 
calibration should be carried out at each band [266]. First, 
several calibration targets (1 × 1 m) that have different re-
flectance values are placed in the UAV flight area. Second, 
the digital number (DN) of each target is collected from 
UAV multispectral and hyperspectral images, and the corre-
sponding actual reflectance of each target is also measured 
using, for example, an ASD spectroradiometer [166]. Third, 
the regression relationship between the reflectance and the 
DN value is established at each band image through em-
pirical linear or nonlinear methods, and the DN value in 
the images is converted to the normalized reflectance using 
established regression relationship equations [71].

Figure 1(b) and (c) gives examples of maize and wheat 
images acquired with MicaSense RedEdge-M and Cubert 
UHD185 cameras, respectively. Multispectral and hyper-
spectral cameras can export images that include DN val-
ues and texture, reflectance, and color information [45]. 
Crop phenotyping trait estimations from multispectral and 
hyperspectral cameras are presented in Tables 1 and 2, in-
cluding GAI, plant density, ear density, FAPAR, canopy cov-
erage, staygreen/senescence, crop dynamics monitoring, 
phenology, plant diseases and pests, and so forth, across 
the whole crop growing season. The models, parameters, 
phenotype estimating traits, imaging environments, imag-
ing techniques, and limitations of multispectral and hyper-
spectral cameras are detailed in Table 2.

The advantage of multispectral and hyperspectral cam-
eras is that they have spectral information (except texture 
and color information) that could be better used to esti-
mate crop phenotyping traits through fusion algorithms 
(this is an image process of integrating related information 
from two or more images into a single image and could 
be applied to acquire more useful information from the 
input images) [59], [115]. The application of multispectral 
and hyperspectral cameras in the field of crop phenotyp-
ing traits has attracted the attention of breeding programs 

[22], [103], [104], [267]. The main limitations concern the 
very large volume of data associated with spectral imagery 
and the generally more complex operation of hyperspec-
tral cameras compared to multispectral and RGB cameras. 
These shortcomings impede their application and adapta-
tion [36], [266].

In summary, multispectral cameras are mainly used 
for VI-based traits, due to the limited number of available 
bands, while hyperspectral cameras enable the calculation 
of more advanced crop phenotyping traits, such as pho-
tosynthetic status and fluorescence [265], [266]. With the 
rapid development of multispectral, hyperspectral, and 
computer image-processing technologies, cheaper multi-
spectral and hyperspectral cameras will be developed and 
combined with high-performance graphics and computer-
clustering technologies.

THERMAL CAMERAS
Thermal cameras are used to measure infrared radiation in 
the thermal spectral infrared regions as a water stress indi-
cator [115]. Thermal cameras operate in the spectral range 
from 3 to 14 μm, and their most-used spectral wavelengths 
are 3–5 μm and 7–14 μm, respectively [71], [266], [268]. The 
infrared radiation atmospheric transmission is very close to 
its maximum value in these two spectral ranges [121]. The 
thermal sensitivity of the spectral range from 3 to 5 μm is 
associated with higher energy levels than the spectral range 
from 7 to 14 μm, but using wavelengths of 7–14 μm has 
advantages for certain applications [269]. The wavelength 
ranges between 8 and 14 μm can reduce errors from the 
atmospheric absorption of infrared radiation for objects 
through longer atmospheric paths [269].

Thermal cameras should be calibrated to maintain the 
measurement accuracy and stability of their images. First, 
a thermal camera is preheated for roughly 20 min in the 
field before a UAV flight to reduce the temperature drift, 
and the automated nonuniformity correction is enabled 
during the data measurement [270]. Second, according to a 
thermal camera’s preheating guidelines, one JPEG image of 
a blackbody radiometric background scene is taken, which 
is immediately obtained from one 14-b TIFF-format image 
of the same scene [235]. Third, the blackbody radiometric 
JPEG is loaded into FLIR Tools software, which provides 
options for imaging target-related parameters and envi-
ronmental conditions, to execute a radiometric conversion 
[271]. At the same time, the air humidity and temperature 
are added from a weather station, along with the target dis-
tance (flight height) and object emissivity to obtain tem-
perature values that are output in a text file [272]. The bias 
between the blackbody and the image temperature is deter-
mined. Finally, each pixel’s radiometric value in the 14-b 
TIFF image is correlated to the corresponding value in the 
text file, with a linear model being used as a radiometric 
conversion regression equation, and the radiometric value 
in the images is transformed into the temperature using the 
established regression relationship equation [235].
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Figure 1(d) provides an example image of wheat ob-
tained using a FLIR SC620 camera. Thermal cameras export 
images that include the temperature, radiometric values, 
and texture information [271]. The application of a thermal 
camera to crop phenotyping trait estimation is illustrated in 
Tables 1 and 2. Thermal camera models, parameters, phe-
notype estimating traits, imaging environments, imaging 
techniques, and limitations are shown in Table 2. In recent 
years, thermal cameras with a high thermal sensitivity have 
been widely applied to estimate crop growth statuses under 
water stress conditions [116], [120], [266], [273]. Spatial pat-
terns obtained from thermal images may be used to carry 
out image segmentation to differentiate stressed and un-
stressed vegetation by using image-processing algorithms 
[273]. The cost of thermal cameras is generally higher than 
for multispectral cameras, and lightweight models are typi-
cally thermally unstable due to changing ambient condi-
tions [268]. Thermal cameras can be utilized with ground 
and aerial phenotyping platforms to carry out the analysis 
of crop phenotyping traits.

Potential crop phenotyping trait applications have been 
scored based on the difficulty of the data acquisition and the 
available optical sensors (Table 1). The results show that the 
highest and lowest potential crop phenotyping application 
levels are canopy coverage and plant diseases and pests, re-
spectively. The high potential-application level of crop phe-
notyping traits includes canopy coverage, GAI, plant den-
sity, staygreen/senescence, canopy height, ear density, weed 
infestation, biomass, lodging, yield, water content, chloro-
phyll content, nitrogen content, FAPAR, monitoring of crop 
dynamics, phenology (e.g., anthesis), canopy temperature, 
leaf rolling, leaf angle, leaf wilting, nitrogen use efficiency, 
nitrogen nutrition index, grain number and size, canopy 
structure, chlorophyll fluorescence, photosynthetic status, 
grain quality, light use efficiency, water use efficiency, and 
plant diseases and pests. These potential application levels 
of crop phenotyping traits can provide a guideline for pri-
oritizing trait selection using high-throughput methods at 
the field scale.

