

A Trust-based Elastic and Dynamic

Authentication Solution for Multi-Cloud

Computing

A thesis submitted to the University of Manchester for the degree of Doctor of

Philosophy

in the Faculty of Science and Engineering

2023

By

Amina H. Gamlo

School of Engineering/Department of Computer Science

Supervisor: Dr. Ning Zhang

Co-Supervisor: Dr. Omaimah Bamasak

Advisor: Dr. Lucas Cordeiro

2

3

List of Contents

 List of Figures 6

 List of Tables 7

 Abbreviations 8

 Abstract 10

 Declaration 11

 Copyright Statement 12

 Acknowledgement 13

 Chapter 1: Introduction

1.1. Research Context 14

1.2. Research Methodology 15

1.3. Research Question and Research Hypothesis 16

1.4. Novel Contribution and Publications 17

1.5. Thesis Structure 18

 Chapter 2: Background

2.1. Chapter Introduction 20

2.2. Cloud Computing: An Overview 20

2.3. Cloud Computing Deployment Models 21

2.4. Cloud Computing Service Models 22

2.5. Multi-Cloud Computing (M2C) 24

2.6. Security Issues and Challenges 25

2.7. Chapter Summary 28

 Chapter 3: Authentication Solutions: A Literature Survey

3.1. Chapter Introduction 29

3.2. Authentication Basics 29

3.2.1. An Overview 29

3.2.2. Authentication Process 30

3.2.3. Registration and Identity Proofing 32

3.2.4. Authentication Tokens 33

3.2.5. Threats on the Authentication Process 35

3.3. Classification of Authentication Solutions based on Number of Factors 36

3.3.1. Single-Factor Authentication Methods 37

3.3.1.1. Knowledge Factors 37

3.3.1.2. Ownership Factors 38

3.3.1.3. Static Identity Factors 39

3.3.1.4. Dynamic Identity Factors 39

3.3.2. Multiple Factor Authentication Methods 40

3.4. Context Aware Authentication Methods 40

3.5. Distributed Systems Authentication Methods 41
3.5.1. Peer to Peer Authentication Methods 41
3.5.2. Grid Computing Authentication Methods 43
3.5.3. Existing CC Authentication Methods 46

3.6. Chapter Summary 50

4

 Chapter 4: Problem Identification and Requirements Specification

for M2C Authentication Solutions

4.1. Chapter Introduction 51

4.2. Problem Analysis and MC Generic Model Derivation 52

4.2.1. A Real-Life Application: “The New Shop” 52

4.2.2. Single Cloud Solution (1C Shop) 52

4.2.2.1. AWS Authentication: Entities and Methods 53

4.2.2.2. AWS Scenario Architecture and Operation 57

4.2.3. Two Cloud Solution (2C Shop) 63

4.2.3.1. 2C-Shop Authentication: Entities and Methods 63

4.2.3.2. 2C-Shop Architecture and Operation 65

4.2.3. Three Cloud Solution (3C-Shop) 68

4.2.3.1. 3C-Shop Authentication: Entities and Methods 68

4.2.3.2. 3C-Shop Architecture and Operation 70

4.3. Multi-Cloud Generic Model (MC-Model) 72

4.3.1. MC Model Architecture 72

4.3.2. Entities 73

4.3.3. Credentials Structure 74

4.3.4. MC Model Workflow 77

4.3.5. Interactions between Entities and Message Types 89

4.4. Threat Analysis 82

4.5. Observations 84

4.6. Security Requirements 86

4.6.1. Security Requirements related to Authentication 86

4.6.2. Other Security Requirements 88
4.7. What is Missing? 89
4.8. The Best Way Forward 91

4.9. High Level Ideas 91

4.10. Chapter Summary 93

 Chapter 5: Trust as basis for Authentication: Review and Design

5.1. Chapter Introduction 94

5.2. What is Trust? 94

5.3. Trust Management 95

5.4. Classification of Trust Models 96

5.4.1. Overview of Direct Trust Models 97

5.4.2. Overview of Indirect Trust Models 99

5.4.3. Overview of Varied Trust Models 100

5.5. Discussion and Observations 103

5.6. Three Modes of Authentication 104

5.7. Design Requirements for an Elastic and Distributed Authentication

Architecture (END AuthN)

 105

5.8. Design Preliminaries 106

5.9. Identification of Trust Factors 107

5.9.1. Level of Assurance (LoA) as a Trust Factor 108

5.9.2. Reputation as a Trust Factor 109

5.9.3. Recommendation as a Trust Factor 110

5

5.10. General Description for END AuthN Architecture 110

5.10.1. Architectural Components of END 111

5.10.2. Trust Engine (TruE) 112

5.10.2.1. The Reputation-based Trust Module (T-Rp M) 112

5.10.2.2. The Recommendation-based Trust Module (T-Rc M) 113

5.10.2.3. The Credential-based Trust Module (T-Cr M) 113

5.10.2.4. The Aggregate Trust Module (AggT M) 114

5.10.3. The End Database (EN-DB) 114

5.11. Chapter Summary 115

 Chapter 6: LoA as a Trust Factor: Design, Implementation and

Evaluation

6.1. Chapter Introduction 117

6.2. Definitions 117

6.3. Identification of credential based LoA related factors 118

6.4. Defining relations between credential based LoA-related factors 124

6.5. Structuring credential based LoA-related factors 125

6.6. Determining Aggregate value for credential based LoA-related factors 127

6.6.1. Algorithms for the Low Watermark Rule 129

6.6.2. Algorithms for the Additive Rule 130

6.7. Description of Architectural Components Related to LoA Credential-

based Factors (T-Cr M)

 136

6.7.1. END AuthN Execution Flow 136

6.7.2. The Credentials Static Tree Module (CRSTM) 138

6.7.3. The Credentials Light-Up Tree Module (CRLTM) 139

6.7.4. The LoA Credentials Derivation Module (ALoAM) 140

6.8. Chapter Summary 140

 Chapter 7: Evaluation of END Authentication Architecture

7.1. Chapter Introduction 141

7.2. Evaluation Methodology 141

7.2.1. Informal Security Analysis 141

7.2.2. Evaluation against Design Requirements 142

7.2.3. Comparison to related work 144

7.2.4. Performance Evaluation 148

7.2.4.1. Performance Evaluation of Low Watermark Algorithms 149

7.2.4.2. Performance Evaluation of Additive Algorithms 151

7.3. Chapter Summary 152

 Chapter 8: Conclusion and Future Work

8.1. Thesis Summary 153

8.2. Contributions 154

8.3. Future Work 155

 Bibliography 157

 Appendix A 163

 Appendix B 183

 Word Count = 39474

6

List of Figures

Figure 2-1 Difference in Control Between Client and Provider for Different

Service Models

23

Figure 3-1 The Process of Authentication 30

Figure 3-2 User Role during the Authentication Process 32

Figure 3-3 Registration and Identity Proofing Process 33

Figure 3-4 IBC node2node Authentication 43

Figure 3-5 Summary of Kerberos 5 Message Exchanges 44

Figure 4-1 Phases of the Solution 57

Figure 4-2 A logical view of the AWS solution employed by “NewShop.” 58

Figure 4-3 The architecture of "NewShop" AWS solution: Development phase 59

Figure 4-4 Architecture for the Build Phase 60

Figure 4-5 AWS Architecture for Web Hosting Solution 62

Figure 4-6 General Architecture of 2C-Shop Solution 66

Figure 4-7 Architecture of 2C-Shop (Phase 3) 67

Figure 4-8 Architecture of 3C-Shop solution 71

Figure 4-9 Logical view of Multi-Cloud Generic Model 73

Figure 4-10 Simplified Example Run from 2C-Shop Solution 78

Figure 4-11 MC-Model Interactions 79

Figure 4-12 A logical view of A3S cloud 92

Figure 5-1 Trust Concatenation 97

Figure 5-2 Trust Aggregation 97

Figure 5-3 END Authentication Architecture 111

Figure 5-4 LoA-DB Tables and Relationship Diagram 115

Figure 6-1 Types of Authentication in M2C Model 120

Figure 6-2 User-to-System Direct Authentication Scenario 120

Figure 6-3 User-to-System Direct Assertion-based Authentication Scenario 121

Figure 6-4 User-to-System Indirect Assertion-based Authentication 122

Figure 6-5 User-to-System Proxy Assertion-based Authentication scenario 122

Figure 6-6 System-to-System Assertion-based Authentication Scenario 123

Figure 6-7 Decision Tree to build a Structure for LoA-related factors 126

Figure 6-8 An Exemplar LoA-factor Tree for a Given Authentication Instance 127

Figure 6-9 END AuthN Working Example 137
Figure 7-1 Linear Regression for Sort Algorithm Plot 149
Figure 7-2 Linear Regression for Pairwise Comparison Plot 150
Figure 7-3 Comparison of Performance evaluation between Sort algorithm and

Pairwise comparison algorithm

150

Figure 7-4 Comparative Analysis of Computational Time of three Additive Rule

Algorithms

151

7

List of Tables

Table 2-1 Security Provision Share between Clients and Providers for Different

Service Models

24

Table 2-2 Security Requirements and Threats at each Service Level 26
Table 4-1 Who knows What for AWS Solution 55

Table 4-2 AWS Solution Credentials 56
Table 4-3 2C-Shop Solution Additional Credentials 64

Table 4-4 Who knows What for 2C-Shop Solution 65

Table 4-5 3C-Shop Solution Additional Credentials 69
Table 4-6 Who knows What for 3C-Shop Solution 70
Table 4-7 MC-Model Credentials 75
Table 4-8 Who knows What for MC-Model 76
Table 4-9 Current Research Authentication Methods Evaluated against Requirements 90
Table 5-1 Summary of Trust model reviewed 103

Table 5-2 END AuthN Architectural Components 112

Table 6-1 Algorithm for Calculating ALoA-Cr for a given Authentication Instance 128
Table 6-2 Algorithm for Sort to determine the minimum LoA Value 129
Table 6-3 Algorithm for Pairwise Comparison to determine minimum LoA value 129
Table 6-4 Mapping from LoA component values to Probability values 131
Table 6-5 Algorithm for Additive Rule based on Probability theory (P-LoAAdd) 131
Table 6-6 Algorithm for Additive Rule based on Mapped Weights 133
Table 6-7 Algorithm for Additive Rule based on Combined LoA 135
Table 6-8 Sub-Component of T-Cr Module 136
Table 7-1 Comparison of TruE with related work reviewed 144
Table 7-2 Comparison of END with related work reviewed 146

Table A1 LoA for Registration and ID Proofing 164

Table A2 LoA components for Token Types 166

Table A3 LoA Requirements for Token and Credential Management Activities 172

Table A4 Requirements for Authentication Process Threat Resistance for LoA 175

Table A5 Examples of Technologies Sufficient for LoA 175

Table A6 Threats against Assertions per LoA 178

Table A7 Requirements for Assertions at each LoA 180

8

Abbreviations
CC Cloud Computing

M2C Multi-Cloud Computing

A3S Authentication-as-a-service

DDEA Dynamic Distributed Elastic Context-Aware Authentication

CSP Cloud Service Providers

SAML Security Assertion Markup Language

SOAP Simple Object Access Protocol

SSL Secure Socket Layer

IaaS Infrastructure-as-a-Service

AaaS Authentication-as-a-Service

PaaS Platform-as-a-Service

SaaS Software-as-a-Service

MC Multi-Cloud

IAM Identity Access Management

MFA Multi-Factor Authentication

VPC Virtual Private Cloud

EBS Amazon Elastic Block Store

RDS Relational Database Service

EC2 Amazon Elastic Compute Cloud

DNS Domain Name System

OTP One-Time Password

PUK Public Key

PRK Private Key

SAK Secret Access Key

AS Authentication System

EDD Elastic Dynamic and Distributed

NIST National Institute of Standards and Technology

MAC Message Authentication Code

CP Credential Provider

RA Registration Authority

CA Certificate Authority

GC Grid Computing

TPM Trusted Platform Module

SP Security Proxy

VoIP Voice Over IP

R2 Message Authentication

R3 Continuous Authentication

CAM Cloud Access Management

TCP Trusted Computing Platform

9

UP User Proxy

RP Resource Proxy

AIK Attestation Identity Key

TGT Ticket-Granting Ticket

KDC Key Distributed Center

HC Host Cache

TRAVOS Trust and Reputation model for Agent-based Virtual OrganizationS

IT Interaction Trust

RT Roles based Trust

WT Witness Trust

CT Certified Trust

LoA Level of Assurance

END AuthN Elastic and Dynamic Authentication

T-Cr credential-based

T-Rp reputation-based

T-Rc recommendation-based

TruE Trust Engine

LC Local Confidence

GC Global Confidence

LoA Level of Assurance

AC Authentication Context

10

Abstract
Continued advances in hardware, networking, and virtual machine technologies have led to the

emergence of a variety of distributed computing schemes, such as Cloud Computing. The dynamic

characteristics of cloud resources and services make them accessible to millions of users from

anywhere on the Internet. Generally speaking, cloud services are specific to each cloud service

provider (CSP) and unaware of other providers’ resources servicing shared clients [2]. Multi-

Cloud Computing (M2C) should allow users to benefit from various cloud-offered resources

seamlessly. However, the open nature of CSPs and the independent planning and provisioning of

resources for users make resource sharing in M2C challenging.

This research will focus on the authentication of M2C. Authentication is the foremost security

measure in any computing system, as it validates the identities of communicating parties.

Validating an identity usually requires proof of trust in a user or a system. Cloud Computing

context presents many security challenges, especially regarding building trust due to the

distribution of resources and multi-tenancy. Issues of standardization in network protocols and

collaboration mechanisms add constraints and limitations to providing M2C authentication.

Current research provides a wide range of authentication solutions for M2C based on passwords,

symmetric key cryptography, public key cryptography, and others. Each scheme presents an

enhancement on others to provide secure, effective authentication for the distributed dynamic

cloud services among multi-cloud services and users. This research examines a real-life use case

scenario of M2C to describe a generic model. It also provides a threat analysis for M2C and

specifies authentication requirements for M2C contexts. Based on the identification of

requirements, an adaptive authentication solution is proposed that considers the special features of

M2C. The proposed architecture is an Elastic and Dynamic Authentication (END) scheme. It is

based on the dynamic (run-time) use of distributed resources available upon an authentication

request from a claimant to build trust. Trust is not based on credentials only such as cryptographic

keys and/or passwords; rather, it builds trust based on three modes of authentication: credential

based, recommendation based, and reputation based. So, it offers on-demand authentication

according to the level of trust required for the current context of the user.

11

Declaration

No portion of the work referred to in this thesis has been submitted in support of an application

for another degree or qualification from this or any other university or other institute of learning.

12

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns

certain copyright or related rights in it (the “Copyright”) and s/he has given The University of

Manchester certain rights to use such Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may

be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended)

and regulations issued under it or, where appropriate, in accordance with licensing agreements

which the University has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other intellectual

property (the “Intellectual Property”) and any reproductions of copyright works in the thesis, for

example graphs and tables (“Reproductions”), which may be described in this thesis, may not

be owned by the author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the prior written

permission of the owner(s) of the relevant Intellectual Property and/or Reproductions. Further

information on the conditions under which disclosure, publication and commercialisation of

this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it

may take place is available in the University IP Policy (see

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant Thesis

restriction declarations deposited in the University Library, The University Library’s regulations

(see http://www.manchester.ac.uk/library/aboutus/regualtions) and in the University’s policy

on presentation of Theses.

iv. and in the University’s policy on presentation of Theses.

v. and in the University’s policy on presentation of Theses.

vi. and in the University’s policy on presentation of Theses.

vii. and in the University’s policy on presentation of Theses.

viii. and in the University’s policy on presentation of Theses.

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regualtions

13

Acknowledgement

I thank Allah for answering my prayers and guiding me through this journey.

I would also like to thank my wonderful supervisors: Dr. Omaimah Bamasak for her moral support,

guidance and for being a wonderful friend whenever I needed one, and Dr. Ning Zhang for the

continuous encouragement, brilliant scientific insights, and patience.

Special thanks to my partner in this journey, my husband, for his love and continuous

encouragement and invaluable support throughout this long journey. After Allah’s guidance,

dearest Mustafa, I couldn’t have done it without you.

My appreciation goes to my children, Aseel, Ahmad, Abdulaziz, Lama, and Muhammad for

believing in me, making my life enjoyable, and keeping me on my toes always.

My dear sisters Ahlam, Eman, Tota, and Amjad, without your support and prayers, I couldn’t have

achieved my dream.

Finally, I offer my utmost gratitude to my parents, the guiding light in my life, for being my first

teachers, for making me love science, for teaching me to never stop learning, and for always being

there for me and keeping me in their prayers.

I would like to express my gratitude to my father (may his soul rest in peace). “I did it Dad”. I

wish you were here to celebrate this accomplishment with me. I hope I made you proud.

To all of you, a huge “Thank You” from the bottom of my heart.

14

Chapter 1: Introduction

1.1. Research Context

Cloud Computing (CC) is a well-established technology that continues to revolutionize the

deployment of computing resources. Statista market research estimated that global cloud revenues

would surpass $150 billion in revenue by the end of 2021 [73]. Cloud computing provides users

with flexibility, scalability of infrastructure, reliability, sustainability, and cost-effectiveness [106].

On the other hand, CC presents many challenges, especially on the security front. Although the

underlying concept of CC goes back to the 1950’s, when mainframe computers offered shared

computing resources to multiple users via terminal computers, the CC model demands more

evolved measures to secure access to cloud services. CC requires special attention to security

concerns like access control, authentication, confidentiality, availability, and integrity.

With the rapid explosion of cloud services offered by a growing number of Cloud Service

Providers (CSP), Multiple Cloud Computing (M2C) or multi-cloud has gained increasing interest

from industry and academia. Multi-cloud computing, a subtype of hybrid cloud, refers to users or

organizations employing two or more cloud services from two or more vendors. According to

Gartner, organizations want to avoid vendor lock-in and take advantage of the best IT solutions,

leading to higher adaptation rates of M2C-based IT strategies [32]. The 2021 CC statistics show

that enterprises continue to embrace multi-cloud and hybrid cloud strategies and are already using

more than two public and two private clouds on average [59].

The increased growth of M2C adaptation stresses the fact that security across these diverse

platforms is extremely important. Authentication is the first line of defense in any security

provisioning solution. According to the NIST special publication 800-144 on Security and Privacy

in Public Cloud Computing, most CSPs use the Security Assertion Markup Language (SAML)

standard, which is an XML-based standard for exchanging authentication data between

cooperating domains. Once a client is authenticated, a SAML transaction holds an identity token

and information on the user’s privileges, which in turn are verified by the service provider to grant

the user the appropriate level of access [42], [106]. SAML request and response messages are

typically mapped over Simple Object Access Protocol (SOAP), where the messages are digitally

15

signed using the private key associated with the public key certificate of the client. Although this

method is currently accepted and used, it is vulnerable to certain attacks [42]. Secure Socket Layer

(SSL) is widely used for secure internet communication including CC communication. Many

studies show problems with non-browser SSL code leaving users open to Man-in-the-Middle-

attack [42]. In addition, these methods allow users and organizations to be authenticated to receive

multiple services limited by a single cloud operator [6]. In multi-cloud architecture, a user is

required to sign multiple Service Level Agreements (SLAs), unique for each CSP, to receive

services from multiple CSPs [4]. Hence, a customer is responsible for resource provisioning and

brokering. For multi-cloud to work, authentication should be provided seamlessly between

multiple services offered by multiple CSPs. Federated clouds make it easier by offering aggregated

services offered by more than one CSP [4]. However, this limits the user’s options to pre-set

composite services offered by the cloud federation. Furthermore, these solutions are static in nature

and unaware of all parameters present at run-time.

Current research and guidelines present many solutions, some of which consider some contextual

attributes. This study focuses on understanding the features of Multiple Cloud Computing (M2C),

with the intent to define a set of requirements for a comprehensive authentication solution. The

requirements will be the basis of an elastic dynamic context aware authentication solution that

takes into account M2C attributes and fulfils the formulated conditions.

1.2. Research Methodology

This research concentrates on devising an authentication solution for M2C, using context-aware

computing, by applying the concepts of elasticity. By successful implementation of the attributes

of this environment, the security of M2C will increase through many folds in the following manner

[23]:

• A fine-grained authentication based on contextual attributes

• Deciding on the effectiveness of using elasticity to provide authentication

The main objectives of this research are as follows:

1. To describe real-life use case scenarios of M2C.

2. To construct a generic model for M2C service access.

16

3. To complete the threat analysis by identifying any threats related to identity and unauthorized

access to data or services in the M2C environment.

4. Based on the outcome of the threat analysis, the aim is to specify the set of requirements, for

a secure and efficient M2C authentication solution established on trust.

5. Reviewing the existing authentication solutions for distributed systems and to analyze them

against the set of requirements, and further identifying the areas of improvement.

6. Designing and implementing a trust-based, reliable, secure, and efficient authenticated

solution.

7. To evaluate the security of the designed solution.

8. To assess the performance of the accomplished outcome.

9. To publish the findings.

1.3. Research Question and Research Hypothesis

This research will address the following question:

RQ: How to facilitate effective authentication for multiple cloud computing (M2C) environments,

with minimal performance cost?

M2C provides cost-effective, distributed, elastic, and variable resources to users. However, it also

presents many security challenges due to its distributed, elastic multi-tenant nature. The M2C

environment presents us with credentials and authentication methods already available and can be

used to establish trust for the interacting parties at the time of authentication. Thus, the study

proposes a trust-based dynamic elastic authentication solution. By “elastic authentication”, we

mean that a varying authentication assurance level is provided based on the provider’s or user’s

requirements by supporting the use of a variable number and types of authentication factors when

an authentication request is being made. An elastic authentication solution contemplates the special

features of M2C and harnesses the power of changing parameters of M2C environment.

The hypothesis that is emphasized in this research will attempt to assess the following:

RH: By applying the idea of elastic authentication to M2C, it is possible to establish trust and

provide authentication in a more effective manner with less performance costs.

17

Since M2C clients may roam from one network to another and connect to various entities, efforts

to perform effective and efficient authentication may be reduced based on trust relations already

established between cloud clients and those entities. The main idea of our solution relies on the

dynamic use of authentication methods available when a user needs to be authenticated.

1.4. Novel Contributions and Publications

The main contributions of this work are listed as follows:

1. The description of a novel generic abstract model for multi-cloud solutions (MC-Model) is

presented in Chapter 3.

2. Security Analysis of Multi Cloud Computing (M2C) based on the MC-Model.

3. Introduction of the concept of three modes of authentication (based on credentials, interaction

history, and recommendations from other entities) are described in Chapter 5.

4. Chapter 5 presents the concept of Authentication-as-a-Service (A3S) which provides a

distributed and dynamic on-demand authentication solution.

5. A novel framework for establishing trust in M2C entities (Trust Engine or TruE). It considers

three trust establishing factors, including credentials provided by the claimant at the time of

authentication, reputation of varied cloud entities (providers, services, and clients) based on

their direct interactions, and recommendations of cloud entities based on collected entity

evaluations of previous indirect interactions. This framework is introduced in Chapter 5.

6. Methodology for structuring LoA related factors in Multi Cloud Computing (M2C) is drafted

in Chapter 6.

7. Algorithm for calculating aggregate LoA related factors based on credentials (𝑨𝑳𝒐𝑨. 𝑪𝒓) for

Multi Cloud Computing (M2C) entities for a given authentication instance is also presented

in Chapter 6.

8. Chapter 6 also comprises of the three novel algorithms (W.LoAAdd , M. LoAAdd , C. LoAAdd) for

evaluating an aggregate value of LoA for independent credential based LoA related factors.

18

9. Further, Chapter 6 also presents a novel elastic, dynamic, and distributed authentication

solution END AuthN for M2C based on trust establishment provided by (TruE) framework.

Publications:

The work presented in contributions 1, 2 was summarized in the following publication:

Gamlo, Amina H., Ning Zhang, and Omaimah Bamasag. "Mobile cloud computing: security

analysis." 2017 5th IEEE International Conference on Mobile Cloud Computing, Services, and

Engineering (MobileCloud). IEEE, 2017.

1.5. Thesis Structure

The thesis is outlined as follows:

Chapter 1 provides the introduction in five sections, which include the research context, problem

statement, methodology, novel contributions and publications, and an outline of the thesis.

Chapter 2 describes background information on Cloud Computing (CC) deployment and service

models of CC, and Multi-Cloud Computing (M2C). It also presents the security issues and

challenges of both CC and M2C contexts.

Chapter 3 classifies the authentication solutions in terms of authentication factor number and type.

It also provides a literature review and in-depth analysis of authentication solutions for distributed

systems in general and cloud computing in particular.

Chapter 4 depicts the how M2C works using a real-life use case scenario, along with its solution.

These scenarios are the basis for a threat analysis, and the identification of general security

requirements for M2C. It also introduces high level ideas for a novel authentication solution for

M2C.

Chapter 5 reviews and analyzes existing models for establishing trust in computing environments

comparable to M2C. It also provides the design of a novel framework for establishing trust, TruE,

for interacting entities in M2C and the design and description of novel authentication solution for

M2C based on trust.

Chapter 6 identifies credential based LoA-related factors and defines relationships between them.

It also proposes a novel methodology for structuring these factors. It provides description and

19

evaluation of three novel alternate algorithms for combining these factors to compute aggregate

value of LoA based on these factors under the additive rule. Chapter 6 also concludes the

description of a novel authentication solution for M2C, END AuthN.

Chapter 7 presents an evaluation of the proposed END AuthN architecture, including evaluation

methodology, evaluation against design requirements and against security risks, and a performance

evaluation.

Finally, chapter 8 concludes the report and provides a view into future research plans.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

Finally, chapter 8 concludes the report and provides a view into the future work plan.

20

Chapter 2: Background

2.1. Chapter Introduction

In order to provide a reliable authentication solution for multi-cloud users, some background

information on the main concepts relating to the topic is described in this chapter.

This chapter introduces Cloud Computing (CC) and Multiple Cloud Computing (M2C). It

provides an overview of CC, identifies its general characteristics, and describes its deployment

and service models. It also introduces the security issues and challenges in this environment.

2.2. Cloud Computing: An Overview

Cloud Computing is no longer the future; it is the present. CC provides on-demand resources to

users in a seamlessly distributed environment. Based on these concepts, the literature offers

varying definitions for CC. Zeng et. al. lists the most expressive definition, stating CC as a network

of parallel and distributed virtualized resources presented as a unit providing users with varying

levels of IT service [104]. The National Institute of Standards and Technology (NIST) defines CC

as, “a resource utilization mode that can allocate and deploy computer resources conveniently and

immediately by network access according to the demand at the least management expense or with

few activities executed by the supplier to carry out the resource release”. CC is a pay-per-service

on-demand mode of providing computational resources. The paradigm of CC is realized through

virtualization. Virtualization refers to the ability of software to simulate an underlying

infrastructure or hardware layer to keep the user working at a higher logical level and allow

efficient utilization of the resources [97].

CC has many essential characteristics and features. Cloud service users commendably use many

features like cost-effectiveness, variability of resources, seamless self-service, flexibility,

reliability, location independence, and broad network access [106], [104], [61], [97]. CSPs also

gain the advantages of scalability of infrastructure, cost-effectiveness, and sustainability [106].

One of the major benefits offered to both users and providers of CC is cost-effectiveness. For users,

it permits the allocation of as many or as few resources as required to complete the tasks at hand.

It also saves users the expense of allocating resources locally when they are underutilized. [97].

21

Furthermore, it reduces the cost of resource maintenance. It enables service providers to locate

resources in low-cost real estate and/or in close proximity to low-cost power sources. [106]. In

addition, the CC service paradigm is centered around better resource utilization, leading to long-

term sustainability for the resource owner [106]. With a variety of delivery methods, CC enables

the user to access various categories of services. Users can effortlessly request basic infrastructure

services such as battery power preservation services, networking services, deployment platforms

to run applications such as JAVA or Python or rented applications. Seamless self-service is yet

another remarkable feature of CC. Users of cloud services can allocate the necessary resources

automatically via simple user interfaces without the need for manual interaction with the CSPs.

CC also offers users great flexibility and elasticity in service provision according to demand.

Services can be scaled up or down by allowing users to acquire more, or to release redundant

resources as they progress in executing their tasks. Users of cloud services value reliability, which

is typically achieved by using many redundant service sites. This ensures business continuity and

facilitates disaster recovery [106]. Another feature of CC is location independence. Users need not

be aware of the exact location of resources, nor do they need to control them. Still, they can specify

an abstract location, such as a country or city, if necessary [106]. Cloud services offer broad

network access to users. Users also benefit from the standard mechanisms employed by the

providers, allowing for diverse access platforms such as PDA’s, laptops or mobile phones [97].

CSPs benefit from the scalability of infrastructure. It permits the network to expand or contract by

adding or removing nodes and servers with minimal infrastructure and software modifications

[106]. These key features make CC a popular means for providing computing resources.

2.3. Cloud Computing Deployment Models

There are different ways to deploy and manage service delivery to cloud users. These approaches

(also known as deployment models) govern the allocation of resources and the relationships

between cloud service providers and their customers. Four fundamental deployment models exist:

public, private, community, and hybrid clouds. In the public cloud, infrastructure and

computational resources are owned and managed by a CSP that offers Internet-based services to

the public. The provider is presumably an external entity for all consumers. Private clouds, on the

other hand, are owned and administered by the organization for exclusive resource provisioning.

A third party may be assigned cloud management duties by the organization. The cloud may be

22

hosted either within the organization's datacenter or externally [42]. For private clouds, the

organization has greater control over the infrastructure, users, and provided services. The

community cloud is situated between the public and private clouds. In this model, the cloud

infrastructure and services are tailored to a particular user community. Members of this community

are affiliated with organizations that, among other things, share the same policy and security

requirements [42]. The cloud infrastructure may be owned and operated by a third party or by one

or more community organizations. The hybrid paradigm is a relatively more complex cloud

deployment model. Hybrid clouds, as the name suggests, are comprised of multiple types of clouds

that are perceived as distinct entities but are combined via a set of standards and rules that enable

them to share data and applications [68]. Multi-cloud is a hybrid cloud variant in which computing

resources are provided from multiple clouds without CSPs agreeing on how to share resources.

With multi-cloud, the components are distinct cloud systems, as opposed to deployment strategies

in hybrid clouds [37].

Different cloud deployment models have varying implications for the security and privacy of cloud

users. Since private servers are owned or rented exclusively by the organization, security

provisions remain internal. However, in the case of public clouds, security provision is managed

by service providers, resulting in many challenging situations. As for community and hybrid

clouds, security provision has the same circumstances as public clouds only for data and processes

handled by public facilities.

2.4. Cloud Computing Service Models

While deployment models define resource allocation and cloud management, service models

define service control and abstraction level. IaaS, PaaS, and SaaS are the three most prevalent

service models [68]. IaaS refers to the provisioning of infrastructure capabilities such as storage,

network bandwidth, processing capacity, and fundamental computing resources. Users obtain

these resources as virtualized objects managed by a service interface, allowing them to choose the

hosted operating system and development environment. [42]. The PaaS model enables users to

develop and deploy applications on rented programming platforms, such as Python or JAVA, from

the service provider. This model can help the user reduce costs associated with resource allocation

and facilitate development and deployment processes. It will also enable users to manage the

platform's applications and application environment settings [42]. The CSP will save the user the

23

expense and hassle of acquiring, storing, and managing the underlying hardware and software

components, as well as the program and database development tools. In the SaaS model, services

rendered are applications running on the cloud and accessed through a browser or other thin client

[68]. This model reduces the total cost of hardware and software development, maintenance, and

operations for users and the organizations they belong to [104]. Except for selecting utilization

preferences and a few administrative settings, the user has no control over the underlying cloud

infrastructure or individual applications [42].

As described in the previous paragraph, each service model gives the user a different level of

control over cloud facilities, depending on the services rendered. According to NIST security and

privacy guidelines, security provision depends on the amount of control given to CSPs and their

clients (users or users’ organizations) [42]. Figure 2-1 shows the five conceptual layers of any

cloud: facility, hardware, virtualized infrastructure, platform, and application. Arrows on each side

illustrate the amount of control on the user’s side and provider’s sides for each of the service

models.

Figure 2-1. Difference in Control Between Client and Provider for Different Service

Models

24

Figure 2-1 demonstrates that control at the client’s side diminishes when more support is offered

by the service provider [42]. Accordingly, under the security provision, the load is divided between

CSPs and clients. Table 2-1 shows where the security burden falls for each service model.

Table 2-1: Security Provision Share between Clients and Providers for Different Service

Models

Service Models Responsibility of Security

Provision by CSP

Responsibility of Security

Provision by Cloud Client

IaaS Only responsible for basic

infrastructure

For all other layers

PaaS For applications and application’s

environment

For all other layers

SaaS Responsible for all layers None

Although security provision for different cloud service models varies, it is apparent that the CC

paradigm in general has a specific set of security challenges.

2.5. Multi-Cloud Computing (M2C)

Despite the significant growth in CC markets in recent years, there is a deficiency in standard

programming interfaces [28]. This considerably limits the flexibility and portability of cloud

services. Hence, a natural progression in CC is multi-cloud computing (M2C), where users or user

organizations can utilize several cloud services simultaneously. M2C offers many key benefits

[37]:

1. It helps users deal with peaks in service requests.

2. It offers solutions for cost optimization and better quality of service.

3. It allows users to take advantage of changes in services, offered by varying CSPs.

4. It helps users cope with added constraints, such as new locations or laws.

5. It improves the availability of resources and services.

25

6. It emancipates users from dependence on other CSP.

7. It allows for better disaster planning and recovery.

8. It allows users to choose the best services provided across different cloud markets.

2.6. Security Issues and Challenges

Along with the voluminous potential and promises of better resource utilization and client

empowerment, CC presents many challenges. One study cites 66 research papers reviewed where

security concerns were indicated as a major issue [37].

Security issues in the CC pose the biggest challenge for CSPs. According to Zissis and Lekkas,

the context of CC security solutions should focus on two main issues: the placement of trust and

the identification of security threats that are unique to CC [106]. In CC, the boundaries between

an organization and outsiders blur, making it harder to identify trusted parties and locate security

measures [106]. Identification of security threats is also necessary to implement any security

system with the appropriate countermeasures.

