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Abstract: The synchronization of loosely-coupled chaotic oscillators, a phenomenon

investigated intensively for the last two decades, may realize the philosophical concept of

“synchronicity”—the commonplace notion that related events mysteriously occur at the same

time. When extended to continuous media and/or large discrete arrays, and when general

(non-identical) correspondences are considered between states, intermittent synchronous

relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if

meaningful events are identified with coherent structures, defined by internal synchronization

between remote degrees of freedom; a condition that has been posited as necessary for

synchronizability with an external system. The important case of synchronization between

mind and matter is realized if mind is analogized to a computer model, synchronizing with

a sporadically observed system, as in meteorological data assimilation. Evidence for the

ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization

of different models of the same objective process may be an expeditious route to improved

computational modeling and may also describe the functioning of conscious brains; and (2)

the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a

variety of deterministic (hidden variable) interpretations if the quantum world resides on a

generalized synchronization “manifold”.
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1. Introduction

Synchronization within networks of oscillators is widespread in nature, even where the mechanisms

connecting the oscillators are not immediately apparent. One recalls the example of the synchronization

of clocks suspended on a common rigid wall, a paradigm commonly attributed to Huygens [1]. As

with similar phenomena of fireflies blinking in unison or female roommates synchronizing hormonal

cycles, the pattern suggests a universally valid organizational principle that transcends any detailed

causal explanation. Further, from everyday experience, but perhaps related, are the quantum mechanical

harmonies between distant parts of a system that are not causally connected. As reviewed in the

penultimate section of the paper, quantum mechanics is fundamentally nonlocal in the sense that no

interpretation that retains objective reality, in which an observer is assumed to have the free will to

alter his choice of what variables to observe while leaving everything else unchanged, is consistent with

locality in the observed system. There must either be a grand synchrony between the observer’s choices

and the observed system or a synchrony between distant parts of the observed system, maintained by a

subtle nonlocal coupling between them.

The study of coupled networks of oscillators in classical physics has focused on regular oscillators

with periodic limit-cycle attractors. Such models afford explanations for such surprising relationships

as the one observed by Huygens, but other synchronous relationships that are sometimes said to exist

in nature are less easily explained. While the synchronization of chaotic oscillators with strange

attractors has become familiar in the last two decades, most work on such systems has examined

engineered systems, primarily for application to secure communications, using the low-dimensional

signal connecting the oscillators as a carrier that is difficult to distinguish from noise. However, examples

of synchronized chaos in pairs of systems of partial differential equations that describe physical systems,

coupled loosely, have also been given [2–6].

In the philosophical realm, synchronous relationships that are difficult to explain causally have figured

prominently in primitive cultures and in traditions commonly associated with Jung [7]. (No reference

is made in this paper to the use of archetypes in physical theory or other aspects of Jung’s philosophy.)

The notion of “synchronicity” commonly associated with Jung has two essential characteristics beyond

the simple simultaneous occurrence of corresponding events: First, the simultaneous occurrences or

“synchronicities” must be isolated occurrences. Second, the synchronicities must be “meaningful”. The

idea of synchronicity thus goes beyond the synchronization of oscillators in positing a new kind of

order in the natural world, schematized by Jung and Pauli (Figure 1) in their book The Interpretation

of Nature and of the Psyche [8]. Regular oscillator models fall far short of explaining synchronicities

of this type, as Strogatz observed in his popular exposition [9]. A particularly important instance is the

synchronization of matter and mind. In this view, mind is not slaved to the objective world, but tends

to synchronize with it, based on limited exchange of information. Jung’s examples of synchronicity,

and subjective perceptions of synchronicity generally, are often dismissed as the result of chance, but a

minority opinion follows Pauli in asserting that a synchronistic order exists in the world alongside the

causal one.
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Figure 1. Diagram constructed by Carl Jung, later modified by Wolfgang Pauli, to suggest

relationships based on synchronicity as an “acausal connecting principle”, existing alongside

causal relationships [8].

While Pauli kept such speculations largely separate from his scientific work, the point of this paper,

reached through a review of the author’s and others’ more recent work, is to show that the nonlinear

dynamics paradigm of synchronization in networks of loosely-coupled chaotic systems can realize the

philosophical notion of synchronicity, or at least approach it much more closely than is possible with

regular oscillators. The proposed realization is concrete in nature, without any need for dualism between

the mental and material worlds. It is also different from the “dual-aspect monism” ascribed to Jung and

Pauli themselves [10], in that material synchronization is put forward as an explanation of synchronous

relationships in the mental realm and between mind and matter.

We begin by reviewing work, in the next section, showing that the simple introduction of a time delay

in the coupling between the systems can transform a situation of complete synchronization to one of

isolated “synchronicities”. In Section 3, we review previous work on an application of synchronized

chaos to “data assimilation” of observations of a “real” system into a computational model that is

intended to synchronize with truth, analogously to the synchronization of matter and mind. Traditional

data assimilation methods, which have been investigated extensively for meteorological modeling [11],

can be clarified and augmented within the synchronization framework. “Meaningfulness” is naturally

interpreted as internal coherence. A three-way relationship between two parts of a real system and

a third system conceived of as an observer is shown to satisfy the requirement for meaningfulness in

synchronicities in Section 4.

The objective rational basis for synchronicity that is put forward in this paper suggests applications

of the new organizational principle to processes in the brain and in the physical world. In Section 5,

we discuss implications of synchronized chaos for neural systems, in view of contemporary ideas about

synchronization as a binding mechanism in perception and consciousness and in view of recent work

on the synchronization of different computational models of the same objective process with each other.

In Section 6, we highlight the role of synchronized chaos in realist interpretations of quantum theory,

where determinism is retained, while quantum nonlocality and the Bell correlations are explained. The

concluding section speculates on remaining gaps between our objective realization of the synchronicity

principle and its original philosophical motivation.

2. Highly Intermittent Synchronization in Loosely-Coupled Chaotic Systems

Extensive interest in synchronized chaotic systems was spurred by the work of Pecora and Carroll [12]

(cf. [13,14]), who initially studied the phenomenon in three-variable Lorenz systems [15], a prototypical
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example of chaos. Slaving theX variable of one Lorenz system to the corresponding variable of a second

system, one has:

Ẋ = σ(Y −X)

Ẏ = ρX − Y −XZ Ẏ1 = ρX − Y1 −XZ1 (1)

Ż = −βZ +XY Ż1 = −βZ1 +XY1

The systems defined by (X, Y, Z) and (X1 = X, Y1, Z1), respectively, synchronize rapidly: as t →

∞, Y1(t)− Y (t) → 0, Z1(t)−Z(t) → 0, as shown in Figure 2 (synchronization also occurs if the slave

system is driven by the master Y variable instead of the X variable, but not if driven by the Z variable).

Various schemes to use chaos synchronization for cryptography were motivated by the thought that

variables analogous to X in (1) could be used as carrier signals that would be difficult to distinguish

from noise [16]: the signal between the two systems defined by X is broadband and has no characteristic

frequency. The Takens–Mañé Theorem [17,18] can still be used to infer information about the encoding

from a segment of a signal that is sufficiently long, but as one considers higher-dimensional analogues

of (1) , it becomes increasingly difficult to do so.

(a) (b)

Figure 2. The trajectories of the synchronously-coupled Lorenz systems in the

Pecora–Carroll complete replacement scheme (1) rapidly converge (a). Differences between

corresponding variables approach zero (b).

The two connected chaotic systems are conceived to be effectively unpredictable, but exhibit

significant correlations if connected by a signal that is conceived to be effectively inscrutable. Taking

these views of the systems and their connection as valid, we have an instance of an acausal synchronous

relationship. To the extent that relationships between physical systems analogous to (1) occur in nature,

synchronism becomes a valid physical principle.

It is important that the “acausal” correlations arise in the context of a perfectly causal, deterministic

system. However, the same could be said of the examples of synchronicity given by Jung. Those

surprising coincidences occurred in systems that one would imagine to be governed by ordinary

deterministic physics, with a history of connection between the two systems, but that connection would
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not have been readily interpreted as causal. The synchronistic behavior emerges as a higher-order

relationship, i.e., an epiphenomenon, in causal systems that could not have been predicted from

existing causal theory. Synchronicity thus does not logically contradict causality, but transcends it.

In nonlinear computational models governed by causal relationships, synchronicities not predicted from

theory are detected in numerical experiments. If physical systems manifest such relationships as in the

pair of coupled Lorenz systems, as will be illustrated below, then synchronicity might be accounted

for rationally.

Synchronization can indeed occur with weaker forms of coupling than the complete replacement of

one variable by its corresponding variable as in (1), but degrades below a threshold coupling strength.

Typically, synchronization degrades via on-off intermittency [19], where bursts of desynchronization

occur at irregular intervals or as “generalized” synchronization [20], where a strict correspondence

remains between the two systems, but that correspondence is given by a less tractable function than

the identity. As shown schematically in Figure 3, as differences between the two systems increase, the

correspondence changes from the identity to a smooth function that approximates the identity, to one

given by a function that is nowhere differentiable. The last case is in fact common [21].

x

x

’

sync.

manifold

x

x

’

sync.
manifold

(a) (b) (c)

Figure 3. Transition from identical to generalized synchronization, illustrated by the

relationship between a pair of corresponding variables x and x′: projections of the

synchronization manifold onto the (x, x′) plane are shown for (a) identical synchronization,

(b) generalized synchronization with near-identical correspondence and (c) generalized

synchronization with a correspondence function that is nowhere smooth.

