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DEFINITIONS 

Cloud A cloud is an infrastructure for Internet-based services. It abstracts 

a pool of resources of physical machines and provides shared 

computing and storage resources to service consumers. Groups of 

machines providing shared computing and storage resources are, 

respectively, referred to as a computing cluster and a storage 

cluster.  

Cloud domain 

(CloudDomain) 

A cloud domain is a domain consisting of computing and storage 

resources hosted in a cloud. 

Collaborators Collaborators are a group of organisations that have established 

collaborations and agreed to share datasets and resources for data 

analyses or other collaborative purposes. 

Consumer A consumer refers to an entity consuming (using) data.  

Container A container is a subset of resources of a machine, which provides 

an environment for running a piece of software (i.e., a software 

runtime environment).  

Data object (object) A data object refers to a unit of JobData (e.g., a file) used, generated, 

or processed during the execution of a data processing job.  

Distributed 

Computing Service  

A distributed computing service is a service that a service consumer 

uses to process data. It uses computing and storage resources 

hosted in a distributed cluster of machines (e.g., a cloud).  

Distributed File 

System (DFS) cluster 

A DFS cluster is a cluster of MR components used to store JobData 

during a job execution.  

Domain A domain is a group of entities that belong to a particular 

association or have a common purpose or function.  

Distributed 

Processing System 

(DPS) cluster 

A DPS cluster is a cluster of MR components used to perform data 

processing tasks of a job execution. 

Entity An entity collectively refers to a person (e.g., a user), an association 

(e.g., an organisation, or a cloud service provider), or a service 

component (e.g., a Mapper or a Reducer).  

Job data (JobData) JobData are data that are used, generated, or processed during an 

execution of a data processing job.  

Job domain 

(JobDomain) 

A JobDomain is a domain containing MR components allocated to 

a particular job execution.  

MR cluster An MR cluster is a set of MR components with a particular function, 

either processing or storing data.  

MR component An MR component is a component of an MR service. It is used to 

perform a particular task (e.g., data processing, data storage, and 

task scheduling). 
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MR domain 

(MRDomain) 

An MRDomain is a domain containing all the MR components of an 

MR service.  

MR job An MR job is a data proceesing job submitted by a user to an MR 

service.  

MR service An MR service is an MR framework based application service.  

Organisation An organisation refers to a group of people that belong to a 

particular association, such as a government unit, a private 

enterprise, or a financial institute. It subscribes to an MR service 

offered by an MR service provider and may share the MR service 

with users from other organisations. 

Organisation domain 

(OrgDomain) 

An OrgDomain is a domain consisting of users and MR clients 

(ClientApps) of an organisation.  

Processing cluster A processing cluster is a set of machines in a cloud that provide 

computing resources.  

Processing service A processing service is a service run on a processing cluster of a 

cloud. It provides computing resources to service consumers.  

Producer A producer refers to an entity producing (generating or supplying) 

data. 

Resources CPUs, RAMs, storage, networks, and other resources used in 

facilitating data processing are collectively referred to as resources. 

Service consumer A service consumer is an entity consuming a service.  

Service provider A service provider is an entity providing a service.  

Storage cluster A storage cluster is a set of machines in a cloud that provide 

storage resources.  

Storage service A storage resource service is a service run on a storage cluster of a 

cloud. It provides storage resources to service consumers.  

User A user is a member of an organisation. The user uses an MR service 

of his/her organisation.  
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ABSTRACT 

Increasingly, there is a growing trend for inter-organisational collaborative Big Data sharing 

and analysis. For efficiency reasons, such Big Data analysis is usually carried out by using 

distributed computing services deployed in public clouds.  

Executing Collaborative Big Data Computation (CBDC) in a Multiple Public Cloud (MPC) 

environment introduces some open issues. One of these issues is how to maximise security 

protection level with minimum overhead costs. We set to investigate these issues based on 

the authentication property as authentication is the first line of defence in any computing 

systems. The investigation has led to the design, prototype, and evaluation of a novel 

authentication solution that takes into account of the characteristics of the underlying 

system. To this end, this thesis has made the following contributions.  

Firstly, the thesis has formulated a generic use case model for CBDC-MPC. This model 

captures an extreme form of distributed computation where multiple collaborators jointly 

perform CBDC on shared datasets using an example distributed computing framework, 

MapReduce (MR), deployed in an MPC environment. The model is used to gain a thorough 

understanding of the threats in relation to impersonation, unauthorised access, and 

alteration to data in the context and guide the design of an effective, efficient, and scalable 

authentication solution for distributed systems.  

Secondly, the thesis has proposed a novel authentication framework for CBDC-MPC. The 

framework, called the Multi-domain Decentralised Authentication (MDA) framework, 

consists of two further novel components, the Multi-factor Interaction based Entity 

Authentication (MIEA) framework and the Communication Pattern based Data 

Authentication (CPDA) framework. The MIEA framework provides risk-aware entity 

authentication to every interaction during the entire execution cycle of a data processing job. 

The framework has been analysed and evaluated both theoretically and experimentally. The 

analysis and evaluation results demonstrate that MIEA provides a stronger level of entity 

authentication but with the same level of overhead cost compared with Kerberos, one of the 

most used entity authentication protocols in a distributed computing environment. 

The CPDA framework provides data authenticity and non-repudiation of origin for every 

data object processed by the underlying system. To maximise the protection level while 

minimising the overhead cost, a novel idea of communication pattern based aggregations of 

authentication data (generation and verification operations) and communication is used in 

conjunction with multiple cryptographic schemes. The theoretical and experimental 

evaluation results show that the CPDA approach offers the strongest level of data authenticity 

protection but reduces the overhead cost by up to 67% in comparison with the most related 

solution that digitally signs every object individually.  

The results demonstrate that the idea of tailoring the design of an authentication solution 

in line with the characteristics of the underlying system brings much benefit in terms of 

supporting efficient and scalable authentication in a large-scale distributed system.  
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Chapter 1   

Introduction 

1.1 Research Context 

Big Data computing is an emerging computing approach to systematically analyse and extract 

valuable information from an ever-increasing amount of data or data that are too complex to 

be efficiently handled by traditional data processing systems. Big Data computing has been 

used in many fields, such as healthcare [1], agriculture [2], and environmental sustainability 

[3]. As part of this, there is an increase in inter-organisational data sharing and Big Data 

processing in which collaborative organisations jointly performed analysis on shared datasets 

[4][5]. For efficiency reasons, Collaborative Big Data Computation (CBDC) is usually carried 

out by using distributed computing services. In many cases, these services are hosted in public 

clouds [6][7]. In line with a trend towards computing as a utility [8][9], it is assumed that 

distributed computing services and cloud services are provided by different third-party 

service providers. Collaborative Big Data Computation being executed on a Multiple Public 

Cloud (CDBC-MPC) platform introduces a host of security concerns. The involvement of 

multiple organisations and service providers with varying levels of trust and the use of 

datasets from multiple sources with varying levels of sensitivity imply that the strongest 

security protection is required.  

Authentication is an essential security service for any computer systems, including 

collaborative Big Data processing in this context. It provides authenticity protection, and it is 

a prerequisite for other security services, such as authorisation and accounting. In this work, 

authentication is considered in two dimensions, entity authentication and data 

authentication. Entity authentication provides an assurance of the authenticity of an entity 

identity. It ensures that the entity is whom it claims to be so that only authorised entities can 

access the system. Data authentication ensures that data used during a data processing job 

are authentic, i.e., data are produced by authorised entities and have not been tampered with 

by any other entities. In addition, data authentication in this context should also provide non-

repudiation of origin protection, which is a security property to protect against false denial of 

data generation. 

1.2 Research Motivation and Challenges 

There have been many examples of distributed data processing, or CBDC-like, applications 

reported in literature, ranging from weather data analysis [10][11], biological image 

processing [12], to collaborative spam detection [13] and mission-critical applications, such 

as cyberthreat analyses [4][5]. Data sharing among multiple organisations and collaborative 

(multi-domain) data analyses can lead to more discoveries than single-domain data analyses. 

Using collaborative cyberthreat analysis as an example, performing analysis on shared 

datasets, or datasets contributed by multiple organisations, can help to detect threats which 

may, otherwise, be hard to detect by using a single-domain dataset, or a dataset contributed 

by a single organisation [14]. Data used in collaborative data analyses are from multiple 
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sources and could be accessed by entities from different administrative domains. The data 

and data processing components may be hosted in different clouds [13][15][16]. For 

efficiency reasons, the computing services used to process the data could be deployed in a 

Multiple Public Cloud (MPC) environment [17][18][19]. Owing to the complexity of CBDC-

MPC, the involvement of multiple administrative domains (i.e., collaborative organisations, 

distributed computing service providers, and infrastructure service providers), and inter-

domain data transfer and processing, there is a host of security concerns in this environment 

[20][21][22][23].  

To show potential security issues in the context, a motivating example (which will also be 

used as a running example) has been developed. The example considers a simplified use case 

of cyberthreat analysis. Collaborative organisations (e.g., government agencies and private 

enterprises) subscribe to distributed computing services provided by distributed computing 

service providers. The distributed computing service providers, in turn, deploy their services 

on infrastructures managed and provided by third-party infrastructure service providers. The 

collaborative organisations have established an agreement to share their security logs 

(containing network activity data) and perform periodical analyses (i.e., network activity 

tracing) on the shared security logs (by using the distributed computing services). They need 

to detect if there are any machine break-ins or compromises, and, if so, which other machines 

have been connected to by the compromised machines, say in the last 30 days. The 

architecture of the example is shown in Figure 1.1. In the figure, the subscripted numbers are 

the indices for entities that are of the same classes or in the same domain. The superscripted 

numbers indicate domains in which the entities belong to. 

 
Figure 1.1: The architecture of an example CBDC-MPC. 

From the figure, it can be seen that the data analysis job in the context is susceptible to 

threats from multiple sources at multiple points. There are three collaborative organisations, 

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1, 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛2, and 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3, and one organisation, 

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛4, that does not have any collaboration with the other organisations. 

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1 has two users, 𝑈𝑠𝑒𝑟1 and 𝑀𝑎𝑙1, and subscribes to a distributed computing 

service, 𝐷𝐶𝑆1, deployed in 𝐶𝑙𝑜𝑢𝑑1 and 𝐶𝑙𝑜𝑢𝑑2. 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛2 has one user, 𝑈𝑠𝑒𝑟2, and 

subscribes to another distributed computing service, 𝐷𝐶𝑆2, also deployed in 𝐶𝑙𝑜𝑢𝑑1 and 
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𝐶𝑙𝑜𝑢𝑑2. 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3 has one user, 𝑈𝑠𝑒𝑟3, and subscribes to a distributed computing 

service, 𝐷𝐶𝑆3, deployed in 𝐶𝑙𝑜𝑢𝑑3. 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛4 has one user, 𝑀𝑎𝑙4, and subscribes to a 

distributed computing service, 𝐷𝐶𝑆4, also deployed in 𝐶𝑙𝑜𝑢𝑑3. 𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3 are 

allowed to submit and execute collaborative jobs on shared datasets, as indicated by 

interactions, 1, 2, and 3, respectively. 𝐷𝐶𝑆1, 𝐷𝐶𝑆2, and 𝐷𝐶𝑆3 may exchange data with each 

other, as indicated by interactions, 4, 5, and 6, respectively. Many of the communications 

among the components of 𝐷𝐶𝑆1, 𝐷𝐶𝑆2, and 𝐷𝐶𝑆3 (e.g., those indicated by interactions 5 and 

6) are of inter-cloud. 𝑀𝑎𝑙1, although not authorised to submit any collaborative jobs, may try 

to access the data, as indicated by interaction 7. 𝑀𝑎𝑙4 may try to access the data through 

𝐷𝐶𝑆4 (which is compromised) as indicated by interactions, 8 and 9, or intercept data-in-

transit as indicated by interaction 10. More details regarding the use case and the architecture 

of the example are explained in Chapter 4 . 

Without a proper authentication protection, an unauthorised entity may gain access to 

the distributed computing services, security logs, and other data generated, processed, and 

used during the analysis. In addition, if there is no mechanism to hold a participating entity (i.e., 

an authorised insider) accountable for its actions, the entity may cover up or falsely deny any 

unintentional or accidental errors that may impact on the data analysis results. An authorised 

entity (e.g., an unhappy or compromised employee) may even perform malicious actions on the 

logs such as altering the contents of the logs (e.g., adding, modifying, and deleting log entries). 

Examples of real-world incidents caused by insider attacks are reported in [24], [25], and [26].  

From the perspective of the organisations (as a distributed computing service consumer), 

violation of data authenticity protection may severely disrupt the analysis. Analysis results 

that are produced with tampered or incomplete security logs are contaminated. Such 

contaminated results will lead to wastage of resources and possibly more severe 

consequences, e.g., some compromised machines may go undetected, which could be used 

as springboards for launching further attacks.  

From the perspective of the distributed computing service providers, such security 

breaches could tarnish their brands and reputations, leading to the loss of customer loyalty. 

Existing customers may switch to alternative service providers. The resulting negative 

publicity may make it harder for the affected service providers to attract new customers. The 

service providers may have to spend a large sum of money to repair their brands and 

reputations. They may even be levied heavy fines for failing to comply with data protection 

regulations (e.g., UK Data Protection Act 2018 [27] and General Data Protection Regulation [28]).  

On the other hand, if an authentication service is implemented and applied, an 

unauthorised entity could not gain access to the distributed computing services and the data 

used in the analysis, making it more difficult to cause harm to the system and data. 

Organisations are assured that only authorised entities are allowed to use the distributed 

computing services and data, and entities can be hold accountable for their actions. 

Distributed computing service providers can build up their reputation and earn trust of the 

users (organisations). Hence, organisations need an authentication service to protect their 

data. Service providers also have incentives to provide such an authentication service to meet 

the demands of the organisations.  
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Existing authentication solutions are not specifically designed for distributed Big Data 

computing services or CDBC in the MPC context. Some of the existing entity authentication 

solutions [29], [30], [31], [32], [33] only authenticate entities at the gate level, i.e., before the 

entities are granted with accesses to the services and data. They are designed to thwart 

threats from outsiders or external entities. They do not address threats from authorised 

insiders and are vulnerable to session hijacking attacks. Others [34], [35], [36] can support 

more fine-grained authentication (i.e., interaction-level authentication), but the impact of 

communication overheads on the authentication performance was not taken as a main design 

consideration in these solutions. Therefore, their suitability to Big Data computation is not 

high. With regard to data authentication solutions, there are solutions that are based on 

cryptographic cryptosystems (symmetric-key based and asymmetric-key based) and other 

solutions that use a task replication approach. The symmetric-key based solutions [37], [38] 

cannot protect against insider threats as all the entities in a group would know the same 

secret, so it is hard to identify who the perpetrator is if there is any tampering with the data. 

Although the asymmetric-key based solutions [39], [40], [41], [42], [43] can address this issue, 

i.e., by ensuring data authenticity and originator accountability, they are computationally 

expensive (the execution time of an asymmetric-key operation could be a thousand times of 

that of a symmetric-key operation [44][45]). The expensive cost makes this group of solutions 

unsuited to time-sensitive Big Data applications. The task replication based solutions [46], 

[47], [48], [49] [50] make use of a task replication approach for output verification. With this 

approach, a single task is executed by multiple workers, thus multiplying the resources 

required to execute each task. This could quickly deplete the computation resources and limit 

the number of data processing jobs that can be run concurrently on the shared resources.  

Motivated by these observations, this research aims to investigate how to support cross-

domain Big Data sharing and computing more securely and efficiently. Cross-domain 

computation indicates that security should be provided at the strongest level while the trust 

on participating entities should be minimal. Big Data computation indicates that security 

mechanisms provided should be as efficient and as scalable as possible and introduce as less 

overhead as possible. In other words, in this research, we need to address the following two 

main challenges:  

(CI1) How to provide the strongest authentication protection for inter-organisational Big 

Data computing using distributed systems deployed on a multi-cloud platform?  

(CI2) How to minimise the overhead incurred in achieving such authentication protection 

and make the rate of increase in overhead in relation to the scale of the distributed 

computing services as low as possible?  

1.3 Research Aim and Objectives 

The aim of this research is to investigate how to achieve effective, efficient, and scalable 

authentication for CBDC-MPC. This aim is supported by the following objectives.  

(RO1) To gain a better understanding of the characteristics of CBDC-MPC and how these 

characteristics correlate to threats and security provisioning in relation to 

authentication. 
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(RO2) To investigate how to best support entity authentication in the context in terms of 

enhancing protection levels while minimising overhead cost.  

(RO3) To investigate how to best support data authentication in the context in terms of 

enhancing protection levels and achieving fine-grained protection while minimising 

overhead costs.  

1.4 Research Question and Hypothesis 

The research question that guides this investigation is: how to achieve effective, efficient, and 

scalable authentication to support multi-domain Big Data processing in the context of CBDC-

MPC? To answer this research question, we should answer the following further questions: 

(Q1) What are avenues for authentication related threats, or how these threats are 

mounted, in this environment? 

(Q2) How to enhance the protection levels of entity authentication? 

(Q3) How to enhance the protection levels of data authentication? 

(Q4) How to minimise overhead introduced in providing these authentication services? 

The hypothesis of this work is that by taking into account of the characteristics of the 

underlying distributed computing services, processing and storage infrastructures, and 

security facilities, we can strengthen the protection level with minimum cost. 

1.5 Research Methodology 

The research methodology used in this project consists of four components: literature review 

and knowledge gap identifications, solution design, security analysis and performance 

evaluation, and experimental implementation.  

1.5.1 Literature Review and Knowledge Gap Identifications 
The first task carried out in this research was to thoroughly study related work. A survey on 

trends for distributed computing systems and architectures of commonly used distributed 

computing frameworks was conducted to investigate their characteristics and how data 

processing is carried out. We formulated a generic use case model, and based on this model, 

we analysed authentication related threats and attacks to the system. Based on the identified 

threats, a set of requirements were specified for an authentication solution. Next, we 

extensively investigated and critically analysed related existing authentication solutions to 

identify their strengths and limitations with the aim of building our solution on their strengths 

but overcoming their limitations. Combined with the characteristics of the underlying systems, 

the insights gained from related work survey have led us to the design of our effective, efficient, 

and scalable authentication solution. In addition, we have been regularly reviewing relevant 

literature throughout this research. The insights gained from the review are used to improve 

and refine the design of our solution. This task accomplishes the objective (RO1).  

1.5.2 Solution Design 
The second task carried out in this research was to propose and design an authentication 

solution for distributed systems in the context of CBDC-MPC. By using the characteristics 

observed on the generic use case model and the merits of existing authentication solutions, 

a number of novel ideas and measures were proposed to address the identified knowledge 
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gaps. This has led us to the design of a novel Multi-domain Decentralised Authentication 

(MDA) framework. It consists of two frameworks, a novel Multi-factor Interaction based 

Entity Authentication (MIEA) framework and a novel Communication Pattern based Data 

Authentication (CPDA) framework. We took a modular approach to the designs of these 

frameworks so that all or part of the frameworks can be applied to other distributed systems 

in similar contexts. These frameworks have been repeatedly refined and polished by 

considering new insights gained from regular literature survey and the results of analyses on 

the frameworks.  

1.5.3 Security Analysis and Performance Evaluation  
The third task carried out in this research was to analyse the security and evaluate the 

performance of the MIEA and CPDA frameworks. The security properties of the frameworks 

were informally analysed against the specified security requirements. In addition, the security 

properties of MIEA were also formally analysed by using a symbolic analysis method (assisted 

with a software verification tool). The security strengths of the frameworks were then 

formally analysed by using complexity analysis. The performances of the frameworks were 

theoretically evaluated in terms of computational and communication costs introduced. 

These overhead costs were, respectively, measured as the number of cryptographic 

operations performed and the number and sizes of protocol messages exchanged.   

1.5.4 Experiment Implementation 
The performances of the MIEA and CPDA frameworks were further evaluated by experimental 

evaluations. Two sets of experiments were conducted on real-system testbeds with mock-up 

and real-world datasets under different parameter settings. For experiment setups, 

evaluation metrics were defined, evaluation methods were designed, and parameters for 

cryptographic building blocks were discussed. The components (i.e., authentication methods 

and protocols) of the MIEA and CPDA frameworks were then implemented by using both C++ 

and Python programming languages with the Botan cryptographic library. In the first set of 

experiments, the execution times of MIEA protocols were measured to evaluate the impacts 

of different parameter settings on MIEA. In the second set of experiments, the times taken to 

execute data processing jobs when the CPDA framework is applied were measured against 

sets of parameters. The results were compared with those of the most related entity and data 

authentication solutions.  

Conclusions were drawn from the analyses and evaluations, and recommendations for 

future work were given. The research findings were documented and published in a high-

ranking peer-reviewed journal. The design and evaluation of the MDA framework satisfy the 

objectives (RO2) and (RO3). 

1.6 Novel Contributions and Publications 

The research work presented in this thesis has led to the following novel contributions and 

publications.  

1.6.1 Novel Contributions  
The main contributions of this work are listed as follows.  
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(NC1) A generic use case model for CBDC-MPC: The first novel contribution is the 

formulation of the CBDC-MPC model. CBDC in this model implies that there is a large 

volume of data that are contributed by more than one organisation and that should 

be processed in a timely manner. MPC means that the data are processed by a large 

number of data processing components that are managed or provided by different 

administrative organisations. CBDC-MPC indicates that security threats in this setting 

are not only from outsiders but also from authorised insiders and requires that the 

overhead introduced in protecting the data against these threats should be as low 

as possible. Owing to the volume of data and the number of processing components 

involved, a slight increase in the overhead introduced in protecting a single data item 

(hereafter referred to as a data object) on an individual component could be greatly 

amplified, the larger the volume of the data and the scale of the service, the larger 

the amplification effect. The security related processing overhead may cause 

performance bottlenecks in the system, depleting the benefit of using large-scale 

distributed components. There are other multi-cloud models that support the 

storage or transfer of a large volume of data but have a less stringent requirement 

for timely data processing. Example of such models are distributed data storage 

models that are based on blockchains [51][52] and data collection models from a 

large scale (e.g., inter-region or inter-continent) wireless sensor networks or Internet 

of Things [53][54][55]. Research problems addressed in these existing models are 

different from ours. For example, the blockchain based model focuses on protecting 

the integrity of data at rest, whereas our CBDC-MPC model is aimed at protecting 

data in their entire processing lifecycle, from when the input is being entered into 

the system to when final computational results are ready to be collected. This 

lifecycle contains threats to data in-transit and threats to data that are processed by 

multiple, potentially a large number of, components managed in different 

administrative domains. Although the security issues in relation to data in-transit are 

considered in the multi-cloud data collection models for wireless sensor networks 

and Internet of Things, the design assumptions and requirements for the models are 

different from those for CBDC-MPC due to the constraint of computation resources 

and the need for minimising power consumption on data collecting devices. In these 

models, data usually flow from multiple nodes (devices) to a single sink node and 

there are minimal computations by, and communications among, the nodes, 

whereas, in the CBDC-MPC model, individual data processing nodes may execute 

resource-intensive tasks and interact with many other nodes. The CBDC-MPC model 

captures the entities involved in the entire cycle of a CBDC job execution and how 

the entities interconnect and communicate to collaboratively accomplish the 

execution of a data processing job. This model shows the avenues for authentication 

related threats and attacks and the characteristics that should be captured in the 

design of an effective, efficient, and scalable authentication solution for CBDC-MPC. 

The formulation of the model has laid the groundwork for other contributions made 

in this thesis. This contribution answers the research question (Q1) and it is fully 

described in Chapter 4 .  
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(NC2) A novel approach to entity authentication for CBDC-MPC: The second novel 

contribution is the proposal and investigation of a novel approach, an interaction 

based approach, to entity authentication in the context. This approach has been 

implemented by the design, prototype, and evaluation of a novel entity 

authentication framework, called the Multi-factor Interaction based Entity 

Authentication (MIEA) framework. The framework provides entity authentication 

protection to every interaction taking place during the entire cycle of the execution 

of a data processing job. The level of protection is adjusted based on the level of risks 

experienced by the interaction. This contribution answers the research questions 

(Q2) and (Q4) and it is fully described in Chapter 5 . 

(NC3) A novel approach to data authentication for CBDC-MPC: The third novel contribution 

is the proposal and investigation of a novel approach, a communication pattern 

based approach, to data authentication in the context. This approach has been 

implemented by the design, prototype, and evaluation of a novel data 

authentication framework, called the Communication Pattern based Data 

Authentication (CPDA) framework. The framework optimises the trade-off between 

security protection level and computational and communication overhead costs by 

aggregating the operations of authentication data (data that are used for 

authentication, e.g., MAC tokens and digital signatures, are collectively referred to 

as authentication data (AuthData)) generation and verification, and the 

communications transferring the AuthData, based on the communication patterns 

between data producers and consumers. The framework provides a data 

authentication service at the finest granularity level, with the strongest protection level, 

but with an overhead cost that is lower than the related solutions. This contribution 

answers the research questions (Q3) and (Q4) and it is fully described in Chapter 6 . 

1.6.2 Publications 
Parts of the research work presented in this thesis have been reported in the following 

journals.  

• Sirapaisan, S., & Zhang, N. (2021). Multi-factor Interaction Based Entity Authentication 

(MIEA) Designed for Big Data Processing in a Multiple Public Cloud Environment. (In 

progress) 

• Sirapaisan, S., Zhang, N., & He, Q. (2020). Communication Pattern Based Data 

Authentication (CPDA) Designed for Big Data Processing in a Multiple Public Cloud 

Environment. IEEE Access, 8, 107716–107748. https://doi.org/10.1109/ACCESS.2020.3000989  

1.7 Thesis Structure 

The thesis structure is summarised in Figure 1.2. The remainder of this thesis is structured as 

follows.  

Chapter 2 introduces background for this research in the topics of Big Data computing 

systems and platforms, and related existing entity and data authentication solutions.  

Chapter 3 describes cryptographic building blocks used in the design of our novel 

authentication solution.  

https://doi.org/10.1109/ACCESS.2020.3000989
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Chapter 4 explains the construction of a generic use case model for CBDC-MPC which is 

the first novel contribution of this thesis. Based on the model, it gives threat analysis 

and requirement specifications. It presents an overview of our novel authentication 

framework, the MDA framework.  

Chapter 5 details the design and evaluation of our novel entity authentication framework, 

the MIEA framework, which is the second novel contribution in this thesis.  

Parts of this research will be submitted for publication in a journal.  

Chapter 6 details the design and evaluation of our novel data authentication framework, 

the CPDA framework, which is the third novel contribution in this thesis.  

Parts of this research have been published in a peer-reviewed journal as: 

“Communication Pattern Based Data Authentication (CPDA) Designed for Big Data 

Processing in a Multiple Public Cloud Environment” [44]. 

Chapter 7 gives detailed operational steps for the running example to explain how 

MapReduce (an example Big Data processing model) executes a job without MDA (our 

solution) and how it executes the job with MDA.  

Chapter 8 concludes this thesis and suggests directions for future work.  

 
Figure 1.2: Thesis structure.  
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Chapter 2   

Big Data Computing: Issues, Challenges, and 

Solutions 

2.1 Chapter Introduction 

This chapter introduces the concept of Big Data computing and compares systems and 

platforms used to carry out Big Data computing. It then discusses security issues and 

challenges in addressing such issues in the context of CBDC-MPC. It critically reviews existing 

entity authentication and data authentication solutions with the aim of identifying knowledge 

gaps and areas for improvement. In addition, this chapter also outlines a way forward to 

address these knowledge gaps.  

In detail, Section 2.2 introduces Big Data computing and systems supporting Big Data 

computing. Section 2.3 identifies security issues of Big Data computing using distributed 

computing systems and challenges in addressing the issues. Sections 2.4 gives critical analysis 

on related existing entity and data authentication solutions and highlight what is missing. 

Section 2.5 suggests a way forward to address the identified issues. Lastly, Section 2.6 

concludes the chapter. 

2.2 Big Data Computing: Concepts and System Models 

This section introduces the concept of Big Data computing and a trend for inter-organisational 

data sharing and analysis. It then compares two prominent system models, grid and cloud 

models, that can support Big Data computing and select one as a reference distributed 

computing system model.  

2.2.1 Big Data Computing and Collaborative Data Analysis 
Big Data computing is an emerging computing approach to systematically extract and analyse 

valuable insights from data that are large in quantity or too complex to be dealt with 

efficiently by traditional data processing applications [56][57]. Big Data are usually described 

by three characteristics: (1) high volume, this refers to the quantity of data generated, stored, 

and processed, the size of Big Data is usually larger than TBs (terabytes) and PBs (petabytes); 

(2) high velocity, this refers to the speed at which Big Data are generated and processed, Big 

Data are usually generated and processed at a high speed, e.g., real-time or near real-time; 

and (3) high variety, this refers to the types of data, Big Data may contain data that are 

different in types (e.g., sensor data, texts, images, and videos) and could be structured, semi-

structured, or unstructured. Typically, Big Data are collected from multiple distributed and 

heterogenous sources [56], such as social media [58] and sensors [59]. 

To further diverse the sources of Big Data thus increasing the likelihood of capturing more 

valuable insights, many organisations have established collaboration for inter-organisational 

data sharing and performing analysis on the shared datasets. One example of such 

collaborations is cyberthreat data sharing and analysis [4][5][60][14][61]. As individual 
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organisations usually have to routinely perform analysis on their datasets, collaborative data 

analysis can reduce these repetitive tasks; they jointly perform analysis on the shared dataset 

once, and the analysis result can be shared among the organisations. In addition, collaborative 

data analysis may also help shorten the time needed to gather insights, allowing the 

organisations to make use of the insights in a timely manner. This is crucial for many 

applications, particularly those that are time sensitive. Using cyberthreat analysis and 

detection as an example, collaborative cyberthreat analysis could lead to earlier detection of 

threats such as Advance Persistent Threats (APTs) which are difficult for individual 

organisations to detect, allowing faster application of countermeasures or implementation of 

mitigation plans.  

Owing to large quantity and high complexity, traditional computing systems are not suited 

to handle Big Data processing with a stringent timeliness requirement. Rather, distributed 

computing systems are frequently used for this task [62]. Comparisons of distributed 

computing systems supporting Big Data computing are given in Section 2.2.2. 

2.2.2 System Models 
Generally, a distributed computing system refers to a system that consists of multiple 

networked autonomous machines, each of the machines has its own processing and storage 

components, and the machines communicate with each other through networks [63]. These 

machines collectively form a pool of shared (processing and storage) resources. An 

application running on a distributed computing system is referred to as a distributed 

computing service. At a high level, the execution of a data processing job using a distributed 

computing service is done by dividing the job into multiple smaller tasks and executing these 

tasks on distributed machines concurrently, the higher the degree of concurrency, the higher 

efficiency of the job execution.  

Distributed computing systems are used in a wide range of applications with different 

requirements thus models. Two of the most notable models that can support Big Data 

computing are grid and cloud models [64][65][66]. From users’ perspective, grids and clouds 

have many similarities as they both share the same goal of providing services to the users 

through a pool of shared resources. They both support multi-tenancy (i.e., multiple users can 

access a single grid or cloud service concurrently) and multi-tasking (i.e., each user may use 

multiple application services hosted in the system to perform different tasks). Both grids and 

clouds can also support many application services. To contrast the two models, we have 

drawn the following criteria.  

(SMC1) Deployment, management, and business opportunity: The adoption of a system 

model is influenced by how a distributed computing system can be deployed and 

managed, what applications can be hosted on the system, and what business models 

are. 

(SMC2) Usability: Usability is an important factor for the selection of a system model by 

users. It is considered in terms of resource provisioning, infrastructure visibility, 

performance, and scalability.  

(SMC3) Security implications: The two system models are designed based on different design 

assumptions. They may experience different threats and attacks. We should select a 
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model that presents a broader set of security issues so that a security solution 

designed for the chosen model should also be able to address some or all of the 

issues faced by the other model.  

The comparisons of the grid and cloud models against the specified criteria are 

summarised in Table 2.1.  

Table 2.1: The comparisons of the grid and cloud models. 

  Grid Cloud 

(SMC1) Deployment Usually, a grid is constructed at a large 
scale, i.e., a regional, national, or a 
global scale. The infrastructures 
supporting the system could be 
provided by a government or 
collaborative organisations with a 
particular interest.  

There are many options for cloud 
deployment. For example, a cloud 
could be deployed for exclusive use by 
a single organisation or for shared use 
by multiple organisations. The 
infrastructures hosting the cloud could 
be managed by the organisations 
using the cloud or a third-party cloud 
service provider.  

Control and 
management 

The infrastructures hosting the system 
could be provided by a single 
organisation (e.g., a government) or 
multiple collaborative organisations. 
In the latter case, the control and 
management of the system are shared 
among the organisations.  

A cloud is usually controlled and 
managed by a single entity, either an 
organisation (user) or a cloud service 
provider. It is also possible to share the 
control and management of clouds 
among multiple organisations if the 
cloud is hosted on infrastructures 
managed by these organisations.  

Supported 
applications 

A grid is commonly used to host 
computation-intensive applications, 
particularly large-scale collaborative 
scientific research projects.  

A cloud is designed to support a wide 
range of online services and 
applications, both generic and specific 
purposes. It is particularly suited to 
applications with dynamic demands 
for computation resources.  

Business model Grids are usually formed to support 
particular projects and the 
infrastructure hosting the systems 
could be sponsored by governments, 
international organisations, or 
communities. The members of the 
projects may use the grids free of 
charge.  

If a cloud is provided and managed by 
a third-party service provider, users 
may negotiate the price for using the 
system with the service provider. 
Currently, many service providers 
adopt a pay-as-you-go model [67], i.e., 
users are only charged for the 
resources they use.  

(SMC2) Resource 
provisioning 

Most grids use a batch-scheduling 
approach for resource provisioning, 
i.e., a user submits a request for 
resources for a period of time, the 
request is queued, and when the 
resources are available, the resources 
will be allocated and assigned to the 
user.  

A cloud aggregates all available 
distributed resources to create a pool 
of resources. These resources are 
shared by all the users. Clouds usually 
respond to request for resources 
submitted by users in a relatively 
shorter time.  

Infrastructure 
visibility 

There is no or little abstraction of 
resources allocated to a user. The user 
may be able to access the resources of 
the underlying infrastructure directly.  

Resources are isolated and abstracted 
by using a virtualisation technology. 
Users can only access the abstracted 
resources and these resources can be 
viewed as users’ private resources. 
The underlying infrastructures are not 
visible to the users.  
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  Grid Cloud 

Performance Grids can support high performance 
computing through federated 
resources. In a grid, resource 
scheduling is relatively light weight, 
thus, causing less performance loss.  

In a cloud, resources allocated for 
different users are isolated and 
abstracted by using a virtualisation 
technology, causing performance 
penalties. However, the advancement 
of hardware virtualisation in recent 
years has been gradually closing the 
gaps of performance.  

Scalability Resource scalability is relatively less 
flexible. Users typically have to 
negotiate resources with grids in 
advance.  

Clouds support on-demand resource 
provisioning, i.e., resources allocated 
to users are adjusted dynamically 
upon users’ request.  

(SMC3) Trust In a grid, there could be multiple 
logical groups of users (collaborative 
organisations), each group is called a 
virtual organisation. A virtual 
organisation is formed based on a set 
of resource-sharing rules and 
conditions. It is assumed that entities 
of the same virtual organisation are 
equally trustworthy.   

In a cloud provisioned for exclusive use 
by a group of organisations, users of 
such a cloud are assumed to be equally 
trustworthy. However, if a cloud is 
provisioned for open use by any 
organisations, users of such cloud are 
assumed to be not equally 
trustworthy.  

Security 
responsibility 

Grids adopt a shared-responsibility 
model, i.e., collaborative organisations 
are responsible for implementing and 
managing security protections for 
different parts of the system. Security 
responsibility for each organisation is 
usually well defined.  

Clouds also adopt a shared-
responsibility model. However, the 
division of the responsibility is 
different from that grids. Security 
responsibility is divided between a 
cloud service provider and users 
(organisations) using the cloud. The 
users should clearly discuss 
responsibility division with the cloud 
service provider when negotiate a 
service contract.  

Security 
auditing 

It is relatively simpler to facilitate 
security auditing in grids. Individual 
organisations may use existing 
mechanisms to implement local 
security auditing. All the organisations 
may discuss how to implement global 
security auditing.  

It is relatively harder to facilitate 
security auditing in clouds. Users of a 
cloud can only view a virtualised 
environment given by the cloud. They 
cannot see what happen outside the 
virtualised environment. In most 
cases, users usually are not allowed to 
perform security audit by themselves 
on the cloud.  

Networking A grid is established on shared 
resources from different 
administrative domains. Resources 
hosted within an administrative 
domain are usually connected via 
Local Area Networks (LANs), whereas 
resources hosted in different domains 
are connected via Wide Area 
Networks (WANs) or the Internet.  

Cloud resources that are hosted within 
each particular infrastructure are 
usually connected via LANs or 
dedicated private networks. 
Resources that are hosted in different 
infrastructures could be connected via 
WANs or the Internet.  

Security model Grids are built on an assumption that 
infrastructures hosting grids are from 
different geographical locations and 
managed by different administrative 
domains. As cross-domain data 

The design of clouds mainly focuses on 
the abstraction of a large pool of 
shared resources and the support of 
on-demand resource access by users. 
Security protections are not 
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  Grid Cloud 

transfer and computations are 
vulnerable to various threats and 
attacks, many security considerations 
have been taken into the design of 
grids, e.g., single sign-on 
authentication, accounting, and 
auditing.  

incorporated into the design of clouds. 
In many cloud implementations, third-
party security services are used to 
provide desired security protections.  

The summary shown in Table 2.1 suggests that the cloud model is a more suitable system 

model for this research work. The cloud model provides a higher flexibility for system 

deployment as it offers multiple deployment options each suited to a different group of users. 

It also supports a wide range of distributed computing applications. This implies that the cloud 

model may attract a wider group of users. With a cloud model, a user may choose to subscribe 

to a cloud service provided by, or delegate the management of the cloud to, a third-party 

cloud service provider. Many cloud service providers also adopt a pay-as-you-go pricing 

model, i.e., users only pay for what they use. These could be more cost effective than 

establishing and maintaining the underlying infrastructure by the users themselves. The cloud 

model gives each of the users a private set of resources via resource isolation and hides the 

complex structure of the underlying infrastructures from the users. These are beneficial and 

more favourable to the users as they can pay more attention to the data analysis process 

without the troubles of handling low-level resources of the infrastructures. Although, grids 

generally give higher performance than that of clouds, the performance gaps between them 

are closing as the virtualisation technology advances. In addition, clouds have higher flexibility 

in scaling resources based on users’ demand. This could also be used to help improve the 

performance of distributed computing services hosted in clouds. The cloud model 

experiences a higher level of risk and may present a broader set of security issues than those 

of the grid model. This is because users from different administrative domains which may not 

be equally trustworthy have certain access to the shared resources provided by the same 

cloud. Users of clouds do not have any visibility outside the virtualised environment given by 

the cloud, so they have to trust the cloud service provider to implement necessary security 

measures. In addition, as security was not one of the main considerations in the design of 

clouds and clouds are susceptible to a wide range of threats and attacks due to the nature of 

cross-geological-location resource sharing, there are rooms for improvement to strengthen 

security protection for clouds. For these reasons, distributed computing systems discussed in 

this research are based on the cloud model.  

In the next section, we further examine the essential characteristics, the deployment 

models, and the service models of clouds with the intention of identifying a deployment 

model and a service model that are suited to collaborative Big Data computing in this context. 

We also explain how the cloud model follows a trend for utility computing.  

2.2.3 Cloud Computing  
According to the definition of cloud computing given by National Institute of Standards and 

Technology (NIST) [68], which is one of the most widely accepted definitions for cloud 

computing, the cloud model consists of five essential characteristics: on-demand self-service, 

broad network access, resource pooling, rapid elasticity, and measured service.  
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(CC1) On-demand self-service: Users can request for and acquire resources (e.g., CPU units 

and size of storage) from a cloud dynamically as needed without contacting with a 

human operator of the cloud service provider.  

(CC2) Broad network access: Users can use network-enabled devices, such as laptops and 

smartphones, to access services hosted in a cloud via networks.  

(CC3) Resource pooling: The resources of a cloud are aggregated from multiple clusters of 

machines which could be in different regions or countries. These resources are 

dynamically assigned and reassigned to different users based on the users’ demand. 

Users generally do not have a fine-grained control and knowledge over the exact 

location of the provided resources.  

(CC4) Rapid elasticity: Resources can be elastically provisioned to and released from users 

automatically. In other words, resources allocated to each user can be scaled up and 

down to meet the user’s requirement at any time.  

(CC5) Measured service: Resource usage by each user is monitored, controlled, and 

reported to both the user and the cloud service provider so that both parties can see 

how much of each type of resources has been used. 

These characteristics correlate to how security protections should be provided to cloud 

based distributed computing services. This will be discussed in Section 2.3.  

The deployment models for clouds can be largely categorised into four models: private 

cloud, community cloud, public cloud, and hybrid cloud models.  

(CD1) Private cloud model: A private cloud is provisioned for exclusive use by a single 

organisation (which usually have multiple users, i.e., employees of the organisation). 

It may be owned, managed, and operated by the organisation using the cloud or by 

a third-party cloud service provider.  

(CD2) Community cloud model: A community cloud is provisioned for exclusive use by a 

group of organisations sharing the same interest (e.g., collaborative organisations). 

It could be owned, managed, and operated by one or more members of the group 

or by a third-party cloud service provider.  

(CD3) Public cloud model: Unlike private clouds and community clouds, a public cloud is 

provisioned for open use by any organisations or individual users. It is usually owned, 

managed, and operated by a cloud service provider.  

(CD4) Hybrid cloud model: A hybrid cloud is a composition of two or more distinct cloud 

models described above. The clouds forming the hybrid cloud are connected by using 

proprietary or standardised mechanisms.  

In comparison with the private cloud, community cloud, and hybrid cloud models, the 

public cloud model is exposed to a higher level of security risks as a public cloud is open for 

public use by any organisations and users which are not equally trustworthy. Sensitive data 

may be processed by, and stored in, the public cloud. Curious or malicious users may attempt 

to mount attacks on the cloud to gain unauthorised access to the data. Therefore, the public 

cloud model requires a more stringent security protection. For this reason, the research work 

presented in this thesis will be based on the public cloud model.  
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Regarding service models for clouds, service models can be largely categorised into three 

groups: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-

Service (IaaS) models.  

(CS1) SaaS model: A cloud service provider provides application services to users. The 

application services are running on a cloud infrastructure. The users may access the 

applications by using client applications, such as web browsers, running on network-

enabled devices. The users do not control or manage the underlying cloud 

infrastructure (i.e., hardware components such as storage and network appliances, 

and software components such as operating systems and databases), but they are 

usually allowed to change limited application-specific configuration settings.  

(CS2) PaaS model: A cloud service provider provides software platform services to users. 

A software platform service consists of software components, such as databases and 

Software Development Kits (SDKs), which allow the users to build their cloud based 

applications on the provided platform and deploy the applications in the cloud. The 

users do not control or manage the underlying cloud infrastructure and the software 

platform. However, they have control over the applications they developed and are 

usually allowed to adjust limited configuration settings for the environment hosting 

their applications.  

(CS3) IaaS model: A cloud service provider provides computation resource services to 

users. A computation resource service provides fundamental computation 

resources, such as processing and storage, which can be used to build, deploy, and 

run any software. The users do not control or manage the hardware components of 

the underlying cloud infrastructure. However, they have full control over software 

applications that are running on the provided computation resources and they can 

also request for more (or less) resource provisioning on demand.  

In the IaaS model, users have a higher degree of flexibility in terms of full control over 

software components run on the cloud compared to the SaaS and PaaS models. In exchange 

for such control, the users have to manage all the software components and apply security 

measures to protect these software components by themselves. Applications and services 

running in the cloud are exposed to a higher level of security risk as there are more avenues 

for attacks and more opportunities for attackers to mount attacks on the applications and 

services. Based on this observation, IaaS is chosen as the service model for cloud services used 

in this research work.  

With a wide variety in choices of deployment and service models and the characteristic of 

metered service, clouds have been moving the ways computation services are provided and 

consumed towards a utility computing model [8][9]. Cloud service providers can offer 

different types of services, i.e., SaaS, PaaS, IaaS, or a combination of these. A resource sharing 

approach improves resource utilisation, which is also beneficial to cloud service providers. As 

different users may need different resources at different times, cloud service providers do 

not have to excessively over provision resources for the users, resources released from one 

user can be assigned to another user that requests for more resources. SaaS cloud service 

providers can also build their services on top of PaaS or IaaS services offered by other cloud 

service providers. Examples of such cases includes Netflix, Salesforce, and Snap Inc. who build 
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their applications on Amazon Web Service (AWS) offered by Amazon [69]. AWS provides 

various computation resources to its customers. In addition, users also have freedom to 

choose any services offered by any cloud service providers in any combination they like.  

2.3 Issues and Challenges 

Unlike single-domain Big Data computing where an organisation has full control over data and 

the systems used for computation, the control and management of data and the systems in 

this inter-organisational setting is much more complex due to the involvement of multiple 

entities from different administrative domains. Data with varying levels of sensitivity are 

shared among collaborative organisations, and within each of the organisations, users with 

different levels of access permission also have access to storage hosting the data. These data 

could also be transferred between the respective organisations and external infrastructures 

for the purposes of data processing and storage. The organisations (data owners) do not have 

full control over data that are stored in infrastructures managed by other entities (data 

custodians and users) in other administrative domains. Unauthorised access to these data by 

unauthorised entities could lead to serious consequences, particularly if the data are mission 

critical. Using cyber threat analysis and attack detections [70][14] as well as medical condition 

diagnosis [71] as examples, in the first example, unauthorised access to security logs allows 

an attacker to learn critical information of the system and delete traces of unauthorised 

access to the systems, making security breaches go undetected and allowing the attacker to 

proceed with further attacks, causing more harm to the systems. In the second example, 

unauthorised access to medical data by unrelated personnel not only violates the privacy of 

patients, but also gives a malicious attacker an opportunity to tamper with the medical data 

which could lead to misdiagnoses, causing harm to the patients or even loss of life.  

Owing to the large size of data used in CBDC (e.g., hundreds of petabytes of particle 

collision data for scientific research [72], 24 billion triples (a triple is a set of three elements, 

i.e., a subject, a predicate, and an object) of Semantic Web data for reasoning [73], tens of 

terabytes of data per day for social network analytics [74][75]), for efficiency reasons, large-

scale distributed computing services deployed in a Multiple Public Cloud (MPC) environment 

are commonly used. Carrying out CBDC in an MPC environment further complicates the issues 

as data with varying levels of sensitivity are stored in and processed by clouds which can be 

accessed by entities with varying levels of trust. The datasets to be processed as well as the 

computing and storage components used may be physically located in different geographical 

locations and managed in different administrative domains. In such cases, the datasets, the 

components, and the underlying infrastructures are likely to be connected via WANs or the 

Internet, which are vulnerable to a wide range of security threats and attacks. The lack of 

national boundaries and the anonymous nature of the Internet make the prevention and 

detection of threats and attacks much more difficult, if not impossible. Furthermore, threats 

imposed by authorised insiders are also a major concern [76][77][78]. Unlike external entities, 

insiders usually have certain privileges to access data and the systems used to process the 

data, so they have more opportunities to tamper with the data and systems. In addition, for 

Big Data processing, the requirements of efficiency and scalability are more stringent. As a 

distributed system is usually optimised to support concurrent data processing, a slight 
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increase in one or both of computational and communication overheads may significantly 

deteriorate the performance of the entire system. 

To efficiently support secure Big Data computing in the context of CBDC-MPC, the 

following challenges should be addressed.  

(CH1) How to provide security protection with minimum intervention by users and service 

providers? Clouds are designed to serve users with minimum intervention from 

human operators. During a data processing job, there will be many interactions 

between service components and the user submitting the job may not always be 

present as the job could last for a long time. Therefore, security protection should 

be provided with minimum user and service provider intervention.  

(CH2) How to achieve the strongest entity authentication throughout the execution of a 

data processing job? Due to the involvement of multiple entities from different 

administrative domains with varying levels of trust, the strongest level of entity 

authentication protection is required to ensure that only authorised entities can gain 

access to data and systems at any time during a data processing job.  

(CH3) How to achieve the strongest data authentication at the finest granularity? Data with 

varying levels of sensitivity are hosted in clouds managed by external cloud service 

providers and these data could be accessed by entities from different administrative 

domain. These data should be protected at the object level with the strongest data 

authentication protection.  

(CH4) How to minimise the overhead costs incurred in achieving such protections? In 

CBDC-MPC, Big Data are implied. Because of a large volume of data are used during 

a data processing job and a large number of service components are used to process 

such data, a slight increase in overhead cost (computational and communication) 

could considerably degrade the performance of system. Hence, the overhead cost 

incurred in achieving such protection should be kept minimum.  

(CH5) How to balance a trade-off between security protection and overhead costs? 

Usually, the strength of security protection provided comes with overhead cost 

imposed on the system, the higher the level of security protection, the higher the 

overhead cost introduced. In this CBDC-MPC context, balancing a trade-off between 

protection strength and overhead cost is crucial.  

2.4 Existing Authentication Solutions and Knowledge Gaps 

In line with our aim of investigating how to support secure CBDC on an MPC platform, we 

have extensively reviewed existing authentication solutions with focus on entity and data 

authentication. In the following, we give a high-level summary of these authentication 

solutions and identify knowledge gaps.  

2.4.1 Entity Authentication 
Most existing entity authentication solutions are designed based on an assumption that 

entities that are in the same administrative domain or domains that form a collaboration have 

the same level of trust, but entities external to the domain are not as trustworthy or are 

untrustworthy. Threats and attacks are mostly caused by entities external to the domain. 
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Hence, these solutions are designed to prevent those untrustworthy entities from accessing 

assets hosted in the domain. In other words, they provide only a gate-level protection. Once 

an entity is authenticated, it can access any assets within the domain to which it is authorised. 

For intra-domain authentication, many solutions (e.g., [29], [34], [30], [79], and [80]) adopt a 

centralised authentication approach, i.e., a trustworthy entity or a group of trustworthy 

entities are designated for issuing credentials (security data used for identity verification) to 

other entities in the domain and verifying the identities of the other entities. In a solution 

report in [31], the verification of the identities of two interacting entities can be done without 

using the central trustworthy entities at a cost of relatively higher computational overhead cost.  

For inter-domain authentication, participating domains typically form a federation and 

entities within a federated domain are also assumed to have the same level of trust. Some 

solutions (e.g., [29] and [34]) require that all the participating domains have to use the same 

authentication solution. In these solutions, the trustworthy entities of all the participating 

domains form a trust hierarchy and the authentication of two entities from different domains 

is done through the hierarchy. Some solutions (e.g., [81], [33], and [32]) allow the 

participating domains to use different authentication solutions and the entities from different 

domains can authenticate themselves with their home domain. This is done by exchanging 

standardised security data between the trustworthy entities in the home and foreign domains.  

The gate-level entity authentication solutions described above have one major limitation. 

If the credential of an entity is stolen or a live session is hijacked by an attacker, the attacker 

can impersonate the entity and gain access to the assets hosted in the domain. A number of 

solutions (e.g., [82] and [83]) have been proposed to address this issue by using hardware or 

biometric based credentials as additional factors for authentication, making stolen-credential 

attacks more difficult. However, these solutions are only suited to the authentication of 

human users. Other solutions (e.g., [35] and [84]) enhance authentication protection by 

providing authentication at the interaction level. However, they do not provide a fine-grained 

accountability. This is because they are designed based on an assumption that a group of 

entities performing the same function are equally trustworthy, thus, the entities of the same 

group could share and use the same credential. Without additional measures, it is impossible 

or extremely difficult to distinguish entities sharing the same credential.  

2.4.2 Data Authentication 
Data authentication solutions can be largely classified into three groups based on the trust 

assumption applied. The first group of solutions assume that all the entities involved in a data 

processing job are equally trustworthy, but entities external to the data processing job are 

untrustworthy and these entities may mount attacks on data used in the job. Hence, the 

solutions in this group focus on how to protect the authenticity of the data against external 

entities. The solutions in this group (e.g., [37] and [38]) provide data origin authentication and 

data integrity protection but not non-repudiation of origin. These solutions are not suitable 

for CBDC-MPC due to incompatible assumptions, i.e., in the context of CBDC-MPC, entities 

involved in the job are from different administrative domains with varying levels of trust.  

The second group of solutions assume that some of the entities involved in a data 

processing job are trustworthy, but the remaining entities are untrustworthy. The solutions 
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in this group (e.g., [46], [47], [48], [49], and [50]) mainly focuses on the correctness (thus 

integrity protection) of data generated during the execution of the job. Such data correctness 

is ensured by task replication, i.e., each data processing task is assigned to multiple data 

processing components and some of the tasks are also assigned to trustworthy data 

processing components. Owing to redundancy, task replication could significantly add 

computational and communication overhead cost to the job. These solutions are also not 

suited to collaborative Big Data processing in this context due to incompatible assumptions 

and high overhead cost imposed on the system.  

The third group of the solutions assume minimal trust among entities and entities within 

the same domain may not be equally trustworthy. Hence, the solutions in this group (e.g., 

[39], [40], [41], [42], and [43]) are designed to provide data origin authentication, data 

integrity protection, as well as non-repudiation of origin. Some solutions can provide such 

strong data authenticity protection at the object level. However, this is achieved at a cost of 

high computational and communication overhead cost. Therefore, these solutions are also 

not suited to CBDC-MPC which involves a large quantity of data and has a stringent 

requirement for timeliness for data processing.  

2.4.3 Knowledge Gaps 
Based on observations made on the existing entity and data authentication solutions, we have 

identified the following knowledge gaps.  

(KG1) The gate-level entity authentication solutions do not provide protection against 

insider threats. These solutions mainly focus on securing domain perimeters to deter 

outsiders from mounting attacks against systems hosted in the domain. They are not 

designed to counter insider threats which are a major source of concerns in this 

context of CBDC-MPC.  

(KG2) Some entity authentication solutions can provide a certain level of protection against 

insider threats; however, the protection provided is coarse-grained. They can protect 

against insider threats caused by different groups within the domain, but not threats 

caused by entities within the same group. This could cause issues as, in a data 

processing job, there could be a large number of entities tasked with the same 

function thus assigned to the same group.  

(KG3) Existing entity solutions supporting cross-domain authentication impose some 

limitations. Some solutions require that all the participating organisations use the 

same entity authentication solution, which is typically a centralised solution. Using a 

centralised trusted entity, or a group of trusted entities, to authenticate a large 

number of distributed entities is not efficient. The other solutions allow the use of 

different entity authentication solutions among different organisations, but they add 

another layer of authentication, introducing additional overhead cost thus inefficient.  

(KG4) In this CBDC-MPC context, the issue of trade-offs among protection granularity, 

protection strength, and efficiency has not been yet addressed in the existing data 

authentication solutions. To provide a fine-grained and strong level of protection 

(i.e., protecting against both outside and inside threats), each data objects should be 

individually signed. This will introduce an excessive level of computational overhead, 
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particularly when being applied to a large volume of data. However, alternative 

existing solutions do not protect against insider threats, although they are efficient.  

2.5 A Way Forward 

To address the knowledge gaps identified above, thus supporting secure Big Data 

computation as efficient and scalable as possible in the context of CBDC-MPC, we propose to 

apply the following ideas:  

(W1) To enhance the protection of the system in this inter-organisational setting, the 

protection should be provided at the finest granularity and should be against both 

outside and inside threats. In other words, the protection should be applied at the 

object level, and in addition to authenticity, accountability (in terms of non-

repudiation) should also be provided.  

(W2) Entity identity and data authenticity should be verified at every interaction, or every 

point where data change hands. Threats of impersonation, unauthorised data 

access, unauthorised data modification, and non-repudiation of origin may be 

realised at any interaction between a pair of entities or any point where there is a 

data transmission and reception, so applying authentication at every interaction can 

maximise the strength of protection.  

(W3) Protection should be built on any already-established security infrastructure in 

participating organisations. Participating organisations typically have already got 

security infrastructures established in their respective domains. By making use of 

these security infrastructures (such as secure channels for credential distribution) 

already established, we can avoid duplicating efforts, thus reducing unnecessary 

overheads required, in establishing such infrastructures, while allowing 

organisations to streamline their security managements. 

(W4) The aggregations of operations for generating and verifying AuthData and 

communication messages can reduce computational as well as communication cost. 

The cost incurred in providing strong protection at the finest granularity (as 

explained in (W1)) could be high as individual components have to generate, verify, 

and transmit AuthData for multiple data objects. The idea of aggregations, along 

with minimising the use of computationally expensive cryptographic primitives, may 

help us to minimise overhead costs incurred in enhancing the protection.  

2.6 Chapter Summary 

This chapter has presented the concept of Big Data computing and a trend for inter-

organisational Big Data computation. It has described and compared two prominent 

distributed computing system models and then selected one for this research work. Based on 

the selected system model, it has analysed and identified issues related to authentication and 

challenges in addressing such issues. It has presented a critical analysis on the related existing 

authentication solutions from a high-level perspective, highlighting knowledge gaps and areas 

for improvements. Finally, it has outlined ideas for the design of an authentication solution 

that can address the identified knowledge gaps to best support secure CBDC-MPC efficiently.  

The next chapter presents the cryptographic building blocks used to design our solution.  
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Chapter 3   

Cryptographic Building Blocks 

3.1 Chapter Introduction 

This chapter introduces cryptographic schemes that are used as building blocks for the 

designs of our authentication solution. These building blocks provide the required security 

protections and functions. This chapter describes the building blocks before listing the 

algorithms of the building blocks and the interfaces (specifying the input and output) of the 

algorithms.  