A cloud platform's security system should guarantee confidentiality and privacy, service

availability, data and application integrity, and recovery [42], [106]. Confidentiality ensures that

information is not disclosed to unauthorized parties, whereas privacy ensures that individuals have

control over who can collect or retain their information [83]. Availability ensures that authorized

clients are not denied services [83]. Integrity affirms that the information and programs are only

modified by authorized parties and in a specified manner [83]. While these requirements are not

specific to CC security systems, the unique attributes of CC lead to specific risks that should be

addressed [106]. This is due to delegating management of data and/or processes from the owner

or user to the CSP [55]. Also, since this deputization is typically communicated over different

types of networks, protection is necessary for the communication path between users and providers

[106]. Further, the cloud environment is usually implemented in a distributed manner, posing more

challenges for the security system. Furthermore, the multi-tenancy nature of CC leads to an

increased number of access points to the system, leading to accrued confidentiality and privacy

risks. Another issue is object reusability, which may lead to an intentional or unintentional

confidentiality breaches due to data reminiscence [106]. Data reminiscence refers to the residual

representation of data that has been removed. As for integrity, there is an increased risk of insider

26

attacks on asset’s integrity due to the increased number of entities involved [106]. Moreover, the

availability of varying services offered by the service providers is the heart of CC. Extra measures

need to be taken to ensure continuous on-demand service provision despite the possibility of

misbehaving users or security breaches occurring. All these attributes require a reliable security

system that considers these issues.

 A major goal of a security system at CC is protection against threats. Security threats vary

depending on the level of service provided and the layer of the cloud at which the user operates.

Table 2-2. enumerates general security requirements at each service level and possible threats

[106].

Table 2-2: Security Requirements and Threats at each Service Level [106]

Service Levels Possible Threats Security Requirements

SaaS • Data Interception

• Modification or deletion of data

• Privacy breach

• Impersonation

• Session hijacking

• Traffic flow analysis

• Privacy

• Data protection

• Application protection

• Access control

• Service availability

• Communication security

PaaS

• Software modification or deletion

• Impersonation

• Session hijacking

• Traffic flow analysis

• Connection flooding

• Denial of Service

• Disrupting communication

• Defacement

• Application protection

• Data protection (in transit,

stored, reminisce)

• Virtual Cloud protection

• Cloud management control

• Communication security
IaaS

Physical level • Connection flooding

• Denial of Service

• Hardware security

• Hardware reliability

• Network Protection

27

• Network Attacks

• Hardware theft or modification

• Natural disasters

• Network Resources

Protection

Although users do not operate at the physical level, threats occurring at this point may affect

service provision at other levels. As the above table demonstrates, that the security objectives of

CC should include the characteristics of a distributed system, complimented with the cloud’s

special features, as discussed. Accordingly, the security objectives of CC should include:

• Authentication of all communicating parties.

• Availability of data in motion or stored.

• Integrity of data in transit or stationery.

• Integrity of applications to ensure correct operation.

• Access control to all assets and services, or parts of them.

• Confidentiality of data held by cooperating systems.

• Maintaining physical level security when adding or removing resources.

• Clear separation between data and processes at the virtual level.

It should be noted that the first objective of having a dependable authentication solution will play

a significant role in meeting the other subsequent tasks. A reliable authentication system will lead

to well-guided access control of the system’s resources. Also, data and processes will only be

disclosed to authenticated parties, ensuring the confidentiality of the data and processes. Moreover,

it will also guard against misuse or modification of data and applications by unauthenticated

parties. Mostly all organizations have an authentication framework for non-cloud operation, but

it’s not necessary that these frameworks extend their cloud services easily [104]. Alternatively,

an organization may need to utilize two different authentication systems, one for internal

organizational systems and the other for cloud-based systems, possibly leading to further

complications [104]. For M2C, the aim is to allow the utilization of multiple clouds instead of

complete dependency on a single cloud, leading to distribution of reliability, trust, and security

among CSPs [19]. However, security provision becomes more complicated with interacting

services and entities for identification and trust [19], [5].

28

Hence, a reliable authentication solution is essential to minimize most security threats, allow

sharing of digital identities and attributes across both cloud and non-cloud domains, and to provide

a clear separation of the entities managed in M2C environment.

2.7. Chapter Summary

This chapter has presented background information concerning CC, along with its concepts and

features. It also delivered an overview of CC deployment models and service models, pointing out

implications for the provision of security. Later, M2C along with its definition and benefits, is

discussed. Finally, the chapter reviews the security challenges presented by CC in general and MC

specifically.

The next chapter reviews existing authentication solutions for computing environments

comparable to MC in order to identify research gaps and create a road map for the proposed

solution in our work.

29

Chapter 3: Authentication Solutions:

A Literature Survey

3.1. Introduction

Authentication is the primary line of defence and a building block in any security solution. User

authentication provides a basis for reliable access control, confidentiality, and integrity of a

system.

In this chapter, we provide background information on authentication (Section 3.2). The remaining

part of the chapter will deliver a classification of authentication solutions. Section 3.3 categorizes

authentication solutions according to the type and the number of factors used to identify an

applicant. Section 3.4 provides a brief look at context-aware authentication solutions. A literature

review of authentication solutions for Distributed Systems including Peer-to-Peer systems, Grid

Computing, and Cloud Computing is presented in Section 3.5.

3.2. Authentication Basics

Authentication is one of the main security objectives for any information system. It is one of the

main five categories of security services outlined in X.800 [83]. This section provides definitions

for authentication types, highlights their importance to any security system and explains the

generic process of authentication, and introduces authentication tokens that may be used. We also

identify threats to the authentication process.

3.2.1. An Overview

X.800 recommendation outlines five security services, the first of which is authentication. There

are two types of authentication: peer entity authentication and data origin authentication [83]. Peer

entity authentication provides validation of the identity of a peer entity connecting with another

via the same protocol. It is usually provided at the establishment of a connection, or during the

data transfer phase. Data origin authentication, on the other hand, provides validation of the source

of a data unit, with no guarantees against duplication or modification of data units. Various

30

Cryptographic techniques are usually employed to provide authentication for a system, such as

Digital Signatures, Hash algorithms, and Message Authentication Code (MAC).

Authentication is the first line of defence in any security system. It provides evidence to guide the

decision to allow access to any of the system’s assets. This decision will provide secrecy, or

confidentiality, of data and processes against any illegal parties, which are eliminated by the

authentication process. It will also safeguard the data and processes against modification by

unauthenticated parties. Authentication also shields against malicious drainage of system

resources, which ensures the availability of system assets to rightful users.

3.2.2. Authentication Process

The process of authenticating an applicant to any system consists of two phases: first, is the

identification, and then actual authentication [89]. Identification is the step where the applicant

provides proof, in the form of a token, of his/her claimed identity to the system. Authentication is

the step when the system validates the applicant’s identity by referring to an authentication

authority, maybe a database of all identities to check the evidence, or a token provided in the first

step. Figure 3-1 shows the steps of the authentication process. This typically is implemented

through an authentication protocol message exchange, usually referred to as an authentication

protocol run. The authentication protocol run results in either successful authentication of the

applicant or authentication failure.

Figure 3-1. The Process of Authentication

According to NIST’s electronic authentication guidelines, these tokens or credentials are issued

by a Credential Provider (CP) trusted to issue and register electronic tokens and credentials to

31

subscribers [89]. A CP may be an independent third party, or it may issue credentials for its own

use. An applicant needs first to apply to become a subscriber of a CP, which is done through a

Registration Authority (RA) trusted to establish and vouch for the identity or attributes of an

applicant to a CP [16]. The RA may be an integral part of the CP, or it may be independent. A

verifier, on the other hand, is an entity that verifies the identity of the applicant by confirming his

possession and control of a token via an authentication protocol. To accomplish this, the verifier

may also need to validate and verify the status of the credentials that link the token and identity

[16].

To ensure that the authentication process is reliable, the following steps need to be carried out [16]:

• Risk assessment needs to be employed for the system assets.

• Based on risk assessment, a security level for the intended system should be defined for all

system assets. The risks are mapped to a specific assurance level.

• A suitable technology (or technological tools) should be matched to the required assurance

level.

• The implemented security system, then, needs to be validated against the required assurance

level.

• Periodical reassessment is necessary to update requirements and employ more advanced

technology.

This process allows users and organizations to be confident with respect to the reliability of the

systems they interact with. However, it is a static preset approach that is unable to cope with

dynamic computing contexts of operations such as Cloud Computing or Mobile Computing. In

these contexts, risk levels and operational parameters change at run-time requiring systems to

adapt and handle the new risks and take advantage of context parameters at any given time.

32

3.2.3. Registration and Identity Proofing

Registration and identity proofing are the first areas of concern for defining security requirements.

Going through this process, the user is referred to as an applicant, a subscriber, or a claimant

depending on the stage of the process. Registration usually precedes the authentication process

illustrated in Section 3.2.2. It is a process by which an applicant applies to become a Subscriber of

a CP to receive identity credentials. Whenever a user uses these credentials to be authenticated, he

is referred to as a claimant. Figure 3-2 illustrates the user’s transition through this process.

Figure 3-2. User Role during the Authentication Process

Identity Proofing is a process by which a CP and an RA collect and verify information about a

person for the purpose of issuing respective credentials to that person. Figure 3-3 describes the

registration process in general.

33

Figure 3-3. Registration and Identity Proofing Process

The registration and identity proofing process should ensure [16]:

• Existence of an entity with the applicant's attributes that are sufficient to uniquely identify this

entity.

• The entity entitled to the identity is, in fact, the Applicant whose token was registered.

• Using this token in the future, it is difficult for the claimant to repudiate the registration and

dispute authentication.

3.2.4. Authentication Tokens

A token is defined as something the claimant has and controls, (typically a cryptographic module

or password) that is used to authenticate his/her identity. It typically contains a secret value, or

token secret, used to generate authenticator outputs on demand to verify the claimant’s possession

of the token. Tokens are based on one or more authentication factors [16]:

• Something you know (knowledge tokens): such as a password.

• Something you have (ownership tokens): such as an ID card.

• Something you are (identity tokens): such as a person’s fingerprint.

Hence, a token can be hardware, software, or some information you remember. Tokens are also

characterized by the number of factors they use. Accordingly, there are two types of tokens:

• Single-factor token, which depends on one authentication factor, such as a password.

34

• Multi-factor token, which employs two or more authentication factors, such as a smart card

and a Personal Identification Number (PIN) to activate it.

Tokens can be further classified as:

• Memorized Secret Token: It is a token of knowledge. It is a secret shared between the

subscriber and the CP, typically a character string (password) or a numerical string (PIN). For this

type, the token authenticator is the secret itself.

• Pre-registered Knowledge Token: This is another type of knowledge token which is

comprised of a series of responses to a set of prompts. The series of responses is the shared secret,

which is typically established by the subscriber and CP during the registration process. The

prompts may be pre-registered questions or images. The token authenticator in this case is the set

of memorized responses (answers to questions or choice of images).

• Look-up Secret Token: It is an ownership token that stores a set of secrets shared between

the claimant and the CP. The verifier provides the claimant with an input value for the token. The

input is used by the claimant to look up the correct secret to respond to a prompt. An example of

this is a card token, that stores input strings and corresponding outputs when a verifier prompts the

claimant with an input value, the claimant inputs the string into the token. A look-up operation

results in the corresponding string of characters on the token [16]. The token authenticator for this

type is the output of the look-up process.

• Out of Band Token: It is also an ownership token. It is a physical token that is uniquely

addressable and can receive a secret selected by the verifier for one-time use. The device is

possessed and controlled by the claimant and can communicate privately over a channel separate

from the primary channel for authentication. The process usually starts with a claimant attempting

to access a website or a resource. He, then, receives a text message on his preregistered phone with

a one-time authenticator to be presented to the verifier using the primary channel for

authentication. The token authenticator is the received secret.

• Single-factor (SF) One-Time Password (OTP) Device: It is another type of ownership

token, which is a hardware device that has an embedded secret to be used as the seed for generating

one-time passwords. The token authenticator is the one-time password generated by the device.

• Single-factor (SF) Cryptographic Device: It is an ownership token, which is a hardware

device that uses embedded symmetric or asymmetric cryptographic keys to perform cryptographic

35

operations on input provided. Authentication is achieved by demonstrating ownership of the

device. The token authenticator, which is usually a signed message, is dependent upon the

cryptographic device and protocol.

• Multi-factor (MF) Software Cryptographic Token: It is a multi-factor token of an

ownership factor that is activated by a knowledge factor or an identity factor. It is in the form of

a cryptographic key stored on disk or “soft” media. The key can only be activated using a second

factor of authentication, such as a fingerprint or a password. The token authenticator is dependent

on the cryptographic protocol, which is usually a signed, message.

• Multi-factor (MF) OTP Device: It is also a multi-factor token of an ownership factor that

is activated by a knowledge factor or an identity factor. It is a hardware device that generates one-

time passwords upon activation through a second factor of authentication, such as a fingerprint or

a password. The one-time password is either displayed to the claimant and then manually entered

as a password by the verifier, or it is entered from the device to a computer directly. The token

authenticator in this case is the one-time password.

• Multi-factor (MF) Cryptographic Device: It is a multi-factor token of an ownership factor

that is activated by a knowledge factor or an identity factor. It is a hardware device containing a

protected cryptographic key that requires activation using a second authentication factor, such as

a PIN or a fingerprint. The token authenticator depends on the specific cryptographic device and

protocol and is usually a signed message.

3.2.5. Threats on the Authentication Process

The goal of the authentication process is to establish the identity of the claimant through an

authentication protocol message exchange, during or after which a protected session is established

for further data exchange. Several threats pose themselves against the authentication process,

which requires management mechanisms at both ends to secure the authentication activities. These

threats are [16], [89]:

• On-line guessing, where an attacker attempts to guess the value of the token authenticator

through repeated login trials.

• Phishing is when a subscriber is tricked into divulging his/her token secret, sensitive data, or

authenticator values, which can be used to impersonate the subscriber later. This occurs by luring

36

the subscriber to interact with a fake verifier through a fraudulent email redirecting him/her to a

fake verifier.

• Pharming is where a subscriber is re-directed to a fraudulent website through manipulation of

the domain name service or routing tables during his/her effort to connect with a legitimate verifier.

• Eavesdropping is where an attacker listens passively to the authentication protocol to capture

login information to be used in a subsequent active attack.

• Replay is where an attacker can capture authentication messages between a legitimate

claimant and a verifier, and then replay them at a later time to authenticate as that claimant.

• Session hijack is where the attacker places himself /herself between a subscriber and a verifier

at the beginning of the authentication protocol message exchange, allowing him/her to pose as a

subscriber to the verifier/RP or as a verifier to the subscriber to control session data exchange.

• Man-in-the-middle is a threat where an attacker inserts himself between the claimant and

verifier to gain access to the authentication protocol messages. Then the attacker can impersonate

the verifier for the claimant while simultaneously impersonating the claimant for the verifier. This

may allow him/her to authenticate himself/herself to both parties successfully.

• Denial of Service attack is during which the attacker overwhelms the verifier with

authentication requests.

• Malicious code attack, which exploits authentication tokens.

3.3. Classification of Authentication Solutions based on Number of Factors

Authenticating a user of a system is accomplished via an authentication process, as explained in

Section 3.2. The goal of user authentication is to verify the user’s claimed identity. This

verification is based on one or more authentication factors. The authentication factor(s) are

materialized in a token of various types, as discussed in Section 3.2.4. Thus, there are four general

methods to authenticate an identity [83]:

1. Something the user knows where authentication is based on the user providing proof that

he/she knows a shared secret, such as a password or a PIN.

2. Something the user owns, where authentication is achieved upon the user providing proof that

he/she possesses a token of a shared secret such as a cryptographic key or a smart card.

3. Something the user is, which may be referred to as static biometrics, such as recognition by

fingerprint or retina.

37

4. Something the individual does, which may be referred to as dynamic biometrics, such as

recognition by voice pattern or handwriting characteristics.

Using one of the above methods is considered a single-factor authentication. Combining two or

more authentication methods is referred to as multi-factor authentication. The following sections

will provide a literature review of authentication solutions for each type.

3.3.1. Single-factor Authentication Methods

As mentioned earlier, single factor authentication is based on validating the identity of a user by

employing one authentication factor of any type: knowledge, ownership, static identity, or dynamic

identity. The following sections will present authentication solutions in recent research for each

type.

3.3.1.1. Knowledge Factors

For this type of authentication, the user needs to present evidence that he knows some shared

secret. In this case, the shared secret represents the authenticator value of the authentication token.

There are two tyes of tokens that use knowledge authentication factors (section 3.2.4): memorized-

secret tokens and pre-registered knowledge tokens. Passwords and PINs are examples of

Memorized-secret tokens. The use of pre-registered questions or images is an example of pre-

registered knowledge token.

Passwords are the most used authentication token. However, passwords are not very secure since

they are vulnerable to several types of threats [16]:

• Passwords can be copied from soft (disc) or hard (paper) media.

• Passwords can be learned by watching a keyboard entry or employing keystroke logging

software (eavesdropping).

• Passwords may be revealed to a fake website in a pharming attack.

• Passwords may be disclosed to a fraudulent website through the attacker’s email (phishing).

• An Online Dictionary may be used to guess the password.

• The password may be revealed to an officemate or someone impersonating a system

administrator.

38

Thus, plenty of authentication solutions propose the use of passwords with improvements to

overcome the above-mentioned weakness. One study claims that password-secure systems are

usually unfair to users and unable to identify the source of the problem when there is a breach [20].

They propose an elaborate six-stage authentication scheme where the user and the system use

prime numbers to generate dynamic passwords based on public parameters chosen at the initial

stage. This system is fair to users as it allows them to choose passwords and find out the cause of

a system breach without unfair consequences to the user. It claims to be a safe system as it guards

against the disclosure of passwords to administrators [20]. However, it doesn’t consider network

security and key exchange policies. Ren & Wu propose a dynamic password authentication based

on OTP that considers time and space [72]. Downloadable free software can generate the password

based on the user’s static password, time factor as well as the computer’s physical address MAC.

This scheme has low overhead and added security to counter a Man-in-the-Middle-Attack [72]. It

is still susceptible to phishing attacks on password generation software. Password generation

overhead may be unsuitable for users with mobile devices.

As for pre-registered knowledge tokens, they can be discovered through social engineering where

responses are learned by the attacker through social media or acquaintances of the user. Moreover,

they are subjected to the same risks that threaten passwords. However, they present a bigger

challenge for an attacker since he needs to gain knowledge of several responses as opposed to one

password.

3.3.1.2. Ownership Factors

For this method of authentication, the user must prove that he owns a token of authentication.

Proof of ownership is based on providing the secret output of the token. Look-up secret tokens,

out of band tokens, Single-factor (SF) OTP devices, and SF cryptographic devices are examples

of ownership factors. Public key (PK) authentication is also classified as an ownership factor since

it requires proof of ownership of the PK certificate. All these tokens are subject to the following

threats [16]:

• Theft of the look-up token, device, or mobile phone used for out of band authentication.

• Copying the authenticator output value.

39

PK authentication is very commonly employed for many computing applications as it is well

established and able to utilize many cryptographic algorithms that have proven to be strong. One

PK solution is discussed for Voice over IP (VoIP) applications with three stages: registration,

certification, and periodic authentication of the client [48]. In this solution, the proxy server and

the registrar server handle client authentication through PK certificates and a One-Time key shared

between the proxy server and the client. Two disadvantages of this approach are hashed non-

memorizable passwords, and the inefficient requirement of periodic authentication, where the

proxy server needs to establish a secure channel with every client in session [48].

3.3.1.3. Static Identity Factors

For the static identity factor, the user must provide proof of his biometric token. He needs to be

positively identified through a scanned fingerprint, or retina print, or any sort of static biometric.

In all the above cases biometrics are usually collected during the registration and identity proofing

processes before authentication. In many scenarios, biometrics are collected in-person as they

require special hardware equipment, and are intrusive to the user [26]. Biometrics is under threat

of being replicated from a copy. Although it is a more challenging attack, it still poses a risk [72].

Furthermore, compromised biometrics are irreplaceable [84].

Biometric tokens are not commonly used due to their intrusiveness to users and high expenses

[72]. One solution proposes a framework of user authentication based on fingerprint scans stored

on smart cards [99]. They chose fingerprints due to the availability of the matching algorithms and

the advancement in fingerprint technology. Another biometric authentication solution

recommends the use of the BioCapsule (BC) concept [84]. BC is generated based on the difference

between the captured biometrics of the user and those of a Reference Subject (RS), where the

user’s biometrics are captured and fused with the RS biometrics to extract secure keys [84]. The

solution has many merits with limited application.

3.3.1.4. Dynamic Identity Factors

For the dynamic identity factor, the user should provide proof of his dynamic biometric token,

which is “something he does” rather than static biometrics of “something he is”. He needs to be

positively identified by his voice, handwriting, or another behavioral characteristic. Like static

biometrics, dynamic biometrics can also be replicated from stored copies.

40

Dynamic identity factors are also intrusive to users and may be expensive. Hence, they are not

commonly used. One dynamic ID authentication scheme suggests a pattern-matching voice

recognition scheme [50]. They suggest this scheme for enhancing Internet service security. It relies

on a Secure Voice Biometric Server to generate, train, and update the user's voiceprints, store them,

and perform the matching algorithm [50]. The advantages of the proposed system are ease of

upgradability, heavy matching computations confined to the server, and variability of security

levels. Another voice-based login scheme is suggested for Linux OS which overcomes the threat

of record and replay [82]. It is accomplished by a speech-to-text conversion with 80%-85%

accuracy [50]. The ‘Record and Replay’ threat is counteracted using random passphrases [82].

Another piece of research is based on developing a system of biometrical identification based on

handwriting dynamics [58]. It generates cryptographic keys that contain dynamic characteristics

of handwritten passwords using software products for recognizing handwritten signatures. Another

biometric of interest is keystrokes dynamics on mobile devices. Trojahn and Ortmeier suggest a

mobile authentication system based on keystroke dynamics [91]. They list keystroke features that

can be used to augment a password authentication scheme. Learning process of the user and

variability due to injury or time are clear limitations of this system [91].

3.3.2. Multiple-Factor Authentication Methods

Combining two or more factors in an authentication scheme is a threat mitigation strategy [16].

When an attacker needs to guess a password and steal a token, the effort to breach the system is

much harder. For this reason, several research studies suggest multifactor authentication in various

contexts. Kim and Hong introduced multi-factor authentication that combines tooth imaging and

voice recognition for mobile devices [49]. The authentication process relies on a weighted

summation operation of the combined metrics with a simple structure and excellent performance

[49]. More examples of Multiple factor authentication are presented in Section 3.5.

3.4. Context-Aware Authentication Methods

Context is defined as “any information that can be used to characterize the situation of an entity”

[74]. The goal of context-aware computing is to obtain and use information in the context of any

application and then provide services accordingly. As for authentication in different computing

contexts, there are many research efforts that provide context-aware methods. For Long Term

41

Evolution (LTE) Mobile networks, Purkhiabani and Salahi propose an authentication method that

considers the traffic and storage limitations of the mobile context to improve the performance of

the Authentication and Key Agreement (AKA) protocol [70]. This method was based on sharing

key vectors between the user’s Mobile Station (MS) and the Home Subscriber Server (HSS), which

leads to less information transfer and less storage. In the same context, another method is suggested

to improve AKA for mobile devices in 3GPP networks [33]. This method avoids the double

execution of AKA at the network and service layers by binding the two with the IP Multimedia

Private-user ID (IMPI) number to improve energy consumption on energy-sensitive mobile

devices [11, 33]. It will also provide a better defence against DOS attacks.

3.5. Distributed Systems Authentication Methods

M2C is a paradigm for providing computing resources where interacting entities, including users

and Cloud resources are distributed. Hence, this section will examine authentication methods for

other types of distributed systems, such as Peer-to-Peer systems (Section 3.5.1) and Grid

Computing (Section 3.5.2). Further, Section 3.5.3 will examine and provide an analysis of

authentication methods for M2C. Thus, it will assist in evaluating the current research against M2C

requirements, so that a gap is identified to decide on the best way forward for this research.

3.5.1. Peer-to-Peer Authentication Methods

P2P systems are characterized by partitioning workloads between equally privileged node peers

participating in an application. A few authentication methods for P2P context are summarized in

the following points:

• Encrypted PWD (Enc PWD) [11]: Skype is a P2P application, where each Skype client (SC)

listens on certain ports for incoming calls and maintains a host cache (HC), which is a table of

super Skype nodes IPs and ports and buddy nodes. Skype has a central login server that stores

usernames and passwords. Login communication is encrypted using AES symmetric key

cryptography to secure confidentiality. AES key exchange is secured through RSA public key

cryptography. Upon login, HC and buddy lists are populated through the login server. To search

for another user, SC sends TCP packets to Super nodes or other clients on the buddy list [11, 44,

54]. The search is cascaded through other clients. Authentication occurs at login, where SC enters

42

the username and password. Although research states that all Skype communication is encrypted,

the study doesn’t comment on node-to-node authentication during the population of the buddy list.

• PKI based [44]: Authentication is accomplished by confirming the authenticity of a PUK

certificate through a group of distributed TTPs acting as a Certificate Authority (CA). This method

takes advantage of the decentralized nature of P2P networks as authentication functionality is

relocated to clients and the new authentication servers. This method is based on three protocols:

App server-setup, client authentication, and client access to the app server. In the App server-setup,

the app server enlists the authentication servers sharing parts of PRKi, where the corresponding

PUKi is sent to the app server. In the client authentication protocol, the client receives an

authentication token that is certified by PRKi, and all authentication servers partially sign the

token. It is based on the idea of establishing trust based on a certain threshold, in this case, the

number of authentication servers involved. The client access protocol is used to authenticate the

client to the app server using the authentication token. The partitioning of authentication

functionality between clients and authentication servers allows for the distribution of trust and

supports scalability. However, it incurs more weight on clients in the authentication process.

• IBC [54] [65]: or ID based Cryptography scheme utilizes any identifying string of the user,

such as an email or an IP address, as the public key. In this scheme, a PRK generator (PKG) is

needed to generate PRKs from the designated PUKs leading to a key escrow problem. Another

study by Nguyen proposes an enhanced version of this method for communication between devices

in P2P systems [65]. It is based on the idea of a shared secret between two peers, A and B. The

whole system has a universal secret (s). Each node A has a public ID A which is used to generate

a private key KA using a localizing function KA = L(A, s). Alternatively, a PKG can create all these

keys and install them on the devices. Then a mating function M is used to create a pair-wise shared

key where M(KA, B) = M(KB, A). The devices use their pair-wise keys to perform mutual

authentication using a Diffie-Hellman approach and generate session key as Figure 3-4 shows.

43

Figure 3-4. IBC node2node Authentication [65]

This method simplifies authentication and limits the initial key installment to one per device. It is

also computationally efficient [65]. Cross-domain authentication is also possible through trusted

gateway TAG nodes. However, cross-domain authentication may seem insecure if a TAG node

masquerades as another node within its domain to take its place in the authentication message

exchange. Also, the security of this method depends on the complexity of the identity chosen to

be the public key in the first place.

• CL-PKC [54]: or Certificate-less public key cryptography scheme, where a super node and

connecting nodes (referred to as the trusted set) provide a distributed key generation center (KGC)

based on a master key. This method resolves the key escrow problem. Since it does not require

authenticating certificates, this method reduces computation and has a more flexible cryptography

workflow. Interoperability is possible with IBC based systems due to similarities. On the other

hand, this incurs problems when nodes exit or join the trusted set at any time, leading to the need

to update the master key and the distributed partial secrets.

3.5.2. Grid Computing Authentication Methods

Grid Computing (GC) refers to combining computer resources from different administrative

domains to achieve a common goal. Both GC and M2C environments are characterized by the on-

demand provision of distributed resources, scalability, and multi-tenancy. These characteristics

present many security challenges, one of which is authentication. This section presents various

authentication methods for GC used in current research:

44

- Static PWDs [29], [39]: Passwords are the most commonly used method of authentication. It

is based on authenticating a user through something he knows. However, passwords are vulnerable

to dictionary, guessing, and replay attacks. It also doesn’t provide mutual authentication.

Reliability of PWDs as means of authentication depends on the secrecy and complexity of PWDs.

- Dynamic PWDs [29], [39]: Dynamic PWDs are either synchronous (based on time or an event)

or asynchronous (challenge and response). They provide much more security than static ones. It

is based on authenticating a user through something he has, such as a hardware or software

authenticator generating One Time PWDs (OTP). Dynamic PWDs eliminate the risk of guessing

and replay attacks. However, they still don’t provide mutual authentication and credential

delegation.

- Kerberos [83], [29], [52]: Kerberos is an authentication mechanism based on symmetric keys.

It is a third-party method that includes a trusted centralized key distributed center (KDC) in which

the client and the server are registered. KDC contains both an Authentication Service (AS) and a

Ticket Granting Service (TGS). The client uses his credentials, usually a username and a PWD to

send an authentication request to AS. He receives a Ticket-Granting Ticket (TGT) issued by AS.

The client then sends the issued TGT to the TGS, requesting a service ticket. TGS then issues a

service ticket, which is used by the client to access the service. Figure 3-5 shows the summary of

the messages exchanged in Kerberos to authenticate a client to a web service.

Figure 3-5. Summary of Kerberos 5 Message Exchanges [83]

Version 5 of Kerberos provides mutual authentication. It also allows the use of proxy client tickets

and forward addresses for across realm authentication. Still, ticket transfer and confidentiality are

45

very complex, which makes Kerberos more suitable for localized environments. Secondly, KDC

is considered a single point of trust and may be a single point of failure.

- PKI based [29], [39], [14]: Grid Security Infrastructure (GSI) provides a PKI authentication

based on X.509 certificates. Each entity (a user or a service) has a pair of PUK and PRK. There is

also a trusted third party or a Certificate Authority whose role is to certify and sign all entities

certificates. This method suffers from scalability issues and single-point failure. Also,

interoperability is limited as it doesn’t support integration with systems supporting Kerberos or

other schemes.

- Security Proxy Based Trusted Computing (SPTC) [56]: This is an enhancement of PKI based

authentication in GSI. This method assumes that clients and servers have employed TPMs, or

Trusted Platform Module chips, which store RSA Endorsement Key (EK) and is used along with

the owner password to create Storage Root Key (SRK). It also stores a second key, Attestation

Identity Key (AIK), which uses hashing to protect the device against unauthorized firmware and

software. The architecture of this method includes the client, Root CA to issue identity certificates

for users and resources, a domain manager, and a Security Proxy (SP) server which manages user’s

short-lived proxy credentials. The user first needs to acquire his identity certificate from Root CA

and a proxy certificate from SP. In this method, they use OpenSSH CA Server for the Root CA to

sign the users’ and services’ certificates. Two platforms that have AIK certificates and/or identity

certificates can mutually authenticate to each other using these credentials. This protocol works as

follows:

1- A user x registers with Security Proxy using a shared password through an out-band

communications with SP.

2- To use a remote TPM, x obtains a public key of the target TPM, where the matching private

key is protected in the TPM, then x sends a request with the public key of the target TPM to SP

to create a proxy credential for using the target TPM. SP can encrypt the private key of the

created proxy credential using the secret shared with x and the target TPM. Accordingly, the

TPM owner allows x to access the target TPM. This method is meant to provide secure

communications for the Grid setting of the VO and authenticate users and resources across

multi-domains. However, it assumes the installment of the hardware component which is an

intrusive and rigid condition unfit for the dynamic SG environment.

46

- IBC [29], [41], [35] : Identity based cryptography has emerged to overcome the shortcomings

of the PKI based scheme, which hinders grid scalability. As explained in Section 3.3.1, IBC defines

the user’s PUK as the user’s ID such as an E-mail or an IP address. Hedayati et al. suggested a

similar scheme where PUK is derived from random strings transmitted by the server (with a nonce)

to users A & B. Subsequently, A and B can derive their PUKs and reply to the server to prove

their ability to create PUKs. The corresponding private key is generated by a PKG using a secret

master key and the chosen identity. Then the generated PRKs should be delivered to their

respective users over a secure communication channel. This scheme leads to several problems: the

key escrow problem, lack of non-repudiation, and difficulty of distrusting PRKs in a large-scale

grid environment with various trusted domains.

- CL-PKC [29], [30], [21]: As described in Section 3.3.1, CL-PKC schemes aim to solve the key

escrow problem in IBC. CL-PKC provides all the advantages of IBC schemes. However, the

KGC’s role here is to generate only a part of the PRK of the user. The user can generate his own

PRK based on both the partial PRK and a secret value of his choice. Thus, the key escrow problem

of IBC is resolved, and the scheme now provides non-repudiation. The mechanism, while

considered high security, is usually based on complex bilinear pairings. Farouk et. al. describes a

pairing-free CL-PKC scheme [30], where two proxies are used: a User Proxy (UP) and a Resource

Proxy (RP). UP is a session manager process that acts on behalf of a user for a limited time. RP is

an agent used for inter-domain and intra-domain security operations. The proxies’ role is to meet

mutual authentication requests between users and resources. A unique node’s Distinguished Name

(DN) is assigned to each node to facilitate cross domain trust establishment. Each domain has a

KGC, and all KGCs form a trust relationship that is built between KGCs before authentication.

The proposed scheme has two phases. The cryptographic building blocks of their protocol are

elliptic curve PKC and eight variants of SHA hash. This leads to less computational overhead and

a one-round authentication protocol run instead of two.

3.5.3. Existing CC Authentication Methods

Most of the current research on CC is geared towards securing CC service provision. In this

section, we will examine various authentication methods based on authentication factors discussed

in Section 3.2 as well as authentication methods adopted for other distributed systems discussed

in Sections 3.3.1 and 3.3.2.

47

- Multi-level PWD [26]: Dinesha and Agrawal propose a multi-level authentication method for

accessing Cloud services, where PWDs are based on three levels of access. The first level is to

access the organization, the second level is to access the service, and the third is to define the user

privileges for that service. There could be many more levels, depending on the architecture of the

system. The PWD is created by generating and adding a piece of the password, which is then

passed to the next level. The research provides probabilistic proof that it is much harder to breach

this simple system, since the user needs to know passwords for all levels. However, it still suffers

from all the shortcomings of PWD methods, including guessing attacks and dictionary attacks.

Most importantly, it doesn’t provide mutual authentication, or non-repudiation.

- TCG [81]: This method is based on Trusted Computing Group (TCG) Technology, which

combines software, special hardware (TPM), and a mediating Trusted Computing Platform (TCP)

OS. Users are classified into different access control groups with different permissions for services.

A user needs to first register so that he receives ID credentials indicating his access control group.

When a user attempts to access CC resource, they provide the acquired access control ID to the

server. The server authenticates a user by communicating remotely with the TCP component, to

verify the user’s identity and relevant information. The TCP component in every user maintains a

master secret key for each user, which is used to generate sub-keys for different access roles. These

personal keys are registered for approved users of a group of CSPs. Whenever a user attempts to

access a service, he needs to generate a session key based on the access control role sub-key and a

personal key. This method of security relies on the hardware component being built in by

manufacturers, which is an intrusive and rigid method employed in a very dynamic context.

- Cloud Access Manager (CAM) [13]: This method introduces the concept of a Cloud Access

Manager (CAM) which is responsible for user authentication and access control for every resource.