While initial research on synchronized chaos was motivated by potential applications to secure

communication schemes using electronic circuits, the phenomenon has also been demonstrated in

lasers [22] and ferromagnetic materials [23], as well as in the fluid dynamical systems discussed below.

In applications to physical systems, it is natural to consider forms of coupling that embody a time

delay. If one extends chaos synchronization to the realm of naturally-occurring systems, the delay

in transmission ought to be described in terms of the same physics that governs the evolution of the

systems separately. To a first approximation, let us assume that the time scale of the delay is the same as

some intrinsic dynamical time scale of each system. Consider the following configuration of two Lorenz

systems, coupled through an auxiliary variable S that introduces a delay:
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Ẋ = σ(Y −X)

Ẏ = ρ(X − S)− Y − (X − S)Z

Ż = −βZ + (X − S)Y

Ṡ = −ΓS + Γ(X −X1)

Ẋ1 = σ(Y1 −X1)

Ẏ1 = ρ(X1 + S)− Y1 − (X1 + S)Z1 (2)

Ż1 = −βZ1 + (X1 + S)Y1

System (2) is a generalization of the Pecora–Carroll coupling scheme (1) to a case with bidirectional

coupling and where each subsystem is partially driven and partially autonomous.

As Γ → ∞ in (2), with Ṡ finite, S → X − X1. In this limit, the system reduces to a bidirectionally

coupled version of (1), which indeed synchronizes. In the general case of the coupled System (2) with

finite Γ, the subsystems exchange information more slowly: if X and X1 are slowly varying, then S

asymptotes to X −X1 over a time scale 1/Γ. Thus, Γ is an inverse time lag in the coupling dynamics.

Synchronization along trajectories of System (2) is represented in Figure 4 as the difference Z − Z1

vs. time, for decreasing values of Γ. For large Γ, the case represented in Figure 4a, the subsystems

synchronize. As Γ is decreased in Figure 4b–d, corresponding to increased time lag, increasingly

frequent bursts of desynchronization are observed, until in Figure 4d (uncoupled systems), no portion

of the trajectory is synchronized. The bursting behavior can be understood as an instance of on-off

intermittency [19,24], the phenomenon that can occur when an invariant manifold containing an attractor

loses stability, so that the attractor is no longer an attractor for the entire phase space, but is still effective

in portions of the phase space. Trajectories then spend finite periods very close to the invariant manifold,

interspersed with bursts away from it.

The case of a coupling time lag that is of the same order as the prescribed physical time scale in the

simple Lorenz system corresponds to Γ = 1, with behavior as in Figure 4c. Although there is little trace

of synchronization, the average instantaneous distance between the subsystems is less than it is in the

uncoupled case. More interestingly, there is a very short period of nearly complete synchronization. In a

very long integration, such “synchronicities”, of moderately short duration, occur more commonly than

they would by chance in unrelated systems, as seen in the histograms in Figure 4e, showing the total

time in synchronicities of the given duration for the two cases.

System (2) is indeed analogous to the one derived from a pair of geophysical fluid models coupled by

standing waves in narrow ducts [2]. Auxiliary variables analogous to S in (2) arise by first decomposing

the field into a piece that satisfies the full nonlinear equations with homogeneous boundary conditions

and a second piece that satisfies a linear system with matching boundary conditions in the region of the

narrow ducts. The linear equations are solved using boundary Green’s functions that effect a time delay.

The auxiliary variables are integrals of products of the boundary Green’s functions and differences of

corresponding field variables from the two sides of the ducts. Intermittent synchronization of the two

ODE systems implies correlations between large-scale weather patterns in the mid-latitude regions of the

Northern and Southern Hemispheres, since they are connected by “duct” regions in the tropics, where

prevailing winds are westerly and Rossby waves can thus propagate [2].

The relevance of low-order chaos to very high-dimensional geophysical systems may seem

questionable, but both chaos and synchronization/control have already been applied to simple models
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of the the El Niño-Southern Oscillation (ENSO) cycle [25]. ENSO is known to correlate with a large

number of global weather phenomena. The intermittency in the synchronization in the two-hemisphere

model is a result of the time delay in the coupling between the hemispheres, but such delays play an

important role in other geophysical models [26], accounting for the irregularity of the ENSO cycle [27].

If one were to couple a delayed oscillator model of ENSO, such as [27], to models of other climate

subsystems that are physically connected, then notwithstanding that the delay here is within a subsystem

rather than between subsystems, new geophysical “synchronicities” might emerge, perhaps stronger than

the weakly correlated blocking effect, but similarly unexpected.

o

(a) (b) (c)

(d) (e)

Figure 4. The difference between the simultaneous states of two Lorenz systems with

time-lagged coupling (2), with σ = 10., ρ = 28., and β = 8/3, represented by Z(t)− Z1(t)

vs. t for various values of the inverse time lag Γ illustrating complete synchronization

(a), intermittent or “on-off” synchronization (b), partial synchronization (c) and de-coupled

systems (d). The average Euclidean distance 〈D〉 between the states of the two systems in

X, Y, Z-space is also shown. A histogram of the lengths of periods of “synchronicity”, such

as the one indicated by the arrow in (c), is shown in (e) for the time-delayed coupling case

(solid line) and a case of two unrelated Lorenz trajectories (dashed line), where synchronicity

intervals are periods during which |Z(t)− Z1(t)| < 5.
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The co-occurrence of the weather patterns in the two hemispheres could not have been predicted from

the mere existence of the narrow connecting ducts. One needs to study the real system, or a sufficiently

complex numerical model thereof, to observe the synchronous behavior. The small statistical correlations

induced by wave transmission through the ducts were indeed surprising (but not particularly useful),

although the “blocking” behavior, to be described in Section 4, had been familiar for several decades.

The tendency of blocks to co-occur, which is reminiscent of Huygens’ clocks or synchronized hormonal

cycles in female roommates, but constructed from systems that are individually unpredictable, supports

the existence of synchronicity as an organizational principle that transcends causality.

Thus, the term “acausal” is interpreted here phenomenologically. One can always find causal

mechanisms, as with the wall connection between Huygens’ clocks or the weak molecular signal (a

relatively recent discovery) linking female roommates. Subtle causal chains can always be found

between any two events that can be linked by a light signal or which have a common history. If

one insists, one can regard synchronicity as an epiphenomenon, secondary to the underlying causal

relationships. However, it is often more convenient and useful to describe complex systems directly

in terms of synchronous patterns without attention to causal mechanisms. It is the assertion of this

paper that such an approach potentially applies to all phenomena that philosophers and laypersons have

historically categorized as synchronistic.

The impact of chaos synchronization is enhanced greatly by the phenomenon of small-world

networks. One can consider a large array of chaotic oscillators with local and/or long-range connections

among them. In a small-world network, a few long-range connections are sufficient to sharply decrease

the average degree of separation between any two oscillators, as occurs more generally in a scale-free

network in which the number of highly connected nodes decreases with the number of their connections

according to a power law [9]. Randomly connected networks of this type can be expected to synchronize

more readily than regular networks that are connected only in local neighborhoods: the introduction of

a few long-range connections can lead to a phase transition to long-range synchronization [28–31].

3. Machine/Human Perception as a Synchronization of Reality and Model

The connection between synchronized chaos and mind-matter synchronicity is best illustrated by

another application to meteorology, a field that inspired the modern notion of chaos [15]. Computational

models that predict weather include a feature not found in numerical solutions of simpler initial-value

problems: as new data are provided by observational instruments, the models are continually

re-initialized. This data assimilation procedure combines observations with the model’s prior prediction

of the current state, since neither observations nor model forecasts are completely reliable, so as to form

an optimal estimate of reality at each instant in time. While similar problems exist in other fields, ranging

from financial modeling, to factory automation, to the real-time modeling of biological or ecological

systems, data assimilation methods have been researched more extensively and are more developed in

meteorology [11,32–34] than in other fields.

Since the problem of data assimilation arises in any situation requiring a computational model of a

parallel physical process to track that process as accurately as possible based on limited input, it has

been asserted that the broadest view of data assimilation is that of machine perception by an artificially
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intelligent system [35]. Like a data assimilation system, the human mind forms a model of reality

that functions well, despite limited sensory input, and one would like to impart such an ability to the

computational model.

The usual approach to data assimilation is to regard it as a tracking problem that can be solved using

Kalman filtering or generalizations thereof [11]. However, clearly, the goal of any data assimilation is

to synchronize the model with reality, i.e., to arrange for the former to converge to the latter over time.

Thus, the synchronously-coupled systems of the previous section are re-interpreted as a “real” system

and its model. In System (1), for instance, we imagine that the world is a Lorenz system, that only the

variable X is observed and that the observed values are passed to a perfect model.

The above philosophical considerations have motivated efforts to recast data assimilation as a

synchronization problem and attempts to thus improve assimilation algorithms [35–37]. It may seem

a large stretch from three-variable systems to the human mind, but the use of low-order systems to

study problems that arise in numerical weather models is common practice in meteorology, popularized

especially by E.N. Lorenz. These numerical models, intended to represent turbulent fluid behavior over

a vast range of scales, are among the most complex computational models known. It is remarkable that

such models are capable of tracking reality using only a sparse, temporally intermittent set of noisy

observations.

To demonstrate the relevance of synchronization in low-order systems, it is first necessary to show

that the phenomenon persists as the dynamical dimension of the model is increased to realistic values.