Figure 2 demonstrates potential applications of key 
crop phenotyping traits with different sensors at the criti-
cal growth stages in a maize breeding program. The figure 
presents the phenological stages of maize, including emer-
gence (VE, 1), the first leaf collar (V1, 2), the third leaf collar 
(V3, 3), the sixth leaf collar (V6, 4), the ninth leaf collar (V9, 
5), tasseling (VT, 6), silking (R1, 7), and maturity (R6, 8). 
An RGB camera is used to estimate the plant density in VE 
(1), the tassel density in VT (6), and the yield component in 
R6 (8) through color and texture information and related 
image-processing algorithms [39], [55], [74], respectively. 
The dynamic monitoring period of RGB cameras extends 
from the V1 (2) to the R6 (8) growth stages. Crop growth, 
diseases, stress, senescence, structure, phenology, and so on 
can be dynamically monitored by RGB cameras.

The key dynamic monitoring traits obtained by an RGB 
camera include GAI, FAPAR, height, anthesis, chlorophyll 

and nitrogen content, leaf rolling and angle, canopy cover-
age and structure, yield, and lodging. The dynamic moni-
toring stage of a multi/hyperspectral camera is consistent 
with that of an RGB camera, but key dynamic monitoring 
traits differ between the devices. For example, multi/hyper-
spectral cameras can be used to detect crop water content 
[116], [266] and grain quality [64], [274] through spectral 
characteristics and machine learning methods, with the 
exception of the same key dynamic monitoring traits from 
an RGB camera. The dynamic monitoring stage (3–8) of a 
thermal camera is less than that (2–8) of RGB and multi/
hyperspectral cameras because thermal cameras’ image 
resolution is not very high and plants are small at the V1 (2) 
stage [131]. Thermal cameras are mainly used to dynami-
cally monitor crop growth, diseases, stress, temperature, 
and so on. The spectral region of a thermal camera [116], 
[131], [132], [271] enables the estimation of canopy tem-
perature, leaf wilting, water content, lodging, leaf rolling, 
and water use efficiency.

There is a good consistency between the dynamic moni-
toring stage (3–8) and key dynamic monitoring traits of 
photosynthesis sensors and the dynamic monitoring stage 
(3–8) and key dynamic monitoring traits of fluorescence 
sensors. However, a photosynthesis sensor is specifically 
used to assess the photosynthetic status [159], and a fluo-
rescence sensor is employed for evaluating the chlorophyll 
fluorescence [152]. The dynamic monitoring stage of a ste-
reo camera is from V3 (3) to R1 (7). Due to their advantage 
of providing 3D structure images [130], stereo cameras can 
be used to monitor crop growth and structure, and their 
corresponding key dynamic monitoring traits involve 
height, leaf angle, lodging, leaf rolling, biomass, canopy 
coverage and structure, and yield. The dynamic monitoring 
stage (2–7) of lidar is longer than that of a stereo camera be-
cause lidar provides refined point cloud data that are used 
to describe small plants without the effect of illumination 
conditions [112]. The key dynamic monitoring traits of li-
dar agree with those of stereo cameras.

Figure 2 conveys a simple example of how to use dif-
ferent optical sensors to estimate key crop phenotyping 
traits across the growth stages in a maize breeding pro-
gram; additional significant crop phenotyping traits are 
included in Table 2. Furthermore, different sensors can be 
comprehensively combined to improve the estimation ac-
curacy of some vital phenotyping traits (such as lodging 
[134], yield [235], biomass [107], and so forth). More de-
tails are presented in the “Application of Ground and Aerial 
Phenotyping Platforms” section. In addition, a SPAD-502 
chlorophyll meter [233] (a leaf-level sensor), an ultrasonic 
sensor [111], and the GreenSeeker system (a near-canopy 
sensor) [66] may be used, relatively inexpensively, to obtain 
the chlorophyll content, nitrogen content, and plant height, 
respectively.

Currently, it is a challenge to sufficiently improve 
the estimation accuracy of crop phenotyping traits with 
different optical sensors to satisfy the needs of crop 
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breeding programs [7]. There is a need for new ways to 
combine image information from different optical sen-
sors (sensor fusion) to increase the estimation accuracy 
of crop phenotyping traits in the future. Image-process-
ing scientists will increasingly focus in this direction to 
enhance the functionality of sensors in crop phenotyp-
ing studies [115].

DEVELOPMENT OF GROUND AND AERIAL 
PHENOTYPING PLATFORMS AND APPLICATIONS
In this article, field phenotyping platforms are divided into 
two types based on ground and aerial levels. Currently, 
ground and aerial phenotyping platforms can carry differ-
ent sensors to obtain crop phenotyping traits in the field. 
The ground and aerial phenotyping platforms are shown 

FIGURE 2. Examples of potential applications of field crop phenotyping with different sensors at the key growth stages in maize breeding 
programs. VE: emergence 1; V1: first leaf collar, 2; V3: third leaf collar, 3; V6: sixth leaf collar, 4; V9: ninth leaf collar, 5; VT: tasseling, 6; R1: 
silking, 7; R6: maturity, 8.