CAM creates separate access zones with access policies for the resource. A Proxy server accessible

from the Internet can communicate with Web servers. Each endpoint registers with the server at a

well-known port; the calling endpoint initiates the INVITE/OK/ACK with a port number message

exchange endpoint to the same port on the server, which then forwards SIP messages to the

registered IP address of the called party. The service messages are then exchanged between the

two endpoints via the proxy server on the cloud. The proxy transfers messages from one-endpoint

to the other when they cannot reach each other directly. Once the message exchange is complete,

the assigned ports on the proxy are released. CAM is entrusted with PRKs used to manage zone

48

members. These key files are associated with two CAM Access Keys, of which there are two types:

an application-level access key, which is used for all members of the defined application, and a

member-level access key used to specify a key used for a specific member cloud instance. CAM

presents an escrow problem and doesn’t allow a non-repudiation provision.

- Dynamic Multi-factor [10]: Banyal et al. introduce a multifactor authentication scheme for

three levels of security. In this scheme, a Cloud Administrator (CloudAdmin) is responsible for

the Cloud Access Management (CAM) server and cloud computing servers. Internet and web

browsers are used to access CAM and CSP to access Cloud resources. Also, authentication

credentials (secret key, one-time password, and IMEI number) are exchanged through smart

phones and mobile networks as an out-of-band secure channel. A valid email-id is used to send

secret and verification codes during the user registration and credential change phases. The

proposed method has three phases: the registration phase, the login and authentication phase, and

the change authentication credential phase. In the registration phase, a user needs to register at the

CAM server by providing a username and PWD, which are registered along with the user’s mobile

phone and the IMEI number for authentication. Two secret values are sent to the user OOB to

mobile number and email to be combined and entered by the user for verification. For the second

phase, the user login into CAM system by entering the username and password established during

the registration phase. If the login is successful, the user is directed to the homepage for the multi-

level Authentication phase. The change authentication credential phase simply allows the user to

change the PWD at any time. All Cloud services are classified as low, medium, or high-level. For

low-level services, authentication combines passwords and Captcha expressions. For medium

level, OTP is combined with Captcha expressions, while high-level services require three factors:

OTP, Captcha expressions, and an International Mobile Equipment ID (IMEI) number. This

scheme provides dynamic authentication based on the security level, but it doesn’t take advantage

of the client context (mobility). It doesn’t provide mutual authentication. Non-repudiation is

guaranteed for med and high-level services.

- InterCloud [17], [57]: This method is aimed at the MC, where multiple clouds need to integrate

services for client benefits. It is based on the IdP/SP model, for which SAML is the reference

XML-based standard implementation [17]. SAML can establish a trust relationship between

entities with different security mechanisms. This method identifies a home cloud as opposed to

foreign clouds, each with a different authentication mechanism. To enable the home cloud A to

49

request resources from the foreign clouds B, C, and D, an authentication task needs to be carried

out. Cloud A needs to create accounts on IdPs X and Z as asserting parties, where X is trusted

with B and C, whereas IdP Z is trusted with D. Once trust context is established, A gains access to

the needed resources, and A has established a federation with other foreign clouds trusted by IdPs

X and Z. For A to access B resources, A starts the authentication process by providing its identity

to B. The authentication module of cloud B forwards the authentication request to the IdP X

initiating an authentication interaction between A and IdP X leading (if successful) to trust

establishment relating A to X. The IdP X then sends A’s credentials to cloud B. Applying the

same concept, Lomotey and Deters suggest an authentication middleware for Mobile consumers

of IaaS [57]. The motivation of this method is to resolve the issue of delays in accessing storage

Cloud services due to the high data and computational load of HTTP on Mobile clients. The

proposed middleware employs the OAuth 2.0 scheme to identify the mobile client and uses

security tokens to handle authentication with the IaaS clouds such as AWS S3, Dropbox, and

Mega. The scheme enforces additional protection for the security credentials. These IaaS layers

require the user to provide credentials such as an access key, a secret access key, signature, and a

session id to access the stored files and documents. For mobile clients over wireless links, a

credential exchange may fail due to irregular connectivity or suffer from communication latency

due to limited bandwidth. The MiLAMob framework allows the mobile user to use the open

standard OAuth 2.0 to login. Based on the access token of the registered user, the middleware does

the authentication with the IaaS cloud frameworks. The middleware relies on a service level

manager to direct the user to Amazon S3, Dropbox, or MEGA. The evaluation of the MiLAMob

framework shows high improvements in computation and bandwidth weight in a mobile

distributed environment.

- Elliptic Curve Cryptography ID-based method (ECC ID-based): Chen et. al. propose a three-

phase ECC ID-based protocol [22]. It is an enhancement of the Yang and Chang ID-based

scheme. The three phases are initialization, user registration, and mutual authentication with key

agreement phase. The initialization phase is invoked whenever user UA registers with the

authentication server S. S chooses an elliptic curve equation EP (a, b) with order n, and selects a

base point P with order n over EP (a, b). S, then, computes its private/public key pair. The PRK

is stored, and S chooses three one-way hash functions H1, H2 and H3 used to publish an

announcement of the PUK. During the user registration phase, UA chooses his/her IDA and

50

password pwA and generates a random number b for calculating the b-based password PWB. Then,

UA submits IDA and PWB to the server S. S creates an authentication key for UA, and an

authenticator BA to be stored on a smart card and sent to the user over a secure channel. Upon

receiving the values, UA adds random b and his original chosen IDA and pwA to verify the

authenticator BA. The mutual authentication with key agreement phase is invoked when UA

requests a service on a remote server S. UA enters his/her IDA and PWA to login to the service,

and MSA, a remote device of UA, calculates PWB and B’A and checks if B’A=BA. If so, it calculates

Q and an authentication key, KIDA and chooses a random point RA with coordinates (xA, yA).R is

used to compute an anonymous ID of A.UA then sends a message m with the new key and a

timestamp. S verifies the received values and authenticates UA. In turn, S chooses a random point

and performs similar calculations in order to be authenticated to UA. S also creates a session key

to be used for secure communication.

3.6. Chapter Summary

In this chapter, we have presented background information on authentication. We have also

analyzed a wide range of authentication methods and solutions producing a classification of

authentication solutions in the literature according to the type and the number of factors used to

identify an applicant.

The next chapter presents and analyses a real-life use case of MC leading to the derivation of a

generic model for a Multi-Cloud (MC) environment. It also explains the threat analysis and general

security requirements for MC. It also provides critical analysis of authentication solutions

reviewed in chapter 3 solutions in order to identify the knowledge gap in authentication solutions

for M2C and deduce the best way forward.

51

Chapter 4: Problem Identification and

Requirements Specification for M2C

Authentication

4.1. Chapter Introduction

This chapter describes a real-life application and how it can be used to develop a Multi-Cloud

(MC) generic model. It also provides three MC solution scenarios. The description and analysis of

these scenarios will allow us to identify issues related to authentication requirements in the MC

context.

The later part of this chapter is structured as follows. Section 4.2 provides an analysis of the

research problem, including a description of the conditions and requirements of a real-life

application to be developed on a MC platform, explanation of the actualization of a single-Cloud

Solution, two-Cloud Solution, and a three-cloud solution, step-by-step. Section 4.3 presents the

derivation of a generic model for a Multi-Cloud (MC) Solution. Based on the generic model

description, a threat analysis of MC is depicted in Section 4.4. Section 4.5 presents observations

on the generic model and the threat analysis. Requirements for MC authentication are derived in

Section 4.6. Section 4.7 provides an analytical comparison of authentication solutions reviewed

in section 3.5 to identify the knowledge gap in authentication solutions for M2C and introduces

the best way forward. Finally, section 4.8 introduces high-level ideas for our solution.

The derivation and description of M2C generic model, threat analysis, and identification of

security requirements are summarized in the following publication:

Gamlo, Amina H., Ning Zhang, and Omaimah Bamasag. "Mobile cloud computing: security

analysis." 2017 5th IEEE International Conference on Mobile Cloud Computing, Services, and

Engineering (MobileCloud). IEEE, 2017.

52

4.2. Problem Analysis and MC Generic Model Derivation

4.2.1. A Real-Life Application: The “NewShop”

In this section, we present the use case of an online retailer company that plans to develop a new

Web 2.0 storefront application, referred to as the ‘NewShop’. ‘NewShop’ should accommodate

all types of shoppers, including those accessing the store via mobile devices. The application

should be stress-tested with real-time data. The company’s current user database and product

database need to be stored securely to be employed by the application during the testing phase and

also by the project upon completion. NewShop’s web storefront development, testing, data storage,

and web hosting should be done effectively and securely. The IT solution for the above scenario

should cater to all the mentioned requirements and conditions.

Considering the above requirements of the retailer company, the use of Cloud Computing (CC)

provides an effective solution, as it has many merits. PaaS Clouds provide development tools,

eliminating the need to install, configure, and manage tools on individual developer’s machines

and on the company’s site. They also allow speedy product development from the latest source

code in Cloud-based storage [5], [37], [61]. Testing in the Cloud can handle the extra burden of

Web 2.0 interface interactions with the server. Also, stress testing the new application is easier

using the massive number of Virtual Machines (VMs) that are provided in the Cloud environment.

In addition, MC affords the possibility of employing different services from different cloud

providers as per the user’s needs.

Solution scenarios for this application have the following assumptions:

A1: The company has an offline product and user databases.

A2: NewShop Company assigned the development and testing project to a team of developers

managed by Admin Bob.

A3: All users are registered with the necessary CSPs. The registration process is secure.

4.2.2. Single Cloud Solution (1C-Shop)

A single Cloud Solution can be employed to meet the requirements of the application described in

the prior section. For this requirement, all necessary cloud services are provided through a single

CS. This concept will be referred to as the ‘One Cloud Shop’ scenario (1C-Shop). AWS is one of

53

many CSPs that may be chosen for implementation. An AWS solution was suggested because

Amazon is a leading Public Cloud Provider today with varying services offered.

The following subsections will describe the 1C-Shop solution, presenting the entities interacting

and the authentication methods provided for them by AWS, as well as the detailed architecture

and operation of AWS services utilized to complete this project.

4.2.2.1. AWS Authentication: Entities and Methods

To understand the authentication provision for this scenario, we need to identify the interacting

entities in this setup and the authentication methods and credentials available on this platform.

The interacting entities in this solution are:

1) The CSP offered service, AWS-S, which refers to individual AWS services, such as the

management console (MC) EC2, S3, and CloudFront.

2) The user, NewShop, is represented by:

● Admin: which refers to the team Admin, Bob.

● Userj: which represents each of the development team members.

3) User assuming role i, which points to temporary users, assuming a defined role such as the

role of a storefront shopper.

For secure transactions between these entities, AWS offers the following methods and credentials

for authentication [93]:

1. Root account login Credentials: The username (a valid email) and password (refered to as

PWDroot) are the login credentials for the root account. The password should be chosen,

stored securely and changed periodically. They provide access to CSP basic services including

MC, discussion forums, and a support center.

2. Identity Access Management (IAM) account credentials, including usernames and passwords

(referred to as PWDj for individual user j): IAM accounts are set for individual users by the

Admin via the AWS IAM service. Permissions for individual-user accounts can be revoked

or modified at any time.

54

3. AWS Multi-Factor Authentication (MFA): MFA provides an additional level of security for

login credentials. It provides OTPs through an MFA software or hardware generator. MFA can

be used for the root account (referred to as OTProot) and/or IAM individual-user accounts.

(referred to as OTPj for individual user j)

4. Access Keys: Each access key is comprised of (an ID, and a secret). They can be created for

the root account (referred to as SAKroot), individual user accounts (referred to as SAKj for

individual user j), or IAM roles. An access key is usually used to sign programmatic requests

made to services. A sub-type of access key is the temp access key, which has limited life.

Temp access keys are issued for temporary user access and are used like regular access keys.

5. Public/Private Key Pairs (referred to as PUK and PRK respectively): These are 2048-bit SSH-

2 RSA keys used for services such as EC2 and CloudFront. Some of these services allow

creating keys for root accounts only, while others may be created for an IAM user or the root

account Admin. Each key pair requires a name. Naturally, the public key is uploaded to AWS,

while the private key is securely stored by the user.

6. X.509 Certificates: The certificate contains a 2048-bit RSA public key, with a matching private

key (referred to as X509-PUK and X509-PRK respectively). Users are required to use the

private key to sign requests to AWS services.

7. Account Identifiers: There are two account identifiers listed on the security credentials page of

the root account that can’t be changed. Although these identifiers are not used for

authentication purposes directly, but they are used to construct Amazon Resource Names

(ARNs), which are necessary to refer to resources programmatically to distinguish NewShop

resources from other accounts.

For a better understanding of these credentials, Table 4-1 summarizes Who (which entities) Knows

What (Credentials).

55

Table 4-1: Who knows What for AWS Solution

Entities Admin Userj Service

Items

PWDroot ✓  

PWDj ✓  

OTProot ✓  

OTPj  ✓ 

PUK ✓ ✓ ✓

PRK ✓  

X509-PUK ✓ ✓ ✓

X509-PRK  ✓ 

SAKroot ✓  

SAKj  ✓ ✓

It should be noted that some credentials listed in Table 4-1 are optional. More information related

to each type of credentials, such as the creation, use, and validity of each, is summarized in Table

4-2:

56

Table 4-2: AWS Solution Credentials

List of

Credentials
Type

Required

or not
Creation

Use of the

credential

Security

recommendations
Validity

Root

account

log-in

credentials

Username

(Valid

email) &

password

Required

At the

beginning of

registration

process

Log in to CSP

website by

Admin

- Change periodically

- Don’t distribute to

individual users

Valid until

changed

Individual

user log-in

credentials

Username

&

password

Recommend
By Admin for

each user

Log in to

permitted tools

and resources by

individual users

- Change periodically

Valid for

90 days,

then users

are forced

to change

them

MFA

A mobile

app or an

MFA

device to

provide

six-digit

OTPs

Optional

Set up by

Account

Admin at any

time

Used in

conjunction with

Log-in

credentials (for

root account

and/or individual

users)

-keep device safe

from others

One-time

use

Access key

(ID+ Secret

key)

Random

strings of

characters

Required for

individual

users

Set up by

Admin at any

time and

downloaded

as a CSV file.

Used to sign

programmatic

requests made by

users and to sign

commands issued

for command line

interfaces (CLIs)

- Not recommended

for the root account

- Should regularly be

rotated either by

Admin or individual

users

-Unused keys should

be revoked

Until

manually

revoked

Public/

Private Key

Pair for

EC2

RSA 2048

bit private

and public

keys

Required

Set up by

Admin or

individual

users and

downloaded

as PEM

container

files

Used to request

access to EC2

instances or to

create signed

URLs for private

user content

Recommended to be

rotated periodically

Until

manually

deleted by

user or

Admin

57

X 509

certificate

RSA 2048

public key

certificate

and

private

key

Required

Set up by

Admin and

downloaded

as PEM

container

files

Used to sign

SOAP-protocol

requests and CLI

requests to many

AWS services

Recommended to be

rotated periodically

Until

manually

made

inactive or

deleted by

Admin

Account

IDs

12-digit

account

ID

Required

Available on

Management

console right

after account

creation

Used to construct

ARNs necessary

to refer to

resources

programmatically

None

For the

lifetime of

the

account

4.2.2.2. AWS Scenario Architecture and Operation

For a better understanding of the interactions between entities in the 1C-Shop solution, this section

describes the architecture of the solution and how entities operate in the frontend and backend. For

frontend operation, there are three phases as the SW project progresses:

● Implementation

● build phase

● Testing phase

Backend operations are performed through the NewShop website. Therefore, website hosting will

be provided through the same CSP.

Figure 4-1. Phases of the Solution

58

Work can progress initially based on the assumption that all team developers are registered. As

Figure 4-1 shows, there are four different architectures necessary to fulfil the NewShop’s

requirements:

The general setup for the 1C-Shop solution depicts an outsourced private cloud. As Figure 4-2

depicts the team enlists the Virtual Private Cloud VPC service, which designates a set of AWS

virtual resources to the NewShop’s AWS account.

Figure 4-2. A logical view of the AWS solution employed by “NewShop.”

An isolated portion of the AWS cloud is created for NewShop to launch EC2 instances with private

addresses in the specified range rather than randomly assigned public IP addresses [8]. Network

ACLs and security groups provide stringent control over inbound and outbound traffic to instances

of the NewShop.

The detailed architecture for each phase enlists different AWS services. As this project progresses

from one phase to the next, NewShop’s developers can allocate the necessary resources to build

the needed architecture for that phase and release unnecessary resources.

(a) Phase 1: Development of the Website

Figure 4-3 shows the architecture of the development phase [96]. The components shown within

the VPC subnet are:

• EC2 instances are used for source code repositories and project management tools.

Admin

59

• Amazon Elastic Block Store (EBS), which is a storage service linked to the source code

repository EC2 instance.

• S3 object storage service, which allows for storing various types of objects in units called

buckets. One S3 instance is used to back-up snapshots of EBS. Another is used to store

NewShop’s user and product databases.

• An Elastic IP Address is needed to provide a consistent method to statically access EC2

instances.

• RDS is Amazon’s relational database service used for data storage for project management

tools.

Figure 4-3. The Architecture of "NewShop" AWS solution: Development Phase

For this phase, the admin uses the management console to request the necessary AWS services to

deploy the needed architecture for each phase of the project. He also sets up permissions for the

team members to access the allocated resources. The development team members use their login

credentials to gain access to the management console and resources as per the permissions granted

by the Admin.

Through the management console, an S3 bucket called “ShopDBs” is created to migrate the data

files. Then the architecture for the development phase must be arrayed as shown in Figure 4-3.

EC2 instances are created for source code in the next step. Once the source code repository

instance is installed and configured, the team creates an AMI for fast future recreation of that

60

instance. The repository’s data is stored on Amazon Elastic Block Store (EBS), which is attached

to the running instance. Additionally, point-in-time snapshots of the EBS repository data volume

are created and stored in Amazon S3 to ensure data protection and durability. The Elastic IP

Address provides a static access method to code EC2 instances. Additional Amazon EBS volumes

may be needed as the code repository grows larger. If required, multiple EC2 instances via the

auto-scale service can be created as the project is scaled.

(b) Phase 2: Building the Project

For building the project, the architecture needs to be expanded after the development phase. Figure

4-4 shows the expanded architecture within the VPC.

Figure 4-4. Architecture for the Build Phase

The new components necessary for the building phase are:

● EC2 instances to host the build server.

● Auto-Scaling service to adjust the number of EC2 build instances needed.

● Amazon Simple Queue Service (SQS), to manage the multiple build requests polled by the

build EC2 instances.

● An S3 instance to store the build output.

For this phase, the team modifies the architecture of the resources, as indicated in Figure 4-4. An

EC2 allocation is required to host the build server. For multiple builds within the same day, an

61

Amazon SQS queue is employed. The number of EC2 build instances is adjusted by the Auto-

Scaling service.

(c) Phase 3: Testing the Website

For the testing phase, the same set-up as for the development phase shown in Figure 4-3 can be

utilized with EC2, RDS, and S3 services as the main components of the architecture. Different test

types require different testing environments. EC2 instances are launched from AMIs configured

with test environment requirements. Test datasets are implemented as Amazon RDS instances

loaded from stored snapshots. Stress testing is accomplished by large enough RDS datasets and

the availability of multiple required EC2 test instances. EC2 testing images are distributed over

different AWS regions to gain a better understanding of the end-user experience and response

times. Fault Tolerance testing is easily accomplished using the AWS Management Console to take

down some components, such as EC2 instances, to test the architecture. After testing, NewShop’s

web storefront is ready for deployment on AWS.

(d) Phase 4: Hosting the NewShop’s Website

The final phase of the project after development is building and testing. For this phase, the

architecture employed is a basic 3-tier web application architecture, as presented in Figure 4-5.

The component services of this architecture are:

● Amazon Route 53 DNS service, which routes the network traffic to the AWS components.

● Amazon Cloud Front distributes content (dynamic, static, streaming, and interactive) using a

global network of edge locations to end users.

● Amazon S3, for static content and backups.

● Amazon Elastic Load Balancer, which facilitates the distribution of computing load.

● Amazon EC2 instances used for the creation of web servers and application servers.

● Amazon ElastiCache, for in-memory application caches.

● Amazon RDS, for storing the application databases.

62

Figure 4-5. AWS Architecture for Web Hosting Solution [86]

In this phase, Admin allocates the necessary components on AWS. NewShop’s databases are

transferred from the S3 bucket allocated in phase 1 of the project, to Amazon RDS to be

operational. Amazon CloudFront delivers dynamic and static content for NewShop, using a global

network of edge locations. The NewShop’s online customers will use the hosted website. These

users will assume a role defined as “shopper” to allow suitable access to the website. Their requests

are automatically routed to the nearest edge location to ensure the best performance in content

delivery. The AWS DNS service (Route 53) is provisioned to resolve requests for

www.theshop.com to the Elastic Load Balancer. The Load Balancer receives HTTP requests and

distributes them among web servers running on EC2 instances across multiple zones. The number

of web servers within the auto scale group is scaled up or down in response to incoming traffic.

EC2 instances are also created to host app servers, where the NewShop’s application is hosted.

Elastic IP addresses are assigned for EC2 instances and services requiring static endpoints, such

as central file servers, and load balancers. Amazon ElastiCache is used to reduce the load on

services and improve performance. An S3 bucket is allocated to store static data and backups.

http://www.theshop.com/

63

4.2.3. Two Clouds Solution (2C-Shop)

In this solution, development, building, testing, and hosting for the new web storefront are

deployed on AWS CSP as in the 1C-Shop scenario. However, data storage services are provided

by a different CSP X. This scenario will be referred to as 2C-Shop. Assumptions A2 and A3 from

Section 4.2.1 are applicable in this setup. Additionally, we assume:

A4: The company has product and user databases, which are hosted by CSP X.

The following subsections will analyze the 2C-Shop solution, describing the interacting entities,

the authentication methods, and the architecture and operation of services utilized for project

completion.

4.2.3.1. 2C-Shop Authentication: Entities and Methods

In this section, interacting entities are identified along with the authentication methods and

credentials to be used.

The interacting entities in this solution are:

1) AWS is represented by the services it offers. AWS-S refers to individual AWS services, such

as the management console (MC), EC2, S3, and CloudFront.

2) CSP X is represented by the services it offers. CSPx-S refers to an individual service.

3) The user, NewShop, is represented by:

● Admin, identified as the team Administrator (Bob)

● Userj, who are the development team members

4) User assuming role i, which refers to temporary users, who have a well-defined role such as

the role of a storefront shopper

The credentials structure for this scenario is similar to the one presented in Section 4.2.2.1. Table

4-1 and Table 4-2 summarizes the access control details for the users accessing the resources

provided by AWS. The mandatory credentials required to access CSP X resources should augment

the previously listed credentials (Table 4-1). Table 4-3 summarizes the additional credentials:

64

Table 4-3: 2C-Shop Solution Additional Credentials

List of

Credentials
Type Creation Use of the credential Validity

Root

account log-

in

credentials

for CSPx

Username

(Valid email)

& password

At the beginning

of registration

process

Log in to CSPx website by

Admin

Valid until

changed

Individual

user log-in

credentials

for CSPx

Username &

password

By Admin for

each user

Log in to permitted tools

and resources by individual

users

Valid for 90 days,

then users are

forced to change

them

MFA for

CSP X

SW or HW

device to

provide six-

digit

authenticatio

n codes

(OTP)

Set up by Admin

at any time

Used in conjunction with

Log-in credentials (for root

account and/or individual

users)

One-time use

Access key

(ID &

secret key)

Random

strings of

characters

Set up by Admin

at any time and

downloaded as a

CSV file.

Used to sign programmatic

requests made by users.

Until manually

revoked

For a better understanding of these credentials, Table 4-4 summarizes Who (which entities) know

What (credentials). All credential items in Table 4-4 refer to those used to access CSPx and the

services it provides to the user. Users’ X509 certificates and matching private keys are used for

both CSPs.

65

Table 4-4: Who knows What for 2C-Shop Solution

The admin holds the root account credentials for both CSPs. The MFA producing OTPs are

optional for the root accounts and individual user accounts. The admin holds ownership of the

OTP device for the root account, while each user owns the OTP device for their account. An access

key is created and is owned by each user and for each role defined by the admin. Secret access

keys are used to sign REST API requests. The private key matching the public key of the X.509

certificate created with AWS can be used to sign requests for services offered by CSPx.

4.2.3.2. 2C-Shop Architecture and Operation

The general architecture for this scenario is shown in Figure 4-6. This configuration is similar to

the one presented in Figure 4-2 in Section 4.2.2.2. It depicts how NewShop is utilizing the services

of AWS services as well as another CSP X.

 Entity

Admin User j
User assuming

role i
CSP X

Item

PWDroot for CSP X ✓   ✓

PWDj for CSP X ✓   ✓

OTProot for CSP X ✓   

OTPj for CSP X × ✓  

X509-PUK for CSP X ✓ ✓  ✓

X509-PRK for CSP X ✓ ✓  

SAKroot for CSP X ✓   

SAKj for CSP X  ✓  

66

Figure 4-6. General Architecture of 2C-Shop Solution

Assuming all users are registered for AWS and CSPx services, the team of developers can start

working on the four phases of this project: Development of the website, Building the project,

Testing the storefront, and hosting the website. All four phases employ AWS services. Throughout

the project, NewShop’s product and customer databases are stored on the storage service offered

by a different CSP X.

(a) Phase 1: Development of the Website

For this phase, NewShop employs an architecture of AWS services, as shown in Figure 4-3. The

admin requests the necessary services, which are EC2, EBS, S3, RDS, and the Elastic IP address.

They operate in the manner described in the Section 4.2.2.2 (Phase1).

(b) Phase 2: Building the Project

For building the project, the architecture is expanded, as illustrated in Figure 4-4. It requires EC2

for the build server, the Auto Scaling service, SQS, and S3 instance to store the build output. These

components operate as described in the Section 4.2.2.2 (Phase2).

(c) Phase 3: Testing the Website

For this phase, the architecture is shown in Figure 4-7.

67

The components of this solution include all AWS components described in Section 4.2.3. An

additional perimeter is depicted in Figure 4-7 for the resources implemented through the second

CSP X. Since Cloud X is only employed for storing NewShop’s databases, it shows only one

storage component equivalent in function to the AWS S3 service.

EC2 instances are launched and configured with various test environment requirements. Test

datasets are stored in the storage component provided by CSPx. EC2 instances need to request this

data when needed from CSPx. Stress testing is accomplished through large datasets and by

launching as many necessary EC2 test instances as necessary. After the testing phase is complete,

NewShop’s web storefront is ready for deployment on AWS.

Figure 4-7. Architecture of 2C-Shop (Phase 3)

(d) Phase 4: Hosting NewShop Website

For the final phase of this project, the architecture used is a basic 3-tier web application

architecture, as shown in Figure 4-5.

After allocating all the necessary components on AWS, the operation of these components is

described in Section 3.2.2.2 (Phase 4).

68

4.2.3. Three Cloud Solution (3C-Shop)

In this solution, NewShop hires three CSPs for the project. AWS, as in the 1C-Shop and 2C-Shop

solutions, is still chosen for the development, building, and testing of the new web storefront. Also,

data storage services are provided by CSPx. In addition, hosting the NewShop’s website will be

provided by a third-party provider CSPy. Hence, this scenario will be referred to as 3C-Shop.

Assumptions A2 and A3 from Section 4.2.2 and assumption A4 from Section 4.2.3 still apply in

this situation.

The following subsections will describe the interacting entities, the authentication methods, the

architecture and operation of services utilized to complete the project.

4.2.3.1. 3C-Shop Authentication: Entities and Methods

In this section, the interacting entities, the authentication methods, and credentials are identified.

The interacting entities in this solution are:

a. AWS, represented by any of the services it offers, AWS-S.

b. CSPx, represented by any of the services it offers, CSPx-S.

c. CSPy, represented by any of the services it offers, CSPy-S.

d. The users, which include the following NewShop’s workforces represented by:

● Admin, which refers to the team Admin, Bob.

● Userj, which represents each of the development team members.

● User assuming role i, which refers to temporary users, with clearly defined roles, such as the

role of a storefront shopper.

● User assuming role i, which refers to temporary users, with specific defined roles, such as

the role of a storefront shopper.

The credential structure for this scenario is very similar to that presented for 1C-Shop and 2C-

Shop. For the users to access the resources provided by AWS, the credentials are summarized in

Table 4-2. Additional credentials necessary to access CSP X are mentioned in Table 4-4. Table 4-

5 summarizes the additional credentials:

69

Table 4-5: 3C-Shop Solution Additional Credentials

List of

Credentials
Type Creation Use of the credential Validity

Root account

log-in

credentials

for CSPy

Username

(Valid email) &

password

At the

beginning of

registration

process

Log in to CSP website

by Admin

Valid until

changed

Individual

user log-in

credentials

for CSPy

Username &

password

By Admin for

each user

Log in to permitted

tools and resources by

individual users

Valid for 90

days, then users

are forced to

change them

MFA for

CSPy

SW or HW

device to

provide six-

digit

authentication

codes (OTP)

Set up by

Admin at any

time

Used in conjunction

with Log-in credentials

(for root account

and/or individual

users)

One-time use

Access key

(ID & secret

key)

Random strings

of characters

Set up by

Admin at any

time and

downloaded as

a CSV file.

Used to sign

programmatic requests

made by users for

REST APIs.

Until manually

revoked

For a better understanding of these credentials, Table 4-6 summarizes Who (which entities) know

What (credentials). All items in Table 4-6 refer to credentials used to access services offered by

CSPy. A X509 certificate and matching private key is used for all three CSPs.

70

Table 4-6: Who knows What for 3C-Shop Solution

 Entity

Admin User j

User

assuming

role i

CSP Y

Item

Y-PWDroot ✓   ✓

Y-PWDj ✓   ✓

Y-OTProot ✓   

Y-OTPj  ✓  

X509-PUK ✓ ✓  ✓

X509-PRK ✓   

SAKroot ✓   

SAKj  ✓  

The admin holds the root account credentials for all three CSPs. The MFA that produces OTPs is

optional for the root account and for individual user accounts for all three CSPs. The admin holds

ownership of the OTP device for the root accounts, while each User owns the OTP device for his

account. An access key is preserved and owned by each individual user and for each role defined

by the Admin. Secret access keys are used to sign REST API requests. For signing SOAP requests,

the private key matching the public key of the X.509 certificate is created for AWS can be used.

4.2.3.2. 3C-Shop Architecture and Operation

The general architecture of this scenario is illustrated in Figure 4-8. This configuration is similar

to that presented in Figures 4-2 and 4-6 It shows how NewShop utilizes the services of AWS

services as well as those of two other CSPs X and Y.

71

Figure 4-8. Architecture of 3C-Shop solution

 After registration, the team of developers can work on the four phases of this project: phase1

(Development of the website), phase2 (building the project), phase3 (testing the storefront), and

phase4 (hosting the website). Phases 1-3 employ AWS services. Phase 4 (hosting the NewShop’s

website) will be accomplished through CSPy services. Throughout the project, NewShop’s product

and customer databases are stored on a different CSPx storage service.

(a) Phase 1: Development of the Website

For this phase, NewShop employs the architecture of AWS services as shown in Figure 4-3. The

admin requests the necessary AWS services. They operate as per the description provided in Figure

4-6.

(b) Phase 2: Building the Project

For building the project, the architecture is expanded as shown in Figure 4-4. The allocated

services operate as described in Figure 4-4.

(c) Phase 3: Testing the Website

For this phase, the architecture is shown in Figure 4-7. The operation of this phase is the same as

that described in Figure 4-7.

72

(d) Phase 4: Hosting NewShop Website

For this final phase of this project, the architecture is a basic 3-tier web application architecture,

as shown in Figure 4-5. NewShop’s project code is relocated and deployed on CSPy resources. All

compute, storage, and supporting services are administered by CSPy rather than AWS. The

operation of these components is similar to the one described in the Section 4.2.2 (Phase 4).

4.3. Multi-Cloud Generic Model (MC-Model)

Based on the previous solution scenarios: 1C-Shop (Section 4.2.2), 2C-Shop (Section 4.2.3), 3C-

Shop (Section 4.2.4), the current study describes a generic abstract model for multi-cloud

solutions. The abstract model can serve as a basis for designing an authentication solution for MC.

The model may be referred to as the MC-Model. This general scenario requires the collaboration

of services offered by two or more CSPs.

This section is structured as follows. Section 4.3.1 will describe the general architecture of the

model. In Section 4.3.2, we identify the interacting entities in the model. The credential structure

for the model is described in Section 4.3.3. Section 4.3.4 identifies the MC-Model workflow.

Section 4.3.5. concludes with a detailed description of the interactions and communication

messages between the interacting entities.

4.3.1. MC-Model Architecture

This section describes the general architecture of a Generic MC-Model solution. As Figure 4-9.

depicts, a user’s request in a multi-cloud environment is fulfilled by multiple cloud providers.

Hence, the multi-cloud (MC) System Model can be defined at a given time t by:

MC = ⟨U, P, S, G⟩t (4-1)

73

where U = ⟨u1, u2, u3... ⟩ is the set of users, P = ⟨ p1, p2, ..., pn ⟩ is the set of cloud service providers,

S = ⟨s1, s2... ⟩ is the set of cloud services, G = ⟨g1, g2... ⟩ is the set of cloud groups, each providing

services to one user. Each user u acquires multiple services sa, sb … , which are delivered by

multiple CSPs represented by a cloud group g where gi = pl, pm, ..., pn, .

Figure 4-9. Logical view of Multi-Cloud Generic Model

This setup shows multiple security perimeters. Each user u implements a security perimeter,

represented in the graph by a black square. Other perimeters are set around the assets of each

provider p, shown as a colored cloud shape. Each provider offers various services, represented in

the graph as unified color shapes within the provider cloud. Each user deploys instances of various

services offered by different providers. Communications links connecting users to providers go

through the Internet.

4.3.2. Entities

The interacting entities of the model are:

1. User u which represents an organization or a single user.

74

2. For n providers denoted by pi , each p offers various services, each of which can be denoted

as sy-pi which refers to an individual service offered by one provider pi.

So, s2-p1 refers to service s2 offered by p1.

4.3.3. Credentials Structure

To understand the authentication provision for this generic scenario, the security credentials need

to be identified, which are as follows:

1. C1: The username and password are the login credentials for the root account. It is denoted

by PWDroot. All commissioned resources can be accessed through the root account.

2. C2: Individual user account credentials, PWDu, which are usually set by an admin via the root

account.