Chaos synchronization in the sort of models given by systems of partial differential equations that are of

interest in meteorology and other complex modeling situations has indeed been established. Pairs of 1D

PDE systems of various types, coupled diffusively at discrete points in space and time, were shown to

synchronize by Kocarev et al. [6].

Synchronization in geofluid models that are relevant to weather prediction was demonstrated by

Duane and Tribbia [4,5]. The models [38] are given in terms of the stream function ψ(x, y, i, t) in

a two-layer (i = 1, 2) channel, contours of which are streamlines of atmospheric flow, as shown in

Figure 5, and a derived field variable, the potential vorticity qi ≡ f0+βy+∇2ψi+R−2
i (ψ1−ψ2)(−1)i,

with constants as defined in the reference. The dynamical equation for each model is:

Dqi/Dt ≡ ∂qi/∂t + J(ψi, qi) = Fi +Di (3)

where the Jacobian J(ψ, ·) ≡ ∂ψ

∂x
∂·
∂y

− ∂ψ

∂y
∂·
∂x

= vy
∂·
∂y

+ vx
∂·
∂x

gives the advective contribution to the

Lagrangian derivativeD/Dt. Equation (3) states that potential vorticity is conserved on a moving parcel,

except for forcing Fi ≡ µ(q∗i − qi) and dissipationDi, as defined in [5]. The forcing induces a relaxation

to a jet-like background flow ψ∗ (Figure 5a,b) with q∗ ≡ q(ψ∗), injecting energy into the system.

Two models of the form (3),DqA/Dt = FA+DA andDqB/Dt = FB+DB, were coupled diffusively

through a modified forcing term FB
k

= µc
k
[qA

k
−qB

k
]+µext

k
[q∗

k
−qB

k
], where the flow has been decomposed

spectrally and the subscript k on each quantity indicates the wave number k spectral component. The

two sets of coefficients µc
k

and µext
k

were chosen to couple the two channels only in some medium range

of wavenumbers.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Stream function (in units of 1.48 × 109 m2s−1) describing the forcing ψ∗ (a,b),

and the evolving flow ψ (c–f), in a parallel channel model with coupling of medium-scale

modes for which |kx| > kx0 = 3 or |ky| > ky0 = 2, and |k| ≤ 15, for the indicated

numbers n of time steps in a numerical integration (generalizing to bidirectional coupling,

for convenience). Parameters are as described previously [5]. An average stream function

for the two vertical layers i = 1, 2 is shown. Synchronization occurs by the last time shown

(e,f), despite differing initial conditions (c,d).

It was found that the two channels rapidly synchronize if only the medium-scale modes are coupled

(Figure 5), starting from different initial flow patterns. For unidirectional coupling, the synchronization

would effect assimilation of Fourier-space data from the A channel into the B channel. The restriction

to coupling of medium-scale modes is a Fourier-space counterpart to assimilating data from discrete,

well-separated observation points. It has been shown analytically that optimal synchronization is

equivalent to Kalman filtering when the dynamics change slowly in phase space, so that the same linear

approximation is valid at each point in time for the real dynamical system and its model. When the

dynamics change rapidly, as in the vicinity of a regime transition, one must consider the full nonlinear

equations, and there are better synchronization strategies than Kalman filtering or the popular method

of ensemble Kalman filtering [39]. The deficiencies of the standard methods, which are well known

in such situations, are usually remedied by ad hoc corrections, such as “covariance inflation” [40]. In

the synchronization view, such corrections can be derived from first principles [35,41]. In other work

by Abarbanel [36], the synchronization view has led to new assimilation algorithms in which nudging

coefficients can be made to decrease over time. While neither scheme has been developed for application
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to practical weather forecasting, these preliminary theoretical results demonstrate the analytical power

of viewing perception as synchronization of truth and model.

It is suggested here that biological perception can also be described as synchronization of brains

with sensory input. A view of the brain-world relationship in the context of the brain as an open,

dissipative system has been put forward by Vitiello [42]. However, as yet, there has been little work on

synchronization of neural models with input time series, although synchronization within such models

plays a large role in generating realistic EEG patterns (e.g., [43,44]) and in internal organization of

information [45]. Some recent work on auditory perception indicates that brain rhythms synchronize

with the syllabic rate in speech input, so as to parse syllables [46].

4. Internal Sync vs. Mind-Matter Sync and the Role of Meaning

In the context of data-assimilation/machine-perception, the role of synchronism is indeed reminiscent

of Jung’s notion of synchronicity in the relationship between mind and the material world. However,

in the latter view, and in the popular culture surrounding the notion, the alleged relationships between

events, mental or physical, are detected without close inspection and are “meaningful”. In this section,

it is argued that meaningfulness is realized naturally in terms of the internal coherence that is typically

present in any system that synchronizes with an external system and, thus, that the scientific view of

synchronization should satisfy philosophers in this regard, as well.

Prior use of the idealized geophysical model considered above illustrates how “meaning” would

enter. The quasi-geostrophic channel model was originally developed to represent the geophysical

“index cycle”, in which the large-scale mid-latitude atmospheric circulation vacillates, at apparently

random intervals, between two types of flow [38]. In the “blocked flow” regime, e.g., Figure 6a,

a large high-pressure center, typically over the Pacific or Atlantic, interrupts the normal flow of

weather from west to east and causes a build-up of extreme conditions (droughts, floods, extreme

temperatures) downstream. In the “zonal flow” regime, e.g., Figure 6b, weather patterns progress

normally. Synchronization of flow states, complete or partial, implies correlations between the regimes

occupied by two coupled channel models at any given time. Such correlations, in the context of

synchronization between reality and model, are indeed meaningful to meteorologists and to the residents

of the regions downstream of any blocks. Synchronization of two highly simplified versions of

the channel model has been used to predict correlations between blocking events in the Northern

and Southern Hemispheres [2,3], and synchronization of two channel models has been used to infer

conditions under which Atlantic and Pacific blocking events can be expected to anticorrelate [4,5].

To generalize from the geophysical models, we note that blocks are “coherent structures”, as

commonly arise in a variety of nonlinear field theories. Such structures, of which solitons are perhaps the

best known example, persist over a period of time because of a balance between nonlinear and dispersive

effects. While no generally accepted definition of “coherent structure” has been articulated, one view

of their fundamental nature can support the proposed general connection with meaningfulness. For a

structure to persist, the different degrees of freedom of the underlying field theory must continue to

satisfy a fixed relationship as they evolve separately. That behavior defines generalized synchronization,

the phenomenon in which two dynamical systems synchronize, but with a correspondence between
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states given by a relationship other than the identity [20]. Coherent structures are then characterized by

internal generalized synchronization within a system. As state variables that are generally synchronized

with other state variables reveal additional information, it is proposed that such relationships capture

“meaningfulness” in the usual sense of that term.

(a) (b)

Figure 6. Stream function (in units of 1.48 × 109 m2s−1) describing a typical blocked flow

state (a) and a typical zonal flow state (b) in the two-layer quasi-geostrophic channel model.

An average stream function for the two vertical layers i = 1, 2 is shown.

Meaningfulness is even more naturally defined as internal synchronization within mind. A response

to a given external stimulus by any “element” of mind is likely to be deemed meaningful if there are

synchronized, parallel responses of other mental elements.

No reference has been made to the semantic meaning of the meaningful structures. Rather, the

function of internal synchronization is that of parsing, or perceptual grouping, which must precede

interpretation. Synchronization is indeed known to play a role in perceptual grouping in real neural

systems, as discussed below in Section 5. An example is the “cocktail party problem” of how a listener

groups sounds in a crowded room into individual voices, to each of which meaning can be assigned. von

der Malsburg hypothesized that the grouping occurs when neurons responding to the different frequency

components of a given voice, at any given time, momentarily synchronize their spike trains [47]. In the

visual domain, the corresponding process is the synchronization of neurons that respond to features in the

visual field that belong to the same object, so that meaning can subsequently be assigned to that object

at higher levels of processing. In digital image processing, the task of automatic image segmentation

into meaningful components is often harder than the task of interpreting those components; cellular

neural network architectures have been proposed in which segmentation is manifest as synchronization

of units corresponding to each meaningful component within the 2D field and de-synchronization

between different meaningful components [48,49] (The synchronization must be delicately controlled to

be useful. An excess of synchronization can lead to such pathological conditions as epileptic seizures).

If coherent structures defined by synchronization within a system are meaningful, the question

remains of whether the correspondence between two co-occurring structures in two different systems,

which might define a synchronicity, is itself meaningful, i.e., whether the structures are properly paired.

In the typical case (especially in the case of a real system and its model), there is enough similarity

between the synchronizing systems that a meaningful pairing is likely.

It remains to show that internal synchronization is likely in each of a pair of dynamical systems that

exhibit synchronized chaos. It has indeed been hypothesized that internal synchronization is required for

synchronizability with an external system [50]. The essential role of coherence in synchronizing systems
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was examined by considering a pair of Hamiltonian systems, for which complete synchronization is

precluded, because phase-space volumes of ensembles of trajectories are preserved, by Liouville’s

theorem. It turns out that the form of the resulting incomplete, residual synchronization highlights the

role of coherent structures.