In detail, Section 3.2 explains the selections of the cryptographic building blocks and gives 

justifications for such selections. Sections 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9, respectively, 

describe hash functions, hash trees, key derivation functions, symmetric-key based 

encryption schemes, asymmetric-key based encryption schemes, Message Authentication 

Code (MAC) schemes, and digital signature schemes. Section 3.10 concludes the chapter.  

3.2 Selections and Justifications 

In accomplishing entity and data authentication protections, our authentication solution 

performs a number of tasks, including the generation, verification, and secure distribution of 

credentials, AuthData, and other secrets used in facilitating the authentication process. For 

these tasks, the following functions should be fulfilled: (1) to generate a digest for a set of 

data objects; (2) to generate new keys from a given set of secrets; (3) to protect data 

confidentiality; (4) and to ensure the authenticity of data objects.  

A hash function and a hash tree are, respectively, used to generate a digest for a data 

object and a set of data objects, respectively. A digest is a fixed-length token that is used to 

represent the object, or the whole set of the objects. Hence, a hash function and a hash tree 

can accomplish function (1). A key derivation function is used to derive new keys from a given 

set of secrets (e.g., a master key and a nonce). It accomplishes function (2). A symmetric-key 

based encryption scheme is used to obfuscate the content of a data object (and also to 

reverse the process). It accomplishes function (3). A MAC scheme and a digital signature 

scheme are used to generate and verify an authentication data token ensuring the 

authenticity of an object. They accomplish function (4). Unlike MAC, a digital signature 

scheme also provides protection of non-repudiation of origin to the object. It is worth noting 

that, although asymmetric-key based encryption schemes are not used in the design of our 

solution, they are used by an entity authentication solution to be compared with our solution. 

Therefore, these schemes are also described in this chapter. Diagrams showing how these 

cryptographic building blocks are used in achieving entity authentication and data 

authentication are, respectively, depicted in Figure 3.1 and Figure 3.2.  
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Figure 3.1: Cryptographic building blocks used in our entity authentication service. 

 

 
Figure 3.2: Cryptographic building blocks used in our data authentication service. 

Any implementations of these cryptographic building blocks can be used to implement 

our authentication solution interchangeably as long as they support the defined interfaces. 

3.3 Hash Functions 

A hash function (also known as a cryptographic hash function) is used to generate a digest of 

an object, and the digest is called a hash. Some examples are SHA-2 [85], SHA-3 [86], and 

BLAKE2 [87]. A hash function contains a hash generation algorithm. This algorithm takes a 

variable-length object 𝑑 as input and returns a fixed-length hash ℎ as output, denoted as     

ℎ = 𝐻(𝑑). 
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3.4 Hash Trees 

A hash tree, also called a Merkle tree [88][89][90], is a tree containing aggregated hashes for 

a set of objects. In a hash tree, each leaf node is the hash of a respective object and each 

internal node is the hash of the concatenation of its child nodes. The root node (also called 

the root hash) is the aggregated hash of all the objects. Sibling nodes along the path from a 

given leaf node to the root node are collectively referred to as Sibling-AuthData. The hash 

tree used in our solution contains three algorithms, Hash Tree Construction (HT-

Construction), Sibling-AuthData Extraction (SA-Extraction), and Root-AuthData Recovery (RA-

Recovery).  

(HTA1) HT-Construction: HT-Construction takes a set of hashes ℎ1, ℎ2, … , ℎ𝑁 as input and 

returns a hash tree ℎ𝑡 as output, denoted as ℎ𝑡 = 𝐻𝑇𝐶(ℎ1, ℎ2, … , ℎ𝑁). 

(HTA2) SA-Extraction: SA-Extraction takes a hash tree ℎ𝑡 and a hash ℎ𝑖  (of an object 𝑑𝑖) as 

input and returns a Sibling-AuthData token containing a set of hashes and their 

positions (i.e., left or right) along the path from ℎ𝑖  to the root node as output, 

denoted as 𝑠𝑎𝑖 = 𝑆𝐴𝐸(ℎ𝑡, ℎ𝑖). If a binary hash tree is used, the number of the 

hashes contained in each 𝑠𝑎𝑖 is at most the height of the tree, i.e., ⌈log 𝑁⌉.  

(HTA3) RA-Recovery: RA-Recovery takes a hash ℎ𝑖  and a Sibling-AuthData token 𝑠𝑎𝑖 as 

input and returns a root hash 𝑟ℎ as output, denoted as 𝑟ℎ = 𝑅𝐴𝑅(ℎ𝑖, 𝑠𝑎𝑖). 

3.5 Key Derivation Functions 

A key derivation function is a cryptographic hash function specifically designed for generating 

symmetric keys from secret values (e.g., a master secret key) and, optionally, other values 

(e.g., a salt value). An example of commonly used key derivation functions is HMAC (Hash-

based Message Authentication Code)-based Key Derivation Function (HKDF) [91]. A key 

derivation function contains one key derivation algorithm, referred to as Key-Derivation. The 

algorithm takes a length 𝑙 (set for the derived key), an input key 𝑖𝑘, and a salt value 𝑠 as input 

and returns a derived key 𝑑𝑘 as output, denoted as 𝑑𝑘 = 𝐻𝐾𝐷𝐹(𝑙, 𝑖𝑘, 𝑠). 

3.6 Symmetric-key based Encryption Schemes 

A symmetric-key based encryption scheme is commonly used to protect the confidentiality of 

data. It provides two functions: encryption and decryption. Encryption is a function that hides 

the content of data by transforming the data (also called plaintext) into encrypted data (also 

called ciphertext) with a secret key. Decryption, the reverse function of encryption, 

transforms ciphertext back to plaintext with the same key. Examples of symmetric-key based 

encryption schemes include AES [92], Blowfish [93], and RC6 [94]. A scheme used in our design 

should contain an encryption (Sym-Encryption) algorithm and a decryption (Sym-Decryption) 

algorithm.  

(SEA1) Sym-Encryption: Sym-Encryption is an algorithm that accepts a secret key k and a 

plaintext d as input and returns a ciphertext 𝜓 as output, denoted as  

𝜓 =  𝑆𝐸(𝑘, 𝑑).  
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(SEA2) Sym-Decryption: Sym-Decryption is an algorithm that accepts a secret key k and a 

ciphertext 𝜓 as input and returns a plaintext 𝑑 as output, denoted as  

𝑑 =  𝑆𝐷(𝑘, 𝜓). 

3.7 Asymmetric-key based Encryption Schemes 

An asymmetric-key based encryption scheme protects the confidentiality of data by using two 

asymmetric keys, a public key and a private key of a receiver (an entity receiving the data). 

The public key is used for encryption and the private key for decryption. In other words, any 

entities knowing the public key can encrypt data (plaintext) to generate ciphertext, but only 

the receiver can decrypt the ciphertext to recover the plaintext. Examples of asymmetric-key 

based encryption schemes include RSA [95] and ElGamal [96]. An asymmetric-key based 

encryption scheme should contain an encryption (Asym-Encryption) algorithm and a 

decryption (Asym-Decryption) algorithm.  

(AEA1) Asym-Encryption: Asym-Encryption is an algorithm that accepts a public key 𝑝𝑘 and 

a plaintext d as input and returns a ciphertext 𝜓 as output, denoted as  

𝜓 =  𝐴𝐸(𝑝𝑘, 𝑑).  

(AEA2) Asym-Decryption: Asym-Decryption is an algorithm that accepts a private key 𝑠𝑘 

and a ciphertext 𝜓 as input and returns a plaintext 𝑑 as output, denoted as  

𝑑 =  𝐴𝐷(𝑠𝑘, 𝜓). 

3.8 Message Authentication Code (MAC) Schemes 

A MAC scheme is a symmetric-key based data authentication scheme. It provides two security 

properties: data origin authentication and data integrity protection. To protect the 

authenticity of a data object, a MAC scheme along with a secret key are used to generate an 

AuthData token, called a tag, for the object. The authenticity of the object can then be verified 

against the tag by using the same key. Some examples of MAC schemes are HMAC [37], OMAC 

[38], and UMAC [97]. A MAC scheme should contain two algorithms, signing (MAC-Signing) 

and verification (MAC-Verification).  

(MA1) MAC-Signing: MAC-Signing is an algorithm that accepts a secret key k and a data 

object d as input and returns a tag 𝜏 as output, denoted as 𝜏 =  𝑀𝑆(𝑘, 𝑑).  

(MA2) MAC-Verification: MAC-Verification is an algorithm that accepts a secret key k, an 

object d, and a tag τ as input and returns a verification result 𝑚𝑣 as output, 

denoted as 𝑚𝑣 =  𝑀𝑉(𝑘, 𝑑, 𝜏 ). The output is either positive or negative. 

3.9 Digital Signature Schemes 

A digital signature scheme is an asymmetric-key based data authentication scheme which 

provides three security properties: data origin authentication, data integrity protection, and 

non-repudiation of origin. Unlike MAC, a private key and a public key of a sender (an entity 

sending a data object) are, respectively, used for signing to generate an AuthData token, 

called a signature, and for verifying the signature. In this way, only the sender can sign the 

object whereas any entities knowing the public key of the sender can verify the authenticity 

of the object. Some examples are RSA [95], DSA [98], and ECDSA [98]. It contains two 

algorithms, signing (SIG-Signing) and verification (SIG-Verification).  
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(SA1) SIG-Signing: SIG-Signing is an algorithm that accepts a private key sk and an object 

d as input and returns a signature σ as output, denoted as 𝜎 =  𝑆𝑆(𝑠𝑘, 𝑑).  

(SA2) SIG-Verification: SIG-Verification is an algorithm that accepts a public key pk, an 

object d, and a signature σ as input and returns a verification result 𝑠𝑣 as output, 

denoted as 𝑠𝑣 =  𝑆𝑉(𝑝𝑘, 𝑑, 𝜎). The output is either positive or negative. 

3.10 Chapter Summary 

This chapter has presented the cryptographic building blocks used in the design of our 

authentication solution. The next chapter presents the construction of a generic use case 

model for CBDC-MPC. It also describes the architecture and the components of our novel 

authentication solution, the Multi-domain Decentralised Authentication (MDA) framework.  
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Chapter 4   

Multi-domain Decentralised Authentication 

(MDA) Framework  

4.1 Chapter Introduction 

This chapter presents the formulation of a generic use case model for CBDC-MPC, which forms 

the foundation for this research work. The CBDC-MPC model has been thoroughly 

investigated and analysed to gain a better understanding of the characteristics of CBDC-MPC, 

how these characteristics correlate to threats and attacks, and how they may influence the 

provision of authentication protection. This chapter also presents the architecture of our 

novel authentication framework, the Multi-domain Decentralised Authentication (MDA) 

framework. It gives an overview of the components of the MDA framework and explain an 

authentication flow when MDA is applied.  

In detail, Section 4.2 describes the use case for this work. Section 4.3 examines potential 

system architectures and Big Data processing models and constructs the CBDC-MPC model 

based on the chosen architecture and models. Section 4.4 gives a threat analysis based on the 

CBDC-MPC model. Section 4.5 gives a set of requirements to counter the identified threats. 

Section 4.6 explains the architecture of the MDA framework. Lastly, Section 4.8 concludes the 

chapter.  

4.2 Use Case Description 

This section formulates a generic use case model which is based on the running example 

discussed in Section 1.2. The use case model is an extreme form of distributed computing in 

which multiple collaborators from different administrative domains jointly perform a 

collaborative data analysis on shared datasets using shared resources. The distributed 

computing and infrastructure services used are provided by external providers. Minimal trust 

among the organisations is assumed. The use case is chosen based on two main considerations. 

Firstly, this use case captures the characteristics of Big Data processing using distributed 

computing systems as described in Section 2.2. Secondly, it presents a broader set of challenges 

encompassing those presented in other use cases (e.g., single-domain Big Data computation). 

This means that a security solution design for this use case should also be applicable to the 

other use cases as well. The architecture of the use case is depicted in Figure 4.1. It is worth 

noting that the architecture shows only the entities involved in the collaborative job execution.  



45 

 
Figure 4.1: Use case architecture. 

The figure shows the relations among entities involved in a collaborative job execution. 

Based on their roles, the entities are classified into three groups, cloud service providers, 

distributed computing service providers, and collaborators (organisations). Without losing 

generality, it is assumed that there are three cloud service providers (𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1, 

𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2, and 𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟3), two distributed computing service providers 

(𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1 and 𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2), and three organisations (𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1, 

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛2, and 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3). 𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1, 𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2, and 

𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟3, respectively, manage clouds 𝐶𝑙𝑜𝑢𝑑1, 𝐶𝑙𝑜𝑢𝑑2, and 𝐶𝑙𝑜𝑢𝑑3. Each of the 

clouds provides one or both of processing and storage services. A set of machines hosting a 

processing service is referred to as a processing cluster, and a storage service as a storage 

cluster. 𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1 and 𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2 use processing and storage services provided by 

cloud service providers to build distributed computing services. 𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1 subscribes to 

processing and storage services hosted in 𝐶𝑙𝑜𝑢𝑑1 and 𝐶𝑙𝑜𝑢𝑑2 (more details with regard to 

system architectures for cluster deployment are given in Section 4.3.1), whereas 

𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2 subscribes to both processing and storage services hosted in 𝐶𝑙𝑜𝑢𝑑3. 

𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛1 and 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛2 each subscribe to a dedicated distributed computing 

service (𝐷𝐶𝑆1 and 𝐷𝐶𝑆2, respectively) provided by 𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1, whereas 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3 

subscribes to a distributed computing service (𝐷𝐶𝑆3) provided by a different provider, 

𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2. Users (𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3) can use the distributed computing services 

subscribed by their respective organisations, may request shared datasets as well as 

computation resources, and carry out collaborative job executions on behalf of their 

respective organisations.  

Depending on the system architecture and Big Data processing model used, there are 

multiple ways of carrying out this collaborative data analysis. These will be discussed in the 

next section.  
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4.3 Generic Use Case Model Construction 

In the following, we examine potential system architectures and Big Data processing models 

and select ones to construct our CBDC-MPC model. We also report the characteristics 

observed on the model.  

4.3.1 Choosing a System Architecture 
This section discusses two different system architectures, a Single-Cloud System Architecture 

(SC-SA), and a Multi-Cloud System Architecture (MC-SA), for the deployment of distributed 

computing service components in clouds and selects one for constructing the CBDC-MPC 

model. The two system architectures are devised based on an observation that, at a high level, 

a distributed computing service should consist of two clusters of components, processing and 

storage components, and each of such clusters can be hosted in a different cloud. In the 

following, we discuss the system architectures for the deployment of 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2 (shown 

in Figure 4.1).  

4.3.1.1 Single-Cloud System Architecture (SC-SA) 
In the SC-SA architecture, both processing and storage components of a distributed 

computing service are, respectively, hosted on processing and storage clusters of the same 

cloud. An example of SC-SA where 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2 are deployed in a single cloud, 𝐶𝑙𝑜𝑢𝑑1, is 

shown in Figure 4.2. From the figure, it can be seen that the underlying infrastructures for 

both 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2 are managed by a single cloud service provider, 𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1. 

Usually, after a user is authenticated to the cloud, the user can access any resources allocated 

to the user.  

 
Figure 4.2: An example of SC-SA. 

 

SC-SA is adopted by many cloud service providers, such as Amazon Web Services [99] and 

DigitalOcean [100]. Many providers choose to provide both of the processing and storage 

services (e.g., Amazon EC2 [101] and Amazon S3 [102] are, respectively, examples of the 

processing and storage services provided by Amazon Web Services) to reach a wider group of 

users with different demands and to build their own ecosystems. This architecture has also 

been used in many applications, including Amazon EMR [103], AzureMapReduce [104], and 

Twister4Azure [105].  
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SC-SA brings a number of advantages. From a functional aspect, users are assured that 

the connection between the clusters should be well established and maintained. They should 

receive the best support the cloud service provider can offer. From a security aspect, SC-SA 

should be less susceptible to threats caused by external entities owing to security measures 

enforced by the cloud service provider. However, SC-SA also has a number of limitations. If 

the cloud service provider uses a proprietary system, it may limit users’ freedom to choose 

different services offered by different cloud service providers due to incompatibility issues. In 

addition, the reliance on the ecosystem provided by a particular provider may cause an issue 

of vendor lock-in. In other words, it might be technically difficult or cost-prohibitive for users 

to migrate their services and data from one provider to another provider.  

4.3.1.2 Multi-Cloud System Architecture 
Contrarily, in the MC-SA architecture, the processing and storage components of the same 

distributed computing service are, respectively, hosted in different clouds each managed by 

a different cloud service provider. An example of MC-SA where the processing and storage 

components of 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2 are, respectively, deployed in two clouds, 𝐶𝑙𝑜𝑢𝑑1 and 

𝐶𝑙𝑜𝑢𝑑2, is shown in Figure 4.3. 

 
Figure 4.3: An example of MC-SA.  

As shown in the figure, unlike Figure 4.2, the processing components of 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2 

are hosted in the processing clusters of 𝐶𝑙𝑜𝑢𝑑1, whereas the storage components of the two 

distributed computing services are hosted in the storage clusters of 𝐶𝑙𝑜𝑢𝑑2. In other words, 

the underlying infrastructures supporting a distributed computing service are managed by 

multiple cloud service providers. Due to this difference, there are three implications for using 

MC-SA. The first is that a user would need to be authenticated by two different authentication 

services each hosted on a different cloud prior to accessing the services hosted in both of the 

clouds, adding overhead costs. The second is that there may be interactions among 

components hosted in different clouds during a data processing job, and such interactions 

would also require authentication. These authentication requirements are of inter-cloud 

nature, which is different from the SC-SA case where authentication requirements are of 

intra-cloud nature. The third is that data involved in the job would need to be transferred 

between clouds managed by different cloud service providers, i.e., there will be inter-cloud 

data transfers. The networks connecting these clouds are likely to be Wide Area Networks 

(WANs) or the Internet, which are open to a wide range of threats and attacks.  
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There are some existing works in prototyping the MC-SA architecture. Resilin [19] is one 

of such works that develops a prototype using MC-SA. In this prototype, the processing and 

storage components are hosted in different clouds provided by different cloud service 

providers.  

MC-SA gives a user greater flexibility in the selection of services as the user has a higher 

degree of freedom to subscribes to services provided by different cloud service providers. 

However, in comparison with SC-SA, there are additional security complications introduced 

by MC-SA because of inter-domain communication. As multiple clouds are involved during a 

job and different clouds may have varying levels of trust, the authentication services for inter-

cloud interactions, inter-cloud resource access, and inter-cloud data transfer should be 

considered at multiple levels, which are more levels than the case for SC-SA. For example, the 

authentication services may be required at job-level, component-level, user-level, distributed 

computing service-level, and cloud-level. Also, inter-cloud data transfer may be through open 

and insecure channels, increasing the risk of the authenticity of the data being compromised. 

4.3.1.3 Making the Selection 
With regard to architecture selection, we should select one that presents a greater set of 

research issues and problems so that a solution, designed to address these issues and 

problems, could be applied to both architectures. To this end, we have identified the following 

four criteria to guide the selection.  

(SAC1) Usability and flexibility from distributed computing service providers’ perspective: The 

benefits and disadvantages are considered in terms of scalability, vendor dependency, 

interoperability, and freedom of processing and storage service subscriptions.  

(SAC2) Manageability and expandability from cloud service providers’ perspective: A system 

architecture chosen by a cloud service provider may influence the provider’s business 

potential. For example, it may restrict the number of services the provider could 

provide, how they may expand their service in the future, or both. The chosen 

architecture should best support the freedom in service offering, control, and 

management, and provide flexibility in service capacity expansion.  

(SAC3) Service deployment trend: The chosen system architecture should follow the trend for 

CBDC-MPC so that an authentication solution designed based on the use case model 

will be applicable to current and future applications.  

(SAC4) Security complications: Clouds are vulnerable to various threats and attacks. Due to 

different characteristics of different system architectures, distributed computing 

services deployed on the clouds may encounter different sets of threats and attacks.  

The analysis of SC-SA and MC-SA against the specified criteria is summarised in Table 4.1. 

Table 4.1: The comparisons of SC-SA and MC-SA. 

  SC-SA MC-SA 

(SAC1) Scalability The resources accessible to a 
distributed computing service 
provider are limited by the resource 
capacity of a single cloud. This also 
limits the number of users the 
provider can serve. 

The resources accessible to a 
distributed computing service 
provider are not limited by the 
resource capacity of a single cloud. 
The distributed computing service 
provider may subscribe to services 
provided by more than one cloud. 
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  SC-SA MC-SA 

Therefore, MC-SA may potentially 
have more resources to serve a higher 
number of users. 

Vendor 
dependency  

A distributed computing service 
provider may experience the issues of 
vendor lock-in as well as service and 
data migration.  

The vendor lock-in issue is unlikely to 
happen as there is incentive for cloud 
service providers to use standardised 
software and hardware. Data and 
service migration should be possible 
and with relatively less difficulty. 

Interoperability  Components hosted in different 
clouds might not be able to 
communicate with each other as 
different implementations of cloud 
services may not be compatible with 
each other. 

There is incentive for cloud service 
providers to improve interoperability 
[106]. Components hosted in different 
clouds are more likely to be able to 
communicate with each other as these 
components are more likely to 
conform to standard Application 
Programming Interface (API) 
specifications. 

Freedom of 
service 
subscription 

A distributed computing service 
provider has to subscribe to both 
processing and storage services 
provided by the same cloud service 
provider.  

A distributed computing service 
provider may subscribe to processing 
and storage services offered by 
different cloud service providers.  

(SAC2) Freedom of 
service offering 

A cloud service provider should offer 
both processing and storage services. 

A cloud service provider may offer one 
or both of processing and storage 
services. 

Control and 
management 

A cloud service provider is responsible 
for managing and maintaining all the 
services hosted on its cloud, and it has 
complete control over the services. 

A cloud service provider only has 
control over the services hosted in its 
cloud. It does not have to manage and 
maintain the services that 
interoperate with its services but are 
offered by other cloud service 
providers. 

Resource 
expansion 

To increase the resource capacity to 
meet the growth of distributed 
computing service providers’ 
demands, a cloud service provider has 
to add more hardware and software 
components to its cloud.  

The resource capacity can be 
increased either by adding more 
hardware and software components 
or by establishing collaborations with 
business partners. An example of such 
partnership is reported in [107]. In this 
way, multiple cloud service providers 
can offer a combined pool of resources 
or a bundled service to distributed 
computing service providers. 

(SAC3) Proposals in 
literature 

A similar system architecture is used in 
AzureMapReduce [104] and 
Twister4Azure [105]. 

A similar system architecture is used in 
Resilin [19].  

Commercial 
services in use 

A similar system architecture is used in 
Amazon Web Services [99]. 

We have not found any commercial 
services using the MC-SA architecture 
or anything similar at the time of 
writing. 

Market 
considerations 

To gain a bigger market share, a cloud 
service provider may increase service 
variety and resource capacity. As a 
result, the management tasks may 
become more challenging or difficult, 

As multiple cloud service providers are 
involved in this architecture, service 
variety and capacity can be increased 
without overwhelming a particular 
cloud service provider. The service 
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  SC-SA MC-SA 

and the quality of service provided to 
users may deteriorate.  

capacity and variety can be increased 
by pulling together the services 
provided by multiple cloud service 
providers.  

(SAC4) Trust Usually, the components hosted in the 
same cloud are equally trustworthy, as 
they are managed by the same 
administrative entity.  

There are two possibilities: (a) multiple 
cloud service providers form a 
federation to agree on how and to 
what level they form their mutual 
trust, and in this case, they will follow 
their agreement, and (b) different 
cloud service providers handle their 
trust of other cloud service providers 
differently and individually, and in this 
case, there will be different levels of 
trust among components in different 
clouds.  

Identity 
management 

A cloud service provider usually uses a 
private identity management scheme 
to manage the identities of its users.  

A distributed or federated identity 
management scheme may be 
deployed. 

Data 
authenticity 

Usually, the authenticity of data 
stored in storage (data-at-rest) and 
data transmitted via networks (data-
in-transit) can be ensured by 
mechanisms such as Message 
Authentication Codes (MACs) and 
digital signatures. Cloud service 
providers may not enforce the use of 
such methods but provide them as an 
optional service. 

Authenticity of data-at-rest and data-
in-transit should be protected as an 
essential service and by using more 
stringent mechanisms than those used 
in the SC-SA case.  

Data 
confidentiality 

A data confidentiality service should 
also be provided to data-at-rest and 
data-in-transit. As data are only 
transmitted among components 
hosted in the same cloud and there are 
many mature security solutions, such 
as firewall, Intrusion Detection System 
(IDS) and Intrusion Prevention System 
(IPS), that provide protection against 
outsider attacks, therefore, the risk of 
data exposure caused by a malicious 
outsider is relatively lower.  

In this architecture, the confidentiality 
service is provided to both data-at-rest 
and data-in-transit as an essential 
service, especially when the data are 
transmitted among components 
hosted in different clouds. 

Component 
status 
monitoring 

In most cases, it is assumed that the 
components in the same cloud work 
correctly, as usually the components 
on the same cloud are connected via 
Local Area Networks (LANs) or 
dedicated networks.  

There might be a lack of trust among 
the cloud service providers hosting the 
components. The components hosted 
in different clouds are usually 
connected via public Wide Area 
Networks (WANs), typically the 
Internet, and security threats on 
WANs are much higher than on LANs. 
Hence, component status monitoring 
and threats monitoring are required. 

Attacks and 
threats  

In most cases, it is assumed that 
components hosted in the same cloud 
and data sent between the 

Due to the same reason as mentioned 
above, the level of threats in this 
architecture is much higher. In 
addition to attacks on data sent 
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  SC-SA MC-SA 

components are safe from outside 
attacks.  

between components hosted in 
different clouds, there are also threats 
caused by authorised insiders, such as 
compromised or malicious entities.  

As summarised in Table 4.1, MC-SA is a more preferable choice as the system architecture 

for our use case because of the following reasons. MC-SA provides a higher level of usability 

and flexibility to distributed computing service providers. A distributed computing service 

provider can subscribe to services offered by any cloud service providers without worrying 

about the vendor lock-in and migration issue. MC-SA provides a higher level of manageability 

and expandability to cloud service providers. A cloud service provider may provide one or 

both of processing and storage services to service consumers. The capacity and quality of a 

service provided by a cloud service provider can be enhanced by establishing collaborations 

with other cloud service providers. MC-SA better resembles a growing trend of virtual 

operators, i.e., entities that provide services built on top of services provided by other service 

providers to service consumers. In addition, MC-SA captures a broader set of security issues 

and requirements, so solutions designed based on MC-SA will also be applicable to SC-SA. For 

these reasons, we have chosen MC-SA as the system architecture for our use case. 

4.3.2 Choosing a Big Data Processing Model 
As the popularity in Big Data analysis increases, there exist many distributed computing 

models proposed for different applications. Based on applications, they can be classified into 

application-specific models and non-application-specific models. Application-specific models 

are formulated and optimised for some particular applications. Examples of such models 

include GraphLab [108] which is designed for machine learning and data mining, Dremel [109] 

which are designed for table based data query, Pregel [110] which is suitable for 

implementing large-scale graph algorithms in distributed settings, and Apache Storm [111] 

which is designed to process unbounded streams of data. Non-application-specific models are 

usually constructed to serve a wide range of applications. Among these non-application-

specific models, the most notable models are MapReduce (MR) [112], Dryad [113], Hyracks 

[114], Nephele [115], and Apache Spark [116].  

All the Big Data processing models mentioned above capture essential characteristics of 

distributed computing, i.e., data are transferred among, processed by, and stored on, 

distributed and networked components, allowing tasks of a data processing job to be 

executed concurrently. In line with our aim to design an authentication solution that can make 

a greater impact on distributed computing, we should select a Big Data processing model that 

is most used and is likely to be used in the future. For this reason, we exclude application-

specific models from the selection and consider only non-application-specific models. To 

contrast the non-application-specific models, we have identified the following five criteria to 

guide the selection.  

(BMC1) Study and adoption: Big Data processing models that are well studied and widely 

adopted by industry and academic are more likely to be considered and used by 

users.  
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(BMC2) Implementations and support: A Big Data processing model could be implemented 

by using different tools. Different implementations of the model could be conformed 

to different standards and governed by different licences (proprietary or 

opensource). Documentation and support for a model implementation are also 

important for users, particularly when the Big Data processing service is used for 

production. In addition, extensions that extend the features and functions of model 

implementations also help to support a broader set of users’ demands.  

(BMC3) Infrastructure requirements: Some Big Data processing models are designed based on 

some specific hardware setups. They may only achieve their full potential on those 

hardware setups. This may limit the selection of infrastructure service providers.  

(BMC4) Security implications: Different Big Data processing models may be designed for 

different environments with different security requirements. As discussed earlier, 

we should choose a model with a broader set of security issues as an authentication 

solution designed for this model could be applied to other models.  

The analysis of MR, Dryad, Hyracks, Nephele, and Apache Spark against the criteria 

specified above is summarised in Table 4.2.  

Table 4.2: The comparisons of MR, Dryad, Hyracks, Nephele, and Apache Spark.  

(BMC1) MR MR is well studied and widely adopted by both academia and industry. For 
example, according to the Web of Science Core Collection database, there are 
7,022 indexed papers regarding MR (by using the keyword “MapReduce” for 
Topic search) between years 2000 and 2019. Examples where MR is used for 
research and production purposes include High Energy Physics group at Caltech 
[117], Facebook [75], and Twitter [118]. 

Dryad There are a limited number of papers published in literature. For example, using 
the same database and time range as above, there are only 156 papers 
containing the keyword “Dryad”. Dryad has been used in many applications, 
including relational queries, large-scale matrix computations, and many text-
processing tasks [113].  

Hyracks There are a limited number of papers published in literature. For example, there 
are only 7 indexed papers shown when searched with the keyword “Hyracks” 
using the same database and time range as above.   

Nephele There are a limited number of papers published in literature, e.g., there are 33 
indexed papers containing the keyword “Nephele” using the same database and 
time range as above.  

Apache Spark There is an increasing trend of study on, and usage of, Apache Spark reported 
in literature. For example, there are 1,366 papers containing the keyword 
“Apache Spark” using the same database and time range as above. Apache 
Spark has been used in a number of applications, including SQL, streaming, 
machine learning, and graph processing [119].  

(BMC2) MR There have been many MR implementations developed by different 
organisations. One of the most notable opensource Big Data system supporting 
MR is Apache Hadoop [120]. MR is also commonly integrated as part of 
commercial Big Data solutions, such as Hortonworks Data Platform [121], and 
MapR Converged Data Platform [122]. Hence, there are extensive 
documentation and support available. In addition, although MR was originally 
designed for batch data processing, there are many extensions developed to 
extend the capabilities of MR, such as the supports for stream [123] and 
iterative [124] data processing .  

Dryad There exist a limited number of systems using the Dryad model for data 
processing, e.g., DryadLINQ [125] and Comet [126], thus limited documentation 
and support.  
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Hyracks There is an opensource implementation of Hyracks by its authors [127]. Hyracks 
is also used as an execution engine by AsterixDB [128]. There are limited 
documentation and support available.  

Nephele Nephele has been used in a number of Big Data processing systems, including 
Nephele/PACT [129] and Apache Flink [130]. Apache Flink has been used by 
many enterprises, including Amazon, Ebay, and Uber [131]. Documentation and 
support are provided by its active community.   

Apache Spark The most prominent implementation is an Apache project with the same name, 
Apache Spark [119]. It is used by various enterprises, such as Alibaba Taobao, 
Amazon, and Ebay [116]. Documentation and support are provided by its active 
community. In addition, a number of extensions have been developed to 
extends the functions of Apache Spark, i.e., SQL and DataFrames, Spark 
Streaming, MLib, and GraphX [116].  

(BMC3) MR MR is designed for the deployment on generic hardware and there are no 
specific hardware requirements. It can be deployed on a physical platform such 
as clusters of physical machines and on a virtualised platform such as clusters 
of virtual machines hosted in clouds.  

Dryad There are no specific hardware requirements.  

Hyracks There are no specific hardware requirements.  

Nephele Nephele uses in-memory channels for data transfer to optimise performance. 
To benefit from this, Nephele based systems should be deployed on hardware 
with high memory capacity.  

Apache Spark Apache Spark maximises the use of in-memory channels to reduce overhead 
cost incurred in disk reading and writing operations. It works best on hardware 
with high memory capacity.  

(BMC4) MR All the Big Data processing models do not incorporate any security measures in 
the design of the models. It is assumed that security protections are provided 
by third-party security services. Owing to similar characteristics of these 
models, the Big Data processing services implementing the models should 
experience the same level of threats when they are deployed in the same 
environment.  

Dryad 

Hyracks 

Nephele 

Apache Spark 

As summarised in the table, MR is a more preferrable Big Data processing model due to 

the following reasons. Among the non-application-specific models, MR is the most well 

studied and widely adopted Big Data processing model at the moment as indicated by the 

number of papers published in literature. In addition, owing to its popularity, there are 

extensive documentation and support available. For opensource MR implementations, users 

can find support they need from opensource communities. They can also choose to get 

support offered by commercial enterprises. MR is designed for deployment on generic 

hardware, so it is compatible with a wide range of hardware configurations or setups. With 

this model, users would have more options to choose from with regard to infrastructure 

service providers. Although on some specific hardware setups, the performance of MR may 

be lower than those of Nephele and Apache Spark. With regard to security implications, the 

level of threats experienced by MR is the same as those of the other models. In other words, 

all the models present a similar set of issues and challenges. An authentication solution 

designed for MR should also be applicable to the other models as well. For these reasons, we 

have chosen MR as the Big Data processing model for our use case. We will explain the MR 

based Big Data processing model in Section 4.3.3 before describing our use case model in 

Section 4.3.4. 
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4.3.3 MapReduce (MR) based Big Data Processing Model 
MR [112] has been adopted in many applications thus architectures. In this report, we have 

chosen the YARN [132] based architecture. YARN is one of the most used architectures for 

resource scheduling, including MR. It is more scalable than other architectures for MR such 

as the one reported in [112]. It can support large scale job executions involving tens of 

thousands of tasks running on thousands of machines [133]. In addition, it is used in Apache 

Hadoop [120], one of the most prominent Big Data systems.  

To describe the MR based Big Data processing model, we first explain the components of 

an MR service involved in the execution of a data processing job, before describing an MR 

based job execution flow.  

4.3.3.1 MR Components  
The components used by an MR service are machines and containers (e.g., application 

process) of resources that are hosted on the machines. Based on their functions, the MR 

components can be largely classified into three groups: client components, processing 

components, and storage components. Processing components and storage components can 

be separately hosted in clusters of different clouds. For generality, each group is assumed to 

be hosted in a separate cluster, thus leading to three clusters, i.e., a Client cluster, a 

Distributed Processing System (DPS) cluster, and a Distributed File System (DFS) cluster. An 

overview of the MR components of an MR service is depicted in Figure 4.4.  

 
Figure 4.4: MR components. 

The Client cluster hosts multiple ClientNodes. Each ClientNode hosts one ClientApp 

container. ClientApp allows a user to submit jobs and input of the jobs, and to retrieve the 

output of the jobs.  

The DPS cluster consists of one MasterNode and multiple WorkerNodes. MasterNode 

hosts one ResourceManager container. ResourceManager manages the resources of the MR 

service and schedules job executions. Each WorkerNode hosts one WorkerManager container 

and multiple sets of JobManager, Mapper, and Reducer containers; each such set serves a 

particular job execution. WorkerManager manages the resources of the WorkerNode. 

JobManager schedules and manages the execution of the tasks of a job carried out by Mappers 

and Reducers assigned to the job. Each Mapper and Reducer, respectively, carry out a map task 

and a reduce task. Mappers and Reducers are also collectively referred to as Workers.  

The DFS cluster consists of one NameNode and multiple DataNodes. NameNode hosts one 

NameManager container. NameManager maintains a file system, the metadata of all the files 
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(the input and output of the jobs), and directories storing the files. Each DataNode hosts one 

DataStore container. DataStore keeps portions of the files, called data blocks.  

4.3.3.2 Job Execution Flow 
The process of a job execution consists of three phases: the job submission phase, the map 

phase, and the reduce phase. In the job submission phase, a user uses ClientApp to submit a 

job execution request to ResourceManager. If the request is accepted, the user uploads the 

input data and the job configuration file onto the DFS cluster. The MR service will divide the 

input data into multiple items, called InputSplits. The number of the InputSplits is set by the 

user in the job configuration file, and this is determined by the size of each InputSplit and how 

the InputSplits should be divided. The number of the InputSplits dictates the number of 

Mappers assigned to the job, as the number of InputSplits should be equal to the number of 

Mappers assigned to the job. In other words, each InputSplit will be processed (i.e., consumed) 

by a different Mapper. After the user finishes uploading the InputSplits and notifies 

ResourceManager, ResourceManager launches JobManager to manage and orchestrate the 

execution of this job. JobManager starts Workers (Mappers and Reducers) and monitors the 

progress of the execution of the tasks on the Workers.  

In the map phase, each Mapper retrieves the assigned InputSplit from the DFS cluster, 

executes a map task, and produces an output file, called IntermediateResult. Each 

IntermediateResult contains multiple data items, called PartitionSegments. The maximum 

number of PartitionSegments contained in an IntermediateResult is equal to the number of 

Reducers assigned to the job. Each PartitionSegment will be retrieved and consumed by a 

different Reducer. The PartitionSegments produced by a Mapper are stored in the local 

storage of the WorkerNode hosting the Mapper.  

In the reduce phase, each Reducer retrieves the assigned PartitionSegments (one from a 

different Mapper) from the corresponding WorkerNodes, executes a reduce task, and produces 

an output file, called FinalResult. The FinalResults produced by all the Reducers are uploaded onto 

the DFS cluster. When the job execution finishes, ClientApp retrieves the FinalResults from the 

DFS cluster and notifies the user. Data flows during an MR job execution is shown in Figure 4.5. 

 
Figure 4.5: Data flows during an MR job execution. 
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4.3.4 Our Collaborative Big Data Computation on a Multiple Public Cloud 

platform (CBDC-MPC) Model 
In this section, we describe the CBDC-MPC model, which is constructed based on the chosen 

MC-SA architecture and MR model. We give classifications of components and data used, 

interactions taking place, and communication patterns exhibited by the model.  

4.3.4.1 Model Description 
In this CBDC-MPC model, the distributed computing services used are MR services, 𝑀𝑅1 and 

𝑀𝑅2 managed by 𝑀𝑅𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1. MC-SA is applied in the deployment of the processing and 

storage components of the MR services 𝑀𝑅1 and 𝑀𝑅2 in 𝐶𝑙𝑜𝑢𝑑1 (managed by 

𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1) and 𝐶𝑙𝑜𝑢𝑑2 (managed by 𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2), respectively. An overview of 

the CBDC-MPC architecture is depicted in Figure 4.6. 

 
Figure 4.6: An overview of the CBDC-MPC architecture. 

The process of a job execution in this CBDC-MPC model is complex as there are multiple 

entities from different domains involved in the job execution. To describe this process, we 

have formulated a generic job execution flow. Figure 4.7 shows a high-level view of the 

generic job execution flow, highlighting entities (including MR components) involved and the 

interactions among the components. The MR components involved in the job execution are 

organised by using a multi-layer structure similar to the MR Layered Authentication Model 

(MR-LAM) [84]. This multi-layer structure helps us to identify avenues for attacks at different 

layers and what can we used in the design of our authentication solution to protect against 

such attacks. In this structure, for each layer, entities are grouped into domains based on their 

functions or their associations. Users and ClientApps of an organisation form a domain, called 

an OrgDomain. Processing and storage resources hosted in a cloud form the second type of 

domains, called a CloudDomain. Components allocated to an MR service form the third type 

of domains, called an MRDomain. Components serving a particular job form the fourth type 

of domains, called a JobDomain [84].  
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Figure 4.7: A high-level view of a generic job execution flow in the CBDC-MPC model.  

The execution of a job starts from when 𝑈𝑠𝑒𝑟1 (referred to as JobSubmitter) sends a 

request for shared datasets to users in other OrgDomains to when the results of the job 

execution are ready for collection. As explained in Section 4.3.3, the job execution is divided 

into three phases, the job submission phase, the map phase, and the reduce phase. As there 

are many interactions among components in the job submission phase, for ease of discussion, 

we further divide the job submission phase into two steps, the execution request step and 

the worker allocation step. The execution request step starts from when JobSubmitter sends 

a request for shared datasets to the other users to when all the users finish uploading the 

shared datasets onto the respective DFS clusters. The worker allocation step starts from when 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 launches a 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to oversee the execution of the job to when 

all the Workers are launched.  

The interaction flows among entities in different job execution phases are shown in Figure 

4.8. An interaction between a pair of components is shown as a unidirectional solid arrowed 

line. For ease of presentation, a set of interactions among users from different organisations 
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(interaction 1) and a set of interactions between an entity and a DFS cluster (interactions 4, 

12, 21, 26, and 29) are depicted as a bidirectional dashed arrowed line. It is also worth noting 

that this figure omits interactions among components that are job-independent (i.e., those 

that are not specifically created to serve a particular job) and are in the same MRDomain as 

these interactions can be protected by using existing security solutions (e.g., an MR service 

level authentication service). Examples of such interactions are data block duplication 

between DataStores (of the same DFS cluster) and storage capacity report between 

NameManager and ResourceManager (of the same MRDomain).  

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 4.8: Interactions among entities.  

(a) Job submission phase: execution request step.  

(b) Job submission phase: worker allocation step. (c) Map phase. (d) Reduce phase. 

The generic operational steps of a job execution are described in the following.  

(GM1) 𝑈𝑠𝑒𝑟1 sends a reference identifier (ID) and a request for shared datasets and 

resources to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3. 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3 receive and approve the request, 

then reply the confirmation back to 𝑈𝑠𝑒𝑟1. 
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(GM2) Each user sends the reference ID and a request for a new job ID and a path to write 

the dataset and the job configuration file to the ResourceManager of his/her MR 

service via ClientApp. 

(GM3) Each ResourceManager receives the request. If the job is accepted, it generates a job 

ID based on the received reference ID (hence, all ResourceManagers generate the 

same job ID) and replies the job ID and the path back to the respective user.  

(GM4) Each ClientApp (on behalf of its user) receives the reply and writes the dataset and 

the job configuration file onto the respective DFS cluster. The writing process 

consists of three interactions.  

a. Each ClientApp sends a request for data writing to the respective NameManager. 

b. Each NameManager receives the request and replies the respective ClientApp with 

a list of DataStores.  

c. Each ClientApp receives the list. It contacts and writes the dataset and the job 

configuration file to DataStores. The dataset is divided into multiple InputSplits. 

(GM5) After each ClientApp finishes writing its data, it notifies the respective 

ResourceManager.  

(GM6) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 contacts 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 to 

inquire the status of data writing.  

(GM7) After 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 finish writing their data and notify their 

respective ResourceManagers, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 

notify 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 of the completion of data writing.  

(GM8) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends a request for launching 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 for the job to 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1. 

(GM9) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 allocates resources and starts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.  

(GM10) After 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 is successfully launched, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 notifies 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1.  

(GM11) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 contacts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to inquire the progress of job execution. * 

(GM12) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 reads the job configuration files from the DFS clusters. The reading 

process consists of three interactions.  

a. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a request for data reading to all NameManagers.  

b. Each NameManager receives the request and replies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 with a list of 

DataStores.  

c. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 receives the list. It contacts the DataStores and read the job 

configuration files.  

(GM13) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a request for worker allocation to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.  

(GM14) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the request and sends a request for worker allocation 

to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  

(GM15) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 receive the request and reply 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 with lists of WorkerNodes with available resources.  

(GM16) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the lists and forwards them to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.  

(GM17) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a request to each of the WorkerManagers to launch Mappers 

and Reducers.  
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(GM18) Each of the WorkerManagers receives the request and starts Mappers and Reducers 

on its node.  

(GM19) Each of the Mappers and Reducers contacts and reports their status to 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. * 

(GM20) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 issues a command to all of Mappers to start map tasks.  

(GM21) Each Mapper receives the command and reads the assigned InputSplit from the 

respective DFS cluster. The reading process consists of three interactions.  

a. Each Mapper sends a request for data reading to the respective NameManager. 

b. Each NameManager receives the request and replies the respective Mapper with 

a list of DataStores.  

c. Each Mapper receives the list. It contacts and read the assigned InputSplit from 

the DataStores.  

(GM22) Each Mapper performs the map task on the assigned InputSplit. After the task 

finishes, it writes an IntermediateResult (containing PartitionSegments) to the local 

storage of the machine.  

(GM23) Each Mapper notifies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 when the map task and the writing of the 

IntermediateResult are finished.  

(GM24) After all map tasks finishes, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 issues a command to all of the Reducers 

to start reduce tasks.  

(GM25) Each Reducer receives the command and reads the assigned PartitionSegments from 

two sources: the local storage on the machine; and remote WorkerNodes (via 

WorkerManagers) 

(GM26) Each Reducer performs the reduce task on the assigned PartitionSegments. After the 

task finishes, it writes a FinalResult to 𝐷𝐹𝑆1. The writing process consists of three 

interactions. 

a. Each Reducer sends a request for data writing to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.  

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the request and replies the respective Reducer with a 

list of DataStores.  

c. Each Reducer receives the list. It contacts and writes the FinalResult to DataStores. 

(GM27) Each Reducer notifies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 when the reduce task and the writing of the 

FinalResult finish.  

(GM28) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 notifies 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 when the FinalResults are ready for retrieval.  

(GM29) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the notification and retrieves the FinalResults for 𝑈𝑠𝑒𝑟1. The 

reading process consists of three interactions.  

a. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a request for data reading to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. 

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the request and replies 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 with a list of 

DataStores.  

c. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the list. It contacts and reads the FinalResults from 

DataStores. 

Note: While most interactions take place only once during the job execution, there are 

interactions that will be repeated periodically. These interactions are referred to as recurrent 

interactions. They are marked with an asterisk (*).  
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4.3.4.2 Component Classifications 
This section presents the classifications of the MR components involved in a job execution. 

Based on observation made on the CBDC-MPC model, we have identified two criteria, job 

dependency and functions, for component classifications. Job dependency dictates the 

selection authentication methods and credentials used, whereas functions indicate the levels 

of risks experienced by the components. 

Job dependency determines the lifetime of a component, i.e., when the component is 

created and when it is terminated. With this criterion, components can be classified into job-

dependent and job-independent components. Job-dependent components are components 

that are created to serve a particular job. They are created when the job is being executed 

and they are terminated when the execution of the job is completed. The components in this 

group are JobManager, Mapper, and Reducer. Job-independent components are components 

that are created and destroyed independent of the execution of a job. These components 

may serve multiple jobs, thus, their lifetimes are usually longer than those of job-dependent 

components. The components in this group are ClientApp, ResourceManager, 

NameManager, WorkerManager, and DataStore. Applying an authentication scheme with a 

high credential generation cost to job-dependent components is not efficient as the lifetimes 

of these components are relatively short. In addition, the number of these components could 

be potentially large, particularly in a large-scale job execution. The costs incurred in 

generating credentials for these components could be too high.  

Based on functions, MR components can be largely classified into two groups: 

management components and data-handling components. Management components are 

components whose functions are to manage resources or supervise task executions. These 

components are ResourceManager, NameManager, WorkerManagers, and JobManager. 

Data-handling components are components whose functions are to produce, consume, or 

store JobData. These components are ClientApps, Mappers, Reducers, and DataStores. As the 

functions of management components are important to job executions and to the system, 

there usually are security measures put in place to protect these components. There exists a 

number of solutions that can accomplish this task and an example of such solutions is Trusted 

Computing [134]. Data-handling components, on the other hand, may not have the same (or 

adequate) level of protections or security assurance. This is because, firstly, these 

components are in large quantities, so providing strong security protections to all of them 

may not be practical due to efficiency reasons. Secondly, unlike management components 

which interact with only other software components, data-handling components also interact 

with users at large or execute user-supplied codes (i.e., map and reduce functions) which may 

contain vulnerable or malicious codes. Thirdly, data are assets, hence, data-handling 

components may be more attractive to attackers. Owing to these reasons, data-handling 

components are more vulnerable to threats and attacks. They could be compromised for 

attacking the data or be used as a springboard for further attacks against the system.  

4.3.4.3 Data Classifications 
For ease of discussion, data that are used, processed, and generated during a job execution 

are collectively referred to as JobData. An entity producing (generating) JobData is called a 
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producer and an entity consuming (using) JobData is called a consumer. There are three 

groups of JobData, InputSplits for the job submission phase, IntermediateResults and 

PartitionSegments for the map phase, and FinalResults for the reduce phase.  

An InputSplit is a portion of the input data (shared datasets) of a job. The InputSplits of an 

organisation are generated (supplied) by the ClientApp of the user representing the 

organisation and stored in the DFS cluster of the MR service subscribed by the organisation. 

Each of the InputSplits is assigned to, and used (consumed) by, a different Mapper which 

could be from a different MRDomain.  

An IntermediateResult is an output data file produced by a Mapper. It contains multiple 

data items, called PartitionSegments, one for a different Reducer. The PartitionSegments 

produced by the same Mapper are stored in the local storage of the WorkerNode hosting the 

Mapper. Each of the Reducers retrieves the assigned PartitionSegments from the 

WorkerManagers of the WorkerNodes hosting the respective Mappers.  

FinalResults are the output of the job execution, each of which is produced by a different 

Reducer. All the FinalResults are uploaded onto the DFS cluster of the MR service of 

JobSubmitter. When all the FinalResults are ready for collection, the ClientApp of 

JobSubmitter retrieves the FinalResults from the DFS cluster.  

Based on the data classifications described above, we can make the following 

observations. As components hosted in different domains may not be equally trustworthy 

and JobData objects could be from an attacker or a compromised component, a consumer 

needs an assurance that the JobData it consumes are indeed produced by the claimed 

producers and have not been tampered with. However, ensuring the authenticity (origin and 

integrity) of the JobData is difficult in this context as JobData are stored and managed by 

components other than the producers of the JobData. Producers do not have a complete 

control over the JobData they produce after the generation of the JobData and consumers 

cannot directly contact the respective producers to get the assigned JobData. The JobData 

may be accessed and tampered with by an attacker at any point of data processing. In 

addition, a producer may produce multiple JobData objects each for a different consumer, 

and a consumer may also consume multiple JobData objects each produced by a different 

producer. This indicates that data authenticity protection should be provided at the object 

level and should be as efficient as possible due to the large quantity of JobData.  

4.3.4.4 Interaction Classifications 
Interactions highlighted in Figure 4.8, can be classified into two groups, initial and subsequent 

interactions. An initial interaction refers to the first interaction between a pair of components, 

such as an interaction between ClientApp and NameManager when the ClientApp inquires a 

list of DataStores for writing InputSplits (in the job submission phase). A subsequent 

interaction refers to an interaction between two components that have prior interactions, 

such as an interaction between NameManager and ClientApp when the NameManager 

replies a list of DataStores to the ClientApp. The classifications of these interactions are 

summarised in Table 4.3.  

Owing to the impact of allowing remote (and potentially untrustworthy) entities to access 

local resources which may contain sensitive and high-value data, initial interactions introduce 
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a higher level of risks, particularly when data providing and consuming components are from 

different organisations or domains (e.g., hosted in different clouds). If two entities of an 

interaction are from different clouds, they are more likely being connected via public 

networks, such as the Internet, which are vulnerable to a broader range of threats than 

private networks. In addition, initial interactions typically involve entities that have yet 

established any trust or shared secrets and these interactions are usually used to establish 

such secrets. If initial interactions, or the secrets being established during the initial 

interactions, are compromised, the security of subsequent interactions will also be put at risk. 

Subsequent interactions, on the other hand, use temporary secrets established in the 

authentication of preceding interactions. They may impact on a limited set of interactions 

should the temporary secrets be compromised. Thus, they experience a lower level of risks.  

Table 4.3: Interaction classifications. 

Group Step numbers (as shown in Figure 4.8) 

Initial interactions 2, 4a, 4c, 6, 8, 11, 12a, 12c, 13, 17, 19, 21a, 21c, 25, 26a, 26c 

Subsequent interactions 3, 4b, 5, 7, 10, 12b, 14, 15, 16, 20, 21b, 23, 24, 26b, 27, 28 

Notes: Steps 1, 9, 18, and 22 are excluded as these interactions can be authenticated by using existing authentication 

mechanisms. 

4.3.4.5 Communication Pattern Classifications 
A different phase of the execution is characterised by a different communication pattern, i.e., 

the job submission phase is characterised by the one-to-many (O2M) pattern, the map phase 

by the many-to-many (M2M) pattern, and the reduce phase by the many-to-one (M2O) 

pattern.  

In the O2M pattern, there is one producer (ClientApp) but multiple consumers (Mappers). 

The producer produces multiple objects (InputSplits), one for each consumer. In the job 

submission phase, although the input datasets for the job are from multiple users, each of 

the users (through his/her ClientApp) provides a different set of InputSplits and each of the 

InputSplits is assigned to a different Mapper, thus, characterised by the O2M pattern.  

In the M2M pattern, there are multiple (𝑃) producers (Mappers) and multiple (𝑄) 

consumers (Reducers). Each producer produces up to 𝑄 objects (PartitionSegments, each of 

which contains a different set of key-value pairs), one for a different consumer. Each 

consumer consumes up to 𝑃 objects, one from a different producer. The communication 

between Mappers and Reducers in the map phase is characterised by the M2M pattern.  

In the M2O pattern, there are multiple producers (Reducers) but one consumer 

(ClientApp of 𝑈𝑠𝑒𝑟1). Objects (FinalResults) produced by different producers are typically 

different (each of the FinalResults contains a different set of key-value pairs). This M2O 

pattern captures the characteristics of the communication between Reducers and ClienApp 

in the reduce phase.  

By taking into account the characteristics of these communication patterns, we may be 

able to improve the efficiency of our authentication solution. The communication patterns 

help identify steps where components have to produce or consume a potentially large 

number of JobData objects as the costs incurred in processing and transmitting these items 

could be large, increasing risks of creating performance bottlenecks. These steps are 

ClientApps producing InputSplits in the job submission phase, Mappers producing 
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PartitionSegments and Reducers consuming the PartitionSegments in the map phase, and 

ClientApp (of JobSubmitter) consuming FinalResults in the reduce phase.  

The job execution flow used in the CBDC-MPC model is based on the one reported in [112] 

and [132]. The CBDC-MPC model, in its current form, does not support iterative job execution 

(i.e., by chaining the output of Reducers in one iteration to the input of Mappers in the next 

iteration). However, the communication patterns of an iterative job execution can still be 

captured by the three patterns (O2M, M2M, and M2O). This means that an authentication 

solution designed based on our model should also be applicable to other applications that 

support iterative job execution.  

4.4 Threat Analysis 

Based on the CBDC-MPC model (described in Section 4.3.4), it can be seen that threats and 

attacks can be mounted on the system at multiple points during a job execution. This section 

gives a critical threat analysis, identifying threats with regard to violation of entity identity 

and data authenticity protections. It presents threat classifications before describing a threat 

model used for the design of our authentication solution.  

4.4.1 Threats and Attacks 
During a job execution, threats and attacks could be mounted at any of the job level, the MR 

service level, and the cloud (or infrastructure) level.  

At the job level, an unauthorised entity may impersonate, or gain interactions with, any 

of the authorised entities. Such threats may happen at any interactions from when ClientApp 

submits a job to ResourceManager to when it finishes reading the result of the job from the 

DFS cluster. These threats may be mounted via Man-in-the-Middle (MITM) attacks, or theft 

of an authorised entity’s authentication credential. If the unauthorised entity is successful in 

mounting such an attack, it could gain access to MR services, users’ data, or both. This could 

cause severe consequences, including, damages to the underlying systems and other systems 

connected to these systems, users’ privacy being compromised, and contamination of the job 

execution result.  

At the MR service level, an MR service may serve multiple jobs submitted by different 

users concurrently. In other words, users with different access rights (including those that are 

not authorised to carry out a particular MR job) may use the same MR service. Curious or 

malicious users may attempt to gain unauthorised access to data used in a particular job. They 

may do so directly or indirectly via compromising service components.  

At the cloud level, messages exchanged between MR components hosted in different 

clouds may be transmitted through insecure communication channels connecting the 

components; these channels are usually WAN (e.g., the Internet) based and are vulnerable to 

a wide range of threats and attacks. Such attacks include intercepting, altering, and replaying 

messages exchanged among the components. For example, an attacker may intercept a data 

reading request sent by ClientApp to DFS and replay the request at a later time to gain access 

to the data that the attacker is not authorised to access. In addition, resource sharing in clouds 

allows multiple tenants to access shared resources. By exploiting vulnerabilities or 
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misconfiguration, tenants of the same cloud but external to the MR service may also gain 

access to JobData used by the MR service. 

In summary, the threats and attacks discussed above can be classified into the following 

7 categories:  

(T1) Impersonation attacks: Impersonation attacks refer to attempts to assume the 

identity of an authorised entity. These attacks may be mounted via intercepting the 

identity credential of an authorised entity or by guessing the secret related to the 

credential. MITM attacks are one of such attacks. MITM attacks are performed by 

relaying (and possibly altering) intercepted messages exchanged between 

authorised entities or by hijacking a live session.  

(T2) Confidential data exposure threats: Sensitive data (e.g., identity credentials) may be 

exposed if not protected properly, particularly when data are transmitted over public 

networks.  