3. C3: On-time password, which is denoted by OTP. OTPs are provided by a Multi-factor

Authentication generator (MFA) to provide an additional level of security for login credentials. It

can be used for the root account, OTProot, and/or the individual-user accounts, OTPu. OTP

generator can be implemented as a hardware device or a software app.

4. C4: Non-certified public/private key pairs, denoted by PUK and PRK, can be created for an

individual user (PRKU with matching PUKU) or for the root account (PRKroot with matching

PUKroot). They can be created by the CSP, or by a third-party. An example of a third-party is ssh-

keygen which is the tool provided with the standard OpenSSH installation. If key pairs are created

by a third party, PUK needs to be uploaded to the CSP. This PUK is not certified and is saved by

both CSP and the user. The PRKU is used to encrypt user requests with login information to access

services such as computing instances. At the receiving end, a cloud service uses the matching key

PUKU to decrypt the request and login information. Access is granted only if the login information

matches the one stored in the database.

5. C5: Certified public key (X509-PUK) with matching private key (X509-PRK). A user u signs

requests issued to service s with his X509-PRK.

6. C6: Secret Access key. It is denoted by SAK. Secret access keys are created for the account

Admin (SAKroot) or for an individual user (SAKU). The SAK is a shared secret between u and p.

75

It is used to sign programmatic requests to cloud services. When a user application issues a request

for a cloud service, SAK is used to calculate a SHA based HMAC signature.

Summary of the above credentials is listed in Table 4-7. It shows the type of each credential,

whether it is required or not, security recommendations, and validity for each.

Table 4-7: MC-Model Credentials

Type
Required or

not

Security

recommendations
Validity

List of

Credentials

PWDroot Password Required

- Change periodically

- Don’t distribute to

individual users

Valid until changed

PWDu Password
Recommend-

ed

No extra

recommendations

Valid for 90 days,

then users are forced

to change them

OTProot

A mobile app

or an MFA

device to

provide six-

digit

authentication

codes

Optional
No extra

recommendations
On- time use

OTPu

A mobile app

or an MFA

device to

provide six-

digit

authentication

codes

Optional
No extra

recommendation
One-time use

76

PUK/PRK

Un-certified

public and

private key

pair

Required
Recommended to be

rotated periodically

Until manually

deleted by user or

Admin

X.509-

PUK/

X.509-PRK

X.509 certified

public key and

private key

Required
Recommended to be

rotated periodically

Until manually

made inactive or

deleted by Admin

SAK

Secret Access

Key which is a

random string

of characters

Required
Recommended to be

rotated periodically

Until manually

revoked

Table 4-8 provides a summary of all credential items and interacting entities showing Who

knows What for the MC-Model model.

Table 4-8 Who knows What for MC Model

Item Admin U P

PWDroot ✓  ✓

PWDu  ✓ ✓

OTProot ✓  

OTPu  ✓ 

PUKroot ✓ ✓ ✓

PRKroot ✓  

77

PUKu ✓ ✓ ✓

PRKu  ✓ 

X509-PUK ✓ ✓ ✓

X509-PRK  ✓ 

SAKroot ✓  

SAKu  ✓ 

4.3.4. MC-Model Workflow

For better understanding of the message sequence exchanged between the entities of MC, a

simplified example run derived from the 2C-Shop in Section 4.2 is presented (Testing phase). For

2C-Shop, two CSPs collaborate to finish a test case of the implemented online storefront.

Accordingly, MC = ⟨U, P, S, G⟩ where,

the set of users U = ⟨Admin, user1, use2, user3⟩,

the set of cloud providers P = ⟨AWS, CSP X⟩,

the set of cloud services S = ⟨EC2, S3, RDS, EBS, AWS.M, X.M, X.S1⟩,

and there is one cloud group g , where g1 = P.

Figure 4-10 shows the component resources and illustrates the sequence of messages exchanged

to accomplish a test case for the collaboration of two CSPs.

78

Figure 4-10. Simplified Example Run from 2C-Shop Solution

For this example, the step-by-step workflow, for registered user service utilization is given

below:

(1) The user employs credentials created during registration to login to AWS and CSPx. The

credentials usually include PWD and OTP.

(2) The user (Admin/other) communicates with the management console to request EC2 service,

s1-AWS. The request specifies the type of compute instance required, among other attributes.

(3) The user requests to access the allocated service s1 by requesting to launch an instance of EC2

to accomplish the task.

(4) The user (Admin/other) communicates with the management console to request RDS service,

S3-AWS.

(5) The user issues another access request to the allocated service s1 by requesting to run an app

on the EC2 instance.

(6) The app running on s1 requests to access another service S3 (RDS) of the same provider, AWS.

79

(7) As processing continues, S1 requests access to storage services provided by a different provider,

S1.X.

4.3.5. Interactions between Entities and Message Types

Figure 4-11. shows, interactions between entities in MC-Model. It can be further classified into

the following two types:

Figure 4-11. MC-Model Interactions

1. User to Service (U-to-S) interactions: This type includes interactions between a user and

services offered through the management console of a provider, which is represented by green

dotted line, and between a user and all other types of services, which is denoted by a blue dotted

line. Registration, credential exchange, and users requesting services from providers are examples

of User-to-MC interactions. For this type of interaction, authentication may be provided through

passwords, multiple-factor authentication, and/or OTPs. For requesting other types of services,

authentication may be provided through a public/private key pair, X509 certificates, or secret keys

depending on the service type.

2. Cloud Service to another Cloud Service (S-to-S): This type of interaction is represented by

a black dotted line. Authentication should be provided for both services to safeguard the user’s

80

data and processes as well as those of other users of both providers. There are two distinct types

of this interaction:

a. Service-to-Service where both interacting services are offered by the same CSP.

b. Service Sa offered by Px to another Service Sb on Py.

Each of these interactions requires communication messages to be sent back and forth between the

entities. For each of these interactions, the types of messages communicated between the entities

are identified. Generally, there are two types of messages: request (REQ) and response (RES).

Both types of messages may contain supporting data.

(i) Login

After initial registration and credential exchange, a user u needs to login to provider p to start

using cloud services. The login process is User-to-S interaction. To facilitate the registration

process, the messages proceed the following way:

The messages communicated for U-to-S interaction, where s in this interaction is usually the

management console of p (M-p), are as follows:

• REQu: A request message from the u with the username and PWD.

• RESp: If PWD is correct, s requests OTP. Otherwise, the request is denied.

• RESu: A response message is sent with the generated OTP.

• RESp: If the OTP is correct, a response message is sent to allow access to M-p. Otherwise, the

request is denied.

(ii) Requesting Resources

This includes requesting a resource of a specific service type and setting up specifications for the

requested service. An example of this is when u request the creation of a storage bucket, and

specify the attributes of the resource, such as the ID and size of the storage bucket.

U-to-S interaction messages for requesting a storage bucket are as follows:

• REQu: A request message from u is sent to create the resource. The request contains supporting

data, including resource name, ID, size, access permissions for other users (in case u is an admin)

and other necessary information.

81

• RESp: If u has permission to allocate resources of this type, a response message from M-p

confirms the creation of the instance with the prescribed properties. Otherwise, the response

message denies the request.

(iii) User Accessing Service

After a service is requested and deployed, the user u needs to access an allocated service s. An

example of this is a user requesting to retrieve an object stored in a storage bucket. This interaction

is between u and s-px, where s is the storage service offered by CSPX.

Interaction messages would be different depending on the service to be accessed. For instance, the

interaction messages for u requesting to retrieve an object from a storage bucket are as follows:

• REQu: A request message from u to retrieve an object stored in a storage resource. The request

contains supporting data, including resource Name, ID, and object ID.

• RESS: If the u has permission to access the requested object, a response message from s

delivers the requested object. Otherwise, the response message denies the request.

Similarly, the messages facilitating the request of u to launch a compute instance are:

• REQU: A request message is sent from u to run an application on a working compute instance.

It contains the resource name, information about the application to be run and other supporting

data.

• RESs: If the u has permission to utilize s, a response message from s confirms the requested

operation with a link to the application. Otherwise, the response message denies the request.

(iv) Service Accessing Service

When a task performed by service s-px requires accessing another service on the same domain, it

is a S-to-S interaction. An example of this would be when Sa needs to access data stored in the

database service Se. The messages of this interaction would go as follows:

• REQSa: A request message from Sa-Px to retrieve data stored in Database Se-Px. The request

contains supporting data, including Database Name, ID, and query among other necessary

information.

82

• RESSe: If the requesting Sa-Px has permission to access the data, a response message from Se-

Px delivers the requested data. Otherwise, the response message denies the request.

Alternatively, if a task performed by s-Px requires accessing a resource deployed on another CSPy,

it is also considered as a S-to-S interaction. An example of this would be when Sa-Px needs to

access an object stored in Sb-Py. The messages of this interaction would flow as follows:

• REQSa: A request message from Sa-CSPx is sent to retrieve an object stored in a storage

resource. The request contains supporting data, including resource Name, ID, and object ID

among other necessary information.

• RESSb: If the requesting Sa has permission to access the object, a response message from Sb

delivers the requested object. Otherwise, the response message denies the request.

This type of interaction can also be recognized as a P-to-P interaction, which is the focus of multi-

cloud (MC) solutions. Further, MC brings serious concerns of security and privacy risks with high

potential of harming the users’ data and services, where the infrastructure offered by an untrusted

provider may be a hostile environment, where in security requirements cannot be ensured [100].

Hence, despite deploying appropriate security mechanisms, extra measures should be provided to

gain users’ trust regarding all involved services and providers.

4.4. Threat analysis

Though MC has great potential to offer businesses economical and scalable IT solutions, it presents

various security risks. This section analyzes the potential threats leading to security breaches by

outsiders or any of the entities in the model. Threats against interactions in this model can be

classified into four categories: threats related to standards and regulatory authority, threats related

to providers, threats related to access, threats related to Data and Network-related threats [47].

● Currently, MC lacks proper security standards or suffers compliance risks in cases where

security standards are defined due to a lack of governance for audits [47], [37], [19], [71], [18].

● CSP related threats are related to the services offered by a provider and the ways they can be

exploited. These threats include insecure APIs which facilitate users’ access to many offered

services [47]. This may lead to unauthorized access to services by malicious users or the unlawful

release of users’ data. Multi-tenancy nature of CC and MC means that Software and Hardware

83

resources are shared between various users. Malicious tenants may use any vulnerabilities in the

virtualization layer of one or more provider infrastructures to gain unlawful access to other users’

services or data.

● Data related threats may include data redundancy, data leakage, and data unavailability.

● Network related threats have a great impact on the security of both the CC and MC model due

to their high dependency on networking and Internet communications. Service hijacking may

result from vulnerabilities in communication protocols leading to leakage of data or loss of service

to legitimate users.

● Access related issues include unauthorized access (impersonation) by a dishonest administrator

or another user within the same provider. For MC, unauthorized access may occur by other

provider users.

 Accordingly, the security threats to MC model can be enumerated as follows:

a) Impersonation of a user: A malicious outsider may steal the identity of a legitimate user and

try to login into the management console on his behalf. This can be accomplished through a

phishing or pharming attack, or PWD guessing. It may lead to leakage of the user’s data, loss of

service to the user’s beneficiaries, or hijacking of resources allocated to the user. Another type of

impersonation may occur during REQU messages to access services paid for, allowing a malicious

outsider to hijack the service.

b) A malicious insider impersonation: A malicious insider may be a dishonest administrator

within the CSP, or it may be another legitimate user or admin of the provider. A malicious insider

may hijack a service or resource allocated to user u1 by gaining unauthorized access to them.

Additionally, this may occur due to vulnerabilities in the virtualization layer of the provider

infrastructure, where a scheduler favors u2 requests over u1 requests. Also, lack of secure

encapsulation may lead to granting u2 unauthorized access to u1’s resources or data.

c) Impersonation of a CSP: An attacker may impersonate a legitimate CSP during

communication between a user u and CSP. While a RES is being sent to the user in response to

an access request, an attacker may hijack the communication channel to gain unlawful access to

u’s assets or lead to loss of service to u’s beneficiaries.

84

d) Altering REQ or RES communication messages: An alteration may include replaying,

delaying, or modification of messages in an attempt to gain unlawful access to, or misuse u’s

privately owned or cloud hosted assets. Assets refer to data as well as other resources such as

servers or bandwidth. This may occur due to vulnerabilities in communication channels and

protocols.

e) Eavesdropping: Eavesdropping on communication channels by an attacker to get private

information of u or CSP to create a later attack. This could also occur during CSP-to-CSP

communication, leading to leakage of user’s data or loss of services. REQ or RES communication

messages may contain vital data such as secret security credentials, financial information, or vital

data about the user.

f) Unauthorized access to data at rest: A malicious insider or outsider may unlawfully gain

access to data stored on the provider’s storage resources. This may lead to the leakage of private

or sensitive data, causing financial loss to both users and CSPs.

g) DoS attacks: An outside attacker or a different legitimate user u2 of the CSP may hog

resources or communication channels used by a legitimate user u1. Due to the high dependency of

MC on HTTP communication and REST architecture, the attacker can flood the communication

channels and web servers with HTTP requests [47].

h) Disputes: Intentionally or erroneously false requests made by a legitimate user may lead to

financial loss or may affect another user of the CSP. On the other hand, intentionally or

erroneously false requests made by the CSP may cause financial loss or the denial of legally paid

resources allocated for the user. Due to the lack of proper security standards and lack of governance

for audits, the fear of unresolved disputes affects the decision of new users to start taking advantage

of the services and benefits offered by the MC paradigm.

4.5. Observations

Based on the generic model described in Section 4.3 and the threat analysis in Section 4.4, we can

make the following observations:

Observation 1. The model presents multiple heterogeneous entities with varying IT capabilities,

number of users, and business models. This is because MC users may belong to a hospital, a

university, or a multinational company, to name a few, each of which may have a few users or

85

hundreds of users. It may have a privately hosted data centre or just rely on PCs provided to its

employees.

Observation 2. The interacting entities communicate over the Internet. They have no

standardized, unified way of communicating within the cloud context. Hence, they may utilize all

and any protocols standardized for web communication and web services. They are also

vulnerable to all risks and threats applicable to Internet communication.

Observation 3. The types and number of security credentials necessary to secure the

interactions among the model entities are too diverse and doesn’t fit the model variable nature. As

per the description of the credential structure in Section 4.3.3, there are six credentials that may be

utilized. Credential types vary between PWDs, OTPs, uncertified PUK/PRK pairs, X.509 PUK

and matching PRK, TAKs, and multiple shared SAKs.

Observation 4. This security scheme is complicated with long processes and many keys to

create and manage (observation 3). Hence, this complicated scheme may be difficult to apply for

low-resource users, such as a small business or a mobile user.

Observation 5. There are two phases of authentication in a user-to-CSP interaction. The first

phase is initial authentication to gain access to the management and security console, which is

done during login to U-S as described in Section 4.3.5 (login). The second is to access services

agreed upon after successful login, where all requests from the user are authenticated to the CSP.

This kind of authentication is ongoing for as long as a user is utilizing a service. Examples of

ongoing authentication are presented in section 4.3.5 (requesting resources, user accessing

services, services accessing services)

Observation 6. The ongoing authentication of service requests is one-way since it only

authenticates the user to the service.

Observation 7. Collaboration between various CSPs doesn’t currently follow processes or

protocols standardized for CSP-to-CSP communication, which may jeopardize the data and

processes of the user that are necessary to finish the task at hand [60].

Observation 8. Due to competition, the information presented by most current CSPs doesn’t

cover the detailed methods and processes followed during service provision to the user [60]. CSPs

86

don’t provide sufficient information on processes that may be employed for P-to-P collaboration

[5].

4.6. Security Requirements

Examining the threat analysis and the observations made on the Generic Model of MC presented

in Sections 4.4 and 4.5 respectively, we can derive a set of security measures that can be taken to

mitigate those risks. Of course, an effective security solution should not create new security

concerns nor incur high-performance costs. Since authentication is the goal of this research, we

will present a more in-depth analysis of authentication-related requirements in Section 4.6.1.

Section 4.6.2 emphasizes the other requirements necessary for a complete security solution for

MC.

4.6.1. Security requirements related to Authentication

This section will derive a set of desirable security requirements for designing an effective

authentication solution for MC.

R1: Mutual Entity Authentication:

The purpose of entity authentication is to ensure that every interacting entity has the identity it

claims. This should be ensured for all entities’ interactions in a mutual manner:

o User to management console (u-to-M-CSP)

o User to service (u-to-S-CSP)

o Service of one CSP to a service of another CSP (Sa-CSPx- to-Sb–CSPy)

o Service to another service of the same CSP (Sa-CSPx- to-Sd–CSPx)

R2: Continuous Authentication Process:

To guarantee that all cloud resources allocated to a user are protected against unauthorized or

malicious access, the authentication process should continue throughout the resource utilization

operation. The authentication process should include:

● Registration (Identification): This step takes place first to create credentials and exchange

security information between two communicating entities.

87

● Initial authentication: This should be made at the beginning of communication between

two parties, such as a user logging into a CSP service, a user requesting access to service

S, or a CSPx accessing a service provided by another CSPy. The two communicating parties

should use the credentials and information exchanged during the registration phase.

● Ongoing authentication: As two entities continue the interaction to conclude a task, the

authenticity and validity of all requests and responses should be ensured. This applies to

all entities, whether they are a part of the same domain or cross-domain entities.

R3: Non-Repudiation:

 It is a security service that protects against false denial of taking part in communication by one of

the interacting entities. Non-repudiation of origin ensures that the sender doesn’t deny sending a

message. Non-repudiation of receipt ensures that the receiver of a message doesn’t deny receiving

the message. Hence, both interacting parties should have proof that the other entity took part in the

interaction. Both types of non-repudiation must be ensured for all communications between

interacting entities:

• User to management console (u-to-M-CSP)

• User to service (u-to-S-CSP)

• Service of one CSP to a service of another CSP (Sa-CSPx- to-Sb–CSPy)

• Service to another service of the same CSP (Sa-CSPx- to-Sd–CSPx)

R4: Interoperability:

Interoperability refers to the ability of heterogeneous systems to interact and collaborate efficiently

and securely. For M2C, it would allow users to employ the services offered by multiple CSPs in a

seamless manner. Hence, an authentication solution should ensure secure cross-domain

communication. Interoperability is achieved through well-documented and well-tested

specifications.

R5: Performance:

Any security solution should not hinder service provision; rather it should enhance it. It should

consider low-resource users, such as those on mobile devices. Users accessing services from a

mobile device should have the same experience as non-mobile users [1]. In addition, ongoing

88

authentication should be as seamless as possible, requiring the least amount of user intervention.

Thus, the solution should be low weight in terms of:

● The computational cost for the user: by reducing the computational procedures.

● Communication messages overhead: by reducing the number of exchanged REQ and RES

messages as well as the size of the messages.

4.6.2. Other Security Requirements

This section will provide more requirements necessary for a complete security solution for MC, to

counteract the threats specified in the previous threat analysis. These requirements are:

R6: Privacy:

Privacy refers to the right of an individual or organization to keep information of a personal or

proprietary nature from being disclosed to others. Privacy may be at risk in MC due to the

interconnected nature of MC and the multi-tenancy nature of CC in general. Users may be worried

about the leakage of personal information collected through advertisement pushes [55].

Encryption and isolated storage of user’s data may be used to protect their privacy [94]. Another

privacy concern is the illegal disclosure of location information by applications [55]. Spatial

cloaking solutions are suggested by many researchers to guard against this problem [55], [24]. An

efficient MC security solution should be able to ensure the privacy of users and user organizations

while allowing the operation of user’s data to provide the requested services.

R7: Confidentiality:

This security requirement should apply to all data in transit or at rest. It should ensure the secrecy

of the data and protect the privacy of users and user organizations. Confidentiality should apply

to all data stored by the CSP, all communication messages between users and the CSP, and all

messages from one CSP to another CSP. Data Confidentiality is usually provided through

cryptographic techniques, including Public Key encryption, Secret Key encryption, hash function,

or a combination of those techniques [83].

R8: Availability:

This security requirement is to guarantee that a cloud service S or a cloud resource is accessible

and usable when an authorized entity calls for its use. The context of MC poses an extra risk of

89

losing the availability of services due to the elasticity of CC with a large number of users trying to

access services. Mobility of the user over networks with varying parameters and security measures

introduces more risk as well. Availability should be assured for all services offered by a CSP

including the CSP website for registration or logging into the management console. Measures

should be taken to provide availability and protect against DoS attacks.

4.7. What is Missing?

Based on the analysis of authentication methods for distributed systems presented in the previous

chapter, we will evaluate the distributed systems authentication systems presented in Section 3.5

against the security requirements for M2C, identified in Section 4.6. Accordingly, we make the

following observations:

• All authentication methods for P2P presented in Section 3.5.1 do not satisfy most of the

requirements for M2C. This is because P2P is based on the idea of anonymous nodes with equal

weight (peers) collaborating for a common goal. Hence, the main goal of P2P authentication is fast

operation, achieved through high connectivity within peer nodes. Therefore, authentication is

required for different reasons and at different security levels than that required for M2C.

• Although M2C features are very similar to those of GC, out of the authentication methods for

GC presented in Section 3.5.2, Kerberos is the scheme that covers most requirements. It doesn’t

provide continuous authentication or non-repudiation. It can be augmented with other techniques

to be a better fit for M2C requirements.

• As for the CC methods presented in Section 3.5.3, they are based on the same concepts as those

in GC. Based on the examination of the presented methods, it is apparent that simple single-factor

methods don’t meet the complex requirements of M2C. The most promising schemes may be inter-

cloud methods and lightweight ID-based methods.

• It should be noted that requirements R2 (message authentication) and R3 (continuous

authentication) are not met by any of the methods. R2 can be established through the application

of MACs or Hash functions to the entire message rather than just the keys. R3 can be accomplished

with a simple modification to some of the discussed methods.

Table 4-9 shows the authentication methods reviewed (in rows) and authentication requirements

R1 to R5 (in columns).

90

Table 4-9: Current Research Authentication Methods Evaluated against Requirements

 R1 R2 R3 R4 R5

P
2
P

Enc PWD [11]     ✓

PKI based [44], [54] ✓   ✓ 

IBC [54], [65] ✓    

CL-PKC [54] ✓   ✓ 

G
C

Static PWD [29], [39]     

Dynamic PWD [29], [39]    ✓ 

Kerberos [83], [29], [52] ✓    ✓

PKI based [29], [39], [14] ✓   ✓ 

SPTC [56] ✓   ✓ 

IBC [29], [41], [35] ✓    

CL-PKC [29], [30] ✓   ✓ 

Pairing-free CL-PCK [30] ✓   ✓ 

C
C

Multi-level PWD [26]     

TCG [81]    ✓ 

CAM [13] ✓    

Dynamic Multi-factor [10]    ✓ 

InterCloud [17], [57]     ✓

ECC ID-based [22] ✓    ✓

91

Table 4-9 confirms a gap in the authentication provision for M2C as per the requirements. All

methods examined don’t meet all requirements related to authentication R1 through R5. Most

methods fail to provide continuous authentication (R2), and non-repudiation (R3) measures. Non-

repudiation can be provided by means of digital signatures. Interoperability (R5) is a key

requirement that is not achieved by most examined methods.

Hence, we need to propose a comprehensive authentication method for the context of M2C. The

method needs to be fine-grained for this computing environment, considering the limitations of

the context and harnessing the power of its unique features.

4.8. The Best Way Forward

Looking back at the threat analysis presented in Section 4.4, many of the security threats identified

in the threat analysis can be remedied through a strong and effective authentication solution. All

impersonation attacks mentioned in threats A, B, and C can be counteracted if effective

authentication is employed. Impersonation attacks, if successful, can lead to more attacks on the

resources of the Client. Moreover, message alteration (threat D) may not be prevented by strong

authentication but may be detected to save interacting parties from any harmful consequences.

Also, as threat F states, unauthorized access to data at rest can be stopped with strong

authentication. Furthermore, (threat H) can also be resolved with the aid of an effective

authentication solution.

Analysis of current research on authentication solutions for distributed systems in Section 4.7 helps

us identify the gap in the current knowledge, for meeting M2C authentication requirements.

Furthermore, it paves the way for setting design requirements for an effective authentication

solution that takes advantage of the best features of state-of-the-art authentication methods and

bridges the gap. Hence, the best way forward is to provide a sound, reliable elastic authentication

solution. The solution should use the special features of the M2C context to our advantage.

Security requirements should be met without introducing any new risks.

4.9. High-Level Ideas

Based on the threat analysis of the MC Model presented in Section 4.4 and the security

requirements derived in Section 4.6, we propose a novel architecture for authentication solution

for MC. The goal of an authentication system (AS) is to decide whether the identity of an entity e

92

trying to interact with another is authentic, i.e., they are who they present themselves to be. The

authentication decision is made based on the evidence offered by e and data collected by AS to

trust e. For MC, entities interacting are distributed among several providers, each with a different

set of services and security mechanisms, and objectives [100].

Figure 4-12. A logical view of A3S cloud

For the MC authentication solution, we propose to provide cloud-based authentication, or

authentication-as-a-service cloud (A3S). This allows for a shift from the usual provider-centric

cloud paradigm into a more balanced approach focused on all interacting entities users and

providers alike [51]. As Figure 4-12 depicts, A3S would represent “a security distribution layer”

for authentication provision, providing an end-to-end interface for the multi-cloud between user-

centric and provider-centric views [51]. So, based on task T initiated by user u, A3S facilitates

authentication services for all interactions necessary between u and all CSPs in a cloud provider

group G deployed to accomplish T.

The proposed A3S architecture fulfils the distribution promise, as with all cloud services. It is also

dynamic, as it offers authentication on-demand as required within the current dynamic context of

the communicating entities, including users and providers. A third aspect of the proposed solution

is elasticity. Elasticity in cloud computing refers to the level of adaptability of computing solutions

in response to changes in demand metrics by provisioning/de-provisioning resources seamlessly

[36]. However, our work adds other dimensions to the previous definition of elasticity by allowing

various levels of security provision, for authentication specifically, and performance variations to

93

meet users’ demands and needs. Security elasticity can be achieved by allowing for different levels

of assurance, multiple methods of authentication with various types of credentials, and a variable

number of trusted entities. Performance elasticity is accomplished by allowing for a varying

number of interacting entities, including users, services, and providers. The computational cost,

number, and size of authentication messages can vary in accordance with entities’ requirements

and limitations. Hence, it is an Elastic, Dynamic and Distributed authentication solution. This

solution should be invoked for a given interaction within MC to authenticate the communicating

entities as per their required assurance level and use the available authentication methods and tools.

The next chapters will introduce the novel framework TruE for establishing trust for interacting

entities in M2C based on three aspects: credentials such as -passwords and cryptographic

techniques- as well as an entity’s reputation based on previous interactions and recommendations

of other entities within a group G. Reputation and recommendation are measured and collected

after any authentication instance and saved in the Authentication service Database. The trust

framework TruE is the main component of a novel architecture (END AuthN) Cloud service,

which identifies credential based LoA-related factors and defines relationships between them. It

includes a novel methodology for structuring these factors in order to combine them for the

purpose of computing an aggregate value of trust based on these factors. END AuthN makes

authentication decisions for requesting entities by comparing aggregate trust value with the trust

requirement of a given entity.

4.10. Chapter Summary

This chapter discusses in depth the identification of the research problem. We presented and

analyzed a real-life use case of M2C to understand the context and security provisions within M2C.

This allowed us to describe a generic model for M2C, the MC-model. Next, we conducted a threat

analysis of MC to arrive at a set of security requirements for MC, with a dedicated section for

authentication related requirements. This allowed for an analytical comparison of authentication

solutions presented in section 3.5 and thus assist in identifying the knowledge gap in authentication

solutions for M2C and deduce the best way forward in Section 4.7. Finally, we presented high-

level ideas for our novel solution to authentication provision for the MC-model in Section 4.8.

The next chapter provides a review of Trust and details the design of a novel framework to

establish Trust for M2C.

94

Chapter 5: Trust as basis for authentication:

Review and Design

5.1. Chapter Introduction

Trust plays a major role in securing resources and transactions in M2C. Trust management needs

to be an essential part of any M2C security system, especially Authentication. Authentication is

often based on establishing trust relationships between communicating entities. This chapter

defines trust and reviews trust models that may be employed in distributed systems such as P2P,

Grid, and Cloud Computing. Section 5.2 presents a Definition of trust followed by Section 5.3,

which describes how trust is established. Section 5.4 provides a review of various trust models for

distributed systems. Section 5.5 presents discussion and observations for these models. Section

5.6 presents the concept of three modes of authentication. Sections 5.7 through 5.10 cover the

design elements and description of our novel authentication solution based on trust.

5.2. What is Trust?

Definition of trust varies according to the context in which it is used. Parallel to what it means in

a social and psychological context, trust in Computer Science refers to confidence in the integrity

and surety of a person or an entity. Hence, in the milieu of distributed systems such as M2C, trust

can be defined as the level of confidence placed on an entity e participating in transactions with

other entities within the system [3]. This level of confidence is then used by other entities to make

decisions such as:

• whether to accept transactions with the entity in question e,

• what type of transactions it holds with e,

• and what type of resources it can share with e.

For CC generally and M2C particularly, trust is integral since inter-entity transactions may span

various organizations and domains, some of which may or may not be trusted to the same level

[79]. Moreover, trust should be considered for clients requesting or utilizing services in order to

95

protect CSP and other clients’ resources. For the same reason, trust should also be established for

resources or services allocated to perform a given task for a client.

5.3. Trust Management

Due to the importance of trust, trust management is one of the most challenging issues in Cloud

computing. Trust management includes the following essential tasks [63], [27], [3]:

- Collect necessary information about entities within a system,

- Identifying factors used to quantify trust,

- Establishing trust for those entities using identified factors,

- And Dynamic supervision of an existing trust relationship.

Establishing trust depends on how it is perceived. Trust may be perceived in various ways [90]:

• Trust as a risk factor, where it is defined as a prediction of an entity’s future actions.

• Trust as belief, where it is the willingness of an entity to act in accordance with other entities’

actions.

• Trust as subjective probability, when it is conveyed as a specific level of likelihood that an entity

will perform a given task within a certain context.

• Trust as a transitivity relationship, when it is a weighted binary relation between two entities in

a network.

When Trust is established, it is quantified and expressed as a value. These measured outcomes are

known as trust metrics and can be articulated in numerous methods [3], [27], [90], [38]:

• Trust scale: The level of trust is measured and expressed as a continuous or discrete value. For

discrete value metrics, trust level is expressed as v, where v ∈ a discrete set of values such as

{ℎ𝑖𝑔ℎ𝑙𝑦 𝑡𝑟𝑢𝑠𝑡𝑒𝑑,𝑚𝑒𝑑𝑢𝑖𝑚 𝑡𝑟𝑢𝑠𝑡, 𝑛𝑜𝑡 𝑡𝑟𝑢𝑠𝑡𝑒𝑑} or {0,1}. For continuous metrics, trust level is

expressed as v where v falls within an interval [a,b] where 𝑎 ≠ 𝑏 𝑎𝑛𝑑 𝑎, 𝑏 ∈ ℝ . Threshold based

scales express the value of trust as acceptable only when it approaches a predefined threshold; so,

an entity is trusted if its trust value 𝑣 ≥ 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑇 𝑖𝑠 𝑡𝑟𝑢𝑠𝑡 𝑝𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒.

• Trust facet: A trust facet may denote the trustworthiness of an entity e as the shortest distance

from origin to (T, C) on a two-dimensional rectangular plane, where C is a confidence value in the

interval [0,1] and T is a trust value in the interval [0,1]. Another method is to denote trust value

96

as a triplet (b, d, u); b, d, u fall within the interval [0, 1] and b+d+u = 1, where b, d, and u represent

belief, disbelief, and uncertainty, respectively.

• Trust logics: Many approaches use probability or fuzzy logic as a metric for trust. In one study,

the trust metric for ad-hoc networks was defined as the ratio between the number of packets

forwarded correctly and the total number of packets received [95].

Accordingly, trust models are defined by identifying how each entity e within the system

perceives and establishes trust and the metrics used to express the value of that trust.

5.4. Classification of Trust Models

Trust models are defined based on how trust relationships are established between entities in the

system. However, methods for establishing trust may be classified by different criteria.

One way of categorizing trust is based on the objectivity of the techniques used to establish trust

leading to two classes: hard trust or soft trust. Hard trust is calculated based on objective hard

techniques like security algorithms, audits, and certificates, while soft trust is more subjective since

it is based on behavior like user feedback and reviews [77].

More commonly, trust between entities usually falls into one of two categories: direct and indirect

approaches. In the direct approach, two entities build credibility based on the history of interactions

they shared. Accordingly, the ensuing value of trust is also known as Native trust or Direct trust

[25]. Conversely, under the indirect approach, third parties predict user needs or interests and

make recommendations to aid users in service selection and composition [85]. These

recommendations are made based on various criteria such as service ratings provided by other

users with similar needs to those of the given user. And in the cases where indirect Trust is

necessary, we need to consider the Transitivity of trust, where direct trust may be propagated from

one entity to another. Propagation of trust has two basic operations [105]:

• Trust Concatenation: If E is the evaluator entity and Z is the evaluation target, which is not

directly known by E, then an intermediate entity M, which knows Z and is known to E can provide

trust information. Taking advantage of transitivity, a significant increase in the coverage of trust

relations among entities within a system is observed. Figure 5-1. shows the concept of Trust

Concatenation.

97

Figure 5-1. Trust Concatenation

• Trust Aggregation: Trust aggregation is the sum of trust propagated from multiple trust

relations. This way, two or more entities can pledge for another entity Z under evaluation by the

evaluator E. Figure 5-2. shows a simple graph representing the concept of trust aggregation, where

two entities, X and Y can vow for entity Z under evaluation by E.

Figure 5-2. Trust Aggregation

The following subsections will review several trust models under the direct and indirect

approaches for distributed systems such as P2P, Grid, and Cloud Computing. They will provide

a review of varied trust models, where direct and indirect approaches are combined to establish

trust for entities in a system.

5.4.1. Overview of Direct Trust Models

This section will present trust models where interacting entities build trustworthiness based on the

interaction histories, they share in a direct manner without the need for the input of any third

parties.

1- Trust and Reputation model for Agent-based Virtual OrganizationS (TRAVOS) is a

probabilistic based model [87]. In TRAVOS, Trust is defined as the probability of successful

interaction between two agents. Past direct personal experience is used to calculate the trust

between two agents if no direct history is recorded and witness evaluations are used as a last resort

98

[66]. To account for the possibility of inaccurate evaluations, an evaluator agent compares its own

observations with those of witnesses to be able to assess the level of reliability of the witness’s

beliefs. The assessment is then used to calculate the weighted impact of a witness’s beliefs about

an evaluated agent. However, TRAVOS assumes that the behavior of agents does not change over

time, which means that trust evaluations become less reliable with time [66]. Further, it also

doesn’t point out any method to solicit witness evaluations and assumes that evaluations are

accessible as needed [66].

