27 research outputs found

    Authentication in Protected Core Networking

    Get PDF
    Protected Core Networking (PCN) is a concept that aims to increase information sharing between nations in coalition military operations. PCN specifies the interconnection of national transport networks, called Protected Core Segments (PCSs), to a federated transport network called Protected Core (PCore). PCore is intended to deliver high availability differentiated transport services to its user networks, called Colored Clouds (CCs). To achieve this goal, entity authentication of all connecting entities is specified as a protective measure. In resource constrained environments, the distribution of service policy can be challenging. That is, which transport services are associated with a given entity. The thesis proposes two new and original protocols where CCs push service policy to the network by performing authentication based on attributes. Using identity-based signatures, attributes constituting a service policy are used directly for an entity's identity, and no external mechanism linking identity and policy is needed. For interoperability, the idea has been incorporated into PKINIT Kerberos and symmetric key Kerberos by carrying the authorized attributes within tickets. The proposed protocols are formally verified in the symbolic model using scyther-proof. The experiment shows that both CCs, and PCSs achieve greater assurance on agreed attributes, and hence on expected service delivery. A CC and a visiting PCS are able to negotiate, and agree on the expected service depending on the situation. The proposed solution provides benefits to CCs on expected service when connecting to a visiting PCS, with poor connectivity to the home PCS. In that respect, interconnection of entities with little pre-established relationship is simplified, and hence fulfillment of the PCN concept is facilitated

    Study and development of a remote biometric authentication protocol

    Get PDF
    This paper reports the phases of study and implementation of a remote biometric authentication protocol developed during my internship at the I.i.t. of the C.n.r. in Pisa. Starting from the study of authentication history we had a look from the first system used since the 60ies to the latest technology; this helped us understand how we could realize a demonstration working protocol that could achieve a web remote authentication granting good reliability: to do this we choosed to modify the SSL handshake with biometric tests and we decided to use smart-cards a secure vault for the sensible biometric data involved. In the first chapter you will find a brief definition of authentication and an introduction on how we can achieve it, with a particular focus on new biometric techniques. In the second chapter there\u27s the history of authentication from the very first password system to actual ones: new token and smart card technolgies are longer stressed in order to introduce the reader to the last chapter. In the third chapter you will find the project framework, the development of our implementation choiches and the source code of the demo project

    Evolving a secure grid-enabled, distributed data warehouse : a standards-based perspective

    Get PDF
    As digital data-collection has increased in scale and number, it becomes an important type of resource serving a wide community of researchers. Cross-institutional data-sharing and collaboration introduce a suitable approach to facilitate those research institutions that are suffering the lack of data and related IT infrastructures. Grid computing has become a widely adopted approach to enable cross-institutional resource-sharing and collaboration. It integrates a distributed and heterogeneous collection of locally managed users and resources. This project proposes a distributed data warehouse system, which uses Grid technology to enable data-access and integration, and collaborative operations across multi-distributed institutions in the context of HV/AIDS research. This study is based on wider research into OGSA-based Grid services architecture, comprising a data-analysis system which utilizes a data warehouse, data marts, and near-line operational database that are hosted by distributed institutions. Within this framework, specific patterns for collaboration, interoperability, resource virtualization and security are included. The heterogeneous and dynamic nature of the Grid environment introduces a number of security challenges. This study also concerns a set of particular security aspects, including PKI-based authentication, single sign-on, dynamic delegation, and attribute-based authorization. These mechanisms, as supported by the Globus Toolkit’s Grid Security Infrastructure, are used to enable interoperability and establish trust relationship between various security mechanisms and policies within different institutions; manage credentials; and ensure secure interactions

    Expressive Policy-Based Access Control for Resource-Constrained Devices

    Get PDF
    Upcoming smart scenarios enabled by the Internet of Things envision smart objects that expose services that can adapt to user behavior or be managed with the goal of achieving higher productivity, often in multi-stakeholder applications. In such environments, smart things are cheap sensors (and actuators) and, therefore, constrained devices. However, they are also critical components because of the importance of the provided information. Therefore, strong security is a must. Nevertheless, existing feasible approaches do not cope well with the principle of least privilege; they lack both expressiveness and the ability to update the policy to be enforced in the sensors. In this paper, we propose an access control model that comprises a policy language that provides dynamic fine-grained policy enforcement in the sensors based on local context conditions. This dynamic policy cycle requires a secure, efficient, and traceable message exchange protocol. For that purpose, a security protocol called Hidra is also proposed. A security and performance evaluation demonstrates the feasibility and adequacy of the proposed protocol and access control model.This work was supported in part by the Training and Research Unit through UPV/EHU under Grant UFI11/16 and in part by the Department of Economic Development and Competitiveness of the Basque Government through the Security Technologies SEKUTEK Collaborative Research Projec

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Data Protection for the Internet of Things