(T3) Replay attacks: These attacks refer to attempts to capture messages and repeat the 

messages to entities. These attacks are commonly used to orchestrate 

impersonation attacks, which allow an attacker to assume the identity of an 

authorised entity without the knowledge of identity credential. Addressing these 

attacks in the CBDC-MPC context is particularly important, as a job execution may 

last for a long period of time, giving attackers many opportunities to launch such 

attacks.  

(T4) Message tampering attacks: These attacks refer to alteration of intercepted 

messages before sending the modified messages to targets. Data sent by an 

authorised entity may be replaced with fraudulent data, e.g., a fraudulent session 

key planted by an attacker. An attacker may use such fraudulent data to launch 

further attacks on the job and the systems.  

(T5) Data injection attacks: These attacks refer to unauthorised attempts to inject new 

instances of fraudulent JobData at any points of the data flow. 

(T6) Data tampering attacks: These attacks refer to unauthorised alterations to JobData, 

such as adding, modifying, deleting some portions of JobData. (T5) and (T6) are 

external attacks. These attacks can lead to the contamination of the results of a job 

execution.  

(T7) Repudiation attacks: These attacks refer to any false denials of the generation of 

JobData. Repudiation is commonly used to evade responsibility or accountability. 

(T7) are insider attacks. Addressing these attacks is necessary in a collaborative 

environment, such as the CBDC-MPC context, where multiple organisations are 

involved and datasets from multiple organisations are used.  

Threats(T1) through to (T4) are entity identity related threats, whereas threats (T5) through 

to (T7) are data authenticity related threats.   

4.4.2 Threat Model 
A threat model defines the trust boundary of MR components. The threat model for our 

solution should take into account of the characteristics of the underlying Big Data computing 

platform, which is multi-cloud MR in this case. Existing threat models (or standard threat 



67 

models) do not capture the characteristics of MR based CDBC-MPC; they do not consider the 

functions of the components and the characteristics of inter-domain communication, 

therefore not suited to our problem context. As discussed in Section 4.3.4.2, based on 

functions, MR components can be classified into management and data-handling 

components. The level of risks experienced by data-handling components is higher than that of 

management components. Based on these considerations, our threat model is defined as follows:  

(TM1) The management components are trustworthy; they will perform their functions 

faithfully.  

(TM2) The data-handling components are untrustworthy; they may be malicious and 

actively use any of the attack methods highlighted in Section 4.4.1. 

Entities that are external to an MR job or the MR service, including those on the Internet, 

are untrustworthy; they may gain access to the shared resources and mount attacks on the 

job and the systems. 

4.5 Requirement Specifications 

To counter the threats and attacks identified in Section 4.4.1, we here specify a set of 

requirements for an effective, efficient, and scalable authentication solution for CBDC-MPC. 

The requirements will be used to guide the design of our solution. The requirements consist 

of functional, security, and performance requirements. 

4.5.1 Functional Requirements 
(FR1) Full-cycle protection: Every interaction taking place, and every JobData object 

transmitted, during a job execution should be authenticated, from when a user submits 

a job execution request to when the user retrieves the result of the job execution.  

(FR2) Cross-domain authentication: Entities involved in a job execution, including those 

that are from different administrative domains should be able to mutually 

authenticate each other.  

(FR3) Automated authentication: After a user has submitted a job to the MR service, the 

authentication of any interacting entities (i.e., component-to-component authentication) 

should be accomplished without the intervention or involvement of the user.  

(FR4) Fine-grained verifiability: JobData objects should be individually verifiable. This is 

necessary as objects produced by a producer may be consumed by multiple different 

consumers, objects assigned to a consumer are produced by different producers, 

and different consumers may consume the assigned objects at different times. 

(FR5) Limited JobData exposure: In providing data authentication, the exposure of JobData 

should not increase. In other words, JobData should not be revealed to any other 

components than those that are involved in the processing of the JobData.  

4.5.2 Security Requirements 
(SR1) Mutual authentication: Interacting entities should be able to verifies the identities 

of each other before the interaction can be proceeded. Mutual authentication 

ensures that entities are interacting with the intended entities. This requirement is 

used to counter impersonation attacks (T1).  
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(SR2) Sensitive data confidentiality: The confidentiality of sensitive data (i.e., secrets) 

exchanged during an authentication process should be preserved; they should not 

be revealed to any other entities than the claimant and verifier of the authentication 

process. This requirement is used to counter confidential data exposure threats (T2).  

(SR3) Replay attack protection: Messages used in every authentication instance should be 

fresh. Replayed messages should be detected by the receiving entities. This 

requirement is used to counter replay attacks (T3).  

(SR4) Message authenticity protection: The authenticity of messages exchanged in 

achieving entity authentication should be protected. The authenticity protection 

encompasses origin authentication (messages are generated by the claimed source) 

and integrity protection (messages are not tampered with since their origination). 

This requirement is used to counter message tampering attacks (T4).  

(SR5) Data origin authentication: The origin of each JobData object should be verifiable to 

ensure that the object is indeed produced by the claimed producer. This requirement 

is used to counter data injection attacks (T5).  

(SR6) Data integrity protection: The integrity of each JobData object should be verifiable 

to ensure that the object has not been tampered with since its generation. This 

requirement is used to counter data tampering attacks (T6).  

(SR7) Non-repudiation of origin: The generation of each JobData object should be bound 

to its producer so that any false denial of its generation can be detected. This 

requirement is used to counter repudiation attacks (T7).  

4.5.3 Performance Requirements 
(PR1) Low overheads: The overheads imposed on a job execution as a result of achieving 

authentication should be as low as possible. The overheads are considered in two 

aspects: (1) computational overhead, i.e., computational cost of generating and 

verifying AuthData; and (2) communication overhead, i.e., the amount of AuthData 

transmitted over networks.  

(PR2) High scalability: When the number of components and the volume of JobData 

increase, the rate of increase in the overheads should be no more than linear. 

4.6 The Running Example 

This section further develops the running example discussed in Section 1.2, giving more 

details about the input datasets for the job and how the job is executed by using MR in a 

multi-cloud setting. The example is also used to explain the design decisions made in the 

above sections and motivations for the decisions.  

As described in Section 1.2, the three collaborative organisations (𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1, 

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛2, and 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3) perform a data analysis job to identify any (potentially 

compromised) machines in the collaborative organisations in the past 30 days (say May 2020). 

Potentially compromised machines are machines that have been connected to by 

compromised machines. The IP address blocks of the three organisations are, respectively, 

10.1.0.0/16, 10.2.0.0/16, and 10.3.0.0/16. It is assumed that there are four compromised 

machines and their IP addresses are 10.1.0.101, 10.1.0.102, 10.2.0.101, and 10.3.0.101.  
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The input of the job comprises three input datasets, one from each of the participating 

organisations. Each dataset is a security log file containing network activities (connection 

details) in the respective organisation. The file contains tabular data in which each entry (row) 

contains date, time, source IP address, source port number, destination IP address, and 

destination port number. It is assumed that the attacks are mounted only on port 22. The 

contents of the files (𝐹𝑖𝑙𝑒1, 𝐹𝑖𝑙𝑒2, and 𝐹𝑖𝑙𝑒3) are shown in Table 4.4. The entries showing 

connections from the compromised machines to the potentially compromised machines are 

highlighted in grey. 

Table 4.4: The input (security log files) for the running example.  

Entry No. Date  

(DD/MM/YYYY) 

Time Source IP Source 

Port 

Destination IP Destination 

Port 

𝐹𝑖𝑙𝑒1 

1 03/05/2020 01:00:00 10.1.0.101 61001 10.2.0.201 22 

2 03/05/2020 01:30:00 10.2.0.201 62001 10.1.0.202 80 

3 03/05/2020 02:00:00 10.1.0.101 61002 10.3.0.201 22 

4 03/05/2020 03:00:00 10.1.0.102 61001 10.3.0.202 22 

5 04/05/2020 10:30:00 10.3.0.201 63001 10.1.0.201 80 

𝐹𝑖𝑙𝑒2 

1 03/05/2020 01:30:00 10.2.0.201 22 10.1.0.101 61001 

2 04/05/2020 01:00:00 10.2.0.101 62001 10.1.0.201 22 

3 04/05/2020 01:30:00 10.1.0.201 61001 10.2.0.202 22 

4 04/05/2020 02:00:00 10.2.0.101 62002 10.2.0.203 22 

𝐹𝑖𝑙𝑒3 

1 03/05/2020 09:30:00 10.1.0.202 61001 10.3.0.201 80 

2 04/05/2020 09:30:00 10.3.0.201 63001 10.1.0.202 80 

3 05/05/2020 01:00:00 10.3.0.101 63001 10.2.0.201 22 

4 05/05/2020 02:00:00 10.3.0.101 63001 10.3.0.202 22 

With regard to the system architecture for the deployment of distributed computing 

service components in clouds, the MC-SA (multi-cloud) architecture is applied in the 

deployment of the processing and storage components of 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2, i.e., the processing 

components are hosted in 𝐶𝑙𝑜𝑢𝑑1 and the storage components in 𝐶𝑙𝑜𝑢𝑑2. Compared with 

the SC-SA (single-cloud) architecture, MC-SA is more flexible and presents a broader set of 

security challenges. The distributed computing service providers of 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2 have 

more options of infrastructure services to choose from. They may choose to subscribe to 

processing and storage services provided by the same or different cloud service providers. In 

this case, they subscribe to a processing service provided by 𝐶𝑙𝑜𝑢𝑑1 and a storage service 

provided by 𝐶𝑙𝑜𝑢𝑑2. This also reduces the risk of vendor lock-in. As the networks connecting 

𝐶𝑙𝑜𝑢𝑑1 and 𝐶𝑙𝑜𝑢𝑑2 are likely to be WANs or the Internet, the communication channels 

connecting the processing components hosted in 𝐶𝑙𝑜𝑢𝑑1 and the storage components hosted 

in 𝐶𝑙𝑜𝑢𝑑2 may not be secure and susceptible to threats and attacks caused by malicious 

attackers (e.g., 𝑀𝑎𝑙4). An authentication solution designed for MC-SA based applications 

should be applicable to SC-SA based applications, but the reverse is not true. Therefore, MC-

SA is chosen for this work.  

The MR framework is chosen, as it is one of the most used Big Data processing models. It 

is highly versatile and can support a wide range of applications, including cyberthreat analysis 
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jobs (such as the one addressed in this example and other jobs [135][136][137]). The map and 

reduce computations of MR can be tailored by end users to process on unstructured (e.g., 

raw sensor data), semi-structured (e.g., images with metadata tags), and structured data (e.g., 

text data in a tabular format). Although, in many cases, SQL-based applications can answer 

queries that can be answered by MR-based applications, SQL-based applications cannot 

process unstructured data like MR. In this example, the map tasks are used to filter out 

irrelevant network activities and to identify entries related to attacks on potentially 

compromised machines, and the reduce tasks are used to merge and sort the entries and to 

generate the reports. As MR is designed for deployment on generic hardware, it should be 

compatible with processing and storage services provided by 𝐶𝑙𝑜𝑢𝑑1, 𝐶𝑙𝑜𝑢𝑑2, and 𝐶𝑙𝑜𝑢𝑑3. 

In addition, MR shares many characteristics and has security implications with other Big Data 

processing models. An authentication solution designed for MR should also work on the other 

models as well.  

As discussed above, MR is chosen as the Big Data processing model for the example, 𝐷𝐶𝑆1, 

𝐷𝐶𝑆2, and 𝐷𝐶𝑆3 are MR services (hereafter referred to as 𝑀𝑅1, 𝑀𝑅2, and 𝑀𝑅3, respectively). 

For the execution of a job, the users (𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3), from three respective 

collaborative organisations (𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1, 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛2, and 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3), use their 

ClientApps (𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, respectively) to communicate with their 

respective MR services. Three ResourceManagers (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3), three NameManagers (𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3), three DataStores (𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

2, and 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3), four WorkerManagers (𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

3), one JobManager (𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟), three 

Mappers (𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3), and three Reducers (𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3), are involved in the job execution. 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 and 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 are hosted 

on 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
1. 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

1, 𝑀𝑎𝑝𝑝𝑒𝑟1, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 are hosted on 

𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1. 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 are hosted on 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
2. 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3, 𝑀𝑎𝑝𝑝𝑒𝑟3, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 are hosted on 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

3. This setting is 

similar to that shown in Figure 4.7 but without 𝑀𝑎𝑙1, 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛4, and 𝑀𝑎𝑙4 (as these 

entities are not involved in the job execution).  

In this example, it is assumed that 𝑈𝑠𝑒𝑟1 initiates the execution of the job. The query of 

the job is to identify any potentially compromised machines and how many times these 

machines have been connected to by the compromised machines in the past 30 days. This 

can be translated into the map tasks, i.e., to find the entries in the log files showing a 

connection from a compromised machine to a potentially compromised machine on port 22, 

and the reduce tasks, i.e., to count how many connections by the compromised machines 

have been made to each of the compromised machines. The job execution flow follows the 

steps outlined in Section 4.3.4.1. 𝑈𝑠𝑒𝑟1 (as JobSubmitter) contacts and sends a request for 

the security log files (𝐹𝑖𝑙𝑒2 and 𝐹𝑖𝑙𝑒3) to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3, respectively. 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3 

accept the request and upload their security log files onto the DFS cluster of their MR services, 

respectively. The security log files (𝐹𝑖𝑙𝑒1, 𝐹𝑖𝑙𝑒2, and 𝐹𝑖𝑙𝑒3) are the input of the job. The input 

will be divided into multiple items each assigned to a different Worker. The processing of the 

data is carried out in two phases, the map phase and the reduce phase. The output of the job 
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is produced and ready for retrieval by the user at the end of the reduce phase. For ease of 

discussion, the notations for JobData objects (InputSplits, IntermediateResults, 

PartitionSegments, and FinalResults) used in this working example are described in Table 4.5. 

Table 4.5: Notations for JobData objects used in the running example.  

Symbol Meaning 

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡𝑖,𝑗 An InputSplit containing data supplied by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝𝑖  and used by 𝑀𝑎𝑝𝑝𝑒𝑟𝑗  

𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑖 An IntermediateResult produced by 𝑀𝑎𝑝𝑝𝑒𝑟𝑖  

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑖,𝑗  A PartitionSegment produced by 𝑀𝑎𝑝𝑝𝑒𝑟𝑖  and used by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟𝑗  

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑖,𝑗 A FinalResult produced by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟𝑖  and used by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝𝑗  

The input data are divided into 3 InputSplits (𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1, 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2, and 

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3). Each of the InputSplits corresponds to a respective security log file (𝐹𝑖𝑙𝑒1, 

𝐹𝑖𝑙𝑒2, and 𝐹𝑖𝑙𝑒3), and is assigned to a different Mapper (𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3, 

respectively). In the map phase, each of the Mappers identifies all the potentially 

compromised machines, the machines that have ever come into contact with any of the 

compromised machines (via port number 22), using the data in the given security log. Upon 

the completion of the map tasks, each of the Mappers produces an output file 

(𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡1, 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡2, and 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡3, respectively). 

Each of these files contains multiple entries. Each entry is a pair of values, a destination IP 

address (pointing to the potentially compromised machine) and a source IP address (pointing 

to the compromised machine). For each 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑖, where 𝑖 ∈ {1, 2, 3}, the 

entries are partitioned into segments (PartitionSegments) based on the destination IP 

addresses (a segment for an IP address block). As a result, 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡1 is 

partitioned into two PartitionSegments (𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3), 

𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡2 is partitioned into two PartitionSegments (𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 and 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2), and 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡3 is partitioned into two 

PartitionSegments (𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3). Each of the 

PartitionSegments is assigned to a respective Reducer (𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, 

respectively). In the reduce phase, each of the Reducers combines the PartitionSegments from 

the Mappers that are assigned to it and outputs a list of potentially compromised machines 

along with the number of connections (i.e., connection count) each potentially compromised 

machine has with the compromised machines. Upon the completion of the reduce tasks, each 

of the Reducers produces an output file (𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and 

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1, respectively). The FinalResults are the output of the job execution. They are 

stored in 𝐷𝐹𝑆1 and are ready for retrieval by 𝑈𝑠𝑒𝑟1. The flow of the job execution is 

summarised in Figure 4.9. The operational steps are detailed in Section 7.2. 
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Figure 4.9: The job execution flow of the running example. 

The job execution is susceptible to threats and attacks from multiple sources at multiple 

points. Using Figure 1.1 and Figure 4.8 as a reference, in step 1, 𝑀𝑎𝑙1, which is not authorised 

to initiate a collaborative job and access the shared datasets, may try to impersonate 𝑈𝑠𝑒𝑟1 

and submit a request for shared dataset and starting a job execution to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3 

(T1). In step 2, when 𝑈𝑠𝑒𝑟1 authenticates to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to submit a job execution 

request to 𝑀𝑅1, 𝑀𝑎𝑙1 may intercept authentication credentials contained in messages 

transmitted between 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1 and 𝐶𝑙𝑜𝑢𝑑1 or hijack a session of 𝑈𝑠𝑒𝑟1 (T2). In step 3, 

𝑀𝑎𝑙1 may replace a session key in the intercepted message with a fraudulent key to mount 

MITM attacks (T4). During the job execution, in step 4, 𝑀𝑎𝑙1 may write fraudulent data onto 

𝐷𝐹𝑆1 (T5) or tamper with JobData stored in 𝐷𝐹𝑆1 (T6). 𝑀𝑎𝑙1 may then falsely deny 

performing such actions (T7). When the FinalResults are uploaded to 𝐷𝐹𝑆1 and ready for 

retrieval by 𝑈𝑠𝑒𝑟1, in step 29, 𝑀𝑎𝑙4 may intercept the FinalResult reading request by 𝑈𝑠𝑒𝑟1 

and replay the request to 𝐷𝐹𝑆1 at a later time (T3).  

Owing to the involvement of entities from different administrative domains, 

accomplishing authentication in this example is a challenging task. As shown in this example, 

collaborative organisations, MR service providers, and cloud service providers are from 

different administrative domains which may have varying levels of trust. The identities of 

entities in each of the domains are managed by the respective domains. Verifying the identity 

of an entity in another domain requires exchanging additional messages, adding overhead 

cost thus a delay to the job execution. For example, when 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 authenticates to 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to write 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 has to contact the identity 

provider or the authentication service of 𝑀𝑅2 to verify the identity of 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 and 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 may use the same method to verify the identity of 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, further 

adding communication overhead. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and data processing components (i.e., 

𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, 𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) are job-dependent; 
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they are created when the job starts and terminated when the job finishes. This means that 

the identities of these components and credentials for verifying the identities should be 

established during the job execution process. As discussed earlier, attacks could be mounted 

on the job and the system at multiple points during the job execution. Thus, strong 

authentication protection should be provided to every interaction from when 𝑈𝑠𝑒𝑟1 submits 

a request to start the job to when 𝑈𝑠𝑒𝑟1 retrieves the FinalResults. As outlined in Section 

4.3.4.1, the job execution consists of 29 operational steps and the number of interactions in 

each of the steps is dependent on the number of MR components involved in the step. In this 

example, with just only three MR services (each with one ClientApp, one ResourceManager, 

three Mappers, three Reducers, one NameManager, and one DataStore), there are a total of 

about 100 entity and data authentication instances taking place during the job execution. 

Therefore, an authentication solution designed for CBDC-MPC should be as efficient and 

scalable as possible to minimise negative impacts on the performance of Big Data 

computation. 

4.7 An Overview of the MDA Framework 

To support secure inter-organisational Big Data sharing and processing, we have designed a 

novel authentication framework, called the Multi-domain Decentralised Authentication 

(MDA) framework. The MDA framework provides two authentication services, entity and data 

authentication services, which satisfies all the specified requirements. The entity 

authentication service verifies the identities of entities involved in a job execution, ensuring 

that entities are whom they claim to be. It is also used for establishing credentials that are 

bound to the identities of the authorised entities. These credentials are necessary for other 

security services, including a data authentication service. The data authentication service 

ensures that JobData generated, processed, and used during the job execution can be traced 

back to their origins and are free from unauthorised modification, ensuring the authenticity 

of JobData and accountability of entities producing the JobData. 

The MDA framework consists of one novel entity authentication framework and one novel 

data authentication framework. The novel entity authentication framework, called the Multi-

factor Interaction based Entity Authentication (MIEA) framework implements the entity 

authentication service. The novel data authentication framework, called the Communication 

Pattern based Data Authentication (CPDA) framework, implements the data authentication 

service. Figure 4.10 shows the architecture of the MDA framework, highlighting the 

components of the MIEA and CPDA frameworks and how these components are collectively 

used to support authentication for MR based distributed computing system in the context of 

CBDC-MPC.  
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Figure 4.10: MDA framework architecture. 

As shown in the figure, the MIEA framework contains credential establishment methods 

and entity authentication protocols. The credential establishment methods are used to 

establish credentials on MR components. These credentials are then used by the entity 

authentication protocols to verify the identities of the two interacting entities. The entity 

authentication protocols verify the identities of the interacting entities by verifying the 

AuthData exchanged between the entities. Once the identities of the entities are verified, 

these protocols also facilitate the transmission of new credentials for subsequent 

authentication. The CPDA framework contains AuthData generation methods, AuthData 

verification methods, and AuthData delivery protocols. The AuthData generation methods 

use the credentials established during entity authentication to generate AuthData for JobData 

objects. The AuthData verification methods use the credentials to verify the authenticity of 

the objects against the generated AuthData. The AuthData delivery protocols are used to 

deliver these AuthData from one component to another component.  

Figure 4.11 demonstrates an authentication flow when the MDA framework is applied. 

The authentication flow starts from when credentials for entity authentication are established 

on entities (i.e., MR components) to when a component consuming JobData objects verifies 

the authenticity of the objects assigned to it. The MIEA framework is used for entity 

authentication from Step 1 through to Step 5 and the CPDA framework is used for data 

authentication from Step 6 through to Step 8. Without losing generality, it is assumed that 𝐴 

and 𝐵 are the interacting components, 𝐴 is a data producer, and 𝐵 is a data consumer. In Step 

1, the credential establishment methods of MIEA are used to establish credentials needed for 

entity authentication. From Step 2 through to Step 5, the entity authentication protocols of 

MIEA are used to facilitate the mutual authentication (i.e., verification of the identities) of 𝐴 

and 𝐵. For the verification of the identity of 𝐴, in Step 2, 𝐴 generates AuthData with its 

credentials. In Step 3, 𝐴 then sends the AuthData to 𝐵. In Step 4, 𝐵 verifies the received 

AuthData. If the verification result is positive, the identity of 𝐴 is positively verified. The 

verification of the identity of 𝐵 is carried out using the same steps as outlined in Step 2, Step 

3, and Step 4. In Step 5, if the identities of both of 𝐴 and 𝐵 are positively verified, new 

credentials are established. With regard to data authentication, in Step 6, 𝐴 generates 

AuthData for JobData objects it produces by using the AuthData generation methods of CPDA. 

In Step 7, the AuthData delivery protocols are used to transmit the AuthData from 𝐴 to 𝐵. In 
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Step 8, 𝐵 verifies the authenticity of the objects assigned to it against the received AuthData. 

If the verification result is positive, 𝐵 is assured that the objects it consumes are authentic.  

 
Figure 4.11: Authentication flow using the MDA framework. 

Detailed literature reviews with regard to entity authentication and data authentication, 

the detailed descriptions of the MIEA and the CPDA frameworks, and their theoretical 

analyses and experimental evaluations are given in Chapter 5  and Chapter 6 , respectively. 

4.8 Chapter Summary 

This chapter has described a reference use case model used by this research. In formulating 

the use case model, it has examined possible system architectures and Big Data processing 

models, and selected suitable ones for constructing our use case model. As a result, the MC-

SA architecture and the MR model are chosen for the use case model. Compared with SC-SA, 

MC-SA is more flexible and presents a broader sets of security requirements. Big Data 

processing models share many common characteristics. This means that an authentication 

solution designed for one model should also be applicable to other models. Although some 

models (e.g., Apache Spark) may perform better (in terms of job execution time) than MR 

under certain conditions, considering that MR is designed for deployment on generic 

hardware and that MR is one of the most widely used Big Data processing models and there 

are extensive supports and documents available to MR users, we have chosen MR to 

construct our generic use case model. Using the use case model, our threat analysis indicates 

that MR based data processing in this context is susceptible to threats caused by not only 

outsiders but also insiders. To counter the threats, this chapter has also specified a set of 

requirements to guide the design of our authentication solution. The formulation of this use 

case model is the first novel contribution (NC1) of this research work. The threat analysis on 

the model answers the research question (Q1). In addition, the observations made on the use 

case model show that some characteristics (e.g., communication patterns) can be used to 

improve the efficiency of the authentication solution. This has led to the design of our 

authentication solution, the MDA framework. An overview of the MDA framework has been 

presented in this chapter. The detailed descriptions and the evaluations of the components 
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of MDA are to be presented in the following chapters, i.e., the MIEA framework for entity 

authentication in Chapter 5 and the CPDA framework for data authentication in Chapter 6.  

The next chapter presents in detail a novel approach, an interaction based approach, to 

entity authentication which provides strong security protections against entity identity 

related threats efficiently to every interaction during the execution of a job. 
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Chapter 5   

Multi-factor Interaction based  

Entity Authentication (MIEA) Framework 

5.1 Chapter Introduction 

This chapter presents a novel entity authentication framework, called the Multi-factor 

Interaction based Entity Authentication (MIEA) framework, which is part of the MDA 

framework. The MIEA framework is designed to provide entity authentication protection for 

every interaction taking place during a data processing job but with minimal overhead cost. 

The design of MIEA makes use of three main ideas. The first is Multi-factor Interaction based 

Authentication (MIA) in which credentials and an authentication method are determined 

based on the risk level associated with an interaction. The second is a Decentralised approach 

with Combined use of group-and-entity-dependent Symmetric keys (DCS) in which the 

distribution and the verification of credentials are carried out without the assistance of a 

central server and symmetric-key cryptosystems are used to generate, verify, and securely 

transmit credentials. The third is a Hierarchical Key Structure (HKS) where a limited set of 

credentials (keys) is used to securely distribute additional keys for subsequent authentication 

instances and to derive new keys for tasks (e.g., message authentication) facilitating the 

authentication. The MIEA framework has been extensively evaluated by using both 

theoretical analysis and experimental evaluation to demonstrate the effectiveness (the 

strength of protections), efficiency (the cost incurred in providing the protections), and 

scalability (the increase in cost in relation to the number of entities involved in a job 

execution). The theoretical analysis is conducted by using both informal and formal methods. 

The experiments are conducted by implementing authentication protocols and executing the 

implemented protocols on a testbed under different parameter settings.  

In detail, Section 5.2 critically reviews existing entity authentication solutions at a 

technical level, highlighting knowledge gaps and areas for improvements. Sections 5.3, 5.4, 

and 5.5 respectively, describe high-level ideas, notations and design assumptions, and 

detailed description of MIEA. Sections 5.7, 5.8, and 5.9, respectively, report security analysis, 

theoretical, and experimental performance evaluations. The results are compared with those 

of the most related solutions. Lastly, Section 5.10 concludes the chapter.   

5.2 Existing Entity Authentication Solutions 

Existing entity authentication solutions designed for networked and distributed systems can 

be largely classified into two groups: those that are designed for non-MR based services 

(referred to as non-MR specific solutions) and those that are specifically designed for MR 

services (referred to as MR specific solutions).  
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5.2.1 Non-MR Specific Solutions 
Remote Authentication Dial-In User Service (RADIUS) [29], Kerberos [34][138][139], and 

Security Assertion Markup Language (SAML) [140] are among the most commonly used 

authentication solution families, which are designed for networked systems. In addition, this 

section also describes the Needham-Schroeder-Lowe Public Key (NSLPK) protocol [31], one of 

the most studied and referred asymmetric-key based authentication protocols proposed in 

literature.  

RADIUS [29] is a client-server networking protocol commonly used to implement an entity 

authentication service to support secure access to resources hosted in the network of an 

organisation. It supports both intra-domain and inter-domain (also called inter-realm or 

roaming) authentication. To authenticate a user requesting to access a service located in the 

same domain, the user sends a request to a gateway, called a RADIUS client. The client then 

passes the request to an authentication server, called a RADIUS server. Then the user, via the 

RADIUS client, communicates with the server to accomplish the authentication process. For 

inter-domain authentication where a user and the requested service are in different domains 

and each independently managed by their respective domains, a local authentication server 

(also called a proxy server) of the user’s domain acts as a proxy between the user and a 

remote authentication server (also called a master server) in the domain of the requested 

service. RADIUS has a number of limitations [141][142]. One of the limitations is that it does 

not have provisions for congestion control, so it has scalability and reliability issues. Eduroam 

[143][144], a secure world-wide roaming access service developed for the international 

research and education community, improves on the scalability problem by allowing the use 

of multiple RADIUS servers and constructing the servers into a hierarchical network. Another 

peer-to-peer based solution, called Diameter [30][145], was proposed to address some of the 

limitations of RADIUS. Diameter uses a number of measures, namely the support of a reliable 

transport mechanism (e.g., the Stream Control Transmission Protocol (SCTP) [146]), a fail-over 

procedure, and a capability negotiation facility, to improve on the reliability, scalability, and 

compatibility issues of RADIUS. It also provides a higher level of security protection (e.g., hop-

to-hop and end-to-end secure communication channel) than RADIUS. This is done by the use 

of transport layer security solutions, such as the Internet Protocol Security (IPsec) protocol 

suite [147] and the Transport Layer Security (TLS) protocol [148]. However, as the above 

solutions are only a transport facility and does not have a built-in confidential channel, they 

need external solutions to protect the confidentiality of any authentication credentials and 

data sent over the channel. The overhead cost introduced by these solutions could be 

excessive, particularly when multiple interactions (each with a different pair of entities) need 

to be authenticated and each authentication is only for transmitting a small amount of data 

(e.g., service status report), as in the case of our CBDC-MPC context. In addition, there is also 

a usability issue, as each authentication instance may require the user to input his/her 

credential manually (e.g., if password based credentials are used), and this is impractical for 

Big Data processing where there are many component-to-component interactions and the 

process of executing a job may last for a long time.  

Kerberos [34][138][139], a symmetric-key based entity authentication solution, is 

particularly suited for Single Sign-on (SSO) in an organisational environment. With Kerberos, 
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a user only uses one password to gain access to multiple service servers, with minimal 

exposure of the password. It achieves this by introducing ideas of temporary secrets and a 

hierarchical secret structure. In this structure, a user’s password is used to derive a master 

key. The master key is only used for secure distribution of temporary secrets (keys). Access to 

a service server is granted if the user (via the user’s client) demonstrates the knowledge of 

the corresponding temporary secret. This approach makes the authentication service more 

secure as users’ passwords are never sent over networks. In addition, the number of 

interactions required from a user is reduced. This is because, once a ticket granting ticket (an 

encrypted secret in the mid-level of the key hierarchy) is acquired, the user’s client can 

acquire service tickets (an encrypted secret in the bottom-level of the key hierarchy) on behalf 

of the user, making the system more user friendly than the RADIUS based solutions. However, 

owing to the distribution of the temporary secrets, each new service access (or each 

interaction with a service entity) requires 3 to 5 messages to complete a mutual 

authentication process. This is excessive both in terms of computational and communication 

costs, particularly if a user needs to access (or interact with) multiple service entities, and 

each such interaction is just for transmitting small amount of data. For inter-domain 

authentication, the authentication servers of participating domains are structured using a 

hierarchical tree similar to that used in the Domain Name System (DNS) [149]. For a user to 

gain access to a service server in another domain, the authentication process requires 

traversing the tree of the authentication servers. This introduces a number of additional 

messages, further increasing computational and communication costs.  

SAML [140] is particularly suited for inter-domain authentication in a collaborative 

environment where each domain represents a different organisation. With the use of SAML, 

participating organisations do not have to use the same authentication solution and users 

from different organisations can authenticate themselves with their home organisations 

while accessing resources provided by external organisations. This is done by using a standard 

for exchanging security data (e.g., authentication and authorisation data) among different 

domains, in particular, between a service user and a service provider. Examples of SAML 

based solutions are Active Directory Federation Services [81], Access Policy Manager [33], and 

Shibboleth [32]. However, to authenticate a particular user, another layer of authentication 

is required to authenticate the user to the user’s organisation before the user’s organisation 

asserts the user’s identity and the associated attributes to a resource providing organisation. 

For these reasons, SAML is not suited to our CBDC-MPC context.  

NSLPK [31] is an authentication protocol based on asymmetric-key cryptography. Unlike 

symmetric-key based solutions such as Kerberos, with NSLPK, a user and a service server do 

not have to establish a share secret prior to authentication. However, a trusted third party 

(e.g., a certificate authority) is required for certifying and distributing the public keys of the 

user and the service server. Mutual authentication of the user and the service server is done 

by demonstrating the knowledge of the corresponding private keys. The user and the service 

server exchange a series of messages containing challenges and responses which are 

protected (encrypted) with the public key of the other entity. Only the intended user or 

service server can read the public-key-protected challenge with the respective private key 

and be able to generate the corresponding response for the challenge. NSLPK introduces a 
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high level of computational cost due to the cost of asymmetric-key operations, which is more 

expensive than that of symmetric-key operations [45]. This is not suitable for Big Data 

processing in this context which has a stringent requirement for timeliness.  

5.2.2 MR Specific Solutions 
Based on the approaches used, MR specific authentication solutions can be largely classified 

into three groups, password based, symmetric-key based, and asymmetric-key based.  

Password based solutions are the most used for gate-level authentication. Gate-level 

authentication authenticates a user when the user makes a request to access, or to interact 

with, a service. As passwords are vulnerable to theft, some solutions, such as [79] and [80], 

have been proposed to make password-stolen attacks more difficult. The approach used in 

these solutions is to divide an authentication credential into multiple pieces and store each 

of the pieces on a different server. In [79], a user’s credential is transformed and divided into 

multiple pieces by using a mathematical method that is based on the properties of triangles. 

These pieces are separately stored on three different servers, one authentication server and 

two backend servers. The solution proposed in [80] generates multiple authentication tokens 

from a single password. To generate the tokens, a user is issued with a new one-time secret 

key (for a user’s password) when the user is registered to the system and when the user logs 

out of the system each time. The password and the secret key are used to encrypt each other, 

respectively, generating two tokens. The tokens are then stored on two different servers, an 

authentication server and a backend server. Password based solutions usually require users 

to manually enter their credentials into the system at the time of authentication. They are 

not readily applicable to component-to-component authentication.   

A symmetric key, similar to a password but with a higher entropy, is also commonly used 

to achieve authentication. A symmetric key (either a group key if it is shared among a group 

of entities or a pairwise key if it is shared between two entities) is used to generate and verify 

AuthData. Only the entities knowing the key can generate AuthData that can be verified with 

the same key, ensuring the authenticity of the entity. Apache Hadoop [120], one of the most 

prominent opensource Big Data solutions, employs a symmetric-key based authentication 

solution, a Kerberos based system. Kerberos is used for authentication between a user (via 

ClientApp) and the MR service (i.e., between ClientApp and ResourceManager), ClientApp 

and NameManager, ClientApp and JobManager, and JobManager and WorkerManagers. 

Additional authentication tokens are introduced to complement Kerberos and reduce the use 

of Kerberos credentials (i.e., service tickets). Three sets of tokens are introduced, namely 

delegation tokens, block access tokens, and job tokens. A delegation token is used by 

components (e.g., ClientApp and Workers) to request services (e.g., file listing) from 

NameManager. Similarly, a block access token is used by components to request access to 

data blocks from DataStore. A job token is used by Mappers and Reducers to authenticate 

themselves to WorkerManagers. The Apache Hadoop solution only support the deployment 

of an MR service in a single domain.  

To support the deployment of an MR service in a multi-cloud environment, an entity 

authentication solution, called a Virtual Domain based Authentication Framework (VDAF) 

[84][36], was proposed. In VDAF, a novel MR Layered Authentication Model (MR-LAM) is 
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proposed. The model consists of two layers of authentication. One is for authenticating 

components serving multiple jobs. The other is for authenticating components serving a 

particular job. The components serving a job form a virtual domain, called JobDomain. VDAF 

enforces authentication at every interaction during a job execution. This is achieved by using 

a Password and Token based Multi-point Multi-factor Authentication (PT2M-AuthN) method. 

It implements two main ideas, one is the principle of the separation of duty-and-credential, 

and the other is a key wrap-and-swap operation to support mutual authentication.  

Symmetric-key based solutions have limitations. One is that establishing a pairwise 

credential (e.g., a key) between every pair of interacting entities is resource-consuming, 

especially when entities are from different domains with varying levels of trust. The overhead 

cost of establishing a pairwise symmetric key increases at a polynomial rate as the number of 

entities increases. The other is that the sharing of a symmetric key among a group of entities 

limits the accountability of the entities. In such cases, it is difficult, if not impossible, to hold 

any of the entities accountable for their actions.   

Asymmetric-key based solutions are often used for cross-domain authentication, or in a 

multi-domain (e.g., multi-cloud) environment, where there is a lack of trust among the 

entities from different domains. In an asymmetric-key based solution, two keys (a private key 

and a public key) are used to accomplish an authentication process. As long as the private key 

is kept secret and the public key is certified, the identity of the entity owning the keys can be 

verified thus authenticated. Although asymmetric-key based solutions are computationally 

more expensive, they can reduce the number of keys an entity has to store and manage, and 

relieve the key establishment issue existed with symmetric-key based methods. These 

benefits are particularly significant when the number of entities one needs to interact with is 

large. In [150], an asymmetric-key based solution was proposed for a multi-cloud based MR 

architecture called G-Hadoop [151]. This solution supports authentication between users and 

a management component, called a master node, and between the master node and data 

processing components, called slave nodes. A central certificate authority is introduced to 

issue and certify public-key certificates for all the components. The authentication between 

a user and the master node is done by using a password based method, and the 

authentication between the master node and each of the slave nodes is done by using an 

asymmetric-key based method similar to the handshaking process of Secure Sockets Layer 

(SSL) [152]. Trusted Scheme for Hadoop Cluster (TSHC) [153] introduces a Trusted Compute 

Base (TCB) component to facilitate asymmetric-key based authentication in MR. TCB is used 

to generate asymmetric keys for MR components by using an Identity-Based Encryption (IBE) 

method. In [154], an Efficient Authentication Protocol for Hadoop (HEAP) was proposed. In 

HEAP, two authentication servers are used to authenticate a user to the system. The user is 

issued a set of credentials. A subset of the credentials is stored on each of the servers. During 

the authentication process, AuthData exchanged between the user and the two servers are 

generated by using an Elliptic-Curve Cryptography (ECC) based asymmetric system (for 

signature generation) and an Advanced Encryption Standard (AES) based symmetric system 

(for credential encryption). All the above solutions are vulnerable to software based attacks, 

e.g., by exploiting the vulnerabilities of unpatched applications or operating systems to steal 

authentication credentials from the memories or storage of the machines hosting the entities.  
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To enhance protection against software based attacks, a special hardware module, called 

Trusted Platform Module (TPM), is used. TPM provides a number of cryptographic functions 

(e.g., key generation, random number generation, and signature generation and verification) 

as well as persistent and volatile memory to store both long-term (e.g., root keys) and short-

term (e.g., temporary secret keys) security data. In such a solution, a baseline state (i.e., an 

uncompromised state) of a component is established by measuring the software installed and 

the configurations used. The digest of the baseline state is then signed and stored in the 

volatile memory of the TPM of the component, ensuring the integrity of the component. The 

state of the component may be attested by another component (e.g., a management 

component such as JobManager) periodically or before an interaction is started. Some 

examples of such TPM based solutions include [155] and [156]. Owing to their limited 

computational capabilities, the use of TPMs in performing a large number of cryptographic 

operations (e.g., attesting the integrity of a large number of components) may increase the 

execution time and lowering the performance of a job execution. 

5.2.3 What is Missing 
We have critically analysed the existing work presented above against the requirements with 

regard to identity protection, i.e., (FR1), (FR2), (FR3), (SR1), (SR2), (SR3), (SR4), (PR1), and 

(PR2), as specified in Section 4.5. The result of the analysis is summarised in Table 5.1. Based 

on the analysis result, we can make the following remarks.  

• None of the existing entity authentication solutions discussed above provides all the 

specified functional requirements, i.e., full-cycle (FR1), cross-domain (FR2), and 

automated (FR3) authentication protection. The non-MR specific solutions are 

mainly designed for gate-level authentication to deter unauthorised entities from 

accessing the service. They provide authentication services to authenticating users 

to the service, not mutual authentication among service components. One 

important characteristic of our use case model is that data processing components 

are allocated and assigned to a job when the job is accepted by the MR service and 

these components are terminated and released when the job finishes. This implies 

that the identities of the data processing components are not known before the job 

is executed. This characteristic was not specifically considered in the design of the 

existing solutions, such as Kerberos and NSLPK, which support component-to-

component authentication. Therefore, when being applied to the CBDC-MPC 

context, the execution time of the job may suffer due to the costs incurred in 

generating, transmitting, and verifying AuthData tokens. None of the MR specific 

solutions (with the exception of VDAF) supports interaction-level authentication for 

entities throughout the whole cycle of the job execution. Although VDAF provides 

full-cycle protection, it is not designed for cross-MR service authentication, thus, not 

readily applicable to our use case.  

• Password-based solutions are not suited to our use case as they require user 

intervention which lower usability in this CBDC-MPC context where users may not 

always be present. These password-based solutions are typically more suitable for 

applications that require only gate-level authentication.  
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• Symmetric-key based solutions, as discussed earlier, have two main limitations. The 

first is that establishing pairwise keys for every pair of components is resource-

consuming and the cost incurred increases at a polynomial rate as the number of the 

components increase. The second is that using group keys cannot protect against 

insider threats as any members of the group can use the keys to gain access to 

protected resources. This also nullifies the protection of accountability.  

• The overhead costs introduced by asymmetric-key based solutions are too high for 

large-scale collaborative Big Data processing which has a stringent requirement for 

timeliness. Although TPMs can enhance the security protection and make software-

based attacks much more difficult, the number of public clouds supporting such 

specialised modules is limited. Furthermore, TPMs may increase the risk of creating 

performance bottleneck and further lower the performance of the job owing to its 

limited computation power and resources.  

Table 5.1: Related entity authentication solutions. 

 Requirements 

Approaches (FR1) (FR2) (FR3) (SR1) (SR2) (SR3) (SR4) (PR1) (PR2) 

Non-MR specific          

RADIUS [29], Eduroam 
[143][144], Diameter [30][145] 

         

Kerberos [34][138][139]           
SAML based [81][33][32]          
NSLPK [31]          
MR specific          

Password based [79][80]          
Symmetric-key based 
[84][120] [36] 

         

Asymmetric-key based 
[150][153][154][155][156] 

         

Notes:  

: Requirement is addressed.  

: Requirement can be addressed with additional plug-in modules or minor modifications, or there is room 
for improvement. 

: Requirement is not addressed.  

To improve on the existing solutions and satisfy all the specified requirement, we have 

proposed a novel entity authentication framework, the MIEA framework. The remaining of 

this chapter explains high-level ideas, the detailed description, and the evaluation of the 

framework.  

5.3 High-level Ideas 

MIEA is designed for CBDC-MPC, which is characterised by the following characteristics: (1) 

each job execution potentially involves a large number data processing components; (2) these 

components may be from different administrative domains and could be governed by 

different policies; and (3) the data processing components are ephemeral (job-dependent), 

they are dynamically created and deployed in the systems when a job is submitted and 

terminated when the execution of the job is completed. In addition, it should also be 

emphasised that, as such systems are intended for Big Data computation, there is a stringent 

requirement for timeliness of job executions. 
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The design of MIEA makes use of three main ideas. The first is Multi-factor Interaction-

based Authentication (MIA), i.e., the number of factors (keys) used to authenticate two 

entities involved in an interaction are determined based on the risk level associated with, and 

the purpose of, the interaction. This idea is applied to every interaction taking place during a 

job execution. In the context of CBDC-MPC, two risk levels, a high-risk level and a low-risk 

level, have been identified. The high-risk level is tagged to initial interactions and the low-risk 

level to non-initial (subsequent) interactions. Owing to the impact of allowing remote (and 

potentially untrustworthy) entities to access local resources which may contain sensitive and 

high-value data, initial interactions, such as an initial attempt to access data stored in DFS 

clusters by a data processing component, introduce a higher level of risks, particularly when 

data providing and consuming components are from different organisations or domains (e.g., 

hosted in different clouds). If two entities of an interaction are from different clouds, they are 

more likely being connected via public networks, such as the Internet, which are vulnerable 

to a broader range of threats than private networks. In addition, initial interactions typically 

involve entities that have yet established any trust or shared secrets and these interactions 

are usually used to establish such secrets. If initial interactions, or the secrets being 

established during the initial interactions, are compromised, the security of subsequent 

interactions will also be put at risk. For these reasons, a stronger level of protection, or a 

higher level of assurance, should be obtained during authentication, thus, applying two-factor 

authentication. Using two factors doubles the effort needed by an attacker to successfully 

mount an attack on an authentication process, as the attacker has to compromise both 

factors. Subsequent interactions, on the other hand, use temporary secrets established in the 

authentication of preceding interactions. They may impact on a limited set of interactions 

should the temporary secrets be compromised. Thus, they experience a lower level of risks, 

so one-factor authentication can be applied.  

The two-factor authentication is accomplished based on our observation that, usually, a 

secret could be established among a group of entities sharing a common interest. This group 

secret, along with a unique (pairwise) secret shared between two interacting entities can 

facilitate two-factor authentication. In other words, in each two-factor authentication 

instance, two credentials are used, one is a group key and the other is a pairwise key. A group 

key is shared among the members of a particular group (e.g., a domain or a cluster). This 

group key is used to deter outsider threats, i.e., threats caused by entities external to the 

group. A pairwise key is shared between two interacting entities. It is used to counter insider 

threats, i.e., threats caused by entities in the same group. This pairwise key also narrows the 

accountability to the two entities sharing the key. In each one-factor authentication instance, 

a pairwise key established during the preceding two-factor authentication is used. In MIA, the 

credentials used for each authentication instance are selected from a pool of credentials 

already being established at multiple points as the job execution progresses. Furthermore, 

compared with the solutions that support only gate-level authentication, applying 

authentication at every interaction, i.e., at the interaction level, can lower the risk of systems 

being compromised. This approach shortens the time window during which an attacker can 

launch an attack against a system, making it harder to compromise the system.  
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The second idea is a Decentralised approach with Combined use of group-and-entity-

dependent Symmetric keys (DCS). The ‘decentralised approach’ is implemented in two 

dimensions. The first is the decentralised distribution of keys. The distribution of group keys 

is handled by a trustworthy entity in each respective group. For two entities involving in an 

initial interaction, their pairwise key is distributed by a trusted third party via the use of an 

existing mechanism or via prior authentication (e.g., during initial interactions) with other 

entities. For a non-initial interaction, a pairwise key sharing between two interacting entities 

is established during the initial interaction. The second dimension of the ‘decentralised 

approach’ lies in authentication verifications. All such verifications are performed by the 

interacting entities. Owing to the characteristics of the distributed setting and the hybrid use 

of group and pairwise keys, this approach has an inherent feature of the separation of duties, 

or entity segregation, i.e., entities are compartmentalised into groups and a different group 

key is dispatched to each group. The more distributed the setting is, or the more domains or 

clusters the setting has, the more groups there are, thus the more separated the duties. This 

feature can limit the impact should an entity be compromised or should a key be exposed. In 

addition, the least privilege is applied in the usage of keys. Each entity obtains only a minimal 

set of keys needed to perform its function.  

The number of interactions among a large number of entities will be large, the cost of the 

interaction-level authentication could thus be high. To reduce the cost, the computational 

complexity of authentication verification should be as low as possible. For this reason, we 

have chosen to use a symmetric-key based authentication method. In the MR context, most 

entities are job-dependent (e.g., Mappers are created before the map phase and destroyed 

once they finish their map tasks). In contrast, with an asymmetric-key based method, the 

costs of credential establishment and authentication verification are computationally 

expensive and inefficient. The delay introduced by the authentication operations may hinder 

the performance of the underlying system, particularly for a time-sensitive data processing 

system such as the one addressed in this paper. 

The third idea is the use of a Hierarchical Key Structure (HKS). This idea is implemented in 

two dimensions. The first is the distribution of keys for different interactions. Keys in a higher 

level of the key hierarchy are used to securely distribute keys in a lower level of the key 

hierarchy. This is based on an observation that there are multiple tasks (e.g., data access and 

resource allocation) during a job execution, each task consists of multiple interactions, and 

these interactions are taking place in order. For example, a data processing component has 

to communicate with NameManager before sending a request to a DataStore to access job 

data. In this case, the keys for the component to authenticate itself to the DataStore can be 

established during the authentication of the component and the NameManager. The second 

dimension of HKS is key diversification. Key diversification refers to the generation 

(derivation) of new keys (i.e., keys in a lower level of the key hierarchy) from a limited set of 

master keys (i.e., keys in a higher level of the key hierarchy). These new keys are used to 

accomplish the specified security requirements (e.g., to ensure message authenticity). This is 

done by using a key derivation function, such as a HMAC-based Key Derivation Function 

(HKDF) [91]. This idea of HKS makes mounting an attack on an authentication process harder 

as different sets of keys are used for different interactions, and for each interaction, different 
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keys are used for different authentication tasks. In addition, the scope of impact should keys be 

compromised can be narrowed down. This is because theft of keys in the lower level of the key 

hierarchy should not reveal keys in the higher level of the key hierarchy, and the exposure of 

keys used in one interaction group does not affect the keys used in another interaction group.  

In the following, we use an example, as shown in Figure 5.1, to explain, at a high level, how 

the three ideas described above are implemented. From the figure, there are six components 

serving two different jobs, 𝐽𝑜𝑏𝐷𝑜𝑚𝑎𝑖𝑛1 and 𝐽𝑜𝑏𝐷𝑜𝑚𝑎𝑖𝑛2. 𝐽𝑜𝑏𝐷𝑜𝑚𝑎𝑖𝑛1 consists of a DPS 

cluster and a DFS cluster. The DPS cluster contains one 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and two Mappers, 

𝑀𝑎𝑝𝑝𝑒𝑟1 and 𝑀𝑎𝑝𝑝𝑒𝑟2. The DFS cluster contains one 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and one 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒. 

𝐽𝑜𝑏𝐷𝑜𝑚𝑎𝑖𝑛2 contains one Mapper, 𝑀𝑎𝑝𝑝𝑒𝑟3. 𝑀𝑎𝑝𝑝𝑒𝑟2 initially holds two sets of secret keys 

established for authentication to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (the least privilege). The 

first set consists of 𝑔𝑘1 and 𝑘𝑗𝑚,𝑚2
 and the second consists of 𝑔𝑘2 and 𝑘𝑛𝑚,𝑚2

. 𝑔𝑘1 and 𝑔𝑘2 

are group keys whereas 𝑘𝑗𝑚,𝑚2
 and 𝑘𝑛𝑚,𝑚2

 are pairwise keys. The two sets of keys are, 

respectively, issued by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (DCS: decentralised 

distribution of keys). They are, respectively, used for the authentications between 𝑀𝑎𝑝𝑝𝑒𝑟2 and 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and between 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (DCS: decentralised authentication 

verifications). The idea of MIA is applied in the authentication of 𝑀𝑎𝑝𝑝𝑒𝑟2 to each of 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒. When 𝑀𝑎𝑝𝑝𝑒𝑟2, respectively, initiates the 

first interactions with 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒 (interactions 1, 2, and 

4), two-factor authentication is applied (i.e., both a group key and a pairwise key are used). For 

the subsequent interaction between 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (interaction 3), only one 

pairwise key 𝑡𝑘𝑛𝑚,𝑚2 is used. The first dimension of HKS is applied in the distribution of 𝑡𝑘𝑛𝑚,𝑚2
 

and 𝑘𝑚2,𝑑𝑠. During the interaction 2, 𝑀𝑎𝑝𝑝𝑒𝑟2 is issued with two new pairwise keys, 𝑡𝑘𝑛𝑚,𝑚2
 

and 𝑘𝑚2,𝑑𝑠, by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 for authentication of succeeding interactions. 𝑀𝑎𝑝𝑝𝑒𝑟1 

(assuming it is compromised) cannot successfully impersonate 𝑀𝑎𝑝𝑝𝑒𝑟2 when it sends a service 

request to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (interaction 5) as it does not know 𝑘𝑗𝑚,𝑚2
. Similarly, 𝑀𝑎𝑝𝑝𝑒𝑟3 

(assuming it is also compromised) cannot successfully impersonate 𝑀𝑎𝑝𝑝𝑒𝑟2 when it sends a 

service request to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (interaction 6) as it knows neither 𝑔𝑘2 nor 𝑘𝑛𝑚,𝑚2
. The use 

of key diversification (the second dimension of HKS) will be explained later on in Section 5.5.  

 
Figure 5.1: An example showing how the ideas used in designing MIEA are applied. 
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5.4 Design Assumptions and Notations 

This section details the design assumptions and the notations used in the design of MIEA.  

5.4.1 Design Assumptions 
The following assumptions are used in the design of MIEA.  

(EAS1) Users are already authenticated prior to accessing the MR service. Collaborative 

organisations have established trust and secure communication channels with each other.  

(EAS2) In each MRDomain, the MR components that are job-independent, i.e., ClientApps, 

ResourceManager, NameManager, WorkerManagers, and DataStores, are already 

registered and authenticated to the MR service. ClientApps, NameManager, and 

WorkerMangers have established a pairwise key with ResourceManager. DataStores 

have also established pairwise keys with NameManager.   

(EAS3) The ResourceManagers of the collaborative MR services have established trust and 

pairwise keys with each other.  

(EAS4) The time of all components are synchronised to the same time source.  

(EAS5) Protection against message loss is provided by a lower layer of the network protocol 

stack (e.g., the Transmission Control Protocol (TCP)). 

5.4.2 Notations 
The notations used in the description of MIEA are shown in Table 5.2.  

Table 5.2: Notations used in the description of MIEA. 

Symbols Meanings 

𝐶 The numbers of collaborative organisations and MRDomains  

𝑊, 𝐷 The numbers of WorkerNodes and DataNodes in each MRDomain 

𝑀, 𝐸 The numbers of Mappers, Reducers 

𝐼, 𝑅 Initiator, Respondent 

𝑐𝑖 , 𝑟𝑚𝑖 , 𝑛𝑚𝑖  ClientApp, ResourceManager, NameManager of the 𝑖th MRDomain 

𝑤𝑚𝑢
𝑖 , 𝑑𝑠𝑣

𝑖  The 𝑢th WorkerManager, 𝑣th DataStore of the 𝑖th MRDomain 

𝑗𝑚 JobManager serving the current JobDomain 

𝑚𝑎, 𝑟𝑏  The 𝑎th Mapper, 𝑏th Reducer serving the current JobDomain 

𝑜𝑘𝑖  An OrgDomain key of the 𝑖th OrgDomain 

𝑗𝑘 A JobDomain key of the current JobDomain 

𝑝𝑖𝑘𝑖 A DPS Intra-cluster key of the 𝑖th MRDomain 

𝑝𝑐𝑘𝑖 A DPS Cross-cluster key of the 𝑖th MRDomain 

𝑑𝑓𝑘𝑖  A DFS Cross-cluster key of the 𝑖th MRDomain 

𝑝𝑚𝑘𝑥,𝑦 A primary key shared between 𝑥 and 𝑦 

𝑡𝑘𝑡𝑥,𝑦
𝑧  A ticket containing 𝑝𝑚𝑘𝑥,𝑦 issued by 𝑧 

𝑠𝑐𝑘𝑥,𝑦 A secondary key shared between 𝑥 and y 

𝑠𝑙𝑘𝑦,𝑧 A sealing key shared between 𝑦 and 𝑧 

𝑠𝑠𝑘𝑥,𝑦 A session key shared between 𝑥 and 𝑦 

𝑚𝑘𝑥,𝑦 MAC key 

𝑐𝑘𝑥,𝑦 Credential encryption key used by 𝑥 and 𝑦 

@𝑛 Operational step number 𝑛 as labelled in Figure 4.8 

𝑆(𝑥) The size of 𝑥 in bytes (B). 

Notes:  
- 𝑖, 𝑗 ∈ {1, 2, … , 𝐶}, 𝑖 ≠ 𝑗, 𝑢 ∈ {1, 2, … , 𝑊}, 𝑣 ∈ {1, 2, … , 𝐷}, 𝑎 ∈ {1,   2, … , 𝑀}, 𝑏 ∈ {1, 2, … , 𝐸} 
- Without losing generality, it is assumed that JobSubmitter is in 𝑂𝑟𝑔𝐷𝑜𝑚𝑎𝑖𝑛1 and the job is submitted via 𝑐1 
in 𝑀𝑅𝐷𝑜𝑚𝑎𝑖𝑛1.  
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5.5 MIEA in Detail 

This section describes in detail the MIEA framework. It gives an overview of MIEA, and then 

explains the components of MIEA. Subsequently, it puts together all of the components and 

shows how they are used to facilitate the authentication of every interaction during a job 

execution. 

5.5.1 An Overview of the MIEA Architecture 
The MIEA framework consists of three building blocks, i.e., credentials, credential 

establishment methods, and entity authentication protocols. An overview of the MIEA 

architecture is depicted in Figure 5.2. 

 
Figure 5.2: An overview of the MIEA architecture. 