We consider a nonlinear scalar field theory, in an expanding universe, that gives rise to

“oscillons”—coherent structures in the field that oscillate in fixed, randomly-placed locations—as do

similar structures that were first noted in vibrating piles of sand [51]. The expansion of the Universe

plays a role in the cosmological case that is analogous to the role of frictional dissipation in the sand

piles—entropy is cast off to smaller scales in the expanding coordinate system, corresponding to newly

created space in a fixed coordinate system. However, unlike the sand piles, the cosmological system is

governed by a time-dependent Hamiltonian, and Liouville’s theorem still applies. The one-dimensional

model is given by the relativistic scalar field equation, with a nonlinear potential term, in an expanding

background geometry described by a Robertson–Walker metric with Hubble constantH . Using covariant

derivatives for that metric in place of ordinary derivatives, one obtains the field equation:

∂2φ/∂t2 +H∂φ/∂t− e−2Ht∂2φ/∂x2 + V ′(φ) = 0 (4)

The scalar field exhibits oscillon behavior for some forms of the nonlinear potential V (Figure 7a),

but not for others (Figure 7b).

(a)

(b)

Figure 7. Energy density ρ = (1/2)e−Ht(φx)
2 + (1/2)eHt(φt)

2 + eHtV (φ) vs. position

x for a numerical simulation of the Scalar Field Equation (4) with the potential V (φ) =

(1/2)φ2 − (1/4)φ4 + (1/6)φ6, exhibiting localized oscillons (a), and a simulation of the

same equation, but with a different potential V (φ) = (1/2)φ2 + (1/4)φ4 + (1/6)φ6, for

which oscillons do not occur (b).



Entropy 2015, 17 1714

Where oscillons exist, a crude form of synchronized chaos is observed for a pair of loosely-coupled

scalar field systems (a configuration that is introduced to study the synchronization patterns, without

physical motivation), as seen in Figure 8. The fields do not synchronize, but the oscillons in the two

systems tend to form in the same locations. The phases of the oscillons do not necessarily agree, so

neither do we have an example of phase synchronization—the celebrated phenomenon [52,53] in which

a system that is chaotic can nevertheless be assigned a phase that matches that of a second system.

Oscillon frequencies depend on their amplitudes, which are generally different for a pair of oscillons

whose positions correspond, and so the phases cannot agree (additionally, it is not clear how one would

define a phase for a multi-oscillon system that would capture information about their positions). For a

potential that does not support oscillons, the positional coincidence is trivially absent, and there is no

correlation between corresponding components of the underlying field. Synchronization in this case can

only be interpreted in terms of coherent structures in the separate systems.

Figure 8. The local energy density ρ vs. x for two simulations (solid and dashed lines) of

the Scalar Field Equation (4), coupled to one another only through modes of wavenumber

k ≤ 64, where modes up to kmax = 214 are realized numerically (ρ for the second system

(dashed line) is also shown reflected across the x-axis for the ease of comparison). The

coincidence of oscillon positions is apparent.

In a system as simple as the three-variable Lorenz model, the hypothesis about the relationship

between internal and external synchronization is also validated. In this case, the relationship gives

insight about which variables can be coupled to give synchronized chaos. Along the Lorenz attractor,

the variables X and Y partially synchronize, resulting in the near-planar shape, while Z is independent.

Consistently with the internal-external synchronization hypothesis, either X or Y , but not Z, can be

coupled to the corresponding variable in an external system to cause the two systems to synchronize, as

is well known.

To summarize, the meaningfulness of a synchronization pattern, as philosophically required, is

naturally defined in terms of internal synchronization, or coherent structures, involving some of the

variables that synchronize externally. However, external synchronization usually (or, by hypothesis,

always) implies the existence of internal synchronization and, hence, meaning.
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5. Sync as an Organizational Principle in Mind and in Computational Modeling

If chaos synchronization provides a rational foundation for philosophical synchronicity, it should

give deeper insight regarding apparent synchronicity in physical and psychological phenomena and

underlying mechanisms. In the psychological realm, it has already begun to appear that synchronized

oscillations play a key role. Synchronized firing of neurons has been introduced as a mechanism for

grouping of different features belonging to the same physical object [47,54,55]. If a moving bar is

presented to a cat, then neurons responding to opposite ends of the bar, which may be widely separated

within the visual cortex, synchronize their spike trains, even if the middle of the bar is missing [54].

Analogous neural synchronization phenomena describe the coordination of different muscles involved

in motor control for a complex activity. Debates over the physiological basis of consciousness have

centered on the question of what groups or categories of neurons must fire in synchrony in a mental

process for that process to be a “conscious” one [56]. It was argued previously that patterns of

synchronized firing of neurons provide a particularly natural and useful representation of objective

grouping relationships, with chaotic intermittency allowing the system to escape locally optimal patterns

in favor of global ones [57], following an early suggestion of Freeman’s [58]. Ambiguous figures, of the

sort depicted by Escher, for instance, typically arise when more than one grouping of different features is

possible. Intermittent synchronization patterns in the fields of neurons that respond to the features would

give alternating interpretations of the same figure. The observed, highly intermittent synchronization of

40-Hz neural spike trains could play just such a role, an idea that has been supported in more specific

studies of brain function [45].

Since in the experiment with the cat, for instance, the cat’s consciousness is focused on the bar,

the role of spike train synchronization in perceptual grouping has led to speculations about the role of

synchronization in consciousness [9,47,56,59]. However, here, we suggest a relationship between neural

synchronization and consciousness on a more naive basis: the hallmark of conscious thought, defined

subjectively, is the ability to focus on one’s own thoughts and to influence them as one would interact

with external events. Thus, consciousness can be framed as self-perception and then placed on a similar

footing as perception of the objective world. In this view, there must be semi-autonomous parts of a

“conscious” mind that perceive one another. In the interpretation of Section 3, these components of the

mind synchronize with one another, or in alternative language, they perform “data assimilation” from

one another, with a limited exchange of information.

Such a scheme has actually been proposed, and is currently being investigated, for the fusion of

alternative computational models of the same objective process in a practical context [60,61]: different

numerical models used to predict climate change in the 21st century differ by as much as a factor of two in

the amount of globally-averaged warming and differ completely in their projections for specific regions

of the globe. Current practice is just to average the results of the different models. By synchronizing a

small set of alternative models with each other, a more reliable and detailed consensus could be obtained.

Taking the interpretation of consciousness that motivates such computational schemes seriously,

imagine again that the world is a three-variable Lorenz system, perceived by three different components

of mind, also represented by Lorenz systems, but with different parameters. The three Lorenz systems

also “self-perceive” each other. Three imperfect “model” Lorenz systems were generated by perturbing
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parameters in the differential equations for a given “real” Lorenz system and adding extra terms. The

resulting suite is: ẋ = σ(y − z), ẏ = ρx− y − xz, ż = −βz + xy, and

ẋi = σi(yi − zi) +
∑

j 6=i

Cx
ij(xj − xi) +Kx(x− xi)

ẏi = ρxi − yi − xizi + µi +
∑

j 6=i

Cy
ij(yj − yi) +Ky(y − yi) (5)

żi = −βizi + xiyi +
∑

j 6=i

Cz
ij(zj − zi) +Kz(z − zi)

where (x, y, z) is the real Lorenz system and (xi, yi, zi) i = 1, 2, 3 are the three models. An extra term µ

is present in the models, but not in the real system. Because of the relatively small number of variables

available in this toy system, all possible directional couplings among corresponding variables in the three

Lorenz systems were considered, giving 18 connection coefficients CA
ij A = x, y, z i, j = 1, 2, 3 i 6=

j. The constantsKA A = x, y, z are chosen arbitrarily so as to effect “data assimilation” from the “real”

Lorenz system into the three coupled “model” systems. The configuration is schematized in Figure 9.

Figure 9. “Model” Lorenz systems are linked to each other, generally in both directions

and to “reality” in one direction. Separate links between models, with distinct values of the

connection coefficients C ij
l , are introduced for different variables and for each direction of

possible influence.

The connections Cij linking the three model systems can be chosen using yet a further extension

of the synchronization paradigm: if two systems synchronize when their parameters match, then under

some weak assumptions, as was proven in [62], it is possible to prescribe a dynamical evolution law for

general parameters in one of the systems, so that the parameters of the two systems, as well as the states

will converge. In the present case, the tunable parameters are taken to be the connection coefficients (not

the parameters of the separate Lorenz systems), and they are tuned under the peculiar assumption that
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reality itself is a similar suite of connected Lorenz systems. The general result [62] gives the following

adaptation rule for the couplings:

Ċx
i,j = a(xj − xi)

(

x−
1

3

∑

k

xk

)

− ǫ/(Cx
i,j − Cmax)

2 + ǫ/(Cx
i,j + δ)2 (6)

with analogous equations for Ċy
i,j and Ċz

i,j , where the adaptation rate a is an arbitrary constant and the

extra terms with coefficient ǫ dynamically constrain all couplings CA
i,j to remain in the range (−δ, Cmax)

for some small number δ. Without recourse to the formal result on parameter adaptation, the rule (6)

has a simple interpretation: time integrals of the first terms on the right-hand side of each equation give

correlations between truth-model synchronization error, x− 1
3

∑

k xk, and inter-model “nudging”, xj−xi.

We indeed want to increase or decrease the inter-model nudging, for a given pair of corresponding

variables, depending on the sign and magnitude of this correlation (The learning algorithm we have

described resembles a supervised version of Hebbian learning. In that scheme, “cells that fire together

wire together.” Here, corresponding model components “wire together” in a preferred direction, until

they “fire” in concert with reality.). The procedure will produce a set of values for the connection

coefficients that is at least locally optimal in the multidimensional space of connection values.

