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Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An
online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires
that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator
with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion
Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used
to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and
accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the
great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner
detection, whichmake the robot calibration proceduremore autonomous in a dynamicmanufacturing environment. Experimental
studies on a GOOGOLGRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based
methods.

1. Introduction

Because of the manufacturing and assembly tolerance, the
actual kinematic parameters of a robot deviate from their
nominal values, which are referred to as kinematic errors.The
kinematic errors would result in the errors of the robot tool if
the nominal kinematics were used to estimate the pose of the
robot.With the restriction of cost, the kinematic calibration is
an effective way to improve the absolute accuracy of robots.
Nowadays, calibration tasks use a lot of measurement tech-
niques like coordinate measuring machines, laser tracking
interferometer systems, and inexpensive customized fixtures
[1, 2]. These systems are not only very expensive but also not
friendly to use or with low working volume. A system which
is used in a dynamic environment is expected to perform cal-
ibration without any external expensive calibration apparatus
and elaborate setups, which means self-calibration.

Self-calibration techniques can be classified into two
kinds: (1) redundant sensor approach and (2) motion con-
straint approach.

To increase the degrees-of-sensing over DOF, the redun-
dant sensors approach includes one ormore redundant rotary
sensors to the proper passive joints of the manipulator.

There is a self-calibration method for parallel mechanisms
with a case study on Stewart platform which is proposed
by Zhuang in [3]. He used forward and inverse kinematics
with six rotary encoders for three objective functions of
parameter identification. Khalil and Besnard [4] installed two
orthogonally allocated inclinometers to the tool to calibrate
the Stewart platform except the redundant sensors which
are mentioned above. However, there are some limitations
of these methods. One of them is that some kinematic
parameters orthogonally are not independent of the error
models and the position and/or orientation of the tool on the
platform cannot be calibrated.

For the other approach, that is the motion constraint
approach, the mobility of the resultant system will be lower
than its inherent degrees-of-sensing by fixing one or more
passive joints or constraining partial DOF of themanipulator
so that the calibration algorithm can be performed [5].
Bennett and Hollerbach [6] lowered the mobility of the tool
of a serial manipulator and performed self-calibration using
only the inherent joint sensors in the manipulator. And this
idea was used and extended to calibrate a robot system with
a hand-mounted instrumented stereo camera [7]. However,
the position and/or orientation of the tool on the platform
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cannot be calibrated, and some parameter errors related to
the locked passive joints may become unobservable in the
calibration algorithm because of the mobility constraints.

To solve these limitations, advances in robot calibration
allow the researchers to use a hand-mounted camera to
calibrate a robot instead of using measurements from passive
joints or imposing mechanical constraints. Compared with
those mechanical measuring devices, this camera system
costs less and it is easier to use and more accurate. The
traditional vision-based methods [8–15] to calibrate a robot
require the precise 3D fixtures measured in a reference coor-
dinate system and the procedure is inconvenient and time
consuming and it may not be feasible for some applications.
The self-calibration methods [16, 17] assume that the camera
is rigidly attached to the robot tool. Closed-loop methods
“virtual closed kinematic chain” proposed in [18–20], use the
joint angle measurements already in the robot and can be
considered self-calibrating. A method uses laser to capture
robot position data to model the stiffness of the manipulator
[21] and predict kinematic parameters [22–26]. O’Brian et al.
[27] used amagneticmotion to capture robot data to estimate
the kinematic parameters. Renaud et al. [28] and Rauf et
al. [29] used a vision-based measuring device and a pose
measurement device for kinematic calibration, respectively.
Santolaria et al. [30] employed a continuous data capture
method by using a ball bar gauge and a coupling probe to esti-
mate the kinematic parameters. However, these approaches
have a limitation; that is, the calibration is completed off-
line. The optimization technique was based on the measured
positions of the EE. The parameter error was minimized
in the measured positions, but the error increased in very
different positions. Moreover, the parameter error increased
while the robot withstood different loads. When the robot
is used in high-temperature or high-pressure environments,
such as deep sea or outer space, the shapes of the robot
links are easy to change. Therefore, online calibration is an
indispensable method to rectify the kinematic parameters in
real time.

In this paper, we propose an original approach of online
robot calibration using IMU to measure the robot poses. In
our method, an IMU is required to rigidly attach to the robot
tool (Figure 1) tomeasure the robot pose in real time. In order
to reduce the effect of the noise and improve the accuracy, we
proposed a method combined FQA and KF to estimate the
orientation of the IMU. Finally, an EKF is used to estimate
differential errors of individual kinematic parameters. Unlike
existing vision-based self-calibration methods, the described
method does not require special complex steps such as cam-
era calibration and corner detection. Moreover, this method
does not require robot to make the motion for capturing the
images, which makes our method more efficient.