As shown in the figure, credentials used in authentication are classified into two groups, 

non-derived keys (group keys and pairwise keys) and derived keys (MAC keys and credential 

encryption keys). The credentials (keys) are established on each of the MR components by 

using one of the four methods: the existing method, the embedded method, the 

authenticated key exchange method, and the derivation method. The methods are selected 

based on the characteristics and functions of the components. To support two classes of 

interactions (initial and subsequent interactions), we have designed three entity 

authentication protocols, namely the Group key and Pre-shared primary key Two-factor 

Authentication (GP2A) protocol, the Group key and Encapsulated primary key Two-factor 

Authentication (GE2A) protocol, and the Secondary key One-factor Authentication (SOA) 

protocol. As indicated by the names, GP2A and GE2A are designed for initial interactions 

whereas SOA is designed for subsequent interactions. The credentials, credential 

establishment methods, and entity authentication protocols will be described in detail in the 
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following subsections. For ease of discussion, an entity initiating an interaction is referred to 

as an initiator, and the other interacting entity is referred to as a respondent.  

5.5.2 Credentials 
To support authentication of complex interactions during the execution of a job, multiple 

classes of credentials are introduced. The classifications of the credentials are summarised in 

Figure 5.3.  

 
Figure 5.3: The classifications of credentials used in MIEA. 

As shown in the figure, at the highest level, there are two groups of credentials, non-

derived and derived keys. Non-derived keys are freshly generated independent of other keys, 

whereas derived keys are derived from non-derived keys and other data (e.g., nonces). Non-

derived keys are classified into group keys and pairwise keys. Derived keys are classified into 

MAC keys and credential encryption keys.  

Based on the organisation of entities involved in a job execution, group keys are further 

classified into five classes, namely OrgDomain keys, JobDomain keys, DPS Intra-cluster (DPS-

I) keys, DPS Cross-cluster (DPS-C) keys, and DFS Cross-cluster (DFS-C) keys. An OrgDomain key 

is shared between ClientApps and ResourceManager of the same MR service. It is used to 

authenticate a ClientApp to the ResourceManager when a job is submitted. A JobDomain key 

is shared and used for authentication among ResourceManagers serving a particular job but 

are in different MR services. It is established by the users (through their respective ClientApps) 

prior to the submission of a collaborative job and dispatched to the ResourceManagers by the 

respective ClientApps along with job submission requests. A DPS-I key is shared and used for 

authentication among ResourceManager, WorkerManagers, and JobManagers hosted in the 

same DPS cluster. ResourceManager creates and dispatches the key to the WorkerManagers 

when they are registered to the MR service. The key is embedded into the JobManagers by 

their WorkerManagers when they are created and initialised. A DPS-C key is issued by 

ResourceManager of a DPS cluster, shared among the local components of the DPS cluster, 

and dispatched to components external to the DPS cluster for access to this DPS cluster. The 

local components are WorkerManagers, JobManagers, Mappers, and Reducers, and the 
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external components are ClientApps of the same MR service as well as JobManagers, 

Mappers, and Reducers hosted by the other MR services. Similarly, a DFS-C key is issued by 

NameManager of a DFS cluster, shared among the local components of the DFS cluster, and 

dispatched to components external to the DFS cluster for access to this DFS cluster. The local 

components are DataStores and the external components are ClientApps of the same MR 

service, as well as JobManagers, Mappers, and Reducers hosted by the same and the other 

MR services.   

Pairwise keys are classified into four classes: primary keys, secondary keys, sealing keys, 

and session keys. A primary key is a long-term secret key established on two interacting 

components. By long-term, we mean the key is not job dependent and its lifetime is at least 

as long as the lifecycle of a job execution. A primary key is used in the mutual authentication 

of two entities starting an initial interaction to establish short-term credentials (which may 

expire before the end of a job execution) for subsequent interactions. There are two groups 

of primary keys, pre-shared and encapsulated. A pre-shared key is established on the two 

interacting entities when they are initialised or when they are registered to their domains. 

These keys are 𝑝𝑚𝑘𝑟𝑚𝑖,𝑟𝑚𝑗 , 𝑝𝑚𝑘𝑐𝑖,𝑟𝑚𝑖, 𝑝𝑚𝑘𝑤𝑚𝑢
𝑖 ,𝑟𝑚𝑖 , 𝑝𝑚𝑘𝑗𝑚,𝑟𝑚1, 𝑝𝑚𝑘𝑗𝑚,𝑚𝑎

, and 𝑝𝑚𝑘𝑗𝑚,𝑟𝑏
. 

An encapsulated key is a key issued by a trusted third party (referred to as an issuer) which 

has established a shared key with each of the two interacting entities. These keys are 

𝑝𝑚𝑘𝑐𝑖,𝑛𝑚𝑖, 𝑝𝑚𝑘𝑐𝑖,𝑑𝑠𝑣
𝑖 , 𝑝𝑚𝑘𝑐1,𝑗𝑚, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚𝑖 , 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠𝑣

𝑖 , 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚𝑢
𝑖 , 𝑝𝑚𝑘𝑚𝑎,𝑛𝑚𝑖, 

𝑝𝑚𝑘𝑚𝑎,𝑑𝑠𝑣
𝑖 , 𝑝𝑚𝑘𝑟𝑏,𝑤𝑚𝑢

𝑖 , 𝑝𝑚𝑘𝑟𝑏,𝑛𝑚𝑖 , and 𝑝𝑚𝑘𝑟𝑏,𝑑𝑠𝑣
𝑖 . Encapsulated keys are dispatched from 

an initiator to a respondent at the start of the authentication process (to be explained later 

on in the description of the GE2A protocol). To ensure that the key is not revealed to other 

components than the respondent, the issuer encapsulate the key in a container encrypted 

with a secret key (i.e., a sealing key) shared between the respondent and the issuer. The 

encrypted container is called a ticket. The ticket structure is shown in Figure 5.4. A ticket 

contains seven items. The descriptions of these items are summarised in Table 5.3. Possible 

values for an action request (REQ) are shown in Table 5.7. Assuming that 𝑠𝑙𝑘𝑅,𝑧 is the sealing 

key used to encrypt a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑧 ; 𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑖𝑑𝑧 are the IDs of the initiator, respondent, and 

issuer, respectively; 𝑑𝑖𝑑𝐼 , 𝑑𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑧 are the domain IDs (DIDs) of the initiator, respondent, 

and issuer, respectively; 𝑗𝑖𝑑 is the job ID (JID); 𝑟𝑒𝑞 is the action request; 𝑔𝑡, 𝑒𝑡 are the ticket 

generation and expiration times, respectively; and 𝑝𝑚𝑘𝐼,𝑅 is the key to be encapsulated, the 

ticket can be expressed as 𝑡𝑘𝑡𝐼,𝑅
𝑧 = 𝐸(𝑠𝑙𝑘𝑅,𝑧 , 𝑖𝑑𝐼 || 𝑑𝑖𝑑𝐼 || 𝑖𝑑𝑅 || 𝑑𝑖𝑑𝑅|| 𝑖𝑑𝑧 || 𝑑𝑖𝑑𝑧 || 𝑗𝑖𝑑  

|| 𝑟𝑒𝑞 || 𝑔𝑡 || 𝑒𝑡 || 𝑝𝑚𝑘𝐼,𝑅) (for ease of presentation, the RSV field is omitted).  

 
Figure 5.4: Ticket structure. 
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Table 5.3: Ticket fields. 

Item 
Size  

(bytes) 
Description 

IID 2 Initiator ID 

IDID 2 Initiator domain ID 

RID 2 Respondent ID 

RDID 2 Respondent domain ID 

TID 2 Ticket issuer ID 

TDID 2 Ticket domain ID 

JID 2 Job ID 

REQ 1 Action request 

RSV 1 Reserved for future use 

GT 8 Ticket generation time 

ET 8 Ticket expiration time 

PMK 𝑆(𝑝𝑚𝑘𝐼,𝑅) Primary key 

Total 32+𝑆(𝑝𝑚𝑘𝐼,𝑅)  

A secondary key is a short-term secret key established on two interacting components 

during the preceding (initial) interaction. It is used to mutually authenticate the entities that 

have previously interacted with each other. The use of secondary keys reduces the exposure 

of primary keys, thus, lowering the risk of the primary keys being compromised. These keys 

are 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚𝑗 , 𝑠𝑐𝑘𝑐𝑖,𝑟𝑚𝑖, 𝑠𝑐𝑘𝑐1,𝑗𝑚, 𝑠𝑐𝑘𝑐𝑖,𝑛𝑚𝑖 , 𝑠𝑐𝑘𝑗𝑚,𝑟𝑚1, 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚𝑖 , 𝑠𝑐𝑘𝑚𝑎,𝑗𝑚, 𝑠𝑐𝑘𝑟𝑏,𝑗𝑚, 

𝑠𝑐𝑘𝑚𝑎,𝑛𝑚𝑖, and 𝑠𝑐𝑘𝑟𝑏,𝑛𝑚𝑖. A sealing key is a long-term secret key shared between a 

respondent and an issuer. It is used to encrypt a ticket by the issuer and to decrypt the ticket 

by the respondent. These keys are 𝑠𝑙𝑘𝑛𝑚𝑖,𝑟𝑚𝑖, 𝑠𝑙𝑘𝑑𝑠𝑣
𝑖 ,𝑛𝑚𝑖, 𝑠𝑙𝑘𝑤𝑚𝑢

𝑖 ,𝑟𝑚𝑖 , 𝑠𝑙𝑘𝑛𝑚𝑖,𝑗𝑚, and 

𝑠𝑙𝑘𝑤𝑚𝑢
𝑖 ,𝑗𝑚. A session key is a short-term secret key established on two interacting 

components during the authentication of each interaction. A session key is used to protect 

the confidentiality of sensitive data exchanged after the interacting entities are positively 

authenticated. The total number of session keys is equal to the number of interactions taking 

place during a job execution. The key hierarchy of non-derived keys are depicted in Figure 5.5.  

Non-derived keys, tickets, and their associated data (metadata) should be stored on 

secure storage, referred to as Credential Store (CStore). CStore could be backed by protected 

volatile memory or encrypted persistent storage. As a reference example, we use a table 

based data structure to implement CStore. With this structure, a metadata entry consists of 

credential ID; class (e.g., OrgDomain key and Primary key); component ID (only for a pairwise 

key); domain ID; component class (e.g., Mapper); expiry; and the path of the credential. An 

example CStore of a component is shown in Table 5.4.  

Table 5.4: An example CStore of a component. 

Cred. ID Class 
Component 
ID 

Domain 
ID 

Component 
Class 

Expiry  
(Unix time) 

Path 

00001 DPS-C - 0001 - 1588118400 /path/key1 

00002 Primary key 0002 0001 Mapper 1588118400 /path/key2 

… 
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Figure 5.5: The key hierarchy of non-derived keys. 

Derived keys are short-term secret keys that are generated during the process of entity 

authentication and deleted at the end of the process. Based on their purposes, derived keys 

are classified into MAC keys and credential encryption keys. A MAC key is used for message 

authentication. In other words, it is used to generate and verify MAC tags for messages used 
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in entity authentication protocols. A credential encryption key is used to encrypt and decrypt 

credentials for subsequent authentication that are dispatched from an initiator to a 

respondent. All of the keys (non-derived and derived) used in MIEA have the same length.  

5.5.3 Credential Establishment Methods 
As shown in Figure 5.2, four credential establishment methods, the existing method, the 

embedded method, the authenticated key exchange method, and the derivation method 

(respectively referred to as EXT, EMB, AKE, and DER) are used to establish credentials on 

components; EXT, EMB, and AKE are for non-derived keys, and DER is for derived keys.  

As indicated by the name, the existing method uses existing mechanisms, such as the 

registration and authentication services of the underlying system, to establish keys on 

components. This method is used to establish OrgDomain keys, DPS-I keys, DPS-C keys, DFS-

C keys, pre-shared primary keys, and sealing keys.  

The embedded method is used by WorkerManagers to embed keys into newly created 

containers, i.e., JobManagers, Mappers, and Reducers. The embedding can be done by using 

methods such as memory sharing and configuration templates. DPS-I keys, DPS-C keys, DFS-C 

keys, as well as pre-shared and encapsulated primary keys are established by using this method.  

The authenticated key exchange method establishes keys on a respondent by using the 

entity authentication protocols of MIEA. This method is used to establish JobDomain keys, 

DPS-C keys, DFS-C keys, encapsulated primary keys, all the secondary keys, sealing keys, and 

all the session keys.  

The derivation method uses a key derivation function to generate derived keys (MAC keys 

and credential encryption keys) from non-derived keys and nonces known to interacting 

components during an authentication instance.  

The descriptions of keys and their establishment methods are summarised in Table 5.5. 

Table 5.5: Keys and the respective establishment methods. 

Method Keys When the keys are established 

EXT 𝑜𝑘𝑖(𝑟𝑚𝑖), 𝑝𝑚𝑘𝑐𝑖,𝑟𝑚𝑖  𝑐𝑖  is registered to 𝑟𝑚𝑖  

EXT 𝑝𝑖𝑘𝑖, 𝑝𝑐𝑘𝑖  (𝑤𝑚𝑢
𝑖 ),   

𝑝𝑚𝑘𝑤𝑚𝑢
𝑖 ,𝑟𝑚𝑖 , 𝑠𝑙𝑘𝑤𝑚𝑢

𝑖 ,𝑟𝑚𝑖  
𝑤𝑚𝑢

𝑖  is registered to 𝑟𝑚𝑖  

EXT 𝑑𝑓𝑘𝑖  (𝑟𝑚𝑖), 𝑠𝑙𝑘𝑛𝑚𝑖,𝑟𝑚𝑖  𝑛𝑚𝑖  is registered to 𝑟𝑚𝑖  

EXT 𝑑𝑓𝑘𝑖  (𝑑𝑠𝑣
𝑖 ), 𝑠𝑙𝑘𝑑𝑠𝑣

𝑖 ,𝑛𝑚𝑖  𝑑𝑠𝑣
𝑖  is registered to 𝑛𝑚𝑖  

EXT 𝑝𝑚𝑘𝑟𝑚𝑖,𝑟𝑚𝑗  Collaboration is established 

EMB 𝑝𝑖𝑘1, 𝑝𝑐𝑘1, 𝑑𝑓𝑘𝑖  (𝑗𝑚),  
𝑝𝑚𝑘𝑗𝑚,𝑟𝑚1 , 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚𝑖  

𝑗𝑚 is launched by 𝑤𝑚𝑢
1  @9 

EMB 𝑝𝑐𝑘1 (𝑚𝑎), 𝑝𝑚𝑘𝑗𝑚,𝑚𝑎
 𝑚𝑎 is launched by 𝑤𝑚𝑢

𝑖  @18  

EMB 𝑝𝑐𝑘1 (𝑟𝑏), 𝑝𝑚𝑘𝑗𝑚,𝑟𝑏
 𝑟𝑏 is launched by 𝑤𝑚𝑢

𝑖  @18  

AKE 𝑗𝑘 (𝑟𝑚𝑖), 𝑠𝑐𝑘𝑐𝑖,𝑟𝑚𝑖  𝑐𝑖  authenticates to 𝑟𝑚𝑖  @2 

AKE 𝑝𝑐𝑘1 (𝑐1) 𝑟𝑚1 authenticates to 𝑐1 @3 

AKE 𝑑𝑓𝑘𝑖  (𝑐𝑖),  
𝑝𝑚𝑘𝑐𝑖,𝑛𝑚𝑖  

𝑟𝑚𝑖  authenticates to 𝑐𝑖  @3 

AKE 𝑝𝑚𝑘𝑐1,𝑗𝑚 𝑟𝑚1 authenticates to 𝑐1 @10 

AKE 𝑝𝑐𝑘𝑗  (𝑟𝑚1) 𝑟𝑚𝑗  authenticates to 𝑟𝑚1 @15 

AKE 𝑝𝑐𝑘𝑗  (𝑗𝑚), 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚𝑢
𝑖  𝑟𝑚1 authenticates to 𝑗𝑚 @16 

AKE 𝑝𝑐𝑘𝑗 , 𝑑𝑓𝑘𝑖  (𝑟𝑏),  𝑗𝑚 authenticates to 𝑟𝑏 @24 
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Method Keys When the keys are established 

𝑝𝑚𝑘𝑟𝑏,𝑤𝑚𝑢
𝑖 , 𝑝𝑚𝑘𝑟𝑏,𝑛𝑚𝑖  

AKE 𝑑𝑓𝑘𝑗  (𝑟𝑚1) 𝑟𝑚𝑗  authenticates to 𝑟𝑚1 @7 

AKE 𝑑𝑓𝑘𝑖  (𝑚𝑎), 𝑝𝑚𝑘𝑚𝑎,𝑛𝑚𝑖  𝑗𝑚 authenticates to 𝑚𝑎 @20 

AKE 𝑝𝑚𝑘𝑐𝑖,𝑑𝑠𝑣
𝑖  𝑛𝑚𝑖  authenticates to 𝑐𝑖  @4b 

AKE 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠𝑣
𝑖  𝑛𝑚𝑖  authenticates to 𝑗𝑚 @12b 

AKE 𝑝𝑚𝑘𝑚𝑎,𝑑𝑠𝑣
𝑖  𝑛𝑚𝑖  authenticates to 𝑚𝑎 @21b 

AKE 𝑝𝑚𝑘𝑟𝑏,𝑑𝑠𝑣
𝑖  𝑛𝑚𝑖  authenticates to 𝑟𝑏 @26b 

AKE 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚𝑗 𝑟𝑚1 authenticates to 𝑟𝑚𝑗  @6 

AKE 𝑠𝑐𝑘𝑐1,𝑗𝑚  𝑐1 authenticates to 𝑗𝑚 @11 

AKE 𝑠𝑐𝑘𝑐𝑖,𝑛𝑚𝑖  𝑐𝑖  authenticates to 𝑛𝑚𝑖 @4a 

AKE 𝑠𝑐𝑘𝑗𝑚,𝑟𝑚1  𝑗𝑚 authenticates to 𝑟𝑚1 @13 

AKE 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚𝑖 , 𝑠𝑙𝑘𝑛𝑚𝑖,𝑗𝑚  𝑗𝑚 authenticates to 𝑛𝑚𝑖 @12a 

AKE 𝑠𝑐𝑘𝑚𝑎,𝑗𝑚  𝑚𝑎 authenticates to 𝑗𝑚 @19 

AKE 𝑠𝑐𝑘𝑟𝑏,𝑗𝑚 𝑟𝑏 authenticates to 𝑗𝑚 @19 

AKE 𝑠𝑐𝑘𝑚𝑎,𝑛𝑚𝑖  𝑚𝑎 authenticates to 𝑛𝑚𝑖 @21a 

AKE 𝑠𝑐𝑘𝑟𝑎,𝑛𝑚𝑖  𝑟𝑎  authenticates to 𝑛𝑚𝑖 @26a 

AKE 𝑠𝑙𝑘𝑤𝑚𝑢
𝑖 ,𝑗𝑚 𝑗𝑚 authenticates to 𝑤𝑚𝑢

𝑖  @17 

AKE 𝑠𝑠𝑘𝑥,𝑦 𝑥 authenticates to 𝑦 

DER 𝑚𝑘𝑥,𝑦 𝑥 authenticates to 𝑦 

DER 𝑐𝑘𝑥,𝑦 𝑥 authenticates to 𝑦 

Note: “𝑔𝑘1, 𝑔𝑘2, … (𝑥)” means group keys 𝑔𝑘1, 𝑔𝑘2, … are established on 𝑥. 

5.5.4 Entity Authentication Protocols 
The GP2A, GE2A, and SOA protocols implement the ideas highlighted in Section 5.3. They 

support the distribution of session keys and keys for authenticating subsequent interactions. 

With each of the protocols, two interacting components (an initiator 𝐼 and a respondent 𝑅) 

perform authentication by generating and verifying a series of challenges and responses (i.e., 

nonces). Such generation and verification are done using symmetric-key cryptosystems. 

Depending on the number of factors used, the challenges and responses are encrypted with 

a pairwise key or both of a group key and a pairwise key. The encrypted challenges and 

responses are collectively referred to as authenticators. After the responses are positively 

verified, the components are mutually authenticated, and the interaction can be proceeded.  

The three protocols share a common transaction flow and message structure. There are 

four classes of messages, Challenge (CH) messages, Response-and-Challenge (RC) messages, 

Response (RP) messages, and Reject (RJ) messages. CH, RC, and RP messages are collectively 

used to transmit challenges and responses between 𝐼 and 𝑅, whereas an RJ message is used 

to inform the other component of negative authentication. For each positive authentication 

instance, four operational steps are performed: Step 1, 𝐼 generates a challenge 𝐶𝐻1 (𝐼1) and 

sends it to 𝑅; Step 2, 𝑅 performs preliminary verification (𝑅1), generates a response 𝑅𝑃1 (for 

𝐶𝐻1) and a challenge 𝐶𝐻2 (𝑅2), and sends them back to 𝐼; Step 3, 𝐼 verifies 𝑅𝑃1 (𝐼2), 

generates a response 𝑅𝑃2 (for 𝐶𝐻2) (𝐼3), and send 𝑅𝑃2 back to 𝑅; and Step 4, 𝑅 verifies 𝑅𝑃2 

(𝑅3). During these steps, three messages are exchanged: a CH message is sent at Step 1, an 

RC message at Step 2, and an RP message at Step 3. The exchange of these messages is 

depicted in Figure 5.6.  
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Figure 5.6: A generic message transaction flow of the three entity authentication protocols for 

positive authentication. 

In a negative authentication instance, an RJ message is sent from one component to the 

other to terminate the protocol. For example, if keys used to generate an authenticator 𝑎𝑢𝑡ℎ1 

(at Step 1) are expired or invalid, 𝑅 will send an RJ message (instead of an RC message) to 𝐼 

and abort the protocol (at Step 2).  

The common message structure is shown in Figure 5.7. It consists of a header and a 

payload. The header further consists of nine fields, and these fields are described in Table 5.6. 

As the current version of all the protocols is set to 1, for ease of presentation, the VER field 

will be omitted in the following message description. 

 
Figure 5.7: The format of MIEA protocol messages. 
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Table 5.6: The header format of MIEA protocol messages. 

Field Size (bytes) Description 

PRO 1 Protocol 

VER 1 Protocol version (the current version is 1) 

MID 2 Message ID 

MTYPE 1 Message type  

PSIZE 3 The size of the payload in bytes (B) 

SID 2 Sender ID 

SDID 2 Sender Domain ID 

RID 2 Receiver ID 

RDID 2 Receiver Domain ID 

Total 16  

Note: Possible values for PRO and MTYPE are shown in Table 5.7. 
Table 5.7: Fields and their possible values. 

Field Numerical Value Notation Description 

Protocol  
(PRO) 

1 𝐺𝑃2𝐴 GP2A protocol 

2 𝐺𝐸2𝐴 GE2A protocol 

3 𝑆𝑂𝐴 SOA protocol 

Message 
Type  
(MTYPE) 

1 𝐶𝐻 Challenge messages 

2 𝑅𝐶 Response-and-Challenge messages 

3 𝑅𝑃 Response messages 

4 𝑅𝐽 Reject messages 

Action 
Request 
(REQ) 

1 𝐽𝑆𝑈𝐵 Job submission 

2 𝑁𝐹𝑌 Notification 

3 𝐼𝑁𝑄 Inquiry 

4 𝐷𝑆𝐿𝑆𝑇 Get a list of DataStores 

5 𝑊𝑅𝐼𝑇𝐸 Write data 

6 𝑅𝐸𝐴𝐷 Read data 

7 𝐿𝑁𝐶𝐻 Launch a container 

Initiator and 
Respondent 
Classes  
(ICL and RCL) 

1 𝑅𝑀 ResourceManager 

2 𝑁𝑀 NameManager 

3 𝑊𝑀 WorkerManager 

4 𝐷𝑆 DataStore 

5 𝐶 ClientApp 

6 𝐽𝑀 JobManager 

7 𝑀 Mapper 

8 𝑅 Reducer 

Credential 
Class 
(CCL) 

1 𝑂𝐾 OrgDomain key 

2 𝐽𝐾 JobDomain key 

3 𝑃𝐼𝐾 DPS-I key 

4 𝑃𝐶𝐾 DPS-C key 

5 𝐷𝐹𝐾 DFS-C key 

6 𝑃𝑀𝐾 Primary key 

7 𝑆𝐶𝐾 Secondary key 

8 𝑆𝐿𝐾 Sealing key 

9 𝑆𝑆𝐾 Session key 

10 𝑇𝐾𝑇 Ticket 

Error Code 
(ERR) 

1 𝑁𝐸𝐺𝑇𝐴𝐺 Negative tag verification 

2 𝐼𝑁𝑉𝐽𝐼𝐷 𝑅 is not allocated for the job with 𝑗𝑖𝑑  

3 𝐴𝐶𝑇𝑈𝑁 The requested action in unavailable on 𝑅 

4 𝐴𝐶𝑇𝐷𝐸 𝐼 does not have a permission to perform the action 

5 𝐼𝑁𝑉𝐶𝐷 Invalid credentials (e.g., wrong keys and expired keys) 

6 𝑁𝐸𝐺𝑅𝑃 Negative response verification 
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For each of the four message classes (CH, RC, RP, and RJ), the payloads of messages used 

in different protocols share a common structure (except for CH messages used in G2EA which 

have one more item than those used in GP2A and SOA). For CH messages used in G2PA and 

SOA, the payload consists of five items: Job ID (JID); action Request (REQ), indicating the 

purpose of the interaction; Initiator Class (ICL), indicating the component class of 𝐼; an 

authenticator containing a challenge (𝐶𝐻1) generated by 𝐼; and a MAC tag for the message. 

For CH messages used in GE2A, the payload also contains a ticket containing a primary key 

used for authenticating 𝐼 to 𝑅, which is positioned before the tag.  

For RC messages, the payload consists of three items: the MID of the preceding CH 

message; an authenticator containing a response (𝑅𝑃1) and a challenge (𝐶𝐻2) generated by 

𝑅; and a tag.  

For RP messages, the payload consists of four items: the MID of the preceding RC 

message; an authenticator containing a response (𝑅𝑃2) generated by 𝐼; an encrypted 

credential package (containing keys, tickets, and their metadata); and a tag. The credentials 

contained in the package are dependent on interactions. In other words, the credentials 

contained in different RP messages are different. The package structure and description of 

metadata contained in the package are shown in Figure 5.8 and Table 5.8, respectively. Unlike 

CH and RC messages whose payload lengths are fixed, the payloads of RP messages have 

variable lengths. 

 
Figure 5.8: The format of a credential package. 

 

Table 5.8: Credential package format. 

Field 
Size  

(bytes) 
Description 

CCL 2 Credential class  

IID 2 Initiator ID 

IDID 2 Initiator Domain ID 

ICL 1 Initiator class 

RID 2 Receiver ID 

RDID 2 Receiver Domain ID 

RCL 1 Respondent class 

EXP 8 Expiry 

Total 20  

Note: Possible values for CCL, ICL and RCL are shown in Table 5.7. 
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For RJ messages, the payload consists of two items: the MID of the preceding (CH or RC) 

message and an error code (which is dependent on the cause of negative verification). A MAC 

tag is not included in each RJ message as the interacting components may not have 

established shared secret keys that can be used to generate and verify the tag. Assuming 𝑝𝑟𝑜 

is the current protocol used; 𝑚𝑖𝑑1and 𝑚𝑖𝑑2 are, respectively, the MIDs of the preceding and 

this RJ messages; 𝑥 is the component sending the preceding message (𝑚𝑖𝑑1); 𝑦 is the 

component sending this RJ message (𝑚𝑖𝑑2); and 𝑒𝑟𝑟 is an error code, the RJ message msg-RJ 

can be expressed as msg-RJ: {𝑝𝑟𝑜, 𝑚𝑖𝑑2, 𝑅𝐽, 𝑆(𝑀𝐼𝐷) + 𝑆(𝐸𝑅𝑅), 𝑖𝑑𝑦, 𝑑𝑖𝑑𝑦, 𝑖𝑑𝑥, 𝑑𝑖𝑑𝑥,

𝑚𝑖𝑑1, 𝑒𝑟𝑟}. Like CH and RC messages, the payloads of RJ messages also have fixed lengths.  

In the following, we describe the operational steps of each protocol in detail. 

5.5.4.1 GP2A Protocol 
The GP2A protocol is a two-factor (group key and pre-shared primary key) entity 

authentication protocol for initial interactions between two components (𝐼 and 𝑅). It makes 

use of: (1) a symmetric-key based encryption scheme to generate and verify authenticators; 

(2) a MAC scheme to generate and verify tags contained in messages; and (3) a key derivation 

function to generate a MAC key and a credential encryption key. The group and pre-shared 

keys used are established on both components prior to the execution of the protocol. The 

protocol consists of four operational steps, as illustrated in Figure 5.6.  

Step 1: In 𝐼1, 𝐼 performs 𝐶𝐻1 generation, generates a CH message (msg-GP2A1), and 

sends the message to 𝑅. For the generation of 𝐶𝐻1, 𝐼 generates a nonce 𝑛1 and uses it as a 

challenge (𝐶𝐻1) for 𝑅. An authenticator 𝑎𝑢𝑡ℎ1 is then generated with 𝑛1 using nested 

encryption, i.e., 𝑛1 is encrypted with a pre-shared primary key 𝑝𝑚𝑘𝐼,𝑅 and then is encrypted 

again with a group key 𝑔𝑘. The generation of 𝑎𝑢𝑡ℎ1 is expressed as  

𝑎𝑢𝑡ℎ1 = 𝑆𝐸(𝑔𝑘, 𝑆𝐸(𝑝𝑚𝑘𝐼,𝑅 , 𝑛1)).  

𝐼 generates a MAC key 𝑚𝑘 with a length 𝑙 by invoking a key derivation algorithm with 

𝑝𝑚𝑘𝐼,𝑅 and 𝑔𝑘. The generation of 𝑚𝑘 is expressed as 𝑚𝑘𝐼,𝑅 = 𝐻𝐾𝐷𝐹(𝑙, 𝑝𝑚𝑘𝐼,𝑅 , 𝑔𝑘).  

Next, 𝐼 generates a MAC tag 𝜏1 using MAC-Signing with 𝑚𝑘 and message data which 

consist of message ID 𝑚𝑖𝑑1 for this CH message, job ID 𝑗𝑖𝑑, action request 𝑟𝑒𝑞, initiator class 

𝑖𝑐𝑙, and the authenticator 𝑎𝑢𝑡ℎ1. The generation of 𝜏1 is expressed as 𝜏1 =  𝑀𝑆(𝑚𝑘𝐼,𝑅 ,

𝑚𝑖𝑑1||𝑗𝑖𝑑||𝑟𝑒𝑞||𝑖𝑐𝑙||𝑎𝑢𝑡ℎ1). The other message fields are not signed because the alteration 

of these fields can be easily detected, leading to negative verification (thus, termination of 

the protocol). For example, the value of MTYPE of the message can only be 𝐶𝐻; and 

fraudulent values of SID and SDID would lead to incorrect or unsuccessful key lookup. After 

generating 𝜏1, 𝐼 then generates msg-GP2A1 and sends the message to 𝑅. msg-GP2A1 is 

expressed as msg-GP2A1: {𝐺𝑃2𝐴, 𝑚𝑖𝑑1, 𝐶𝐻, 𝑆(𝐽𝐼𝐷) + 𝑆(𝑅𝐸𝑄) + 𝑆(𝐼𝐶𝐿) + 𝑆(𝑎𝑢𝑡ℎ1) +

𝑆(𝜏1), 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑗𝑖𝑑, 𝑟𝑒𝑞, 𝑖𝑐𝑙, 𝑎𝑢𝑡ℎ1, 𝜏1}.  

Step 2: Upon receiving msg-GP2A1, 𝑅 performs preliminary verification (𝑅1), then 

generates 𝑅𝑃1 and 𝐶𝐻2 (𝑅2), before generating an RC message (msg-GP2A2). In 𝑅1, 𝑅 

generates a MAC key 𝑚𝑘 used for verifying the authenticity of msg-GP2A1 against 𝜏1. The 

generation of 𝑚𝑘 is the same as that of Step 1. The verification of the authenticity of the 

message using MAC-Verify is expressed as 𝑚𝑣1 = 𝑀𝑉(𝑚𝑘𝐼,𝑅 , 𝑚𝑖𝑑1||𝑗𝑖𝑑||𝑟𝑒𝑞||𝑖𝑐𝑙||𝑎𝑢𝑡ℎ1, 𝜏1). 
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Following a positive verification of 𝜏1, 𝑅 checks the validity of the interaction and keys 

used for authentication. This is done by ensuring that: (1) 𝑅 is allocated for the job with a job 

ID of 𝑗𝑖𝑑; (2) 𝐼 can interact with 𝑅 by checking 𝑖𝑐𝑙 (e.g., Reducers may interact with 

WorkerManager, but Mappers may not); (3) 𝑅 supports the requested action 𝑟𝑒𝑞 (e.g., 

WorkerManagers support 𝑅𝐸𝐴𝐷 requested by Reducers but not 𝑊𝑅𝐼𝑇𝐸); (4) 𝐼 can perform 

the requested action by checking 𝑟𝑒𝑞 (e.g., Mappers may read data from, but not write data 

to, the DFS clusters); and (5) 𝑅 has established 𝑔𝑘 and 𝑝𝑚𝑘𝐼,𝑅 with 𝐼 by looking up 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 

and 𝑖𝑐𝑙 in its CStore, the key entries should exist and not expire. If any of these conditions is 

not met, 𝑅 sends an RJ message back to 𝐼 with a corresponding error code and aborts the 

protocol. The verification steps of 𝑅1 are shown in Figure 5.9.  

 
Figure 5.9: GP2A preliminary verification (R1). 

In 𝑅2, 𝑅 generates 𝑅𝑃1 for 𝐶𝐻1, generates 𝐶𝐻2, and generates msg-GP2A2. To generate 

𝑅𝑃1, 𝑅 first decrypts 𝑎𝑢𝑡ℎ1 with 𝑔𝑘 and 𝑝𝑚𝑘𝐼,𝑅 to obtain 𝑛1 (used as 𝑅𝑃1). The process is 

expressed as 𝑛1 = 𝑆𝐷(𝑝𝑚𝑘𝐼,𝑅 , 𝑆𝐷(𝑔𝑘, 𝑎𝑢𝑡ℎ1)).  

𝑅 generates a nonce 𝑛2 as a challenge (𝐶𝐻2) for 𝐼. It then generates an authenticator 

𝑎𝑢𝑡ℎ2 containing a concatenation of 𝑅𝑃1 and 𝐶𝐻2 using nested encryption. The generation 

of 𝑎𝑢𝑡ℎ2 is expressed as 𝑎𝑢𝑡ℎ2 = 𝑆𝐸(𝑔𝑘, 𝑆𝐸(𝑝𝑚𝑘𝐼,𝑅 , 𝑛1||𝑛2)).  
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Next 𝑅 generates a tag 𝜏2 using MAC-Signing with 𝑚𝑘 and message data which consist of 

the message ID 𝑚𝑖𝑑2 for this RC message, the message ID 𝑚𝑖𝑑1 of the preceding CH message, 

and the authenticator 𝑎𝑢𝑡ℎ2. The generation of 𝜏2 is expressed as 𝜏2 =  𝑀𝑆(𝑚𝑘𝐼,𝑅 ,

𝑚𝑖𝑑2||𝑚𝑖𝑑1||𝑎𝑢𝑡ℎ2).  

𝑅 generates msg-GP2A2 and sends the message back to 𝐼. msg-GP2A2 is expressed as 

msg-GP2A2: {𝐺𝑃2𝐴, 𝑚𝑖𝑑2, 𝑅𝐶, 𝑆(𝑀𝐼𝐷) + 𝑆(𝑎𝑢𝑡ℎ2) + 𝑆(𝜏2), 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 ,

𝑚𝑖𝑑1, 𝑎𝑢𝑡ℎ2, 𝜏2}.  

Step 3: 𝐼 receives msg-GP2A2, performs 𝑅𝑃1 verification (𝐼2) and 𝑅𝑃2 generation (𝐼3), 

before generating an RP message (msg-GP2A3). In 𝐼2, 𝐼 verifies the authenticity of msg-GP2A2 

against 𝜏2. The verification of the authenticity of the message using MAC-Verify is expressed 

as 𝑚𝑣2 =  𝑀𝑉(𝑚𝑘𝐼,𝑅 , 𝑚𝑖𝑑2||𝑚𝑖𝑑1||𝑎𝑢𝑡ℎ2, 𝜏2).  

If the verification is positive, 𝐼 continues the protocol; otherwise, 𝐼 sends an RJ message 

(with an error code  𝑁𝐸𝐺𝑇𝐴𝐺) back to 𝑅 and terminates the protocol. Following a positive 

verification of 𝜏2, 𝐼 decrypts 𝑎𝑢𝑡ℎ2 with 𝑔𝑘 and 𝑝𝑚𝑘𝐼,𝑅 to obtain 𝑅𝑃1 and 𝐶𝐻2, which are, 

respectively, assigned to 𝑛1′ and 𝑛2. This operation is expressed as (𝑛1
′ , 𝑛2) = 𝑆𝐷(𝑝𝑚𝑘𝐼,𝑅 ,

𝑆𝐷(𝑔𝑘, 𝑎𝑢𝑡ℎ2)).   

𝐼 verifies 𝑅𝑃1 by comparing 𝑛1
′  with 𝑛1 (the nonce it sent in Step 1). If 𝑛1

′ == 𝑛1 then the 

verification is positive, 𝐼 will proceed to 𝐼3; otherwise, the verification is negative, 𝐼 will send 

an RJ message back to 𝑅 and terminate the protocol. The verification steps of 𝐼2 are shown 

in Figure 5.10.  

 
Figure 5.10: GP2A RP1 verification (I2). 

In 𝐼3, 𝐼 generates 𝑅𝑃2 for 𝐶𝐻2 using 𝑛2 obtained in 𝐼2, and prepares an RP message. To 

generate 𝑅𝑃2, an authenticator 𝑎𝑢𝑡ℎ3 containing 𝑅𝑃2 (𝑛2) is generated using nested 

encryption. The generation of 𝑎𝑢𝑡ℎ3 is expressed as 𝑎𝑢𝑡ℎ3 = 𝑆𝐸(𝑔𝑘, 𝑆𝐸(𝑝𝑚𝑘𝐼,𝑅 , 𝑛2)).  

𝐼 generates a credential encryption key 𝑐𝑘 with a length 𝑙 using a key derivation algorithm 

with 𝑝𝑚𝑘𝐼,𝑅 and 𝑛2. The generation of 𝑐𝑘 is expressed as 𝑐𝑘𝐼,𝑅 = 𝐻𝐾𝐷𝐹(𝑙, 𝑝𝑚𝑘𝐼,𝑅 , 𝑛2). 

𝐼 generates a credential package containing credentials (keys, tickets, and their metadata) 

to be dispatched and encrypts the package with 𝑐𝑘. The encrypted package 𝑝𝑘𝑔 is expressed 

as 𝑝𝑘𝑔 = 𝑆𝐸(𝑐𝑘𝐼,𝑅 , 𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑐𝑘𝑎𝑔𝑒).   
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𝐼 generates a tag 𝜏3 using MAC-Signing with 𝑚𝑘 and message data consisting of the 

message ID 𝑚𝑖𝑑3 for this RP message, the message ID 𝑚𝑖𝑑2 of the preceding RC message, the 

authenticator 𝑎𝑢𝑡ℎ3, and the encrypted credential package 𝑝𝑘𝑔. The generation of 𝜏3 is 

expressed as 𝜏3 =  𝑀𝑆(𝑚𝑘𝐼,𝑅 , 𝑚𝑖𝑑3||𝑚𝑖𝑑2||𝑎𝑢𝑡ℎ3||𝑝𝑘𝑔). 

𝐼 generates msg-GP2A3 and sends the message back to 𝑅. The RP message is expressed 

as msg-GP2A3: {𝐺𝑃2𝐴, 𝑚𝑖𝑑3, 𝑅𝑃, 𝑆(𝑀𝐼𝐷) + 𝑆(𝑎𝑢𝑡ℎ3) +  𝑆(𝑝𝑘𝑔) + 𝑆(𝜏3), 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 ,

𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑚𝑖𝑑2, 𝑎𝑢𝑡ℎ3, 𝑝𝑘𝑔, 𝜏3}. 

Step 4: Upon receiving msg-GP2A3, 𝑅 performs 𝑅𝑃2 verification (𝑅3). In 𝑅3, similar to 𝐼2, 

𝑅 verifies the authenticity of msg-GP2A3 against 𝜏3. The verification of the authenticity of the 

message using MAC-Verify is expressed as 𝑚𝑣3 =  𝑀𝑉(𝑚𝑘𝐼,𝑅 , 𝑚𝑖𝑑3||𝑚𝑖𝑑2||𝑎𝑢𝑡ℎ3||𝑝𝑘𝑔, 𝜏3). 

Following a positive verification, 𝑅 decrypts 𝑎𝑢𝑡ℎ3 with 𝑔𝑘 and 𝑝𝑚𝑘𝐼,𝑅 to obtain 𝑅𝑃2 and 

then assign the obtained value to 𝑛2
′ . This operation is expressed as 𝑛2

′ = 𝑆𝐷(𝑝𝑚𝑘𝐼,𝑅 ,

𝑆𝐷(𝑔𝑘, 𝑎𝑢𝑡ℎ3)).  

𝑅 verifies 𝑅𝑃2 by comparing 𝑛2
′  with 𝑛2 (the nonce it sent in Step 2). If 𝑛2

′ == 𝑛2 then 

the verification is positive, 𝐼 and 𝑅 are mutually authenticated, 𝑅 then proceeds to the next 

operation; otherwise, the verification is negative and 𝑅 will terminate the protocol. If the 

verification is positive, 𝑅 generates a credential encryption key 𝑐𝑘 (used for decryption). The 

generation of 𝑐𝑘 is the same as that of Step 3. 𝑅 then decrypts 𝑝𝑘𝑔 with 𝑐𝑘. The decryption 

of 𝑝𝑘𝑔 is expressed as 𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 = 𝑆𝐷(𝑐𝑘𝐼,𝑅 , 𝑝𝑘𝑔).   

Lastly, the decrypted credentials are stored in CStore of 𝑅. The verification steps of 𝑅3 

are shown in Figure 5.11. 

 
Figure 5.11: GP2A RP2 verification (R3). 

5.5.4.2 GE2A Protocol 
The GE2A protocol is also a two-factor (group key and encapsulated primary key) entity 

authentication protocol. Like GP2A, it is used for authentication of initial interactions between 

two components (𝐼 and 𝑅). Unlike GP2A, the encapsulated primary key is issued by a trusted 

third party (𝑧). 𝐼 obtains the key and a ticket containing the key from 𝑧, and then sends the 

ticket to 𝑅 with the first message (a CH message) of the protocol. Upon receiving the message, 
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𝑅 decrypts the ticket with the sealing key shared with 𝑧 to obtain the encapsulated key and 

use it for authentication. The protocol also consists of four operational steps as shown in 

Figure 5.6.  

Step 1: In 𝐼1, 𝐼 performs 𝐶𝐻1 generation and generates a CH message (msg-GE2A1). For 

these tasks, 𝐼 generates a nonce 𝑛1 and an authenticator 𝑎𝑢𝑡ℎ1, and then derives a MAC key 

𝑚𝑘𝐼,𝑅 in the same manner as Step 1 of GP2A. However, the generation of a MAC tag 𝜏1 takes 

one additional item, i.e., a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑧 . The generation of 𝜏1 is expressed as 𝜏1 =  𝑀𝑆(𝑚𝑘𝐼,𝑅 ,

𝑚𝑖𝑑1 || 𝑗𝑖𝑑 || 𝑟𝑒𝑞|| 𝑖𝑐𝑙 || 𝑎𝑢𝑡ℎ1 || 𝑡𝑘𝑡𝐼,𝑅
𝑧 ).  

𝐼 then generates msg-GE2A1 and sends the message to 𝑅. msg-GE2A1 is expressed as 

msg-GE2A1: {𝐺𝐸2𝐴, 𝑚𝑖𝑑1, 𝐶𝐻, 𝑆(𝐽𝐼𝐷) + 𝑆(𝑅𝐸𝑄) + 𝑆(𝐼𝐶𝐿) + 𝑆(𝑎𝑢𝑡ℎ1) + 𝑆(𝜏1), 𝑖𝑑𝐼 ,

𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑗𝑖𝑑, 𝑟𝑒𝑞, 𝑖𝑐𝑙, 𝑎𝑢𝑡ℎ1, 𝑡𝑘𝑡𝐼,𝑅
𝑧 , 𝜏1}.  

Step 2: Upon receiving msg-GE2A1, 𝑅 performs preliminary verification (𝑅1), generates 

𝑅𝑃1 and 𝐶𝐻2 (𝑅2), before generating an RC message (msg-GE2A2). In 𝑅1, 𝑅 decrypts 𝑡𝑘𝑡𝐼,𝑅
𝑧  

with 𝑠𝑙𝑘𝑅,𝑧 to obtain 𝑝𝑚𝑘𝐼,𝑅 and the associated data. This operation is expressed as 

(𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑖𝑑𝑧 , 𝑑𝑖𝑑𝑧 , 𝑗𝑖𝑑, 𝑟𝑒𝑞, 𝑔𝑡, 𝑒𝑡, 𝑝𝑚𝑘𝐼,𝑅) = 𝑆𝐷(𝑠𝑙𝑘𝑅,𝑧, 𝑡𝑘𝑡𝐼,𝑅
𝑧 ). 

𝑅 checks the validity of 𝑝𝑚𝑘𝐼,𝑅 and performs preliminary verification. In addition to 

conditions (1) to (4) listed in 𝑅1 of Step 2 of GP2A, the checking conditions here further 

include: (1) 𝑅 has established 𝑔𝑘 with 𝐼; (2) the IDs and DIDs of the initiator and respondent 

match the ones of 𝐼 and 𝑅, respectively; (3) 𝑟𝑒𝑞 contained in the ticket matches 𝑟𝑒𝑞 of the 

message; and (4) 𝑝𝑚𝑘𝐼,𝑅 is not expired, i.e., the current time (observed by 𝑅) is not earlier 

than the key generation time (𝑔𝑡) and not later than the key expiration time (𝑒𝑡). If any of 

these conditions is not met, 𝑅 sends an RJ message back to 𝐼 with a corresponding error code 

and aborts the protocol. The verification steps of 𝑅1 are shown in Figure 5.12.  

Next, 𝑅 generates a MAC key 𝑚𝑘𝐼,𝑅 using the same method as Step 1. After that, it verifies 

the authenticity of msg-GE2A1 against 𝜏1. The verification of 𝜏1 is expressed as 

 𝑚𝑣1 = 𝑀𝑉(𝑚𝑘𝐼,𝑅 , 𝑚𝑖𝑑1||𝑗𝑖𝑑||𝑟𝑒𝑞||𝑖𝑐𝑙||𝑎𝑢𝑡ℎ1||𝑡𝑘𝑡𝐼,𝑅
𝑧 , 𝜏1).  

In 𝑅2, 𝑅 generates 𝑅𝑃1 for 𝐶𝐻1, generates 𝐶𝐻2, and generates msg-GE2A2. The 

operations are the same as those of 𝑅2 in Step 2 of GP2A. Therefore, msg-GE2A2 sent from 

𝑅 back to 𝐼 is expressed as msg-GE2A2: {𝐺𝐸2𝐴, 𝑚𝑖𝑑2, 𝑅𝐶, 𝑆(𝑀𝐼𝐷) + 𝑆(𝑎𝑢𝑡ℎ2) + 𝑆(𝜏2),

𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑚𝑖𝑑1, 𝑎𝑢𝑡ℎ2, 𝜏2}.  

Step 3: 𝐼 receives msg-GE2A2, performs 𝑅𝑃1 verification (𝐼2) and 𝑅𝑃2 generation (𝐼3), 

before generating an RP message msg-GE2A3. This step is the same as that of GP2A. Hence, 

msg-GE2A3 sent from 𝐼 to 𝑅 is expressed as msg-GE2A3: {𝐺𝐸2𝐴, 𝑚𝑖𝑑3, 𝑅𝑃, 𝑆(𝑀𝐼𝐷) +

𝑆(𝑎𝑢𝑡ℎ3) +  𝑆(𝑝𝑘𝑔) + 𝑆(𝜏3), 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑚𝑖𝑑2, 𝑎𝑢𝑡ℎ3, 𝑝𝑘𝑔, 𝜏3}.  

Step 4: Upon receiving msg-GE2A3, 𝑅 performs 𝑅𝑃2 verification (𝑅3). This step is the 

same as that of GP2A described earlier.  
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Figure 5.12: GE2A preliminary verification (R1). 

5.5.4.3 SOA Protocol 
The SOA protocol is a one-factor (secondary key) entity authentication protocol used for 

authentication of subsequent interactions. SOA is different from GP2A in that only one 

secondary (pairwise) key 𝑠𝑐𝑘𝐼,𝑅 is used for generating and verifying authenticators; a MAC 
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key 𝑚𝑘𝐼,𝑅 is generated with only 𝑠𝑐𝑘𝐼,𝑅; and a credential encryption key 𝑐𝑘𝐼,𝑅 is generated 

with 𝑠𝑐𝑘𝐼,𝑅 instead of 𝑝𝑚𝑘𝐼,𝑅. Again, the protocol also consists of four operational steps as 

shown in Figure 5.6. As these steps are similar to those of GP2A, in the following, we will 

highlight only the differences.  

Step 1: 𝐼 generates an authenticator 𝑎𝑢𝑡ℎ1 with 𝑠𝑐𝑘𝐼,𝑅. The generation of 𝑎𝑢𝑡ℎ1 is 

expressed as 𝑎𝑢𝑡ℎ1 =  𝑆𝐸(𝑠𝑐𝑘𝐼,𝑅 , 𝑛1).  

𝐼 generates a MAC key 𝑚𝑘𝐼,𝑅 with a length 𝑙 by invoking a key derivation algorithm with 

𝑠𝑐𝑘𝐼,𝑅. The generation of 𝑚𝑘𝐼,𝑅 is expressed as 𝑚𝑘𝐼,𝑅 = 𝐻𝐾𝐷𝐹(𝑙, 𝑠𝑐𝑘𝐼,𝑅 , 𝑁𝑈𝐿𝐿). 

A CH message msg-SOA1 generated by 𝐼 is expressed as msg-SOA1: {𝑆𝑂𝐴, 𝑚𝑖𝑑1, 𝐶𝐻,

𝑆(𝐽𝐼𝐷) + 𝑆(𝑅𝐸𝑄) + 𝑆(𝐼𝐶𝐿) + 𝑆(𝑎𝑢𝑡ℎ1) + 𝑆(𝜏1), 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑗𝑖𝑑, 𝑟𝑒𝑞, 𝑖𝑐𝑙,

𝑎𝑢𝑡ℎ1, 𝜏1}.  

Step 2: Upon receiving msg-SOA1, in 𝑅1, 𝑅 generates a MAC key 𝑚𝑘𝐼,𝑅 using the same 

method as Step 1 and verifies the authenticity of msg-SOA1 against 𝜏1. Following a positive 

verification, 𝑅 checks the validity of the interaction and key used for authentication. The 

checking conditions are the same as those in GP2A with the exception of the lack of a group 

key 𝑔𝑘 in condition (5).  

In 𝑅2, 𝑠𝑐𝑘𝐼,𝑅 is used to decrypt 𝑎𝑢𝑡ℎ1 and encrypt 𝑎𝑢𝑡ℎ2. The decryption of 𝑎𝑢𝑡ℎ1 to 

obtain 𝑛1 is expressed as 𝑛1 = 𝑆𝐷(𝑠𝑐𝑘𝐼,𝑅 ,   𝑎𝑢𝑡ℎ1).  

With 𝑛1 along with 𝑛2 (generated by 𝑅), the generation of 𝑎𝑢𝑡ℎ2 is expressed as 

 𝑎𝑢𝑡ℎ2 = 𝑆𝐸(𝑠𝑐𝑘𝐼,𝑅 , 𝑛1||𝑛2).  

An RC message (msg-SOA2) generated by 𝑅 and to be sent to 𝐼 is expressed as msg-SOA2: 

{𝑆𝑂𝐴, 𝑚𝑖𝑑2, 𝑅𝐶, 𝑆(𝑀𝐼𝐷) + 𝑆(𝑎𝑢𝑡ℎ2) + 𝑆(𝜏2), 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑚𝑖𝑑1, 𝑎𝑢𝑡ℎ2,

𝜏2}.  

Step 3: Upon receiving msg-SOA2, in 𝐼2, the extraction of 𝑛1
′  and 𝑛2 from 𝑎𝑢𝑡ℎ2 is done 

using 𝑠𝑐𝑘𝐼,𝑅, expressed as (𝑛1
′ , 𝑛2) = 𝑆𝐷(𝑝𝑚𝑘𝐼,𝑅 , 𝑎𝑢𝑡ℎ2). The steps for verifying 𝑛1

′  are the 

same as those shown in Figure 5.10. 

In 𝐼3, the generation of an authenticator 𝑎𝑢𝑡ℎ3 containing 𝑅𝑃2 (𝑛2) is expressed as 

𝑎𝑢𝑡ℎ3 = 𝑆𝐸(𝑠𝑐𝑘𝐼,𝑅 , 𝑛2).  

𝐼 generates a credential encryption key 𝑐𝑘𝐼,𝑅 with a length 𝑙 using a key derivation 

algorithm with 𝑠𝑐𝑘𝐼,𝑅 and 𝑛2. The generation of 𝑐𝑘𝐼,𝑅 is expressed as 𝑐𝑘𝐼,𝑅 = 𝐻𝐾𝐷𝐹(𝑙,

𝑠𝑐𝑘𝐼,𝑅 , 𝑛2). 

An RP message msg-SOA3 generated by 𝐼 for 𝑅 is expressed as msg-SOA3: {𝑆𝑂𝐴, 𝑚𝑖𝑑3,

𝑅𝑃, 𝑆(𝑀𝐼𝐷) + 𝑆(𝑎𝑢𝑡ℎ3) +  𝑆(𝑝𝑘𝑔) + 𝑆(𝜏3), 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑚𝑖𝑑2, 𝑎𝑢𝑡ℎ3, 𝑝𝑘𝑔, 𝜏3}.  

Step 4: Upon receiving msg-SOA3, in 𝑅3, 𝑅 extracts 𝑛2
′  from 𝑎𝑢𝑡ℎ3 with 𝑠𝑐𝑘𝐼,𝑅. The 

extraction of 𝑛2
′  is expressed as 𝑛2

′ = 𝑆𝐷(𝑠𝑐𝑘𝐼,𝑅 , 𝑎𝑢𝑡ℎ3).  

𝑅 then generates a credential encryption key 𝑐𝑘𝐼,𝑅 using the same method as Step 3. The 

remaining verification steps are the same as those of GP2A.  

Upon a successful completion of the execution of any of the GP2A, GE2A, and SOA 

protocols (thus, positive authentication), each of the interacting components has an 

assurance that (1) it is interacting with the claimed component; (2) the authentication 

messages are authentic and freshly generated by the claimed component; and (3) session 

keys and keys for authenticating subsequent interactions are securely transmitted.  
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5.5.5 Putting Everything Together: MIEA in Action 
The job execution flow when MIEA is applied is depicted in Figure 5.13. The figure highlights 

the protocol and the keys used to authenticate each of the interactions, the establishment 

methods for such keys, and credentials exchanged during each authentication instance. It is 

worth noting that, in the reduce phase @ 29 (shown in Figure 5.13 (d)), SOA is not used for 

the authentication of 𝑐1 to 𝑛𝑚1. This is because there could be a long gap of time (e.g., hours) 

since the last interaction between 𝑐1 and 𝑛𝑚1; the longer the gap, the higher risk of 

credentials being compromised. Hence, GE2A is applied to achieve a higher level of protection.  

 

 

 
 

(a) 
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(b) 

 

 
(c) 
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(d) 

Figure 5.13: The job execution flow when MIEA is applied. 

(a) Job submission phase: execution request step.  

(b) Job submission phase: worker allocation step. (c) The map phase. (d) The reduce phase. 

5.6 The Running Example 

We here use the running example described in Section 4.6 to explain how the components of 

MIEA work when MIEA is applied to the cyberthreat analysis job in the example. The 

explanation also covers how different classes of keys are used to accomplish entity 

authentication and how the keys in a higher level of the key hierarchy are used to distribute 

the keys in a lower level of the key hierarchy.  

The execution of the job in the example consists of 29 operational steps (as detailed in 

Section 7.2). In each of the steps, there can be interactions taking place between multiple 

pairs of MR components involved. For example, in step 2 shown in Figure 4.8, there are three 

interactions, one for each of the pairs, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 

and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. Entity authentication 

is enforced before any interaction is taking place to verify and establish the identities of the 

interacting components. Each such authentication instance is carried out by using one of the 
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MIEA protocols, i.e., GP2A, GE2A, and SOA. GP2A and GE2A are two-factor (two keys) entity 

authentication protocols designed for initial interactions. SOA is a one-factor (one key) entity 

authentication protocol designed for subsequent interactions. The classifications of the keys 

used in the authentication are summarised in Figure 5.3 and the notations used to refer to 

the keys are given in Table 5.2. For GP2A and GE2A, a group key and a primary key (pre-shared 

and encapsulated, respectively) are used to generate and verify challenges and responses 

exchanged between the interacting entities. The group key is used to deter attacks caused by 

outsiders (e.g., components that do not have a DFS-C key 𝑑𝑓𝑘1 cannot access 𝐷𝐹𝑆1). The 

primary key (pairwise key) makes it more difficulty for insiders to mount impersonation 

attacks on the system (e.g., 𝑀𝑎𝑝𝑝𝑒𝑟2 cannot impersonate 𝑀𝑎𝑝𝑝𝑒𝑟1 when it contacts 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 as it does not have 𝑝𝑚𝑘𝑗𝑚,𝑚1
). The hybrid use of a group key and a primary key 

also prepares the ground for future work or other researchers to incorporate other security 

services, e.g., fault tolerance. For SOA, only a secondary key is used to accomplish the 

authentication task. A sealing key is shared between two components for the distribution of 

an encapsulated primary key (the container for an encapsulated primary key is called a ticket). 