A simple case is one in which each of the three model systems contains the “correct” equation for

only one of the three variables and “incorrect” equations for the other two. The “real” system could then

be formed approximately using large connections for the three correct equations, with other connections

vanishing, and the peculiar assumption is strictly true if the large connections become infinite. Other

combinations of model equations will also approximate reality.

Several things have been learned from “supermodels”, such as the one defined by (5) and (6). First,

it is not difficult to define adequate inter-model connections. In a numerical experiment (Figure 10a),

the couplings did not converge, but the coupled suite of “models” did indeed synchronize with the “real”

system, even with the adaptation process turned off half-way through the simulation, so that the coupling

coefficients CA
i,j subsequently held fixed values. (The three models also synchronized among themselves

nearly identically.) Second, the inter-model connections are needed, despite efforts, common in the

modeling community [63], to combine only the outputs of independently run models using Bayesian

reasoning. The difference between corresponding variables in the “real” and coupled “model” systems

was significantly less than the difference using the average outputs of the same suite of models, not

coupled among themselves (Figure 10b). Further, without the model-model coupling, the output of the

single model with the best equation for the given variable (in this case, z, modeled best by z1 in Model 1)

differed even more from “reality” than the average output of the three models (Figure 10c). Therefore,

it is unlikely that any ex post facto weighting scheme applied to the three outputs would give results

equaling those of the synchronized suite. Internal synchronization within the multi-model “mind” is

essential. Third, the choice of semi-autonomous models to be combined is not essential, as long as the

“gene pool” of models is diverse. In a case where no model had the “correct” equation for any variable,

results deteriorated only slightly (Figure 10d).
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Figure 10. Difference zm−z between “model” and “real” z vs. time for a Lorenz system with

ρ = 28, β = 8/3, σ = 10.0 and an interconnected suite of models with ρ1,2,3 = ρ, β1 = β,

σ1 = 15.0, µ1 = 30.0, β2 = 1.0, σ2 = σ, µ2 = −30.0, β3 = 4.0,σ3 = 5.0, µ3 = 0. The

synchronization error is shown for (a) the average of the coupled suite zm = (z1+z2+z3)/3

with couplingsCA
ij adapted according to (6) for 0 < t < 500 and held constant for 500 < t <

1,000; (b) the same average zm, but with all CA
ij = 0; (c) zm = z1, the output of the model

with the best z equation, with CA
ij = 0; (d) as in (a), but with β1 = 7/3, σ2 = 13.0, and

µ3 = 8.0, so that no equation in any model is “correct” (analogous comparisons for x and y

give similar conclusions).

The above scheme for the fusion of imperfect computational/mental models only requires that the

models come equipped with a procedure to assimilate new measurements from an objective process

in real time and, hence, from one another. Such procedures are indeed available for the long-range

climate projection models, which differ significantly among themselves in regard to the magnitude and

regional characteristics of expected global warming [64] (to project 21st century climate, the models are

disconnected from reality after training, parameters are altered slightly to represent increased greenhouse

gas levels, and one assesses changes in the overall shape of the attractor). Toward the intended

application, results with Lorenz systems were thoroughly confirmed and extended using a learning

method that minimizes synchronization error over finite-length trajectories, instead of the instantaneous

error as above, to determine inter-model connections [60,61]. The scheme could also be applied to



Entropy 2015, 17 1719

financial, physiological or ecological models. It could conceivably also describe the combination of

individuals to form a society (cf. [65]), in models and in reality.

In the realm of mind, the sharpening of the transition to synchronization as the suite of interconnected

systems increases in size (e.g., as in the Kuramoto model [66]) is taken here to bolster the previous

suggestions that synchronization plays a fundamental role in conscious mental processing (we have

focused on assimilation/perception, but analogous constructions could be applied to the opposite problem

of control—the interaction between mind and matter is two-way). For application to mind, we imagine

that the systems are neurons or collections of neurons (for a large number of simple systems, a mean field

theory could represent the interaction of each system with the collective effect of the others). Note that

the proposed role of synchronization is markedly different from Pauli’s view of mental phenomena as

“something objectively psychical which cannot and should not be explained by material causes” [10,67].

Here, mental phenomena are grounded in the material reality of neuronal systems, even if their dynamical

properties are qualitatively different from those of the much higher dimensional physical world that

they represent.

To describe ordinary mental phenomena, one needs a notion of synchronization at slower time

scales and higher levels of organization, so that alternative representations of the same objective reality

within the brain can fuse to form a conscious percept. Thus, the synchronization view suggests

a new direction of research, since it remains to integrate a theory of higher-level synchronization

with the known synchronization of 40-Hz spike trains. There is indeed evidence that internal

synchronization within the brain is greater during successful encoding of new information and during

recognition [68], supporting a connection between higher level brain-reality synchronization and short

time scale internal synchronization. It is certainly plausible that synchronization at higher levels could

rest on synchronization at shorter time scales. Inter-scale interactions played a similar role in the

synchronization of a range of Fourier components of the same field in the synchronously coupled systems

of partial differential equations considered in Section 3. Conversely, feedback from the interpretive

stages might trigger or reinforce the low-level synchronization. This indeed must occur to explain the

known neural phenomena in visual grouping [54], but realistic models remain to be constructed. In

such models, with a steady stream of new input data, natural noise or chaos would cause the periods of

high-quality synchronization across the system to be brief (as in Figure 4c) (cf. [69]). Analogous neural

synchronicities at multiple levels of a processing hierarchy in a real organism would appear subjectively

as consciousness.

6. Sync in Quantum Theory

It has been asserted that an “acausal connecting principle” applies not only to the relationship between

mind and matter, or to relationships within mind, but also applies to matter itself. Turning to the realm

of basic physics, the fundamental role of synchronism is most evident in the surprising long-distance

correlations that characterize quantum phenomena. The Einstein–Podolsky–Rosen (EPR) phenomenon,

viewed in light of Bell’s theorem, implies that spatially separated physical systems with a common

history continue to evolve as though connected with each other and with observers. Bell’s theorem

definitively asserts that observed correlations between two spatially separated spin-1/2 particles arising
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from the decay of a common spin-0 ancestor cannot be explained in terms of a causal relationship to the

initial decay conditions alone. Such a relationship would imply that the binary-valued spins A and B

are only functions of the orientations a and b of the respective measuring devices and of some hidden

variables represented collectively by λ, i.e., A = A(a, λ),B = B(b, λ). In general, λ designates the state

of the joint system at some initial time. One then defines the correlation P between the two measured

spins as a function of the two orientations a and b, P (a, b) ≡
∫

ρ(λ)A(a, λ)B(b, λ)dλ, where ρ(λ) is any

function specifying a probability distribution of the hidden variables, i.e.,
∫

ρ(λ)dλ = 1. One introduces

a third orientation b′, and considers the difference P (a, b) − P (a, b′) = −
∫

dλρ(λ)[A(a, λ)A(b, λ) −

A(a, λ)A(b′, λ)] =
∫

dλρ(λ)A(a, λ)A(b, λ)[A(b, λ)A(b′, λ) − 1] having used the convention A = ±1,

B = ±1 and having substitutedB(b, λ) = −A(b, λ). It follows that |P (a, b)−P (a, b′)| ≤
∫

dλρ(λ)[1−

A(b, λ)A(b′, λ)], which is Bell’s inequality [70]:

|P (a, b)− P (a, b′)| ≤ 1 + P (b, b′) (7)

The standard quantum theoretic result P (a, b) = − cos(a−b) violates (7) (as does any smooth function),

so the general hidden-variable form A = A(a, λ), B = B(b, λ), based on spin systems that evolve

independently after the initial decay, is ruled out.

A key assumption is that the observer is free to alter his choice of measurement orientation, from b to

b′, without changing the initial state parameters λ. If one takes the “superdeterminist” view that negates

this sense of free will, so that the observers’ choices are also determined by the initial state, then one can

avoid the Bell paradox. That is the route taken by ’t Hooft [71] and by Palmer [72].

However, if one leaves the usual notion of free will intact, the picture of the quantum world that

emerges from Bell’s theorem is one in which entanglement and nonlocal connections are pervasive, even

among virtual particles in the vacuum, defining a web of relationships similar to the one implied by the

ubiquity of chaos synchronization. As with synchronized chaos, quantum entanglement can be used for

cryptography, an analogy that was developed in prior work [73].

All of the above considerations are avoided in the standard (Copenhagen) interpretation of quantum

mechanics in which the hidden variables λ do not exist, and measured quantities are a result of the

act of measurement, with no correspondence to prior properties of the measured system. But there is

nonlocality even in the standard interpretation, since a spin-measurement of a particle must also affect

the spin of its distant EPR partner. Could the relationship between the two particles resemble that

between Huygens’ clocks? If one assumes hidden variables, one may naturally seek an interpretation

of EPR correlations in terms of synchronized chaotic oscillators, putting quantum theory on a non-local

deterministic footing. Bell’s theorem denies the possibility of either a quantum theory or an underlying

hidden-variable theory that is local, so some form of non-locality is required, but that non-locality should

still not allow faster-than-light signals, which would violate relativity. Bohm [74,75], rediscovering de

Broglie’s suggestion, introduced an explicitly non-local potential to construct a theory that was entirely

equivalent in its predictions to standard non-relativistic quantum theory. In a two-slit experiment, for

example, a particle can follow one of two paths defined by potential valleys, with the choice of path

sensitively dependent on initial conditions, as in a chaotic system. However, the many-body form of the

potential is typically unanalyzable, an issue that arises especially in extension to relativistic field theory.