The remainder of the paper is organized as follows.
Section 2 provides kinematic modeling for the serial robot.
In Section 3, a method of pose measurement using IMU is
presented. Parameters identification algorithm is proposed
in Section 4. In Section 5, an EKF is detailed to estimate
the kinematic parameter errors. Finally, the experimental
results are shown in Section 6 and we conclude the paper in
Section 7.
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Figure 1: Structure of the system.
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Figure 2: Forward kinematics of an 𝑛-DOF robot.

2. Kinematic Modeling

A robot kinematic model relates the robot joint coordinate
to the pose of the robot tool. A robot kinematic model
should meet the following rules for the kinematic parameter
identification [21–23].

(1) Completeness: the robot kinematic model should
have enough parameters to define any possible devia-
tion from the nominal values [24].

(2) Continuity: any small changes in the structure of the
robot must correspond to small changes in kinematic
parameters [21].

(3) Minimality: the kinematic model must include only a
minimal number of parameters [3].

Many researchers have found suitable kinematic models
for robot since 1980s, such as Hayati et al. models [25–27],
Veitschegger and Wu’s model [28], Stone and Sanderson’s
S-model [29], and Zhuang et al. model [30]. The standard
Denavit-Hartenberg (DH) [31] convention is the most often
used to describe the robot kinematics (Figure 2). The error
models of DH are not continuous for robots that possess
parallel joint axes. To avoid the singularity of DH convention,
the DHmodeling or Hayati modeling convention were used,
respectively. The singularity-free calibration model prevents
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Figure 3: IMU sensor (a) and the prototype board (b).

the use of a single minimal modeling convention which can
be used to identify all possible robot parameters.

The robot tool position and orientation are defined
according to the controller conventions. Through the con-
secutive homogeneous transformations from the base coor-
dinate to the robot tool coordinate (Figure 2), the kinematic
equation can be defined as
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Taking the joint variables into consideration, thus,
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: R𝑛 ×R𝑁 is a function of u and ΔV.

3. Pose Measurement Using IMU

3.1. Factored Quaternion Algorithm (FQA). The FQA pre-
sented in [32], which is based on Earth gravity and magnetic
fieldmeasurements, is for estimating the orientation of a rigid
body. This algorithm is only applied for the static or slow-
moving rigid body. In order to be applicable to situations

in which relatively large linear accelerations occur, we use
KF fusion algorithm together with angular rate information
to estimate the orientation of (slow-moving or fast-moving)
dynamic body in the next section.

In our application, a sensormodule, which is a strap down
inertial measurement unit (IMU) is attached to the robot tool
whose orientation (roll, pitch, and yaw) is to be determined.
Figure 3 shows an IMU of Xsens and its prototype board.
The IMU sensor consists of one three-axis accelerometer, two
two-axis gyroscopes, and one three-axis magnetometer.

We define three frames: body frame 𝑥
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and 𝑧
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(roll, pitch, and yaw) of itself. Define that the rotation 𝜙
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yaw. According to Euler’s theorem [33] on finite rotations, the
conversion from Euler angles to quaternions is
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and the four Euler parameters are constrained as [34]
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3.2. Quaternion KF. Because both gyroscopes and magne-
tometer have white noise and random walk, we use Kalman
Filter to estimate the state 𝑥 of IMU from a set of noisy
and incomplete measurements [35]. The Kalman Filter is a
recursive stochastic technique and it estimates the state at
time 𝑘 from the state at time 𝑘 − 1. The state-transition
equation at time 𝑘 is
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where 𝑥
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where Δ𝑡 is the sampling time. Let 𝐵 = 0
𝑛×𝑝 because there is

no control inputs. We use angular velocities to estimate the
quaternion states, so the process noise vector is
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angular velocities, the observation matrix𝐻 is
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4. Parameter Identification

Kinematic identification is the process that identifies the
kinematic model parameters of a robot manipulator by a
given set of robot tool pose measurements and the corre-
sponding joint position readings. The objective of a kine-
matic identification algorithm is to minimize the difference
between the computed and the measured poses [15].