Phenological Stage

VE V1 V3 V6 V9 VT R1 R6

1 2 3 4 5 6 7 8

Counting

Dynamic
Monitoring

Dynamic
Monitoring

Dynamic
Monitoring

Dynamic
Monitoring

Dynamic
Monitoring

Dynamic
Monitoring

Dynamic
Monitoring

RGB
Camera

Multi/Hyperspectral
Camera

Thermal
Camera

Photosynthesis
Sensor

Fluorescence
Sensor

Stereo
Camera

Lidar

1 Plants 6

2

2

3

3

3

3

2 7

7

8

8

8

Tassel 8

8

8

Yield Components

Crop Growth/Disease/Stress/Senescence/Structure/Phenology …

Crop Growth/Disease/Stress/Temperature …

Crop Growth/Disease/Stress …

Crop Growth/Disease/Stress …

Crop Growth/Structure …

Crop Growth/Structure …

Crop Growth/Disease/Stress/Senescence/Structure/Phenology …

Key Traits: GAI, FAPAR, Height, Anthesis, ChlorophyII and Nitrogen Content, Leaf Rolling and Angle, Canopy Coverage and
Structure, Yield, Lodging

Key Traits: GAI, FAPAR, ChlorophyII and Nitrogen Content, Biomass, Water Content, Yield, Grain Quality, Lodging

Key Traits: Photosynthetic Status, Biomass, Water Use Efficiency, Light Use Efficiency, Nitrogen Use Efficiency, Yield

Key Traits: Chlorophyll Fluorescence, Biomass, Water Use Efficiency, Light Use Efficiency, Nitrogen Use Efficiency, Yield

Key Traits: Height, Leaf Angle, Lodging, Leaf Rolling, Biomass, Canopy Coverage and Structure, Yield

Key Traits: Height, Leaf Angle, Lodging, Leaf Rolling, Biomass, Canopy Coverage and Structure, Yield

Key Traits: Canopy Temperature, Leaf Wilting, Water Content, Lodging, Leaf Rolling, Water Use Efficiency

Authorized licensed use limited to: University of Exeter. Downloaded on July 02,2020 at 01:39:19 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MONTH 2020    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        13 

in detail in the next section and the “Aerial Phenotyping 
Platforms” section, respectively.

GROUND PHENOTYPING PLATFORMS
Ground phenotyping platforms may be classified as pheno-
poles, phenomobiles, and stationary platforms (Figure 3). 
With phenopoles, poles (typically made from aluminum, 
steel, or plastic fibers) are used to directly mount sensors 
to obtain crop phenotyping trait data. Phenopoles include 
fixed and mobile versions. Fixed phenopoles are very simi-
lar to a field weather station: a low-cost RGB camera sensor 
is installed on a pole to obtain images that are updated to a 
server, for example, every 30 or 60 min based on sunlight 
illumination conditions [5]. The PhenoCam is an example 
of a fixed phenopole. The advantage of fixed phenopoles 
relates to the ability to obtain RGB images to monitor the 
dynamic changes to crops’ canopy coverage, FAPAR, and 
GAI. The PhenoCam Network [275] uses digital cameras to 
track the seasonal dynamics of vegetation across a range of 
ecosystem types. Phenopoles are limited in that they focus 
only on a subsection of an experimental plot, and the price 
of a phenotyping study is expensive when cameras are in-
stalled across a large experimental site [59].

Mobile phenopoles are manually carried. Their camera 
is commonly controlled by a cellphone through Wi-Fi data 
transformation. Mobile phenopoles offer the advantage of 
obtaining higher-resolution images because they are near 
the ground level (1–3 m). Their limitation is that they re-
quire a lot of manpower to gather images for all the plots 
at a phenotyping experiment site. Fixed and mobile pheno-
poles are mainly used to obtain information pertaining to 
the plant density, canopy cover, GAI, flowering stage, VI, 
phenology, ear density, and so forth.

Phenomobiles include automatic, human, and tractor-
propelled platforms. The automatic phenomobile com-
monly includes sensors, an integrated GPS system, a 
navigation control system, a data acquisition system, and 
a power supply [276]. The sensors and the integrated GPS 
system provide compatibility and efficient data acquisition, 
and they ensure that sensor outputs are recorded with navi-
gation coordinates. The navigation control system is used 
to design a reasonable walking route through the field, 
while the data acquisition system maintains the consis-
tency of the flashlight and monitors the obtained informa-
tion to protect the data quality and minimize the effects 
of the background illumination. The power supply system 
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FIGURE 3. Ground phenotyping platforms (including stationary platforms, phenomobiles, and phenopoles) and aerial phenotyping plat-
forms [including UAVs, manned aerial vehicles (MAVs), and micro/nanosatellites) [39], [40], [111], [200], [259], [260], [276], [280].
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guarantees continuous electricity through a regulator. The 
cooperation between each system can safeguard the nor-
mal operation of the automatic phenomobile.

Currently, the automatic phenomobile can autono-
mously obtain RGB, multi/hyperspectral, and thermal 
images and point clouds using different optical sensors for 
each plot in a field. These images and point clouds can be 
employed to estimate the canopy cover, GAI, canopy height 
and temperature, chlorophyll and nitrogen content, water 
content, yield, grain quality, relative values of the in-season 
biomass, and so forth. The dynamic changes of crop phe-
notyping traits can be monitored through the automatic 
phenomobile without much human intervention. The ad-
vantage of the automatic phenomobile lies in the ability to 
simultaneously collect different types of images; however, 
such platforms are expensive. Current automatic phenomo-
bile examples include Ladybird [277] at the University of 
Sydney, Australia, and Phenomobile [276] at the Institut 
National de la Recherche Agronomique, Paris, France.

Human phenomobiles are moved by manpower through 
a field. Examples include Phenomobile Lite [200], which 
contains data acquisition systems controlled by a person 
with a laptop. The system can incorporate RGB, multi/hy-
perspectral, and thermal sensors to obtain the related crop 
phenotyping traits. The price of human phenomobiles is 
low, but the data acquisition quality and efficiency of the 
sensors cannot be guaranteed.

Tractor phenomobiles consist of integrated sensor and 
GPS systems, a data acquisition system, and a power sup-
ply [278]. The basic integrated-sensor-and-GPS system 
combines non-image-based sensors (such as GreenSeeker 
and CropCircle, which are hyperspectral), the the outputs 
of which are recorded with GPS coordinates; similarly, the 
data acquisition system maintains the brightness of the 
flashlight and the consistency of the sensor data to ensure 
the quality the gathered information. The tractor provides 
the power supply. The PhenoTrac4 could be used to obtain 
VIs, nitrogen uptake, biomass, and water status. Its price 
is lower than other phenomobiles because its sensors are 
non-image-based [278]. Phenomobiles are relatively flex-
ible in terms of sensors.