The view taken here is that Bohm’s interpretation is an “existence proof” of the possibility of a hidden
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variable theory, countering von Neumann’s earlier alleged proof that such theories are impossible [76];

and not a satisfactory theory as it stands.

In ’t Hooft’s more recent interpretation [71,77,78], which might ultimately generate testable

predictions at the microscale, there is a weaker form of non-locality due to the presence of Planck-scale

black holes and an essential entanglement between the choices made by an observer (a and b above)

and the observed state, as must arise, since “free will” in making such choices is incompatible with

determinism. New conservation principles, not articulated as of yet, are posited to constrain both physical

states and observer choices [78]. In this section, in accordance with Bohm’s coordinated “ballet dances”

of particles [79] and with ’t Hooft’s new conservation principles, we review and update a previous

suggestion [73,80] that chaos synchronization can contribute to a realist interpretation of quantum theory.

In an interpretation based on a granular state-space as with ’t Hooft’s, Palmer [72] has hypothesized

that the quantum world lives on a dynamically invariant fractal point set within the higher-dimensional

phase space associated with the degrees of freedom that are naively thought to be independent.

Membership in the invariant set is an uncomputable property, so theories can only be formulated in terms

of the variables of the full phase space, and the emergent “conservation laws” that restrict motion to the

invariant set remain implicit. Palmer’s invariant set is in fact a generalized synchronization “manifold”

(the common, but improper term, since the “manifold” is nowhere smooth), of the sort suggested by

Figure 3c. As discussed in the prior work [80], generalized rather than identical synchronization is the

fundamental relationship, because EPR spins anti-correlate.

To bar supraluminal transmission of information, the proposal in [73,80] relies on the mechanism

used in synchronization-based cryptography: a signal provided by one variable of a chaotic system is

difficult to distinguish from noise and is meaningful only when received by an identical copy of the

system. However, it follows from the Takens–Mañé Theorem [17,18] that information can be extracted

from such a signal if one considers a long enough time series. Longer time series are required to decode

signals produced by more complex systems. For perfect security, one would need a chaotic system with

an infinite-dimensional attractor.

Such a situation would arise most naturally in a multi-scale system (e.g., as proposed by Palmer [81]),

requiring at least a system of partial differential equations, but something can be learned by considering

a family of simpler systems of variable dimension, given by ordinary differential equations [73,80]. It

is known that two N-dimensional generalized Rossler systems (GRS’s) (each equivalent to a Rossler

system for N = 3) will synchronize for any N , no matter how large, when coupled via only one of the

N variables:

ẋA1 = −xA2 + αxA1 + xB1 − xA1

ẋAi = xAi−1 − xAi+1

ẋAN = ǫ+ βxAN(x
A
N−1 − d)

ẋB1 = −xB2 + αxB1 + xA1 − xB1

ẋBi = xBi−1 − xBi+1 i = 2 . . .N − 1 (8)

ẋBN = ǫ+ βxBN(x
B
N−1 − d)

Each system has an attractor of dimension ≈ N − 1, for N greater than about 40, and a large number

of positive Lyapunov exponents that increases with N . As N → ∞, while the synchronization persists,

the signal linking the two systems becomes impossible to distinguish from noise. It was shown [73] that

an inequality analogous to Bell’s could be constructed by arbitrarily bisecting the phase space to define
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final states analogous to spin-up/spin-down and using a GRS parameter as an analogue of measurement

orientation. That inequality is in fact violated because of the connection between the systems, but a naive

observer would expect it to hold, because he is unable to distinguish the connecting signal from noise.

In Palmer’s view, there is no connecting signal, because the world never leaves the “invariant set”

(although the dissipative character of gravitational interactions is assumed to play a role cosmologically

in dynamically constraining the Universe to motion on the invariant set in the first place) [72]. In [73,80],

on the other hand, we considered the nature of the required “restoring force” if small perturbations

transverse to the synchronization manifold are conceived of as physical.

To construct a realistic model, one must move far beyond the simple System (8). The GRS is a

questionable model of reality, because its largest Lyapunov exponent hmax → 0 asN → ∞ (the system’s

“metric entropy”, the sum of the positive Lyapunov exponents,
∑

hi>0 hi, is constant as N → ∞). In

other words, the higher the dimension, the less chaotic the system. Such behavior is suspect in a system

intended to represent unpredictable quantum fluctuations. Taking the GRS behavior as N → ∞ to

be generic, one must reconcile its increasingly mild character with the requirement that the nonlocal

“signal” be perfectly masked through chaos. It was noted [80] that the issue is resolved if the GRS

is viewed as a spatially asymptotic description of an intrinsically faster dynamics in a highly curved

space-time. For reference, recall that an object falling into a black hole is perceived by an observer

at a distance from the hole as approaching the horizon with decreasing velocity, but never reaching it.

If the physical system that the GRS describes lives in the vicinity of a micro-black hole or wormhole,

the variables in the asymptotic description will be slowed, but the actual physical processes will be

realistically violent and can couple to each other through “signals” that are perfectly masked. More

generally, the synchronizing subsystems can be expected to behave more wildly than the usual physical

systems defined by PDEs on a continuum. Some form of granularity in state-space and/or physical

space-time is indicated, in agreement with the models of ’t Hooft [78] and of Palmer [72,81].

6.1. Physical vs. Virtual Non-Locality

A Planck-scale foam-like structure in space-time was posited by Hawking [82] in the context of

a procedure to quantize classical general relativity where that structure contributes significantly to a

sum over alternative Euclidean space-time geometries. The present question is about the possible role

of micro-wormholes in long-range synchronization, without transmission of information, in ordinary

Lorentzian space-time. That possibility is consistent with theoretical arguments [83] and experimental

evidence [84] for fundamental granularity in space-time structure. In the Appendix, it is explained that

micro-wormholes could arise in a variant of general relativity defined by equations that are generally

covariant, but scale-dependent, and a weak divergence that arises from the recirculation of virtual quanta

through wormholes may be avoided if the wormholes are sufficiently narrow. The wormholes envisioned

are reminiscent of those in the original construction of Wheeler [85], who suggested that lines of electric

force are always closed if positive and negative charges are thus connected at the micro-level. In the

absence of a theory of Planck-scale processes, other forms for the non-local physical connection could

be considered, but general-relativistic wormholes are a natural starting point for any such construction.

Indeed, Maldacena and Susskind have recently suggested that non-traversable wormholes mediate EPR
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correlations in standard quantum theory [86]. A modicum of traversability, as described in the Appendix,

could then support a non-local deterministic interpretation.

If connections are formed by joining micro-black holes, as might coincide with particles in an EPR

pair, the systems that must synchronize are defined on two-dimensional horizons at the mouths of the

wormholes. This is consistent with the holographic principle [87,88] that such 2D fields capture the

essential information about the full three-dimensional systems.

On the other hand, if we stipulate, with Palmer, that the synchronization manifold is fundamental,

because the physical world never leaves it, then no wormholes are needed: we have two dynamical

systems defining an anticorrelated EPR pair, ẋ = F (x) and ẏ = G(y), with x ∈ RN and y ∈ RN . The

dynamics are modified, so as to couple the systems:

ẋ = F̂ (x,y) ẏ = Ĝ(y,x) (9)

and there is some locally-invertible function Φ : RN → RN , such that ||Φ(x) − y|| → 0 as t → ∞.

Then, the coupled dynamics are also defined by the two autonomous systems:

ẋ = F̂ (x,Φ(x)) ẏ = Ĝ(y,Φ−1(y)) (10)

without recourse to wormholes or any nonlocal connections, provided we know the badly behaved

function Φ exactly. To avoid the implications of Bell’s theorem in this scenario, the correspondence

Φ must also depend on the observer choices of measurement orientation.

If the nonlocal connections are assumed to be physical, we must rely on the narrow width and

short life of the wormholes to prevent supraluminal transmission of matter or information. Diffraction

effects preclude communication, except in highly symmetrical situations, as in EPR, where constructive

interference would account for the needed nonlocal connections. The isolated character of such quantum

“synchronicities” follows from the rarity of the required symmetrical context.

The existence of the wormholes could shape the synchronization manifold and the correspondence

Φ, whether or not the connections continue to play a role in the dynamics. That sparse connections can

be sufficient to synchronize two extended systems has already been demonstrated. Kocarev et al. [6]

showed that pairs of PDE systems of various types (Kuramoto–Sivashinsky, complex Ginsburg–Landau,

etc.) could be synchronized by pinning corresponding variables to one another at a discrete set of

points, at discrete instants of time (the example of synchronizing two quasi-geostrophic channel models

(Figure 5) establishes essentially the same phenomenon for coupling formulated in Fourier space). A

sparse set of wormholes is expected to give synchronization of subsystems on opposite sides in the same

way. Once the subsystems are perfectly synchronized, physical connections are no longer needed, if we

can rationalize the continued relevance of Equation (10).