    Get PDF
    The Internet of Things (abbreviated: “IoT”) is acknowledged as one of the most important disruptive technologies with more than 16 billion devices forecasted to interact autonomously by 2020. The idea is simple, devices will help to measure the status of physical objects. The devices, containing sensors and actuators, are so small that they can be integrated or attached to any object in order to measure that object and possibly change its status accordingly. A process or work flow is then able to interact with those devices and to control the objects physically. The result is the collection of massive data in a ubiquitous form. This data can be analysed to gain new insights, a benefit propagated by the “Big Data” and “Smart Data” paradigms. While governments, cities and industries are heavily involved in the Internet of Things, society’s privacy awareness and the concerns over data protection in IoT increase steadily. The scale of the collection, processing and dissemination of possibly private information in the Internet of Things has long begun to raise privacy concerns. The problem is a fundamental one, it is the massive data collection that benefits the investment on IoT, while it contradicts the interest on data minimization coming from privacy advocates. And the challenges go even further, while privacy is an actively researched topic with a mature variety of privacy preserving mechanisms, legal studies and surveillance studies in specific contexts, investigations of how to apply this concepts in the constrained environment of IoT have merely begun. Thus the objective of this thesis is threefold and tackles several topics, looking at them in a differentiated way and later bringing them together for one of the first, (more) complete pictures of privacy in IoT. The first starting point is the throughout study of stakeholders, impact areas and proposals on an architectural reference model for IoT. At the time of this writing, IoT was adversed heavily by several companies, products and even governments, creating a blurred picture of what IoT really is. This thesis surveys stakeholders, scenarios, architecture paradigms and definitions to find a working definition for IoT which adequately describes the intersection between all of the aforementioned topics. In a further step, the definition is applied exemplary on two scenarios to identify the common building blocks of those scenarios and of IoT in general. The building blocks are then verified against a similar approach by the IoT-A and Rerum projects and unified to an IoT domain model. This approach purposefully uses notions and paradigms provided in related scientific work and European projects in order to benefit from existing efforts and to achieve a common understanding. In this thesis, the observation of so called cyber-physical properties of IoT leads to the conclusion that IoT proposals miss a core concept of physical interaction in the “real world”. Accordingly, this thesis takes a detour to jurisdiction and identifies ownership and possession as a main concept of “human-to-object” relationships. The analysis of IoT building blocks ends with an enhanced IoT domain model. The next step breaks down “privacy by design”. Notably hereby is that privacy by design has been well integrated in to the new European General Data Protection Regulation (GDPR). This regulation heavily affects IoT and thus serves as the main source of privacy requirements. Gürses et al.’s privacy paradigm (privacy as confidentiality, privacy as control and privacy as practice) is used for the breakdown, preceded by a survey of relevant privacy proposals, where relevancy was measured upon previously identified IoT impact areas and stakeholders. Independently from IoT, this thesis shows that privacy engineering is a task that still needs to be well understood. A privacy development lifecycle was therefore sketched as a first step in this direction. Existing privacy technologies are part of the survey. Current research is summed up to show that while many schemes exist, few are adequate for actual application in IoT due to their high energy or computational consumption and high implementation costs (most notably caused by the implementation of special arithmetics). In an effort to give a first direction on possible new privacy enhancing technologies for IoT, new technical schemes are presented, formally verified and evaluated. The proposals comprise schemes, among others, on relaxed integrity protection, privacy friendly authentication and authorization as well as geo-location privacy. The schemes are presented to industry partners with positive results. This technologies have thus been published in academia and as intellectual property items. This thesis concludes by bringing privacy and IoT together. The final result is a privacy enhanced IoT domain model accompanied by a set of assumptions regarding stakeholders, economic impacts, economic and technical constraints as well as formally verified and evaluated proof of concept technologies for privacy in IoT. There is justifiable interest in IoT as it helps to tackle many future challenges found in several impact areas. At the same time, IoT impacts the stakeholders that participate in those areas, creating the need for unification of IoT and privacy. This thesis shows that technical and economic constraints do not impede such a process, although the process has merely begun

    Multi-party authentication protocols for web services

    Get PDF
    The Web service technology allows the dynamic composition of a workflow (or a business flow) by composing a set of existing Web services scattered across the Internet. While a given Web service may have multiple service instances taking part in several workflows simultaneously, a workflow often involves a set of service instances that belong to different Web services. In order to establish trust relationships amongst service instances, new security protocols are urgently needed. Hada and Maruyama [HAD02] presented a session-oriented, multi-party authentication protocol to resolve this problem. Within a session the protocol provides a common session secret shared by all the service instances, thereby distinguishing the instances from those of other sessions. However, individual instances cannot be distinguished and identified by the session secret. This leads to vulnerable session management and poor threat containment. In this thesis, we present a new design for a multi-party authentication protocol. In this protocol, each service instance is provided with a unique identifier. The Diffie-Hellman Key Agreement scheme is employed to generate the trust relationship between service instances within the same flow. The Coordinated Atomic Action scheme is exploited for achieving an improved level of threat containment. The new protocol was implemented in Java and evaluated by a combined use of experiments and model-based analysis. The results show that the time consumption for multi-party authentication increases linearly as the number of service instances that are introduced into a session increases. Our solution is therefore potentially applicable for Web service flow with a large number of participants. Various public key algorithms are also compared and evaluated during the experiments in order to select the most suitable one for our new protocol
    corecore