1,644 research outputs found

    Dynamics of delay induced composite multi-scroll attractor and its application in encryption

    Get PDF
    This work was supported in part by NSFC (60804040, 61172070), Key Program of Nature Science Foundation of Shaanxi Province (2016ZDJC-01), Innovative Research Team of Shaanxi Province(2013KCT-04), Fok Ying Tong Education Foundation Young Teacher Foundation(111065), Chao Bai was supported by Excellent Ph.D. research fund (310-252071603) at XAUT.Peer reviewedPostprin

    Some new less conservative criteria for impulsive synchronization of a hyperchaotic Lorenz system based on small impulsive signals

    Get PDF
    In this Letter the issue of impulsive Synchronization of a hyperchaotic Lorenz system is developed. We propose an impulsive synchronization scheme of the hyperchaotic Lorenz system including chaotic systems. Some new and sufficient conditions on varying impulsive distances are established in order to guarantee the synchronizability of the systems using the synchronization method. In particular, some simple conditions are derived for synchronizing the systems by equal impulsive distances. The boundaries of the stable regions are also estimated. Simulation results show the proposed synchronization method to be effective. (C) 2009 Elsevier Ltd. All rights reserved

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    Synchronizing noisy nonidentical oscillators by transient uncoupling

    Full text link
    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them -- a phenomenon termed "generalized synchronization." Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling

    Chaotic communications over radio channels

    Get PDF

    Synchronicity From Synchronized Chaos

    Get PDF
    The synchronization of loosely coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical notion of synchronicity. Effectively unpredictable chaotic systems, coupled through only a few variables, commonly exhibit a predictable relationship that can be highly intermittent. We argue that the phenomenon closely resembles the notion of meaningful synchronicity put forward by Jung and Pauli if one identifies "meaningfulness" with internal synchronization, since the latter seems necessary for synchronizability with an external system. Jungian synchronization of mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system as in meteorological data assimilation. Internal synchronization provides a recipe for combining different models of the same objective process, a configuration that may also describe the functioning of conscious brains. In contrast to Pauli's view, recent developments suggest a materialist picture of semi-autonomous mind, existing alongside the observed world, with both exhibiting a synchronistic order. Basic physical synchronicity is manifest in the non-local quantum connections implied by Bell's theorem. The quantum world resides on a generalized synchronization "manifold", a view that provides a bridge between nonlocal realist interpretations and local realist interpretations that constrain observer choice .Comment: 1) clarification regarding the connection with philosophical synchronicity in Section 2 and in the concluding section 2) reference to Maldacena-Susskind "ER=EPR" relation in discussion of role of wormholes in entanglement and nonlocality 3) length reduction and stylistic changes throughou

    Anticipatory synchronization with variable time delay and reset

    Get PDF
    A method to synchronize two chaotic systems with anticipation or lag, coupled in the drive response mode, is proposed. The coupling involves variable delay with three time scales. The method has the advantage that synchronization is realized with intermittant information about the driving system at intervals fixed by a reset time. The stability of the synchronization manifold is analyzed with the resulting discrete error dynamics. The numerical calculations in standard systems like the Rossler and Lorenz systems are used to demonstrate the method and the results of the analysis.Comment: 11 pages, 9 figures. submitted to Phys. Rev.

    Projective synchronization in fractional order chaotic systems and its control

    Full text link
    The chaotic dynamics of fractional (non-integer) order systems have begun to attract much attention in recent years. In this paper, we study the projective synchronization in two coupled fractional order chaotic oscillators. It is shown that projective synchronization can also exist in coupled fractional order chaotic systems. A simple feedback control method for controlling the scaling factor onto a desired value is also presented.Comment: 6 pages, 2 figure
    • 

    corecore