The mediation of quantum interconnectedness by intermittent wormholes is perhaps the ultimate

home for the marriage [9] between synchronization dynamics and small-world (or “scale-free”)

networks. The proposal would also realize the program, favored by a minority of physicists, of quantizing

gravity by rooting quantum behavior in space-time geometry, rather than the reverse. The question

is essentially whether the construction can reproduce the nonlocal piece of the “quantum potential”

in Bohm’s interpretation [74] (the remaining piece corresponding to motion along the synchronization

manifold), accounting for the origin of that piece geometrically.
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In the synchronization framework, one could also imagine classical entanglement between observer

choices and observed states, again with no explicit description of the relationship, as in ’t Hooft’s

interpretation. The degrees of freedom corresponding to observer choice must in fact be part of the

definition of the overall synchronization manifold on which the world resides. The synchronized chaos

framework thus supports a local contextual resolution of the Bell paradox, as well as a natural description

of the weak nonlocality that is required if observer free will is retained (as this author prefers). Within the

single framework, non-local connections may or may not be present accordingly, or might be vanishingly

small and conceivably rooted in cosmological history.

7. Summary and Concluding Remarks

In the foregoing review, we have attempted to show that the synchronization of loosely-coupled

chaotic systems approaches the philosophical notion of highly intermittent, meaningful synchronicity

more closely than commonly thought. Synchronized chaos is highly intermittent in a natural setting

(Section 2). As with philosophical synchronicity, it describes the relationship between the objective

world and a perceiving mind or computational model (Section 3). The phenomenon typically involves

the coincidence of coherent structures, to which meaning can be attached (Section 4). Central to our

thesis is a relationship between internal synchronization within a system and external synchronizability

with another physical system or with a model. That relationship, which was described in Section 4, is

in accord with common wisdom: an objective system with a high degree of internal synchronization is

more easily perceived/understood; an internally coherent individual can more easily engage the world,

etc. Accordingly, that relationship is currently proving to be a useful design principle in computational

modeling, as described in Section 5.

What is not clear is that even with the isolated character and meaningfulness of synchronicities in

coupled chaotic systems, the phenomenon reaches all the way to that of Jung and others, who discussed

detailed coincidences between physical events and previous dreams, for instance. The attempt to put

relationships of that kind on a rational footing may appear doomed. The mechanisms of deterministic

chaos seem barely sufficient. One may dismiss such examples and consider only more restricted

forms of synchronicity, or one may imagine that new physical principles emerge. The difficulty of

ascribing the more extended notion of synchronicity to material reality may indeed have led to the

dual-aspect monist conjecture [10] in which mind is elevated to the same level as matter, and both are

aspects of an underlying domain that is not primarily mental or material. In contrast, although mind is

semi-autonomous in the picture presented here, our view is decidedly materialist. Our endeavor might

be compared to Marx’s attempt to ground Hegel’s dialectic in material reality, a transformation whose

legitimacy has sometimes been questioned, notably by Bohm [89].

Closer to physics is the example of Einstein’s relationship to the ideas of Ernst Mach. Einstein was

inspired by Mach’s relativism, but Mach castigated Einstein for the latter’s belief that atoms are real,

preferring to view them only as useful conceptual constructs [90]. Mach did not hold the extreme position

that “all is mind.” He simply had an exaggerated sense of the dependence of scientific observations on the

human observer, preventing his full realization of the consequences of ideas he himself had introduced.
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As science progresses, it is to be expected that some ideas previously introduced on a religious basis,

or by idealist philosophers, are not wrong, but have indeed a hidden justification in material reality. The

logical jump required for an objective understanding of Pauli’s synchronicity is shorter yet. Even if our

objective realization of the Jung–Pauli notion is only partial, it is the point of view of this paper that it

is appropriate for scientists to seriously consider a concept that has captured the popular imagination as

widely as has synchronicity and to afford a rational explanation if possible. Therefore, the question is

whether nonlinear dynamics has gone far enough as to put philosophical synchronicity on an objective

footing to any significant degree.

The question is perhaps sharpest in regard to consciousness and synchronization-based theories

thereof. In Section 5, it was argued that previous suggestions about the role of synchronization in the

brain were supported by the possibility of highly intermittent synchronization among chaotic oscillators

and by the possibility of synchronizing different complex models of the same objective process, giving

rise to “self-perception”. However, Penrose has given a well-known argument that the reasoning abilities

of conscious beings cannot arise from classical physics or algorithmic processes that describe such

physics: for any algorithmic system of ascertaining truth, one can always articulate a true statement,

of the sort constructed by Gôdel, that such a being knows to be true, but whose truth cannot be

established within the system [91]. Since synchronized chaos is still deterministic, the abilities of

conscious beings must come from fundamentally different processes, which Penrose has concluded are

quantum mechanical. (If one considers a chaotic system given by differential equations for which infinite

precision in initial conditions is needed to predict the outcome even qualitatively, as in Palmer’s earliest

proposal [92], a typical basin of attraction for a given outcome is a “fat fractal”: the more precisely

the initial conditions are known, the smaller is the probability of error in “guessing” the outcome.

That is very unlike quantum indeterminacy.) Additionally, because the randomness in wave-function

collapse in the standard interpretation of quantum theory would be inconsistent with its proposed role

in consciousness, Penrose also proposed a new interpretation involving an objective and deterministic

account of wave-function collapse [91,93].

The discussion of quantum processes in Section 6 was included because they seem to provide the

deepest example of synchronicity: the quantum world appears to live on a generalized synchronization

“manifold”. However, if Penrose is correct, the converse statement can also be made: synchronicity as

manifest in human consciousness is also fundamentally quantum in origin. Correlations in neuronal

firing or between neural subsystems can only give rise to consciousness, in this view, if quantum

correlations are involved, such correlations arising either as in standard quantum theory or as in

deterministic re-interpretations thereof. Synchronicities between states of the mind and of the objective

world must somehow follow. Perhaps such an enlarged notion could reach the popular concept and

the one of Jung and Pauli. In Penrose’s view, as here, the question of the proper interpretation of

quantum phenomena, on the one hand, and that of the origin of synchronism between mind and matter,

on the other, are to be resolved jointly. The proposed view differs in that dynamical synchronization,

in a properly structured micro-world, would account for quantum correlations, but would also explain

macroscopic phenomena, mental and material, directly.
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Appendix

A. On the Possibility of Micro-Wormholes

As discussed in Section 6 of the text, if space-time were permeated with micro-scale Wheelerian

wormholes, that would be useless for time travel, a synchronistic order could nonetheless emerge: chaos

synchronization could combine with small-world effects in the same manner as has been described

for more familiar applications. Consideration of synchronicity as a basic physical principle would not

be complete without considering Wheeler’s suggestion. In a deterministic theory underlying quantum

mechanics, a wormhole might connect the charges in an EPR pair. The role of wormholes in mediating

quantum entanglement posited by Maldacena and Susskind [86] would be enlarged in a non-local

deterministic theory. Here, we discuss two historical objections to wormholes as they would impact

their possible occurrence at the microscale.

A.1. Implications of the Weak-Energy Condition in Ordinary and Higher-Derivative Gravity

While two Schwarzschild black hole solutions to Einstein’s equations can be joined to form a

wormhole, solutions of this type are not traversable [94]. The possibility of traversable wormhole

solutions is limited by the weak energy condition. That condition states that for any null geodesic,

say one parameterized by ζ , with tangent vectors ka = dxa/dζ , an averaged energy along the geodesic

must be positive:
∫ ∞

0

dζ Tαβk
αkβ > 0 (11)

where Tαβ is the stress-energy tensor. Traversable wormholes can exist only if (11) is violated for some

null geodesics passing through the wormhole, implying the existence of “exotic matter” with negative

energy density in the “rest frame” of a light beam described by the null geodesic. The negative energy

density is required, in one sense, to hold the wormhole open.

Quantum fluctuations in the vacuum can violate the weak energy condition [95,96]. However, the

problem can be avoided at the classical level, as desired if quantum theory is not to be presumed, if a

larger class of generally covariant theories are considered. Terms containing higher derivatives of the

metric can indeed be added to Einstein’s equations, with effects that are negligible on

all but the smallest scales [97,98]. The situation is analogous to that of the Navier–Stokes equation

in fluid dynamics: while the terms involving the co-moving derivative follow simply from Newton’s

first law, the dissipative terms are ad hoc and can take many forms. General relativity can likewise be

extended to theories of the form:

Rµν −
1

2
Rgµν + gµνΛ +

∑

n>2

cnL
n−2R(n)

µν = 8πTµν (12)

where R
(n)
µν is a quantity involving a total of n derivatives of the metric, L is a fundamental length

scale, the cn are dimensionless constants and we have included a cosmological constant Λ for full

generality. If L = LP , the Planck length, then the new terms in the extended Theory (12) are

negligible on macroscopic scales. They only need be considered if curvature is significant at the
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Planck length scale. Any metric that solves the ordinary Einstein equations after the substitution

Tµν → Tµν − (1/8π)
∑

n>2 cnL
n−2R

(n)
µν solves (12) for given Tµν . It is plausible that the modified

stress-energy tensor Tµν − (1/8π)
∑

n>2 cnL
n−2R

(n)
µν can be made to violate the weak energy condition

if the signs of the constants cn are chosen appropriately and, thus, that a traversable micro-wormhole

solution is possible.

In a standard quantum mechanical treatment of the micro-wormhole, traversability would emerge in

the same manner as does black hole radiation. A theory of the form (12) could come from a deterministic

re-interpretation of the quantum mechanical process.