Finally, the sensors of stationary platforms include RGB 
cameras, multi/hyperspectral cameras, and thermal camer-
as and laser sensors. Stationary platforms are simultaneous 
and fully automated, fixed-site phenotyping equipment 
[279]. They can carry sensors for the noninvasive estima-
tion of crop growth, physiology, morphology, and health. 
Their advantage is that they can simultaneously monitor 
different crop traits, although only in a defined area of, for 
example, roughly 1 hectare, when they are mounted on 
trackways [279].

AERIAL PHENOTYPING PLATFORMS
Aerial phenotyping platforms may be classified as MAVs, 
UAVs, and micro/nanosatellites (Figure 3). Recent advances 
in technology have promoted the development of UAVs, 

which have been transformed into crop phenotyping plat-
forms that provide high-spatial-resolution images for crop 
phenotyping trait estimation in the field [259], [260]. They 
include fixed-wing and multirotor configurations. Fixed-
wing UAVs have the advantages of fast flight, high flight 
efficiency, long endurance time, large payload capacity, and 
a high flight altitude. However, they have certain require-
ments for taking off and landing, they cannot hover, and 
they will cause blurred images because of their high-speed 
shooting [281]. Multirotor UAVs have a simple structure, 
the ability to hover, and modest requirements for taking 
off and landing, but they possess a slow flight speed, short 
endurance time, a low flight altitude, and small payload 
volume [281].

Sensor images from UAVs are processed using Agisoft 
Photoscan Professional (Version 1.2.2, Agisoft, Saint Peters-
burg, Russia). The overlap between images should be larger 
than 60% for the software to compute the position of the 
camera corresponding to every acquired image [39]. The soft-
ware can automatically recognize targets applied as ground 
control points (GCPs) for the absolute geopositioning of the 
images, and it can precisely locate the objects’ center on the 
images [39]. The specific processing is conducted as follows:
1) check the camera calibration and optimizing the param-

eters
2) align the photos
3) build dense point cloud
4) construct the mesh
5) create the texture
6) build digital elevation models (DEMs)
7) develop the orthomosaic
8) export the orthomosaic and the DEMs.

The lidar point cloud from UAVs can be processed by 
CloudCompare or by writing code as needed [112], [199]. 
Currently, UAVs can carry different sensors (RGB cameras, 
multi/hyperspectral cameras, thermal cameras, and lidar) 
to estimate different crop traits at varying spatial scales. Im-
ages from UAVs can be employed to estimate grain yield 
[99], canopy temperature [266] and NDVI [259], [282], 
plant height [108], [282], [283], biomass [162], GAI [109], 
lodging [134], plant density [39], fluorescence [266], and 
nitrogen status [36], mostly through proxies for plant traits. 
The advantage of UAVs concerns the relatively high-resolu-
tion images that are obtainable in a relatively short time; 
however, it is difficult to cover very large areas due to the 
vehicles’ limited range and speed. The onboard sensors of 
MAVs are comparable with those of UAVs. MAVs can cover 
larger regions in a relatively short time, albeit with a lower 
image resolution, and they have a greater payload capa-
bility. Images from MAVs are mainly used to estimate the 
GAI, biomass, chlorophyll content, nitrogen content, plant 
height, and biomass [8].

Finally, micro/nanosatellites can provide data in several 
spectral bands (which are sensitive to the crop structure, leaf 
pigment, and water content), and they enable meter-level-
resolution images for estimating crop phenotyping traits at 
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a very large scale [24], [79], [87], [88], [144], [193], [236], 
[239]. Micro/nanosatellites include optical and synthetic 
aperture radar (SAR) satellites. Optical satellites include 
the Worldview series, QuickBird, Ikonos, Geoeye-1, Satellite for 
Earth Observation series, RapidEye, Landsat series, Gaofen se-
ries, and so on. SAR satellites include the Environmental Sat-
ellite (ENVISAT), Radar Satellite (RADARSAT), TerraSAR-X, 
Sentinel-1, Advanced Land Observation Satellite–Phased Array 
Type L-band Synthetic Aperture Radar, and so forth. Optical 
satellite images are processed (including radiometric cali-
bration, atmospheric correction, and geometric correction) 
using ENVI 4.7 software [284].

The fast line-of-sight atmospheric analysis of the spec-
tral-hypercubes module is employed to retrieve the land 
surface reflectance. The geometric correction of each image 
is based on the measured GPS GCPs. SAR satellite images 
are processed using polarimetric SAR (PolSAR) Pro v5 [24], 
including the following steps:
1) The DN is converted into the backscattering coefficients 

using look-up tables in the product file (radiometric cali-
bration) [285].

2) A 5 × 5 boxcar filter is applied for screening and for the 
multilook to suppress speckle [286].

3) The filtered SAR images are applied to obtain a scatter-
ing matrix (S2) and then converted to a symmetrized 3 
× 3 covariance matrix (C3) [287].

4) The SAR images are orthorectified using DEM simula-
tion and registration [288].

5) Finally, the SAR images are rectified using GPS GCPs.
Optical satellites use the relative reflectance at certain 

spectral wavelengths to estimate crop phenotyping traits 
based on VIs, machine learning methods, weather data, 
environmental factors, and crop varieties [79], [193], [236], 
[289]. However, optical satellites have saturation problems 
for VIs and a reduction in their estimation accuracy at high 
plant densities [24]. Compared with optical satellites, SAR 
satellites have some advantages for estimating crop phe-
notyping traits at high plant densities because SAR sen-
sors use longer wavelengths, can penetrate crop canopies, 
and are not influenced by the presence of clouds and haze 
[88], [242]. For example, the backscatter and polarimetric 
decompositions of PolSAR are very sensitive to crop mor-
phological structure changes [87]. SAR satellites have also 
been used to monitor crop phenology, yield, lodging, and 
so on through machine learning methods and polarimetric 
parameters [87], [143], [242]. More detail about the appli-
cation of aerial phenotyping platforms is provided in the 
“Application of Ground and Aerial Phenotyping Platforms” 
section.

With the rapid development of micro/nanosatellite tech-
nology, higher-resolution images (<1 m) may be expected in 
the future. The advantages of micro/nanosatellites include 
international standard protocols for image processing at a 
relatively low cost. However, the image quality of micro/
nanosatellites may be influenced by weather conditions, 
and the current resolution of micro/nanosatellites limits 

their application in crop trial monitoring [59]. A future pos-
sible application of images from micro/nanosatellites could 
lie in evaluating and verifying variety releases across wide 
geographic areas.