A session key is used to secure sensitive data transmitted between the components after they 

are mutually authenticated, and it is only used for the session. A MAC key is used to ensure 

the authenticity of the protocol messages. A credential encryption key is used to securely 

distribute new keys for subsequent authentications. For each authentication instance, a MAC 

key and a credential encryption key are derived locally on the components and with a 

combined use of a group key, a primary key, a secondary key, and a nonce. This is described 

in the descriptions of each of the GP2A, GE2A, and SOA protocols in Section 5.5.4. 

To demonstrate how different classes of keys are used, we here explain how entity 

authentication is carried out in step 2 through to step 4c (shown in Figure 5.13). In this 

demonstration, we shall describe only the actions performed by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 and the keys needed for the 

authentication of these components. It is assumed that, prior to the execution of the job, an 

OrgDomain key (a group key) 𝑜𝑘1 and a pre-shared primary key 𝑝𝑚𝑘𝑐1,𝑟𝑚1  are established 

on 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1; a DFS-C key (a group key) 𝑑𝑓𝑘1 is established on 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1; a sealing key 𝑠𝑙𝑘𝑛𝑚1,𝑟𝑚1  is 

established on 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1; and a sealing key 𝑠𝑙𝑘𝑑𝑠1
1,𝑛𝑚1  is 

established on 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.  

In step 2, 𝑈𝑠𝑒𝑟1 authenticates to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 by using an existing authentication service 

(e.g., a password-based authentication for Linux systems). 𝑈𝑠𝑒𝑟1 then uses 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to 

authenticate to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 before submitting a request to start the new job. The 

authentication between 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 is done by using the GP2A 

protocol with the OrgDomain key (group key) 𝑜𝑘1 and the primary key (pairwise key) 

𝑝𝑚𝑘𝑐1,𝑟𝑚1. The detailed descriptions of the authentication flow and protocol messages of 

GP2A have been given in Section 5.5.4.1. In the last protocol message, 𝑈𝑠𝑒𝑟1 sends the 

secondary key 𝑠𝑐𝑘𝑐1,𝑟𝑚1  and a session key 𝑠𝑠𝑘𝑐1,𝑟𝑚1  to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. 𝑠𝑐𝑘𝑐1,𝑟𝑚1  will 

be used to authenticate 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 in step 3 and 𝑠𝑠𝑘𝑐1,𝑟𝑚1  will be 
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used to secure data transmitted between 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 in this session 

(all the remaining session keys in a similar fashion).  

In step 3, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 accepts the request sent by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. It authenticates 

to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 before sending a reply. The authentication is done by using the SOA protocol 

with the secondary key 𝑠𝑐𝑘𝑐1,𝑟𝑚1  established in step 2. The detailed descriptions of the 

authentication flow and protocol messages of SOA have been given in Section 5.5.4.3. In the 

last protocol message, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends the DFS-C key 𝑑𝑓𝑘1, the primary key 

𝑝𝑚𝑘𝑐1,𝑛𝑚1, the ticket 𝑡𝑘𝑡𝑐1,𝑛𝑚1
𝑟𝑚1

 (containing 𝑝𝑚𝑘𝑐1,𝑛𝑚1  which is encrypted with 𝑠𝑙𝑘𝑛𝑚1,𝑟𝑚1), 

and a new session key 𝑠𝑠𝑘𝑟𝑚1,𝑐1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. 𝑑𝑓𝑘1 and 𝑝𝑚𝑘𝑐1,𝑛𝑚1  will be used to 

authenticate 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 in step 4a and 𝑡𝑘𝑡𝑐1,𝑛𝑚1
𝑟𝑚1

 will be used to 

distribute 𝑝𝑚𝑘𝑐1,𝑛𝑚1  to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 in step 4a. 

In step 4, after 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the reply containing the keys to authenticate to 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 from 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 authenticates to 𝐷𝐹𝑆1 to write 

the input dataset (𝐹𝑖𝑙𝑒1) and the job configuration file onto 𝐷𝐹𝑆1. This step consists of three 

further steps.  

• In step 4a, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 authenticates to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 before sending a request 

for a list of DataStores to write the data. The authentication is done by using the GE2A 

protocol with the DFS-C key (group key) 𝑑𝑓𝑘1 and the primary key (pairwise key) 

𝑝𝑚𝑘𝑐1,𝑛𝑚1  established in step 3. The authentication flow and protocol messages of 

GE2A have been described in Section 5.5.4.2. It is worth noting that 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

obtains 𝑝𝑚𝑘𝑐1,𝑛𝑚1  from 𝑡𝑘𝑡𝑐1,𝑛𝑚1
𝑟𝑚1

 contained in the first protocol message sent by 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. In the last protocol message, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends the secondary key 

𝑠𝑐𝑘𝑐1,𝑛𝑚1  and a session key 𝑠𝑠𝑘𝑐1,𝑛𝑚1  to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. 𝑠𝑐𝑘𝑐1,𝑛𝑚1  will be used to 

authenticate 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 in step 4b.  

• In step 4b, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 accepts the request. It authenticates to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 

before sending the list of DataStores (here, the list contains only 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1). The 

authentication is done by using the SOA protocol with the secondary key 𝑠𝑐𝑘𝑐1,𝑛𝑚1  

established in step 4a. In the last protocol message, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends the 

primary key 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1, the ticket 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

 (containing 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1  which is encrypted 

with 𝑠𝑙𝑘𝑑𝑠1
1,𝑛𝑚1), and a new session key 𝑠𝑠𝑘𝑛𝑚1,𝑐1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. 𝑝𝑚𝑘𝑐1,𝑑𝑠1

1  will be 

used to authenticate 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 and 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

 will be used to 

distribute 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1 in step 4c. 

• In step 4c, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the reply. It authenticates to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 before 

writing the data to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. The authentication is done by using the GE2A 

protocol with the DFS-C key 𝑑𝑓𝑘1 established in step 3 and the primary key 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1  

established in step 4b. 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 obtains 𝑝𝑚𝑘𝑐1,𝑑𝑠1

1  from 𝑡𝑘𝑡𝑐1,𝑑𝑠1
1

𝑛𝑚1
 contained in the 

first protocol message sent by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. In the last protocol message, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 

sends a session key 𝑠𝑠𝑘𝑐1,𝑑𝑠1
1  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1.  
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The key hierarchy showing how keys are distributed during step 2 through to step 4c is 

shown in Figure 5.14. The detailed descriptions of all the operational steps are given in Section 

7.3.  

 
Figure 5.14: The key hierarchy in step 2 through to step 4c.  

5.7 Security Analysis 

The security of MIEA is analysed using informal and formal analysis methods. With the 

informal analysis method, we analyse the security properties of MIEA against the security 

requirements specified in Section 4.5.2. Next, MIEA is formally analysed by using symbolic 

analysis and complexity analysis. The symbolic analysis validates the security properties of 

each of the three protocols by finding traces of states that lead to the violation of the 

properties. The complexity analysis is done on the weakest link of MIEA, showing how much 

effort (in terms of computation) is required to mount any of the attacks identified in Section 

4.4.1 against the system.  

5.7.1 Informal Analysis 
MIEA provides entity authentication to MR services throughout the course of a job execution. 

Each of the interactions between MR components is protected by a corresponding protocol 

(GP2A, GE2A, or SOA). As the three protocols have a common authentication flow, they 

provide security protections in a similar manner. In the last subsection, we compare the 

security properties of the MIEA protocols with those of the most related entity authentication 

protocols, i.e., Kerberos and NSLPK.  
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5.7.1.1 Mutual Authentication 
Two components, an initiator 𝐼 and a respondent 𝑅, of an interaction should be able to verify 

the identity of each other. With GP2A, the identities of 𝐼 and 𝑅 are assured by demonstrating 

the knowledge of a group key 𝑔𝑘 and a pairwise key (primary key) 𝑝𝑚𝑘𝐼,𝑅 which should be 

known to only 𝐼 and 𝑅. As explained in Section 5.5.4.1, in Step 3, 𝐼 verifies the identity of 𝑅 

by checking whether the response (𝑛1
′ ) generated by 𝑅 equals the challenge (𝑛1) generated 

by 𝐼 in Step 1. If 𝑛1 == 𝑛1
′ , then 𝑅 is positively authenticated to 𝐼. Similarly, in Step 4, 𝑅 

verifies the identity of 𝐼 by checking whether the response (𝑛2
′ ) generated by 𝐼 equals the 

challenge (𝑛2) generated by 𝑅 in Step 2. If 𝑛2 == 𝑛2
′ , then 𝐼 is positively authenticated to 𝑅. 

Without the knowledge of both group key and pre-shared primary key, it is difficult to learn 

challenges (which are protected by nested encryption). In other words, it is hard for 

components other than 𝐼 and 𝑅 to generate messages containing the correct responses to 

the given challenges. Therefore, at the end of the execution of GP2A, both 𝐼 and 𝑅 are 

mutually authenticated.  

GE2A differs from GP2A in how 𝐼 and 𝑅 establish a primary key 𝑝𝑚𝑘𝐼,𝑅 used for mutual 

authentication. In GE2A, 𝐼 obtains 𝑝𝑚𝑘𝐼,𝑅 from a trusted third party (a ticket issuer) 𝑧 whereas 

𝑅 obtains 𝑝𝑚𝑘𝐼,𝑅 by decrypting 𝑡𝑘𝑡𝐼,𝑅
𝑧  sent from 𝐼 with a sealing key 𝑠𝑙𝑘𝑅,𝑧 shared with 𝑧. It 

is difficult for components other than 𝑅 to obtain 𝑝𝑚𝑘𝐼,𝑅 from 𝑡𝑘𝑡𝐼,𝑅
𝑧 . After 𝑅 obtains 𝑝𝑚𝑘𝐼,𝑅, 

the authentication flows are the same as those of GP2A. Therefore, using the same reasoning, 

at the end of the execution of GE2A, both 𝐼 and 𝑅 are mutually authenticated.  

With SOA, 𝐼 and 𝑅 verify the identities of each other in the same manner as that of GP2A 

and GE2A. The only difference is that, instead of using two keys, a group key 𝑔𝑘 and a primary 

key 𝑝𝑚𝑘𝐼,𝑅 , only one secondary key 𝑠𝑐𝑘𝐼,𝑅 is used to protect challenges and responses 

exchanged between 𝐼 and 𝑅. Therefore, at the end of the execution of SOA, 𝐼 and 𝑅 are 

mutually authenticated.  

As a result of the above discussion, MIEA satisfies the requirement of mutual 

authentication (SR1). 

5.7.1.2 Sensitive Data Confidentiality 
Entities other than 𝐼 and 𝑅 should not be able to learn sensitive data transmitted between 𝐼 

and 𝑅; these data are authentication keys, nonces (challenges and responses), MAC keys, 

credential encryption keys, and credential packages. In GP2A, authentication keys (𝑔𝑘 and 

𝑝𝑚𝑘𝐼,𝑅) are established on 𝐼 and 𝑅 prior to the current authentication instance through a 

secure channel and they are known to only 𝐼 and 𝑅. Nonces are protected using a nested 

encryption method with both the authentication keys before transmitting with protocol 

messages. A MAC key and a credential encryption key used are generated locally by each of 𝐼 

and 𝑅. These keys are not transmitted over networks, thus, cannot be intercepted by any 

other entities. A credential package is protected using encryption with a corresponding 

credential encryption key. Although an attacker may intercept messages transmitted over 

networks, without knowing the authentication keys, it is computationally difficult for the 

attacker to decrypt the protected data and learn the nonces and credentials contained in 

credential packages. In addition, in an event that an attacker was able to learn the MAC key 

or the credential encryption key (e.g., by mounting brute-force attacks on tags or encrypted 
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credential package), the attacker should not be able to learn the authentication keys used to 

derive the MAC and credential encryption keys owing to the security property provided by 

key derivation functions. Therefore, the confidentiality of the sensitive data is protected.  

In GE2A, a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑧  containing 𝑝𝑚𝑘𝐼,𝑅 is protected by a sealing key 𝑠𝑙𝑘𝑅,𝑧 shared 

between 𝑅 and a trusted third party 𝑧. It is computationally difficult for entities other than 𝑅 

to learn 𝑝𝑚𝑘𝐼,𝑅 from 𝑡𝑘𝑡𝐼,𝑅
𝑧 . As the authentication flow of GE2A is the same as that of GP2A, 

using the same method with GP2A, it is computationally difficult to reveal the sensitive data 

exchanged between 𝐼 and 𝑅 without knowing the authentication keys used, thus, the 

confidentiality of the data is protected.  

With SOA, a secondary key 𝑠𝑐𝑘𝐼,𝑅, rather than 𝑔𝑘 and 𝑝𝑚𝑘𝐼,𝑅, is used to protect sensitive 

data exchanged between 𝐼 and 𝑅. 𝑠𝑐𝑘𝐼,𝑅 is securely distributed from 𝐼 to 𝑅 during the 

preceding initial interaction. Thus, 𝑠𝑐𝑘𝐼,𝑅 should not be revealed to any entities other than 𝐼 

and 𝑅. Again, using the same method with GP2A, the confidentiality of other sensitive data is 

also protected.  

Based on the above discussion, MIEA meets the requirement of sensitive data 

confidentiality (SR2). 

5.7.1.3 Replay Attack Protection 
Protocol messages used for each authentication instance should be freshly generated. Any 

messages captured and replayed should be detected. MIEA uses freshly generated nonces 

(encrypted with authentication keys) to ensure the freshness of the messages. For a CH 

message (msg-GP2A1 for GP2A, msg-GE2A1 for GE2A, and msg-SOA1 for SOA) used in each 

of the protocols, even if an attacker can capture and replay the CH message, the attacker 

cannot impersonate 𝐼 as it cannot read the challenge sent from 𝑅 and generate the respective 

response in Step 3. In Step 3 of each of the protocols where 𝐼 receives an RC message (msg-

GP2A2 for GP2A, msg-GE2A2 for GE2A, and msg-SOA2 for SOA), if the nonce 𝑛1
′  contained in 

the message matches the nonce 𝑛1 generated by 𝐼, 𝐼 is assured that the RC message is not 

replayed and the component sending the message is indeed 𝑅. Similarly, in Step 4 of each of 

the protocols where 𝑅 receives an RP message (msg-GP2A3 for GP2A, msg-GE2A3 for GE2A, 

and msg-SOA3 for SOA), if the nonce 𝑛2
′  contained in the message matches the nonce 𝑛2 

generated by 𝑅, 𝑅 is assured that the RP message is not replayed and the component sending 

the message is indeed 𝐼. Therefore, MIEA provides a protection against replay attacks, thus, 

satisfying the requirement of replay attack protection (SR3). 

5.7.1.4 Message Authenticity Protection 
Entities other than the component generating a message should not be able to tamper with 

the message. Any tampered messages should be detected and discarded. This is achieved by 

using MACs. Each protocol message used in MIEA contains a MAC tag that protects the 

content of the message. The MAC key used to sign and verify the message is derived locally 

from a group key and a primary key (with the exception of SOA where the MAC key is derived 

from one secondary key) and the keys are kept secret by each of 𝐼 and 𝑅. It is computationally 

difficult to forge a MAC tag for a new (or modified) message without knowing the MAC key 

shared between 𝐼 and 𝑅. Any modifications made to a MAC-protected message will result in 

a negative verification, thus, the fraudulent attempt will be detected. Therefore, MIEA 
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provides an assurance of message authenticity, meeting the requirement of message 

authenticity protection (SR4).  

5.7.1.5 The Comparisons of Security Properties 
Kerberos provides security properties of mutual authentication and replay attack protection, 

but not sensitive data confidentiality and message authenticity protection. With Kerberos, 𝐼 

and 𝑅 mutually authenticate each other by demonstrating the knowledge of a pairwise secret 

key (𝑘𝐼,𝑅 issued by 𝑇) shared between the two entities, thus, achieving mutual authentication. 

Encrypted nonces (generated by 𝐾 and 𝑇) and timestamps (generated by 𝐼) are used to ensure 

that messages are freshly (or recently) generated as only the entities knowing the secret key 

can generate such messages. However, nonces sent by 𝐼 to 𝐾 and 𝑇 are not encrypted, thus, 

could be intercepted by an attacker. There is no data authentication facility in Kerberos. 

Therefore, it does not provide a protection of message authenticity.  

NSLPK achieves mutual authentication, sensitive data confidentiality, and replay attack 

protection, but not message authenticity protection. These security properties are achieved 

by using nonces in conjunction with an asymmetric-key cryptosystem. With NSLPK, 𝐼 and 𝑅 

exchange a number of messages containing challenges and responses encrypted with the 

public keys of the receiving entities. As private keys are kept secret to the respective owners, 

no other entities can decrypt a challenge message to obtain a nonce so that it can generate a 

response message. By demonstrating the knowledge of the private keys, 𝐼 and 𝑅 are mutually 

authenticated. As nonces and private keys are not revealed to other unrelated entities, the 

confidentiality of sensitive data is preserved. As long as nonces used are freshly generated 

and not repeated, a protection against replay attacks is achieved. Like Kerberos, there is no 

data authentication facility in NSLPK, therefore, it does not provide a message authenticity 

protection.  

The comparisons of the security properties achieved by MIEA, Kerberos, and NSLPK are 

summarised in Table 5.9.  

Table 5.9: The comparisons of security properties achieved by the MIEA protocols, the Kerberos 

protocol, and the NSLPK protocol.  

Security Requirement Kerberos NSLPK MIEA 

(SR1) Mutual authentication √ √ √ 

(SR2) Sensitive data confidentiality  √ √ 

(SR3) Replay attack protection √ √ √ 

(SR4) Message authenticity protection   √ 

5.7.2 Symbolic Analysis 
Symbolic analysis validates the security properties provided by protocols and helps identify 

security weaknesses that are subtle and could be missed by informal analysis [157][158]. An 

example is a discovery of an MITM attack on the Needham-Schroeder Public Key (NSPK) 

authentication protocol [159] by Lowe [31] using Casper [160] and Failures-Divergence 

Refinement (FDR) checker [161] (also collectively referred to as Casper/FDR).  

Compared with a computational approach which provides a strong security verification 

proof, a symbolic approach is less complicated and can be used by inexperienced users. In 

additions, a number of symbolic based software tools have been developed to automate the 

verification of the security properties, and examples of such tools include Naval Research 
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Laboratory (NRL) protocol analyzer [162], Automated Validation of Internet Security Protocols 

and Applications (AVISPA) [163], and FDR [161], all of which are based on a state-exploration 

technique. This lowers the risk of errors made by the user [164][165]. 

With a symbolic approach, a security analysis is performed on an abstract view of a 

protocol [164][165]. In this abstract view, data contained in protocol messages are expressed 

using symbolic terms and cryptographic schemes are expressed as functions operated on the 

terms. Generally, symbolic analysis consists of three operational steps: (1) formally modelling 

a protocol; (2) specifying security properties to be verified; and (3) verifying the protocol 

model against the specified security properties. Steps (1) and (2) are accomplished using a 

high-level specification language. The selection of such a language is determined based on 

the symbolic analysis tool used. In this way, a user may gain the benefits of software-assisted 

verification. In Step (3), the tool is used to verify the protocol model formulated in Step (1) 

against the security properties specified in Step (2). If no attacks are found under a certain set 

of conditions (e.g., bounded or unbounded number of sessions), the tool returns a positive 

verification; otherwise, the tool returns traces of possible attacks (i.e., steps to mount such 

attacks), showing the flaws of the protocol.  

In the following, we compare different verification tools reported in literature and select 

one for our work. We explain the attacker model used. Next, we describe the security 

properties that are supported by Scyther. We then describe how the protocols are formally 

modelled, before presenting verification results.  

5.7.2.1 Verification Tool Comparisons and Selection 
There are a number of symbolic analysis tools reported in literature which have been 

successfully used to verify the correctness of, or identify attacks on, security protocols. 

Examples of such tools include NRL [162], Mur [166], Athena [167], Casper/FDR [160][161], 

AVISPA [163], Scyther [168], ProVerif [165][169], and TAMARIN [170]. As NRL [162], Mur 

[166], and Athena [167] are not publicly available at the time of this writing, they are excluded 

from this work. In the following, we contrast the remaining tools before selecting one for our 

work. 

FDR [161] is a refinement checker designed to analyse formal models of protocols or 

applications. The models are expressed in the Communicating Sequential Processes (CSP) 

language [171]. Casper [160] was created to simplify the process of expressing a security 

protocol with CSP. With Casper, a user can express a model using more abstract notations. A 

file containing such notations is called a Casper script. Casper translates the Casper script into 

CSP which can be processed by FDR. According to [172], the performance (in terms of 

execution time) of Casper/FDR is typically lower than other tools.  

AVISPA [163] integrates four different backends, namely On-the-Fly Model-Checker 

(OFMC), CL-based Attack Searcher (CL-AtSe), SAT-based Model Checker (SATMC), and Tree-

Automata-based Protocol Analyzer (TA4SP), for the verification of protocols. The 

specifications of a protocol and security properties are written in High-Level Protocol 

Specification Language (HLPSL). The HLPSL file is then translated into an intermediate format 

that is supported by the backend used. For demonstration, a number of security protocols 

have been modelled in HLPSL and a collection of these protocol specifications are stored in 
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the AVISPA Library [173]. Despite its popularity and ease of use, the performance of AVISPA 

is lower than those of other tools [172].  

Scyther [168] extends the ideas used in Athena [167] to verify the security properties 

(including authentication and secrecy) of a protocol. It uses a symbolic backward search based 

on patterns. It supports bounded and unbounded verifications with guaranteed termination. 

A protocol model and security properties can be expressed by using Security Protocol 

Description Language (SPDL). With SPDL, the protocol model can be expressed using 

notations similar to those used in literature for describing security protocols. Scyther has been 

used to model protocols collected in the Security Protocols Open Repository (SPORE) library 

[174]. Based on the experimental evaluation reported in [172], Scyther is the second fastest 

tool after ProVerif. 

ProVerif [165][169] abstracts a representation of a protocol by using a set of Horn clauses. 

It can analyse the protocol for an unbounded number of sessions. It supports a wide range of 

cryptographic primitives and can verify secrecy, correspondence, and a number of 

equivalence properties. In comparison with other tools, the performance of ProVerif is the 

highest [172]. However, in ProVerif, modelling a protocol is more difficult than other tools. In 

addition, it may find false attacks and it also does not always terminate.  

TAMARIN [170] generalises a backward search approach used by Scyther [168]. The 

specifications of a protocol and security properties are done, respectively, by multiset 

rewriting rules and in a guarded fragment of first-order logic. It supports complex control 

flows (e.g., loops), complex security properties (e.g., eCK model [175] for key exchange 

protocols), and equational theories (e.g., Diffie-Hellman and bilinear pairings). These features 

are achieved at a cost of more complicated protocol modelling in comparison with other tools 

such as Scyther. Another limitation of TAMARIN is that it does not always terminate.  

Based on the above discussions, we have chosen Scyther as the symbolic analysis tool for 

our work. The selection of Scyther is made based on the following reasons: (1) Scyther has 

been successfully used to verify many security protocols, including those collected in the 

SPORE library [174], this has demonstrated its capabilities and effectiveness; (2) it supports 

the verification of authentication and secrecy which can be used to, respectively, verify the 

security properties of mutual authentication (SR1) and sensitive data confidentiality (SR2); (3) 

the notations used in SPDL are widely used in describing protocols published in literature, 

thus, improving readability and understandability; (4) the verification of security properties 

can be done automatically, eliminating errors that could be introduced by a manual 

verification method; and (5) the performance of Scyther is much higher than other tools with 

similar features [172].  

5.7.2.2 Attacker Model 
The following attacker model is used in the verification of the MIEA protocols using Scyther.  

(EAM1) Perfect cryptography is assumed, cryptographic schemes are secure, and tokens 

generated by the schemes cannot be reverse without corresponding keys.  

(EAM2) An attacker can intercept and modify any messages, inject new messages, and send 

them to any entities in the network.  
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(EAM3) The attacker can perform any cryptographic operations as long as it knows the 

corresponding keys.  

(EAM4) The attacker cannot mount cryptanalytical attacks and cannot guess secrets (e.g., 

nonces and keys). 

5.7.2.3 Security Properties 
Scyther supports the verifications of a number of security properties. For this work, we 

consider two properties, non-injective synchronisation (authentication) and secrecy 

(confidentiality) [176].  

Non-injective synchronisation ensures that messages exchanged between two entities are 

indeed sent and received by the claimed sender and receiver, the messages have not been 

tampered with, and they are exchanged in the correct order. In other words, the message 

exchange has occurred exactly as specified by the protocol description. We use this property 

to verify the security requirement of mutual authentication (SR1). It is worth noting that non-

injective synchronisation only considers the contents and the ordering, but not the freshness, 

of the messages. Hence, it does not provide a protection against replay attacks.  

Secrecy ensures that data transmitted between two honest and uncompromised entities 

are not revealed to an attacker, particularly when the data are transmitted over an insecure 

network where the attacker may intercept any transmitted messages. We use this property 

to verify the security requirement of sensitive data confidentiality (SR2). 

5.7.2.4 Protocol Modelling 
As mentioned earlier, with Scyther, the specifications of a protocol and security properties 

are expressed in SPDL. Each SPDL file contains the descriptions of protocols and the associated 

data (e.g., static constants, user-defined functions, and keys) for a single analysis. Each 

protocol contains the descriptions of entity roles. Each role further consists of three sections: 

constants and variables, messages, and security claims (security properties to be verified). 

The detail SPDL specifications and how to use Scyther are explained in the manual of Scyther 

(https://github.com/cascremers/scyther/blob/master/gui/scyther-manual.pdf).  

In this work, each of the three MIEA protocols along with the corresponding security 

properties is written in a separate SPDL file. The analyses of the protocols are conducted 

independently. We do not consider multi-protocol or cross-protocol verification as the three 

protocols are designed to run independently and the messages used in each of the protocols 

are different (i.e., different PRO values).  

For GP2A, two entity roles are defined, I for initiators and R for respondents. The contents 

of the messages and the message flows are the same as those described in Section 5.5.4.1. In 

each of I and R, there is one non-injective synchronisation claim and seven secrecy claims (for 

𝑔𝑘, 𝑝𝑚𝑘𝐼,𝑅, 𝑚𝑘𝐼,𝑅, 𝑐𝑘𝐼,𝑅, 𝑛1, 𝑛2, and 𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑐𝑘𝑎𝑔𝑒).  

For GE2A, in addition to I and R, an additional role Z for a trusted third party is introduced. 

This is for the establishment of a primary key 𝑝𝑚𝑘𝐼,𝑅 and a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑍  on an initiator of role 

I. At the beginning of the protocol description, two messages are exchanged between I and Z 

to, respectively, request and dispatch 𝑝𝑚𝑘𝐼,𝑅 and 𝑡𝑘𝑡𝐼,𝑅
𝑧 . The remaining messages and 

authentication flows are the same as those described in Section 5.5.4.2. Like GP2A, in each of 

I and R, there is one non-injective synchronisation claim and seven secrecy claims (for 𝑔𝑘, 

https://github.com/cascremers/scyther/blob/master/gui/scyther-manual.pdf
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𝑝𝑚𝑘𝐼,𝑅, 𝑚𝑘𝐼,𝑅, 𝑐𝑘𝐼,𝑅, 𝑛1, 𝑛2, and 𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑐𝑘𝑎𝑔𝑒). There is one additional secrecy claim 

for 𝑝𝑚𝑘𝐼,𝑅 in role Z.  

The specifications of SOA and the corresponding security properties are similar to those 

of GP2A. The only difference is that a group key 𝑔𝑘 is not used in SOA. Therefore, the secrecy 

claim for 𝑔𝑘 is excluded from I and R.   

The contents of the SPDL files for the three protocols (i.e., gp2a.spdl for GP2A, ge2a.spdl 

for GE2A, and soa.spdl for SOA) are shown in Appendix A. 

5.7.2.5 Verification Results 
The verification results of the three protocols using Scyther under an unbounded number of 

sessions are presented in Figure 5.15. The results show that each of the three protocol passed 

the verifications against the specified security claims. Therefore, the three protocols satisfy the 

security requirements of mutual authentication (SR1) and sensitive data confidentiality (SR2).  

 
(a) 

 
(b) 
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Figure 5.15: Symbolic analysis of the three MIEA protocols using Scyther.  

(a) The GP2A protocol. (b) The GE2A protocol. (c) The SOA protocol. 

5.7.3 Complexity Analysis 
The strengths of the security protections offered by MIEA rely on the strengths of the 

underlying cryptographic schemes. In the following, we first give a list of notations used in 

this analysis, then the security strengths of the cryptographic schemes (i.e., a symmetric-key 

based encryption scheme and a MAC scheme), before analysing the strength of MIEA.  

5.7.3.1 Notations  
The notations used in this analysis are shown in Table 5.10. The lengths are expressed in bits.  

Table 5.10: Notations used in the complexity analysis of MIEA. 

Symbol Meaning 

𝐿𝑘  Key length 

𝐿𝑑  Plaintext length 

𝐿𝑚 MAC input data length 

𝐿𝜏 MAC tag length 
Notes: - All group keys and pairwise keys have the same lengths (𝐿𝑘). 

- MAC input data refer to data to be signed with MAC. 

5.7.3.2 The Strengths of Cryptographic Schemes 
The strengths of cryptographic schemes are measured as the upper bound of computational 

complexity needed to compromise an authentication token. Such complexity is usually 

expressed as 2𝑛 where the value of 𝑛 is dependent on the scheme and parameters used.  

Attacks on cryptographic schemes can be largely classified into two groups, cryptanalytical 

attacks and brute-force attacks [177]. Cryptanalytical attacks on symmetric-key 

cryptosystems (encryption and MAC schemes) can be mitigated by using schemes that have 

been well studied and have no known vulnerabilities. Hence, these attacks are not considered 

in this work.  

Attacks on encryption schemes can be classified into two groups, encryption key attacks 

(guessing the keys used for encryption) and plaintext attacks (guessing the plaintexts of given 

encrypted data). Mounting such attacks requires complexities of 2𝐿𝑘 and 2𝐿𝑑 , respectively 

[178]. Therefore, the complexity of successfully mounting an attack on an encryption scheme 

is 2min (𝐿𝑘,𝐿𝑑).  
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Attacks on MACs are tag forgery. This is done by (1) finding a new data object that 

produces the same tag, (2) guessing the key used to sign (and verify) the tag, or (3) guessing 

the tag for a new data object. The complexities of these actions are 2𝐿𝑚 , 2𝐿𝑘, and 2𝐿𝜏, 

respectively [178]. Therefore, the complexity of successfully mounting a tag forgery attack is 

2min (𝐿𝑚,𝐿𝑘,𝐿𝜏). 

5.7.3.3 Impersonation Attacks 
To mount an impersonation attack, an attacker has to generate a response in correspondence 

to a given challenge (a nonce) which is protected by encryption. To obtain such a challenge, 

the adversary may either (1) guess the keys used for decryption or (2) guess the nonce. For 

(1), two keys (a group key and a primary key) are used for encryption when GP2A or GE2A is 

applied, thus, guessing these two keys requires a complexity of 2𝐿𝑘 + 2𝐿𝑘 = 2𝐿𝑘+1. When SOA 

is applied, one key (a secondary key) is used for encryption, thus, the complexity of guessing 

the key is 2𝐿𝑘. For (2), in all the cases, guessing the challenge requires a complexity of 2𝐿𝑑. 

Therefore, the complexity of mounting a successful impersonation attack against MIEA is 

2min (𝐿𝑘,𝐿𝑑). 

5.7.3.4 Confidential Data Exposure Attacks 
Confidential data used in MIEA are the nonces (used as challenges and responses), group keys, 

and pairwise keys. The confidentiality is breached if any of these items are revealed. To 

expose one of these items, the adversary should guess any of the keys (keys for encryption 

and keys to be encrypted) and nonces, which requires a complexity of 2𝐿𝑘 and 2𝐿𝑑 , 

respectively. Therefore, the complexity of mounting a successful confidential data exposure 

attack against MIEA is 2min (𝐿𝑘,𝐿𝑑).  

5.7.3.5 Replay Attacks 
As long as a challenge (nonce) is freshly generated and is not repeated, an adversary cannot 

mount a replay attack due to the lack of a message containing a corresponding response. 

Assuming that a challenge is repeated and the adversary has captured a message containing 

the response to the challenge, to mount a replay attack, the adversary has to learn the 

challenge (to find the corresponding response) which is protected with encryption. This is 

similar to mounting an impersonation attack. As explained earlier, the complexities of 

guessing the encryption keys are 2𝐿𝑘+1 when GP2A or GE2A is applied and 2𝐿𝑘  when SOA is 

applied, whereas the complexity of guessing the challenge is 2𝐿𝑑. Therefore, the complexity 

of mounting a successful replay attack against MIEA is also 2min (𝐿𝑘,𝐿𝑑). 

5.7.3.6 Message Tampering Attacks 
To tamper with a message without being detected, an adversary has to mount a tag forgery 

on the message. As explained earlier, this requires a complexity of 2min (𝐿𝑚,𝐿𝑘,𝐿𝜏). Therefore, 

the complexity of mounting a successful message tampering attack against MIEA is 

2min (𝐿𝑚,𝐿𝑘,𝐿𝜏).  

The security strength of MIEA is summarised in Table 5.11. 
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Table 5.11: The security strength of MIEA. 

Attacks Complexity 

(T1) Impersonation attacks 2min (𝐿𝑘,𝐿𝑑) 

(T2) Confidential data exposure attacks 2min (𝐿𝑘,𝐿𝑑) 

(T3) Replay attacks 2min (𝐿𝑘,𝐿𝑑) 

(T4) Message tampering attacks 2min (𝐿𝑚,𝐿𝑘,𝐿𝜏) 

 

5.8 Performance Evaluation 

The performance of MIEA is theoretically evaluated in two aspects, computational and 

communication overheads. For benchmarking, the results are compared with the most 

related solutions, Kerberos [34][138][139] and NSLPK [31]. Kerberos is chosen because it is an 

efficient symmetric-key based entity authentication protocol that provides strong security 

protections and it is commonly used to provide secure access to many applications, such as 

Apache Hadoop [179]. NSLPK is chosen because it is an asymmetric-key based entity 

authentication protocol that have been well-studied and frequently discussed in literature. 

Although asymmetric-key based entity authentication protocols can be used in a context 

compatible with CBDC-MPC, they usually introduce a high-level of overhead costs. By 

evaluating the performance of NSLPK, we could learn how much overhead costs an 

asymmetric-key based entity authentication protocol introduces in comparison with 

symmetric-key based ones such as ours and Kerberos. The message transaction flows and 

operational steps of Kerberos and NSLPK are detailed in Appendix B.  

5.8.1 Notations  
The notations used in this performance evaluation are shown in Table 5.12. 

Table 5.12: Notations used in performance evaluation of MIEA.  

Symbols Meanings 

𝑂𝑠𝑒 , 𝑂𝑠𝑑  Sym-Encryption, Sym-Decryption operation 

𝑂𝑎𝑒 , 𝑂𝑎𝑑  Asym-Encryption, Asym-Decryption operation 

𝑂𝑠𝑠, 𝑂𝑠𝑣 SIG-Signing, SIG-Verification operation 

𝑂𝑚𝑠, 𝑂𝑚𝑣  MAC-Signing, MAC-Verification operation 

𝑂𝑘𝑑  Key derivation operation 

𝐿ℎ𝑑  The length of a message header 

𝐿𝑗𝑖𝑑 , 𝐿𝑟𝑒𝑞 , 𝐿𝑖𝑐𝑙  

𝐿𝑚𝑖𝑑 , 𝐿𝑒𝑖𝑑  

The lengths of a JID field, a REQ field, an ICL field, an MID field, an entity ID (EID) 
field 

𝐿𝑛 , 𝐿𝑡 , 𝐿𝜎 , 𝐿𝜏 , 𝐿𝑡𝑘𝑡 The lengths of a nonce, a timestamp, a signature, a tag, a ticket 

𝐿𝑘 , 𝐿𝑝𝑘 The lengths of a symmetric key, a public key 

𝐿𝑝𝑘𝑔 The length of an encrypted credential package 

5.8.2 Computational Overheads 
The computational overheads are evaluated in terms of the number of cryptographic 

operations performed by each of the entities involved in an authentication instance. Non-

cryptographic operations, such as equality check, are omitted as their costs (in terms of 

execution times) are negligible in comparison with those of cryptographic operations. 

Cryptographic operations are classified into five groups: Sym-Encryption and Sym-Decryption 

(𝑂𝑠𝑒 , 𝑂𝑠𝑑), Asym-Encryption and Asym-Decryption (𝑂𝑎𝑒 , 𝑂𝑎𝑑), MAC-Signing and MAC-
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Verification (𝑂𝑚𝑠, 𝑂𝑚𝑣), SIG-Signing and SIG-Verification (𝑂𝑠𝑠, 𝑂𝑠𝑣), and key derivation (𝑂𝑘𝑑). 

As the costs of operations are dependent on the sizes of data objects, we mark operations on 

potentially large objects with a superscripted asterisk (*).  

5.8.2.1 GP2A Protocol 
As shown in Figure 5.6, there are two entities, an initiator 𝐼 and a respondent 𝑅, involved in an 

authentication instance. 𝐼 performs cryptographic operations in Step 1 and Step 3. In Step 1, 

𝐼 performs three sets of operations: the first is for generating an authenticator 𝑎𝑢𝑡ℎ1, i.e., 

encrypting a nonce 𝑛1 (2 ∗ 𝑂𝑠𝑒); the second is for generating a MAC key (𝑂𝑘𝑑); and the third 

is for generating a tag for a message msg-GP2A1 (𝑂𝑚𝑠). In Step 3, 𝐼 performs six sets of 

operations: the first is for verifying a tag of a message msg-GP2A2 (𝑂𝑚𝑣); the second is for 

verifying an authenticator 𝑎𝑢𝑡ℎ2, i.e., decrypting a concatenation of two nonces (2 ∗ 𝑂𝑠𝑑); 

the third is for generating an authenticator 𝑎𝑢𝑡ℎ3, i.e., encrypting 𝑛2 (2 ∗ 𝑂𝑠𝑒); the fourth is 

for generating a credential encryption key (𝑂𝑘𝑑); the fifth is for encrypting a credential package 

(𝑂𝑠𝑒
∗ ); and the sixth is for generating a tag for a message msg-GP2A3 (𝑂𝑚𝑠

∗ ). The total number 

of operations performed by 𝐼 is 4 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗ .  

𝑅 performs cryptographic operations in Step 2 and Step 4. In Step 2, 𝑅 performs five sets 

of operations: the first is for generating a MAC key (𝑂𝑘𝑑); the second is for verifying a tag of 

a message msg-GP2A1 (𝑂𝑚𝑣); the third is for verifying an authenticator 𝑎𝑢𝑡ℎ1, i.e., decrypting 

a nonce 𝑛1 (2 ∗ 𝑂𝑠𝑑); the fourth is for generating an authenticator 𝑎𝑢𝑡ℎ2, i.e., encrypting a 

concatenation of two nonces (2 ∗ 𝑂𝑠𝑒); and the fifth is for generating a tag for a message msg-

GP2A2 (𝑂𝑚𝑠). In Step 4, 𝑅 performs four sets of operations: the first is for verifying a tag for 

a message msg-GP2A3 (𝑂𝑚𝑣
∗ ); the second is for verifying an authenticator 𝑎𝑢𝑡ℎ3, i.e., 

decrypting 𝑛2 (2 ∗ 𝑂𝑠𝑑); the third is for generating a credential decryption key (𝑂𝑘𝑑); and the 

fourth is for decrypting a credential package (𝑂𝑠𝑑
∗ ). The total number of operations performed 

by 𝑅 is 2 ∗ 𝑂𝑠𝑒 + 4 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗ . 

5.8.2.2 GE2A Protocol 
With the GE2A protocol, cryptographic operations performed by 𝐼 and 𝑅 are similar to those 

when GP2A is applied, with an exception that here, in Step 2, 𝑅 has to decrypt a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑧  

to obtain a primary key 𝑝𝑚𝑘𝐼,𝑅, thus, having one additional decryption operation (𝑂𝑠𝑑). 

Therefore, the numbers of operations performed by 𝐼 and 𝑅 are, respectively, 4 ∗ 𝑂𝑠𝑒 + 2 ∗

𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗  and 2 ∗ 𝑂𝑠𝑒 + 5 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 +

𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗ . 

5.8.2.3 SOA Protocol 
The authentication flow of SOA is similar to that of GP2A. The only difference is that, when 

SOA is applied, only one secondary key is used for the generation and verification of 

authenticators, cutting the total number of 𝑂𝑠𝑒 by 3 (2 for 𝐼 and 1 for 𝑅) and 𝑂𝑠𝑑 by 3 (1 for 𝐼 

and 2 for 𝑅). Therefore, the numbers of operations performed by 𝐼 and 𝑅 are, respectively, 

2 ∗ 𝑂𝑠𝑒 + 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗  and 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗

𝑂𝑘𝑑 + 𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗ . 
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5.8.2.4 Kerberos Protocol 
As shown in Figure B.1 in Appendix B, there are four entities, an initiator 𝐼, a KDC server 𝐾, a 

TGS server 𝑇, and a respondent 𝑅, involved in an authentication instance. 𝐼 performs 

cryptographic operations in Step 3 and Step 5. In each of these steps, 𝐼 performs two sets of 

operations: the first is for decrypting the encrypted concatenation of a key and a nonce (𝑂𝑠𝑑); 

and the second is for generating an authenticator, i.e., encrypting a timestamp (𝑂𝑠𝑒). Hence, 

the total number of operations performed by 𝐼 is 2 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑.  

𝐾 performs two sets of operations in Step 2: the first is for encrypting a concatenation of 

a pairwise key and a nonce (𝑂𝑠𝑒); and the second is for generating a ticket 𝑡𝑘𝑡𝐼,𝑇
𝐾  (𝑂𝑠𝑒). Hence, 

the total number of operations is 2 ∗ 𝑂𝑠𝑒.  

𝑇 performs four sets of operations in Step 4: the first is for decrypting a ticket 𝑡𝑘𝑡𝐼,𝑇
𝐾  to 

obtain 𝑘𝐼,𝑇 (𝑂𝑠𝑑); the second is for verifying an authenticator 𝑎𝑢𝑡ℎ1, i.e., decrypting 𝑎𝑢𝑡ℎ1 

(𝑂𝑠𝑑); the third is for encrypting a concatenation of a pairwise key and a nonce (𝑂𝑠𝑒); and the 

fourth is for generating a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑇  (𝑂𝑠𝑒). Hence, the total number of operations is 2 ∗ 𝑂𝑠𝑒 +

2 ∗ 𝑂𝑠𝑑. 

𝑅 performs two sets of operations in Step 6: the first is for decrypting a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑇  to 

obtain 𝑘𝐼,𝑅 (𝑂𝑠𝑑); and the second is for verifying an authenticator 𝑎𝑢𝑡ℎ2, i.e., decrypting 

𝑎𝑢𝑡ℎ2 (𝑂𝑠𝑑). Hence, the total number of operations is 2 ∗ 𝑂𝑠𝑑.   

In a case that 𝐼 have already obtained 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾  from 𝐾, 𝐼 can reuse the key and the 

ticket, thus, performing one less decryption operation (𝑂𝑠𝑑), 𝐾 needs not perform any 

operation, and each of 𝑇 and 𝑅 performs the same number of operations. 

5.8.2.5 NSLPK Protocol 
As shown in Figure B.2 in Appendix B, there are three entities, an initiator 𝐼, a key server 𝑍, 

and a respondent 𝑅, involved in an authentication instance. 𝐼 performs cryptographic 

operations in Step 3 and Step 7. In Step 3, 𝐼 performs two sets of operations: the first is for 

verifying the public key 𝑝𝑘𝑅 (𝑂𝑠𝑣); and the second is for encrypting a concatenation of a nonce 

and an EID (𝑂𝑎𝑒). In Step 7, 𝐼 performs two sets of operations: the first is for decrypting the 

encrypted concatenation of two nonces and an EID (𝑂𝑎𝑑); and the second is for encrypting 𝑛2 
(𝑂𝑎𝑒). Hence, the total number of operations is 2 ∗ 𝑂𝑎𝑒 + 𝑂𝑎𝑑 + 𝑂𝑠𝑣.  

𝑍 performs cryptographic operations in Step 2 and Step 5. In each of these steps, 𝑍 

performs one operation, i.e., signing a concatenation of a public key and an entity ID (𝑂𝑠𝑠). 

Hence, the total number of operations is 2 ∗ 𝑂𝑠𝑠.  

𝑅 performs cryptographic operations in Step 4, Step 6, and Step 8. In Step 4, 𝑅 performs 

one operation, i.e., decrypting the encrypted concatenation of a nonce and an EID (𝑂𝑎𝑑). In 

Step 6, 𝑅 performs two sets of operations: the first is for verifying the public key 𝑝𝑘𝐼 (𝑂𝑠𝑣); 

and the second is for encrypting a concatenation of two nonces and an EID (𝑂𝑎𝑒). In Step 8, 𝑅 

performs one operation, i.e., decrypting the encrypted 𝑛2 (𝑂𝑎𝑑). Hence, the total number of 

operations is 𝑂𝑎𝑒 + 2 ∗ 𝑂𝑎𝑑 + 𝑂𝑠𝑣.  

In a case that both 𝐼 and 𝑅 already know the public key of each other, 𝐼 performs one less 

SIG-Verification operation (𝑂𝑠𝑣), 𝐾 needs not perform any operation, and 𝑅 performs one less 

SIG-Verification operation (𝑂𝑠𝑣). 
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5.8.2.6 The Comparisons of Computational Overheads 
The computational overheads imposed on individual entities when different entity 

authentication protocols are applied are summarised in Table 5.13. The result shows that, 

among the protocols, the three MIEA protocols (GP2A, GE2A, and SOA) introduce the largest 

number of cryptographic operations and the NSLPK protocol introduces the lowest number 

of operations. However, when the protocols are deployed on real systems, the computational 

overhead cost (in terms of execution times) introduced by the NSLPK protocol is likely to be 

the highest and the cost introduced by Kerberos should be the lowest. This is because the 

operations of the NSLPK protocol are asymmetric-key based, which is much more 

computationally expensive (a few magnitudes [45]) than symmetric-key based [177]. In 

contrast, the MIEA protocols and Kerberos, which are symmetric-key based, should be more 

efficient. In the CBDC-MPC context, NSLPK and Kerberos may increase the risk of creating 

performance bottlenecks on centralised credential servers (𝑍 for NSLPK and 𝐾 and 𝑇 for 

Kerberos) when being applied to large-scale job executions involving a large number of Workers 

(particularly in the map phase). This is due to a large number of authentication requests by the 

Workers when they read data from and write data to the DFS clusters (each of a reading or 

writing request requires three interactions thus three authentication instances).  

Table 5.13: The comparisons of the computational overheads imposed on individual entities by 

different entity authentication protocols. 

Kerberos 

 Without 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾  caching With 𝑘𝐼,𝑇  and 𝑡𝑘𝑡𝐼,𝑇

𝐾  caching 

𝐼 2 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑  2 ∗ 𝑂𝑠𝑒 + 𝑂𝑠𝑑  

𝐾 2 ∗ 𝑂𝑠𝑒  - 

𝑇 2 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑  2 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑  

𝑅 2 ∗ 𝑂𝑠𝑑  2 ∗ 𝑂𝑠𝑑  

Total 6 ∗ 𝑂𝑠𝑒 + 6 ∗ 𝑂𝑠𝑑  4 ∗ 𝑂𝑠𝑒 + 5 ∗ 𝑂𝑠𝑑  

NSLPK  

 Without 𝑝𝑘𝐼 and 𝑝𝑘𝑅 caching With 𝑝𝑘𝐼  and 𝑝𝑘𝑅  caching 

𝐼 2 ∗ 𝑂𝑎𝑒 + 𝑂𝑎𝑑 + 𝑂𝑠𝑣 2 ∗ 𝑂𝑎𝑒 + 𝑂𝑎𝑑  

𝑍 2 ∗ 𝑂𝑠𝑠. - 

𝑅 𝑂𝑎𝑒 + 2 ∗ 𝑂𝑎𝑑 + 𝑂𝑠𝑣 𝑂𝑎𝑒 + 2 ∗ 𝑂𝑎𝑑  

Total 3 ∗ 𝑂𝑎𝑒 + 3 ∗ 𝑂𝑎𝑑 + 2 ∗ 𝑂𝑠𝑠 + 2 ∗ 𝑂𝑠𝑣 3 ∗ 𝑂𝑎𝑒 + 3 ∗ 𝑂𝑎𝑑  

GP2A 

𝐼 4 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗  

𝑅 2 ∗ 𝑂𝑠𝑒 + 4 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗  

Total 6 ∗ 𝑂𝑠𝑒 + 6 ∗ 𝑂𝑠𝑑 + 2 ∗ 𝑂𝑚𝑠 + 2 ∗ 𝑂𝑚𝑣 + 4 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑠𝑑

∗ + 𝑂𝑚𝑠
∗ + 𝑂𝑚𝑣

∗  

GE2A 

𝐼 4 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗  

𝑅 2 ∗ 𝑂𝑠𝑒 + 5 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗  

Total 6 ∗ 𝑂𝑠𝑒 + 7 ∗ 𝑂𝑠𝑑 + 2 ∗ 𝑂𝑚𝑠 + 2 ∗ 𝑂𝑚𝑣 + 4 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑠𝑑

∗ + 𝑂𝑚𝑠
∗ + 𝑂𝑚𝑣

∗  

SOA 

𝐼 2 ∗ 𝑂𝑠𝑒 + 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗  

𝑅 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗  

Total 3 ∗ 𝑂𝑠𝑒 + 3 ∗ 𝑂𝑠𝑑 + 2 ∗ 𝑂𝑚𝑠 + 2 ∗ 𝑂𝑚𝑣 + 4 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑠𝑑

∗ + 𝑂𝑚𝑠
∗ + 𝑂𝑚𝑣

∗  
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5.8.3 Communication Overheads 
The communication overheads are evaluated in terms of the number and sizes of messages 

exchanged among entities involved in an authentication instance. The total size of a message 

equals the sum of the size of the header and the size of the payload. For all messages, the size 

of the headers is fixed (𝐿ℎ𝑑). The size of the payload is dependent on the number and sizes of 

data items (e.g., authenticators, tickets, and tags) contained in the payload. For comparison, 

it is assumed that the messages used in Kerberos and NSLPK have the same header as shown 

in Figure 5.7 (thus, the header size is 𝐿ℎ𝑑) and the tickets used in Kerberos share the same 

ticket structure as shown in Figure 5.4 (thus, the ticket size is 𝐿𝑡𝑘𝑡). 

5.8.3.1 GP2A Protocol 
There are three messages exchanged between 𝐼 and 𝑅. In Step 1, 𝐼 sends msg-GP2A1 to 𝑅. 

The message contains one JID (𝐿𝑗𝑖𝑑), one REQ (𝐿𝑟𝑒𝑞), one ICL 𝐿𝑖𝑐𝑙, one authenticator1 

(containing one nonce) (𝐿𝑛), and one tag (𝐿𝜏). Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑗𝑖𝑑 +

𝐿𝑟𝑒𝑞 + 𝐿𝑖𝑐𝑙 + 𝐿𝑛 + 𝐿𝜏. In Step 2, 𝑅 sends msg-GP2A2 to 𝐼. The message contains one MID 

(𝐿𝑚𝑖𝑑), one authenticator (containing two nonces) (2 ∗ 𝐿𝑛), and one tag (𝐿𝜏). Hence, the size 

of the message is 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝜏. In Step 3, 𝐼 sends msg-GP2A3 to 𝑅. The message 

contains one MID (𝐿𝑚𝑖𝑑), one authenticator (containing one nonce) (𝐿𝑛), one credential 

package, and one tag (𝐿𝜏). The size of the credential package is interaction dependent. For 

ease of discussion and without losing generality, here the size of the credential package is 

denoted as 𝐿𝑝𝑘𝑔. Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 𝐿𝑛 + 𝐿𝑝𝑘𝑔 + 𝐿𝜏. 

5.8.3.2 GE2A Protocol 
Similar to GP2A, there are also three messages exchanged between 𝐼 and 𝑅. The only 

difference is that, in Step 1, the first message (msg-GE2A1) sent by 𝐼 to 𝑅 contains one 

additional item, i.e., a ticket. Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑗𝑖𝑑 + 𝐿𝑟𝑒𝑞 + 𝐿𝑖𝑐𝑙 +

𝐿𝑛 + 𝐿𝑡𝑘𝑡 + 𝐿𝜏.  

5.8.3.3 SOA Protocol 
With SOA, the number and the sizes of messages exchanged between 𝐼 and 𝑅 are the same 

as those of GP2A2.  

5.8.3.4 Kerberos Protocol 
Without 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇

𝐾  caching, there are a total of five messages exchanged among entities: 

two messages exchanged between 𝐼 and 𝐾; two messages exchanged between 𝐼 and 𝑇; and 

one message sent from 𝐼 to 𝑅. For messages exchanged between 𝐼 and 𝐾, in Step 1, 𝐼 sends 

msg-K1 to 𝐾. The message contains two EIDs (2 ∗ 𝐿𝑒𝑖𝑑) and one nonce (𝐿𝑛). Hence, the size 

of the message is 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑 + 𝐿𝑛. In Step 2, 𝐾 sends msg-K2 to 𝐼. The message contains 

one encrypted concatenation of a pairwise key and a nonce (𝐿𝑘 + 𝐿𝑛) and one ticket (𝐿𝑡𝑘𝑡). 

Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑘 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡. For messages exchanged between 𝐼 

 
1 The size of an encrypted data token, such as an authenticator, is dependent on the size of the plaintext (input data) to be 
encrypted as well as the encryption scheme used. Some block cipher-based encryption schemes add padding to the input 
data and produce an encrypted data token whose size is multiple of block sizes (specific to a particular scheme) or key sizes.  
2 Depending on an encryption scheme and a padding scheme used, nested encryption may produce larger encrypted tokens. 
In other words, SOA may produce smaller messages than those of GP2A.  
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and 𝑇, in Step 3, 𝐼 sends msg-K3 to 𝑇. The message contains one authenticator (containing 

one timestamp) (𝐿𝑡), one ticket (𝐿𝑡𝑘𝑡), one EID (𝐿𝑒𝑖𝑑), and one nonce (𝐿𝑛). Hence, the size of 

the message is 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡 + 𝐿𝑒𝑖𝑑 + 𝐿𝑛. In Step 4, 𝑇 sends msg-K4 to 𝐼. The message 

contains one encrypted concatenation of a pairwise key and a nonce (𝐿𝑘 + 𝐿𝑛) and one ticket 

(𝐿𝑡𝑘𝑡). Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑘 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡. For the message (msg-K5) sent 

from 𝐼 to 𝑅, the message contains one authenticator (containing one timestamp) (𝐿𝑡) and one 

ticket (𝐿𝑡𝑘𝑡). Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡.  

With 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾  caching, there are three messages (msg-K3, msg-K4, and msg-K5) 

exchanged among 𝐼, 𝑇, and 𝑅. The sizes of these messages are the same as analysed above.  

5.8.3.5 NSLPK Protocol 
Without 𝑝𝑘𝐼 and 𝑝𝑘𝑅 caching, there are a total of seven messages exchanged among entities: 

two messages exchanged between 𝐼 and 𝑍; two messages exchanged between 𝑍 and 𝑅; and 

three messages between 𝐼 and 𝑅. For the messages exchanged between 𝐼 and 𝑍, in Step 1, 𝐼 

sends msg-N1 to 𝑍. The message contains two EIDs (2 ∗ 𝐿𝑒𝑖𝑑). Hence, the size of the message 

is 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑. In Step 2, 𝑍 sends msg-N2 to 𝐼. The message contains a concatenation of a 

public key and an EID (𝐿𝑝𝑘 + 𝐿𝑒𝑖𝑑) and a corresponding signature (𝐿𝜎). Hence, the size of the 

message is 𝐿ℎ𝑑 + 𝐿𝑝𝑘 + 𝐿𝑒𝑖𝑑 + 𝐿𝜎. The messages (msg-N4 and msg-N5) exchanged between 

𝑍 and 𝑅 are similar to those (msg-N1 and msg-N2) exchanged between 𝐼 and 𝑍. Hence, the 

sizes of the messages are, respectively, 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑 and 𝐿ℎ𝑑 + 𝐿𝑝𝑘 + 𝐿𝑒𝑖𝑑 + 𝐿𝜎. For the 

messages exchanged between 𝐼 and 𝑅, in Step 3, 𝐼 sends msg-N3 to 𝑅. The message contains 

one encrypted concatenation of a nonce and an EID (𝐿𝑛 + 𝐿𝑒𝑖𝑑). Hence, the size of the 

message is 𝐿ℎ𝑑 + 𝐿𝑛 + 𝐿𝑒𝑖𝑑. In Step 6, 𝑅 sends msg-N6 to 𝐼. The message contains one 

encrypted concatenation of two nonces and an EID (2 ∗ 𝐿𝑛 + 𝐿𝑒𝑖𝑑). Hence, the size of the 

message is 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝑒𝑖𝑑. In Step 7, 𝐼 sends msg-N7 to 𝑅. The message contains one 

encrypted nonce (𝐿𝑛). Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑛.  

With 𝑝𝑘𝐼 and 𝑝𝑘𝑅 caching, there are only three messages (msg-N3, msg-N6, and msg-N7) 

exchanged between 𝐼 and 𝑅. The sizes of these messages are the same as analysed above. 