Assuming that the number of measured pose is 𝑚, it can
be stated that
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where u
𝑖
(𝑖 = 1, 2, . . . , 𝑚) is the vector of joint variables for

the 𝑖measure pose.
All matrices or vectors in bold are functions of 𝑚. The

objective of the kinematic identification is the computation
for the parameter vector V∗ = V+ΔV, which is tominimize the
discrepancy between the computed and the measured poses:
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If the measurement system can provide orientation mea-
surement and position measurement, each pose can formu-
late six measurement equations. If only orientation mea-
surement can be provided by the measurement system, each
pose measurement can just formulate three measurement
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equations. In this paper, only orientation obtained from IMU
is used to calibration the kinematic parameters. From (17),

𝐴 (V∗, u) = 𝐵 (u) = 𝐴 (V, u) + 𝐶 (ΔV, u) , (19)

where 𝐶 is the discrepancy function of the orientation
components of Δ�̂�. Introducing the Jacobian matrix,

𝐶 (ΔV, u) = 𝐽 ⋅ ΔV, (20)

and then

𝐶 (ΔV, u) = 𝐵 (u) − 𝐴 (V, u) , (21)

when using

𝑏 = 𝐵 (u) − 𝐴 (V, u) ∈ R
4×4×𝑚

, (22)

𝑥 = ΔV ∈ R
4×4×𝑚

. (23)

Equation (20) can be rewritten:

𝐽 ⋅ 𝑥 = 𝑏. (24)

5. Estimating Errors Using
Extended Kalman Filter

Initially, the orientations of the tool are measured from the
IMU. Since uncertainty exists in the measurement, Extended
Kalman Filter (EKF) is used as an optimization algorithm
and the Jacobian matrices are used to estimate the kinematic
errors of DH parameters by the measured orientation values
[5].

Since there are four parameters for𝑁 revolute joints and
four parameters for the transformation from the IMU to the
tool, the number of total parameters to be considered is 4(𝑁+

1). So the predicted state 𝑥 is 4(𝑁 + 1) of the DH parameters
in the prediction step of the EKF. The covariance matrix of
the predicted state 𝑃 is

𝑥
𝑘+1|𝑘

= 𝑥
𝑘|𝑘
,

𝑃
𝑘+1|𝑘

= 𝑃
𝑘|𝑘

+ 𝑄
𝑘
,

(25)

where 𝑄
𝑘
is the covariance matrix of the system noise at the

𝑘th iteration.
In the observation step of the EKF, Jacobian matrix 𝐽

(20), measurement residual 𝑦, and residual covariance 𝑆 are
calculated as follows:

𝐽
𝑘+1

=
𝜕𝑇(𝑥)

𝜕𝑥

𝑥𝑘+1|𝑘
,

𝑦
𝑘+1

= 𝑚
𝑘+1

− 𝑇 (𝑥
𝑘+1|𝑘

) ,

𝑆
𝑘+1

= 𝐽
𝑘+1

𝑃
𝑘+1

𝐽
𝑇

𝑘+1
+ 𝑅
𝑘+1

,

(26)

where𝑚
𝑘
and 𝑅

𝑘
are the measured orientation value and the

covariance matrix of measurement noise at the 𝑘th iteration.
𝑘 + 1|𝑘 means a prior estimate, and 𝑘 + 1|𝑘 + 1 means a
posteriori estimate.

In the update step, the state covariance matrix is updated
by an optimal Kalman gain𝐾:

𝐾
𝑘+1

= 𝑃
𝑘+1|𝑘

𝐽
𝑇

𝑘+1
𝑆
−1

𝑘+1
,

𝑥
𝑘+1|𝑘+1

= 𝑥
𝑘+1|𝑘

+ 𝐾
𝑘+1

𝑦
𝑘+1

,

𝑃
𝑘+1|𝑘+1

= (𝐼 − 𝐾
𝑘+1

𝐽
𝑘+1

) 𝑃
𝑘+1|𝑘

,

(27)

where 𝐼 is the identity matrix. The norm values of the state
vector are calculated for every iteration once the updating
procedure is completed. Note that if 𝑄 and 𝑅 are set to zero,
then EKF simply reduces to the Newton-Raphson method.

6. Experimental Results

6.1. Experiments Environment. To verify the above method,
a GOOGOL GRB3016 robot model was used in this experi-
ment. In the experiment, the robot could self-calibrate online
in the working status. There were four steps in the self-
calibration procedure.

(1) Data collection: the orientation of the IMU and the
corresponding joint angles were captured with the
robot tool moving in different pose.



6 The Scientific World Journal

Peg

HoleCenter of hole

Center of peg

(a)

Peg

Hole

Center of peg

Center of hole

(b)
Figure 6: Definition of 3D errors.
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Figure 7: Estimated𝐷-𝐻 parameter errors with EKF.

(2) Manipulator orientation estimation: the orientations
of the manipulator were estimated via the KFs from
the obtained data.

(3) Kinematic parameters identification: themanipulator
kinematic parameters were identified from the esti-
mated orientations and the joint data.