2- In Geetha and Jayakumar model, a host evaluates other hosts based on direct experience [31].

This model follows a decentralized approach. In the model, a trust value of 1 is assigned to a

trusted host, while a value of -1 is assigned to a distrusted host. To keep track of evaluations, each

host has a routing table containing a list of all other hosts evaluations as well as its own. The

overall trust is the sum of the evaluators’ opinion in addition to the evaluations of other hosts in

the network. Feedback from malicious hosts can be tolerated in this scheme as long as the number

of malicious hosts is less than half the total number of hosts in the network. One of the pitfalls of

the system is the overhead of exchanging information about every evaluation with every other host

in the system, even those who might not need it. Moreover, all hosts need to be informed of hosts

who are added or removed from the network to update the routing tables. Another disadvantage is

that it gives the same weight to all evaluations, regardless of how recent they are.

3- The Local Trust Model, which is based on the time influence function, in P2P Networks bases

trust evaluations on the Eigen Trust model [25]. The improvements proposed are to reduce

network overhead, enhance the binding force of malicious entities, and make the model more

reliable and accurate.

Eigen Trust for a network of n nodes uses the following method to calculate the local trust value

denoted by s’ij [25]:

s'ij = Aij - Bij , where Aij, Bij are the accumulated number of satisfied evaluations and unsatisfied

evaluations of node i to node j respectively.

𝑠𝑖𝑗
′ = 𝑤 ×

𝑠𝑖𝑗
∑ 𝑠𝑖𝑗
𝑛
𝑗=1

+ (1 − 𝑤) ×
1

𝑛

This will account for malicious entities providing dishonest evaluations. However, it doesn’t

differentiate between malicious and non-malicious false evaluations. Further, it doesn’t take into

99

account nodes with no prior history, such as new ones. To resolve this, Cui and others suggested

the addition of a trading frequency and time influence function [25]. These functions add to the

frequency of interactions between entities over a given period of time, since more interactions

implies more credible and reliable evaluation.

5.4.2. Overview of Indirect Trust Models

As opposed to trust models presented in the previous section, this section describes trust models

where interacting entities build trustworthiness based on the interaction’s history, they collect

indirectly from third parties. These models are usually referred to as recommendation-based

models.

1- A recommendation based model is suggested for Mobile Ad hoc Networks MANETs to limit

the effect of dishonest entities on the performance of the trust model [78]. The model proposes a

defense scheme to filter out dishonest recommendations like bad-mouthing and ballot-stuffing.

Bad-mouthing refers to the action of a group of nodes conspiring to propagate negative ratings of

good nodes to tarnish their reputation in the network. On the other hand, ballot-stuffing refers to

the propagation of unfair positive ratings for poorly performing nodes in the network. To

accomplish this, recommendations are accumulated over a period of time to ensure consistency.

The proposed model uses a Bayesian statistical approach for computing trust values, assuming

they follow a beta probability distribution. The beta distribution is estimated using two parameters:

α, β, where α represents the accumulation of positive observations (forwarded packets) and β

represents the accumulation of negative observations (dropped packets). They define the

distribution by the gamma function:

𝑓(𝑝|𝛼, 𝛽) =
Γ(𝛼 + 𝛽)

Γ(𝛼)(𝛽)
 𝑝𝛼−1 (1 − 𝑝)𝛽−1

The proposed model clusters recommendations are based on three different criteria: the number of

interactions using the confidence value, compatibility of information with the evaluated node using

the deviation test, and closeness between entities [78]. The use of various criteria to judge the

dishonesty of a node aids in mitigating the influence of false negative and false positive ratings.

The Confidence value starts at 0 when there are no observations between entities and gradually

increases as the number of recorded observations upsurges [78], [88]. The Deviation value

100

represents the compatibility between the received recommendation and the personal experience of

the evaluating node [78], [15].

5.4.3. Overview of Varied Trust Models

Varied trust models refer to models where direct and indirect approaches are employed to

establish trust for entities in a given system.

1- FIRE [40] is a trust reputation model used to assess agent performance in multi-agent

systems according to four values: Interaction Trust (IT), Roles based Trust (RT), Witness Trust

(WT), and Certified Trust (CT). IT is a direct metric calculated from previous evaluations of direct

interactions, with each value assigned a particular weight. The weight of an evaluation depends

on its freshness where, recent evaluations receive higher weights. RT is calculated based on

environmental rules set by the system’s designer to improve performance. Hence, the weights of

RT values are static and set by the designer. The values represent the certainty of the rules. WT

are evaluations of directly related agents, referred to as witnesses. CT evaluations are similar to

WT evaluations, but they come from certified Trusted agents rather than random witnesses in the

system. The overall trust is the weighted mean of IT, RT, WT, and CT, where the weights are

based on trust reliability and coefficients defined by users to denote the importance of each value.

On one hand, the FIRE model improves the performance of agent systems [80], whereas on the

other hand it does not provide details about the agent evaluation process nor assigns the weights

of the four trust values. Also, the model is optimistic and doesn’t account for false evaluations.

Moreover, FIRE is a static model as it relies on many static parameters, disregarding the dynamic

nature of the environment it should operate in [66].

2- Jurca and Faltings Trust model relies on direct experience and reputation [45]. This model

relies on centralized agents defined in the network to gather reputation reports from agents. A

payment method is proposed to encourage honest evaluations by increasing or decreasing

monetary rewards based on honest evaluations. This money is used by agents to buy reputation

reports from centralized agents. When untrustworthy agents provide dishonest evaluations, they

lose their money which prevents them from further purchasing the reputation reports. This scheme

does encourage honest agents to aim for accuracy, but it doesn’t account for malicious agents, who

wouldn’t care to lose the money, as long as they disrupt the system’s behavior [66]. Another

101

disadvantage is that this model gives equal weight to all evaluations as reports are aggregated

through averaging.

3- Regret [76] is a decentralized Trust reputation model that calculates the trust of an agent

based on direct experience and indirect reputation measures of trust. This model uses a social

structure called a sociogram that represents social relationships such as cooperation, competition,

and trade in a graph where the entities represent the participants and the edges denote the nature

of relationships among them [66]. Indirect reputation evaluations are based on witness reputation,

neighbourhood reputation, and system reputation. The witness reputation refers to other agents’

beliefs. The neighbourhood reputation is based on fuzzy rules’ evaluations of neighbouring agents

which have previous interactions with the evaluated agent. The system reputation is used to find

the default reputation of an agent based on its behavior or the role it plays in a social group, in a

manner similar to the concept of RT in FIRE [80]. Regret calculates the reliability of trust values

to improve the decision-making process. It also considers the case of untruthful witnesses

providing false information by evaluating their credibility. A disadvantage of this model is that it

assumes that agents’ behaviour doesn’t change with time. It also uses static weights to combine

the four evaluation values, which may cause failure when agents act unexpectedly or when the

environment changes.

4- A trust management model was proposed for Cloud Computing as Service Oriented

Architecture SOA [85]. This is a hybrid model that aims to ensure entities’ credibility before

transactions. It also evaluates trust values based on predefined measures or measures requested by

Cloud users. They also consider both Cloud users and Cloud providers perspectives in trust

calculation and integrate both hard and soft trust through boxing evaluation techniques. A caching

technique is used to optimize querying services. The proposed model includes several novel

techniques, including the sliding window technique, the Service Level Agreement (SLA) trust

calculator, the prediction technique, and the boxing evaluation technique. To implement the sliding

window technique, only valid interactions (negative or positive) are used to calculate trust, with

the negative interaction window being bigger than positive interaction window. The SLA trust

calculator processes feedback from SLA manager to generate a common trust value to be stored

in a trust repository. It uses direct trust for each defined SLA between the Cloud provider and

Cloud users as per defined key performance indicators (KPIs). KPI scores are normalized to be

from 0 to 1 and assigned weights by Cloud users. The prediction technique is used when there are

102

no saved trust values for a certain service to find equivalent properties in peer services. And

finally, the boxing technique is used to calculate trust value [85], [34].

5- The Trust Model proposed by Basheer et al. evaluates the level of confidence of an agent

based on local confidence (LC), based on direct trust, and global confidence (GC) values, based

on indirect trust [12]. Both LC and GC are calculated based on three values: the importance of the

value (I), Trust (T) and certainty (C). T and C are calculated as percentages of the satisfaction of

predefined rules called factors and evidence. The overall confidence level is the sum of the LC and

the GC. This model is decentralized. It also assigns static weights for LC and GC. The case of

malicious agents or false evaluations of witnesses is overlooked in this proposal [80].

6- A proposed Trust Model was implemented on CloudSim and based on Service Parametric

Model [79]. This model integrates the role of resource brokers and computes Trust values for

different Cloud Service Providers CSPs. The Cloud user provides a list of parameters based on the

capability of CSPs, the behavior of CSPs and feedback from users with each submitted job.

Capability parameters include the speed, efficiency, and power of CSPs. Behavior parameters are

Availability, Reliability, Success Rate, and Throughput. Feedback is based on ratings given by

users and brokers. Each parameter is assigned a weight Wc, Wb, and Wf respectively, where

Wc +Wb +Wf =1 and Wc ,Wb ,Wf < 0.5.

A Cloud coordinator component then collects the parameters and weights, parameters, and the

incoming jobs and divides the jobs into N different equal-size cloudlets. The Cloud coordinator

forwards these weights, parameters, and cloudlets to a trust estimator component. The user/broker

provides the values for the parameters. The trust estimator calculates all three types of trust values,

capability-based Tc, behavior-based Tb, and feedback-based Tf, and averages of trust values for

each CSP and then returns these values to the broker. The broker selects the CSP that has the

maximum average trust value and returns that CSP to the trust estimator. The trust estimator

calculates the aggregate trust value T of the selected CSP. The trust estimator then finally returns

T to the user through the Cloud coordinator and updates the T value in the database. T is calculated

as follows:

 T = Wc*Tc + Wb*Tb + Wf*Tf.

103

5.5. Discussion and observations

Sections 5.3.1, 5.3.2, and 5.3.3 presented a review of various trust establishment models. Based

on the types of interactions used for trust calculations, trust models were classified. Some models

rely only on direct interactions between evaluating and evaluated entities, while others need more

entities’ feedback to make decisions. This feature is significant as it may add flexibility or

limitations to the system [80]. trust models can also be categorized on the basis of weight

assignment, handling false evaluations, or centralization [80], [34]:

• Weight assignment: Some models assign weight to various trust evaluations dynamically,

while others rely on static weights. Assigning weights dynamically adds flexibility and helps avoid

making wrong decisions that may affect the system’s functionality.

• False evaluations: Some models assume all entities are honest and provide correct evaluations.

False evaluations negatively affect the system’s functionality and security.

• Centralization: Trust may be calculated in a centralized or decentralized manner. The

decentralized approach adds flexibility to the system and evades the single point of failure issue

that may threaten the functionality of centralized systems.

• Trust customization [34]: Trust is customized according to the source of evaluation provided.

Trust values can be local and subjective to the entities providing them, or global and independent

of the evaluator of trust.

Table 5-1 shows the trust establishment models examined (in rows) and relevant characteristics

(in columns).

Table 5-1: Summary of Trust model reviewed

C
la

ss
if

ic
a
ti

o
n

M
o
d

e
l

E
n

v
ir

o
n

m
e
n

t

C
e
n

tr
a
li

ze
d

C
o
n

si
d

e
r
a
ti

o
n

 o
f

D
ir

e
c
t

a
p

p
r
o
a
c
h

C
o
n

si
d

e
r
a
ti

o
n

 o
f

In
d

ir
e
c
t

a
p

p
r
o
a
c
h

C
o
n

si
d

e
r
a
ti

o
n

 o
f

L
o
A

C
o
n

si
d

e
r
a
ti

o
n

 o
f

F
a
ls

e
 E

v
a
lu

a
ti

o
n

s

 W
e
ig

h
te

d

e
v
a
lu

a
ti

o
n

s

Direct

TRAVOS [87] Agent  ✓   ✓ ✓

Geetha and

Jayakumar [31]
Agent  ✓  

Tolerated

if malice


104

hosts <

half hosts

Local Trust Model

[25]
P2P  ✓   ✓ 

Indirect

A recommendation

based model for

MANETs [78],

[88]

MANETs   ✓  ✓ 

Hybrid

A trust

management

model as SOA [85]

CC  ✓ ✓  _ 

FIRE [40] Agent  ✓ ✓   

Jurca and Faltings

[45]
Agent  ✓ ✓   ✓

Regret [75] Agent  ✓ ✓  ✓ 

Basheer et al. [12] Agent  ✓ ✓   

Model based on

Service Parametric

Model [79]

CC ✓ ✓ ✓  _ ✓

Yao & Zhang

[103]
Grid ✓   ✓ _ ✓

Examination of Table 5-1, we make the following observations:

O1. Most trust Models for CC concentrate on the Quality of Service or QoS metric.

O2. Most trust Models for CC that have been reviewed aim to examine trust Levels for Cloud

Services and Cloud Service Providers to aid potential users in choosing the most trusted services

offered.

O3. Recommendation based trust techniques aid in discovering misbehaving entities before

interaction, so that the potential bad experience can be avoided. Another advantage is that

recommendations provide more information about the evaluated entity, giving more confidence in

the decision to interact with the evaluated entity [78].

O4. Most trust models don’t consider credentials when quantifying trust for an entity in question.

5.6. Three modes of Authentication

Based on the on our analysis and observations of the reviewed trust models, we identify three

modes of authentication: credential-based, reputation-based, and recommendation-based

105

authentication. For credential-based mode, any factor relating to credentials presented by a

claimant for the purpose of identity verification will af fect LoA, thus influencing the trust

value established for an entity e. Reputation-based mode is a direct approach, where the

authentication decision for an entity e requesting access to cloud service S is guided by the previous

history of interactions between e and S. Factors relating to the reputation-based mode will also

influence the trust value established for an entity e. On the other hand, recommendation-based

authentication mode is an indirect approach, where third parties rely on previous interactions with

the entity in question e to make a recommendation on whether to take part in an interaction with

e [42]. All such recommendations will influence the value of trust established for the entity in

question. These recommendations are usually based on service ratings provided by other clients

with similar needs to aid a new or potential client in choosing the best service. Our research

extends the scope of recommendations to include services recommending a user and attesting to

their fair dealings. All research reviewed bases trust on one or two of these above discussed

modes. However, we propose a novel authentication solution based on trust accumulated from

all trust factors available at the time of the authentication request. So, all factors collectively

will help decide how much trust we can place in entity e. If the level of trust matches the required

trust value for the transaction in question, then a positive authentication result is achieved. This

fulfills the promise of an elastic authentication solution based on the information available in the

context of a given authentication request.

5.7. Design Requirements for an Elastic and Distributed

Authentication Architecture (END AuthN)

Based on our analysis of the use case and description of the generic model MC-Model presented

in Chapter 3, we have identified several challenging issues and specified security requirements.

Accordingly, we identified the following design requirements:

R1: Authentication solution should provide entity authentication which,

- Can be mutual, or one-way from either side (client or cloud service),

- Should apply to all resource-access interactions,

- Should be provided for the duration of the user session (log-in to log-off).

106

R2: Authentication solution should support service access within different domains as well as

service access within the same domain.

R3: Authentication solution should consider performance and reduce run-time delay and

overhead introduced by END.

R4: Authentication solution should be elastic by adjusting the level of assurance.

R5: Authentication solution should be scalable. Scalability means the ability of END service to

adapt to increased demands in order to accommodate more CSPs, services, and clients.

To satisfy the above requirements, we propose a novel an Elastic and Dynamic Authentication

architecture, which will be referred to as END AuthN. END AuthN aims to provide

authentication-as-a-service (AaaS) for all entities in M2C dealings. The design of END

architecture has taken into account the following measures to satisfy requirements R1 to R5:

1- END architecture is designed as a stand-alone service that receives and handles

authentication requests from any CSPs and services to authenticate clients and vice versa. This

should allow for a one-way or mutual authentication if requested by interacting entities (R1). It

will also make it possible for CSPs, services and clients from different domains to make use of

the service (R2). In addition, this standalone cloud service will benefit from the scalability of

the infrastructure, which is an underlying feature of CC (R4). It enables the service to expand

or contract by adding or removing servers with minimal infrastructure- and software-level

modifications [106].

2- END design applies the idea of elasticity by allowing service providers to decide the

LoA requirements for the services they provide. END design can also adjust LoA through

a variation of authentication Modes (R3).

5.8. Design Preliminaries

Following are the assumptions and definitions for END architecture:

A1: Each cloud resource (including services) has a trust requirement value that should be met in

order to gain access to it. Meeting the trust value required is the basis for an authentication

decision.

107

A2: CSPs decide trust requirements for accessing Cloud gateways and the individual services they

offer.

A3: Mutual authentication is specified when interacting entities request authentication at both

ends.

A4: When mutual authentication is specified, the trust requirement value at the resource side will

be applied both ways, i.e., at the resource side and at the client side.

A5: Entity interactions can be captured from the control messages exchanged between entities.

A6: Trust values for all three categories (credential based, reputation based, and recommendation

based) are all expressed on a scale from 1 to 4 in accordance with LoA scale suggested by NIST

E-Authentication guidelines (See Appendix A).

5.9. Identification of Trust Factors

In order to quantify trust for an entity e, firstly, all trust factors that may contribute to setting the

Level of confidence or Trust for e, need to be identified.

For the proposed END architecture, all factors associated with the entity whose trust requires

evaluation must be considered. For MC-Model, we have two types of interactions requiring

authentication decisions: user-to- system (or gateway), and service-to-service. For each of these

types, we can identify different factors to guide the authentication decision. Based on the three

modes of authentication identified in Section 5.6, trust factors are classified into three categories:

credential-based referred to as T.Cr factors, reputation-based referred to as T.Rp factors, and

recommendation-based factors referred to as T.Rc factors.

Definitions:

The following definitions provide the basic notation used in our work:

Def.1: Authentication Instance

An authentication instance is an authentication event that takes place in given computing

environment for an entity in question e [102].

108

Def. 2: Trust Factors:

Trust factors refer to factors contributing to quantifying trust for a given entity in an M2C

environment. Transaction history and other entities’ recommendations are examples of these

factors. Trust factors need to be identified and then quantified to determine their contribution to

the overall trust value of a given entity e. In our proposed scheme, we identify three trust factors

based on the three modes of authentication we identified:

A) Credential-based factors, which are quantified as T.Cr.

B) Reputation-based factors will be quantified as T.Rp.

C) Recommendation-based will be quantified as T.Rc.

Def. 3: Trust Component:

For each trust factor identified in Def.2, the trust component is the trust value computed for that

factor. For example, the trust factor T.Rp has a component value V(T.Rp) = a.

Def. 4: Trust Weight Vector

The Trust weight vector (w.cr, w.rp, w.rc) represents the degree to which T .Cr, T.Rp, and

T.Rc respectively, contribute to the overall value of trust.

Def. 5: Aggregate Trust (AggT)

The Aggregate Trust (denoted by AggT) is the overall value of trust determined by combining the

contributions of all trust factors for a given entity e. So the overall trust for e is determined using

the following equation:

𝐴𝑔𝑔𝑇 = (𝑉(𝐓. 𝐂𝐫) × 𝑤. 𝑐𝑟) + (𝑉(𝐓. 𝐑𝐩) × 𝑤. 𝑟𝑝)

+ (𝑉(𝐓. 𝐑𝐜) × 𝑤. 𝑟𝑐) 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5 − 2)

The following sub-sections will define trust factors for the proposed architecture as they relate to

the above-mentioned modes of authentication. Sub-Section 5.9.1 defines Level of Assurance

(LoA) as a trust factor. Sub-sections 5.9.2 and 5.9.3 describe M2C entities’ Reputation as a Trust

Factor, and recommendation related factors for M2C entities as a trust factor, respectively.

5.9.1. Level of Assurance (LoA) as a Trust Factor

LoA and trust are related terms that play a major role in our proposed authentication scheme. The

US National Institute of Standards and Technology (NIST) defines LoA as the degree of

109

confidence in the process of establishing the identity of an individual to whom an authentication

credential was issued and the degree of confidence that the individual using the credential is

the same as the individual it was issued to [16]. Hence all factors related to the process of

authentication affect LoA including the method used for identity proofing, the types of

credentials, and how credentials are managed [16]. In previous work, LoA-based

authentication was investigated based on credentials for user-to-system authentication in a Grid

environment [101], [102]. LoA was defined as the strength of authentication required to

assure a service provider that access is granted to users whose identities have been verified [101].

For M2C, we expand this definition to be the strength of authentication required for a transaction

to assure a service or a client or both that the identities of entities interacting with them are

verified. This allows for mutual authentication based on t h e LoA required by CSPs, services

or clients. It also entails examining system-to-system authentication, as in the case of a service

requesting access to another service on behalf of a client.

One of the design goals of the current research is to use resources in M2C dynamically and

effectively in a distributed environment. High trust values are only necessary for highly important

tasks requiring access to more sensitive entity’s data and processes. Less sensitive interactions

may require less stringent trust values. This, in effect, relates trust to the LoA necessary for a given

Authentication instance, where more or higher valued LoA factors lead to a higher trust evaluation

of an entity. Hence, the aggregated value of credential based LoA factors is necessary for

authenticating an entity and is one of the trust factors that will be considered in setting the overall

trust for a given entity.

Chapter 6 is dedicated to the identification and analysis of credential based LoA related factors. It

also proposes algorithms for combining these factors and quantifying a composite value for these

factors, which will be denoted as ALoA.Cr = T.Cr.

5.9.2. Reputation as a Trust Factor

For our proposed architecture, we define reputation as the trustworthiness of an M2C entity

(evaluated entity) based on its direct interaction history with evaluator entities. Hence, entities

behaviour is logged in the database with every interaction. Behaviour is estimated through

defined metrics. Examples of metrics may be used in M2C are freshness of last interaction

previously recorded, or trust value required of services accessed for interaction previously

110

recorded. Freshness would be measured with a decay factor to limit the effect of old interactions.

The trust value of previously accessed services would hint to the level of confidence in an entity

previously authenticated for accessing the service; so if user Bob last interaction was with service

S1, where T(S1) = 4, it would indicate high level of confidence in Bob to allow him access to a

service with very restricted security level.

5.9.3. Recommendation as a Trust Factor

As opposed to reputation factor, recommendations are based on indirect relation with the entity

in question. For END AuthN, we define recommendation as the trustworthiness of an evaluated

entity e based on the history of relations between e and other entities in the M2C environment

under consideration. Accordingly, entities behaviour is logged in the database with every

interaction through defined metrics. Similar to metrics used for reputation, examples of metrics

may be used for recommendation are freshness of previously recorded interactions, trust value

required of services accessed for interaction(s) previously recorded. Another possible metric for

estimating trust based on recommendations is the number of evaluators in previously recorded

interactions since it means more entities attest to the behavior of e.

5.10. General Description for END AuthN Architecture

The goal of our novel M2C authentication architecture END AuthN is to decide whether an

entity is what it claims. The system should output an authentication decision (i.e., Authentic or

not). Since CC is a service-centered paradigm geared towards better resource utilization, the

proposed solution provides authentication as a service. It is a standalone service that receives

and handles authentication requests for CSPs, services, or clients. END service will have a

centralized entry point for handling requests, which we will refer to as END-C. In order to carry

out all operations necessary to output the authentication decision, potential users of END services

(CSPs, services, or clients) will have an END peripheral component, which will be referred to

as END-P.

Whenever an entity e requests access to service S, the required value of trust for S, T(S) as

specified by the provider of service S. The mission of END is to identify and gather all trust-

related factors and determine the three trust components V(T.Cr), V(T.Rp), and V(T.Rc), which

111

in turn are used to compute AggT. If AggT matches T(S) for the transaction in question, then a

positive authentication result is achieved. Figure 5-3. shows the general architecture of the END

AuthN Service.

Figure 5-3. END Authentication Architecture

5.10.1. Architectural Components of END

In this section, we will describe in detail each component in the proposed END AuthN

architecture (Table 5-2). The description will include the function of the component, the process

utilized to perform the function, and the inputs and outputs of the process.

112

Table 5-2: END AuthN Architectural Components

5.10.2. Trust Engine (TruE)

The Trust Engine Component, or TruE, is a novel trust evaluation framework in charge of

determining a composite numeric value for the trust of entities within a given authentication

instance. Its function is divided among the following Modules described in subsections 5.10.2.1

through 5.10.2.4.

5.10.2.1. The Reputation-based Trust Module (T-Rp M)

The reputation-based trust module (T-Rp M) quantifies the trust value based on the value of

reputation-based factors in M2C and stores data in EN-DB. The T.Rp is based on parameters

derived from the history of relations between the two entities interacting, or direct history. The

END AuthN

Elastic and Distributed

Authentication

Architecture

Function

TruE Trust Engine
Identification and quantification of trust based

on 3 modes of authentication

T-Rp M Reputation Trust Module Quantification of trust based on Reputation

T-Rc M
Recommendation Trust

Module

Quantification of trust based on

Recommendation

T-Cr M
Credential based LoA

Trust Module

Quantification of trust based on LoA

(Credential based factors)

AggT M Aggregate Trust Module

Determination of aggregated trust based on

the three trust factors: credentials, reputation

and recommendation

EN-DB END Database
Database for data gathered on interacting

providers, services, and clients

113

choice of these parameters is another opportunity to add one more dimension to the elasticity of

the architecture. Our proposed architecture assumes that these history-based reputation metrics

can be chosen based on the nature of the interaction or upon the definition of SLA specification

of CSPs and the services they provide.

This module initializes the parameters used to estimate V(T.Rp) and initialize the values of these

parameters for newly introduced entities if necessary. It also uses recorded parameter values after

the conclusion of each authentication instance to update the reputation value of interacting entities

in EN-DB. V(T.Rp) is set on a four-value scale (1 through 4) so it can be entered as an input to

the AggT derivation equation (section 5.8).

5.10.2.2. The Recommendation-based Trust Module (T-Rc M)

The recommendation-based trust module (T-Rc M) quantifies the trust value based on value for

recommendations-based factors of entities in M2C environment which get recorded in EN-DB.

The parameters used for T-Rc can be the same ones measured in direct history relations (T.Rp

factors). However, these parameters will be measured and recorded previously for interactions

between any two entities in the M2C environment. Furthermore, these metrics can be chosen

based on the nature of the interactions or per the definition of SLA specification of CSPs and

services they provide.

T-Rc module initializes the parameters used to estimate V(T.Rc) and initialize the values of these

parameters for newly introduced entities if necessary. It also uses recorded parameter values after

the conclusion of each authentication instance to update the recommendation value of interacting

entities. V(T.Rc) is set on a four-value scale (1 through 4) so it can be entered as an input to the

AggT derivation equation (section 5.9).

5.10.2.3. The Credential-based Trust Module (T-Cr M)

T-Cr module is dedicated to analysis and identification and quantification of credential based

LoA related factors. The output of this module is the aggregate value of all credential-based LoA

related factors denoted by ALoA.Cr, which is equal to T.Cr. Chapter 6 will focus on description

of the function of T-Cr module.

114

5.10.2.4. The Aggregate Trust Module (AggT M)

The aggregate trust module (AggT M) aims to derive the aggregate trust value for an entity in a

given authentication instance. As explained in Definition 5, aggregate trus t is the overall value

of t rus t for an entity e determined by combining the contributions of all trust-related factors. 2

This module determines the weight vector (w.cr, w.rp, w.rc) for the three trust-related factors

(T.Cr, T.Rp, and T.Rc) in order to calculate Agg-T. We propose two simple methods for setting

the weight vector values (w.cr, w.rp, w.rc):

- Static weights: The weights are set statically in the initialization phase. An example of

static weights are the following values (w.cr, w.rp, w.rc) = (0.5, 0.3, 0.2). These values

reflect that credentials have the most impact on trust evaluation, while recommendations

of other entities are the least impactful because credentials represent empirical evidence

when reputation and recommendations don’t. Also it minimizes the effect of false

evaluations given by entities. The static weight alternative is an intuitive simple approach

that would have no bearing on the performance of the module.

- SLA specification of CSPs: Another alternative is to initialize the weight vector per CSPs’

specification. This alternative provides another dimension of elasticity, where providers

can choose the factors, they deem more trustworthy for the calculation of aggregate trust.

A weight of zero would cancel the effect of any factors deemed untrusted by providers.

This alternative is also simple and won’t affect the performance of the process.

Then the aggregate trust value is calculated based on equation 5-1 in Def 5:

𝐴𝑔𝑔𝑇 = (𝑉(𝐓. 𝐂𝐫) × 𝑤. 𝑐𝑟) + (𝑉(𝐓. 𝐑𝐩) × 𝑤. 𝑟𝑝) + (𝑉(𝐓. 𝐑𝐜) × 𝑤. 𝑟𝑐)

Equation (5-1)

5.10.3. The END Database (EN-DB)

The EN-DB database is used to store the credential tree structure, reputation, and

recommendation factors for communicating entities.

EN-DB contains six tables. The first table, referred to as the EntityType table, stores coding for

the three types of entities interacting in M2C (CSPs, Services, Users). Secondly, the Entities

table contains attributes for all entities in the defined M2C environment including: an END-ID,

115

the type code for the entity as per EntityType table, the name of the entity and the trust value

required for the entity, and latest trust values established for the three trust factors defined T.Cr,

T.Rp, T.Rc. Then, the CrFactors table, stores LoA-related factor IDs and component values. The

CrFactors table contains the pool of nodes (possible credentials) for the Cr-S-tree. The Cr-tree

table is the fourth table, and it stores the credentials’ structure. The fifth table, ENDlog stores the

parameters used to estimate entities behaviour during interactions including: interaction ID,

timestamp of interaction, and the trust requirement for the interaction. Finally, Interactions table

relating entities to interactions with three attributes: interaction ID, entity1-ID, entity2-ID. Figure

5-4. depicts relations among these tables.

Figure 5-4. LoA-DB Tables and Relationship Diagram

5.11. Chapter Summary

This chapter reviews and analyses existing models for establishing trust in various solutions for

computing environments comparable to M2C. Our analysis and observations of the various

methods for establishing trust lay the groundwork for proposing a novel framework for

establishing trust for interacting entities in M2C TruE. It also provides a general description of

the novel proposed architecture (END AuthN) as well as a detailed description of its architectural

116

components, one of which is the trust framework. TruE framework depends on three trust factors,

the first of which is LoA credential-based factors. The upcoming chapter defines and identifies

LoA as one of the trust related factors and describes architectural components dedicated for this

task.

117

Chapter 6: LoA as a Trust Factor: Design

and Implementation

6.1. Chapter Introduction

In the previous chapter, we described the architecture of a novel elastic, dynamic, and distributed

authentication for M2C environment END AuthN. It is based on three modes of authentication

to establish trust in entities in the M2C environment: Reputation based, Recommendation based,

and credential based LoA factors. The first two modes were detailed in chapter 5. Chapter 6 is

dedicated to the Identification and quantification of credential based LoA-related factors. Section

6.2. presents definitions related to LoA-related factors, followed by Section 6.3 which identifies

these LoA-related factors, while section 6.4 defines relationships between them and describes a

novel framework for establishing trust for entities in M2C. Section 6.5 proposes a novel

methodology for structuring these factors. Section 6.6 describes alternate algorithms for

combining these factors to compute an aggregate value of trust based on these factors.

6.2. Definitions

More definitions related to our proposed architecture are presented in this Section. These

definitions augment the list provided in Chapter (5) Section 5.8.

Def.6: Level of Assurance LoA for Service S

Level of Assurance LoA for service S is the degree of confidence in authentication necessary to

access S based on credentials presented by a claimant in an authentication instance. It is denoted

by LoA (S), where

𝐋𝐨𝐀 (𝐒) ∈ {𝟏, 𝟐, 𝟑, 𝟒}

Def. 7: LoA-related Factors

LoA-related factors refer to Authentication factors that contribute to setting the value of an

authentication level of assurance associated with an authentication instance. Credential types or

Cryptographic mechanisms used in the authentication process are examples of these factors.

118

The LoA-related factors, denoted as LoA.Cr factors, need to be identified, and then quantified to

determine their contribution to the overall LoA needed for the Authentication instance.

Def.8: Level of Assurance Component

For LoA.Cr factor a, LoA component is the LoA value assigned for a. It is denoted by LoA.Cr

(a). For instance: LoA.Cr (PWD)= 1 means that the level of assurance for passwords is

valued at 1.

Def.9: Aggregate LoA for Credential-based Authentication Factors

The Aggregate LoA for Credential based authentication factors (denoted by ALoA.Cr) is the

overall value of LoA determined by combining the efforts of all LoA.Cr factors affecting the

authentication of an entity e.

So for given n LoA-Cr factors, (where n > 0), the set of LoA components {LoA(c1), LoA(c2), ….,

LoA(cn)} and the overall LoA associated with an authentication instance is determined through the

following equation:

ALoA.Cr = f(LoA(c1), LoA(c2), …., LoA(cn)). Equation (6-1)

where f is a mathematical function applied on the set of factors to produce the aggregate value of

LoA.

6.3. Identification of Credential based LoA-related Factors

The NIST Electronic-Authentication (E-Authentication) guidelines provide the most

comprehensive set of LoA-related factors categorized under the following classifications [16]:

Registration and Identity proofing, Authentication Tokens, Token Mechanisms, and Credential

Management, Authentication process protocols, and Assertions. LoA components are the values

of LoA-related factors. NIST E-Authentication Guidelines describe four levels of assurance [16]:

Level 1, Level 2, Level 3, and Level 4. These levels are defined based on the likely consequences

of false authentication [16]. As these consequences get more serious, the required Assurance level

gets higher. Since the requirements for each assurance level are incremental, assurance level 1

provides the least security, while assurance level 4 offers the greatest protection. Appendix A

defines component LoA values for the above categories and describes requirements for each

category at all LoA values as per NIST guidelines.

119

The authentication context (AC) specification defined in the SAML v2.0 standard specification set

by OASIS has also identified a number of LoA-related factors (or Authentication Contexts, ACs).

Authentication context is outlined as the additional information (other than the authentication

assertion itself) that CSP may require to make a decision with respect to an authentication assertion

[46]. ACs include five categories (with sub ACs under each) [62]: identification, technical

protection, operational protection, authentication method, and governing agreement.

The work of Yao and others [101] built a comprehensive list of LoA-related factors combining

features identified in NIST guidelines, OASIS specifications, and web security context working

group W3C-SCWG web-related specifications. This work was proposed to provide effective

authentication based on LoA for Grid environments. They also added the location of the user as a

dynamic LoA related factor.

The current research will use the NIST four-level scheme. Appendix A lists component LoA values

for the above categories and describes requirements for each category at all LoA values as per

NIST guidelines [16].