5.8.3.6 The Comparisons of Communication Overheads 
The communication overheads when different entity authentication protocols are applied are 

shown in Table 5.14. The result shows that GP2A, GE2A, and SOA introduce the same number 

and sizes of messages with the exception of msg-GE2A1 which has one additional 𝐿𝑡𝑘𝑡. In 

comparison with Kerberos without 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾  caching and NSLPK without 𝑝𝑘𝐼 and 𝑝𝑘𝑅 

caching, the MIEA protocols introduce fewer number of messages, reducing message 

transmission overhead (e.g., network-level packet headers). When key caching is applied, the 

MIEA protocols introduce the same number of messages, i.e., 3 messages, as those of 

Kerberos and NSLPK. However, each of the messages used in each of the MIEA protocols 

contains more data items (i.e., tags and credentials for subsequent authentication) than those 

in Kerberos or NSLPK.  
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Table 5.14: The comparisons of the communication overheads introduced by different entity 

authentication protocols. 

Kerberos 

 Without 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾  caching With 𝑘𝐼,𝑇  and 𝑡𝑘𝑡𝐼,𝑇

𝐾  caching 

Between 

𝐼 and 𝐾 

2 messages:  

msg-K1: 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑 + 𝐿𝑛  

msg-K2: 𝐿ℎ𝑑 + 𝐿𝑘 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡 

-  

Between 

𝐼 and 𝑇 

2 messages:  

msg-K3: 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡 + 𝐿𝑒𝑖𝑑 + 𝐿𝑛  

msg-K4: 𝐿ℎ𝑑 + 𝐿𝑘 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡 

2 messages:  

msg-K3: 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡 + 𝐿𝑒𝑖𝑑 + 𝐿𝑛  

msg-K4: 𝐿ℎ𝑑 + 𝐿𝑘 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡  

Between 

𝐼 and 𝑅 

1 message:  

msg-K5: 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡  

1 message:  

msg-K5: 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡  

Total 5 messages 3 messages 

NSLPK  

 Without 𝑝𝑘𝐼 and 𝑝𝑘𝑅 caching With 𝑝𝑘𝐼  and 𝑝𝑘𝑅  caching 

Between 

𝐼 and 𝑍 

2 messages:  

msg-N1: 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑  

msg-N2: 𝐿ℎ𝑑 + 𝐿𝑝𝑘 + 𝐿𝑒𝑖𝑑 + 𝐿𝜎 

- 

Between 

𝑍 and 𝑅 

2 messages:  

msg-N4: 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑  

msg-N5: 𝐿ℎ𝑑 + 𝐿𝑝𝑘 + 𝐿𝑒𝑖𝑑 + 𝐿𝜎 

- 

Between 

𝐼 and 𝑅 

3 messages:  

msg-N3: 𝐿ℎ𝑑 + 𝐿𝑛 + 𝐿𝑒𝑖𝑑  

msg-N6: 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝑒𝑖𝑑  

msg-N7: 𝐿ℎ𝑑 + 𝐿𝑛 

3 messages:  

msg-N3: 𝐿ℎ𝑑 + 𝐿𝑛 + 𝐿𝑒𝑖𝑑  

msg-N6: 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝑒𝑖𝑑  

msg-N7: 𝐿ℎ𝑑 + 𝐿𝑛 

Total 7 messages 3 messages 

GP2A 

Between 

𝐼 and 𝑅 

3 messages:  

msg-GP2A1: 𝐿ℎ𝑑 + 𝐿𝑗𝑖𝑑 + 𝐿𝑟𝑒𝑞 + 𝐿𝑖𝑐𝑙 + 𝐿𝑛 + 𝐿𝜏 

msg-GP2A2: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝜏 

msg-GP2A3: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 𝐿𝑛 + 𝐿𝑝𝑘𝑔 + 𝐿𝜏 

Total 3 messages 

GE2A 

Between 

𝐼 and 𝑅 

3 messages:  

msg-GE2A1: 𝐿ℎ𝑑 + 𝐿𝑗𝑖𝑑 + 𝐿𝑟𝑒𝑞 + 𝐿𝑖𝑐𝑙 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡 + 𝐿𝜏 

msg-GE2A2: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝜏 

msg-GE2A3: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 𝐿𝑛 + 𝐿𝑝𝑘𝑔 + 𝐿𝜏 

Total 3 messages 

SOA 

Between 

𝐼 and 𝑅 

3 messages:  

msg-SOA1: 𝐿ℎ𝑑 + 𝐿𝑗𝑖𝑑 + 𝐿𝑟𝑒𝑞 + 𝐿𝑖𝑐𝑙 + 𝐿𝑛 + 𝐿𝜏 

msg-SOA2: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝜏 

msg-SOA3: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 𝐿𝑛 + 𝐿𝑝𝑘𝑔 + 𝐿𝜏 

Total 3 messages 
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5.9 Experimental Evaluation 

To evaluate performance of each of the three MIEA protocols (GP2A, GE2A, and SOA) when 

deployed on a real-world system, we have implemented the protocols and conducted 

experiments to measure protocol execution times under different sets of parameter values. 

For benchmarking, the results are compared with those of the Kerberos protocol and the 

NSLPK protocol. In this section, we first explain methodology and evaluation metrics, then 

describe testbed setup and parameters used, before reporting our experimental results.  

5.9.1 Methodology and Evaluation Metrics 
The performances of the MIEA protocols are dependent on computational (operational costs 

generating and verifying AuthData) and communication (volume of traffics transmitted over 

networks for the exchange of protocol messages) overheads introduced by the protocols. To 

evaluate such overheads, each of the MIEA protocols is implemented and executed on a 

testbed. The evaluation consists of two experiments, Exp1 and Exp2. Exp1 evaluates the costs 

of cryptographic algorithms used in the MIEA protocols, i.e., Sym-Encryption, Sym-

Decryption, MAC-Signing, MAC-Verification, and key derivation. For comparison, it also 

evaluates the costs of Asym-Encryption, Asym-Decryption, SIG-Signing, and SIG-Verification 

which are used in NSLPK. Exp2 evaluates the performance of each of the MIEA protocols, 

Kerberos, and NSLPK when executed on the testbed.  

The costs of the cryptographic algorithms and the performance of the protocols are, 

respectively, measured in terms of the execution times of the algorithms and the protocols. 

Multiple samples of execution times are collected for each particular set of parameter values. 

Statistical values are calculated from the collected samples. These values are mean values for 

showing the costs and standard error of the mean for estimating measurement errors (i.e., 

showing how dispersed sample means are in relation to the population mean).  

5.9.2 Testbed Setup 
The testbed consists of five entity authentication services, respectively, implementing GP2A, 

GE2A, SOA, Kerberos, and NSLPK. These services are deployed on a single machine. Only one 

machine is used due to accessibility to equipment. The software and hardware used are 

described in detail in the following.  

5.9.2.1 Software 
The architecture of our testbed is shown in Figure 5.16. In this figure, an executable file (red 

rectangle) implementing all the protocols (GP2A, GE2A, SOA, Kerberos, and NSLPK), called 

ProtocolServices, is hosted on a machine (green rectangle). Each dotted rectangle is an 

application process implementing an entity instance (e.g., an initiator or a respondent). The 

number of the processes and their tasks are dependent on the protocol used. For example, 

three processes (Initiator, Respondent, and Key server) are executed when NSLPK is applied, 

whereas two processes (Initiator and Respondent) are executed when each of GP2A, GE2A, 

and SOA is applied. The initiation of the processes (i.e., entity instances) is shown as dotted 

unidirectional arrowed lines. The communication among the processes is shown as solid 

bidirectional arrowed lines. It is implemented by using a TCP connection.  
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Figure 5.16: Testbed architecture for evaluating the entity authentication services.  

ProtocolServices is written in C++. The cryptographic functions used are provided by the 

Botan cryptographic library [180]. Botan is selected as it has been used in a wide range of 

projects and supported by many organisations (including the German government, 

opensource communities, and commercial enterprises) [181]. To implement the required 

cryptographic algorithms, we have chosen the following schemes: (1) AES with the CBC mode, 

PKCS#7 padding, and 128-bit keys (referred to as AES-128) for the symmetric-key based 

encryption scheme; (2) RSA with SHA-256, OAEP padding, and 3072-bit keys (referred to as 

RSAEnc-3072) for the asymmetric-key based encryption scheme; (3) RSA with SHA-256, PSS 

padding, and 3072-bit keys (referred to as RSASig-3072) for the digital signature scheme; (4) 

HMAC with SHA-256 and 128-bit keys (referred to as HMAC-128) for the MAC scheme; and 

(5) HKDF with HMAC and SHA-256 (outputting 128-bit keys) for the key derivation scheme. 

The sizes of keys, tags, signatures, and nonces are set to achieve a sufficient level of security 

protection; at the time of this writing, NIST [182] has recommended a security level of 128 bits.  

The specifications of the underlying operating system, the C/C++ compiler, and the 

cryptographic library used are given in Table 5.15.  

Table 5.15: Software specifications. 

Component Specification 

Operating system Linux Manjaro 20.1 Mikah 
Kernel: 4.14.193-1-MANJARO x86_64 

C/C++ compiler gcc 10.1.0 

Cryptographic library botan 2.15.0 

5.9.2.2 Hardware 
The testbed consists of one machine. The machine hosts the ProtocolServices executable file. 

All the inter-process communications are TCP connections over the loopback (with the IP 

address 127.0.0.1) interface of the machine. The specifications of the machine are 

summarised in Table 5.16.  

Table 5.16: Hardware specifications.  

Component Specification 

CPU Quad Core Intel Core i7-6700, 64-bit, max 4.0 GHz 

RAM DDR4, 2133 MT/s, 16 GB        

Storage HDD 1 TB 
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5.9.3 Parameters and Configurations 
In both Exp1 and Exp2, the sizes of data objects are expressed in bytes (B). In Exp1, we 

measure the execution times of all the cryptographic algorithms performed on data objects 

with the sizes of 16 B (the size of one nonce) and 32 B (the total size of two nonces)3. In 

addition, we also measure the execution times of symmetric-key based encryption algorithms 

(AES encryption and decryption) performed on objects of different sizes. The sizes range from 

16 B to 16,384 B4 with an increment of twofold. The objects used are randomly generated 

binary data5. The sample size for each measurement is 4,000.  

In Exp2, we measure the execution times of all the protocols (GP2A, GE2A, SOA, Kerberos, 

and NSLPK) when credentials for subsequent authentication are not transmitted. As the MIEA 

protocols are also used to transmit credentials for subsequent authentication, we also 

measure the execution times of each of the MIEA protocols against the size of credential 

packages. The package size ranges from 16 B to 16,384 B (for justification, please see footnote 

5). As the content of the package should not affect the evaluations, the data used are 

randomly generated binary data. Each measurement for a specific set of parameter values is 

collected from 1,000 samples.  

The accuracy of the measurements of the execution times is statistically evaluated by 

using standard error of the mean. By choosing the sample sizes of 4,000 for Exp1 and 1,000 

for Exp2, the uncertainties of the mean execution times in terms of relative standard error of 

the mean (standard error of the mean divided by the mean execution times) are lower than 

1%. Although using a larger sample size should result in more accurate results, a slight 

increase in the sample sizes would greatly increase the time needed for conducting the 

experiments. This does not justify a marginal gain of accuracy. 

5.9.4 Experimental Results 
In this section, we report the experimental results and discuss our findings. 

5.9.4.1 Exp1: Costs of Cryptographic Algorithms 
The execution times of all the cryptographic algorithms on 16-B and 32-B data objects, and 

AES-128 Encryption and Decryption on objects with varying sizes, are depicted in Figure 5.17 

and Figure 5.18, respectively.  

 
3 In actual protocol executions, most operations in a symmetric-key based protocol are performed on small objects and the 
sizes of these objects are mainly dependent on the sizes of nonces (here, the size of a nonce is 16 B). In contrast, when NSLPK, 
an asymmetric-key based protocol, is applied, operations are performed on much larger objects (e.g., signature signing on 
an asymmetric key with the size of 384 B). For comparison, we only measure the execution times of the operations performed 
on objects with the sizes of 16 B and 32 B. 
4 In each of the MIEA protocols, the AES algorithms are performed on objects with different sizes, i.e., packages of credentials 
and associated metadata. The largest package is transmitted when 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends credentials to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 
(@16) and when 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends credentials to each 𝑅𝑒𝑑𝑢𝑐𝑒𝑟𝑏 (@24); these credentials are for authentication to each 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟𝑢
𝑗
. For an MR service with 1,000 Workers, the number of WorkerNodes (thus WorkerManagers) is 

approximately 100. The size of the package is approximately the number of WorkerManagers times the sum of the sizes of 
metadata, a primary key, and a ticket = 100 * (20 + 16 + 48) B = 8,400 B.  
5 The cryptographic algorithms used in the experiments operate on binary data. 
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Figure 5.17: The comparisons of the execution times of all the cryptographic algorithms on data 

objects with the sizes of 16 B and 32 B. 

From Figure 5.17, we can see that, the execution times of the symmetric-key based 

algorithms are much lower than those of the asymmetric-key based algorithms. Among the 

symmetric-key based algorithms, HMAC-128 cost the smallest (in terms of the execution 

times), and AES-128 and HKDF introduce the same level of costs. For example, when the 

object size is 16 B, the values of HMAC-128 Sign and Verify are approximately 5 microseconds, 

the values of AES-128 Encrypt and Decrypt and HKDF Derive are 7 microseconds, the values 

of RSAEnc-3072 Encrypt and RSASig-3072 Verify are 100 microseconds, and the values of 

RSAEnc-3072 Decrypt and RSASig-3072 Sign are 4,800 microseconds. The values of RSAEnc-

3072 Encrypt and RSASig-3072 Verify are one magnitude higher than those of the symmetric-

key based algorithms, and RSAEnc-3072 Decrypt and RSASig-3072 are two magnitudes higher. 

Such large differences are because of the complexity of computation in asymmetric-key based 

algorithms. In addition, in RSA based algorithms, there are a large difference in computational 

costs for operations with different keys; operations with private keys are more 

computationally expensive than those with public keys.  

When AES-128 Encrypt and Decrypt and HMAC-128 Sign and Verify are applied on objects 

with the sizes of 16 B and 32 B, respectively, there are slight increases in the execution times. 

However, when RSA based algorithms are applied, the values are at the same level. For 

example, AES-128 Encrypt takes 7.5 microseconds and 8 microseconds to execute when 

performed on 16 B and 32 B, respectively, resulting in an increase of 0.5 microseconds (6.7%). 

RSASig-3072 Verify takes 94 microseconds to execute on both object sizes. This is because, 

when the AES-128 based algorithms are applied, 16-B and 32-B are, respectively, padded to 

32 B and 48 B, resulting in difference execution times. However, when the RSA based 

algorithms are applied, both 16-B and 32-B data are padded to 384 B, thus, yielding the same 

execution times. 
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Figure 5.18: The comparisons of the execution times of AES-128 Encryption and Decryption on 

objects with varying sizes. 

From Figure 5.18, we can make the following observations. The execution times of AES-

128 Encrypt and Decrypt increase almost linearly as the size of objects increases. In addition, 

the rate of increase in the execution time of AES-128 Encrypt is higher than that of AES-128 

Decrypt. For example, when the object size increases from 16 B to 16,364 B (an order of 103 

increase), the execution times of AES-128 Encrypt and Decrypt increase from 7.5 

microseconds and 8.0 microseconds to 910 microseconds and 750 microseconds, 

respectively. These approximately equal the increases of 120 times and 94 times, respectively. 

The reason is that the larger size of the objects increases the workload of the algorithms thus 

the execution times. This is consistent with the experimental results of the costs of 

cryptographic algorithms used in data authentication reported in [44].  

These results indicate that. Asymmetric-key based algorithms are much more expensive 

than symmetric-key based algorithms. In other words, using the symmetric-key based 

algorithms for entity authentication is more efficient and can considerably lower the 

overhead cost introduced. For example, when the object size is 16 B, AES-128 Decrypt costs 

approximately 0.16% of RSAEnc-3072 Decrypt cost. When applying the same algorithm on 

objects of small sizes (16 B and 32 B), the difference in execution times is small. In addition, 

for AES-128 based algorithms, when the object size increases, the execution time of the 

algorithm also increases. 

5.9.4.2 Exp2: Costs of Entity Authentication Protocols 
The execution times of all the five protocols, and the three MIEA protocols (GP2A, GE2A, and 

SOA) against the size of credential packages (credentials established for subsequent 

authentication), are depicted in Figure 5.19 and Figure 5.20, respectively.  
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Figure 5.19: The comparisons of the execution times of all the protocols. 

From Figure 5.19, it can be seen that NSLPK costs the highest and the MIEA protocols cost 

the lowest. In addition, among the MIEA protocols, SOA takes the shortest time to execute. 

The execution times of NSLPK (the highest) and SOA (the lowest) are, respectively, 1,000 

milliseconds and 2.4 milliseconds, having a difference of 420 times. There are two reasons for 

such a large difference. The first is that NSLPK transmits the highest number of messages (i.e., 

7 messages), whereas each of the MIEA protocols transmits only 3 messages; the more the 

messages, the higher communication overhead thus the cost. The second is that NSLPK 

performs a total of 10 expensive asymmetric-key operations, whereas SOA performs a total 

of 18 inexpensive symmetric-key operations. Although the number of operations performed 

in SOA is larger than that of NSLPK, the cost of the symmetric-key operations is much lower, 

as shown in the results of Exp1.  

When comparing SOA with Kerberos, both of which are one-factor and symmetric-key 

based protocols, SOA introduces lower cost than Kerberos. This is because, in comparison 

with Kerberos, SOA markedly cut the communication cost from 5 messages to 3 messages 

(i.e., the reduction of 40%). In our testbed where a high-performance machine is used, the 

cost of a symmetric-key operation is usually a few microseconds, whereas the cost of a 

message transmission could be 50 microseconds6 or higher. Hence, reducing the number of 

messages transmitted has larger impact on cost reduction. 

 
6 The time of a message transmission is measured by using ‘ping’, a tool commonly used to check reachability of machines 
in networks.  
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Figure 5.20: The comparisons of the execution times of GP2A, GE2A, and SOA against the size of 

credential packages. 

From Figure 5.20, we can make the following observations. The execution times of the 

MIEA protocols increase as the credential package size increases. When the size of credential 

packages increases from 16 B to 512 B, the increase in the execution times is small. For 

example, when GP2A is applied, the execution times increase from 3.2 milliseconds to 4.0 

milliseconds, which is an increase of 25%. However, when the size goes beyond 1,024 B, the 

execution times sharply increase, particularly when the credential package size is 8,192 B. For 

example, GP2A takes about 12 milliseconds and 21 milliseconds to execute when the 

credential package size increases from 8,192 B to 16,384 B, respectively; the execution time 

is almost doubled. This is because the increase in the credential package size increases the 

workload of cryptographic algorithms (thus computational overhead) and the volume of data 

to be transmitted via networks (thus communication overhead). When the size of credential 

packages is smaller than 512 B, the computational cost (i.e., tenths of milliseconds) has small 

impact on the execution time of the protocols, as can be seen in the figure. However, when 

the size goes beyond 8,192 B, the impact of the increased computational and communication 

becomes more apparent; the execution times of the protocol increase proportionally to the 

size of the credential packages.  

Among the MIEA protocols, GE2A costs the highest whereas SOA costs the lowest. For 

example, when the size of credential packages is 16 B, GE2A and SOA takes about 3.3 

milliseconds and 2.7 milliseconds to execute, respectively. The difference is larger when the 

credential package size is smaller. The largest difference occurs when the size is 64 B, which 

is about 24%. This is because GP2A and GE2A use a nested encryption approach to generate 

and verify challenges and responses, i.e., the generation and the verification of an 

authenticator each require two operations; whereas only one operation is required when SOA 

is applied. In addition, when GE2A is applied, a pairwise key shared between an initiator 𝐼 and 

a respondent 𝑅 is distributed via a ticket. 𝑅 has to verify and decrypt the ticket to obtain the 

key before using the key for authentication, increasing the execution time of the protocol.  

The above experimental results indicate that GP2A, GE2A, and SOA can achieve the same 

level of protection (in terms of efforts needed to break an authentication token) as that 
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provided by NSLPK but at two-magnitude lower cost. In comparison with Kerberos, the MIEA 

protocols can provide stronger protections (with an exception that SOA uses only one factor 

for authentication) while introducing the same level of overhead cost. 

5.10 Chapter Summary 

This chapter has presented a novel approach, a multi-factor interaction based approach, to 

entity authentication for MR based CBDC-MPC and a novel entity authentication framework, 

the MIEA framework, that implements the approach. By conducting a critical analysis on the 

related work, we discover that none of the existing solutions can satisfy all the specified 

requirements as these solutions are designed for applications in different contexts. Most of 

the solutions are designed to protect against external threats, thus, the authentication is 

applied only at the gate level (i.e., before an entity is allowed to access the service); it is not 

required at the interaction level (during the course of a job execution). Some solutions are 

not efficient for this context as they make use of computationally expensive cryptographic 

operations at the object level and use many protocol messages to accomplish authentication. 

MIEA is designed to address the knowledge gap. In the design of MIEA, three main ideas have 

been used. The first idea is MIA in which critical interactions (the interactions that are used 

to establish credentials for subsequent authentication) are protected with two-factor 

authentication and non-critical interactions are protected with one-factor. This doubles the 

effort needed to break an authentication token used to protect the critical interaction. This 

idea allows us to achieve a stronger level of protection compared with the related work (e.g., 

Kerberos) that use only one factor. The second idea is DCS in which symmetric keys are 

distributed by distributed trustworthy components and the authentication between two 

components is carried out without a centralised authentication entity. Combined with the 

third idea called HKS, which constructs a key hierarchy and the keys in the higher level of the 

hierarchy are used to distribute the keys in the lower level of the hierarchy, the number of 

protocol messages needed to accomplish authentication is reduced to three. Compared with 

Kerberos and NSLPK without credential caching which require five and seven protocol 

messages, respectively, MIEA can significantly reduce the communication overhead cost in 

terms of the times needed for exchanging the protocol messages. The results of the 

performance evaluation show that the performance of MIEA is at the same level as that of 

Kerberos and is much lower than that of NSLPK (a difference of 420 times). This means that 

MIEA is as efficient as Kerberos, one of the most used entity authentication protocols. MIEA 

can provide protection to every interaction without using a centralised authentication server. 

The applicability of MIEA is not limited to MR based services, it should also be applicable to 

other distributed computing services (e.g., Apache Spark) that exhibit similar characteristics, 

e.g., multi-stage data processing. The approach to entity authentication and the design and 

evaluations of MIEA presented in this chapter is the second contribution (NC2) of this research 

work. The contribution answers the research questions (Q2) and (Q4).  

The next chapter presents in detail a novel approach, a communication pattern based 

approach, to data authentication which provides the strongest protection to data authenticity 

and non-repudiation at the finest granularity throughout the whole cycle of a job execution 

while minimising overhead costs imposed on components and the underlying system.   
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Chapter 6   

Communication Pattern based  

Data Authentication (CPDA) Framework 

6.1 Chapter Introduction 

This chapter presents a novel data authentication framework, called the Communication 

Pattern based Data Authentication (CPDA) framework, which is also part of the MDA 

framework. The CPDA framework aims to provide the strongest level of JobData authenticity 

protection (i.e., assuring data origin and integrity authentication, as well as non-repudiation 

of origin) at the finest granularity (at the object level), but with as less overhead cost as 

possible. The design of CPDA has exploited two main ideas. The first is AuthData and 

Communication Aggregation (ACA) in which the operations of AuthData generation and 

verification as well as communications transmitting the AuthData are aggregated. The 

aggregation methods are selected based on the communication patterns exhibited. The 

second idea is a Hybrid use of multiple cryptographic schemes with Segregation of Credentials 

(HYSC). Computationally less expensive mechanisms (i.e., hash functions and MACs) are used 

to protect individual objects that are transferred between untrustworthy and trustworthy 

entities whereas computationally more expensive mechanisms (digital signatures) are used 

to secure aggregated AuthData, thus, extending the protection to all data objects. Each of 

untrustworthy entities is assigned a different pairwise key for securing objects it produces, 

hence, accountability can be pinpointed to entities sharing the key. To demonstrate the 

effectiveness, the efficiency, and the scalability of the CPDA framework, the CPDA framework 

has been extensively evaluated both theoretically and experimentally. Theoretically analyses 

have been conducted by using both informal and formal methods. Experimental evaluations 

are carried out on a testbed consisting of five networked machines with a real-world dataset.  

In detail, Section 6.2 critically analyses related data authentication solutions against the 

requirements specified in Section 4.5 and discusses what is missing. Sections 6.3, 6.4, and 6.5, 

respectively, give high-level ideas, notations and design assumptions used, and low-level 

description of CPDA. Sections 6.7, 6.8, and 6.9, respectively, present security analysis, 

theoretical, and experimental performance evaluations of CPDA and the most related 

solutions. Finally, Section 6.10 concludes the chapter.  

6.2 Existing Data Authentication Solutions 

Based on targeted systems, related data authentication solutions can also be largely classified 

into two groups: non-MR specific solutions and MR specific solutions. 

6.2.1 Non-MR Specific Solutions 
Depending on the cryptographic schemes used, non-MR specific solutions can be further 

classified into three groups: secret-share based, symmetric-key based, and asymmetric-key 

based.  
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In a secret-share based solution, AuthData are generated with a secret but verified with a 

secret-share derived from the secret. A single secret is divided into 𝑁 secret-shares. Any 𝑘 or 

more (out of 𝑁) secret-shares can be used to reconstruct the secret, but 𝑘 − 1 or fewer 

secret-shares cannot. Desmedt et al. [183] proposed such a scheme for multicast services 

where one producer sends a data object to multiple consumers. In this scheme, for each 

object, the producer uses two polynomials of degree 𝑘 − 1 (known only to the producer) to 

generate AuthData and 𝑁 secret-shares. Each secret-share is distributed to a different 

consumer so that each consumer can independently verify the AuthData. Safavi-Naini and 

Wang [184][185] improved on the Desmedt’s scheme by reducing the number of polynomials 

required to authenticate multiple objects. To authenticate 𝑚 objects, the producer uses only 

𝑚 + 1 polynomials, as opposed to 2 ∗ 𝑚 polynomials as required by the Desmedt’s scheme. 

This cuts the costs in generating and storing AuthData by half. Nonetheless, the secret-share 

based solutions incur a high level of computational overhead due to the cost of computing 

polynomials of degree 𝑘 − 1, especially when 𝑘 is large.  

Symmetric-key based data authentication solutions, such as MACs, are designed to 

counter external attacks. They do not provide non-repudiation protections, making them 

vulnerable to threats, e.g., tag forgeries, imposed by authorised insiders. To address this issue, 

the idea of asymmetry is used. There are two forms of asymmetry: information asymmetry 

and time asymmetry. With an information-asymmetry based scheme [186], a producer has a 

full view of a secret (a set of secret keys) whereas each consumer has only a partial view of 

the secret (a subset of the secret keys). The entire set of the secret keys is used to generate 

AuthData (tags), whereas a subset of the secret keys is used to verify the tags. A subset of the 

secret keys is made available for each consumer and these subsets are different from each 

other. Tag forgeries are countered by limiting the number of secret keys revealed to each 

consumer. This approach incurs a high level of computational as well as storage overheads, 

as multiple tags are processed (generated and verified) and multiple secret keys are required 

for the processing of such tags.  

With a time-asymmetry based scheme, tag forgeries are countered by controlling when a 

secret key is used for generating tags and when the key is being made available for verifying 

the tags. In other words, the secret key is used to generate tags in one time period, and it is 

released for the verification of the tags in another time period. Examples of such schemes 

include Chained Stream Authentication (CSA) [187], Timed Efficient Stream Loss-tolerant 

Authentication (TESLA) [39][188][189], and µTESLA [190]. Although delaying the release of 

the keys does not introduce additional computational overhead, it increases the data 

processing time and offsets the benefit of parallel computations provided by distributed 

computing frameworks such as MR.  

To ensure data authenticity and provide non-repudiation of origin, digital signatures are 

frequently used. With a digital signature based solution, two asymmetric keys (a private key 

and a public key) are used, respectively, for generating and verifying AuthData (signatures). 

As long as the public key is certified and the private key is kept secret, it is computationally 

infeasible for another entity, rather than the owner of the private key, to forge signatures. 

However, signature operations (generation and verification) are computationally expensive, 

much more expensive than MAC operations [45]. In addition, for the same security level, the 
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lengths of asymmetric keys and signatures are usually much longer than those of symmetric 

keys and tags, respectively [191][192][193]. Therefore, using digital signatures to secure 

individual objects in Big Data applications is neither efficient nor scalable.  

A number of data authentication schemes have been proposed with an intention to 

reduce the number of signatures used. These schemes employ a signature amortisation 

technique. Such a technique builds a chain of AuthData in a way that the AuthData of one 

object are linked to those of other objects. In this way, only a subset of the objects is signed 

but the protection is provided to the whole set of the objects. Related work in this category 

has been focusing on how to construct such AuthData chains so that the dependency among 

the objects and the amount of AuthData embedded in the objects can be reduced. In the 

method proposed by Gennaro and Rohatgi [194], a chain of AuthData is constructed by 

embedding the AuthData of one object in the preceding object and the first object is signed 

with a digital signature scheme. This method is not designed for applications where data are 

sent over unreliable networks as the loss of one object would make the succeeding objects 

unverifiable. A number of schemes have been proposed to address this limitation, and these 

are Efficient Multi-chained Stream Signature (EMSS) [39], p-Random Authentication [40], the 

piggybacking scheme [40], Golle and Modadugu’s scheme [41], and Adaptive source 

Authentication protocol for multiCAST streams (A2Cast) [42]. The essence of these schemes 

is to embed the AuthData of one object in a number of other objects. In this way, the remaining 

objects will still be verifiable even if some of the objects are lost. Nonetheless, this is achieved by 

using redundancy and at the cost of increased communication and storage overheads.  

To reduce the redundancy thus the overheads, a number of schemes employing error 

correction codes are proposed. These schemes are Signature Amortization using IDA (SAIDA) 

[195][196] and Data Authentication Model based on Reed-Solomon Error-correcting Code 

(DAM-RSEC) [197]. In these schemes, the hashes of the whole set of objects and the signature 

of the aggregated hashes are encoded with an error correcting code and the resulting code is 

split and embedded in the objects. In this way, the AuthData can be reconstructed from a 

subset of the objects and the amount of AuthData carried by each object is reduced. 

All the above schemes are designed for multicast and broadcast services where there is 

only one data producer but multiple consumers. A major limitation of these schemes when 

being applied to the CBDC-MPC context is that they do not allow each of the objects to be 

independently verifiable. An exception is the scheme proposed by Wong and Lam [88]. This 

scheme allows the verification of individual objects while reducing the number of objects to 

be signed and verified. This is done by constructing a hash tree of the objects and signing only 

the hash of the root node of the tree. The verification of a particular object is done by using 

the hash of the object, the hashes along the path leading to the root node, and the signature.  

6.2.2 MR Specific Solutions 
Data authentication solutions specifically designed for MR applications can be largely 

classified into two groups, task-replication based and non-task-replication based.  

As indicated by the name, task-replication based solutions use task replication to ensure 

the correctness of JobData that are generated during a job execution, thus providing data 

integrity protection. With a task-replication based solution, each data processing task (a map 
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or reduce task) is assigned to multiple Workers and the outputs produced by these Workers 

are compared to detect inconsistencies. This approach has been used by a number of schemes 

published in literature, and these are Verification-based Integrity Assurance Framework for 

MR (VIAF) [46], Cross Cloud MapReduce (CCMR) [47], IntegrityMR [48], Verification-based 

Anti-collusive Worker Scheduling (VAWS) [49], and HAdoop Trust MANager (Hatman) [50]. 

However, the above schemes do not protect against repudiation of origin attacks. AssureMR 

[198] and CorrectMR [199] improve on this by making use of a Pedersen-Merkle-R-Tree based 

authenticated data structure and a digital signature scheme in addition to task replication. 

Task replication imposes a high level of resource requirements; it multiplies the 

computational resource required to process each task. In addition, the approach also depletes 

scalability. To lower the resource requirements, TrustMR [200], Trusted Sampling-based 

Third-party Result Verification (TS-TRV) [201], and Accountable MR [202][203] are proposed. 

These schemes replicate only a subset of the tasks, thus reducing the resource consumption. 

Nonetheless, they still introduce a high level of overhead cost and do not protect against 

repudiation of origin attacks. SecureMR [204] counters such attacks by employing task 

replication in conjunction with other measures, namely a commitment protocol, a verification 

protocol, and a digital signature scheme. However, like the earlier mentioned task-replication 

based schemes, the approach is still costly. More importantly, the task-replication based 

schemes mostly apply protections at the task level; they do not provide fine-grained, or 

object-level, protections. 

Non-task-replication based solutions make use of cryptographic primitives and security 

protocols to protect the authenticity of JobData. The most notable solution is the one 

employed by Apache Hadoop [120]. In this solution, a number of security measures are taken 

[35]. To protect data-in-transit, it uses the Simple Authentication and Security Layer (SASL) 

framework, encryption schemes (e.g., AES), and Hypertext Transfer Protocol Secure (HTTPS) 

to, respectively, protect messages transmitted over Remote Procedure Call (RPC), 

Transmission Control Protocol over Internet Protocol (TCP/IP), and HTTP. However, these 

security measures are intended for countering external attacks. They do not provide data 

authenticity protection to data-at-rest, and they are intended for an MR service deployed in 

a single domain. In [43], Zhou et al. proposed a secure data processing system for distributed 

computing services, called Declarative Secure Distributed System (DS2). As a proof of concept, 

the system is used to implement an MR service with a data authentication facility, called 

Authenticated MapReduce. In this system, each JobData object produced by a Mapper is 

signed with a data authentication scheme, i.e., HMAC-SHA1 (MAC) or RSA-1024 (digital 

signature). Their experimental results show that, with the respective use of HMAC-SHA1 and 

RSA-1024, the query completion latency of a job execution is increased by 17.4% and 78.3%, 

in comparison with the case where no data authentication measure is used. This indicates 

that, when using a MAC scheme (HMAC-SHA1), the protection level is insufficient as non-

repudiation of origin is not provided, but when applying the digital signature scheme to secure 

each individual object (in order to provide non-repudiation), a significant level of delay is 

added onto a job execution process and is highly inefficient.   
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6.2.3 What is Missing 
The data authentication solutions discussed above are critically analysed against the 

requirements with regards to data authenticity and non-repudiation of origin protections, i.e., 

(FR1), (FR4), (FR5), (SR5), (SR6), (SR7), (PR1), and (PR2), specified in Section 4.5. The 

knowledge gaps are identified and summarised in Table 6.1. From this table, we can make the 

following observations.  

• None of the existing data authentication solutions provides a full-cycle protection 

(FR1) of data authentication to MR based distributed computing in this CBDC-MPC 

context. Most of the non-MR specific solutions are either designed for 

broadcast/multicast applications or for data collection applications. In a 

broadcast/multicast application, a single producer produces and sends the same data 

object to multiple consumers. In a data collection application, there are multiple 

producers but a single consumer; the different producers produce data objects 

(typically containing different contents) but send them to the same consumer. These 

applications are different from MR based applications where a single job execution 

consists of multiple stages, each stage is characterised by a different communication 

pattern, and some pattern (i.e., the M2M pattern) involves multiple producers each 

producing different data objects for different consumers or multiple consumers each 

consumes different data objects that are produced by different producers. Existing MR 

specific solutions are mostly designed for addressing external threats. The issue of 

assuring non-repudiation of data origin in an MPC environment was not specifically 

considered in the design of these solutions.  

• As mentioned in earlier chapters, multi-stage Big Data processing in this 

environment indicates that it is important to reduce processing delays as introduced 

by security protections as much as possible (PR1), while providing the full-cycle 

protection (FR1). Digitally signing every data object to protect non-repudiation of 

origin is not desirable to satisfy requirement (PR1), particularly in cases where (i) 

there are multiple producers each producing a different data object for a different 

consumer and (ii) there are multiple consumers each consumes a different data object 

produced by a different producer. This is because in case (i) it would require each 

producer to generate a separate digital signature for a data object destined to a 

different consumer. If there is a large number of consumers, then the producers would 

be prone to becoming a performance bottleneck. Similarly, in case (ii), it would require 

each consumer to verify multiple signatures each signed by a different producer. If 

there is a large number of producers, the consumers would be prone to becoming a 

performance bottleneck.  

• Symmetric-key based solutions without applying any form of asymmetry are not 

applicable to our use case due to the lack of non-repudiation of origin protection. 

Information-asymmetry based solutions imposed a high-level of computational and 

communication overhead costs on entities and the underlying networks, 

respectively. Time-asymmetry based solutions introduce additional delays to the 

execution of a job due to the deferment of the release of verification keys. These 
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solutions are not suited to time-sensitive applications such as one addressed in this 

research project.  

• Task-replication based solutions are designed to verify the correctness of the output 

of a job under an assumption that there are sufficient redundant resources allocated 

for the job. This assumption is not compatible with the use case considered in this 

research. In this use case, a data processing job is carried out on computation 

resources shared by multiple organisations. In other words, all the available 

resources are to be shared fairly to all the collaborative organisations and the 

resources that can be allocated for the job could be limited.   

Table 6.1: Related data authentication solutions. 

 Requirements 

Approaches (FR1) (FR4) (FR5) (SR5) (SR6) (SR7) (PR1) (PR2) 

Non-MR specific         

Secret-share based [183][184]          
Symmetric-key with information-asymmetry 
based [186] 

        

Symmetric-key with time-asymmetry based 
[187][39][190] 

        

Asymmetric-key with AuthData-chain based 
[39][194][40][41][42] 

        

Asymmetric-key with error-correcting-code 
based [195][197] 

        

Asymmetric-key with hash-tree based [88]         
MR specific         

Task-replication without digital-signature 
based [46][47][48][49][50] [200][201][202] 

        

Task-replication with digital-signature based 
[198][199][204] 

        

Measures used in Apache Hadoop [35]         
DS2 [43]         

• Notes:  

• : Requirement is addressed.  

• : Requirement can be addressed with additional plug-in modules or minor modifications, or there is 
room for improvement. 

• : Requirement is not addressed. 

6.3 High-level Ideas 

In this section, we describe high-level ideas used in the design of CPDA. Two main ideas are 

used in the design of CPDA. The first is AuthData and Communication Aggregation (ACA). With 

this idea, we apply and maximise the use of aggregation to the generation and verification of 

AuthData as well as communications between components. AuthData aggregation lowers the 

computational overhead costs imposed on data processing components by reducing the 

number of objects to be signed and verified with an expensive cryptographic scheme (i.e., 

digital signature). Communication aggregation can reduce the number of communications 

(interactions) among the components, reducing network traffics thus communication 

overhead cost. Communication aggregation can be done by introducing a third-party 

aggregator (referred to as Aggregator). Depending on the communication pattern used, 

AuthData aggregation and communication aggregation can be applied separately, or in a 
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hybrid manner, to maximise the benefits they both bring. We have thus adopted a 

communication pattern based approach, i.e., we identify and classify different 

communication patterns among the data processing components during different phases of 

a job execution and apply one or both of AuthData aggregation and communication 

aggregation accordingly. 

The second idea is a Hybrid use of multiple cryptographic schemes with Segregation of 

Credentials (HYSC). As mentioned earlier, a MAC scheme is computationally more efficient 

but does not provide non-repudiation of data origin, whereas a digital signature scheme 

provides the non-repudiation protection but is computationally expensive. To provide all of 

these protections at the finest granularity but with minimal overhead, we apply the MAC 

scheme to AuthData tokens that are pairwise transmitted (between one producer and 

Aggregator) but apply the digital signature scheme to aggregated AuthData that are used by 

multiple consumers. This hybrid use of cryptographic scheme can ensure the accountability 

of producers. With regard to credential segregation, pairwise keys used by different 

producers are segregated. In other words, each producer uses a different key to generate 

AuthData. This narrows the scope of accountability to the two entities sharing a key. 

In the following, we describe, at a high level, how the two ideas described above are 

implemented. With regard to the communication pattern based AuthData aggregation, as 

there are three communication patterns, i.e., the one-to-many (O2M) pattern taking place in 

the job submission phase, the many-to-many (M2M) pattern in the map phase, and the many-

to-one (M2O) pattern in the reduce phase, three AuthData aggregation methods are 

designed, one for each pattern. The three methods are, respectively, called Tree based 

AuthData Aggregation (TreeAgg) for O2M, Hybrid AuthData Aggregation (HybridAgg) for 

M2M, and Flat AuthData Aggregation (FlatAgg) for M2O. Before describing HybridAgg, we 

explain TreeAgg and FlatAgg as these two methods are used as building blocks for the design 

of HybridAgg.  

6.3.1 TreeAgg Method 
In the O2M pattern, the producer has to generate AuthData for multiple objects. To minimize 

the cost in protecting objects, we should require the producer to perform only one signature 

signing operation, but the resulting AuthData should allow each consumer to verify the object 

assigned to it independently.  

The TreeAgg method is designed to accomplish this function. With this method, a binary 

tree containing aggregated AuthData for the whole set of 𝑁 objects is constructed. The tree 

consists of 𝑁 leaf nodes and 𝑁 − 1 internal nodes layered at multiple levels. Each leaf node 

represents the AuthData of a different object. Each internal node at the next level up in the 

hierarchy represents aggregated AuthData derived from its children (child nodes). The 

internal node at the top level is called the root node. The root node is the aggregated 

AuthData (referred to as Root-AuthData) for the entire set of the objects. The signature is 

then signed on the Root-AuthData. To minimize the amount of AuthData needed to verify 
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each individual object, we make this tree a balanced full binary tree7 [88]. An example of an 

AuthData tree for 8 objects is shown in Figure 6.1.  

 
Figure 6.1: An AuthData tree for 8 objects. 

AuthData needed for the verification of each object are object dependent, i.e., for 

different objects, their respective AuthData are different. This is because, as mentioned 

earlier, objects consumed by different consumers are typically different, and paths 

connecting each object to the root (Root-AuthData) of the tree are different. Furthermore, to 

minimise the size of each such AuthData thus minimising the computational and 

communication overheads, any redundant item in AuthData should be excluded. For these 

reasons, the AuthData associated to a particular object are constructed as the signature of 

the Root-AuthData (this token is the same for all of the objects) along with a set of object-

specific AuthData tokens (these tokens are specifically tailored for each consumer). The 

object-specific AuthData tokens are Sibling-AuthData, i.e., the sibling nodes along the path 

from the leaf node (associated to the object) to the root node. The Sibling-AuthData for an 

object are illustrated in Figure 6.2. From the figure, we can see that the Sibling-AuthData for 

𝑑3 consist of three tokens: the AuthData of 𝑑4, the AuthData of 𝑑1 to 𝑑2, and the AuthData 

of 𝑑5 to 𝑑8. Comparing with using all the leaf nodes to reconstruct the whole tree (thus the 

other seven nodes have to be transmitted along with the signature of Root-AuthData), our 

approach yields a reduction of 50% in communication overhead in terms of the number of 

tokens transmitted8.  

 
7 A balanced full binary tree is a tree in which every internal node has exactly two child nodes and the left and the right 
subtrees of every node differ in height by no more than one. The height of such a tree for 𝑁 objects is ⌈log 𝑁⌉. 
8 The tree-reconstruction approach requires 8 tokens (1 signature of the Root-AuthData and 7 Sibling-AuthData tokens) to 
be transmitted whereas our approach requires only 4 tokens (1 signature of the Root-AuthData and 3 Sibling-AuthData 
tokens) to be transmitted, thus the reduction of 4/8 = 50%. 
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Figure 6.2: The Sibling-AuthData for 𝒅𝟑 in an AuthData tree for 8 objects. 

Figure 6.3 contrasts the process and AuthData tokens sent by a producer to 𝑄 consumers 

with and without applying the TreeAgg method. As shown in the figure, when TreeAgg is not 

applied, the producer would need to sign the AuthData for each of the 𝑄 objects, respectively, 

before dispatching them to the consumers. This means that the producer needs to perform 

𝑄 signature signing operations. In contrast, when TreeAgg is applied, the producer only needs 

to perform one AuthData aggregation operation and one signing operation. 

 
(a) 
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(b) 

Figure 6.3: AuthData transmitted among components in the O2M pattern. 

(a) Without the use of the TreeAgg method. (b) With the use of the TreeAgg method. 

6.3.2 FlatAgg Method 
In the M2O pattern, the consumer has to verify multiple objects. To minimize computational 

overhead incurred in verifying the objects, we should require the consumer to perform only 

one signature verification operation. To achieve this, we have introduced an idea of a third-

party based aggregation method. The third party, called Aggregator, off-loads computational 

overhead away from the consumer as much as possible. It obtains and verifies AuthData 

generated and signed (with a MAC scheme) by different producers, then generates 

aggregated AuthData and signs (with a digital signature scheme) the aggregated AuthData 

before dispatching both the aggregated AuthData and the signature to the consumer. The 

size of the AuthData has also been reduced as much as possible to minimise bandwidth 

consumptions.  

These measures have been captured in the FlatAgg method. Figure 6.4 illustrates the 

AuthData exchanged among the producers and the consumer with and without the use of the 

FlatAgg method.  

 
(a) 
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(b) 

Figure 6.4: AuthData transmitted among components in the M2O pattern.  

(a) Without the use of the FlatAgg method. (b) With the use of the FlatAgg method. 

6.3.3 HybridAgg Method 
The M2M pattern can be viewed as the integration of the O2M and M2O patterns. Without 

any additional measures, each producer will need to sign 𝑄 objects, and each consumer will 

need to verify 𝑃 objects. Furthermore, as there are AuthData to be transmitted between each 

pair of producer and consumer, there are up to 𝑃 ∗ 𝑄 interactions taking place in this job 

execution phase, introducing a high-level of communication overhead cost. As mentioned 

earlier, to minimise the computational overhead cost, each producer should only perform 

one MAC signing operation, and each consumer should only perform one signature 

verification operation. To accomplish this, we apply two levels of AuthData aggregation, i.e., 

the intra-producer level aggregation and the inter-producer level aggregation. The intra-

producer level aggregation is performed by each producer by using the TreeAgg method to 

aggregate the AuthData for the objects it produces, but only signing the Root-AuthData with 

a MAC scheme. The inter-producer level aggregation is performed by the Aggregator; as 

described in the FlatAgg method, it verifies and aggregates AuthData generated by different 

producers, and then signs the aggregated AuthData using a digital signature scheme. By 

introducing Aggregator, we can also apply communication aggregation. Each of the producers 

only sends AuthData it generates to Aggregator. Aggregator then dispatches the AuthData to 

each of the consumers. This cuts the number of interactions to only 𝑃 + 𝑄.  

This idea has been implemented in the HybridAgg method. Figure 6.5 shows the flows of 

AuthData exchanged among components with and without the use of the HybridAgg method.  
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(a) 

 
(b) 

Figure 6.5: AuthData exchanged among components in the M2M pattern.  

(a) Without the use of the HybridAgg method. (b) With the use of the HybridAgg method. 

The second idea, i.e., a hybrid use of MAC and digital signature schemes in conjunction 

with the segregation of credentials, is implemented in the FlatAgg and HybridAgg methods. 

As explained in these methods, a MAC scheme is used to protect AuthData transferred 

between each producer and Aggregator and a digital signature scheme is used to protect 

aggregated AuthData dispatched by the Aggregator to consumers. For pairwise transmitted 
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AuthData, MAC can provide a sufficient level of protection. This is because the key used 

between a producer and the Aggregator is a pairwise key, the AuthData from each producer 

will be further aggregated and digitally signed by the Aggregator, and the Aggregator is 

trustworthy. If any fraudulent AuthData token is detected, its origin can be traced via the 

verification of the signature signed by the Aggregator and the verification of the tag signed 

(using a pairwise key) by the originator of the AuthData. The use of different pairwise keys 

captures the segregation of credentials.  

6.4 Design Assumptions and Notations 

In the design of the CPDA framework, we use the following design assumptions and notations.  

6.4.1 Design Assumptions 
The following assumptions are used in the design of CPDA.  

(DAS1) Users are already authenticated prior to accessing the MR service.  

(DAS2) The MR components allocated to a particular JobDomain are already authenticated 

prior to executing the job.  

(DAS3) All the cryptographic keys that are used in data authentication are established when 

the MR components are authenticated; the public keys are certified and known to 

their respective users. 

6.4.2 Notations 
In addition to the notations listed in Table 5.2, additional notations used in the description of 

CPDA are shown in Table 6.2.  

Table 6.2: Notations used in the description of CPDA. 

Symbols Meanings 

𝑃, 𝑄 The numbers of producers, consumers 

𝑘𝑥,𝑦 A pairwise key shared between 𝑥 and 𝑦. 

𝑠𝑘𝑥  A private key of 𝑥. 

𝑝𝑘𝑥 A public key of 𝑥. 

𝑑𝑥,𝑦 A data object produced by 𝑥 and consumed by 𝑦. 

ℎ𝑥,𝑦 The hash of 𝑑𝑥,𝑦. 

𝑟ℎ𝑥  A root hash of a hash tree constructed by 𝑥. 

𝑐ℎ𝑥  A concatenated hash generated by 𝑥. 

𝜏𝑜 A tag of an object 𝑜. 

𝜎𝑜 A signature of an object 𝑜. 

𝑠𝑎𝑥,𝑦 The Sibling-AuthData token for 𝑑𝑥,𝑦. 

𝑆𝐴𝑥 A set of Sibling-AuthData tokens  {𝑠𝑎𝑥,1, 𝑠𝑎𝑥,2, … , 𝑠𝑎𝑥,𝐶} for the objects generated 

by 𝑥. 

6.5 CPDA in Detail 

This section describes our novel data authentication solution, the CPDA framework. It gives 

an overview, and then the detailed description, of the framework. In the last subsection, it 

shows how the methods and protocols of the framework are collectively used to protect 

JobData throughout the whole cycle of a job execution. The algorithms implementing the 

methods used in the framework are formally described in Appendix C. 
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6.5.1 An Overview of the CPDA Architecture 
As explained in Section 4.3.3, an MR job execution comprises three phases and each phase is 

characterised by a different communication pattern. Hence, the CPDA architecture consists 

of three modularised functional blocks, one for each job execution phase. These functional 

blocks are, respectively, the O2M block for the job submission phase, the M2M block for the 

map phase, and the M2O block for the reduce phase. An overview of the CPDA architecture 

is depicted in Figure 6.6.  

 
Figure 6.6: An overview of the CPDA architecture.  

As shown in the figure, each functional block consists of two AuthData generation 

algorithms (with the exception of the O2M block which has only one algorithm), one AuthData 

verification algorithm, and one AuthData delivery protocol. The AuthData generation 

algorithms are used to generate AuthData for JobData objects. They each utilise one of the 

three AuthData aggregation methods explained in Section 6.3. The AuthData verification 

algorithms are used to verify the authenticity of objects with the generated AuthData. The 

AuthData delivery protocols are used to deliver the AuthData from producers to Aggregator 

and from Aggregator to consumers. The delivery of AuthData is decoupled from the built-in 

JobData delivery mechanisms so that CPDA is not tightly bound to a specific MR 

implementation. In this way, it can be applied as an add-on and the modifications made to 

the underlying MR service are minimal.  

Before describing the three functional blocks in detail, we first explain two AuthData 

aggregation algorithms (collectively implementing the three AuthData aggregation methods) 

and generic protocol message structure. 



149 

6.5.2 AuthData Aggregation Algorithms 
The TreeAgg, FlatAgg, and HybridAgg methods can be realised by two AuthData aggregation 

algorithms, namely Hash-Tree based AuthData-Aggregation (HT-AuthData-Aggregation) and 

Hash-Concatenation based AuthData-Aggregation (HC-AuthData-Aggregation). TreeAgg is 

implemented by HT-AuthData-Aggregation, FlatAgg by HC-AuthData-Aggregation, and 

HybridAgg by both algorithms. 

6.5.2.1 HT-AuthData-Aggregation Algorithm 
The HT-AuthData-Aggregation algorithm uses a balanced full binary hash tree to aggregate 

AuthData for a set of 𝑄 objects produced by a producer 𝑥. It takes the hashes 

ℎ𝑥,1, ℎ𝑥,2, … , ℎ𝑥,𝑄 of the objects as input and returns a root hash 𝑟ℎ𝑥 and a set of Sibling-

AuthData tokens 𝑆𝐴𝑥 = {𝑠𝑎𝑥,1, 𝑠𝑎𝑥,2, … , 𝑠𝑎𝑥,𝑄}  as output. The algorithm constructs a hash 

tree ℎ𝑡 by invoking the HT-Construction algorithm with the hashes and assigns the root hash 

to 𝑟ℎ𝑥. Then, it iteratively invokes the SA-Extraction algorithm with each of ℎ𝑥,1, ℎ𝑥,2, … , ℎ𝑥,𝑄 

and appends the result to 𝑆𝐴𝑥. Lastly, it returns 𝑟ℎ𝑥 and 𝑆𝐴𝑥 as output. The algorithm is 

detailed in Algorithm 6.1.1 (given in the Appendix C). 

6.5.2.2 HC-AuthData-Aggregation Algorithm 
The HC-AuthData-Aggregation algorithm is used by Aggregator 𝛼 to generate aggregated 

AuthData for a set of 𝑃 objects. These objects are consumed by a consumer 𝑦. It takes the 

hashes ℎ1,𝑦, ℎ2,𝑦, … , ℎ𝑃,𝑦 of the objects as input and returns a concatenated hash 𝑐ℎ𝛼 as 

output. This is done by concatenating all of the hashes and returning the resulting 

concatenated hash 𝑐ℎ𝛼  as output. The algorithm is detailed in Algorithm 6.1.2. 

6.5.3 Protocol Message Structure and Format 
The three AuthData-Delivery protocols, respectively, used in each of the job execution phases 

share a common transaction flow and message structure. For each AuthData delivery 

transaction, there are two protocol messages, namely an AuthData Delivery (ADD) message 

and an Acknowledgement (ACK) message. The ADD message is sent from an initiator to a 

respondent to transmit AuthData. The ACK message is conversely sent from the respondent 

back to the initiator to confirm the receipt of the ADD message. The exchange of these 

messages is depicted in Figure 6.7. 

 
Figure 6.7: A generic message transaction flow used in the AuthData-Delivery protocols of CPDA. 

The structure of ADD messages and ACK messages is the same as those used in the entity 

authentication protocols of MIEA, as shown in Figure 5.7. It consists of a header and a payload. 

The descriptions of the fields contained in the header are summarised in Table 5.6. Unlike the 

messages used in MIEA, ADD and ACK messages use different PRO and MTYPE values, which 

are summarised in Table 6.3.  
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Table 6.3: Values for PRO and MTYPE of ADD and ACK messages. 

Field 
Numerical 

Value 
Notation Description 

Protocol  
(PRO) 

4 𝐼𝑆𝐴𝐷 ISAuthData-Delivery protocol 

5 𝑃𝑆𝐴𝐷 PSAuthData-Delivery protocol 

6 𝐹𝑅𝐴𝐷 FRAuthData-Delivery protocol 

Message Type  
(MTYPE) 

5 𝐴𝐷𝐷1 
ADD message sent from a producer to Aggregator 
(JobManager) 

6 𝐴𝐷𝐷2 ADD message sent from Aggregator to a consumer 

7 𝐴𝐶𝐾 
ACK message acknowledging the preceding ADD 
message. 

The payloads of different ADD messages have variable lengths. These will be further 

explained later on in each of the three functional blocks. For each ACK message, on the other 

hand, the payload contains only one item, i.e., the MID of the preceding ADD message, and 

has a fixed length. In other words, ACK messages of different protocols have the same format. 

Assuming that 𝑝𝑟𝑜 is the current protocol used; 𝑚𝑖𝑑1 and 𝑚𝑖𝑑2 are, respectively, the MIDs 

of the preceding ADD message and this ACK message; 𝑦 and 𝑥 are, respectively, the sender (a 

respondent) and the receiver (an initiator), the ACK message msg-ACK can be expressed as 

msg-ACK: {𝑝𝑟𝑜, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑦, 𝑑𝑖𝑑𝑦, 𝑖𝑑𝑥, 𝑑𝑖𝑑𝑥, 𝑚𝑖𝑑1}. 

6.5.4 O2M Functional Block 
The O2M functional block consists of the InputSplit AuthData-Generation (ISAuthData-

Generation) algorithm, the InputSplit AuthData-Verification (ISAuthData-Verification) 

algorithm, and the InputSplit AuthData-Delivery (ISAuthData-Delivery) protocol. The 

ISAuthData-Generation algorithm is used by ClientApp to generate AuthData for 𝑀 

InputSplits. These AuthData are referred to as ISAuthData. The ISAuthData-Verification 

algorithm is used by each of the 𝑀 Mappers for the verification of an InputSplit assigned to 

the Mapper. The ISAuthData-Delivery protocol is used to deliver the AuthData from ClientApp 

to JobManager and from JobManager to each of the Mappers. A high-level view of the O2M 

functional block is shown in Figure 6.8.  

 
Figure 6.8: The components involved, and the algorithms and the protocol used, in the O2M 

functional block. 