(4) Calibration accuracy assessment: 3D pose errors were
used to verify the calibration accuracy by inserting a
peg into the holes (Figure 5).

Table 1 lists the nominal robot link parameters of the
robot, which were chosen as the initial conditions for the
above kinematic identification algorithm, and Figure 4 shows
the skeleton of the GOOGOL GRB3016 robot with all
coordinate frames and geometric features. As expected, the
increase in the noise intensity will lead to the increase in the
calibration errors.

From Table 1 note that a GOOGOL GRB3016 robot with
6DOF needs 24 geometric parameters to be modeled. From
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(18), each 3D robot orientation provides 3 model equations.
So a unique computation of the 24 parameters needs 8 pose
measurements at least. And more pose measurements will
decrease the calibration errors. But limited by the measure-
ment accuracy (affected by the noise), the calibration errors
intend to be stable as the pose measurements increase.

In order to validate the proposed IMU-based robot
calibration, we have performed a number of peg-into-hole
experiments. In our experiments, two calibration methods
were used to carry out the experiments of peg-into-hole. Our
method was initially compared with a standard vision-based
robot calibration of theMeng and Zhuang [16].There were 16
holes in the steel plate (Figure 5) and 16 tests of peg-into-hole
were carried out in each experiment.The pegwas the cylinder
with 7.5mm in radius and 150mm in length. The radius of
the hole was 8mm. The size of the steel plate was 300mm ×

500mm. In the step of our method, an IMU (Xsens MTi-100
IMU) was rigidly attached to the robot tool flange to measure
the pose of the robot tool. The static accuracy of roll and
pitch was 0.02 deg and that of yaw was 0.05 deg.The dynamic
accuracy of roll and pitch was 0.05 deg and that of yaw was
0.1 deg.Thenoise density of gyroscopeswas 0.01 deg /s/√Hz
and that of the magnetometer was 200 𝜇G√Hz . The IMU
measurements were received at 100Hz. Since the robot will
be stopped after it executes a command, in order to improve
the accuracy, the system collects the static IMU data after
the robot stops. The coordinates of the center of the hole
with respect to the base coordinate system were known. In
the step of method [16], a camera, with 1280(H) × 960(V)
picture elements and 22 frame/s frequency, was mounted on
the robot tool to capture the RGB images of the chessboard.
A chessboard pattern, the position of which was unknown
in the reference frame, was placed on the platform. The
distances, measured by a caliper, between two adjacent
corners of the square were known. Note that the robot has
different kinematic parameter errors in the different position.
In order to improve the accuracy, the system made a robot
calibration before inserting the peg into each hole.

Table 1: The nominal link parameters in DH model for the
GOOGOL GRB3016 robot.

Joints DH
𝑎 𝛼 𝑑 𝜃

1 150 −𝜋/2 250 0
2 570 −𝜋 0 −𝜋/2

3 150 𝜋/2 0 0
4 0 −𝜋/2 650 0
5 0 −𝜋/2 0 −𝜋/2

6 0 0 −200 0

To evaluate the calibration accuracy, 3D position errors
between the peg and the hole were proposed. A calibrated
camera with 1280(H) × 960(V) picture elements was used to
measure the 3D position errors (Figure 5). In the initiation of
the system, the camerameasured the coordinates of the center
of the hole with respect to the camera coordinate system.
After the pegwas inserted into a hole, the camera canmeasure
the depth and the direction of insertion by detecting the edge
of the peg. And then the system could calculate the center
of the peg with respect to the camera coordinate system. Let
(𝑥
𝑜
, 𝑦
𝑜
, 𝑧
𝑜
) and (𝑥

𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) be the centers of the peg and the

hole, respectively (Figure 6).Then the 3Dposition error𝐸 can
be written:

𝐸 = √(𝑥
𝑜
− 𝑥
𝑡
)
2
+ (𝑦
𝑜
− 𝑦
𝑡
)
2
+ (𝑧
𝑜
− 𝑧
𝑡
)
2
. (28)

Themean absolute error in position for𝑁 peg-into-hole tests
was

𝐸
𝑚
=

𝑁

∑
𝑘=1

𝐸
𝑘

𝑁
, (29)

where 𝐸
𝑘
is the 3D position error for the 𝑘th hole.