For the M2C context represented by the M2C-Model described previously, three types of

interactions that require authentication are identified (Figure 6-1): user-MC, and user-Service, and

Service-Service, where Service is a Cloud service of any type and services may be within the same

domain or cross-domain. The first two types signify user-to-system authentication, while the third

one represents system-to-system authentication.

There are varying models depending on the entities involved in the authentication process: direct,

simple assertion-based, and delegation (proxy-assertion) authentication. For user-to-system, all

these models can be employed. However, system-to-system authentication may be limited to

proxy (delegation) authentication. Yao and others have identified four scenarios for user-to-

system in Grid environment [101]. However, we identify five possible scenarios for authentication

for the MC-Model. The following scenarios consider user-to-system and system-to-system

scenarios in M2C environment (illustrated in Figures 6-2 to 6-6):

120

Figure 6-1. Types of Authentication in M2C Model

• Scenario 1: User-to-System Direct Authentication scenario

In this scenario, the user directly presents his token to authenticate with the Verifier, which in this

case is a function of the CSP. As demonstrated in Figure 6.2, this scenario doesn’t require

Assertions. Credentials may be just a password or an OTP. This is the most generic and common

scenario employed for user-to-system authentication in various environments. For the M2C Model,

it is used for User-MC interactions.

Figure 6-2. User-to-System Direct Authentication Scenario

• Scenario 2: User-to-System Direct Assertion-based Authentication

In this scenario, the user uses his token to authenticate with the Verifier. After successful

authentication, the Verifier needs to create an assertion since the Verifier and the CSP are not

collocated. The assertion is then sent to the CSP for authentication. This is usually handled

automatically by the user’s browser. This scenario may be used in the case of making payment

121

for services offered by the CSP where the CSP requires verification for Credit Card payment

through another Verifier such as the “Verified by Visa” service.

The assertion may be a Holder-of-Key Assertion, which contains a reference to a symmetric

key, or a public key possessed by the user. This, in turn, allows the CSP to require the user to

prove possession of the referenced secret, which, to a degree, proves his rightful ownership of

the assertion. If the assertion is a Bearer Assertion, it does not provide a way for the user to

prove the assertion’s rightful ownership. Figure 6-3. exhibits this scenario.

 Figure 6-3. User-to-System Direct Assertion-based Authentication Scenario

• Scenario 3: User-to-System Indirect Assertion-based Authentication

Similar to the first two scenarios, the user uses his token to authenticate with the Verifier. After

successful authentication, the Verifier creates an assertion and an assertion reference to identify

himself and holds a pointer referring to the full assertion. The assertion reference is then sent to

the user to be forwarded to the CSP for authentication. The CSP later uses the assertion reference

to explicitly request the assertion from the Verifier. Figure 6-3. shows this sequence. The assertion

may be a Holder-of-Key Assertion or a Bearer Assertion.

122

Figure 6-4. User-to-System Indirect Assertion-based Authentication

• Scenario 4: User-to-System Proxy Assertion-based Authentication

In this scenario, the user uses his token to authenticate with the Verifier. Following successful

authentication, the Verifier acts as an intermediary and interacts directly with the CSP. Hence, the

assertion is directly sent from the Verifier to the CSP. The CSP grants or denies the authentication

request based on the assertion made by the Verifier. Proxy assertions are useful in cases where

users request access to multiple service providers or for network monitoring and filtering

mechanisms. Typically, communications between the Verifier and the CSP are protected by the

proxy employing client-authenticated TLS with the Verifier and passing the authentication

assertion in the HTTP header [16]. This is shown in following Figure 6-4.

Figure 6-5. User-to-System Proxy Assertion-based Authentication scenario

123

Cookies, Security Assertion Markup Language (SAML) Assertions and Kerberos Tickets are

examples of proxy Assertions.

• Scenario 5: System-to-System Assertion-based Authentication

In this scenario, a system component such as a cloud service needs to authenticate with another

system component, which may be another cloud service. Both cloud services may be in the same

domain or have different domain as in the case of services offered by different CSPs. Assertion-

based authentication enables Single-Sign-On for entities, allowing them to authenticate once to a

verifier and then obtain services from multiple service providers without requiring additional

authentication. As explained before, a user uses a token to authenticate to the verifier. Following

successful authentication, the verifier acts as an intermediary and interacts directly with the CSP.

Hence, the assertion is directly sent from the verifier to one or more CSPs on behalf of the

authenticated user. To protect communications between the Verifier and CSPs, the proxy uses

client-authenticated TLS with the Verifier and passes the authentication assertion in the HTTP

header [16]. Figure 6-6. expresses this scenario.

Figure 6-6. System-to-System Assertion-based Authentication Scenario

124

6.4. Defining Relations Between Credential based LoA-related

Factors

The overall LoA is affected by the relations among the entities, as described in the scenarios

presented in Section 6.3, and how authentication is performed. So, the following rules are

applicable to determine the overall ALoA.Cr :

1. The first rule is the low watermark rule, where the lowest LoA is chosen as the overall LoA

[16], [101], [103]. The low watermark rule applies when factors are co-dependent or mutually

dependent on the same set of circumstances. This can be seen in the following situations:

• From the presented scenarios, we can see that an authentication instance between two entities

is comprised of two or more authentication events. For these scenarios, ALoA.Cr is based on the

low watermark of the LoA values for each of the component authentication events of the instance

[102], [101]. To understand the low watermark rule, we present the following example: If an

authentication instance is comprised of two steps (Step1 and Step2) with LoA values LoA(Step1)

= 2 and LoA(Step2) = 3, then

 ALoA.Cr = min (LoA(Step1) , LoA(Step2)) = 2.

• Each authentication instance has several components from the various categories defined by

NIST [16], which are R and IdP tokens, token and credential management, authentication

protocols, and assertions. So, for any authentication instance, ALoA.Cr depends on factors from

all these categories. The low watermark of the LoA values for each of these components also

applies. For instance, if we have an authentication instance with component values as follows:

- The token employed is MF Software Cryptographic Token, resulting in LoA(token) = 3.

- The authentication protocols used have LoA(protocol) = 3.

- The token and credential management processes used have LoA(T and CM) = 2.

- Authentication assertions were not used.

- Then, the low watermark rule is employed, resulting in:

ALoA.Cr = min (LoA(token), LoA(protocol, LoA(T and CM)) = 2.

• Another situation in which this rule is applied is in the multi-stage authentication processes

[16], where a single-factor token is used to obtain a second token. The ALoA.Cr associated with

125

the compound solution has a LoA value equal to the weakest component value of both tokens.

When a cryptographic solution permits full or partial cryptographic keys to be stored on an online

server and downloaded to the user's local system following successful authentication with a

passphrase is one example. Then, the user can authenticate to a remote Verifier using the

downloaded software cryptographic token. The overall authentication process is considered only

as strong as the passphrase used to obtain the cryptographic token.

The rationale behind the low watermark rule is that the point with the lowest level of assurance

will likely be the target of an Attacker. So, the factor with the lowest LoA component value will

bring the composite value down to its level. For example, if a system uses an authentication token

with a LoA value of 2 but employs other mechanisms with a LoA value of 3, an Attacker will

likely focus on exploiting the token since it is easier to attack a component with a lower LoA.

The additive rule is applied when several independent factors contribute to the aggregate LoA

[103]. It also applies in cases where factors are not completely independent, but each factor may

depend on different circumstances. So, the overall ALoA.Cr should be higher, and the security is

stronger when two types of tokens, such as username/password and OTP, are employed rather than

just passwords.

Understanding these relations is the first step which enable us to structure all LoA-related factors

and arrive at an overall ALoA.Cr.

6.5. Structuring Credential based LoA-related Factors

After defining the rules that govern possible relations between LoA-related factors, we can

organize these factors in a manner that allows us to systemically apply these rules and deduce a

composite value for ALoA.Cr.

For a given authentication instance, LoA-related factors are structured in groups according to the

governing rules of their relations (low water mark or additive) at various levels. To arrive at this

structure, various decisions need to be made regarding the factors examined. Figure 6-7. shows

the flow chart for this decision process.

126

Figure 6-7. Decision Tree to Build a Structure for LoA-related Factors

Following the above Decision tree, we can build a tree structure of factors for a given

authentication instance. We can refer to the resulting structure as the “LoA-factor Tree”. Figure

6-8. offers an exemplar LoA-factor Tree, which shows all LoA-related factors structured into

groups arranged at varying levels; each level conjoins related factors into groups, allowing us to

identify the appropriate rule (low water mark or additive) to apply. To deduce an overall LoA, we

need to traverse the LoA-factor Tree. Starting at the leaves and going up the Tree, for all nodes

with the same parent, we apply the suitable rule, arriving at a composite LoA value to be passed

to the parent.

127

Figure 6-8. An Exemplar LoA-factor Tree for a Given Authentication Instance

6.6. Determining Aggregate value for credential based LoA-

related factors

Given the following definitions:

- 𝐴𝐿𝑜𝐴. 𝐶𝑟 = The aggregate value for LoA considering a group of LoA-related factors relating

to a given authentication instance,

- 𝐿𝑜𝐴𝐿𝑊 = The composite value of LoA considering a group of LoA-related factors when

applying the Low Watermark rule,

- And 𝐿𝑜𝐴𝐴𝑑𝑑 = The composite value of LoA considering a group of independent LoA-related

factors when applying the Additive rule,

We define Equation 6-2 as:

128

𝐴𝐿𝑜𝐴. 𝐶𝑟 =

{

𝐿𝑜𝐴𝐿𝑊 = min(𝑅𝐿)𝑤ℎ𝑒𝑟𝑒 𝑅𝐿 = 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝐿𝑜𝐴 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝐿𝑜𝐴

𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟𝑠

𝐿𝑜𝐴𝐴𝑑𝑑 = 𝑓(𝑅𝐴) 𝑤ℎ𝑒𝑟𝑒 𝑅 𝐴 = 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝐿𝑜𝐴 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝐿𝑜𝐴
𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟𝑠

 Equation (6-2)

𝐴𝐿𝑜𝐴. 𝐶𝑟 is a recursive function, where the sets 𝑅𝐿 , 𝑅𝐴 may require applying the same equation

at a different level of the LoA-factor Tree. The algorithm for calculating 𝐴𝐿𝑜𝐴. 𝐶𝑟 is shown in

Table 6-1. This algorithm assumes that the Tree structure has been defined and created.

Table 6-1: Algorithm for Calculating ALoA.Cr for a given Authentication Instance

Input: LoA-related factors Set 𝑹 |𝑅| >1

Output: Aggregate value of LoA 𝑨𝑳𝒐𝑨.𝑪𝒓

Integer Method 𝑨𝑳𝒐𝑨.𝑪𝒓 (Object Set 𝑅)

while Tree not empty

If node is a leaf and has no siblings, then // one factor in the group

return LoA(node);

else node is a leaf and has siblings, then // apply proper rule for group of factors

rule ← node.rule;

save leaf and siblings into a new object Collection siblings[];

If rule = Add, then

𝑨𝑳𝒐𝑨.𝑪𝒓 ← LoA_Additive(siblings);

Else

𝑨𝑳𝒐𝑨.𝑪𝒓 ← LoA_LowWatermark(siblings);

else // determine 𝑨𝑳𝒐𝑨.𝑪𝒓 for node based on children factors

save children of node into a new object Collection children[];

𝐴𝐿𝑜𝐴. 𝐶𝑟 (children);

End while;

 return 𝑨𝑳𝒐𝑨.𝑪𝒓 ;

129

6.6.1. Algorithms for the Low Watermark Rule

In the case of dependency between LoA-related credential-based factors, the governing rule is the

low watermark rule. The result, as shown in the ALoA.Cr general equation, is computed by

applying the minimum function on the set of LoA component values.

𝐿𝑜𝐴𝐿𝑊 =

min(𝑅𝐿)𝑤ℎ𝑒𝑟𝑒 𝑅𝐿 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝐿𝑜𝐴 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝐿𝑜𝐴 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟𝑠

We examine two methods for determining the Minimum value LoA. First approach for

determining the minimum value is through an ascending sort of the array of LoA component values

stored as presented in Table 6-2. The minimum value is then the first element of the array. Another

method is through pairwise comparisons between elements of the array as shown in Table 6-2.

Table 6-2 Algorithm for Sort to Determine Minimum LoA Value

Input: LoA-related factors Set 𝑹𝑳, |𝑅𝐿| >1

Output: Aggregate value of LoA LoAAgg

Integer Method LoA.LowWatermark(Object Set 𝑅𝐿)

 while Set 𝑅𝐿not empty

 read one LoA component value in 𝑅𝐿;

 save into Integer ARRAY LoA[];

end while

 SORT ARRAY LoA[];

 LoAAgg ← min(LoA[x]);

 return LoAAgg ;

Table 6-3: Algorithm for Pairwise Comparisons to Determine Minimum LoA Value

. .

 min ← LoA[0];

 for i = 1 to |LoA|

 if LoA[i] < min then

 min ← LoA[i];

..

130

Comparative evaluation of these two alternatives is provided in Chapter 7.

6.6.2. Algorithms for the Additive Rule

The additive rule governs the independent LoA-related credential-based factors. The general

equation for determining the composite value for LoAAdd for a set of LoA-related factors is:

𝐿𝑜𝐴𝐴𝑑𝑑 = 𝑓(𝑅𝐴) 𝑤ℎ𝑒𝑟𝑒 𝑅 𝐴

= 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝐿𝑜𝐴 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝐿𝑜𝐴 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟𝑠

Yao and Zhang suggested two algorithms for computing 𝐿𝑜𝐴𝐴𝑑𝑑 for a given authentication

instance: an algorithm based on subjective logic [102], and an algorithm based on the inclusion-

exclusion principle of Probability Theory [103]. Evaluation of the performance of the algorithms

shows that the algorithm rooted in Probability Theory offers better performance [103], [101]. In

our work, we propose two more algorithms: weighted average Algorithm (which we refer to as

W. LoAAdd), and mapped weight algorithm (which we refer to as M. LoAAdd). The two latter

algorithms suggested in this work use LoA component values as the basis for weighting

contributions (wi) of each LoA-related factor in the formula:

LoAAdd =∑𝐿𝑜𝐴𝑖 × 𝑤𝑖

𝑚

𝑖=1

 Equation (6-3)

The logic behind our two algorithms is that factors with higher LoA provide higher level of

confidence as contributors to an authentication decision and thus should have greater effect on the

aggregate LoA value for a set of factors. We also proposed a third algorithm: The Combined

Factors Algorithm (which we refer to as C. LoAAdd). The following subsections will explore in

detail these algorithms. Evaluation of these algorithms is provided in Chapter 7.

Probability Theory Algorithm

The performance evaluation of the two algorithms for calculating LoAAdd is suggested in previous

work: S. LoAAdd, and P. LoAAdd [103] showed that the algorithm rooted in Probability Theory

offers better performance [103], [101]. Thus, we will describe the P. LoAAdd algorithm in order

to evaluate its performance against our suggested algorithms. P (ri) is defined as the probability

of the trustworthiness of an LoA-related factor ri, which signifies the component value of LoAi

131

[101]. P (ri) is a value in the range [0, 1]. Table 6-4 provides a mapping from LoA four level

schemes to probability values within the range [0, 1].

Table 6-4: Mapping from LoA component values to Probability values

Based on the inclusion-exclusion principle for n independent events (factors), we can determine

the probability of the additive LoA using the following [101]:

P. LoAAdd = 1 − ∏ (1 − (P(ri))
n
i=1 Equation (6-4)

The algorithm is presented in Table 6-5.

Table 6-5: Algorithm for Additive Rule based on Probability theory (𝐏. 𝐋𝐨𝐀𝐀𝐝𝐝) [101]

Input: LoA-related factors Set RA, |RA| >= 1

Output: Aggregate value of LoA ALoA.Cr

Integer Method LoA.PAdditive(Object Set RA)

read LoA component values in RA;

save into Integer ARRAY LoA[];

if |RA| = 1 , then

return LoA[0]; // In case of one factor

else if |RA| > 1 then // Otherwise, apply inclusion-exclusion principle

temp = 1;

for i = 0 to n-1

LoA Component

Values for (ri)
Corresponding P (ri)

1 0.25

2 0.5

3 0.75

4 1

132

temp = temp * (1- w[i]); //w =P[r] /4

 temp = (1 – temp) ;

ALoA.Cr ← temp;

return ALoA.Cr;

Weighted Average Algorithm

The first algorithm we propose is a weighted average of LoA component values, or W. LoAAdd.

In this case, the value for the weight of each factor in equation (6-5) is represented by:

𝑤𝑖 =
𝐿𝑜𝐴𝑖

∑ 𝐿𝑜𝐴𝑖
𝑚
𝑖=1

⁄ Equation (6-5)

Applying this formula for wi assures that highly trusted LoA-related factors pledge greater

contribution to the aggregate ALoA.Cr. However, this formula can’t be used for our purpose as it

implies a dependency between the different factors since the weight for each factor 𝑤𝑖 depends on

the values of all other factors ∑ 𝐿𝑜𝐴𝑖
𝑚
𝑖=1 . This dependency will possibly lead to ALoA value that

is less than some of the component values for the higher contribution factors. In other words,

adding more LoA-related factors when making an authentication decision would not improve the

trust level of a given entity in our scheme. The following numerical example will illustrate this

effect. For n factors, we have R = {r1, r2, …., rn}, and R𝐴 = {LoA1, LoA2, … . , LoA𝑛}. Suppose n

=3, with R = {f1, f2, f3} and R𝐴 = {1, 2, 3}. Then application of the weighted average algorithm

will yield the following results:

W. LoAAdd =∑𝐿𝑜𝐴𝑖 × 𝑤𝑖

3

𝑖=1

= (1 ×
1

6
) + (2 ×

2

6
) + (3 ×

3

6
) ≈ 2.33

In this example, the highest component value for a factor is LoA3 = 3. Application of the weighted

average algorithm yields a lower LoA value. Hence, utilizing the third factor f3 without the added

contribution of factors f1 and f2 would be sufficient for making an authentication decision. Thus,

this algorithm doesn’t serve the goal of the additive rule and will not be evaluated.

Mapped Weight Algorithm

As explained before, using W. LoAAdd to calculate LoAAdd creates dependency between the

factors, which are presumably independent. So, we propose another algorithm also rooted in the

idea that factors with higher LoA component values should have higher weights in equation (6-6).

133

We refer to this algorithm as the mapped weight algorithm (M. LoAAdd). Hence, we propose to

use a similar mapping to that presented in Table 6-4.

- If LoAi =1, then mapped wi = 0.25,

- If LoAi =2, then mapped wi = 0.5,

- If LoAi =3, then mapped wi = 0.75,

- And If LoAi =4, then mapped wi = 1.

Hence the aggregate LoA is calculated by the following:

M. LoAAdd =∑𝐿𝑜𝐴𝑖 × 𝑚𝑎𝑝𝑝𝑒𝑑 𝑤𝑖

𝑛

𝑖=1

 Equation (6-6)

So, for the same numerical example presented in Section 6.6.2, the aggregate LoA for the three

independent factors is calculated as:

M. LoAAdd =∑𝐿𝑜𝐴𝑖 × 𝑚𝑎𝑝𝑝𝑒𝑑 𝑤𝑖

3

𝑖=1

= (1 × 0.25) + (2 × 0.5) + (3 × 0.75)

= 0.25 + 1 + 2.25 = 3.5

This equation is simplistic and requires few calculations. It also sustains the independence of the

factors and applies higher weights to more trusted factors. The algorithm is presented in Table 6-

6.

Table 6-6: Algorithm for Additive Rule based on Mapped Weights

Input: LoA-related factors Set RA, |RA| >= 1

Output: Aggregate value of LoA ALoA.Cr

Integer Method LoA.MAdditive(Object Set RA)

read one LoA component value in RA;

save into Integer ARRAY LoA[];

read attribute weights in RA;

save into Integer ARRAY weight[]; // weight = LoA/4

if |RA| = 1 , then

134

return LoA[0]; // In case of one factor

else if |RA| > 1 then

 variable index ← 0;

 variable temp ← 0;

repeat

// Adjust b values with weights

 LoA[index] = LoA[index]* weight[index];

 temp ← temp + LoA[index]; // calculate the ALoA.Cr

 index ← index+1;

until index = |RA|;

ALoA.Cr ← temp;

return ALoA.Cr;

Combined LoA Algorithm

The combined LoA algorithm is based on a scheme similar to that described for combining

authentication tokens to achieve higher LoA. We refer to this algorithm as C. LoAAdd. According

to NIST electronic authentication guidelines, each of the token types may be used to achieve a

certain LoA when used in a single-token authentication scheme [16]. When combining two token

types for a multi-token authentication scheme, a higher LoA can be achieved by the combination.

Thus, combining two tokens with a LoA of x would achieve a LoA of x+1, where x ∈ {1, 2, 3, 4}.

In a similar manner, combining two factors with LoA of x would achieve LoA of x+1, where x

∈ {1, 2, 3, 4} in our scheme. This can be applied in a recursive manner to achieve a higher LoA.

To illustrate the scheme, we present the following numerical example. For n factors, we have R =

{r1, r2, …., rn}, and R𝐴 = {LoA1, LoA2, … . , LoA𝑛}. Suppose n =4, with R = {f1, f2, f3, f4} and

R𝐴 = {1, 1, 2, 2}. So combining f1 and f2 would allow us to achieve LoA of 2. And combining

the three factors f1, f2 and f3 would allow us to achieve LoA of 3.

This method sustains the independence of the factors and is also intuitive. The algorithm is

presented in Table 6-7.

135

Table 6-7: Algorithm for Additive Rule based on Combined LoA

Input: LoA-related factors Set RA, |RA| >= 1

Output: Aggregate value of LoA ALoA.Cr

Integer Method LoA.CAdditive(Object Set RA)

read one LoA component value in RA;

save into Integer ARRAY LoA[];

 Integer ARRAY Count[]; // count of LoA equivalent LoA component values

if |RA| = 1 , then

return LoA[0]; // In case of one factor

else if |RA| > 1 then

 variable CLoA ← 1;

 variable count array ← 0;

for index = 1 to 3 // for LoA component values to be possibly combined

(1 to 3)

 for x = 0 to |RA|

 if LoA[x] = index then

 count[index] = count[index] +1;

 if count[index] >= 2 then // when 2 or more factors have LoA = index

 Count[index+1] = 1;

 CLoA = index+1;

ALoA.Cr ← CLoA;

return ALoA.Cr;

136

6.7. Description of architectural components related to LoA

credential-based factors (T-Cr M)

In section 5.9, we describe components in the proposed END AuthN Architecture. TruE

framework is the main component in charge of determining the AggT based on three modes of

authentication. In this section, we will describe the structure and functionality of the T-Cr

Module, which is part of the TruE framework. The T-Cr Module is dedicated to the analysis,

identification and quantification of credential based LoA related factors. The output of this

module is the aggregate value of credential based LoA related factors denoted by ALoA.Cr,

which is T.Cr. The sub-components of T-Cr module are listed in Table 6-8.

Table 6-8: Sub-Components of T-Cr Module

Component

Abbreviated

Name

Component Functionality

CRSTM Construct LoA.Cr static (base) tree and store into EN-DB

CRLTM determine credentials light-up tree based on credentials identified for current

authentication request

ALoAM Compute ALoA.Cr based on derivation rules

The next sections are organized as follows: Section 6.7.1. describes a working example for END

AuthN to show its Execution flow. Sections 6.7.2 through 6.7.4 will provide detailed description

of the sub-components of T-Cr module listed in Table 6-8 above.

6.7.1. END AuthN Execution Flow

In order to understand how the END authentication service works, let’s consider a client Bob, who

is a registered user with CSP1, and CSP2. Bob needs a compute service from CSP1 to execute his

code. All his data is stored on a storage service provided by CSP2. CSP1 has deployed an instance

of the END service to handle authentication requests for CSP2 services and clients. A set of offline

steps takes place first. These off-line steps are executed upon deployment of an instance of END

service and are:

137

1) The base static credentials tree is constructed, which is the function of the LoA credentials

static tree Module (CRSTM).

2) All of the information of the static tree is stored in EN-DB

3) The corresponding component LoA values are stored as well.

The execution flow of the END AuthN service to fulfill the authentication needs for these

interactions are as follows. (Refer Figure 6-9).

Figure 6-9. END AuthN Working Example

4) Bob requests access to Compute Service S1 from the management console webpage of CSP1.

Mutual authentication isn’t specified. END-P1 invokes the END AuthN service. The TruE

Module determines AggT for this authentication instance based on the information gathered. If

AggT value meets the trust requirement for S1 or T(S1), Bob is authenticated and granted access

to S1. Information gathered includes credentials Bob offered, reputation (based on stored direct-

history between S1 and client Bob), and recommendations from other users or services available

to END.

5) S1 requests access to data stored on S2 storage service. END-P2 invokes the END AuthN

service. TruE Module determines AggT for this authentication instance based on information

138

stored in EN-DB. If the AggT value meets the trust requirement for S2 or T(S2), S1 is

authenticated and granted access to S2 on behalf of Bob.

6) At the end of the session, information collected about the session is used to update END

databases to be used for future authentication requests.

6.7.2. The Credentials Static Tree Module (CRSTM)

The credentials static tree module (CRSTM) aims to construct credentials static (base) tree off-

line and store it in EN-DB. This module is responsible for identifying a set of LoA-Cr factors in

a given authentication environment, and then constructing a tree of all credentials collected,

which will be referred to as the LoA credentials static tree CR-S-tree. The construction of the

Cr-S-tree is based on grouping these factors based on their mutual relationships. We assume that

the task of identifying these factors and grouping them is completed manually by an administrator

or a security policy manager based on security policies and system requirements. This manual

task is guided by the decision tree presented in Section 6.5. The tasks to be undertaken by

CRSTM module are:

• The first task depends on the authentication environment and security policies. Built on

investigating, credential-based authentication-related factors and the examination of the

mutual relationships among these factors, a Cr-S-tree such as the one presented in Figure 6-7.

is constructed. The figure shows that factors assembled at the same horizontal level have one

of two types of mutual relationship, additive relationship, or lowest watermark relationship.

The component value of a group of factors can later be determined based on applying the

additive rule or low-watermark rule detailed in Section 6.6.

• Another task is the maintenance of the Cr-S-tree, which is accomplished by doing all necessary

modifications, including adding, deleting, or classifying LoA.Cr factors, based on input from

an administrator.

139

The algorithm for constructing the static tree is as follows:

Input: LoA-related decisions Set 𝑫 with related options and LoAs (Figure 6-7.)

Output: Credential base tree

/* List of decision objects where each object contains a decision Q, No of possible

 Decisions, and pointer to list of options */

List DList ← List of decision objects DO;

Define Object Node = (DO, LoA for node, list of pointers corresponding to number of possible

decisions);

// Method to build static tree of nodes recursively

Array Method D-𝐓𝐫𝐞𝐞 (n). // n = marker for current node

 If DList is not consumed

 Root ← DList[n];

 For (p ← 1 to number of decisions)

 create pointer;

 link pointer to DList (n+p);

 D-Tree (n+p). // build subtrees for each option

 return;

This systemic methodology to structuring credential-based authentication-related factors allows

for adding any emerging factors or deleting outdated ones from the structure.

6.7.3. The Credentials Light-Up Tree Module (CRLTM)

The CRLTM should implement the following tasks:

- Gathers information from messages passed between interacting entities for the current

authentication instance to identify the involved LoA.Cr based factors.

- The retrieved data is used to flag the nodes of the credential tree signifying the Light-up tree

nodes.

140

It should be noted that a universal identifier space, denoted in the database as END-ID, is setup

with each END instance created to allow for clear communication between interacting parties

such as END modules, CSPs, services and authentication servers. Although our evaluation

doesn’t include implementation of this module, the nodes of the credential tree corresponding to

utilized credentials are directly flagged in the base tree structure for the purpose of evaluation.

6.7.4. The LoA Credentials Derivation Module (ALoAM)

The credentials derivation module (ALoAM) determines the aggregate value for credential-based

LoA (or ALoA.Cr). This module retrieves the LoA component values, relationship markers

(additive, or low watermark) for the stored credentials. The derivation is accomplished using

Algorithms presented in Section 6.6, and their performance analysis is presented in Section 6.7.

Once the ALoA.Cr is determined, it is stored in the LoA-DB along with interaction data including

END-IDs for interacting entities and the time stamp of the interaction.

6.8. Chapter Summary

We previously proposed an architecture of a novel elastic, dynamic, and distributed authentication

for M2C environment END AuthN based on three modes of authentication to establish trust in

entities in the M2C environment. In this chapter we have investigated and analysed credential

based LoA related factors. We introduced a methodology to structure these factors, then identified

two types of relationships connecting those factors. We have also proposed alternative algorithms

for combining those factors to determine an aggregate value for all credential based LoA related

factors ALoA.Cr. In the next chapter, we will provide an evaluation of the END novel architecture

proposed in chapters 5 and 6 of this work.

141

Chapter 7: Evaluation of END Authentication

Architecture

7.1. Chapter Introduction

Chapters 5 and 6 presented the design and description of a novel architecture END for providing

a standalone service for authentication in M2C. END AuthN service includes a trust framework

(TruE) that considers three trust factors: LoA credential based, reputation based, and

recommendation based. This chapter presents an evaluation of the proposed architecture. Section

7.2 describes the evaluation methodology. Sub-Sections 7.2.1 through 7.2.4 provides an

evaluation of the work presented in this thesis as outlined in the evaluation methodology.

7.2. Evaluation Methodology

Since our research goal is to devise a secure and effective authentication solution, our evaluation

of the work proposed in this thesis includes: An informal analysis against previously identified

security threats of the MC-Model, an informal analysis of framework functionality against

specified design requirements, a comparison with related work reviewed, and a performance

evaluation of the proposed algorithms . The following sub-sections will cover these evaluation

methods in order.

7.2.1. Informal Security Analysis

Entity authentication is one of the desired security requirements for devising an effective

authentication solution for M2C to ensure that every interacting entity has the identity it claims. It

should also guarantee that the authentication process continues throughout the resource utilization

operation, starting from the registration step and including ensuring the authenticity of all requests

and responses, whether the entities are part of the same domain or different domains. Non-

repudiation should also be ensured for all interacting entities. Another important issue is

interoperability, which allows heterogeneous systems to interact and collaborate securely.

Although performance is not a security requirement per say, it is extremely vital that any security

142

solution does not hinder service provision by not incurring extra time or payload overhead and

requiring minimal intervention.

Our analysis of the MC-model security in Chapter 3 enumerated the most anticipated threats for

M2C. The security threats our work addresses are as follows:

1) Impersonation by a user of a malicious insider or outsider is one of the most common threats to

cloud service provision. Some defence strategies against the impersonation of users include

enforcing high composition rules for password choice and limiting the number of failed

authentication attempts. Setting higher entropy requirements for secret tokens is another

protection method. The use of cryptographic means to secure communication messages can

also be enlisted for protection. Since our solution provides elastic authentication based on LoA

and trust requirements, any of these measures can be enforced by CSPs by setting LoA

requirements of 2 or higher for services that may suffer from password guessing attacks,

phishing, pharming attacks, and session hijacking attacks.

2) Impersonation of a CSP by an attacker during communication between users and providers is a

less common threat. This kind of attack can also be guarded against through the enforcement of

higher level LoA requirements by CSPs, LoA 2 or higher, as well as securing communication

messages by employing cryptographic means.

3) Alteration of authentication payload messages, including replaying, delaying, or modification

of messages is another identified threat. Since our solution is an authentication as a service

solution, it employs Communications channels for cloud computing which are usually protected

by TLS.

7.2.2. Evaluation against Design Requirements

Following the design requirements specified in Section 5.6, this section focuses on how our solution can

realize these requirements. Based on the MC-Model analysis presented in Chapter 3, we have identified

several challenging issues and specified design requirements. Our novel solution has considered the suitable

measures to fulfill these requirements as discussed below:

• R1: The first requirement was mutual authentication applying to all resource-access

interactions the solution should allow for mutual authentication and should be continuous for all

entities. The END AuthN architecture is designed as a stand-alone service able to receive and

143

handle authentication requests from any CSPs and services to authenticate clients and vice versa.

So mutual authentication can be achieved if requested by interacting entities.

• R2: Another requirement was to support service access within different domains. Providing

authentication-as-a-service (AaaS) for all entities in M2C also supports service access within

different domains as well as service access within the same domain. When the END service is

deployed by one entity, CSP1 for instance, it is initialized to gather authentication data based on

credentials, reputation, and the recommendation of other entities interacting with CSP1. This will

make it possible for other CSPs, services and clients from other domains to make use of the same

instance of the END service.

• R3: A distinguishing requirement of our design is elasticity. Elasticity in cloud computing

refers to the level of adaptability of computing solutions in response to fluctuating resource

demand. However, we define elasticity in this work includes multi-level security provision- for

authentication specifically- and performance variations to meet users’ demands and needs.

Security elasticity is achieved by allowing for different levels of assurance, multiple methods of

authentication with various types of credentials, and a variable number of trusted entities. END

design allows CSPs to decide the LoA requirements for the services they provide. END design

can also adjust LoA through a variation of authentication Modes.

Performance elasticity is accomplished by allowing for a varying number of interacting entities,

including users, services, and providers. The computational cost, number, and size of

authentication messages can vary in accordance with entities’ requirements and limitations.

The choice of parameters derived from the history of direct relations in the T(T.Rp) based on the

nature of the interaction and the definition of SLA specification by CSPs and the services they

provide.

The parameters used for T(T.Rc) determination are also chosen based on the nature of the

interactions and the definition of SLA specification of CSPs and services they provide.

END design applies the idea of elasticity by allowing service providers to decide the LoA

requirements for the services they provide. END design can also adjust LoA through a variation

of authentication Modes.

• R4: Authentication solution should be scalable. Scalability means the ability of END service

to adapt to increased demands in order to accommodate more CSPs, services, and clients. This

144

standalone cloud service will benefit from the scalability of the infrastructure, which is an

underlying feature of CC. Hence, END service can grow or shrink with minimal user intervention.

7.2.3. Comparison to related work

We have presented a critical review of various Trust establishment models Based on the types of

interactions considered for Trust calculations: direct, indirect or both. Our review also considered

other criteria of trust, including Weight assignment, False evaluations, and Centralization.

Table 7-1 summarizes characteristics of the methods we reviewed and includes our novel

framework (TruE) for the purpose of comparison.