In summary, higher-resolution images are obtained by 
ground phenotyping platforms that have a relatively low ef-
ficiency in terms of coverage. Compared with ground phe-
notyping platforms, aerial phenotyping platforms can pro-
vide images with relatively high efficiency and cover larger 
areas. It is currently challenging to manage and process the 
images from ground phenotyping platforms; additionally, 
there are no international standards for doing so. Although 
image analysis protocols are available for UAVs and MAVs, 
large differences exist among laboratories. Scientists need 
to coordinate to develop internationally uniform protocols 
for image management and processing for ground and aer-
ial phenotyping platforms, similar to the standard conven-
tions for micro/nanosatellites.

APPLICATION OF GROUND AND AERIAL 
PHENOTYPING PLATFORMS
This section introduces applications of ground and aerial 
phenotyping platforms for estimating crop phenotyping 
traits under different environmental conditions. Applica-
tions include early season crop mapping, crop growth con-
dition monitoring (nitrogen stress, water stress, disease, 
phenological parameters, lodging, and others), and crop 
yield estimation.

EARLY SEASON CROP MAPPING
Early and timely knowledge of crop types and conditions is 
extremely valuable information about regional production, 
yield estimation, and food security [290], [291]. Passive opti-
cal satellite sensors have been widely used for early season 
crop mapping because they improve the spectral, spatial, 
and temporal resolution of images and increase the avail-
ability of satellite data [292], [293]. In multitemporal remote 
sensing data, different classification algorithms have been 
used to process and analyze the time series of VIs to charac-
terize growth conditions and then classify crop types during 
the early season [294]–[299]. Until now, several remote sens-
ing classification algorithms have been successfully applied, 
such as support vector machines, random forest (RF), deci-
sion trees, and neural networks [300], [301]. Skakun et al. 
[302] used moderate-resolution imaging spectroradiometer 
(MODIS) NDVI data, a Gaussian mixture model, and grow-
ing-degree-days information to detect early season winter 
crops in large regions; the results showed a good consistency 
between official statistics and estimates ( . ).0 85R2=

In addition, SAR sensors can be used to classify crop 
types because they are not affected by clouds and atmo-
spheric conditions [24]. Some scientists have investigated 
the potential of SAR backscatter data for crop mapping us-
ing images obtained by Sentinel-1, RADARSAT-1 and 2, EN-
VISAT advanced SAR, and phased-array-type L-band SAR 
[303]–[308]. In recent years, some studies have carried out 
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early season crop (wheat, cotton, spring maize, sugarcane, 
and rice) type classification based on the combination of 
optical satellite and SAR data [302], [307]–[309]. Hao et 
al. [307] used the improved artificial immune network 
and Sentinel data to carry out early season crop mapping 
in Hengshui, China, and the result indicated that the over-
all accuracy for summer crops and winter wheat was 98.55 
and 99%, respectively. Jiang et al. [308] combined machine 
learning algorithms and Sentinel-1A/2 time series data to 
map sugarcane during the early season in Zhanjiang City, 
China, and the outcome showed that the value of the kappa 
coefficient was 0.902 and that the estimation accuracy of 
the sugarcane mapping area was approximately 86.3%.

Compared with satellite platforms, UAVs can provide 
ultrahigh spatial resolution for classifying crops during the 
early season. UAVs equipped with RGB and multispectral 
cameras have been employed to classify weeds and crops 
[41], [311]. Zheng et al. [311] used RGB, NIR-G-B, and mul-
tispectral images from UAVs to detect rice plants during the 
early season, and the results indicated that a spectral-fea-
tures decision tree had a high classification accuracy dur-
ing the early growth stages. With the improvement of the 
spatial and temporal resolution of images from satellites 
and UAVs, deep-learning algorithms, e.g., convolutional 
neural networks (CNNs) [312] and recurrent neural net-
works [313], will ideally be employed to map early season 
crop types, with their advantages for image processing and 
analysis.

CROP GROWTH CONDITION MONITORING

NITROGEN STRESS
Nitrogen deficiency in crops results in a decreased chloro-
phyll content, a slower growth rate, and less photosynthesis 
as well as more sensitivity to diseases and pests [314]. These 
changes in the chlorophyll content, growth rate, photosyn-
thesis, and disease and pest occurrence can be monitored 
using near-infrared and visible spectral reflectance [8], [29], 
[34]–[36]. These factors have been estimated using UAVs to 
monitor different nitrogen levels. The results demonstrated 
that multispectral and hyperspectral images from UAVs 
can estimate the biomass, nitrogen content, and grain yield 
with multiple nitrogen treatments [34]–[36]. In addition, a 
study by Camino et al. [35] showed that solar-induced chlo-
rophyll fluorescence derived from hyperspectral images is 
a good indicator of photosynthesis under multiple nitrogen 
treatments in crop phenotyping experiments. Similarly, 
multispectral and hyperspectral sensors are integrated with 
phenomobiles to estimate the nitrogen content under dif-
ferent nitrogen treatments [67], [278]. Additionally, fluo-
rescence sensors combined with UAVs and phenomobiles 
have a great potential for the early monitoring of crop traits 
under nitrogen stress in the field. Developing specific, light-
weight spectral fluorescence sensors in combination with 
UAVs and phenomobiles for the early detection of nitrogen 
stress is a great opportunity.

WATER STRESS
Stomata are typically closed under water-stressed condi-
tions, which reduces crop growth and photosynthesis and 
may aggravate crop heat stress because of decreased tran-
spirational cooling [8]. The canopy temperature is a good 
indicator of the response of crops to water stress [315], and 
scientists have reported that under water stress the mea-
surement can be used to identify drought-adapted cultivars 
[114], [123], [136], [268], [316]–[318]. Thermal images need 
to be normalized to the ambient temperature and relative 
humidity to control the effect of environmental conditions 
on measurements. In a study, Jones et al. [268] indicated 
that the relative value among genotypes was more impor-
tant than the absolute value for crop phenotyping evalua-
tions. In addition, the background temperature (soil and 
dead leaves) of thermal images ideally should be eliminat-
ed from the signal of the green leaves using related image-
segmentation algorithms [121].