6.5.4.1 ISAuthData-Generation Algorithm 
The ISAuthData-Generation algorithm uses the HT-AuthData-Aggregation algorithm 

(implementing TreeAgg) and a digital signature scheme to, respectively, generate and sign 

ISAuthData. It takes InputSplits 𝑑𝑐,𝑚1
, 𝑑𝑐,𝑚2

, … , 𝑑𝑐,𝑚𝑀
 (submitted by ClientApp 𝑐) and the 

private key 𝑠𝑘𝑐 as input and generates a signature 𝜎𝑟ℎ𝑐
 (of a root hash 𝑟ℎ𝑐) and a set of 

Sibling-AuthData tokens 𝑆𝐴𝑐 = {𝑠𝑎𝑐,𝑚1
, 𝑠𝑎𝑐,𝑚2

, … , 𝑠𝑎𝑐,𝑚𝑀
} as output. Firstly, it iteratively 
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invokes the hash generation algorithm with each of the InputSplits to generate the hashes of 

the InputSplits and invokes the HT-AuthData-Aggregation algorithm with the hashes to obtain 

𝑟ℎ𝑐 and 𝑆𝐴𝑐. It then invokes the SIG-Signing algorithm with 𝑠𝑘𝑐 and 𝑟ℎ𝑐 to generate 𝜎𝑟ℎ𝑐
. 

Lastly, it returns 𝜎𝑟ℎ𝑐
 and 𝑆𝐴𝑐 as output. The algorithm is detailed in Algorithm 6.2.1. 

6.5.4.2 ISAuthData-Verification Algorithm 
The ISAuthData-Verification algorithm verifies the authenticity of an InputSplit with 

ISAuthData (i.e., the signature of the root hash and the corresponding Sibling-AuthData 

token). It takes an InputSplit 𝑑𝑐,𝑚𝑎
 (submitted by ClientApp 𝑐 and assigned to Mapper 𝑚𝑎), 

the signature 𝜎𝑟ℎ𝑐
 (of the root hash 𝑟ℎ𝑐), the Sibling-AuthData token 𝑠𝑎𝑐,𝑚𝑎

, and the public 

key 𝑝𝑘𝑐 as input and returns the verification result 𝑠𝑣 as output. Firstly, it invokes the hash 

generation algorithm with 𝑑𝑐,𝑚𝑎
 to generate the hash ℎ′𝑐,𝑚𝑎

 of the InputSplit and invokes the 

RA-Recovery algorithm with ℎ′𝑐,𝑚𝑎
 and 𝑠𝑎𝑐,𝑚𝑎

 to obtain 𝑟ℎ′𝑐. It then invokes the SIG-

Verification algorithm with 𝑝𝑘𝑐, 𝑟ℎ′𝑐, and 𝜎𝑟ℎ𝑐
 and returns the verification result 𝑠𝑣 as output. 

The algorithm is detailed in Algorithm 6.2.2. 

6.5.4.3 ISAuthData-Delivery Protocol 
As described earlier in Section 6.5.3, two messages, i.e., an ADD message and an ACK 

message, are used in each AuthData delivery transaction. For the delivery of the signature 

𝜎𝑟ℎ𝑐
 and a set of Sibling-AuthData tokens 𝑠𝑎𝑐,𝑚1

, … , 𝑠𝑎𝑐,𝑚𝑀
 from ClientApp  𝑐 to JobManager 

𝑗𝑚, the ISAuthData-Delivery protocol uses two messages, msg-ISADD1 and msg-ISACK1. 

These two messages are, respectively, expressed as: msg-ISADD1: {𝐼𝑆𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷1,

𝑆(𝜎𝑟ℎ𝑐
) + 𝑆({𝑠𝑎𝑐,𝑚1

, … , 𝑠𝑎𝑐,𝑚𝑀
}), 𝑖𝑑𝑐, 𝑑𝑖𝑑𝑐, 𝑖𝑑𝑗𝑚 , 𝑑𝑖𝑑𝑗𝑚, 𝜎𝑟ℎ𝑐

,   𝑠𝑎𝑐,𝑚1
, … , 𝑠𝑎𝑐,𝑚𝑀

} and 

msg-ISACK1: {𝐼𝑆𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑐, 𝑑𝑖𝑑𝑐, 𝑚𝑖𝑑1}. 

For the delivery of the signature 𝜎𝑟ℎ𝑐
 and the respective Sibling-AuthData token 𝑠𝑎𝑐,𝑚𝑎

 

from JobManager 𝑗𝑚 to each Mapper 𝑚𝑎, the ISAuthData-Delivery protocol also uses two 

messages, msg-ISADD2 and msg-ISACK2. These two messages are, respectively, expressed as: 

msg-ISADD2: {𝐼𝑆𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷2, 𝑆(𝜎𝑟ℎ𝑐
) + 𝑆(𝑠𝑎𝑐,𝑚𝑎

), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑚𝑖
, 𝑑𝑖𝑑𝑚𝑖

, 𝜎𝑟ℎ𝑐
,

𝑠𝑎𝑐,𝑚𝑎
} and msg-ISACK2: {𝐼𝑆𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷),   𝑖𝑑𝑚𝑎

, 𝑑𝑖𝑑𝑚𝑎
 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑚𝑖𝑑1}. 

6.5.5 M2M Functional Block 
The M2M functional block consists of the Producer-Generated PartitionSegment AuthData-

Generation (PGen-PSAuthData-Generation) algorithm, the Aggregator-Generated 

PartitionSegment AuthData-Generation (AGen-PSAuthData-Generation) algorithm, the 

PartitionSegment AuthData-Verification (PSAuthData-Verification) algorithm, and the 

PartitionSegment AuthData-Delivery (PSAuthData-Delivery) protocol. The PGen-PSAuthData-

Generation algorithm is used by each of the 𝑀 Mappers to generate AuthData for a set of 𝐸 

PartitionSegments that are produced by the Mapper. These AuthData are referred to as PGen-

PSAuthData. The AGen-PSAuthData-Generation algorithm is used by JobManager to generate 

aggregated AuthData for the PartitionSegments produced by all the Mappers. These 

AuthData are referred to as AGen-PSAuthData. The PSAuthData-Verification algorithm is used 

by each of the 𝐸 Reducers to verify a set of 𝑀 PartitionSegments that are assigned to the 

Reducer. The PSAuthData-Delivery protocol is used to deliver PGen-PSAuthData from each 
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Mapper to JobManager and to deliver PGen-PSAuthData and AGen-PSAuthData from 

JobManager to each Reducer. A high-level view of the M2M functional block is shown in 

Figure 6.9. 

 
Figure 6.9: The components involved, and the algorithms and the protocol used, in the M2M 

functional block. 

6.5.5.1 PGen-PSAuthData-Generation Algorithm 
The PGen-PSAuthData-Generation algorithm uses the HT-AuthData-Aggregation algorithm 

(which implements the intra-producer level AuthData aggregation of HybridAgg) and a MAC 

scheme to, respectively, generate and sign PGen-PSAuthData. It takes the PartitionSegments 

𝑑𝑚𝑎,𝑟1
, 𝑑𝑚𝑎,𝑟2

, … , 𝑑𝑚𝑎,𝑟𝐸
 (produced by a Mapper 𝑚𝑎) and the pairwise key 𝑘𝑚𝑎,𝑗𝑚 as input 

and generates a root hash 𝑟ℎ𝑚𝑎
, a tag 𝜏𝑟ℎ𝑚𝑎

 (of the root hash), and a set of Sibling-AuthData 

tokens 𝑆𝐴𝑚𝑎
= {𝑠𝑎𝑚𝑎,𝑟1

, 𝑠𝑎𝑚𝑎,𝑟2
, … , 𝑠𝑎𝑚𝑎,𝑟𝐸

} as output. Firstly, it iteratively invokes the hash 

generation algorithm with each of the PartitionSegments to generate the hashes of the 

PartitionSegments and invokes the HT-AuthData-Aggregation algorithm with the hashes to 

obtain 𝑟ℎ𝑚𝑎
 and 𝑆𝐴𝑚𝑎

. It then invokes the MAC-Signing algorithm with 𝑘𝑚𝑎,𝑗𝑚 and 𝑟ℎ𝑚𝑎
 to 

generate 𝜏𝑟ℎ𝑚𝑎
. Lastly, it returns 𝑟ℎ𝑚𝑎

, 𝜏𝑟ℎ𝑚𝑎
, and 𝑆𝐴𝑚𝑎

 as output. The algorithm is detailed 

in Algorithm 6.3.1. 

6.5.5.2 AGen-PSAuthData-Generation Algorithm 
The AGen-PSAuthData-Generation algorithm (used by JobManager) verifies PGen-

PSAuthData generated by different producers and uses the HC-AuthData-Aggregation 

algorithm (which implements the inter-producer level AuthData aggregation of HybridAgg) 

and a digital signature scheme to, respectively, generate and sign AGen-PSAuthData. It takes 

the root hashes 𝑟ℎ𝑚1
, 𝑟ℎ𝑚2

, … , 𝑟ℎ𝑚𝑀
 (generated by different Mappers), the tags 

𝜏𝑟ℎ𝑚1
, 𝜏𝑟ℎ𝑚2

, … , 𝜏𝑟ℎ𝑚𝑀
 (of the root hashes), the pairwise keys 𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, … , 𝑘𝑚𝑀,𝑗𝑚, and 

the private key 𝑠𝑘𝑗𝑚 as input and generates a concatenated hash 𝑐ℎ𝑗𝑚 and the signature 

𝜎𝑐ℎ𝑗𝑚
 (of the concatenated hash) as output. Firstly, it iteratively invokes the MAC-Verify 

algorithm with each set of 𝑘𝑚𝑎,𝑗𝑚, 𝑟ℎ𝑚𝑎
, and 𝜏𝑟ℎ𝑚𝑎

 to verify the authenticity of 𝑟ℎ𝑚𝑎
, where 

1 ≤ 𝑎 ≤ 𝑀. If all of the root hashes are authentic, then it invokes the HC-AuthData-

Aggregation algorithm with the root hashes to generate 𝑐ℎ𝑗𝑚. Subsequently, it invokes the 

SIG-Signing algorithm with 𝑠𝑘𝑗𝑚 and 𝑐ℎ𝑗𝑚 to generate 𝜎𝑐ℎ𝑗𝑚
. It returns 𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚

 as 

output. The algorithm is detailed in Algorithm 6.3.2. 
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6.5.5.3 PSAuthData-Verification Algorithm 
The verification process consists of two phases. In the first phase, the authenticity of the 

concatenated hash 𝑐ℎ𝑗𝑚  is verified against the signature 𝜎𝑐ℎ𝑗𝑚
. If the verification result is 

positive, then the process continues to the second phase. In the second phase, each 

PartitionSegment is verified against the respective Sibling-AuthData token and the respective 

root hash contained in 𝑐ℎ𝑗𝑚. The PSAuthData-Verification algorithm takes the 

PartitionSegments 𝑑𝑚1,𝑟𝑏
, 𝑑𝑚2,𝑟𝑏

, … , 𝑑𝑚𝑀,𝑟𝑏
 (assigned to a Reducer 𝑟𝑏), a set of Sibling-

AuthData tokens {𝑠𝑎𝑚1,𝑟𝑏
, 𝑠𝑎𝑚2,𝑟𝑏

, … , 𝑠𝑎𝑚𝑀,𝑟𝑏
}, the concatenated hash 𝑐ℎ𝑗𝑚, the signature 

𝜎𝑐ℎ𝑗𝑚
 (of the concatenated hash), and the public key 𝑝𝑘𝑗𝑚 (of JobManager) as input and 

returns the verification result as output. It invokes the SIG-Verification algorithm with 𝑝𝑘𝑗𝑚, 

𝑐ℎ𝑗𝑚, and 𝜎𝑐ℎ𝑗𝑚
 to verify the authenticity of 𝑐ℎ𝑗𝑚. If the result is negative, return negative; 

otherwise, proceed to the next step. It iteratively invokes the hash generation algorithm with 

each of the PartitionSegments to generate the hashes of the PartitionSegments and invokes 

the RA-Recovery algorithm with each of the hashes and the respective SiblingAuthData token 

to generate root hashes 𝑟ℎ′
𝑚1

, 𝑟ℎ′
𝑚2

, … , 𝑟ℎ′
𝑚𝑀

. It compares each 𝑟ℎ𝑚𝑎
′  with 𝑟ℎ𝑚𝑎

 

(extracted from 𝑐ℎ𝑗𝑚) and returns the comparison result. The algorithm is detailed in 

Algorithm 6.3.3. 

6.5.5.4 PSAuthData-Delivery Protocol 
The PSAuthData-Delivery protocol also uses two messages, i.e., an ADD message and an ACK 

message, to, respectively, deliver AuthData and acknowledge the receipt of the AuthData. For 

the delivery of a root hash 𝑟ℎ𝑚𝑎
, a tag 𝜏𝑟ℎ𝑚𝑎

, and a set of Sibling-AuthData tokens 

{𝑠𝑎𝑚𝑎,𝑟1
, … , 𝑠𝑎𝑚𝑎,𝑟𝐸

} from each Mapper  𝑚𝑎 to JobManager 𝑗𝑚, the PSAuthData-Delivery 

protocol uses to messages, msg-PSADD1 and msg-PSACK1. These two messages are, 

respectively, expressed as: msg-PSADD1: {𝑃𝑆𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷1, 𝑆(𝑟ℎ𝑚𝑎
) + 𝑆(𝜏𝑟ℎ𝑚𝑎

) +

𝑆({𝑠𝑎𝑚𝑎,𝑟1
, … , 𝑠𝑎𝑚𝑎,𝑟𝐸

}), 𝑖𝑑𝑚𝑎
, 𝑑𝑖𝑑𝑚𝑎

, 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑟ℎ𝑚𝑎
, 𝜏𝑟ℎ𝑚𝑎

, 𝑠𝑎𝑚𝑎,𝑟1
, … , 𝑠𝑎𝑚𝑎,𝑟𝐸

} and 

msg-PSACK1: {𝑃𝑆𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑚𝑎
, 𝑑𝑖𝑑𝑚𝑎

, 𝑚𝑖𝑑1}. 

For the delivery of the concatenated hash 𝑐ℎ𝑗𝑚, the signature 𝜎𝑐ℎ𝑗𝑚
 and a respective set 

of Sibling-AuthData tokens {𝑠𝑎𝑚1,𝑟𝑏
, … , 𝑠𝑎𝑚𝑀,𝑟𝑏

} from JobManager 𝑗𝑚 to each Reducer 𝑟𝑏, 

the PSAuthData-Delivery protocol uses two messages, msg-PSADD2 and msg-PSACK2. These 

two messages are, respectively, expressed as: msg-PSADD2: {𝑃𝑆𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷2,

𝑆(𝑐ℎ𝑗𝑚) + 𝑆(𝜎𝑐ℎ𝑗𝑚
) + 𝑆({𝑠𝑎𝑚1,𝑟𝑏

, … , 𝑠𝑎𝑚𝑀,𝑟𝑏
}), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑟𝑏

, 𝑑𝑖𝑑𝑟𝑏
, 𝑐ℎ𝑗𝑚 , 𝜎𝑐ℎ𝑗𝑚

,

𝑠𝑎𝑚1,𝑟𝑏
, … , 𝑠𝑎𝑚𝑀,𝑟𝑏

} and msg-PSACK2: {𝑃𝑆𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑟𝑏
, 𝑑𝑖𝑑𝑟𝑏

, 𝑖𝑑𝑗𝑚,

𝑑𝑖𝑑𝑗𝑚, 𝑚𝑖𝑑1}. 

6.5.6 M2O Functional Block 
The M2O functional block consists of the Producer-Generated FinalResult AuthData-

Generation (PGen-FRAuthData-Generation) algorithm, the Aggregator-Generated FinalResult 

AuthData-Generation (AGen-FRAuthData-Generation) algorithm, the FinalResult AuthData-

Verification (FRAuthData-Verification) algorithm, and the FinalResult AuthData-Delivery 

(FRAuthData-Delivery) protocol. The PGen-FRAuthData-Generation algorithm is used by each 

of the 𝐸 Reducers to generate AuthData for the FinalResult produced by the Reducer. These 
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AuthData are referred to as PGen-FRAuthData. The AGen-FRAuthData-Generation algorithm 

is used by JobManager to generate aggregated AuthData for FinalResults produced by all the 

Reducers. These AuthData are referred to as AGen-FRAuthData. The FRAuthData-Verification 

algorithm is used by ClientApp for the verification of the entire set of the 𝐸 FinalResults. The 

FRAuthData-Delivery protocol is used to deliver PGen-FRAuthData from each Reducer to 

JobManager and to deliver AGen-FRAuthData from JobManager to ClientApp. A high-level 

view of the M2O functional block is shown in Figure 6.10.  

 
Figure 6.10: The components involved, and the algorithms and the protocol, used in the M2O 

functional block. 

6.5.6.1 PGen-FRAuthData-Generation Algorithm 
The PGen-FRAuthData-Generation algorithm uses a hash function and a MAC scheme to, 

respectively, generate and sign AuthData for a FinalResult produced by a Reducer. It takes a 

FinalResult 𝑑𝑟𝑏,𝑐 (produced by a Reducer 𝑟𝑏) and the pairwise key 𝑘𝑟𝑏,𝑗𝑚 as input and 

generates the hash ℎ𝑟𝑏,𝑐 (of the FinalResult) and the tag 𝜏ℎ𝑟𝑏,𝑐
 (of the hash) as output. Firstly, 

it invokes the hash generation algorithm with 𝑑𝑟𝑏,𝑐 to obtain ℎ𝑟𝑏,𝑐. It then invokes the MAC-

Signing function with 𝑘𝑟𝑏,𝑗𝑚 and ℎ𝑟𝑏,𝑐 to obtain 𝜏ℎ𝑟𝑏,𝑐
. Lastly, it returns ℎ𝑟𝑏,𝑐 and 𝜏ℎ𝑟𝑏,𝑐

 as 

output. The algorithm is detailed in Algorithm 6.4.1. 

6.5.6.2 AGen-FRAuthData-Generation Algorithm 
The AGen-FRAuthData-Generation algorithm verifies PGen-FRAuthData generated by 

different Reducers and uses the HC-AuthData-Aggregation algorithm (which implements 

FlatAgg) and a digital signature scheme to, respectively, generate and sign AGen-FRAuthData. 

It takes the hashes ℎ𝑟1,𝑐 , ℎ𝑟2,𝑐, … , ℎ𝑟𝐸,𝑐 (of the FinalResults produced by all the Reducers), the 

tags 𝜏ℎ𝑟1,𝑐
, 𝜏ℎ𝑟2,𝑐

, … , 𝜏ℎ𝑟𝐸,𝑐
 (of the hashes), the pairwise keys 𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, … , 𝑘𝑟𝐸,𝑗𝑚, and the 

private key 𝑠𝑘𝑗𝑚 as input and generates a concatenated hash 𝑐ℎ𝑗𝑚 and the signature 𝜎𝑐ℎ𝑗𝑚
 

(of the concatenated hash) as output. Firstly, it iteratively invokes the MAC-Verify algorithm 

with each set of 𝑘𝑟𝑏,𝑗𝑚, ℎ𝑟𝑏,𝑐, and 𝜏ℎ𝑟𝑏,𝑐
 to verify the authenticity of ℎ𝑟𝑏,𝑐, where 1 ≤ 𝑏 ≤ 𝐸. 

If all hashes are authentic, then it invokes the HC-AuthData-Aggregation algorithm with the 

hashes to generate 𝑐ℎ𝑗𝑚. Subsequently, it invokes the SIG-Signing algorithm with 𝑠𝑘𝑗𝑚 and 

𝑐ℎ𝑗𝑚 to generate 𝜎𝑐ℎ𝑗𝑚
. It returns 𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚

 as output. The algorithm is detailed in 

Algorithm 6.4.2. 
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6.5.6.3 FRAuthData-Verification Algorithm 
Similar to PSAuthData-Verification, the verification process here also consists of two phases. 

In the first phase, the authenticity of the concatenated hash is verified, and, in the second 

phase, the hashes of the FinalResults are compared against the hashes contained in the 

concatenated hash. The FRAuthData-Verification algorithm takes the FinalResults 

𝑑𝑟1,𝑐, 𝑑𝑟2,𝑐, … , 𝑑𝑟𝐸,𝑐 (consumed by ClientApp 𝑐), the concatenated hash 𝑐ℎ𝑗𝑚, the signature 

𝜎𝑐ℎ𝑗𝑚
 (of the concatenated hash), and the public key 𝑝𝑘𝑗𝑚 as input and returns the 

verification result as output. Firstly, it invokes the SIG-Verification function with 𝑝𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚, 

and 𝜎𝑐ℎ𝑗𝑚
 to verify the authenticity of 𝑐ℎ𝑗𝑚. If the result is negative, return negative; 

otherwise, proceed to the next step. It iteratively invokes the hash generation algorithm with 

each of 𝑑𝑟1,𝑐, 𝑑𝑟2,𝑐, … , 𝑑𝑟𝐸,𝑐 to generate the hashes ℎ′𝑟1,𝑐, ℎ′𝑟2,𝑐, … , ℎ′𝑟𝐸,𝑐. It compares each 

ℎ𝑟𝑏,𝑐
′  with the respective ℎ𝑟𝑏,𝑐 extracted from 𝑐ℎ𝑗𝑚. It returns the comparison result as output. 

The algorithm is detailed in Algorithm 6.4.3. 

6.5.6.4 FRAuthData-Delivery Protocol 
Like the two AuthData-Delivery protocols explained earlier, the FRAuthData-Delivery protocol 

uses two messages, i.e., an ADD message and an ACK message, in each AuthData delivery 

transaction. For the delivery of a hash ℎ𝑟𝑏,𝑐 and a tag 𝜏ℎ𝑟𝑏,𝑐
 from each Reducer 𝑟𝑏 to 

JobManager 𝑗𝑚, the FRAuthData-Delivery protocol uses two messages, msg-FRADD1 and 

msg-FRACK1. These two messages are, respectively, expressed as: msg-FRADD1: 

{𝐹𝑅𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷1, 𝑆(ℎ𝑟𝑏,𝑐)  + 𝑆(𝜏ℎ𝑟𝑏,𝑐
), 𝑖𝑑𝑟𝑏

, 𝑑𝑖𝑑𝑟𝑏
, 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, ℎ𝑟𝑏,𝑐 ,  𝜏ℎ𝑟𝑏,𝑐

} and msg-

FRACK1: {𝐹𝑅𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑟𝑏
, 𝑑𝑖𝑑𝑟𝑏

, 𝑚𝑖𝑑1}. 

For the delivery of the concatenated hash 𝑐ℎ𝑗𝑚  and the signature 𝜎𝑐ℎ𝑗𝑚
 from JobManager 

𝑗𝑚 to ClientApp 𝑐, the FRAuthData-Delivery protocol uses two messages, msg-FRADD2 and 

msg-FRACK2. These two messages are, respectively, expressed as: msg-FRADD2: 

{𝐹𝑅𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷2, 𝑆(𝑐ℎ𝑗𝑚) + 𝑆(𝜎𝑐ℎ𝑗𝑚
), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑐 , 𝑑𝑖𝑑𝑐, 𝑐ℎ𝑗𝑚 , 𝜎𝑐ℎ𝑗𝑚

} and msg-

FRACK2: {𝐹𝑅𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑐, 𝑑𝑖𝑑𝑐 , 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚 , 𝑚𝑖𝑑1}. 

6.5.7 Putting Everything Together: CPDA in Action 
The operation flow of CPDA when applied to a job execution is depicted as a sequence 

diagram shown in Figure 6.11. The sequence diagram highlights what and when the 

algorithms and the protocols are used by which components. Up on a successful execution of 

CPDA, (1) AuthData for all objects are generated and delivered to the respective consumers, 

(2) the authenticity (SR5) and (SR6) of each object can be verified against the related 

AuthData, and (3) producers cannot falsely deny producing their objects (SR7). 
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Figure 6.11: The operations of the CPDA framework during the entire course of a job execution. 
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6.6 The Running Example 

To demonstrate how CPDA works and to motivate the discussion, we further build on the 

running example described in Section 5.6 by applying CPDA to the job execution process. The 

example shows how the components of CPDA are used at different phases of the execution 

of the job to ensure the authenticity of JobData.  

The result of the analysis in the running example is mission critical. If the result is 

contaminated and the organisations are misinformed, the organisations may misjudge the 

situation and make an inappropriate response, leading to potentially severe consequences. 

For example, if the potentially compromised machines are indeed compromised and these 

machines are not discovered during the security log analysis due to unauthorised alteration 

to the log files, the machines could be used as a backdoor to continue to cause harm to the 

systems of the organisations. For these reasons, the end users (i.e., the authorised employees 

of the respective organisations) should verify the authenticity of the analysis result to ensure 

that the output files produced by the distributed computing service (i.e., MR in this example) 

are processed by the authorised components and that the data used in the processing are 

from the expected sources and have not been tampered with. CPDA provides a data 

authentication service that protect the authenticity of JobData used, generated, and 

processed in every phase of a job execution, from when the input data are submitted to the 

MR services to when the output data are retrieved by the JobSubmitter. This is done by 

applying a different CPDA functional block to each phase of the job execution, i.e., the O2M 

functional block to the job submission phase, the M2M functional block to the map phase, 

and the M2O block to the reduce phase. Each of the functional blocks consists of three 

components: AuthData-Generation algorithms (except the O2M functional block which has 

only one algorithm), an AuthData-Verification algorithm, and an AuthData-Delivery protocol. 

The AuthData-Generation algorithms are used to generate AuthData (e.g., MAC tags and 

digital signatures) for JobData objects when the objects are produced by data producers (with 

the exception of InputSplits which are supplied by Users via ClientApps). The AuthData-

Verification algorithms are used to verify the authenticity of the objects against the AuthData 

before the objects are consumed by data consumers. The AuthData-Delivery protocols are 

used to deliver AuthData from a data producer to the Aggregator (here it is 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟) 

and from the Aggregator to a data consumer.  

In the example, respective AuthData-Generation algorithms are used by ClientApps in 

step 4 (shown in Figure 4.8), Mappers in step 22, Reducers in step 26, and 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in 

steps 23 and 27. Respective AuthData-Verification algorithms are used by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 in step 

29, by Mappers in step 22, and by Reducers in step 25. Respective AuthData-Delivery 

protocols are used to transfer AuthData from ClientApps to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in step 11, from 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to Mappers in step 20, from Mappers to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in step 23, 

from 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to Reducers in step 24, from Reducers to JobManager in step 27, and from 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 in step 28.  

CPDA makes a hybrid use of symmetric-key and asymmetric-key cryptosystems for 

generating and verifying AuthData for protecting the authenticity of JobData objects. With 

regards to keys used, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 each, respectively, generate 
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a pair of private and public keys, i.e., 𝑠𝑘𝑐1 and 𝑝𝑘𝑐1  by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑠𝑘𝑐2  and 𝑝𝑘𝑐2  by 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑠𝑘𝑐3  and 𝑝𝑘𝑐3  by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. These keys are generated before the 

execution of the job. Each of the private keys is used for signing (generating AuthData for) the 

respective InputSplit by the respective ClientApp in step 4. Each of the public keys is used for 

verifying the assigned InputSplit by the respective Mapper in step 22. 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, 

𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 are issued pairwise (symmetric) keys, i.e., 

𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, 𝑘𝑚3,𝑗𝑚, 𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, and 𝑘𝑟3,𝑗𝑚, respectively, by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (keys for the 

Mappers are issued in step 20 and keys for the Reducers in step 24). The keys 𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, 

and 𝑘𝑚3,𝑗𝑚 are used by the Mappers to sign the PartitionSegments they produce in step 22 

and by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to verify AuthData (PGen-PSAuthData) generated by the Mappers in 

step 23. The keys 𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, and 𝑘𝑟3,𝑗𝑚 are used by the Reducers to sign the FinalResults 

they produce in step 26 and by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to verify AuthData (PGen-FRAuthData) 

generated by the Reducers in step 27. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 generates a pair of private and public 

keys, 𝑠𝑘𝑗𝑚 and 𝑝𝑘𝑗𝑚, when 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 is launched in step 9. The private key 𝑠𝑘𝑗𝑚 is used 

by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to generate AGen-PSAuthData for the PartitionSegments produced by the 

Mappers in step 23 and to generate AGen-FRAuthData for the FinalResults produced by the 

Reducers in step 27. The public key 𝑝𝑘𝑗𝑚 is used by the Reducers to verify the assigned 

PartitionSegments in step 25 and by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to verify the FinalResults in step 29. All the 

keys used in providing this data authentication service are distributed to the respective 

components by using the entity authentication service provided by MIEA.  

In the following, we demonstrate how the different components of CPDA are used at 

different phases of the job execution. In this demonstration, we describe only operational 

steps related to data authentication (signing and verification) by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑀𝑎𝑝𝑝𝑒𝑟1, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, and 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.  

In the job submission phase, in step 4, after 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 writes 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 onto 𝐷𝐹𝑆1, 

it signs 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 by using the ISAuthData-Generation algorithm (explained in Section 

6.5.4.1) with its private key 𝑠𝑘𝑐1, generating ISAuthData tokens 𝜎𝑟ℎ
𝑐1  (the signature of the 

root hash for 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1) and 𝑆𝐴𝑐1  (a set of Sibling-AuthData token containing only one 

𝑠𝑎𝑐1,𝑚1
). The ISAuthData tokens 𝜎𝑟ℎ

𝑐1  and 𝑆𝐴𝑐1  are sent from 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

in step 11 and from 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to 𝑀𝑎𝑝𝑝𝑒𝑟1 in step 20 by using the ISAuthData-Delivery 

protocol (explained in Section 6.5.4.3). The public key 𝑝𝑘𝑐1  of 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 is distributed from 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 in step 59, from 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

in step 16, and from 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to 𝑀𝑎𝑝𝑝𝑒𝑟1 in step 20. In step 20, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 also sends 

a pairwise key 𝑘𝑚1,𝑗𝑚 to 𝑀𝑎𝑝𝑝𝑒𝑟1 for signing the PartitionSegments produced by 𝑀𝑎𝑝𝑝𝑒𝑟1. 

In step 22, after 𝑀𝑎𝑝𝑝𝑒𝑟1 reads 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 from 𝐷𝐹𝑆1, it verifies the authenticity of 

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 by using the ISAuthData-Verification algorithm (explained in Section 6.5.4.2) 

with 𝑝𝑘𝑐1, 𝜎𝑟ℎ
𝑐1 , and 𝑆𝐴𝑐1 before executing its map task in the map phase.  

In the map phase, in step 22, 𝑀𝑎𝑝𝑝𝑒𝑟1 performs its map tasks on 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 and 

produces 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3. It signs 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2 

 
9 ResourceManagers gets the public keys of the respective ClientApps in step 5. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 collects all the public 
keys from the other ResourceManagers in step 15 before sending all the public keys to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in step 16. 
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and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3 by using the PGen-PSAuthData-Generation algorithm (explained 

in Section 6.5.5.1) with 𝑘𝑚1,𝑗𝑚, generating PGen-PSAuthData tokens 𝑟ℎ𝑚1
 (the root hash for 

the PartitionSegments), 𝜏𝑟ℎ𝑚1
 (a MAC tag of the root hash), and 𝑆𝐴𝑚1

 (a set of Sibling-

AuthData tokens containing 𝑠𝑎𝑚1,𝑟2
 and 𝑠𝑎𝑚1,𝑟3

). The PGen-PSAuthData tokens 𝑟ℎ𝑚1
, 𝜏𝑟ℎ𝑚1

, 

and 𝑆𝐴𝑚1
 are sent from 𝑀𝑎𝑝𝑝𝑒𝑟1 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in step 23 by using the PSAuthData-

Delivery protocol (explained in Section 6.5.5.4). After 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 receives all the PGen-

PSAuthData tokens generated by all the Mappers (including 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑀𝑎𝑝𝑝𝑒𝑟3), 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 generates AGen-PSAuthData, 𝑐ℎ𝑗𝑚  and 𝜎𝑐ℎ𝑗𝑚
, for all the PartitionSegments by 

using the AGen-PSAuthData-Generation algorithm (explained in Section 6.5.5.2) with its 

private key 𝑠𝑘𝑗𝑚, all the PGen-PSAuthData tokens, and the pairwise keys shared with the 

Mappers (𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, and 𝑘𝑚3,𝑗𝑚). In step 24, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends the respective Sibling-

AuthData token (𝑠𝑎𝑚2,𝑟1
) and AGen-PSAuthData (𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚

) to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 by using the 

PSAuthData-Delivery protocol. It also sends its public key 𝑝𝑘𝑗𝑚 and a pairwise key 𝑘𝑟1,𝑗𝑚 to 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 by using the entity authentication service provided by MIEA. These keys are for 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 to verify the assigned PartitionSegments and to sign 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, respectively. 

In step 25, after 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 reads 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 from 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2, it verifies 

the authenticity of 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 by using the PSAuthData-Verification algorithm 

(explained in Section 6.5.5.3) with 𝑝𝑘𝑗𝑚, 𝑠𝑎𝑚2,𝑟1
, 𝑐ℎ𝑗𝑚, and 𝜎𝑐ℎ𝑗𝑚

 before executing its reduce 

task in the reduce phase.  

In the reduce phase, in step 26, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 performs its reduce task on 
𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 and produces 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1. It signs 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1 by using the 

PGen-FRAuthData-Generation algorithm (explained in Section 6.5.6.1) with 𝑘𝑟1,𝑗𝑚, generating 

PGen-FRAuthData tokens ℎ𝑟1,𝑐1 (the hash of 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1) and 𝜏ℎ
𝑟1,𝑐1  (the MAC tag of the 

hash). It then sends ℎ𝑟1,𝑐1 and 𝜏ℎ
𝑟1,𝑐1  to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in step 27 by using the FRAuthData-

Delivery protocol (explained in Section 6.5.6.4). After 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 receives all the PGen-
FRAuthData tokens generated by all the Reducers (including 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3), 
𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 generates AGen-FRAuthData, 𝑐ℎ𝑗𝑚

∗  and 𝜎𝑐ℎ𝑗𝑚
∗ , for all the FinalResults by using 

the AGen-FRAuthData-Generation algorithm (explained in Section 6.5.6.2) with its private key 
𝑠𝑘𝑗𝑚, all the PGen-FRAuthData tokens, and the pairwise keys shared with the Reducers 

(𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, and 𝑘𝑟3,𝑗𝑚). In step 28, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends the AGen-PSAuthData (𝑐ℎ𝑗𝑚
∗  and 

𝜎𝑐ℎ𝑗𝑚
∗ ) to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 by using the FRAuthData-Delivery protocol. It also sends its public key 

𝑝𝑘𝑗𝑚 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 for verifying all the FinalResults (𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and 

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1). In other words, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 needs only one public key 𝑝𝑘𝑗𝑚 to verify the 

authenticity of the result of the analysis job. In step 29, after 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 reads all the 
FinalResults from 𝐷𝐹𝑆1, it verifies the authenticity of the FinalResults by using the 
FRAuthData-Verification algorithm (explained in Section 6.5.6.3) with 𝑝𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚

∗ , and 𝜎𝑐ℎ𝑗𝑚
∗  

before presenting the FinalResults to 𝑈𝑠𝑒𝑟1.  
The detailed operational steps when both entity authentication (provided by MIEA) and 

data authentication (provided by CPDA) are applied to the job in the running example are 
elaborated in Section 7.3. 
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6.7 Security Analysis 

The security of CPDA is analysed by using both an informal (property) method and a formal 

(complexity) analysis method. With the informal analysis method, we analyse CPDA against 

the security requirements (SR5), (SR6), and (SR7). The complexity analysis shows how much 

effort is required to successfully mount any of the attacks (T5) and (T6) against the system. 

The results are compared with those of the most related object based methods, i.e., the 

methods that secure individual objects by using a MAC scheme and a digital signature 

scheme, respectively. These methods are hereafter referred to as the MAC based scheme and 

the signature based scheme. 

6.7.1 Informal Analysis 
CPDA protects the authenticity of all the objects submitted or generated throughout the 

course of a job execution. In the job submission phase, each InputSplit can be verified against 

the respective Sibling-AuthData token and the signature of the root hash generated by 

ClientApp.  

In the map phase, each PartitionSegment can be verified against the respective Sibling-

AuthData token generated by the respective Mapper and the respective root hash contained 

in the concatenated hash which, in turn, is generated by JobManager. The authenticity of the 

concatenated hash is ensured by the signature generated by JobManager.  

In the reduce phase, each FinalResult can be verified against the respective hash 

contained in the concatenated hash generated by JobManager. The authenticity of the 

concatenated hash, similarly, is ensured by the signature generated by JobManager. 

6.7.1.1 Data Origin Authentication 
Entities external to a job should not be able to inject a fraudulent object into the job. No 

entities should be able to falsify the origin of an object because it is computationally difficult 

to find an object that is different from an authentic one, but produces the same hash value, 

or to forge a new AuthData token (e.g., a tag or signature) for a fraudulent object. Hence, the 

CPDA framework satisfies the requirement of data origin authentication (SR5). 

6.7.1.2 Data Integrity Protection 
Any modifications made to any of the objects would change the hashes of the objects, thus 

different from when the objects are generated. When the tampered objects are verified 

against the respective AuthData, the result will be negative and such attempts will be detected. 

Therefore, the CPDA framework meets the requirement of data integrity protection (SR6). 

6.7.1.3 Non-repudiation of Origin 
In the job submission phase, non-repudiation is achieved by ClientApp signing the root hash 

of the hash tree. As only ClientApp knows the signature signing key and the signature 

verification key has been certified by a trusted entity (e.g., a certificate authority), any 

signature that has been positively verified must be from ClientApp.  

In the map phase, JobManager provides a signature-protected concatenated hash 

containing authentic root hashes. The authenticity of the root hashes is ensured by the tags 

that are generated by the respective Mappers using their respective pairwise keys uniquely 
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shared between each Mapper and JobManager. As JobManager is a trustworthy component 

and each pairwise key is only known by JobManager and the corresponding Mapper, it is hard 

for the Mapper to falsely deny that it has produced the PartitionSegments.  

Similarly, in the reduce phase, JobManager provides a signature-protected concatenated 

hash containing authentic hashes. The authenticity of the hashes is, in turn, protected by 

using pairwise keys that are known only by JobManager and the respective Reducers. It is 

hard for each of the Reducers to falsely deny having produced the respective FinalResult. 

Therefore, the CPDA framework satisfies the requirement of non-repudiation of origin (SR7). 

6.7.1.4 The Comparisons of the Security Properties 
There are some differences in the security properties offered by the MAC based and the 

signature based schemes. Here, in Table 6.4, we provide a summary of the security properties 

provided by CPDA and these two schemes along with the use of JobManager, a trusted third 

party (TTP). The result shows that CPDA satisfies all of the specified security requirements, 

and it provides the same level of security protection as that provided by digitally signing all 

the data objects individually. 

Table 6.4: The comparisons of security properties achieved by CPDA, the MAC based scheme, and 

the signature based scheme. 

Security Requirement MAC MAC with TTP Signature CPDA 

(SR5) Data origin authentication √ √ √ √ 

(SR6) Data integrity protection √ √ √ √ 

(SR7) Non-repudiation of origin  √ √ √ 

6.7.2 Complexity Analysis 
The strengths of the security protections provided by CPDA are analysed in terms of 

computational complexity required to successfully mount a data injection attack (T5) and a 

data tampering attack (T6), respectively. In the following, we first give a list of notations used 

in the analysis, then the security strengths of cryptographic schemes (a hash function and a 

digital signature scheme) in addition to those discussed in Section 5.7.3.2, before comparing 

the strength of CPDA with those of the MAC based and signature based schemes. 

6.7.2.1 Notations 
Table 6.5 shows the notations used in this analysis; all of the lengths are expressed in bits. 

Table 6.5: Notations used in the complexity analysis of CPDA. 

Symbol Meaning 

𝐿ℎ  Hash length 

𝐿𝑑  Object length 

𝐿𝜏 MAC tag length 

𝐿𝜎  Signature length 

𝐿𝑘  Secret key length 

𝐿𝑠𝑘  Private key length 

𝑙 Security level 

6.7.2.2 The Strength of Cryptographic Schemes 
In Section 5.7.3.2, we have discussed the strengths of a number of cryptographic schemes, 

including a MAC scheme. In this section, we further analyse the strengths of a hash function 

and a digital signature scheme in terms of computational complexity needed to break an 
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authentication token. The complexity is also expressed as 2𝑛. Cryptanalytical attacks on hash 

functions are omitted as these attacks can also be mitigated by using a scheme with no known 

vulnerabilities.  

Attacks on hash functions can be classified into preimage attacks (finding a preimage of a 

given hash), second preimage attacks (given a preimage, finding a second preimage that 

produces the same hash), and collision attacks (finding two different preimages that produce 

the same hash). The complexities of launching a preimage attack and a second preimage 

attack are 2𝐿ℎ [178], whereas the computational complexity of launching a collision attack is  

2𝐿ℎ 2⁄  [178]. Hence, the minimum complexity needed to successfully mount an attack on a 

hash is 2𝐿ℎ/2. 

For digital signatures, there exist signature forgery attacks that are more efficient than 

exhaustive search of new data objects, private keys, or signatures [205]. In other words, the 

computational complexity required to break a signature is much less than 2min (𝐿𝑑,𝐿𝑠𝑘,𝐿𝜎). 

Rather, such complexity is usually expressed by using a notion of security levels, i.e., 2𝑙  where 

𝑙 is a specified security level. A number of organisations, such as NIST [191], ENISA [206], and 

IETF [207], have estimated key lengths needed to achieve different security levels. For 

example, according to NIST [191], 3072-bit RSA and 256-bit ECDSA could be used to achieve 

a security level of 128-bit.  

6.7.2.3 Data Injection Attacks 
When CPDA is applied, to inject a fraudulent object into a job execution without being 

detected, an adversary may (1) find a new object that would yield the same hash as an existing 

object; (2) find a new object and a new Sibling-AuthData token that would produce the same 

root hash as the existing ones; or (3) forge a new tag or signature. For (1) and (2), finding a 

new object that produces the same hash requires a complexity of 2𝑑, or an attacker may 

perform one of preimage, second preimage, and collusion attacks, which requires a minimum 

computational complexity of 2𝐿ℎ/2. For (3), forging a new tag and a new signature, 

respectively, requires computational complexities of 2min (𝐿𝑑,𝐿𝑘,𝐿𝜏) and 2𝑙. Therefore, the 

complexity of successfully launching a data injection attack is 2min(𝐿𝑑,
𝐿ℎ
2

,𝐿𝑘,𝐿𝜏,𝑙).  

6.7.2.4 Data Tampering Attacks 
To tamper with an existing object without being detected, an adversary may modify an 

existing object in a way that the modified object yields the same hash as an existing object, 

or generate fraudulent AuthData (e.g., Sibling-AuthData tokens, tags, and signatures) for the 

modified object. Besides finding a new object that produces the same AuthData token, a 

successful data tampering attack requires compromising a hash, a tag, or a signature. 

Therefore, the complexity of successfully launching a data tampering attack is also 

2min(𝐿𝑑,
𝐿ℎ
2

,𝐿𝑘,𝐿𝜏,𝑙). 

6.7.2.5 The Comparisons of the Security Strengths 
The strengths of the MAC based and signature based schemes are equal to the strengths of 

the underlying cryptographic schemes, i.e., 2min (𝐿𝑑,𝐿𝑘,𝐿𝜏) and 2𝑙, respectively. The strengths 

of CPDA and these two schemes are summarised in Table 6.6.  
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Table 6.6: The comparisons of the security strengths of CPDA, the MAC based scheme, and the 

signature based scheme. 

Attacks MAC Signature CPDA 

(T5) Data injection attacks 2min(𝐿𝑑,𝐿𝑘,𝐿𝜏) 2𝑙 
2min(𝐿𝑑,

𝐿ℎ
2

,𝐿𝑘,𝐿𝜏,𝑙)
 

(T6) Data tampering attacks 2min(𝐿𝑑,𝐿𝑘,𝐿𝜏) 2𝑙 
2min(𝐿𝑑,

𝐿ℎ
2

,𝐿𝑘,𝐿𝜏,𝑙)
 

6.8 Performance Evaluation 

The overheads introduced by CPDA are theoretically evaluated in two aspects, computational 

overhead and communication overhead. The results are then compared with the overheads 

introduced by the MAC based and signature based schemes.  

6.8.1 Notations 
Table 6.7 shows the notations used in this performance evaluation.  

Table 6.7: Notations used in performance evaluation of CPDA.  

Symbols Meanings 

𝑀, 𝐸 The numbers of Mappers, Reducers 

𝑂𝑆ℎ, 𝑂𝐿ℎ Hash operation on a small object, a large object 

𝑂𝑆𝑚𝑠 , 𝑂𝐿𝑚𝑠 MAC-Signing operation on a small object, a large object 

𝑂𝑆𝑚𝑣 , 𝑂𝐿𝑚𝑣  MAC-Verification operation on a small object, a large object 

𝑂𝑆𝑠𝑠, 𝑂𝐿𝑠𝑠  SIG-Signing operation on a small object, a large object 

𝑂𝑆𝑠𝑣 , 𝑂𝐿𝑠𝑣 SIG-Verification operation on a small object, a large object 

𝐿ℎ𝑑 The header length of an ADD message 

𝐿𝑎𝑐𝑘 The total length of an ACK message 

 𝐿ℎ , 𝐿𝜏, 𝐿𝜎  The lengths of a hash, a tag, a signature 

6.8.2 Computational Overheads 
The computational overheads are evaluated in terms of the number of cryptographic 

operations performed by each of the CPDA components. Non-cryptographic operations (such 

as tree traversal and hash concatenation) are omitted as their costs (in terms of execution 

times) are negligible in comparison with those of cryptographic operations. The cryptographic 

operations are classified into five groups: hash generation (𝑂𝑆ℎ, 𝑂𝐿ℎ), MAC-Signing 

(𝑂𝑆𝑚𝑠, 𝑂𝐿𝑚𝑠), MAC-Verification (𝑂𝑆𝑚𝑣, 𝑂𝐿𝑚𝑣), SIG-Signing (𝑂𝑆𝑠𝑠, 𝑂𝐿𝑠𝑠), and SIG-Verification 

(𝑂𝑆𝑠𝑣, 𝑂𝐿𝑠𝑣). As the cost of an operation is also affected by the size of an object, we count 

the operations performed on small objects (𝑂𝑆ℎ, 𝑂𝑆𝑚𝑠, 𝑂𝑆𝑚𝑣, 𝑂𝑆𝑠𝑠, and 𝑂𝑆𝑠𝑣) and on 

(potentially) large objects (𝑂𝐿ℎ, 𝑂𝐿𝑚𝑠, 𝑂𝐿𝑚𝑣, 𝑂𝐿𝑠𝑠, and 𝑂𝐿𝑠𝑣), separately. 

6.8.2.1 CPDA Framework 
In the job submission phase, two data authentication algorithms are used, ISAuthData-

Generation and ISAuthData-Verification. ISAuthData-Generation is executed by ClientApp. It 

contains two sets of operations: one is for constructing a hash tree for 𝑀 InputSplits (𝑀 ∗

𝑂𝐿ℎ + (𝑀 − 1) ∗ 𝑂𝑆ℎ), and the other is for signing the root hash with a digital signature 

scheme (𝑂𝑆𝑠𝑠). Hence, the total number of operations is 𝑀 ∗ 𝑂𝐿ℎ + (𝑀 − 1) ∗ 𝑂𝑆ℎ + 𝑂𝑆𝑠𝑠. 

ISAuthData-Verification is executed by each Mapper. It contains three sets of operations, 

respectively, for computing the hash of its InputSplit (𝑂𝐿ℎ), for recovering the root hash from 
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the hash (⌈log 𝑀⌉ ∗ 𝑂𝑆ℎ), and for verifying the root hash against the signature (𝑂𝑆𝑠𝑣). Hence, 

the total number of operations is 𝑂𝐿ℎ + ⌈log 𝑀⌉ ∗ 𝑂𝑆ℎ + 𝑂𝑆𝑠𝑣. 

In the map phase, three data authentication algorithms are used, PGen-PSAuthData-

Generation, AGen-PSAuthData-Generation, and PSAuthData-Verification. PGen-PSAuthData-

Generation is executed by each Mapper. It contains two sets of operations, respectively, for 

constructing a hash tree for 𝐸 PartitionSegments (𝐸 ∗ 𝑂𝐿ℎ + (𝐸 − 1) ∗ 𝑂𝑆ℎ), and for signing 

the root hash with a MAC scheme (𝑂𝑆𝑚𝑠). Hence, the total number of operations is 𝐸 ∗ 𝑂𝐿ℎ +

(𝐸 − 1) ∗ 𝑂𝑆ℎ + 𝑂𝑆𝑚𝑠. AGen-PSAuthData-Generation is executed by JobManager. It 

contains two sets of operations, respectively, for verifying the authenticity of 𝑀 root hashes 

against the respective tags (𝑀 ∗ 𝑂𝑆𝑚𝑣), and for signing the concatenated hash with a digital 

signature scheme (𝑂𝐿𝑠𝑠). Hence, the total number of operations is  𝑂𝐿𝑠𝑠 + 𝑀 ∗ 𝑂𝑆𝑚𝑣. 

PSAuthData-Verification is executed by each Reducer. It contains three sets of operations, 

respectively, for verifying the authenticity of the concatenated hash against the signature 

(𝑂𝐿𝑠𝑣), for computing the hashes of 𝑀 PartitionSegments (𝑀 ∗ 𝑂𝐿ℎ), and for recovering 𝑀 

root hashes from the hashes (𝑀 ∗ ⌈log 𝐸⌉ ∗ 𝑂𝑆ℎ). Hence, the total number of operations is 

𝑀 ∗ 𝑂𝐿ℎ + 𝑂𝐿𝑠𝑣 + 𝑀 ∗ ⌈log 𝐸⌉ ∗ 𝑂𝑆ℎ. 

In the reduce phase, three data authentication algorithms are used, PGen-FRAuthData-

Generation, AGen-FRAuthData-Generation, and FRAuthData-Verification. PGen-FRAuthData-

Generation is executed by each Reducer. It contains two sets of operations, respectively, for 

computing the hash of its FinalResult (𝑂𝐿ℎ) and for signing the resulting hash with a MAC 

scheme (𝑂𝑆𝑚𝑠). Hence, the total number of operations is 𝑂𝐿ℎ + 𝑂𝑆𝑚𝑠. AGen-FRAuthData-

Generation is executed by JobManager. It contains two sets of operations, respectively, for 

verifying 𝐸 hashes against the respective tags (𝐸 ∗ 𝑂𝑆𝑚𝑣) and for signing the concatenated 

hash with a digital signature scheme (𝑂𝐿𝑠𝑠). Hence, the total number of operations is 𝑂𝐿𝑠𝑠 +

𝐸 ∗ 𝑂𝑆𝑚𝑣. FRAuthData-Verification is executed by ClientApp and contains two sets of 

operations, respectively, for verifying the authenticity of the concatenated hash against the 

signature (𝑂𝐿𝑠𝑣) and for computing the hashes of 𝐸 FinalResults (𝐸 ∗ 𝑂𝐿ℎ). Hence, the total 

number of operations is 𝐸 ∗ 𝑂𝐿ℎ + 𝑂𝐿𝑠𝑣. 

6.8.2.2 MAC based and Signature based Schemes 
With the MAC based scheme, each object is signed and verified individually using a MAC 

scheme. Similarly, with the signature based scheme, each object is individually protected by 

using a digital signature scheme. Hence, the number of operations performed by an individual 

component is equal to the number of objects to be protected.  

With the MAC based scheme, in the job submission phase, ClientApp signs 𝑀 InputSplits 

(ISAuthData-Generation). Each Mapper verifies one InputSplit (ISAuthData-Verification). 

Therefore, the numbers of operations performed by ClientApp and each Mapper are 𝑀 ∗

𝑂𝐿𝑚𝑠 and 𝑂𝐿𝑚𝑣, respectively.  

In the map phase, each Mapper signs 𝐸 PartitionSegments (PGen-PSAuthData-

Generation). Each Reducer verifies 𝑀 PartitionSegments (PSAuthData-Verification). 

Therefore, the numbers of operations performed by each Mapper and each Reducer are 𝐸 ∗

𝑂𝐿𝑚𝑠 and 𝑀 ∗ 𝑂𝐿𝑚𝑣, respectively.  
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In the reduce phase, each Reducer signs one FinalResult (PGen-FRAuthData-Generation). 

ClientApp verifies 𝐸 FinalResults (FRAuthData-Verification). Therefore, the numbers of 

operations performed by each Reducer and ClientApp are 𝑂𝐿𝑚𝑠 and 𝐸 ∗ 𝑂𝐿𝑚𝑣, respectively.  

Using the same method with the signature based scheme, the numbers of operations 

performed by each of the components are the same as those using the MAC based scheme. 

The only difference lies in the cost of each signing and verification operation; here the 

operation is a signature operation, rather than a MAC operation. 

6.8.2.3 The Comparisons of the Computational Overheads 
The computational overheads when different data authentication solutions are applied are 

summarised in Table 6.8. The operations performed on large objects are highlighted in red. 

The result shows that CPDA reduces the number of expensive signature signing and verifying 

operations performed by each data processing component to one and these operations are 

performed on aggregated AuthData (root hashes and concatenated hashes) which are usually 

smaller than non-aggregated ones. This is achieved at a cost of additional operations imposed 

on JobManager. We anticipate that the level of reduction by CPDA should increase as the 

number of objects increases owing to a more significant level of decrease in expensive 

operations performed on large objects.  

Table 6.8: The comparisons of the computational overheads imposed on individual components by 

different data authentication solutions.  

The Job Submission Phase 

Component Algorithm MAC Signature CPDA 

ClientApp ISAuthData-Generation 
𝑀 ∗ 𝑂𝐿𝑚𝑠 𝑀 ∗ 𝑂𝐿𝑠𝑠 𝑀 ∗ 𝑂𝐿ℎ + (𝑀 − 1)

∗ 𝑂𝑆ℎ + 𝑂𝑆𝑠𝑠 

Each Mapper ISAuthData-Verification 
𝑂𝐿𝑚𝑣  𝑂𝐿𝑠𝑣  𝑂𝐿ℎ + ⌈log 𝑀⌉ ∗ 𝑂𝑆ℎ

+ 𝑂𝑆𝑠𝑣  

The Map Phase 

Component Algorithm MAC Signature CPDA 

Each Mapper 
PGen-PSAuthData-

Generation 

𝐸 ∗ 𝑂𝐿𝑚𝑠 𝐸 ∗ 𝑂𝐿𝑠𝑠 𝐸 ∗ 𝑂𝐿ℎ + (𝐸 − 1)

∗ 𝑂𝑆ℎ + 𝑂𝑆𝑚𝑠 

JobManager AGen-PSAuthData-

Generation 

- - 𝑂𝐿𝑠𝑠 + 𝑀 ∗ 𝑂𝑆𝑚𝑣  

Each 

Reducer 
PSAuthData-Verification 

𝑀 ∗ 𝑂𝐿𝑚𝑣  𝑀 ∗ 𝑂𝐿𝑠𝑣  𝑀 ∗ 𝑂𝐿ℎ + 𝑂𝐿𝑠𝑣 + 𝑀
∗ ⌈log 𝐸⌉ ∗ 𝑂𝑆ℎ 

The Reduce Phase 

Component Algorithm MAC Signature CPDA 

Each 

Reducer 

PGen-FRAuthData-

Generation 

𝑂𝐿𝑚𝑠 𝑂𝐿𝑠𝑠 𝑂𝐿ℎ + 𝑂𝑆𝑚𝑠 

JobManager AGen-FRAuthData-

Generation 

- - 𝑂𝐿𝑠𝑠 + 𝐸 ∗ 𝑂𝑆𝑚𝑣  

ClientApp FRAuthData-Verification 𝐸 ∗ 𝑂𝐿𝑚𝑣  𝐸 ∗ 𝑂𝐿𝑠𝑣 𝐸 ∗ 𝑂𝐿ℎ + 𝑂𝐿𝑠𝑣  

6.8.3 Communication Overheads 
The communication overheads are evaluated in terms of the number and the sizes of 

messages exchanged between components. As explained in Section 6.5.3, each AuthData 

delivery transaction consists of two messages, one ADD message and one ACK message. The 

total size of an ADD message is equal to the sum of the size of the header (𝐿ℎ𝑑) and the size 

of the payload. The size of the payload is dependent on the number and sizes of AuthData 
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tokens (𝐿ℎ, 𝐿𝜏, and 𝐿𝜎) contained in the payload. The size of an ACK message is 𝐿𝑎𝑐𝑘. For 

comparison, it is assumed that, for the cases where the MAC based and signature based 

schemes are used, AuthData sent from producers to consumers are also through JobManager, 

in the same way as the case for CPDA. 

6.8.3.1 CPDA Framework 
In the job submission phase, ClientApp sends one ADD message containing one signature and 

𝑀 instances of Sibling-AuthData (each containing up to ⌈log 𝑀⌉ hashes) to JobManager. 

Hence, the size of the message is 𝐿ℎ𝑑 +  𝐿𝜎 + 𝑀 ∗ ⌈log 𝑀⌉ ∗ 𝐿ℎ. JobManager replies with an 

ACK message with the size of 𝐿𝑎𝑐𝑘 to ClientApp. It then sends one ADD message containing 

one signature and one instance of Sibling-AuthData to each Mapper. The size of the message 

is 𝐿ℎ𝑑 +  𝐿𝜎 + ⌈log 𝑀⌉ ∗ 𝐿ℎ. Each Mapper replies with an ACK message with the size of 𝐿𝑎𝑐𝑘 

to JobManager. 

In the map phase, each Mapper sends one ADD message containing one tag, one root 

hash, and 𝐸 instances of Sibling-AuthData (each containing up to ⌈log 𝐸⌉ hashes) to 

JobManager. The size of the message is 𝐿ℎ𝑑 +  𝐿𝜏 + 𝐿ℎ +  𝐸 ∗ ⌈log 𝐸⌉ ∗ 𝐿ℎ. JobManager 

replies with an ACK message with the size of 𝐿𝑎𝑐𝑘 to each Mapper. After it generates AGen-

PSAuthData, it sends one ADD message containing one signature, one concatenated hash 

(containing 𝑀 root hashes), and 𝑀 instances of Sibling-AuthData to each Reducer. The size of 

the message is 𝐿ℎ𝑑 +  𝐿𝜎 + 𝑀 ∗ 𝐿ℎ +  𝑀 ∗ ⌈log 𝐸⌉ ∗ 𝐿ℎ. Each Reducer replies with an ACK 

message with the size of 𝐿𝑎𝑐𝑘 to JobManager.  