Table 7-1: Comparison of TruE with Related Work Reviewed

M
o
d

e
l

C
la

ss
if

ic
a
ti

o
n

E
n

v
ir

o
n

m
e
n

t

C
e
n

tr
a
li

ze
d

C
o
n

si
d

e
r
a
ti

o
n

 o
f

D
ir

e
c
t

a
p

p
r
o
a
c
h

C
o
n

si
d

e
r
a
ti

o
n

 o
f

In
d

ir
e
c
t

a
p

p
r
o
a
c
h

C

o
n

si
d

e
r
a
ti

o
n

 o
f

L
o
A

C
o
n

si
d

e
r
a
ti

o
n

 o
f

F
a
ls

e
 E

v
a
lu

a
ti

o
n

s

W
e
ig

h
te

d

e
v
a
lu

a
ti

o
n

s

TRAVOS [87] Direct Agent  ✓   ✓ ✓

Geetha and

Jayakumar [31]
Direct Agent  ✓  

Tolerated

if malice

hosts <

half hosts



Local Trust Model

[25]
Direct P2P  ✓   ✓ 

A recommendation

based model for

MANETs [78], [88]

Indirect MANETs   ✓  ✓ 

A trust

management model

as SOA [85]

Hybrid CC  ✓ ✓  _ 

145

FIRE [40] Hybrid Agent  ✓ ✓   

Jurca and Faltings

[45]
Hybrid Agent  ✓ ✓   ✓

Regret [75] Hybrid Agent  ✓ ✓  ✓ 

Basheer et al. [12] Hybrid Agent  ✓ ✓   

Model based on

Service Parametric

Model [79]

Hybrid CC ✓ ✓ ✓  _ ✓

Yao & Zhang [103]
LoA

based
Grid ✓   ✓ _ ✓

Our novel

framework (TruE)
Hybrid M2C ✓ ✓ ✓ ✓ ✓ ✓

Upon examination of the comparison summarized in Table 7-1 and the detailed review presented

in Chapter 5, we make the following observations:

• Most Trust Models for CC focus on the evaluation of the Quality of Service. Our novel

TruE framework, however, allows for the definition of various trust metrics as per service

providers’ requirements.

• Another observation we make is that the reviewed Trust Models for CC examine Trust

Levels for Cloud Services and Cloud Service Providers to guide potential users in choosing the

most suitable services offered. However, our scheme considers evaluations of users as well in order

to establish trust for the purpose of authenticating users requesting services.

• We also note that recommendation-based trust techniques, or indirect models, aim to

discover misbehaving entities before interaction in order to avoid potential bad experiences.

Although this is more commonly considered for models employed in agent environments or P2P

environments, the novel TruE framework accomplishes the same goal. Since our framework is

the basis for authenticating entities, misbehaving entities would not accumulate enough trust to be

aggregated for the sake of a secure authentication decision.

146

• It is also notable that all the trust models we reviewed for various computing environments

don’t consider credentials when quantifying trust for the entity in question. The exception is the

work presented in [103] which bases trust quantification on credentials for the purpose of

authenticating entities in a grid computing environment. Our novel trust framework also considers

credentials offered at the time of authentication as a trust factor for M2C computing environments.

Our work also includes system to system authentication in addition to, user to system

authentication.

• Our novel work uniquely offers quantification of trust based on the three modes of

authentication as described in Section 5.5. All other reviewed trust models in Table 7-1 are either

reputation-based, recommendation based, reputation and recommendation based, or credential

based. However, we aimed in our work to authenticate entities in M2C based on all authentication

resources that may be available at time of authentication including reputation-based,

recommendation-based, and credential-based factors.

• Furthermore, more recent research reviewed also lacks consideration of all three modes for

establishing trust such as the research presented in [98], [92], [53], [9], [43], [64], [67].

The trust framework we proposed is the basis of the novel END AuthN architecture. Accordingly,

we provided an analytical review of authentication solutions in distributed systems to identify areas

for improvement (Chapter 4). Table 7-2 summarizes features of the methods we reviewed and

compared to those of our novel architecture (END).

Table 7-2: Comparison of END with Related Work Reviewed

Mutual

Authentication

Cross

domain
Continuous

P
2
P

Enc PWD [11]   

PKI based [44], [54] ✓  

IBC [54], [65] ✓ ✓ 

CL-PKC [54] ✓ ✓ 

147

G
C

Static PWD [29], [39]  ✓ 

Dynamic PWD [29], [39]  ✓ 

Kerberos [83], [29], [52] ✓ ✓ 

PKI based [29], [39], [14] ✓ ✓ 

SPTC [56] ✓ ✓ 

IBC [29], [41], [35] ✓ ✓ 

CL-PKC [29], [30] ✓ ✓ 

Pairing-free CL-PCK [30] ✓ ✓ 

C
C

Multi-level PWD [26]  ✓ 

TCG [81]  ✓ 

CAM [13] ✓ ✓ 

Dynamic Multi-factor [10]  ✓ 

InterCloud [17], [57]  ✓ 

ECC ID-based [22] ✓ ✓ 

M2C Novel authentication solution END ✓ ✓ ✓

Upon examination of the comparison, presented in Table 7-2 and the detailed review presented

in Chapter 4, we observe the following:

148

• All authentication methods for P2P systems do not meet most of the requirements incurred by

the M2C features because P2P is based on equal weight anonymous nodes (peers) collaborating

on a given task. Accordingly, the goal and requirements of P2P authentication are different and

not suited to those related to M2C environment.

• As for authentication solutions for Grid Computing, Kerberos is the scheme that covers most

requirements. However, it doesn’t fulfil the requirements of continuous authentication.

• The requirement of continuous authentication is not met by any of the reviewed methods. The

novel authentication architecture presented in this thesis (END) can provide continuous

authentication as per the workflow of the task at hand. When the END service is employed, it

allows entities to register, login to one CSP or service and continues to provide authentication

when services requesting other services on behalf of the user.

• Interoperability is a key requirement that is not achieved by most of the examined methods.

On the other hand, the END standalone service provides a layer for authentication provision,

allowing different CSPs to collaborate based on standardized communication protocols.

• Additionally, more recent work also doesn’t meet all three requirements highlighted in

Table 7-2 such as the work presented in [69], [7].

Hence, the novel authentication architecture END provides fine-grained authentication for the

M2C model.

7.2.4. Performance Evaluation

In this section we conduct performance evaluation for the various algorithms introduced in this

thesis. Section 7.2.4.1 will investigate the performance of algorithms proposed for performing Low

watermark rule of combining dependent LoA-related factors. Section 7.2.4.2 investigates

performance of algorithms proposed for performing the additive rule of combining independent

LoA-related factors. In each case, evaluation experiments are carried out to measure

computational times consumed by the algorithm examined. The experiments are hosted on a 2.9

GHz Intel Core i7 Mac Book Pro with 16 GB 1600 MHz DDR3 memory and Mac OS High Sierra

ver. 10.13.6. Algorithms are implemented as a Java application with Java SETM Runtime

Environment version 8u31-macosx-x64. Performance monitoring tool was YourKit Java Profiler

2018.04-b83, which provides regression analysis among other measuring tools for CPU and

memory usage analysis.

149

7.2.4.1. Performance Evaluation of Low Watermark Algorithms

For a number of dependent LoA-related credential-based factors, we examined two algorithms:

the sorting algorithm from Java API enhancements in Java SE 7, and the pairwise comparisons

presented in Section 6.6.1. We predicted that the pairwise comparison algorithm will grow slower

than the sorting algorithm as the input set (number of factors) grows. This is due to the fact that

the computational complexity of the sorting algorithm is O(n × log(n)), hence computation time

would grow in Loglinear time as the input set (number of factors) becomes larger. On the other

hand, the computational complexity of the pairwise comparison algorithm is O(n), which is linear

complexity.

We run an initial experiment to determine the number of iterations (n) necessary to run the

performance analysis experiment. Both algorithms are run at an incremental number of iterations

to limit the arbitrary effect on the execution time. A regression analysis is performed, showing that

n = 50000 is adequate for the sort algorithm (Figure. 7-1) and n = 40000 for the pairwise

comparison (Figure. 7-2).

Figure 7-1. Linear Regression for the Sort Algorithm Plot

150

Figure 7-2. Linear Regression for the Pairwise Comparison Algorithm Plot

Hence, we run the performance evaluation comparison with n = 50000. The results are illustrated

in Figure 7-2. As the figure below depicts, the pairwise comparison proves to be more efficient

with regard to execution time. It also grows at a slower rate than the sort algorithm, as the number

of factors grows larger, according to the anticipated results.

Figure 7-3. Comparison of Performance evaluation between Sort algorithm and Pairwise

comparison algorithm

From the performance evaluation conducted in this section, we decide to utilize the pairwise

algorithm for the evaluation of our proposed architecture.

151

7.2.4.2. Performance Evaluation of Additive Algorithms

 For a set of independent LoA-related credential-based factors, we examined three algorithms:

P. LoAAdd, M.LoAAdd, and C. LoAAdd as presented in Section 6.6.2. We predict that all three

algorithms will grow in a similar fashion as the size of the input grows. This is due to the fact that

the computational complexity of all additive algorithms is O(n), which is linear time.

We run an initial experiment to determine the number of iterations (n) necessary to run the

performance analysis experiment. A regression analysis of all three algorithms yielded the

following result for adequate n values: n > 350000 for the P. LoAAdd algorithm, n = 300000 for

the M. LoAAdd algorithm, and n = 275000. Hence, the performance evaluation was run for n=

350000 iterations. The comparative graph of the three algorithms is shown in Figure 7-4. It shows,

as predicted, similar behavior for all examined algorithms. The C. LoAAdd algorithm shows a slight

advantage over the other two algorithms as the input size grows.

Figure 7-4. Comparative Analysis of Computational Time of three Additive Rule

Algorithms

Based on the performance evaluation conducted in this section, we decide to utilize the C. LoAAdd

algorithm for the evaluation of our proposed architecture.

152

7.3. Chapter Summary

This chapter has described an evaluation methodology for the END authentication solution. END

AuthN service includes a trust framework (TruE) that bases authentication decisions on the

evaluation of aggregated trust values for M2C entities. Firstly, the proposed solution was evaluated

against the design requirements specified earlier in the thesis and found to be in line with desired

requirements. Then, the work presented in the thesis was evaluated with regard to security threats

identified previously in our work and showed how the solution safeguards against these threats.

We also provided a comparison of our novel trust framework (TruE) and trust models reviewed,

as well as a comparison of our novel authentication architecture (END) with authentication

solutions from various distributed computing paradigms. The comparison shows that the novel

END authentication fulfils the goal we set out to accomplish and provides a novel methodology

for authentication in the M2C environment by employing the concept of elasticity. Finally, we

provided a performance evaluation of several algorithms proposed throughout the description of

the novel END authentication.

The next chapter concludes this thesis and gives recommendations for future work.

153

Chapter 8: Conclusion and Future Work

The aim of this thesis is to propose and design an authentication solution for Multi Cloud

Computing. This chapter provides a summary of all the research done and the contributions of the

thesis and gives recommendations for future work.

8.1. Thesis Summary

The work in this thesis is structured as follows:

• Research background,

• Problem identification and MC Model derivation,

• Literature review of authentication solutions and trust establishment in distributed computing

environments,

• Proposal and design of TruE trust framework and END authentication architecture,

• Evaluation and conclusion of the work presented.

Research Background

Chapter 2 of this thesis has presented background research on Cloud Computing (CC) and Multiple

Cloud Computing (M2C). It included an overview of CC, its general characteristics, and

deployment and service models. It also introduced the security issues and challenges in this

environment. Chapter 4 provided background information on the authentication process, types of

tokens, and threats against authentication.

Literature Review

Chapter 3 concentrated on the literature review of authentication solutions for Distributed Systems

including Peer-to-Peer systems, Grid Computing, and Cloud Computing and provided an

analytical comparison of these solutions to identify the knowledge gap in authentication for M2C

and high-level ideas for our novel solution. Chapter 5 reviewed trust models that may be employed

in distributed systems such as P2P, Grid, and Cloud Computing in order to identify a novel

framework for establishing trust in M2C.

154

Problem Identification and MC-Model derivation

Chapter 4 presented and analyzed a real-life use case of M2C to provide insight into the context

and security provisions within M2C. This was accomplished by describing three solutions to a

real-life use case in order to describe the MC-Model, a generic model for M2C. We conducted a

threat analysis of MC-Model to derive security requirements for M2C, with a focus on

authentication related requirements. It also presented high-level ideas for our novel solution to

authentication provision for the M2C.

Design of TruE trust framework and END AuthN service

Chapter 5 introduced the novel framework TruE for establishing trust for interacting entities in

M2C. It also provided a general description of the novel proposed architecture (END AuthN) and

a detailed description of its architectural components. Chapter 6 included an analysis of credential

based LoA-related factors and defined relationships between them. It also proposed a novel

methodology for structuring these factors in order to combine them to compute an aggregate value

of trust based on these factors.

Evaluation and Conclusion

Chapter 7 provides an evaluation of the proposed architecture against design requirements, and

against security threats identified for M2C. Further, Chapter 8 summarizes the research done, the

contributions of the thesis, and recommendations for future work.

8.2. Contributions

The contributions of this thesis are summarized below:

• The description of a novel generic abstract model for multi-cloud solutions (MC-Model) is

presented in chapter 3. The MC-Model was based on the description of three incremental solutions

of a real-life use case.

• Threat Analysis of Multi Cloud Computing (M2C) based on the MC-Model presented in

Chapter 3. It provided an investigation of the potential threats leading to security breaches by

outsiders or any of the entities within the model.

155

• Methodology for structuring LoA related factors in Multi Cloud Computing (M2C) is

presented in Chapter 6. We proposed a Decision Tree to build a tree structure connecting LoA-

related factors based on authentication processes and tokens used in a given authentication instance.

• Algorithm for calculating aggregate LoA related factors based on credentials (𝑨𝑳𝒐𝑨. 𝑪𝒓) for

Multi Cloud Computing (M2C) entities for a given authentication instance. This is described in

chapter 6.

• Chapter 6 also proposes three algorithms namely, the Weighted Average Algorithm (𝐖.𝐋𝐨𝐀𝐀𝐝𝐝),

the Mapped Weight Algorithm (M. LoAAdd), and the Combined LoA Algorithm (C. LoAAdd), for

evaluating an aggregate value of LoA for independent credential based LoA related factors.

• Introduction to the concept of three modes of authentication (based on credentials, based on

interaction history, and based on recommendations from other entities).

• Introduction to the concept of Authentication-as-a-Service (A3S). It provides a distributed and

dynamic on-demand authentication solution.

• A novel framework for establishing trust in M2C entities (Trust Engine or TruE). It considers

three trust establishing factors, including credentials provided by the claimant at the time of

authentication, reputation of varied cloud entities (providers, services, and clients) based on their

direct interactions, and recommendations of cloud entities based on collected entity evaluations of

previous indirect interactions.

• A novel elastic, dynamic, and distributed authentication solution END AuthN for M2C based on

trust establishment provided by (TruE) framework.

8.3. Future Work

We give the following recommendations as directions for future work:

• The work in this thesis assumes that the interactions between M2C entities can be captured from

the control messages exchanged between them. However, a methodology for capturing the

indicated data was not offered in our work. Proposal of such a methodology is recommended to

enhance the proposed work.

156

• Another future direction of the work presented in this thesis would provide a definition of a

specialized protocol to govern communication necessary for the proposed idea to work more

effectively and efficiently.

• Evaluation of our work performance was limited to the assessment of single algorithms. A fully

functioning prototype of the proposed work would provide a more effective methodology for

evaluating the performance of the architecture against current authentication solutions for M2C.

• Another alternative to better evaluation can be accomplished through a set of experiments with

real-life use-case scenarios such as the one described to derive the MC-Model. The TruE

framework relies on the evaluation of trust based on the reputation and recommendation of entities.

We suggested a few simplistic metrics to measure the behavior of entities. The definition of more

metrics can be further investigated and evaluated.

• The weights of the trust factors we consider in our solution are either static in nature or semi-static

with values initialized as per service provider’s definition. More complex mathematical methods

such as multi-criteria decision-making methodologies can be further researched to evaluate their

effectiveness as part of our trust framework.

• The Authentication service can be finetuned by providing alternative scenarios to rejected clients,

to match their trust level. So, if a cloud client has trust values that are insufficient for given cloud

services, the service can negotiate alternative services to accomplish the same task.

157

Bibliography

[1] "ITU-Tfg Cloud TR," Sector, Standarization

ITU, OF, 2012.
[2] J. Abawajy, "Determining service trustworthiness in intercloud computing environments," in

2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks, 2009:
IEEE, pp. 784-788.

[3] I. Agudo, C. Fernandez-Gago, and J. Lopez, "A model for trust metrics analysis," in International
Conference on Trust, Privacy and Security in Digital Business, 2008: Springer, pp. 28-37.

[4] U. Ahmed, I. Raza, and S. A. Hussain, "Trust evaluation in cross-cloud federation: Survey and
requirement analysis," ACM Computing Surveys (CSUR), vol. 52, no. 1, pp. 1-37, 2019.

[5] S. I. Akhtar, A. Rauf, H. Abbas, and M. F. Amjad, "Inter Cloud Interoperability Use Cases and Gaps
in Corresponding Standards," in 2020 IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data
Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), 2020: IEEE, pp. 585-592.

[6] M. Alaluna, L. Ferrolho, J. R. Figueira, N. Neves, and F. M. Ramos, "Secure multi-cloud virtual
network embedding," Computer Communications, vol. 155, pp. 252-265, 2020.

[7] T. Alyas et al., "Multi-Cloud integration security framework using honeypots," Mobile
Information Systems, vol. 2022, pp. 1-13, 2022.

[8] A. Amazon, "Amazon Web Services Overview of Security Processes," Amazon, AWS, 2015.
[9] K. A. Awan, I. U. Din, A. Almogren, and J. J. Rodrigues, "AutoTrust: A privacy-enhanced trust-

based intrusion detection approach for internet of smart things," Future Generation Computer
Systems, vol. 137, pp. 288-301, 2022.

[10] R. K. Banyal, P. Jain, and V. K. Jain, "Multi-factor authentication framework for cloud
computing," in 2013 Fifth International Conference on Computational Intelligence, Modelling
and Simulation, 2013: IEEE, pp. 105-110.

[11] S. A. Baset and H. Schulzrinne, "An analysis of the skype peer-to-peer internet telephony
protocol," arXiv preprint cs/0412017, 2004.

[12] G. S. Basheer, M. S. Ahmad, A. Y. Tang, and S. Graf, "Certainty, trust and evidence: Towards an
integrative model of confidence in multi-agent systems," Computers in Human Behavior, vol. 45,
pp. 307-315, 2015.

[13] K. Beaty, A. Kundu, V. Naik, and A. Acharya, "Network-level access control management for the
cloud," in 2013 IEEE International Conference on Cloud Engineering (IC2E), 2013: IEEE, pp. 98-
107.

[14] A. Bendahmane, M. Essaaidi, A. El Moussaoui, and A. Younes, "Grid computing security
mechanisms: State-of-the-art," in 2009 International Conference on Multimedia Computing and
Systems, 2009: IEEE, pp. 535-540.

[15] S. Buchegger and J.-Y. Le Boudec, "A robust reputation system for peer-to-peer and mobile ad-
hoc networks," in P2PEcon 2004, 2004, no. LCA-CONF-2004-009.

[16] W. Burr et al., "NIST Special Publication 800-63-2 Electronic Authentication Guideline,"
Computer Security Division, Information Technology Laboratory, National Institute of Standards
and Technology, 2013.

158

[17] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, "Security and cloud computing: Intercloud identity
management infrastructure," in 2010 19th IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises, 2010: IEEE, pp. 263-265.

[18] S. Chasins et al., "The sky above the clouds," arXiv preprint arXiv:2205.07147, 2022.
[19] V. Chauhan and A. Singh, "Security Pitfalls in Multi-Cloud Computing Environment," M. Tech

Student Chandigarh university, Assistant Professor Indian Institute of Technology Ropar,
Department of Computer Science and Engineering, 2009.

[20] C. Chen, H. Lin, and C. Gun, "A fair and dynamic password authentication system," in 2011 2nd
International Conference on Artificial Intelligence, Management Science and Electronic
Commerce (AIMSEC), 2011: IEEE, pp. 4505-4509.

[21] M. Chen, K. Wu, C. Wu, and Z. Wu, "Certificateless-Signature-Based Authenticated Key
Agreement Protocol for Grid," in 2010 Fifth Annual ChinaGrid Conference, 2010: IEEE, pp. 267-
270.

[22] T.-H. Chen, H.-l. Yeh, and W.-K. Shih, "An advanced ecc dynamic id-based remote mutual
authentication scheme for cloud computing," in 2011 Fifth FTRA International Conference on
Multimedia and Ubiquitous Engineering, 2011: IEEE, pp. 155-159.

[23] J. Chin, N. Zhang, A. Nenadic, and O. Bamasak, "A context-constrained authorisation (cocoa)
framework for pervasive grid computing," Wireless Networks, vol. 16, no. 6, pp. 1541-1556,
2010.

[24] C.-Y. Chow, M. F. Mokbel, and X. Liu, "A peer-to-peer spatial cloaking algorithm for anonymous
location-based service," in Proceedings of the 14th annual ACM international symposium on
Advances in geographic information systems, 2006, pp. 171-178.

[25] Y.-x. Cui, H.-y. Ning, and Y.-y. Du, "A local trust model based on time influence function in P2P
networks," in 2015 6th IEEE International Conference on Software Engineering and Service
Science (ICSESS), 2015: IEEE, pp. 507-510.

[26] H. Dinesha and V. K. Agrawal, "Multi-level authentication technique for accessing cloud
services," in 2012 International Conference on Computing, Communication and Applications,
2012: IEEE, pp. 1-4.

[27] U. Divakarla and K. Chandrasekaran, "Trusted path between two entities in Cloud," in 2016 6th
International Conference-Cloud System and Big Data Engineering (Confluence), 2016: IEEE, pp.
157-162.

[28] Y. Elkhatib, "Mapping cross-cloud systems: Challenges and opportunities," in 8th {USENIX}
Workshop on Hot Topics in Cloud Computing (HotCloud 16), 2016.

[29] A. Farouk, A. A. Abdelhafez, and M. M. Fouad, "Authentication mechanisms in grid computing
environment: Comparative study," in 2012 International Conference on Engineering and
Technology (ICET), 2012: IEEE, pp. 1-6.

[30] A. Farouk, A. Miri, M. M. Fouad, and A. A. Abdelhafez, "Efficient pairing-free, certificateless two-
party authenticated key agreement protocol for grid computing," in 2014 Fourth International
Conference on Digital Information and Communication Technology and its Applications (DICTAP),
2014: IEEE, pp. 279-284.

[31] G. Geetha and C. Jayakumar, "Implementation of trust and reputation management for free-
roaming mobile agent security," IEEE Systems Journal, vol. 9, no. 2, pp. 556-566, 2014.

[32] L. Goasduff. "Why Organizations Choose a Multicloud Strategy."
https://www.gartner.com/smarterwithgartner/why-organizations-choose-a-multicloud-
strategy/ (accessed.

[33] L. Gu and M. A. Gregory, "A green and secure authentication for the 4th generation mobile
network," in 2011 Australasian Telecommunication Networks and Applications Conference
(ATNAC), 2011: IEEE, pp. 1-7.

https://www.gartner.com/smarterwithgartner/why-organizations-choose-a-multicloud-strategy/
https://www.gartner.com/smarterwithgartner/why-organizations-choose-a-multicloud-strategy/

159

[34] S. M. Habib, S. Hauke, S. Ries, and M. Mühlhäuser, "Trust as a facilitator in cloud computing: a
survey," Journal of Cloud Computing: Advances, Systems and Applications, vol. 1, no. 1, pp. 1-18,
2012.

[35] M. Hedayati, S. H. Kamali, and R. Shakerian, "Using identity-based secret public keys
cryptography for heuristic security analyses in grid computing," in 2010 5th International
Symposium on Telecommunications, 2010: IEEE, pp. 221-230.

[36] N. R. Herbst, S. Kounev, and R. Reussner, "Elasticity in cloud computing: What it is, and what it is
not," in 10th international conference on autonomic computing ({ICAC} 13), 2013, pp. 23-27.

[37] J. Hong, T. Dreibholz, J. A. Schenkel, and J. A. Hu, "An overview of multi-cloud computing," in
Workshops of the International Conference on Advanced Information Networking and
Applications, 2019: Springer, pp. 1055-1068.

[38] J. Huang and D. M. Nicol, "Trust mechanisms for cloud computing," Journal of Cloud Computing:
Advances, Systems and Applications, vol. 2, pp. 1-14, 2013.

[39] W. Huang, W. Du, L. Guo, and L. Huang, "Electronic trading systems in several authentication
methods commonly used comparison," in 2010 WASE International Conference on Information
Engineering, 2010, vol. 2: IEEE, pp. 251-254.

[40] T. D. Huynh, N. R. Jennings, and N. Shadbolt, "FIRE: An integrated trust and reputation model for
open multi-agent systems," in 6th European Conference on Artificial Intelligence, Valencia,
Spain, 2004-01-01, 2004.

[41] S. A. Ismail and M. A. Ngadi, "New security authentication mechanisms in grid computing web
environment," in 2011 International Conference on Research and Innovation in Information
Systems, 2011: IEEE, pp. 1-4.

[42] W. Jansen and T. Grance, "Sp 800-144. guidelines on security and privacy in public cloud
computing," ed: National Institute of Standards & Technology, 2011.

[43] J. Jiang, H. Wang, and W. Li, "A Trust model based on a time decay factor for use in social
networks," Computers & Electrical Engineering, vol. 85, p. 106706, 2020.

[44] W. K. Josephson, E. G. Sirer, and F. B. Schneider, "Peer-to-peer authentication with a distributed
single sign-on service," in International Workshop on Peer-to-Peer Systems, 2004: Springer, pp.
250-258.

[45] R. Jurca and B. Faltings, "Enforcing truthful strategies in incentive compatible reputation
mechanisms," in International Workshop on Internet and Network Economics, 2005: Springer,
pp. 268-277.

[46] J. Kemp et al., "Authentication Context for the OASIS Security Assertion Markup Language,"
2005.

[47] I. M. Khalil, A. Khreishah, and M. Azeem, "Cloud computing security: A survey," Computers, vol.
3, no. 1, pp. 1-35, 2014.

[48] H. H. Kilinc and T. Yanik, "A survey of SIP authentication and key agreement schemes," IEEE
Communications Surveys & Tutorials, vol. 16, no. 2, pp. 1005-1023, 2013.

[49] D.-S. Kim and K.-S. Hong, "Multimodal biometric authentication using teeth image and voice in
mobile environment," IEEE Transactions on Consumer Electronics, vol. 54, no. 4, pp. 1790-1797,
2008.

[50] A. Kounoudes, V. Kekatos, and S. Mavromoustakos, "Voice biometric authentication for
enhancing Internet service security," in 2006 2nd International Conference on Information &
Communication Technologies, 2006, vol. 1: IEEE, pp. 1020-1025.

[51] M. Lacoste et al., "User-centric security and dependability in the clouds-of-clouds," IEEE Cloud
Computing, vol. 3, no. 5, pp. 64-75, 2016.

160

[52] I. Lahmer and N. Zhang, "MapReduce: MR model abstraction for future security study," in
Proceedings of the 7th International Conference on Security of Information and Networks, 2014,
pp. 392-398.

[53] H. Leng, Y. Zhao, and D. Wang, "Message passing approach for social contagions based on the
trust probability with multiple influence factors," Physica A: Statistical Mechanics and its
Applications, vol. 587, p. 126510, 2022.

[54] Z. Li, X. Xu, L. Shi, J. Liu, and C. Liang, "Authentication in peer-to-peer network: Survey and
research directions," in 2009 Third International Conference on Network and System Security,
2009: IEEE, pp. 115-122.

[55] F. Liu et al., "Gearing resource-poor mobile devices with powerful clouds: architectures,
challenges, and applications," IEEE Wireless communications, vol. 20, no. 3, pp. 14-22, 2013.

[56] G. Liu, "Using Security Proxy Based Trusted Computing Enhanced Grid Security Infrastructure,"
in 2010 2nd International Conference on Information Engineering and Computer Science, 2010:
IEEE, pp. 1-4.

[57] R. K. Lomotey and R. Deters, "Saas authentication middleware for mobile consumers of iaas
cloud," in 2013 IEEE Ninth World Congress on Services, 2013: IEEE, pp. 448-455.

[58] P. Lozhnikov and O. Chernikova, "Handwriting dynamics as a means of authentication," in 2011
International Conference for Internet Technology and Secured Transactions, 2011: IEEE, pp. 176-
179.

[59] T. Luxner, "Cloud Computing Trends: 2021 State of the Cloud Report," ed, 2021.
[60] D. C. Marinescu, Cloud computing: theory and practice. Morgan Kaufmann, 2022.
[61] P. Mell and T. Grance, "The NIST definition of cloud computing," 2011.
[62] P. Mishra et al., "Conformance Requirements for the OASIS Security Assertion Markup Language

(SAML) V2. 0," ed: OASIS SSTC, March, 2005.
[63] M. B. Monir, M. H. AbdelAziz, A. A. AbdelHamid, and E.-S. M. EI-Horbaty, "Trust management in

cloud computing: a survey," in 2015 IEEE Seventh International Conference on Intelligent
Computing and Information Systems (ICICIS), 2015: IEEE, pp. 231-242.

[64] N. Narang and S. Kar, "A hybrid trust management framework for a multi-service social IoT
network," Computer Communications, vol. 171, pp. 61-79, 2021.

[65] K. V. Nguyen, "Simplifying peer-to-peer device authentication using identity-based
cryptography," in International conference on Networking and Services (ICNS'06), 2006: IEEE, pp.
43-43.

[66] Z. Noorian and M. Ulieru, "The state of the art in trust and reputation systems: a framework for
comparison," Journal of theoretical and applied electronic commerce research, vol. 5, no. 2, pp.
97-117, 2010.

[67] P. Parmar and M. Bhavsar, "Achieving Trust using RoT in IaaS Cloud," Procedia Computer
Science, vol. 167, pp. 487-495, 2020.

[68] J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang, and Q. Li, "Comparison of several cloud computing
platforms," in 2009 Second international symposium on information science and engineering,
2009: IEEE, pp. 23-27.

[69] D. Prabakaran and S. Ramachandran, "Multi-factor authentication for secured financial
transactions in cloud environment," CMC-Computers, Materials & Continua, vol. 70, no. 1, pp.
1781-1798, 2022.

[70] M. Purkhiabani and A. Salahi, "Enhanced authentication and key agreement procedure of next
generation evolved mobile networks," in 2011 IEEE 3rd International Conference on
Communication Software and Networks, 2011: IEEE, pp. 557-563.

161

[71] C. Ramalingam and P. Mohan, "Addressing Semantics Standards for Cloud Portability and
Interoperability in Multi Cloud Environment," Symmetry, vol. 13, no. 2, p. 317, 2021. [Online].
Available: https://www.mdpi.com/2073-8994/13/2/317.

[72] X. Ren and X.-W. Wu, "A novel dynamic user authentication scheme," in 2012 International
Symposium on Communications and Information Technologies (ISCIT), 2012: IEEE, pp. 713-717.

[73] F. Richter, "Amazon Leads $150-Billion Cloud Market," July 5th, 2021 2021. [Online]. Available:
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-
infrastructure-service-providers/.

[74] M. D. Ryan, "Cloud computing privacy concerns on our doorstep," Communications of the ACM,
vol. 54, no. 1, pp. 36-38, 2011.

[75] J. Sabater, "Evaluating the ReGreT system," Applied Artificial Intelligence, vol. 18, no. 9-10, pp.
797-813, 2004.

[76] J. Sabater and C. Sierra, "Reputation and social network analysis in multi-agent systems," in
Proceedings of the first international joint conference on Autonomous agents and multiagent
systems: part 1, 2002, pp. 475-482.

[77] A. S. A. Saleh, E. M. R. Hamed, and M. Hashem, "Building trust management model for cloud
computing," in 2014 9th International Conference on Informatics and Systems, 2014: IEEE, pp.
PDC-116-PDC-125.

[78] A. M. Shabut, K. P. Dahal, S. K. Bista, and I. U. Awan, "Recommendation based trust model with
an effective defence scheme for MANETs," IEEE Transactions on Mobile Computing, vol. 14, no.
10, pp. 2101-2115, 2015.

[79] S. Sharma and M. Mahrishi, "Implementation of trust model on CloudSim based on service
parametric model," in 2015 IEEE International Conference on Research in Computational
Intelligence and Communication Networks (ICRCICN), 2015: IEEE, pp. 351-356.

[80] D. Shehada, M. J. Zemerly, C. Y. Yeun, M. Al Qutayri, and Y. Al Hammadi, "A framework for
comparison of trust models for multi agent systems," in 2015 International Conference on
Information and Communication Technology Research (ICTRC), 2015: IEEE, pp. 318-321.

[81] Z. Shen and Q. Tong, "The security of cloud computing system enabled by trusted computing
technology," in 2010 2nd International Conference on Signal Processing Systems, 2010, vol. 2:
IEEE, pp. V2-11-V2-15.

[82] S. Singh and M. Yamini, "Voice based login authentication for Linux," in 2013 International
Conference on Recent Trends in Information Technology (ICRTIT), 2013: IEEE, pp. 619-624.

[83] W. Stallings, Cryptography and network security, 5th Edition. New York: Practice HAll, 2011.
[84] Y. Sui, X. Zou, E. Y. Du, and F. Li, "Design and analysis of a highly user-friendly, secure, privacy-

preserving, and revocable authentication method," IEEE Transactions on Computers, vol. 63, no.
4, pp. 902-916, 2013.

[85] W. Tan, Y. Sun, L. X. Li, G. Lu, and T. Wang, "A Trust Service-Oriented Scheduling Model for
Workflow Applications in Cloud Computing," IEEE Systems Journal, vol. 8, no. 3, pp. 868-878,
2013.

[86] M. Tavis and P. Fitzsimons, "Web application hosting in the aws cloud: Best practices," Relatório
técnico, Amazon, Setembro, vol. 11, pp. 12-15, 2012.

[87] W. L. Teacy, J. Patel, N. R. Jennings, and M. Luck, "Travos: Trust and reputation in the context of
inaccurate information sources," Autonomous Agents and Multi-Agent Systems, vol. 12, pp. 183-
198, 2006.

[88] G. Theodorakopoulos and J. S. Baras, "Trust evaluation in ad-hoc networks," in Proceedings of
the 3rd ACM workshop on Wireless security, 2004, pp. 1-10.

[89] D. Todorov, Mechanics of user identification and authentication: Fundamentals of identity
management. CRC Press, 2007.

https://www.mdpi.com/2073-8994/13/2/317
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/

162

[90] B. K. Tripathy, P. Bera, and M. A. Rahman, "Analysis of trust models in Mobile Ad Hoc Networks:
A simulation based study," in 2016 8th International Conference on Communication Systems and
Networks (COMSNETS), 2016: IEEE, pp. 1-8.