Using thermal cameras with UAVs and phenomobile 
platforms enables the collection of more crop temperature 
images in less time compared to ground-based approaches 
[259], and it may assist in selecting water-stress-resistant 
genotypes. The limitation of the crop growth status (such as 
the biomass) owing to water stress could be estimated using 
near-infrared and visible optical sensors [319]. Therefore, 
hyperspectral and multispectral cameras can be applied in 
combination with thermal cameras to select water-stress-
resistant genotypes [66], [123]. Images from thermal, mul-
tispectral, and hyperspectral cameras collected through 
the whole crop growing season can offer important quan-
titative and qualitative data sets that could be correlated 
with other ground-truthing data sets. These methods will 
promote the uptake of high-throughput, nondestructive 
sensors for estimating crop phenotyping traits in the field 
and may finally take the place of traditional data collection 
methods.

DISEASES
Crop yield losses are persistent problems in agriculture due 
to the widespread occurrence of pathogens, such as fungi, 
viruses, nematodes, and bacteria. Advanced disease-mon-
itoring technologies are required to minimize crop yield 
losses [98]. Remote sensing technologies have been ap-
plied to estimate diseases [320] and monitor new outbreaks 
worldwide [265]. However, the application of UAV-based 
optical sensors for detecting crop diseases and the tolerance 
of different crop varieties to maladies is less well developed 
[8], [99]. Nebiker et al. [99] used a threshold of NDVI val-
ues from multispectral images to identify blight infesta-
tion in potatoes. Crop diseases are mainly detected using 
near-ground optical sensors (such as hyperspectral, RGB, 
and thermal cameras) [100], [103], [104]. Recent research 
on detecting Huanglongbing (HLB) disease-infected citrus 
trees demonstrated that a good classification accuracy of 
HLB disease was obtained using the combination of visible, 
near infrared, and thermal spectral bands [100].

Authorized licensed use limited to: University of Exeter. Downloaded on July 02,2020 at 01:39:19 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MONTH 2020    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        17 

The results obtained by Jansen et al. [321] showed that a 
Cercospora leaf-spot index obtained from spectral indices 
was correlated with the Cercospora disease severity in sugar 
beet varieties. Furthermore, the classification accuracy of 
tomato diseases was better using a superresolution meth-
od (which produced a spatial resolution-enhanced image 
using low-resolution images) compared to using the con-
ventional image-scaling methods with RGB images [103]. 
Behmann et al. [104] employed a miniaturized, handheld 
hyperspectral camera to identify powdery mildew at the 
canopy scale in barley. In short, these results indicated that 
the occurrence of disease and the resistance of crop vari-
eties to infection can be effectively estimated using near-
ground and UAV-based sensors. The fluorescence sensor 
was more sensitive to crop diseases than other instruments. 
It has the potential to be used in combination with hyper-
spectral, multispectral, RGB, and  thermal cameras for the 
early detection of crop disease severity. Such sensors have 
a great potential to be harnessed to estimate the crop dis-
ease severity in future crop breeding programs. These near-
ground and UAV-based sensors will detect the resistance of 
crop varieties to disease more effectively when combined 
with newly developed image classification methods.

PHENOLOGICAL PARAMETERS
Crop phenology provides important information for simu-
lating and monitoring crop growth and development [322], 
estimating crop yields [323], optimizing production man-
agement and decision-making [324], and analyzing crops’ 
response to climate change [289]. Remote sensing-based 
observations with short revisit times and large spatial cov-
erage have been employed to successfully retrieve crop phe-
nological parameters using VI time-series data at regional 
to global scales [76], [77]. The NDVI and enhanced VI have 
been commonly employed to estimate crop phenology. The 
most-studied phenological parameters contain the start 
of season (SOS), peak of season, and end of season (EOS) 
[78]. Currently, various methods have been used to extract 
these phenological parameters using VI time series data, in-
cluding dynamic threshold methods [79], fixed threshold 
methods [79], maximum-slope methods [80], function-
fitting methods [81], moving average methods [82], and the 
valley-detection method [83].

The dynamic threshold method is the most commonly 
employed for estimating the crop SOS and EOS because it 
needs fewer parameters, has an easier application, and pro-
duces high-accuracy results. Sakamoto [84] developed the 
shaped model-fitting method with MODIS wide-dynamic-
range VI time-series data to evaluate the timing of pheno-
logical parameters for 36 crop development stages of major 
U.S. food products. However, Verger et al. [85] found that 
leaf area index (LAI) is more robust and sensitive than VIs 
in considering vegetation from different satellite data. Fur-
thermore, Luo et al. [86] used global land surface satellite 
LAI products and optimal filter-based phenology detection 
methods to obtain the crop SOS and EOS and produced a 

1-km spatial resolution phenological survey of three staple 
crops in China from 2000 to 2015.

PolSAR is very sensitive to crop morphological structure 
changes [87]. RADARSAT-2 and TerraSAR-X provide op-
portunities to explore the potential of these data for crop 
SOS and EOS estimation. Lopez-Sanchez et al. [88] used 
dual-polarized TerraSAR-X data and simple decision tree 
algorithms to evaluate rice phenological parameters. Fur-
thermore, they harnessed the three polarimetric param-
eters (entropy, anisotropy, and alpha angle) from polari-
metric RADARSAT-2 data and hierarchical decision trees to 
estimate rice phenological parameters [89]. Wang et al. [87] 
applied the multitemporal RADARSAT-2 dataset, SAR po-
larimetric decompositions, and an RF algorithm to moni-
tor canola, maize, soybean, and wheat phenology based on 
crop phenological parameters. With the fast development 
of UAVs and sensors, near-real-time crop phenology re-
trieval is feasible. Yang et al. [90] proposed a near-real-time 
deep-learning method for monitoring rice phenological pa-
rameters and estimated rice phenology from UAV RGB im-
ages with an accuracy rate of 83.9%. In the future, the Phe-
noCams network will be combined with satellite images to 
better estimate different crops’ phenological parameters. 
UAV images and advanced machine learning algorithms 
will improve crop phenological parameter retrieval in near 
real time and thus enable optimized crop management.