6.2. Result Analysis. Following the initialization step, the
system performs a series of tests for peg-into-hole. The KF
processes the IMUmeasurements and concurrently estimates
the state vector. For EKF, the number of maximum iteration
was set as 2000.𝑄 and𝑅were set as 1.0×10−3×𝐼

3×3
.When the

state vector was less than 1.0 × 10−5, the iteration terminated.
The proposed algorithm was evaluated by estimating the
orientation from the IMU and the theoretical orientation
obtained by using (3). Figure 7 shows the estimated DH
parameter error values of the robot tool. As shown in
Figure 7, the EKF algorithm quickly converged to the stable
error value from about the fifteenth iteration.

Table 2 shows the estimated parameter errors when the
calibration sets were used in EKF fro 200 iterations. Since the
EKF algorithm quickly converged to the stable error value
from about the fifteenth iteration, the iteration should be set
as 15 so that the calibration could be carried out in real time.

In the experiments of peg-into-hole, the iteration was
set as 15 to estimate the parameter errors. The state-estimate
errors with 15 pose measurements are shown in Table 3.
As evident from Table 3, even with the noise error for the
IMU measurements, the algorithm is still able to attain
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Table 2: Estimated parameter errors of 6 DOF robot.

Error Joint
1 2 3 4 5 6

Δ𝑎 (mm) 2.8759 2.6679 4.5582 2.5580 4.4248 3.1172
Δ𝛼 (∘) 0.0088 0.6855 −0.2482 −0.6892 −0.0974 −0.9373
Δ𝑑 (mm) 3.1049 2.9095 4.5347 0.1594 2.7675 3.4382
Δ𝜃 (∘) 0.2441 1.3982 1.2752 0.2644 1.5575 −0.6128

Table 3: The 3D errors with 15 pose measurements.

Hole number Method [16] (mm) Our method (mm)
1 0.45 0.40
2 0.33 0.30
3 0.51 0.29
4 0.52 0.21
5 0.38 0.32
6 0.61 0.16
7 0.61 0.37
8 0.49 0.46
9 0.53 0.23
10 0.51 0.38
11 0.48 0.42
12 0.57 0.14
13 0.44 0.15
14 0.71 0.35
15 0.48 0.26
16 0.51 0.36

very accurate estimates of the calibration parameters. Table 3
shows the accuracy result of method [16] too. By comparing
the results of Table 3, the calibration parameters were more
accurate in our method.

In our method, a unique computation of the 24
kinematic parameters needs 8 pose measurements. In
method [16], it needs 4 pose measurements at least. We
compare two methods from 10 pose measurements to 15 pose
measurements. The results presented in Figure 8 show that
withmore posemeasurements, the parameter error decreases
gradually. The mean absolute estimation errors from 10 pose
measurements to 15 pose measurements in method [16] were
4.5mm, 2.3mm, 1.41mm, 1.3mm, 0.61mm, and 0.52mm
with standard deviations (SDs) of 0.4mm, 0.38mm,
0.35mm, 0.28mm, 0.09mm, and 0.09mm. Compared with
method [16], the mean absolute errors of our method drop
about 0.51mm, 0.32mm, 0.41mm, 0.23mm, 0.13mm, and
0.22mm. The estimation errors trend slows down after two
times of the minimum number of poses measurements.

Compared with method [16], the great advantage of
our method is that the system does not need to make a
more motion to take the photo. After the robot executed
a command, the robot would stop and the system concur-
rently obtained the static measurement data from the IMU.
Figure 9(a) shows the execution time of two methods with
15 pose measurements. In method [16], the average time of
taking a photo was 3 s. In our method, the station time of
robot was about 1 s. The execution time of peg-into-hole
is about 8 s. The time of parameter identification was 0.8 s.
Figure 9(b) shows the comparison of execution time with
different pose measurements. The time in method [16] is
more than two times that in our method.
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7. Conclusions

An IMU-based online autonomous calibration for serial
robot has been proposed in this paper. In this approach,
the IMU is rigidly attached to the robot tool to estimate
the robot pose automatically during the working time. An
efficient approach which incorporates Factored Quaternion
Algorithm (FQA), Kalman Filter (KF), and ExtendedKalman
Filter (EKF) to estimate the orientation of the IMU is
presented in this paper. After the robot poses are estimated,
the kinematics identification can be carried out. Finally,
the robot kinematic parameters can be corrected from the
identification results in real time. The whole procedure of
the robot calibration is automatic and without any manual
intervention. The results of the experiments show the good
accuracy, convenience, and effectiveness of the presented
approach.

Compared with the existing expensive and complex
approach, themethod this paper proposed is easier to use and
setup. Compared to the existing vision-based self-calibration
method, the proposed method can conduct the calibration
more accurately and with less execution time. In the future
work, we will research the approach which can accurately
estimate the robot pose without stopping the robot. With the
dynamic pose measurements, the robot calibration will be
more efficient.
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