[91] M. Trojahn and F. Ortmeier, "Toward mobile authentication with keystroke dynamics on mobile
phones and tablets," in 2013 27th International Conference on Advanced Information
Networking and Applications Workshops, 2013: IEEE, pp. 697-702.

[92] J. M. J. Valero, P. M. S. Sánchez, M. G. Pérez, A. H. Celdrán, and G. M. Pérez, "Toward pre-
standardization of reputation-based trust models beyond 5G," Computer Standards &
Interfaces, vol. 81, p. 103596, 2022.

[93] J. Varia and S. Mathew, "Overview of amazon web services," Amazon Web Services, vol. 105,
2014.

[94] J. Wan, Z. Liu, K. Zhou, and R. Lu, "Mobile cloud computing: application scenarios and service
models," in 2013 9th International Wireless Communications and Mobile Computing Conference
(IWCMC), 2013.

[95] Z. Wei, H. Tang, F. R. Yu, M. Wang, and P. Mason, "Security enhancements for mobile ad hoc
networks with trust management using uncertain reasoning," IEEE Transactions on Vehicular
Technology, vol. 63, no. 9, pp. 4647-4658, 2014.

[96] M. Werlinder and E. Tham, "Application of Amazon Web Services in software development."
[97] X. Xiaoping and Y. Junhu, "Research on cloud computing security platform," in 2012 Fourth

International Conference on Computational and Information Sciences, 2012: IEEE, pp. 799-802.
[98] Y. Xu, Z. Gong, J. Y.-L. Forrest, and E. Herrera-Viedma, "Trust propagation and trust network

evaluation in social networks based on uncertainty theory," Knowledge-Based Systems, vol. 234,
p. 107610, 2021.

[99] Y. H. Yahaya, M. R. M. Isa, and M. I. Aziz, "Fingerprint biometrics authentication on smart card,"
in 2009 Second International Conference on Computer and Electrical Engineering, 2009, vol. 2:
IEEE, pp. 671-673.

[100] R. Yaich, N. Cuppens, and F. Cuppens, "Enabling Trust Assessment In Clouds-of-Clouds: A
Similarity-Based Approach," in Proceedings of the 12th International Conference on Availability,
Reliability and Security, 2017, pp. 1-9.

[101] L. Yao, A structured approach to electronic authentication assurance level derivation. The
University of Manchester (United Kingdom), 2010.

[102] L. Yao and N. Zhang, "A Generic Authentication LoA Derivation Model," in Emerging Challenges
for Security, Privacy and Trust: 24th IFIP TC 11 International Information Security Conference,
SEC 2009, Pafos, Cyprus, May 18–20, 2009. Proceedings 24, 2009: Springer, pp. 98-108.

[103] L. Yao and N. Zhang, "Quantifying authentication levels of assurance in grid environments," in
2010 Sixth International Conference on Information Assurance and Security, 2010: IEEE, pp. 298-
303.

[104] W. Zeng, J. Zhao, and M. Liu, "Several public commercial clouds and open source cloud
computing software," in 2012 7th International Conference on Computer Science & Education
(ICCSE), 2012: IEEE, pp. 1130-1133.

[105] P. Zhang, A. Durresi, and L. Barolli, "Survey of trust management on various networks," in 2011
International Conference on Complex, Intelligent, and Software Intensive Systems, 2011: IEEE,
pp. 219-226.

[106] D. Zissis and D. Lekkas, "Addressing cloud computing security issues," Future Generation
computer systems, vol. 28, no. 3, pp. 583-592, 2012.

163

Appendix A

NIST E-Authentication Level of Assurance

NIST E-Authentication Guidelines describe four levels of assurance [16]: Level 1, Level 2, Level

3, and Level 4. These LoA-related factors are classified into several categories, defined next [16].

2. Registration and Identity Proofing (R and IdP)

Registration is a process of proceeding with authentication, where an applicant applies to become

a Subscriber of a Credential Provider (CP) and receives identity credentials.

Identity Proofing is a process by which a CP and a Registration Authority (RA) collect and verify

information about a person for the purpose of issuing credentials to that person.

The R and IdP process should ensure that [16]:

• An entity with the applicant’s attributes exists, and those attributes are sufficient to uniquely

identify a single entity.

• The Applicant whose token is registered is, in fact, the entity entitled to the identity.

• It is difficult for an entity to repudiate the registration and dispute an authentication using

this token later. Table A1 shows LoA values for varying R and IdP processes.

164

Table A1. LoA for Registration and ID Proofing [16]

LoA

value

R and IP Process

1 No specific requirements.

Some effort should be made to uniquely identify applicants.

2 • Applicant supplies a valid current government ID such as a driver’s license.

• RA inspects for the correct format of information input and verifies it with

the applicable agency.

• Address/phone number confirmation and notification are as follows:

1. CP issues credentials to confirm the ability of the applicant to receive e-mail

or telephone communications (call or text message). Any secret sent over an

unprotected session will be reset upon first use.

2. RA or CP sends notice to the address confirmed in the first step.

3 • The Applicant identifies himself/herself by presenting a temporary secret

that was previously set or sent to the physical address on record.

• Permanent secrets are only issued within protected sessions.

For physical transactions,

• The Applicant identifies himself/herself in person using a secret as

described above, or through the use of a biometric recorded previously.

• Temporary secrets are not reused.

4 Only physical transactions apply. The Applicant shall identify himself/herself in

person for physical transactions previously captured by biometrics.

165

R and IdP process occurs before any authentication instance between two entities.

3. Authentication Tokens

A token is defined as something the user owns and controls (typically a cryptographic module or

password) that is used to authenticate his/her identity. A token typically contains a secret value, or

token secret, used to generate authenticator outputs on demand to verify the user’s possession of

the token. Tokens are based on one or more authentication factors [16]:

• Something you know (knowledge tokens): such as a password.

• Something you have (ownership tokens): such as an ID card.

• Something you are (identity tokens): such as a person’s fingerprint.

Hence, a token can be hardware, software, or some information you remember. Tokens are

categorized into two classes based on the number of factors. They are

• Single-factor token, which depends on one authentication factor, such as a password.

• Multi-factor token, which employs two or more authentication factors, such as a smart card

and a Personal Identification Number (PIN) to activate it.

There are many types of tokens:

• Memorized Secret Token

• Pre-registered Knowledge Token.

• Look-up Secret.

• Out of Band.

• Single-factor (SF) One-Time Password (OTP) Device.

• Single-factor (SF) Cryptographic Device is an ownership token.

• Multi-factor (MF) Software Cryptographic.

• Multi-factor (MF) OTP.

• Multi-factor (MF) Cryptographic Device.

Table A2 lists LoA values for various single-factor token types [16]. In addition, there are

specifications for the Verifier and the token for each type of token.

166

Table A2. LoA components for Token Types [16]

Token Type
LoA

component
Token Requirements Verifier Requirements

Memorized

Secret Token

Level 1

PWD length >= 6 chars chosen

from an alphabet of >= 90 chars

or a randomly generated PIN of

4 or more digits

-Limit the number of

failed authentication

attempts to 100 or less

in any 30-day period of

time.

Level 2

PWD length >= 6 chars chosen

from an alphabet of >= 90 chars,

or a randomly generated PIN of

6 or more digits.

- Implement

composition rules to

constrain user options.

- Limit the number of

failed authentication

attempts to 100 or less

in any 30-day period of

time.

Pre-Registered

Knowledge

Token

Level 1

The secret provides at least 14

bits of entropy.

-Limit the number of

failed authentication

attempts to 100 or less

in any 30-day period of

time.

The entropy cannot be directly

calculated, as in the case of a

user chosen password or

personal knowledge questions.

-If the questions are not

supplied by the user, the

user selects prompts

from a set of at least five

questions.

167

-Empty answers are

prohibited.

-Answers are verified

for at least three

questions

- Limit the number of

failed authentication

attempts to 100 or less

in any 30-day period of

time.

Level 2

The secret provides at least 20

bits of entropy.

-Limit the number of

failed authentication

attempts to 100 or less

in any 30-day period of

time.

Pre-Registered

Knowledge

Token

Level 2

The entropy in the secret cannot

be directly calculated, as in the

case of a user chosen password

or personal knowledge

questions.

-If the questions are not

supplied by the user, the

user selects prompts

from a set of at least

seven questions.

-Empty answers are

prohibited.

- Answers are verified

for at least three

questions.

- Limit the number of

failed authentication

168

attempts to 100 or less

in any 30-day period.

Look-up

Secret Token
Level 2

The token authenticator has 64

bits of entropy.
N/A

The token authenticator has at

least 20 bits of entropy.

limit the number of

failed authentication

attempts to 100 or less

in any 30-day period of

time.

Out of Band

Token

Level 2

The token is uniquely addressable

and supports communication

over a channel apart from the

primary channel for E-

Authentication.

-The Verifier generated

secret has at least 64 bits

of entropy.

-The Verifier generated

secret has at least 20 bits

of entropy.

- Limit the number of

failed authentication

attempts to 100 or less

in any 30-day period of

time.

SF One-Time

Password

Device

Level 2

Use an Approved block cipher or

hash function to combine a

symmetric key stored on the

device with a nonce to generate

an OTP.

- The OTP has a limited

lifetime (minutes).

- The cryptographic

module performing the

Verifier function is

validated at US Federal

Information Processing

169

The nonce may be a date and

time, or a counter generated on

the device.

Standards (FIPS) 140-2

Level 1 or higher.

SF

Cryptographic

Device

Level 2

The cryptographic module is

validated at FIPS 140-2 Level 1

or higher.

Verifier generated token

input has at least 64 bits

of entropy.

MF Software

Cryptographic

Token

Level 3

- The cryptographic module is

validated at FIPS 140-2 Level 1

or higher.

- Each authentication requires

entry of the password or other

activation data.

- The unencrypted copy of the

authentication key is erased after

each authentication.

Verifier generated token

input has at least 64 bits

of entropy.

MF OTP

Hardware

Token

Level 4

- Cryptographic module is FIPS

140-2 validated at Level 2 or

higher, with physical security at

FIPS 140-2 Level 3 or higher.

- The OTP is generated using an

Approved block cipher or hash

function to combine a symmetric

key stored on a personal

hardware device with a nonce

- The nonce may be a date and

time, or a counter generated on

the device.

The OTP has a lifetime

< 2 minutes.

170

- Each authentication requires

entry of a password or other

activation data through an

integrated input mechanism.

MF Hardware

Cryptographic

Token

Level 4

- Cryptographic module is FIPS

140-2 validated at Level 2 or

higher; with physical security at

FIPS 140-2 Level 3 or higher.

- Requires the entry of a PWD,

PIN, or biometric to activate the

authentication key.

- Export of authentication keys

is prohibited.

Verifier generated token

input (e.g., a nonce or

challenge) has at least

64 bits of entropy.

Entropy denotes the uncertainty in the value of a secret (such as a password) and is conventionally

expressed in bits. It is used to measure the difficulty in guessing the secret.

Table A2 summarizes the requirements for single-token authentication. As for multi-token

authentication , the following rules are applied [16]:

• To achieve level 3 assurance, two tokens of level 2 assurance need to be employed, one of

which is of the ownership type and the other of the knowledge type.

• Combining two types of tokens produces a multi-factor token at the highest level of the two

combined.

4. Token and Credential Management

A credential is an object that authoritatively binds an identity to a token possessed and controlled

by a user. Credentials and tokens need to be managed to reflect any changes in their values at

binding to maintain the same level of assurance. Token and credential management activities are

performed by the Credential Provider CP, and they include the following [16]:

171

• Credential storage: The CP may store credentials. Private credentials require extra

confidentiality mechanisms as opposed to public credentials. Weakly bound credentials also

require extra integrity checks, unlike strongly bound credentials.

• Token and credential verification services: When the Verifier and the CP are not part of the

same entity, the CP is responsible for providing the Verifier with the information needed to

facilitate the credential verification process, such as checking a password against a PWD database,

for example.

• Token and Credential renewal and re-issuance: Renewal means the extension of the validity

period of a token or a credential without changing the identity. Re-issuance, on the other hand,

requires creating new credentials for a new identity. The CP enforces suitable policies for renewal

and re-issuance, such as setting expiration periods and grace periods for expired tokens.

• Token and credential revocation and destruction: The CP is responsible for maintaining the

revocation status of credentials and destroying the credential at the end of its life. “Public

credentials” usually require an explicit revocation mechanism, which may have with a preset

validity period, while “private credentials” revocation and destruction are implemented through

an update of CP’s local credential storage [16].

• Records retention: The CP maintains a record of the registration, history, and status of

tokens and credentials, including revocation. For level 2 and higher, a minimum record retention

period is required.

• Security controls: The CP also implements and maintains the appropriate security controls

as per NIST SP 800-53 publication [16].

The AoL component values for some or all of the token and credential management activities are

stipulated by NIST [16] as indicated in the below Table A3.

172

Table A3. LoA Requirements for Token and Credential Management Activities

 Requirements

Token and

Credential

Management

Activities

Level 1 Level 2 Level 3 Level 4

Storage -Limit files access

to administrator;

-Passwords are

stored inverted or

as a one-way hash

- Limit files access

to administrators

-Passwords are

stored encrypted or

hashed (after being

concatenated to a

variable salt)

-Limit files access to

administrators.

-FIPS 140-2 level 2 encryption or

higher for files and keys

Verification

Services

Long term token

secrets are not to

be shared with

other parties

unless necessary

- Long-term shared

secrets are only

shared with

Verifiers operated

by CP

-Cryptographic

protection for all

messages between

CP and Verifier for

private credentials

-Private credentials

are sent only

through a protected

session

-CPs provide a secure mechanism

to allow Verifiers or CSPs to

ensure credentials validity.

-Temporary session authentication

keys may be generated from long-

term shared secret keys by CPs and

distributed to third party Verifiers.

173

Renewal and

Reissuance

N/A -Proof-of-

possession of the

unexpired current

token needed is

required for

renewal and re-

issuance.

-Passwords cannot

be renewed; only

re-issued.

-Upon re-issuance,

the token secrets

are not to be set to a

default or reused

value in any

manner.

-All interactions

occur over a

protected session

- Only

allowed prior

to the

expiration of

the current

credential.

- All

interactions

occur over a

protected

session

-Sensitive data

transfers to be

cryptographically

authenticated

using keys bound

to the

authentication

process.

-All short-term

keys derived

during the original

authentication

operation expire

and must be re-

authenticated after

no more than 24

hours from the

initial

authentication.

Revocation

and

Destruction

N/A CPs revoke

credentials and

tokens within 72

hours after being

notified that a

credential is no

longer valid

CPs revoke

credentials

and tokens

within 24

hours after

being notified

that a

credential is

no longer

valid

- CPs revoke

credentials and

tokens within 24

hours after being

notified that a

credential is no

longer valid

- Verifiers or

CSPs ensure that

the credentials are

174

freshly issued

(within 24 hours)

Records

Retention

N/A -For seven years and six months

beyond the expiration or revocation

of a Credential.

-For ten years and

six months

beyond the

expiration of

Credential.

Security

Controls

N/A CP must employ appropriately tailored security controls

from the low baseline of security controls defined by

NIST

5. Authentication Process

The goal of the authentication process is for the Verifier to establish the identity of a claimant

through an authentication protocol message exchange, during or after which a protected session is

established for further data exchange. There are a number of threats against the authentication

process, which require management mechanisms at both ends of the Verifier and the user. These

threats include Online guessing, Phishing, Pharming, Eavesdropping, Replay, Session hijacking,

Man-in-the-middle, and Denial of Service DOS attacks. Table A4 indicates the LoA values for

level of resistance against known threats:

175

Table A4. Requirements for Authentication Process Threat Resistance for LoA [16]

Authentication Process

Threats

Threat Resistance Requirements

Level 1 Level 2 Level 3 Level 4

Online guessing Yes Yes Yes Yes

Replay Yes Yes Yes Yes

Session hijacking No Yes Yes Yes

Eavesdropping No Yes Yes Yes

Phishing/Pharming

(Verifier impersonation)
No No Yes Yes

Man in the middle No Weak Weak Strong

Denial of service/flooding

No No No No

To satisfy the threat resistance as per Table A4, suitable authentication technologies must be used.

Table A5 lists examples of technologies sufficient for meeting each LoA requirements [16].

Table A5. Examples of Technologies Sufficient for LoA

Examples of Authentication Technologies
LoA component

value

- Password with a challenge-response protocol.

- Password sent over a TLS

- Password-based versions of Kerberos.

- APOP

Level 1

176

- S/KEY

- Password through a secure encrypted TLS protocol session. Level 2

- Client-authenticated TLS (implemented in all modern

browsers), for claimants with public key certificates.

- Tunneling the output of an MF OTP Token, or the output of an

SF OTP Token in combination with a Level 2 personal

password, through a TLS session.

Level 3

- Client-authenticated TLS (implemented in all modern browsers),

with claimants who have public key MF Hardware

Cryptographic Tokens.

- The token used for strong man-in-the-middle resistance need not

be hardware token.

Level 4

6. Assertions

Assertions are statements from a Verifier to a CSP containing identity information and verified

attributes about a user who was successfully authenticated [16]. There are three models of

authentication with varying types of assertions as follows [16]:

• The Direct Model: In this model, the user presents his token to authenticate to the Verifier

to receive an assertion that is forwarded to the CSP.

• The Indirect Model: In this model, the claimant uses his token to authenticate with the

Verifier. After successful authentication, the Verifier creates an assertion and an assertion

reference (which identifies the Verifier and includes a pointer to the full assertion). The assertion

reference is then sent to the subscriber to be forwarded to the CSP for authentication. The CSP

uses the assertion reference to request the assertion explicitly from the Verifier.

Based on the content of both direct and indirect models, assertions are categorized into two types

[16]:

- Holder-of-Key Assertion: This type contains a reference to a symmetric key or a public key

possessed by the subscriber. For this type, the CSP may require the subscriber to prove possession

177

of the referenced secret, which to a degree proves his rightful ownership of the assertion. Thus,

this type is secure since an attacker can’t easily prove possession of the secret referenced in the

assertion.

- Bearer Assertion: This type of assertion does not provide a way for the claimant to prove

rightful ownership of the assertion. In the direct model, if a bearer assertion or assertion reference

is captured, copied, or manufactured by an attacker, it may lead to impersonation. Hence, this type

of assertion is secure only if a part of the assertion or assertion reference can be kept secret and

unpredictable by attackers.

• The Proxy Model: In this model, the user uses his token to authenticate with the Verifier.

After successful authentication, the Verifier creates an assertion and includes it when interacting

directly with the CSP. The CSP then grants or denies the request based on the assertion made by

the Verifier. Verifiers may also pass along useful information to the CSP, such as device identity,

location, system health checks, and configuration management. Communications between the

Verifier and the CSP should be protected. There are three types of assertion technologies used for

this model [16]:

- Cookies: They are the text files used by browsers to store information provided by a

particular website and are sent back to the site each time the browser requests a page to identify

the user, provide customization, or authorize the user for transactions. Cookies have two

compulsory parameters (name of the cookie and the value stored in the cookie) and four optional

parameters (the expiration date, the path, the domain, and a flag for a secure connection).

- Security Assertion Markup Language (SAML) Assertions: It uses an XML-based framework

for creating and exchanging authentication and attribute information between trusted entities over

the Internet. The components of SAML include the Assertions XML schema for defining assertion

structure, the SAML Protocols used to request assertions and assertion references, and the bindings

that define the underlying communication protocols (such as HTTP or SOAP) used to transport

the SAML assertions. SAML Assertions may contain three types of statements (authentication

statements, attribute statements related to the subscriber, and authorization statements for

resources the subscriber is permitted to access).

- Kerberos Tickets: They are used to support authentication of a claimant over a shared

network using two or more Verifiers. The claimant implicitly authenticates to the Verifier by

decrypting a random session key encrypted during registration. The Verifier additionally generates

178

a Kerberos ticket. The Kerberos ticket is an encrypted object containing the same session key, the

identity of the owner, and an expiration time. The ticket’s confidentiality and integrity are also

ensured.

NIST guidelines list a number of threats against assertions [16]. Table A6 lists these threats and

states the LoA component values for threat resistance to be provided against each threat.

Table A6. Threats against Assertions per LoA [16]

Threat Description Level 1 Level 2 Level 3 Level 4

Assertion

manufacture/

modification

An attacker generates a fake assertion

or modifies the assertion content to

his advantage.

Yes Yes Yes Yes

Assertion

disclosure

Disclosure of information within the

assertion, making the subscriber open

to other attacks.

No Yes Yes Yes

Assertion

repudiation

by Verifier

This occurs when the Verifier

repudiates the assertion due to an

improper mechanism such as an

unsigned assertion.

No No Yes Yes

Assertion

repudiation

by subscriber

When the subscriber repudiates any

transaction with the CSP that was

authenticated using a bearer

assertion.

No No No Yes

Assertion

redirect

An attacker uses the assertion

intended for one CSP to obtain access

to another.

No Yes Yes Yes

179

Assertion

reuse

An attacker attempts to use an

assertion that has already been used

once.

Yes Yes Yes Yes

Secondary

authenticator

manufacture

An attacker attempts to generate a

valid secondary authenticator and

uses it to impersonate a subscriber.

Yes Yes Yes Yes

Secondary

authenticator

capture

An attacker uses a session hijacking

attack or a man-in-the-middle attack

to capture the secondary authenticator

when the Verifier transmits it to the

subscriber or as it is being used by

the subscriber to authenticate to the

CSP. The secondary authenticator

can be used to impersonate the

subscriber.

No Yes Yes Yes

Assertion

substitution

A subscriber attempts to impersonate

a more privileged subscriber by

subverting the communication

channel between the Verifier and

CSP.

No Yes Yes Yes

Thus, for each assurance Level, there are minimum requirements to provide threat resistance as

per Table A6. Table A7 lists the requirements for each LoA to provide protection against the

defined set of threats [16].

180

Table A7. Requirements for Assertions at each LoA

Assurance

Level
Requirements

Level 1

-It must be impractical for an attacker to manufacture an assertion or

assertion reference.

-For the direct model, the assertion is signed by the Verifier using a secret

key shared by the Verifier and CSP.

-For the indirect model, the assertion reference has a minimum of 64 bits of

entropy.

-Bearer assertions and assertion references are generated for one-time use.

- All assertions from the Verifier to the CSP should either be signed by the

Verifier or transmitted via a protected session.

-The CSP must establish a binding relationship between the assertion

reference and its corresponding assertion via signed communications with

the authenticated Verifier.

-Single-domain Assertions expire within 5 minutes.

-Cross-domain Assertions may last up to 12 hours.

Level 2

 -Assertions and Assertion references are protected against

manufacture/modification, capture, redirect, and reuse.

-Each assertion is for a single CSP.

-Assertions, assertion references, and any session cookies are transmitted via

a protected session and linked to the primary authentication process to avoid

session hijacking attacks.

-Assertions sent from the Verifier to the CSP are sent via a mutually

authenticated protected session or signed by the Verifier and encrypted.

181

-All assertion protocols used at Level 2 and above require the use of

Approved cryptographic techniques.

-The use of Kerberos keys derived from user-generated passwords is not

allowed.

Level 3

-Assertions are protected against repudiation using signatures and verified

names rather than pseudonyms.

-Kerberos tickets are acceptable as assertions level 3 under the following

conditions:

•All Verifiers operate under a single management;

• The subscriber authenticates to the Verifier using a Level 3 token.

• All level 3 requirements unrelated to non-repudiation are satisfied.

-Single-domain assertions expire within 30 minutes.

-Cross-domain assertions expire if not used within 5 minutes.

-To achieve single sign-on, Verifiers can re-authenticate the subscriber prior

to delivering assertions to new CSPs, using a combination of long term and

short-term single domain asertions given that:

• The subscriber has successfully authenticated within the last 12 hours.

• The subscriber can demonstrate that he or she was the party authenticated

with the Verifier.

• The Verifier proves that the subscriber was not idle for more than 30

minutes.

Level 4

-Bearer assertions and cookies are not used to establish the identity but can

be used to bind keys or other attributes to it

-Holder-of-key assertions may be used provided that:

182

• The claimant authenticates with the Verifier using a Level 4 token in a

Level 4 authentication protocol.

• The key referenced in the assertion is Level 4 token;

• The CSP verifies that the subscriber possesses the key referenced in the

assertion using a level 4 protocol.

-The CSP should maintain records of the assertions it receives to compare

values with the CP in case of suspicious transactions at the CSP.

- Kerberos tickets are acceptable as assertions at level 4 provided that:

• All are under a single management authority;

• The subscriber authenticates to the Verifier using a level 4 token;

• All Level 4 requirements unrelated to non-repudiation are satisfied.

Based on the detailed NIST LoA component derivations stated above, Table A7. shows examples

of some component values for Run-Time LoA-related factors.

183

Appendix B

Implementation for algorithm performance evaluation

Implementation of sorting LoA determine minimum LoA value (LowSort.java)

import java.io.*;

import java.util.Scanner;

public class LowSort {

 //Array of LoA values of dependent factors

 static int [] loaArray = {5,5,5,5,5} ;

 static int i = 0;

 public static void main (String [] args){

 // Read LoA values of dependent factors

 try {

 Scanner console = new Scanner(new File("in.txt"));

 while (console.hasNextLine()) {

 loaArray[i] = console.nextInt();

 i++ ;

 }

 }catch (IOException e) {

 System.out.println("error reading file! ");

 }

 // Sort LoA array

 int min = 0;

 for(int i=0;i<4;i++){

184

 if (loaArray[i+1] < loaArray[i]){

 min = loaArray[i+1];

 loaArray[i+1] = loaArray[i];

 loaArray[i] = min;}

 min = loaArray[0];

 }

}

}

Implementation of pairwise comparisons of LoA values determine minimum

(LowCompare.java)

import java.io.*;

import java.util.Scanner;

public class LowCompare {

 //Array of LoA values of dependent factors

 static int [] loaArray = {5,5,5,5,5} ;

 static int i = 0;

 public static void main (String [] args){

 // Read LoA values of dependent factors

 try {

 Scanner console = new Scanner(new File("in.txt"));

 while (console.hasNextLine()) {

 loaArray[i] = console.nextInt();

 i++ ;

 }

185

 }catch (IOException e) {

 System.out.println("error reading file! ");

 }

 // compare

 int min = loaArray[0];

 for(int i=1;i<=4;i++){

 if (loaArray[i] < min)

 min = loaArray[i];}

 }

}

Implementation of Additive Rule based on Probability theory algorithm (LoaPadd.java)

import java.io.*;

import java.util.Scanner;

public class LoaPadd {

 //Array of LoA values of independent factors

 static int [] loaArray ;

 static int AloA;

 static int i = 0;

 static int temp = 0;

 public static void main (String [] args){

 // Read LoA values of independent factors

 try {

 Scanner console = new Scanner(new File("in.txt"));

186

 while (console.hasNextLine()) {

 loaArray[i] = console.nextInt();

 i++ ;

 }

 }catch (IOException e) {

 System.out.println("error reading file! ");

 }

 // determine ALoA based probability theory

 if (i == 1) {

 AloA = loaArray[0];} // In case of one factor

 else { // Otherwise, apply inclusion-exclusion principle

 temp = 1;

 for (i=0;i<4;i++) {

 temp = temp * (1- (loaArray[i]/4));} // P (ri) = LoA /4

 temp = temp -1;

 AloA = temp;}

 }

}

Implementation of Additive Rule based on Mapped Weights algorithm (LoaMadd.java)

import java.io.*;

import java.util.Scanner;

public class LoaMadd {

 //Array of LoA values of independent factors

 static int [] loaArray = {0,0,0,0,0} ;

 static int AloA;

 static int i = 0;

187

 static int temp = 0;

 static int w;

 public static void main (String [] args){

 // Read LoA values of independent factors

 try {

 Scanner console = new Scanner(new File("in.txt"));

 while (console.hasNextLine()) {

 loaArray[i] = console.nextInt();

 i++ ;

 }

 }catch (IOException e) {

 System.out.println("error reading file! ");

 }

 // determine ALoA based on mapped weight algorithm

 if (i == 1) {

 AloA = loaArray[0];} // In case of one factor

 else { // Otherwise, apply inclusion-exclusion principle

 for (i=0;i<4;i++) {

 temp = temp + (1- (loaArray[i]/4));} // // Adjust loa values with weights

 AloA = temp;}

 }

 }

188

Implementation of Additive Rule based on Combined LoA algorithm (LoaCadd.java)

import java.io.*;

import java.util.Scanner;

public class LoaCadd {

 static int [] loaArray = {0,0,0,0,0} ; // LoA values of independent factors

 static int [] loaCount = {0,0,0,0} ; // count of equivalent LoA component values

 static int AloA;

 static int i = 0;

 public static void main (String [] args){

 // Read LoA values of independent factors

 try {

 Scanner console = new Scanner(new File("in.txt"));

 while (console.hasNextLine()) {

 loaArray[i] = console.nextInt();

 i++ ;

 }

 }catch (IOException e) {

 System.out.println("error reading file! ");

 }

 // determine ALoA based on combined LoA algorithm

 if (i == 1) {

 AloA = loaArray[0];} // In case of one factor

 else {

 AloA = 1;

 for (i=1;i<4;i++) // for LoA component values to be possibly combined (1 to 3)

 for (int x =1;x<4;x++){

189

 if (loaArray[x] == i) {

 loaCount[i]++ ; }

 if (loaCount[i] >= 2) { // when 2 or more factors have LoA = i

 loaCount[i+1]++;

 AloA = i+1;}

 }

 }

 }

}

	List of Figures
	List of Tables
	Abbreviations
	Abstract

	Declaration
	Copyright Statement
	Acknowledgement
	Chapter 1: Introduction
	1.1. Research Context
	1.2. Research Methodology
	1.3. Research Question and Research Hypothesis
	1.4. Novel Contributions and Publications
	1.5. Thesis Structure
	Chapter 2: Background
	2.1. Chapter Introduction
	In order to provide a reliable authentication solution for multi-cloud users, some background information on the main concepts relating to the topic is described in this chapter.
	This chapter introduces Cloud Computing (CC) and Multiple Cloud Computing (M2C). It provides an overview of CC, identifies its general characteristics, and describes its deployment and service models. It also introduces the security issues and challe...
	2.2. Cloud Computing: An Overview
	2.3. Cloud Computing Deployment Models
	2.4. Cloud Computing Service Models
	2.5. Multi-Cloud Computing (M2C)
	2.6. Security Issues and Challenges
	2.7. Chapter Summary
	Chapter 3: Authentication Solutions: A Literature Survey
	3.1. Introduction
	3.2. Authentication Basics
	3.2.1. An Overview
	3.2.2. Authentication Process
	3.2.3. Registration and Identity Proofing
	3.2.4. Authentication Tokens
	3.2.5. Threats on the Authentication Process
	3.3.1. Single-factor Authentication Methods
	3.3.1.1. Knowledge Factors
	3.3.1.2. Ownership Factors
	3.3.1.3. Static Identity Factors
	3.3.1.4. Dynamic Identity Factors
	3.3.2. Multiple-Factor Authentication Methods
	3.4. Context-Aware Authentication Methods
	3.5. Distributed Systems Authentication Methods
	3.5.1. Peer-to-Peer Authentication Methods
	3.5.2. Grid Computing Authentication Methods
	3.5.3. Existing CC Authentication Methods
	3.3.
	3.6. Chapter Summary
	In this chapter, we have presented background information on authentication. We have also analyzed a wide range of authentication methods and solutions producing a classification of authentication solutions in the literature according to the type and ...
	The next chapter presents and analyses a real-life use case of MC leading to the derivation of a generic model for a Multi-Cloud (MC) environment. It also explains the threat analysis and general security requirements for MC. It also provides critica...
	4.1. Chapter Introduction
	4.2. Problem Analysis and MC Generic Model Derivation
	4.2.1. A Real-Life Application: The “NewShop”
	4.2.2. Single Cloud Solution (1C-Shop)
	4.2.2.1. AWS Authentication: Entities and Methods
	4.2.2.2. AWS Scenario Architecture and Operation
	4.2.3. Two Clouds Solution (2C-Shop)
	4.2.3.1. 2C-Shop Authentication: Entities and Methods
	4.2.3.2. 2C-Shop Architecture and Operation
	4.2.3. Three Cloud Solution (3C-Shop)
	4.2.3.1. 3C-Shop Authentication: Entities and Methods
	4.2.3.2. 3C-Shop Architecture and Operation
	4.3. Multi-Cloud Generic Model (MC-Model)
	4.3.1. MC-Model Architecture
	4.3.2. Entities
	4.3.3. Credentials Structure
	4.3.4. MC-Model Workflow
	4.3.5. Interactions between Entities and Message Types
	4.4. Threat analysis
	4.5. Observations
	4.6. Security Requirements
	4.6.1. Security requirements related to Authentication
	4.6.2. Other Security Requirements
	4.7. What is Missing?
	4.8. The Best Way Forward
	Analysis of current research on authentication solutions for distributed systems in Section 4.7 helps us identify the gap in the current knowledge, for meeting M2C authentication requirements. Furthermore, it paves the way for setting design requirem...
	4.9. High-Level Ideas
	4.10. Chapter Summary
	Chapter 5: Trust as basis for authentication: Review and Design
	5.1. Chapter Introduction
	5.2. What is Trust?
	5.3. Trust Management
	5.4. Classification of Trust Models
	5.4.1. Overview of Direct Trust Models
	5.4.2. Overview of Indirect Trust Models
	5.4.3. Overview of Varied Trust Models
	5.5. Discussion and observations
	5.9. Identification of Trust Factors
	5.9.1. Level of Assurance (LoA) as a Trust Factor
	5.9.2. Reputation as a Trust Factor
	5.9.3. Recommendation as a Trust Factor
	5.10.2. Trust Engine (TruE)
	6.6. Determining Aggregate value for credential based LoA-related factors
	Probability Theory Algorithm
	Weighted Average Algorithm
	Mapped Weight Algorithm
	Combined LoA Algorithm
	6.7.
	6.7. Description of architectural components related to LoA credential-based factors (T-Cr M)
	6.7.2. The Credentials Static Tree Module (CRSTM)
	6.7.3. The Credentials Light-Up Tree Module (CRLTM)
	6.7.4. The LoA Credentials Derivation Module (ALoAM)
	6.8. Chapter Summary
	7.2.4.1. Performance Evaluation of Low Watermark Algorithms
	7.2.4.2. Performance Evaluation of Additive Algorithms
	NIST E-Authentication Level of Assurance
	NIST E-Authentication Guidelines describe four levels of assurance [16]: Level 1, Level 2, Level 3, and Level 4. These LoA-related factors are classified into several categories, defined next [16].
	2. Registration and Identity Proofing (R and IdP)
	R and IdP process occurs before any authentication instance between two entities.
	3. Authentication Tokens
	4. Token and Credential Management
	5. Authentication Process
	6. Assertions