LODGING
Crop lodging is the permanent deviation of crop plants 
from the upright position [325]. Crop lodging not only in-
fluences harvest operations but also results in yield losses 
and can reduce quality [326]. Therefore, accurate and rapid 
evaluation of crop lodging is important for research and 
screening, optimizing field crop management, obtaining 
better production, and estimating crop yield losses. The 
reflectance and backscatter at different wavelengths are  
affected by changes in the crop structure [327], biochemi-
cal properties [328], and morphology [329] in the lodging 
condition.

Many researchers have used crop phenotyping plat-
forms to estimate crop lodging [134]–[143]. An early study 
by Fitch et al. [330] applied the linear polarization of back-
scatter from wheat to evaluate its potential in detecting 
wheat lodging using ground-based platforms. Ogden et al. 
[135] used motor-driven cameras to analyze textural infor-
mation in images to estimate the extent of rice lodging. Liu 
et al. [331] demonstrated that optical hyperspectral data 
can be used to detect rice lodging. Recent advances in the 
development of UAVs and sensors have been used to de-
tect crop lodging areas and evaluate lodging severity [134], 
[136]–[138]. Chapman et al. [136] reported that wheat 
lodging areas are successfully detected using thermal im-
ages from UAV-mounted thermal cameras. The combina-
tion of spectral and texture features and the digital sur-
face model further increased the estimation accuracy of 
rice lodging classification using single-feature probability 
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algorithms. In a recent study, Liu et al. [134] employed the 
fusion of RGB and thermal image information to improve 
the estimation accuracy of lodging classification in differ-
ent rice species.

Satellite-based platforms can monitor crop lodging due 
to the availability of their images. Yang et al. [143] presented 
the potential of radar-based satellite images to detect wheat 
lodging at the farm scale, due to the sensitivity of SAR to 
crop structural changes. Some studies have employed RA-
DARSAT-2 quad-polarimetric images to estimate lodging in 
wheat and canola [142], [144]. In the future, the different 
phenotyping platforms and new machine learning algo-
rithms will be better integrated to address the reasons for 
crop lodging and provide improved estimates of lodging at 
regional to global scales.

OTHER APPLICATIONS
The different sensors from ground and aerial phenotyping 
platforms can be used to estimate many other important 
crop morphology phenotyping traits (GAI, canopy cov-
erage, plant vigor, canopy height, leaf rolling, leaf angle, 
FAPAR, leaf staygreen/senescence, phenology, crop dynam-
ics monitoring, biomass, and canopy structure), resource 
use phenotyping traits (nitrogen use efficiency, light use ef-
ficiency, and water use efficiency), yield component pheno-
typing traits (plant density, ear density, grain number and 
size, and grain quality), physiological phenotyping traits 
(chlorophyll content, water content, chlorophyll fluores-
cence, photosynthetic status, and nitrogen nutrition index), 
and stress phenotyping traits (plant diseases and pests and 
weed infestation) in crop breeding programs. In addition, 
the effects of soil components and compaction, field man-
agement practices, and soil spatial variability on crop phe-
notyping traits should be measured in parallel to include 
the effect of these environmental factors on the estimation 
accuracy of crop phenotyping traits.

CROP YIELD ESTIMATION
Crop yield is widely used to measure cropland productivity. 
Estimating how much crop yield is obtained prior to har-
vesting is essential for field crop management, food trade 
balance, food security evaluation, and policy-making in the 
world [241], [332]. Furthermore, the rapid and efficient esti-
mation of crop yield with high accuracy will allow identifi-
cation of high-yielding genotypes in large germplasm pan-
els [333]. Many studies have been successfully employed to 
estimate crop yield using different crop phenotyping plat-
forms [170], [234]–[241], such as ground-based, UAV, and 
satellite-based platforms. For ground-based platforms, Jin 
et al. [170] assimilated the biomass and canopy cover de-
rived from field hyperspectral VIs into the AquaCrop mod-
el based on the particle swarm optimization algorithm to 
improve the estimation accuracy of the maize yield with R2  
and root-mean-square error (RMSE) values of 0.78 and 1.44 
tons/hectare, respectively. Li et al. [240] combined field 
spectral VIs and meteorological data through hierarchical 

linear modeling (HLM) to estimate wheat yield, and their 
results showed that the approximated power of yield es-
timation derived through HLM was higher than that ob-
tained using ordinary least-squares regression, with R2  and 
RMSE values of 0.75 and 1.10 tons/hectare, respectively.

For UAV platforms, Maimaitijiang et al. [235] applied 
multimodal data fusion and deep-learning methods to 
estimate the soybean yield from UAV RGB, multispectral, 
and thermal images, and the results demonstrated that 
the highest estimation accuracy was obtained by a deep 
neural network with an R2  and relative RMSE of 0.720 
and 15.9%, respectively. Another study by Yang et al. 
[238] used deep CNNs to estimate rice yield at the rip-
ening stage from UAV, RGB, and multispectral imaging 
data and demonstrated that CNNs perform better than 
VI-based models for rice yield estimation ( .0 59R2=  and 
RMSE = 0.66 tons/hectare).

Zhang et al. [237] extracted excess green color features 
from UAV RGB images and built an estimation model for 
maize yield, and the corresponding mean absolute percent-
age error ranged from 6.2 to 15.1%. For satellite-based plat-
forms, Sakamoto [234] incorporated MODIS VIs and en-
vironmental variables to estimate the yields for maize and 
soybeans using a RF regression algorithm, and their results 
indicated that the RF method obtained a better yield esti-
mation accuracy (maize RMSE = 0.539 ton/hectare and soy-
bean RMSE = 0.206 ton/hectare) at the state level. Similarly, 
Schwalbert et al. [236] integrated long short-term memory 
(LSTM) neural networks, weather data, and machine learn-
ing for improving crop yield prediction in southern Brazil 
and showed that LSTM neural networks performed bet-
ter than other algorithms. In addition, Dong et al. [145] 
estimated wheat yield using a light use efficiency model 
and wheat variety data, and the results indicated that the 
proposed method enhanced the model simulation perfor-
mance and achieved an 82% estimation accuracy of the in-
terannual yield variation.

