3,846 research outputs found

    Design and Development of 3-DOF Modular Micro Parallel Kinematic Manipulator

    Get PDF
    This paper presents the research and development of a 3-legged micro Parallel Kinematic Manipulator (PKM) for positioning in micro-machining and assembly operations. The structural characteristics associated with parallel manipulators are evaluated and the PKMs with translational and rotational movements are identified. Based on these identifications, a hybrid 3-UPU (Universal Joint-Prismatic Joint-Universal Joint) parallel manipulator is designed and fabricated. The principles of the operation and modeling of this micro PKM is largely similar to a normal size Stewart Platform (SP). A modular design methodology is introduced for the construction of this micro PKM. Calibration results of this hybrid 3-UPU PKM are discussed in this paper.Singapore-MIT Alliance (SMA

    Vision-based self-calibration and control of parallel kinematic mechanisms without proprioceptive sensing

    Get PDF
    International audienceThis work is a synthesis of our experience over parallel kinematic machine control, which aims at changing the standard conceptual approach to this problem. Indeed, since the task space, the state space and the measurement space can coincide in this class of mechanism, we came to redefine the complete modeling, identification and control methodology. Thus, it is shown in this paper that, generically and with the help of sensor-based control, this methodology does not require any joint measurement, thus opening a path to simplified mechanical design and reducing the number of kinematic parameters to identify. This novel approach was validated on the reference parallel kinematic mechanism (the Gough-Stewart platform) with vision as the exteroceptive sensor

    Image-based Visual Servoing of a Gough-Stewart Parallel Manipulator using Leg Observations

    Get PDF
    International audienceIn this paper, a tight coupling between computer vision and paral- lel robotics is exhibited through the projective line geometry. Indeed, contrary to the usual methodology where the robot is modeled indepen- dently from the control law which will be implemented, we take into ac- count, since the early modeling stage, that vision will be used for con- trol. Hence, kinematic modeling and projective geometry are fused into a control-devoted projective kinematic model. Thus, a novel vision-based kinematic modeling of a Gough-Stewart manipulator is proposed through the image projection of its cylindrical legs. Using this model, a visual ser- voing scheme is presented, where the image projection of the non-rigidly linked legs are servoed, rather than the end-effector pose

    Error Modeling and Accuracy of Parallel Industrial Robots

    Get PDF

    An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    Get PDF
    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters

    Error Modeling and Accuracy of TAU Robot

    Get PDF

    Analysis and experimental evaluation of a Stewart platform-based force/torque sensor

    Get PDF
    The kinematic analysis and experimentation of a force/torque sensor whose design is based on the mechanism of the Stewart Platform are discussed. Besides being used for measurement of forces/torques, the sensor also serves as a compliant platform which provides passive compliance during a robotic assembly task. It consists of two platforms, the upper compliant platform (UCP) and the lower compliant platform (LCP), coupled together through six spring-loaded pistons whose length variations are measured by six linear voltage differential transformers (LVDT) mounted along the pistons. Solutions to the forward and inverse kinematics of the force sensor are derived. Based on the known spring constant and the piston length changes, forces/torques applied to the LCP gripper are computed using vector algebra. Results of experiments conducted to evaluate the sensing capability of the force sensor are reported and discussed

    IMU-Based Online Kinematic Calibration of Robot Manipulator

    Get PDF
    Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods

    Reconfigurable kinematics of General Stewart Platform and simulation interface.

    Get PDF

    Towards vision-based control of cable-driven parallel robots

    Get PDF
    International audienceThis paper deals with the vision-based control of cable-driven parallel robots. First, a 3D pose visual servoing is proposed, where the end-effector pose is indirectly measured and used for regulation. This method is illustrated and validated on a cable-driven parallel robot prototype. Second, to take into account the dynamics of the platform and using a Cartesian pose and velocity estimator, a vision-based computed torque control is developed and validated in simulation
    corecore