A.2. Vacuum Recirculation Effects for Narrow Wormholes

The paradoxes that one normally associates with closed time-like curves, as would pass through a

wormhole, have a quantum counterpart: repeated passage of a virtual particle through a wormhole may

lead to a divergence in the stress-energy tensor Tµν , as the loops of a spiral world line pile up to form

a closed timelike curve. The derivation of this controversial result is as follows: for each passage of

a virtual particle through the wormhole, the contribution to the two-point function < Ψ|φ̂(x)φ̂(x′) +

φ̂(x′)φ̂(x)|Ψ > from a trajectory that contains that passage is attenuated by a factor b/D, where b is the

wormhole width and D is the spatial length of a geodesic through the wormhole, as measured in the

frame of an “observer” traveling along the geodesic from the vicinity of x and x′ through the wormhole

once and back to the same vicinity. Here, x and x′ are nearby points in space-time, |Ψ > is the quantum

state and φ̂ is the field operator associated with the field φ. The contribution to the two-point function

is found to behave as (b/D)k × 1/σ, where σ is 1/2 the square of the proper distance between x and

x′ along the geodesic connecting them through the wormhole, and the power k depends on the number

of times that the trajectory traverses the wormhole (contributions from trajectories with k = 0 or 1, that

traverse the wormhole only once, dominate). One finds σ ∼ D∆t, where ∆t is the proper time between

x and the nearest null geodesic that passes through the wormhole. As x′ → x, the contribution diverges

if x can be joined to itself by a null geodesic that passes through the wormhole. The stress-energy

tensor can be expressed in terms of the two-point function [99] and also diverges as σ → 0 or ∆t → 0.

Specifically, one finds Tµν ∼ (b/D)k × 1/D(∆t)3 in natural units, or in dimensional units,

Tµν ∼ (b/D)k × LP/D ×mP/(∆t)
3. (13)

Kim and Thorne [99] argued that the divergence, which is small because of the “diffraction” factor

b/D, probably disappears in the proper quantum theory of gravity, allowing wormholes to remain.

Quantization of the gravitational field in that theory would be effective on scales of LP , the Planck

length, so we only need consider the magnitude of Tµν for ∆t ≥ LP . At these scales, referring to (13),

Tµν ≤ LP/D in natural units of mP/L
3
P , giving energy densities that are far too weak to destroy the

wormhole, or have other noticeable effects, for macroscopic D.

Hawking [100], in support of his “chronology protection conjecture”, provided a counter-argument

asserting that quantum gravity effects would only enter on much smaller scales, corresponding to the

Planck length in the rest-frame of an “observer” traveling on one of the geodesics through the wormhole.

The values attained by Tµν on scales larger than Hawking’s reduced length scale would still cause

collapse of the wormhole, the instant that recirculation becomes possible.
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Let us assume that the predictions of standard quantum theory in curved spacetime survive in whatever

deterministic theory underlies quantum mechanics. Here, we note that there is an additional mechanism

that might cut off the recirculation divergence for wormholes of very narrow width. Virtual particles of

arbitrarily high energy cannot traverse the wormhole. High-energy virtual particles would reverse the

effect of the exotic matter or of the higher-derivative terms, so the existence of the wormhole would

again be precluded by the weak energy condition. The contribution to the energy flux from the virtual

particles is T 0i = 4
πb2

∫

dωn(ω)h̄ω, where n(ω) is the number density of quanta at frequency ω (as in the

Weizsacker -Williams approximation [101], the quanta are assumed not to elongate in the wormhole). At

detailed resolution in frequency-space, n(ω) =
∑

i niδ(ω−ωi), where ωi is a discrete set of frequencies

and {ni} is a set of positive integers. There is a problem from the weak energy condition if any

ωi > ωcutoff (with ni ≥ 1), for ωcutoff sufficiently large as to cancel the negative-energy contributions

to T 00. In a path integral, taken both over particle trajectories and over geometries, one need only

consider histories in which more energetic particles either collapse the wormhole or are reflected and do

not traverse it. In contrast, for wormholes of macroscopic width, histories must be included in the path

integral for which the energies of recirculating virtual quanta outside the wormhole are anomalously

large (treating the geometry itself classically). The cutoff in the former case implies that the term 1/σ

in the two-point function is replaced by a term like
∫

ωk<ωcutoff
d4k exp[ik · (x − x′)]/k2, which does

not diverge.

Thus, for sufficiently narrow wormholes, the original position of Kim and Thorne that that vacuum

recirculation divergence is damped may be correct. The behavior discussed above is on the borderline

between the non-traversability of Einstein–Rosen bridges, which mediate entanglement in ordinary

quantum theory according to the recent proposal [86], and traversable wormhole behavior that could

give rise to full nonlocality. Although finite wormhole lifetime would be required to mediate long-range

synchronization, highly intermittent wormhole behavior may be enough, in accordance with previous

findings [6] for other types of PDEs. Additionally, the collapse of a wormhole triggered by the entrance

of a particle on one side would have measurable effects on the other side; perhaps the only effects of

traversability in the underlying classical theory where virtual particles do not appear. In the absence of a

detailed Planck-scale theory, the question of traversability remains open.

Acknowledgments

The author is grateful for discussions over the past decade with Joe Tribbia, Jeff Weiss, Alan Guth,

Frank Hoppensteadt, Ljupco Kocarev, Tim Palmer, David Peat, and Mickael Chekroun. Michael Ghil

and Anastasios Tsonis are thanked for their encouragement. Part of this work was supported under NSF

Grants #0327929 and #0838235, DOE Grant #DE-SC0005238, and European Research Council Grant

#266722.

Conflicts of Interest

The author declares no conflict of interest.



Entropy 2015, 17 1729

References

1. Huygens, C. Horologium Oscilatorium; F. Muguet: Paris, France, 1673.

2. Duane, G.S. Synchronized chaos in extended systems and meteorological teleconnections. Phys.

Rev. E 1997, 56, 6475–6493.

3. Duane, G.S.; Webster, P.J.; Weiss, J.B. Co-occurrence of Northern and Southern Hemisphere

blocks as partially synchronized chaos. J. Atmos. Sci. 1999, 56, 4183–4205.

4. Duane, G.S; Tribbia J.J. Synchronized chaos in geophysical fluid dynamics. Phys. Rev. Lett.

2001, 86, 4298–4301.

5. Duane, G.S.; Tribbia, J.J. Weak Atlantic-Pacific teleconnections as synchronized chaos. J. Atmos.

Sci. 2004, 61, 2149–2168.

6. Kocarev, L.; Tasev, Z.; Parlitz, U. Synchronizing spatiotemporal chaos of partial differential

equations. Phys. Rev. Lett. 1997, 79, 51–54

7. Peat, F.D. Synchronicity: The Bridge Between Matter and Mind; Bantam: New York, NY, USA,

1987.

8. Jung, C.G.; Pauli, W. The Interpretation of Nature and the Psyche; Pantheon: New York, NY,

USA, 1955.

9. Strogatz, S.H. Sync: The Emerging Science of Spontaneous Order; Theia: New York, NY, USA,

2003.

10. Atmanspacher, H.A. 2012. Dual-aspect monism á la Pauli and Jung. J. Conscious. Stud. 2012,

19, 96–120.

11. Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University

Press: Cambridge, UK, 2003.

12. Pecora, L.M.; Carrol, T.L. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64,

821–824.

13. Afraimovitch, V.S.; Verichev, N.N.; Rabinovich, M.I. Stochastic synchronization of oscillations

in dissipative systems. Inv. VUZ Radiofiz. RPQAEC 1986, 29, 795–803.

14. Fujisaka, H.; Yamada, T. Stability theory of synchronized motion in coupled-oscillator systems.

Prog. Theor. Phys. 1983, 69, 32–47.

15. Lorenz, E.N. Deterministic non-periodic flow. J. Atmos. Sci. 1963, 20, 130–141.

16. Pecora, L.M.; Carroll, T.L.; Johnson, G.A.; Mar, D.J.; Heagy, J.F. Fundamentals of

synchronization in chaotic systems, concepts, and applications. Chaos 1997, 7, 520–543.

17. Mañé, R. On the dimension of the compact invariant sets of certain nonlinear maps. In Dynamical

Systems and Turbulence, Warwick 1980; Lecture Notes in Mathematics, Volume 898; Springer:

Berlin/Heidelberg, Germany, 1981; pp. 230–242.

18. Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence,

Warwick 1980; Lecture Notes in Mathematics, Volume 898; Springer: Berlin/Heidelberg,

Germany, 1981; pp. 366–381.

19. Ott, E.; Sommerer J.C. Blowout bifurcations: The occurrence of riddled basins and on-off

intermittency. Phys. Lett. A 1994, 188, 39–47.



Entropy 2015, 17 1730

20. Rulkov, N.; Sushchik, M.; Tsimring, L.; Abarbanel, H. Generalized synchronization of chaos in

directionally coupled chaotic systems. Phys. Rev. E 1995, 51, 980–994.

21. So, P.; Barreto, E.; Josic, K.; Sander, E.; Schiff, S. Limits to the experimental detection of

nonlinear synchrony. Phys. Rev. E 2002, 65, 046225.

22. Roy, R.; Thornburg, K.S. Experimental synchronization of chaotic lasers. Phys. Rev. Lett. 1994,

72, 2009–2012.

23. Peterman, D.W.; Ye, M.; Wigen, P.E. High frequency synchronization of chaos. Phys. Rev. Lett.

1995, 74, 1740–1742 .

24. Platt, N.; Spiegel, E.A.; Tresser, C. On-off intermittency—a mechanism for bursting. Phys. Rev.

Lett. 1993, 70, 279–282.

25. Tziperman, E.; Scher, H.; Zebiak, S.E.; Cane, M.A. Controlling spatiotemporal chaos in a
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