In short, the preceding studies demonstrated that the 
combination of different crop phenotyping platform im-
ages, meteorological data, crop models, variety data, envi-
ronmental variables, and machine learning methods could 
be used improve current estimation accuracy of crop yield. 
In particular, deep-learning algorithms, such as deep CNNs 
and LSTM neural networks, can significantly improve the 
estimation accuracy of crop yield. It can be assumed that 
researchers will have to pay more attention to the integra-
tion of multisource data with deep-learning methods to 
improve crop yield estimation in the future.

FUTURE PERSPECTIVES
While high-throughput crop phenotyping technolo-
gies have made some progress, further improvements are 
needed due to the requirements for more accurate estima-
tions of most crop phenotyping traits. Advanced sensors, 
together with cutting-edge ground and aerial phenotyping 
platforms, have led to a major requirement for advances in 
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image processing. Recently, new machine learning algo-
rithms have been used to identify useful crop traits using 
image information. For example, deep-learning algorithms 
have shown advantages for trait detection and segmenta-
tion [46], [103]. Crop phenotyping sensors are commonly 
influenced by field environmental conditions; therefore, 
developments of more stable and refined crop phenotyping 
sensors are necessary for field crop phenotyping research.

Currently, many crop phenotyping sensors and plat-
forms are too expensive for numerous crop breeding pro-
grams; however, the rapid development of miniaturized 
and mobile technologies has provided some affordable and 
powerful sensors for crop phenotyping with high-resolution 
images. As sensors have become lighter and smaller, they 
have been integrated with the different ground and aerial 
phenotyping platforms, facilitating crop phenotyping re-
search [59], [115], [281]. RGB, multispectral, hyperspectral, 
and thermal cameras; photosynthesis and fluorescence sen-
sors; stereo cameras; and lidar have been used to evaluate 
crop phenotyping traits. How to combine the outputs of 
these sensors to increase the estimation accuracy of crop 
phenotyping traits is still a challenge for crop phenotyping 
traits [7], [59]. Micro/nanosatellites with relatively high-res-
olution images also provide a good resource for crop phe-
notyping traits in large-scale validation, due, in part, to the 
international standard protocols for image processing.

The combination of available sensors and platforms 
provides ground-based crop phenotyping platform systems 
with the ability to simultaneously obtain, process, and store 
data in an affordable and efficient manner [59]. However, 
compatibility issues between software and hardware still 
exist. In addition, the processing of images from ground-
based crop phenotyping platform systems does not have in-
ternationally uniform standards, so the use and sharing of 
image data sets will be limited [14]. Multidisciplinary teams 
are needed to build efficient integrated crop phenotyping 
management systems. Such systems need user-friendly data 
analysis and management interfaces that are integrated 
with data selection and processing and decision-making 
functions.

Furthermore, corresponding field soil properties and 
weather information should be included with image data 
set analyses and management systems to increase the es-
timation accuracy and stability of crop phenotyping traits 
[59]. Finally and importantly, the rapid development of 
high-throughput crop phenotyping technology will im-
prove future study of precision agriculture. How to effec-
tively combine these crop phenotyping traits and agronom-
ic indicators to enhance crop field management at different 
growth stages, and thus implement precision agriculture, 
will be a long-term goal [243].

In summary, crop phenotyping platforms should be ad-
opted by crop breeders as a powerful tool for genetic im-
provement. It is against this background that affordable and 
efficient crop phenotyping systems will become the rou-
tine choice for crop breeding programs. A crop functional 

structure model has been used to simulate crop 3D growth 
structural changes during the whole crop growth season. 
This can be integrated with crop phenotyping platforms to 
improve the estimation accuracy of crop phenotypic traits 
using data assimilation methods, and it can be used to de-
sign crop ideotypes for the future.

However, in many cases, this kind of information would 
be more detailed than most breeders need. Their main re-
quirements would be reliable estimates of the heading date 
and plant height, spectral indices that detect biotic and abi-
otic stress, and approximations of the yield and yield com-
ponents, including spike density and biomass [310]. These 
traits can generally be remotely projected with sufficient 
heritability and combined into selection indices to help 
choose material that is either for advancement to the next 
breeding generation or for inclusion in multilocation tri-
als. In addition, QTL and GWAS approaches are not always 
successful for analyzing relationships between genetics and 
phenotype and then selecting key gene loci [5]. Therefore, 
the QTL and GWAS approaches will need to be improved 
by combing other statistical methods (such as meta-anal-
ysis, meta-GWAS methods, and so forth) to identify more 
stable and effective key gene loci in the future.

CONCLUSION
High-throughput crop phenotyping trait selection is im-
portant for improving crop yield and stress resistance un-
der different biotic/abiotic environmental conditions in 
plant breeding programs. Currently, the ability to provide 
high-throughput identification of crop phenotyping traits 
limits our capacity to determine quantitative genetic traits 
linked with yields, crop growth statuses, and adaptation to 
environmental stress. The rapid development of sensors, 
ground and aerial phenotyping platforms, and image-pro-
cessing technologies is providing effective tools for high-
throughput crop phenotyping traits in field.

This article first introduced the origin and definition of 
crop phenotyping. Second, it described the development 
of current sensors (RGB, multispectral, hyperspectral, and 
thermal cameras; photosynthesis and fluorescence sensors; 
stereo cameras; and lidar) for crop phenotyping traits in the 
field, including an analysis of the advantages and limita-
tions of different sensors and their levels of potential ap-
plication. Third, it highlighted the development of ground 
(stationary platforms, phenomobiles, and phenopoles) and 
aerial (UAVs, MAVs, and micro/nanosatellites) phenotyping 
platforms and their applications for crop phenotyping un-
der nitrogen, water, and disease stresses in the field. Final-
ly, new opportunities and directions of crop phenotyping 
technological developments for the future were presented. 
In the future, high-throughput crop phenotyping technol-
ogy will increase the estimation accuracy of measuring 
standard crop traits and further accelerate the efficiency of 
new trait identification in crop breeding programs, based 
on newly developed sensors, phenotyping platforms, and 
image processing and data management methods.
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