In the reduce phase, each Reducer sends one ADD message containing one tag and one 

hash to JobManager. The size of the message is 𝐿ℎ𝑑 +  𝐿𝜏 + 𝐿ℎ. JobManager replies with an 

ACK message with the size of 𝐿𝑎𝑐𝑘 to each Reducer. After it generates AGen-FRAuthData, it 

sends one ADD message containing one signature and one concatenated hash (containing 𝐸 

hashes) to ClientApp. The size of the message is 𝐿ℎ𝑑 + 𝐿𝜎 + 𝐸 ∗ 𝐿ℎ. ClientApp replies with an 

ACK message with the size of 𝐿𝑎𝑐𝑘 to JobManager. 

6.8.3.2 MAC based and Signature based Schemes 
In the MAC based and signature based schemes, the size of the payload of each ADD message 

is dependent on the number and the size of authentication tokens to be delivered.  

With the MAC based scheme, in the job submission phase, ClientApp sends one ADD 

message containing 𝑀 tags to JobManager and JobManager replies with an ACK message to 

ClientApp. The sizes of these messages are respectively 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜏 and 𝐿𝑎𝑐𝑘. JobManager 

sends one ADD message containing one tag to each Mapper and each Mapper replies with an 

ACK message to JobManager. The sizes of these messages are respectively 𝐿ℎ𝑑 + 𝐿𝜏 and 𝐿𝑎𝑐𝑘.  

In the map phase, each Mapper sends one ADD message containing 𝐸 tags to JobManager 

and JobManager replies with an ACK message to each Mapper. The sizes of these messages 

are respectively 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜏 and 𝐿𝑎𝑐𝑘. JobManager sends one ADD message containing 𝑀 

tags to each Reducer and each Reducer replies with an ACK message to JobManager. The sizes 

of these messages are respectively 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜏 and 𝐿𝑎𝑐𝑘.  

In the reduce phase, each Reducer sends one ADD message containing one tag to 

JobManager and JobManager replies with an ACK message to each Reducer. The sizes of these 

messages are respectively 𝐿ℎ𝑑 + 𝐿𝜏 and 𝐿𝑎𝑐𝑘. JobManager sends one ADD message 
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containing 𝐸 tags to ClientApp and ClientApp replies with an ACK message to JobManager. 

The sizes of these messages are respectively 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜏 and 𝐿𝑎𝑐𝑘.  

Similarly, with the digital signature based scheme, the number of messages exchanged 

between components and the number of items contained in each of the messages are the 

same as those by using the MAC based scheme. The only difference is that the sizes of 

authentication tokens contained in the payloads of the messages used in these two schemes 

are different (i.e., 𝐿𝜎 rather than 𝐿𝜏). 

6.8.3.3 The Comparisons of the Communication Overheads 
The communication overheads when different data authentication solutions are applied are 

shown in Table 6.9. The result shows that, the three solutions introduce the same numbers 

of messages. However, among the three solutions, the sizes of the ADD messages used in 

CPDA are the largest. We argue that the impact of the increased payload size to the underlying 

networks is insignificant as an ADD message is much smaller than a JobData object. For 

example, in the job submission phase when CPDA is applied, assuming that 𝑀 = 1000, 

 𝐿ℎ = 256 bits, and 𝐿𝜎 = 3072 bits, the payload size of an ADD message that JobManager 

sends to each Mapper is equal to 3072 + ⌈log 1000⌉ ∗ 256 = 5632 bits = 704 B which is 

much smaller than the size of a 128-MiB InputSplit. Moreover, with CPDA, it is possible to 

reduce the communication overhead introduced by using signature caching. One copy of the 

same signature can be sent and cached on each WorkerNode rather than sending multiple 

copies to different Workers hosted on the same WorkerNode. The signature caching 

technique is not applicable to the MAC based and signature based schemes as AuthData 

tokens for different objects are different. 

Table 6.9: The comparisons of the communication overheads introduced by different data 

authentication solutions.  

The Job Submission Phase 

Interactions MAC Signature CPDA 

Between ClientApp 

and JobManager 

1*ADD: 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜏 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜎 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎 + 𝑀 ∗ ⌈log 𝑀⌉ ∗ 𝐿ℎ 

1*ACK: 𝐿𝑎𝑐𝑘 

Between JobManager 

and each Mapper 

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜏 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎 + ⌈log 𝑀⌉ ∗ 𝐿ℎ 

1*ACK: 𝐿𝑎𝑐𝑘 

The Map Phase 

Interactions MAC Signature CPDA 

Between each Mapper 

and JobManager 

1*ADD: 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜏 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜎 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜏 + 𝐿ℎ +  𝐸 ∗ ⌈log 𝐸⌉ ∗ 𝐿ℎ 

1*ACK: 𝐿𝑎𝑐𝑘 

Between JobManager 

and each Reducer 

1*ADD: 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜏 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜎 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎 + 𝑀 ∗ 𝐿ℎ +  𝑀 ∗ ⌈log 𝐸⌉ ∗ 𝐿ℎ 

1*ACK: 𝐿𝑎𝑐𝑘 

The Reduce Phase 

Interactions MAC Signature CPDA 

Between each Reducer 

and JobManager 

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜏 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜏 + 𝐿ℎ 

1*ACK: 𝐿𝑎𝑐𝑘 

Between JobManager 

and ClientApp 

1*ADD: 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜏 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜎 

1*ACK: 𝐿𝑎𝑐𝑘 

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎 + 𝐸 ∗ 𝐿ℎ 

1*ACK: 𝐿𝑎𝑐𝑘 
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6.9 Experimental Evaluation 

The performance of CPDA is experimentally evaluated when applied to MR job executions on 

a real-system testbed. For benchmarking, we compare the results with those of the MAC 

based and signature based schemes. In the following, we first explain methodology and 

evaluation metrics, then describe testbed setup and parameters used, before reporting our 

experimental results.  

6.9.1 Methodology and Evaluation Metrics 
The performance of CPDA is influenced by computational (operational costs imposed on 

components) as well as communication overheads (volume of traffics transmitted via 

networks for AuthData delivery). To evaluate such overhead costs, we have implemented 

three data authentication services (CDPA, the MAC based scheme, and the signature based 

scheme) and applied them to an MR service deployed on a cluster of machines. The evaluation 

consists of three experiments, Exp1, Exp2, and Exp3. Exp1 evaluates the costs of the 

cryptographic algorithms used, i.e., hash generation, MAC-Signing, MAC-Verification, SIG-

Signing, and SIG-Verification. Exp2 evaluates the costs of data authentication algorithms, i.e., 

AuthData-Generation and AuthData-Verification algorithms, imposed on individual MR 

components. Exp3 evaluates the performance of the data authentication services when 

applied to job executions.    

The costs of the cryptographic algorithms, the data authentication algorithms, and 

performance of the data authentication services are measured in terms of the execution 

times of the algorithms and jobs, respectively. For each particular set of parameter values, 

we collect multiple samples of execution times to calculate statistical values (i.e., mean values 

and standard error of the mean). 

6.9.2 Testbed Setup 
Our testbed consists of an MR service and the three data authentication services deployed on 

five networked machines. In the following, we describe the software and hardware of the 

testbed. 

6.9.2.1 Software 
Figure 6.12 depicts the software architecture of our testbed. It consists of a (simplified) MR 

service and three data authentication services. The interactions between MR components are 

shown as solid arrowed lines. The invocations of the three data authentication services are 

shown as dashed arrowed lines.  

The MR service is implemented using MapReduce Lite [208] which is developed by 

Tencent. It provides job submission, task scheduling, and task execution functions. It has two 

types of components, Scheduler and Worker, which are written in Python. Scheduler 

performs the functions of both ClientApp and JobManager whereas each Worker performs 

the function of either a Mapper or a Reducer. To execute a task, Worker calls external data 

processing functions, i.e., map and reduce functions, and these functions are written in C++ 

and supplied by users. Workers are executed as application processes and they can be run on 

a single machine or multiple distributed machines. To enable data authentication for 
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MapReduce Lite, we have made a number of improvements to allow the invocations of the 

data authentication services and the transmission of AuthData. 

 
Figure 6.12: The software architecture of our testbed.  

The three data authentication services are implemented as a single executable file, called 

DataAuthTools, which is written in C++. The cryptographic functions are implemented using 

the Botan cryptographic library [180]. In these implementations, we have selected (1) SHA-

256 for the hash scheme; (2) HMAC with SHA-256 and 128-bit keys (referred to as HMAC-128) 

for the MAC scheme; and (3) RSA with SHA-256, 3072-bit keys, and the PSS padding scheme 

(referred to as RSA-3072) for the digital signature scheme. These schemes are chosen as they 

are widely accepted by academia and in industries. Examples where these schemes are used 

include the Transport Layer Security (TLS) protocol [148], the Internet Protocol Security 

(IPSec) protocol suite [209], and the Secure Shell (SSH) protocol [210]. The key and token sizes 

are set to achieve a sufficient level of security protection, which is 128 bits as recommended 

by NIST [191].  

The specifications of the underlying operating system, the C/C++ compiler, the Python 

interpreter, and the cryptographic library used are given in Table 6.10.  

Table 6.10: Software specifications.  

Component Specification 

Operating system Linux Manjaro 18.0.0 Illyria 
Kernel: 4.14.81-1-MANJARO x86_64 

C/C++ compiler gcc 8.2.1 

Python interpreter python 3.7.1 

Cryptographic library botan 2.8.0 

6.9.2.2 Hardware 
The testbed consists of five machines, labelled as PC1 through to PC5. PC1 is used to conduct 

Exp1 and Exp2 whereas all the PCs are used to conduct Exp3. The same set of software is 

installed on all machines. The hardware specifications of the machines are summarised in 

Table 6.11.  
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Table 6.11: Hardware specifications.  

Machine Components and Specifications 

PC1 CPU: Quad Core Intel Core i7-6700, 64-bit, max 4.0 GHz 
RAM: 16 GB     HDD: 1 TB 

PC2 CPU: Quad Core Intel Core i5-3470, 64-bit, max 3.6 GHz 
RAM: 8 GB       HDD: 500 GB 

PC3 CPU: Quad Core Intel Core i5-3470, 64-bit, max 3.6 GHz 
RAM: 8 GB       HDD: 500 GB 

PC4 CPU: Quad Core Intel Core i7-2600, 64-bit, max 3.8 GHz 
RAM: 8 GB       HDD: 500 GB 

PC5 CPU: Dual Core Intel Core i3-2100, 64-bit, max 3.1 GHz 
RAM: 4 GB       HDD: 250 GB 

 

All the machines (PC1 through to PC5) are connected to a LAN via a 100-Mbps switch, as 

shown in Figure 6.13. ClientApp and JobManager are hosted on PC1, whereas Workers 

(Mappers and Reducers) are hosted on all of the machines. The distribution of the Workers is 

25%, 20%, 20%, 20%, and 15%, respectively. The distribution is made based on the 

specifications of the machines.  

 
Figure 6.13: Network topology and the deployment of MR components on the testbed. 

6.9.3 Parameters and Configurations 
The sizes of data objects used in the experiments are expressed in bytes (B). For ease of 

presentation, we use a binary unit prefix to express multiples of units. This binary prefix 

signifies a multiplication by a power of 2, i.e., 1 KiB (kibibyte) refers to 210 B = 1024 B and 1 

MiB (mebibyte) refers to 210 KiB = 1048576 B.  

In Exp1, we measure the execution times of cryptographic algorithms performed on 

objects of different sizes. Each mean execution time is obtained from 1,000 samples. The sizes 

of the objects range from 32 B (the size of a hash) to 128 MiB (the size of an InputSplit) with 

an increment of twofold. The input data used are randomly generated binary data.  

In Exp2, we measure the execution times of the algorithms used in implementing the 

three data authentication services with varying object sizes and varying numbers of Mappers 

and Reducers. Each mean execution time is obtained from 100 samples. The sizes of input 

objects are, respectively, 1 MiB, 16 MiB, and 128 MiB for ISAuthData-Generation and 

ISAuthData-Verification; 128 KiB, 1 MiB, and 16 MiB for PGen-PSAuthData-Generation, 

PSAuthData-Verification, PGen-FRAuthData-Generation, and FRAuthData-Verification; and 
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32 B (for each hash or root hash) for AGen-PSAuthData-Generation and AGen-FRAuthData-

Generation. The object sizes are set based on the following considerations: (1) InputSplits are 

usually large (e.g., 128 MiB); (2) PartitionSegments and FinalResults are usually smaller than 

the InputSplits; and (3) the sizes of hashes and root hashes are fixed (32 B). The numbers of 

Mappers and Reducers are set to 1, 10, 20, …, 100. Like Exp1, the input data used in Exp2 are 

also randomly generated binary data.  

In Exp3, we measure the execution times of jobs without data authentication and with 

each of the three data authentication services, respectively, given varying numbers of 

Mappers and Reducers. The time is measured from when ClientApp starts performing 

ISAuthData-Generation to when ClientApp finishes performing FRAuthData-Verification. Each 

mean execution time is obtained from 25 samples. The numbers of Mappers and Reducers 

used are set to 5, 50, 100, 200 and 5, 40, 80, 120, 160, 200, respectively. It is worth noting 

that, although deploying 400 Workers on a testbed of 5 machines (due to hardware 

accessibility) may be unusual in practice, the purpose of the experiment is to compare the 

performances of different data authentication services when being applied to an MR job using 

the same MR service and the same set of hardware. The wide range in Worker scaling allows 

us to see the trends in the performances of different data authentication services against the 

number of Workers. In this way, we can anticipate what the performance of our solution 

would be like when applying it to a larger scale MR service. We use the MR job described in 

Section 4.2 for the experiment. In this job, the map tasks (executed by Mappers) are to filter 

the weather data and output temperature values observed by each of the weather stations. 

For this task, each of the Mappers scans its InputSplit line-by-line and output a list of key-

value pairs of a weather station ID and a temperature value. The reduce tasks (executed by 

Reducers) are to find the highest temperature value observed by each of the weather 

stations. Each of the Reducers the merged PartitionSegments key-by-key. For each key 

(weather station ID), the Reducer scans a list of values (temperature values) to find the 

highest value. It then outputs a list of key-value pairs of a weather station ID and the highest 

temperature value. The input data for the job are GHCN-Daily version 3.25 provided by NCEI10 

[211][212]. The input data are divided into multiple 128-MiB InputSplits. The InputSplits are 

stored on all of the machines prior to a job submission and the FinalResults are stored on the 

machine hosting ClientApp (i.e., PC1).  

All of the input data for all the experiments are stored in RAM to minimize I/O overhead. 

In Exp3, due to the large size of weather data, 10-year data (approximately 12 GiB) cannot fit 

into RAMs of PC2 to PC5. As the content of input data should not affect how jobs are executed, 

we use a symbolic link approach to create a set of 10-year data from a smaller set of data. 

With this approach, we divide 2 years (2016 and 2017) of data into 10 of 128-MiB InputSplits. The 

remaining InputSplits are symbolic links pointing to the 10 InputSplits in a round-robin fashion. In 

this way, all InputSplits (including symbolic links) can be stored in RAMs of all the machines.  

Like the experimental evaluations of MIEA (reported in Section 5.9), we also use standard 

error of the mean to estimate the error of sample means. According to our experiments, the 

results (the execution times) sampled in Exp1 are more dispersed than those in Exp2 and 

 
10 In particular, we use files stored in the “by_year” directory on the website. 
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Exp3, respectively. Therefore, to get more accurate results, Exp1 requires more samples than 

those of Exp2 and Exp3, respectively. The justification for the chosen sample sizes (1,000 for 

Exp1, 100 for Exp2, and 25 for Exp3) is that, with these sample sizes, the uncertainties of the 

mean execution times in terms of the relative standard error of the mean are lower than 1.5%. 

Again, a slight increase in the sample sizes will considerably increase experimental times, 

which does not justify a marginal gain of accuracy.  

6.9.4 Experimental Results 
This section reports the experimental results and discuss our findings.  

6.9.4.1 Exp1: Costs of Cryptographic Algorithms 
The execution times of SHA-256, HMAC-128, and RSA-3072 on objects with varying sizes are 

depicted in Figure 6.14.  

 
Figure 6.14: The comparisons of the execution times of SHA-256, HMAC-128, and RSA-3072 on 

objects with varying sizes.  

From the figure, we can make the following observations. The mean execution times for 

SHA-256, HMAC-128-Signing and HMAC-128-Verification have similar values and they 

increase almost linearly as the size of the objects increases. For example, when the object size 

increases from 32B to 128 MiB (an order of 106 increase), the execution time increases from 

less than 2 microseconds, to about 440,000 microseconds (an order of 105 increase). This is 

because the larger size of the objects increases the workload of the algorithms thus the 

execution times.  

With regard to RSA-3072-Signing and RSA-3072-Verification, their execution times are of 

similar values when the size of each object goes beyond 512 KiB, and the values and trend are 

similar to those of the hash function and MAC based algorithms mentioned above. In other 

words, the differences in the costs of these algorithms are insignificant. However, when the 

object sizes are small, the execution time of RSA-3072-Signing is much higher than that of 

RSA-3072-Verification, and they do not change much when the object size is smaller than 32 

KiB. For example, when the object size is 32B, RSA-3072-Signing takes about 1,700 

microseconds to execute whereas for RSA-3072-Verification, the value is 65 microseconds. 

This means that, for small sized objects, RSA-3072-Signing is 26 times more expensive than 
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RSA-3072-Verification. This is because of the difference in their internal operations. The 

executions of these two algorithms are mostly influenced by two internal operations, (1) hash 

generation applied on the object and (2) a signature operation (signing or verification) applied 

on the resulting hash. The execution time of (1) increases when the object size increases but 

the execution time of (2) is fixed (as the hash size is fixed). When the object size is small (e.g., 

32 B), the execution time of (2) is much longer than that of (1) (due to difficulty of computing 

asymmetric-key algorithms). In addition, RSA SIG-Signing is much more computationally 

expensive than SIG-Verification. However, the execution time of (1) surpasses that of (2) when 

the object size goes beyond a certain threshold (e.g., 512 KiB) and becomes the dominant 

cost of the signature based algorithms; the larger the object sizes, the closer the execution 

times of hash function, MAC based, and signature based algorithms thus the smaller 

difference in the execution times.   

These results lead to the following findings: (1) the overhead introduced by data 

authentication solutions constructed based on these cryptographic algorithms should 

increase when the object sizes increase; (2) the hybrid approach to data authentication 

solutions, which minimises the use of digital signatures combined with the use of hash 

functions and MACs assisted with pairwise keys shared with a trusted third party, can bring 

significant reduction in computational overheads in providing data authentication; and (3) 

this reduction is more significant when the sizes of the objects to be protected are smaller, 

for example, when the object size is 32B, the hash function and MAC cost approximately 0.1% 

and 2.6% of RSA based signature signing and verification costs, respectively. 

6.9.4.2 Exp2: Costs of Data Authentication Algorithms 
The execution times of AuthData-Generation and AuthData-Verification algorithms used in 

the MAC based, signature (SIG) based, and CPDA are compared under different parameter 

value settings in terms of object sizes and the numbers of Workers used. The experimental 

results are shown in Figure 6.15.  

 

(a) (b) 
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(c) (d) 
 

 

 

(e) (f) 
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(i) (j) 

Figure 6.15: The comparisons of the execution times of the data authentication algorithms used in 
the MAC based, signature (SIG) based and CPDA.  

(a) ISAuthData-Generation. (b) ISAuthData-Verification with 𝑴 = 𝟏.  
(c) ISAuthData-Verification of CPDA. (d) PGen-PSAuthData-Generation with 𝑴 = 𝟏.  

(e) AGen-PSAuthData-Generation. (f) PSAuthData-Verification with 𝑹 = 𝟏.  
(g) PSAuthData-Verification of CPDA with 𝑴 = 𝟏. (h) PGen-FRAuthData-Generation.  

(i) AGen-FRAuthData-Generation. (j) FRAuthData-Verification. 

Figure 6.15(a) shows the execution times of ISAuthData-Generation (executed by 

ClientApp) against the size of objects and number of Mappers. From the figure, we can see 

that the execution times increase as the object size increases, but the differences among the 

execution times are disappearing when the object sizes are large. For example, with 100 

Mappers and 1-MiB object, the mean execution times of the MAC based, signature based, 

and CPDA are respectively 0.35 seconds, 0.76 seconds, and 0.35 seconds; whereas, with 

objects of 128-MiB size, all the mean execution times are approximately 44 seconds. This is 

because the execution times of ISAuthData-Generation are dependent on the execution times 

of the underlying cryptographic algorithms. The execution times of these algorithms increase 

as the size of the object increases and the difference among the execution times of different 

algorithms disappears when the object size is sufficiently large (as explained in Exp1).  

In addition, the execution times also increase as the number of Mappers increases. This is 

because the increase in Mappers increases the number of InputSplits to be signed and 

verified, hence, the increase in execution times. 

The most important observation from these results is that CPDA markedly outperforms 

the signature based when the size of the objects is small. For example, as reported above, 

given 100 Mappers, the mean execution times for the MAC based, the signature based, and 

CPDA are, respectively, 0.35 seconds, 0.76 seconds, and 0.35 seconds. This shows that CPDA 

gives a similar performance as the MAC based method. It is 53% more efficient than the 

signature based method.  

Figure 6.15(b) shows the execution times of ISAuthData-Verification using the three 

different methods as against different object sizes. This verification operation is performed 

by a single Mapper. From the results, it can be seen that the three methods introduce a similar 

level of costs at any given object size and the costs only increase as the object size increases. 

For example, with 1-MiB sized objects, the mean execution times are 0.004 seconds, whereas, 

with 128-MiB sized objects, the mean execution times are 0.4 seconds. The costs of the 
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algorithms used in three different solutions are at the same level because: (1) the costs of the 

algorithms are dependent on the numbers, and costs, of the underlying cryptographic 

operations used (as summarised in Table 6.8); (2) all the three solutions each perform one 

cryptographic operation (but different class of cryptographic operation) on the assigned 

InputSplit (which is large), with an exception of CPDA which introduces additional operations 

(i.e., root hash recovery and SIG-Verification on the root hash) on small objects; (3) as 

discussed in Exp1, when the object size is large, the three classes of cryptographic operations 

introduce the same level of costs, i.e., the differences in costs among different classes are 

very small; and (4) the costs of operations on small objects are negligible in comparison with 

those of operations on large objects when InputSplits are sufficiently large (e.g., 1 MiB).  

Figure 6.15(c) shows the execution times of ISAuthData-Verification using CPDA with 

objects of different sizes and different numbers of Mappers. From the figure, it can be seen 

that the size of objects has a major effect on the execution times, the larger the size of the 

objects, the longer the execution time. This result is within our expectation, as the cost of 

hash generation increases as the object (InputSplit) size increases. However, for any given 

object size, the increase in execution times caused by the increase in Mappers is negligible. 

This is consistent with our theoretical analysis result, i.e., an increase in the number of 

Mappers would lead to an increase in the overhead of the method by ⌈log 𝑀⌉ ∗ 𝑂𝑆ℎ = 

⌈log 100⌉ ∗ 1 microseconds = 7 microseconds, which is negligible compared with the values 

of 𝑂𝐿ℎ = 440,000 microseconds and 𝑂𝑆𝑠𝑣 = 66 microseconds11.  

Figure 6.15(d) shows the execution times of PGen-PSAuthData-Generation (performed by 

a Mapper) against different object sizes and different numbers of Reducers. The trend in the 

results is very similar to the that in Figure 6.15(a), with an exception that here, in this figure, 

there are larger performance gaps between CPDA and the signature based and the gaps 

expand to medium (1-MiB) sized objects. This means that CPDA performs better in 

comparison with the signature based method with regard to this algorithm. The reason for 

this is that, in this algorithm, a MAC scheme is used to sign each root hash and the reduction 

in costs is larger than the ISAuthData-Generation algorithm.  

Figure 6.15(e) shows the execution times of AGen-PSAuthData-Generation (performed by 

JobManager) against different numbers of Mappers. The execution times increase as the 

number of Mappers increases; they increased from 0.004 seconds to 0.005 seconds (an 

increase of 25%) when the number of Mappers increased from 1 to 100 (an order of two-

magnitude increase). This indicates that, with regard to this algorithm, CPDA is highly scalable 

as the increase in the execution time is a fraction of the increased number of Mappers. As 

explained in Section 6.8.2, the increase in the number of Mappers increases the times needed 

for verifying the root hashes using MAC-Verify and the size of concatenated hash to be 

digitally signed thus the increase in the execution times of the algorithm. However, such 

increase is small compared to the execution time of SIG-Signing.   

Figure 6.15(f) shows the execution times of PSAuthData-Verification (performed by a 

Reducer) against different object sizes and different numbers of Mappers. The trend is similar 

 
11 Here, 𝑂𝑆ℎ is a hash operation on 64-byte data (a concatenation of two hashes), 𝑂𝐿ℎ  is a hash operation on 128-MiB data, 
and 𝑂𝑆𝑠𝑣 is a SIG-Verification operation on 32-byte data (with padding to 3072 bits = 384 B). 
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to that shown in Figure 6.15(a) with an exception that the gaps between the results of CPDA 

and those of the signature based are smaller here. Although CPDA greatly reduce the number 

of signature verification operations used in this algorithm, the cost incurred in hash 

generation and MAC-Verify is close to that incurred in RSA SIG-Verification thus small 

reduction in the execution times.  

Figure 6.15(g) shows the execution times of PSAuthData-Verification using CPDA 

(performed by a Reducer) against object sizes with the use of one Mapper and varying 

numbers of Reducers. The results show the similar patterns as those in Figure 6.15(c).  

Figure 6.15(h) shows the execution times of PGen-FRAuthData-Generation (performed by 

a Reducer) against object sizes. Similar to the results shown in Figure 6.15(b), the execution 

times increase as the object size increases. In addition, as explained in Figure 6.15(d), as CPDA 

uses MAC scheme to sign each root hash, which is much cheaper than the digital signature 

based method, we get a larger cut in execution times in PGen-FRAuthData-Generation.  

Figure 6.15(i) shows the execution times of AGen-FRAuthData-Generation (performed by 

JobManager) against the number of Reducers. The trend is similar to that in Figure 6.15(e).  

Figure 6.15(j) shows the execution times of FRAuthData-Verification (performed by 

ClientApp) against object sizes with different numbers of Reducers. It exhibits the same trend 

as that in Figure 6.15(f).  

The results from Exp2 show that the costs incurred by the CPDA algorithms are remarkably 

close to those introduced by the MAC based algorithms. CPDA is markedly more efficient than 

the signature based method, particularly when the data objects to be protected are of smaller 

sizes and the quantities of the objects are large (i.e., large number of producers and 

consumers). This is due to the reduction in expensive operations by CPDA and large 

differences in computational costs among different classes of cryptographic operations when 

applied to small objects. The cost reduction benefits all the data processing components in 

the system. The largest reduction occurs in PGen-PSAuthData-Generation; in comparison with 

the signature based method, bringing a cost reduction of 90%. 

6.9.4.3 Exp3: Performance of Data Authentication Services 
The times taken to execute jobs (job execution times) under four different conditions, i.e., 

without any data authentication (No-Auth) and with each of the three data authentication 

services (MAC based, signature (SIG) based and CPDA) are investigated against varying 

numbers of Workers (Mappers and Reducers). The results are depicted in Figure 6.16.  

 

(a) (b) 
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(c) (d) 

Figure 6.16: The comparisons of the execution times of MR jobs with and without data 

authentication.  

(a) 𝑴 = 𝟓. (b) 𝑴 = 𝟓𝟎. (c) 𝑴 = 𝟏𝟎𝟎. (d) 𝑴 = 𝟐𝟎𝟎. 

Based on the results shown in the figures, we can make the following observations. Firstly, 

as the numbers of Mappers and Reducers increase, the job execution times in all the four 

cases (without data authentication and with each of the three services applied) increase. For 

example, when 5 Mappers are used, with 5 Reducers, the job execution times are 

approximately 9 seconds (No-Auth), 12 seconds (MAC), 13 seconds (SIG), and 14 seconds 

(CPDA), but with 200 Reducers, the corresponding values are 56 seconds, 60 seconds, 65 

seconds, and 64 seconds. The rates of increase for the four cases are respectively, 6.2 (No-

Auth), 5 (MAC), 5 (SIG), and 4.5 (CPDA). The reason for the increase in job execution times as 

the number of Workers (one or both of the Mappers and Reducers) increases is that when 

the number of these Workers increases, the number of objects to be signed and verified also 

increases, and this introduces additional overhead costs (e.g., process initialisation, memory 

allocation, and inter-process communication). These overhead costs offset the benefit of task 

parallelism due to the limited number of tasks that can be executed concurrently. 

The second observation is that, among the three data authentication services, the MAC 

based service adds the smallest amount of delay whereas the signature based service adds 

the largest. The more the Workers that are used, the smaller the gaps between the CPDA and 

MAC based service and the larger the gaps between the CPDA and signature based service, 

which means the bigger the benefit CPDA brings in terms of cutting down execution times. 

For example, when 5 Mappers and 200 Reducers are used, the differences in job execution 

times between CPDA and the MAC based service and between CPDA and the signature based 

service are, respectively, 4.6 and 1 seconds. However, when 200 Mappers and 200 Reducers 

are used, these values are, respectively, 12 and 24 seconds. This means that, in this setting, 

CPDA cuts down up to two thirds of the additional overhead cost while still providing the 

same level of protection as that of the signature based service. This reduction is significant, 

as, in some application contexts such as security threat analysis or intrusion detection, a 

minor reduction in a job execution time means sooner production of analysis results, which, 

in turn, means an earlier intrusion detection and a faster reaction (or a mitigating response). 

The above experimental results indicate that, at the cost closer to that of the MAC based 

service, CPDA can provide the same security protections as the signature based service that 
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is stronger in security protection but computationally much more expensive than the MAC 

based service. The more Workers that are used, the closer they are. 

6.10 Chapter Summary 

This chapter has presented a novel approach, a communication pattern based approach, to 

data authenticity and non-repudiation of origin protections for MR based CBDC-MPC and a 

novel data authentication framework, the CPDA framework, that implements the approach. 

The critical analysis on the related work indicates that there are rooms for improvements in 

existing solutions with regard to efficient provisioning of the protections in the context. None 

of the solutions are designed to provide protection to every data object generated and 

processed during a job execution. Some solutions (i.e., symmetric-key based without a form 

of asymmetry) are efficient but do not provide non-repudiation of origin protection. Some 

solutions (e.g., secret-share based and task-replication based) introduce a high level of 

overhead cost which may hinder the performance of the underlying services. Via literature 

research, we discovered that the overhead cost introduced by expensive asymmetric-key 

operations can be reduced by using a signature amortisation technique, and this inspired the 

design of CPDA. The design of CPDA makes use of two main ideas. The first is ACA in which 

aggregation is applied to AuthData generation and verification as well as communications 

among MR components. The aggregation of AuthData generation and verification reduces 

number of expensive cryptographic operations to be performed by data processing 

components, thus reducing computational overhead cost. The aggregation of 

communications reduces the number of communications among the components by using a 

third-party aggregator, reducing network traffics thus communication overhead cost. The 

second idea is HYSC which makes a hybrid use of multiple cryptographic primitives. The 

computationally less expensive scheme (i.e., the MAC scheme) is applied to protect JobData 

that are pairwise transmitted and the computationally more expensive scheme (i.e., the 

digital signature scheme) is applied to protect JobData that are used by multiple data 

consumers. This hybrid use of cryptographic scheme can ensure the accountability of data 

producers while minimising the computational overhead cost. The security analysis and 

performance evaluation have been conducted on CPDA and the most related object-based 

solutions. The results show that CPDA can provide the same level of protections as the MAC 

based scheme with TTP and the signature based scheme. In addition, the overhead cost 

introduced by CPDA is lower than that of the signature based scheme (a maximum reduction 

of 66%) and the overhead cost grows closer to that of the MAC based scheme when CPDA is 

applied to a larger scale of MR service. CPDA is also suited to other applications, such as 

wireless sensors networks and IoT applications, that can be characterised by some or all of 

the O2M, M2M, and M2O patterns. The approach to data authentication and the design and 

evaluations of CPDA presented in this chapter is the third contribution (NC3) of this research 

work. The contribution answers the research questions (Q3) and (Q4). 

The next chapter presents a working example to demonstrate how a cyberthreat analysis 

job is carried out by using the MR framework in the CBDC-MPC context, and how the MDA 

framework is applied to the job execution to provide authentication protections.  
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Chapter 7   

The Detailed Operational Steps for the Running 

Example 

7.1 Chapter Introduction 

This chapter provides detailed operational steps for the running example to illustrate how an 

example MR based cyberthreat analysis job is executed without our MDA framework and how 

the job is executed when the MDA framework is applied. The chapter explains all the 

operational steps for the job execution. This complements the example job execution flow 

given in Section 4.6. It then explains how different components of the MDA framework are 

used to achieve both entity and data authentication protections at the finest granularity (i.e., 

at every interaction and for every JobData object) throughout the entire cycle of the job 

execution. It also highlights how credentials used for the authentication are established on 

the MR components and how AuthData are transmitted during the job execution. This 

complements the descriptions of the running example given in Sections 5.6 and 6.6. 

In detail, Section 7.2 gives a step-by-step description of the job execution flow for the 

running example. Section 7.3 explains in detail the operations of the MDA framework when 

being applied to the job execution. Section 7.4 concludes the chapter.  

7.2 Job Execution Flow  

This section explains the operational steps for the execution of the job in the running example 

described in Section 4.6. The operational steps are based on the operational steps (GM-1) 

through to (GM-29) explained in Section 4.3.4. In the following, the steps (EF-1) through to 

(EF-7) are captured in Figure 4.8(a), (EF-8) through to (EF-19) in Figure 4.8(b), (EF-20) through 

to (EF-23) in Figure 4.8(c), and (EF-24) through to (EF-29) in Figure 4.8(d).  

(EF-1) 𝑈𝑠𝑒𝑟1, as the JobSubmitter, sends a request for security log files, 𝐹𝑖𝑙𝑒2 and 𝐹𝑖𝑙𝑒3, 

for the job to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3 via existing secure communication channels. The 

request contains a reference ID with a value of 0001 for the job. 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3 

receive and approve the request and send a confirmation back to 𝑈𝑠𝑒𝑟1.  

(EF-2) 𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3, respectively, use 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 to send a request with the reference ID for a new job ID and a path to 

write the security log files and job configuration files (e.g., the size of each InputSplit 

and the number of Reducers) to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively.  

(EF-3) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, 

respectively, receive and accept the request sent from 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, 

and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. Each of the ResourceManagers replies the respective ClientApp 

with a job ID with a value of 0001 and a path with a value of “/Job/0001”.  

(EF-4) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, respectively, receive the reply from 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. 
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𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, respectively, write 𝐹𝑖𝑙𝑒1, 𝐹𝑖𝑙𝑒2, and 

𝐹𝑖𝑙𝑒3 and the job configuration files to the path “/Job/0001” on the respective DFS 

clusters. The writing process involves three further steps.  

a. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, respectively, send a request for 

writing the data (the security log files and the job configuration files) to 

“/Job/0001” to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives and accepts the request. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

determines that the data can be stored on 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. Therefore, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 replies 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to write the data to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. 

Similarly, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, receives the requests and, 

respectively, reply 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 to write the data to 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2 and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3.  

c. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 receive the reply from the 

respective NameManager and, respectively, contact and write the data to 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

2, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3. 𝐹𝑖𝑙𝑒1, 𝐹𝑖𝑙𝑒2, and 𝐹𝑖𝑙𝑒3 are, 

respectively, used as 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1, 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2, and 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3.  

(EF-5) Once each of the ClientApps finishes writing the data, it notifies the respective 

ResourceManager of the writing completion.  

(EF-6) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends a request for inquiring the status of data writing to 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  

(EF-7) When the writing of data by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 completes, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively, reply 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 of the completion of writing.  

(EF-8) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends a request for launching 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 for the job to 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 (managing 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

1). Along the request, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends a list of NameManagers (𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3) for J𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to contact and the path 

“/Job/0001” to read the job configuration files.  

(EF-9) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 starts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and pass the data to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.  

(EF-10) Once 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 is launched, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 notifies 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to 

contact 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. 

(EF-11) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 contacts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. Throughout the job execution, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 will 

periodically contacts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to inquire the status of job.  

(EF-12) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 reads the job configuration files from the DFS clusters. The reading 

process involves three further steps.  

a. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a request for reading the job configuration files from the 

path “/Job/0001” to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 receive and 

accept the request and, respectively, reply 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to read the job 

configuration files from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

2, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3.  

c. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 receives the reply from the NameManagers and read the job 

configuration files from the respective DataStores.  
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(EF-13) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 decides the number of Workers (Mappers and Reducers) needed for 

the job based on the configuration files. In this case, 3 Mappers (𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, 

and 𝑀𝑎𝑝𝑝𝑒𝑟3) and 3 Reducers (𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) will be used. 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 then sends a request for worker allocation (3 Mappers and 3 

Reducers) to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.  

(EF-14) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the request. As 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1 can host only 1 

Mapper and 1 Reducer, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends a request for worker allocation 

(2 Mappers and 2 Reducers) to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  

(EF-15)  𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 receive the request. After they 

examine their available resources, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, 

respectively, reply 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 that 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
2 and 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

3 

each can host 1 Mapper and 1 Reducer.  

(EF-16) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the reply from 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 replies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 that each of 

𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
3 can host 1 Mapper and 1 

Reducer, a total of 3 Mappers and 3 Reducers.  

(EF-17) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a request for launching 1 Mapper and 1 Reducer to each of 

𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
3. The request is handled by the 

WorkerManager of each WorkerNode, i.e., 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

3.  

(EF-18) Each of 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3 starts 1 

Mapper and 1 Reducer on its WorkerNode, i.e., 𝑀𝑎𝑝𝑝𝑒𝑟1 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 on 

𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1, 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 on 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 and 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 on 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
3. 

(EF-19) Each of 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, 𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 

contacts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. During the executions of map and reduce tasks, the Mappers 

and Reducers will periodically report the progress of the task execution to 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.  

(EF-20) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 issues a command to 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 to start map 

tasks and to specify the locations of the assigned InputSplits, i.e., 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 for 

𝑀𝑎𝑝𝑝𝑒𝑟1 is in 𝐷𝐹𝑆1, 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 for 𝑀𝑎𝑝𝑝𝑒𝑟2 is in 𝐷𝐹𝑆2, and 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 for 

𝑀𝑎𝑝𝑝𝑒𝑟3 is in 𝐷𝐹𝑆3.  

(EF-21) 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 receive the command and read the assigned 

InputSplits from the respective DFS clusters. The reading processing involves three 

further steps.  

a. 𝑀𝑎𝑝𝑝𝑒𝑟1 sends a request for reading 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 from the path “/Job/0001” 

to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. Similarly, 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑀𝑎𝑝𝑝𝑒𝑟3 each send a request to 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively.  

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives and accepts the request. It replies 𝑀𝑎𝑝𝑝𝑒𝑟1 to read 

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. Similarly, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 replies 𝑀𝑎𝑝𝑝𝑒𝑟2 

to read 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 replies 

𝑀𝑎𝑝𝑝𝑒𝑟3 to read 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3.  
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c. 𝑀𝑎𝑝𝑝𝑒𝑟1 receives the reply from 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. It then contacts and reads 

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. Similarly, 𝑀𝑎𝑝𝑝𝑒𝑟2 reads 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 from 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2 and 𝑀𝑎𝑝𝑝𝑒𝑟3 reads 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3.  

(EF-22) 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 perform the map tasks on the assigned 

InputSplits. Each of the Mappers scans the entries in the respective InputSplit. If an 

entry shows that the source IP address is one of the compromised machines and the 

destination port number is 22, the Mapper will output a key-value pair of destination 

and source IP addresses, expressed as {𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃, 𝑆𝑜𝑢𝑟𝑐𝑒 𝐼𝑃}. For 𝑀𝑎𝑝𝑝𝑒𝑟1, 

three key-value pairs are output, {10.2.0.201, 10.1.0.101}, {10.3.0.201, 10.1.0.101}, 

and {10.3.0.202, 10.1.0.102}. The output will be partitioned into 

PartitionSegments12.   

 The key-value pairs will be partitioned based on the key (the destination IP 

address), i.e., the IP address block 10.1.0.0/16 will be in the first PartitionSegment 

(for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1), the IP address block 10.2.0.0/16 in the second PartitionSegment (for 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2), and the IP address block 10.3.0.0/16 in the third PartitionSegment (for 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3). As a result, 𝑀𝑎𝑝𝑝𝑒𝑟1 produces an IntermediateResult 

(𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡1) containing 2 PartitionSegments, 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2 

containing {10.2.0.201, 10.1.0.101} and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3 containing 

{10.3.0.201, 10.1.0.101; 10.3.0.202, 10.1.0.102}. Using the same method, 𝑀𝑎𝑝𝑝𝑒𝑟2 

and 𝑀𝑎𝑝𝑝𝑒𝑟3, respectively, produce 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡2 and 

𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡3. 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡2 contains 2 PartitionSegments, 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 containing {10.1.0.201, 10.2.0.101} and 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2 containing {10.2.0.203, 10.2.0.101}. 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡3 

contains 2 PartitionSegments, 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2 containing {10.2.0.201, 

10.3.0.101} and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3 containing {10.3.0.202, 10.3.0.101}. The 

IntermediateResults are stored in the local storage of the respective WorkerNodes. 

The contents of the IntermediateResults are summarised in Table 7.1.  

Table 7.1: Output produced by the Mappers.  

Mapper Output file 𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒆𝒈𝒎𝒆𝒏𝒕𝒊,𝟏  

(for 𝑹𝒆𝒅𝒖𝒄𝒆𝒓𝟏) 

𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒆𝒈𝒎𝒆𝒏𝒕𝒊,𝟐  

(for 𝑹𝒆𝒅𝒖𝒄𝒆𝒓𝟐) 

𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒆𝒈𝒎𝒆𝒏𝒕𝒊,𝟑  

(for 𝑹𝒆𝒅𝒖𝒄𝒆𝒓𝟑) 

𝑀𝑎𝑝𝑝𝑒𝑟1 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡1 -  10.2.0.201, 10.1.0.101; 10.3.0.201, 10.1.0.101; 

10.3.0.202, 10.1.0.102; 

𝑀𝑎𝑝𝑝𝑒𝑟2 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡2 10.1.0.201, 10.2.0.101; 10.2.0.203, 10.2.0.101; -  

𝑀𝑎𝑝𝑝𝑒𝑟3 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡3 -  10.2.0.201, 10.3.0.101; 10.3.0.202, 10.3.0.101; 

(EF-23) Each of 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 notifies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 when its map task 

finishes and its IntermediateResult is ready.  

(EF-24) Once all the map tasks complete, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 issues a command to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 to start reduce tasks and specify the locations of the 

assigned PartitionSegments. The locations for the PartitionSegments are as follows: 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 is stored in 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
2, 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2, 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2, and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2 for 

 
12 The implementation of the partition function is MR implementation dependent. In this work, it is assumed that the 
partition is carried out by the MR service after each of the Mappers carries out its map task.  
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𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 are stored in 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
3, 

respectively, and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3 for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 

are stored in 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1 and 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

3, respectively.  

(EF-25) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 receive the command and retrieve the assigned 

PartitionSegments.  

a. If the PartitionSegments are stored in the local storage of its WorkerNode, the 

Reducer can retrieve the PartitionSegments locally and no inter-node data 

transfer is required. In this example, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 can, 

respectively, retrieve 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3 from 

the local storage of their nodes.  

b. If the PartitionSegments are stored on the other WorkerNodes, the Reducer 

sends requests for the PartitionSegments to the WorkerManagers of the 

respective WorkerNodes. Once the requests are received and approved, the 

Reducers can retrieve the requested PartitionSegments. In this example, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 has to send a request for a PartitionSegment to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1 and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

3, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 to 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1.  

 The assigned PartitionSegments will be processed (merged) by the merge 

function13. This is done by grouping the values (the source IP addresses) 

corresponding to the same key (the destination IP address) together. Hence, the 

input of 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 are, respectively, {10.1.0.201, 

[10.2.0.101]}, {10.2.0.201, [10.1.0.101, 10.3.0.101]; 10.2.0.203, [10.2.0.101]}, and 

{10.3.0.201, [10.1.0.101]; 10.3.0.202, [10.1.0.102, 10.3.0.101]}. This is summarised 

in Table 7.2. 

Table 7.2: Input used by the Reducers.  

Reducer Input (merged PartitionSegments) 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 10.1.0.201, [10.2.0.101]; 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 10.2.0.201, [10.1.0.101, 10.3.0.101];  

10.2.0.203, [10.2.0.101]; 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 10.3.0.201, [10.1.0.101];  

10.3.0.202, [10.1.0.102, 10.3.0.101]; 

(EF-26) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 perform the reduce tasks on the respective 

merged PartitionSegments. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 processes its input key by key. For each key, it 

counts the number of source IP addresses (i.e., how many times the machine had 

been connected to by the compromised machines) and outputs a key-value pair of 

destination IP address and connection count, expressed as {𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃,

𝐶𝑜𝑢𝑛𝑡}. Hence, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 produces an output file, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, containing 

{10.1.0.201, 1}. Using the same method, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 produces 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1 

containing {10.2.0.201, 2; 10.2.0.203, 1} and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 produces 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1 

containing {10.3.0.201, 1; 10.3.0.202, 2}. This is summarised in Table 7.3.  

 
13 The implementation of the merge function is MR implementation dependent. In this work, it is assumed that the merge 
function is carried out by the MR service before each of the Reducers carries out its reduce task.  
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Table 7.3: Output produced by the Reducers.  

Reducer Output file Content 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1  10.1.0.201, 1; 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1  10.2.0.201, 2;  

10.2.0.203, 1; 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1  10.3.0.201, 1;  

10.3.0.202, 2; 

 After the reduce tasks finish, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 writes 

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1 to 𝐷𝐹𝑆1. The writing process 

involves three further steps.  

a. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, respectively, send a request for writing 

the output files (𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1) to 

“/Job/0001” to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.  

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives and accepts the request. It replies 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 to write the FinalResults to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1.  

c. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 receive the reply from 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. 

The Reducers then, respectively, contact and write the data to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. 

(EF-27) Each of 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 notifies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 when its reduce 

task finishes and the FinalResult is written to 𝐷𝐹𝑆1.  

(EF-28) Once 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 receives the notifications from all the Reducers, it notifies 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 that FinalResults are ready for retrieval.  

(EF-29) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the notification from 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and reads the FinalResults 

stored on 𝐷𝐹𝑆1 for 𝑈𝑠𝑒𝑟1. The reading process involves three further steps.  

a. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a request for reading all the FinalResults of the job 

(𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1) from the path 

“/Job/0001” to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.  

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives and accepts the request. It replies 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to 

read the requested data from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1.  

c. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the reply from 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. It contacts 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 and reads 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1. 

The execution of the job is complete successfully.  

It is worth mentioning that the MR framework can be used to execute data analysis jobs 

with various levels of sophistication; this is dependent on the problem to be analysed, the MR 

implementations used, and the software codes of the Mappers and Reducers. One of the 

more sophisticated data analysis jobs than our working example described above is a job used 

to trace back to the origin of the attacks mounted on a compromised machine. The job is 

executed in multiple rounds of executions, each round consists of a separate pair of map and 

reduce phases. The output from an earlier round is used as the input of the next round. For 

example, the first round is used to identify machines that have ever connected to any of the 

compromised machines. The subsequent rounds are used to identify machines that have 

made connections to the machines identified in the previous rounds. The execution continues 

until there are no more machines to trace back.  
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The next section explains in detail how the MDA framework is applied to the working 

example described above to protect the authenticity of JobData used, processed, and 

generated by the MR services during the job execution.  

7.3 MDA in Action 

This section explains in detail how the MDA framework provides entity and data 

authentication protections to the job in the running example. It complements the 

demonstration given in Section 5.6 and Section 6.6. Based on the operational steps (EF-1) 

through to (EF-29) described earlier, this section explains the operational steps when MDA is 

applied to the job execution, showing how different components of the MDA framework are 

used at different stages of the job execution to protect every JobData object at every 

interaction.  

In each of the operational steps, we describe which MDA components are applied, what 

credentials are used for each authentication instance, and what credentials are distributed 

and established for subsequent authentication. We use the same assumptions as those given 

in Section 5.4.1 and Section 6.4.1. The certification and verification processes of the public 

keys are omitted. The notations used in describing the keys and entities involved in the 

authentication process are shown in Table 5.2 (Section 5.4.2) and Table 6.2 (Section 6.4.2). 

Keys that are established on components prior to the execution of the job are summarised in 

Table 7.4. These keys are established by using existing mechanisms, such as MR service-level 

authentication services.  

Table 7.4: Credentials established prior to the execution of the job.  

Keys Components involved When the keys are being established 

𝑜𝑘1 , 𝑝𝑚𝑘𝑐1,𝑟𝑚1  𝑐1 and 𝑟𝑚1  𝑐1 is registered to 𝑟𝑚1 

𝑜𝑘2, 𝑝𝑚𝑘𝑐2,𝑟𝑚2   𝑐2 and 𝑟𝑚2 𝑐2 is registered to 𝑟𝑚2 

𝑜𝑘3, 𝑝𝑚𝑘𝑐3,𝑟𝑚3   𝑐3 and 𝑟𝑚3 𝑐3 is registered to 𝑟𝑚3 

𝑝𝑖𝑘1 , 𝑝𝑐𝑘1    
𝑝𝑚𝑘𝑤𝑚1

1,𝑟𝑚1 , 𝑠𝑙𝑘𝑤𝑚1
1,𝑟𝑚1  

𝑤𝑚1
1 and 𝑟𝑚1 𝑤𝑚1

1 is registered to 𝑟𝑚1 

𝑝𝑖𝑘1 , 𝑝𝑐𝑘1    
𝑝𝑚𝑘𝑤𝑚2

1,𝑟𝑚1 , 𝑠𝑙𝑘𝑤𝑚2
1,𝑟𝑚1  

𝑤𝑚2
1 and 𝑟𝑚1 𝑤𝑚2

1 is registered to 𝑟𝑚1 

𝑑𝑓𝑘1 , 𝑠𝑙𝑘𝑛𝑚1,𝑟𝑚1   𝑛𝑚1 and 𝑟𝑚1 𝑛𝑚1 is registered to 𝑟𝑚1  

𝑑𝑓𝑘2, 𝑠𝑙𝑘𝑛𝑚2,𝑟𝑚2  𝑛𝑚2 and 𝑟𝑚2 𝑛𝑚2 is registered to 𝑟𝑚2 

𝑑𝑓𝑘3, 𝑠𝑙𝑘𝑛𝑚3,𝑟𝑚3  𝑛𝑚3 and 𝑟𝑚3 𝑛𝑚3 is registered to 𝑟𝑚3 

𝑑𝑓𝑘1 , 𝑠𝑙𝑘𝑑𝑠1
1,𝑛𝑚1   𝑑𝑠1

1 and 𝑛𝑚1 𝑑𝑠1
1 is registered to 𝑛𝑚1 

𝑑𝑓𝑘2, 𝑠𝑙𝑘𝑑𝑠1
2,𝑛𝑚2   𝑑𝑠1

2 and 𝑛𝑚2 𝑑𝑠1
2 is registered to 𝑛𝑚2 

𝑑𝑓𝑘3, 𝑠𝑙𝑘𝑑𝑠1
3,𝑛𝑚3   𝑑𝑠1

3 and 𝑛𝑚3 𝑑𝑠1
3 is registered to 𝑛𝑚3 

𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚2   𝑟𝑚1 and 𝑟𝑚2 Collaboration is established 

𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚3   𝑟𝑚1 and 𝑟𝑚3 Collaboration is established 

𝑝𝑚𝑘𝑟𝑚2,𝑟𝑚3   𝑟𝑚2 and 𝑟𝑚3 Collaboration is established 

𝑠𝑘𝑐1, 𝑝𝑘𝑐1  𝑐1  Before job submission 

𝑠𝑘𝑐2, 𝑝𝑘𝑐2  𝑐2  Before job submission 

𝑠𝑘𝑐3, 𝑝𝑘𝑐3  𝑐3  Before job submission 

(MF-1) Prior to sending a request for security log files (𝐹𝑖𝑙𝑒2 and 𝐹𝑖𝑙𝑒3) as described in (EF-

1), 𝑈𝑠𝑒𝑟1 authenticates to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3 by using existing authentication 

services. After the users are successfully authenticated, 𝑈𝑠𝑒𝑟1 can then proceed to 
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sending the request to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3. A JobDomain key 𝑗𝑘 is generated and 

distributed to all the users.  

(MF-2) 𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3, respectively, authenticate to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, 

and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 by using an existing authentication service (e.g., an operating 

system-level authentication service). Before 𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3 (through 

their ClientApps) can send a request to start a new job and to write the input data 

(the security log files) and job configuration files to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 as described in (EF-2), ClientApps 

and the respective ResourceManagers should be mutually authenticated. The 

authentication of each pair of 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 

and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 is done by 

using the GP2A protocol. The operational steps for the GP2A protocol are given in 

Section 5.5.4.1. The keys used for the entity authentication are the respective 

OrgDomain key and the primary key shared between a ClientApp and the respective 

ResourceManager, i.e., 𝑜𝑘1 and 𝑝𝑚𝑘𝑐1,𝑟𝑚1  are used by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑜𝑘2 and 

𝑝𝑚𝑘𝑐2,𝑟𝑚2  by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑜𝑘3 and 𝑝𝑚𝑘𝑐3,𝑟𝑚3  by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. Each of the 

ClientApps sends 𝑗𝑘 for 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to authenticate to 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, a secondary key (𝑠𝑐𝑘𝑐1,𝑟𝑚1  by 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑠𝑐𝑘𝑐2,𝑟𝑚2  by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑠𝑐𝑘𝑐3,𝑟𝑚3  by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3) for 

subsequent authentication between the ClientApp and the respective 

ResourceManager, and a session key (𝑠𝑠𝑘𝑐1,𝑟𝑚1  by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑠𝑠𝑘𝑐2,𝑟𝑚2  by 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑠𝑠𝑘𝑐3,𝑟𝑚3  by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3) for protecting data exchanged during 

the session.  

(MF-3) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, 

respectively, authenticate to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 before 

sending replies as described in (EF-3). As each of the ResourceManagers has been 

interacted with the respective ClientApp, the authentication is carried out by using 

the SOA protocol with the secondary key (𝑠𝑐𝑘𝑐1,𝑟𝑚1 by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑠𝑐𝑘𝑐2,𝑟𝑚2  by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑠𝑐𝑘𝑐3,𝑟𝑚3 by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3) 

established in (MF-2). The operational steps of the SOA protocol are given in Section 

5.5.4.3. Each of the ResourceManagers prepares a DFS-C key, a primary key, and a 

ticket (containing the encrypted primary key) for the respective ClientApp to 

authenticate to the corresponding NameManager. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 also gives 

a DPS-C key 𝑝𝑐𝑘1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 for authentication to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. Hence, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends 𝑝𝑐𝑘1, 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑛𝑚1, 𝑡𝑘𝑡𝑐1,𝑛𝑚1
𝑟𝑚1

, and 𝑠𝑠𝑘𝑟𝑚1,𝑐1 to 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1; 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 sends 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑐2,𝑛𝑚2 , 𝑡𝑘𝑡𝑐2,𝑛𝑚2
𝑟𝑚2

, and 

𝑠𝑠𝑘𝑟𝑚2,𝑐2 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2; and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 sends 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑐3,𝑛𝑚3, 

𝑡𝑘𝑡𝑐3,𝑛𝑚3
𝑟𝑚3

, and 𝑠𝑠𝑘𝑟𝑚3,𝑐3 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3.  

(MF-4) As described in (EF-4), the writing of security log files and the job configuration files 

to the respective DFS cluster involves three interactions.  
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a. Each of the ClientApps authenticates to the respective NameManager by using 

the GE2A protocol. The operational steps of the GE2A protocol are given in 

Section 5.5.4.2. For each authentication instance, the DFS-C key and the 

primary key established in (MF-3) are used, i.e., 𝑑𝑓𝑘1 and 𝑝𝑚𝑘𝑐1,𝑛𝑚1  by 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑐2,𝑛𝑚2  by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑐3,𝑛𝑚3  

by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. It is worth noting that the primary key for authentication 

between a ClientApp and a NameManager is contained in the ticket sent from 

the ClientApp to the NameManager in the first protocol message (the CH 

message). During the authentication, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends 𝑠𝑐𝑘𝑐1,𝑛𝑚1  and 

𝑠𝑠𝑘𝑐1,𝑛𝑚1  to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 sends 𝑠𝑐𝑘𝑐2,𝑛𝑚2  and 𝑠𝑠𝑘𝑐2,𝑛𝑚2  to 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 sends 𝑠𝑐𝑘𝑐3,𝑛𝑚3  and 𝑠𝑠𝑘𝑐3,𝑛𝑚3  to 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  

b. Before each of the NameManagers sends a reply back to the corresponding 

ClientApp, it authenticates to the respective ClientApp by using the SOA 

protocol with the secondary key established in (MF-4(a)), i.e., 𝑠𝑐𝑘𝑐1,𝑛𝑚1  by 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑠𝑐𝑘𝑐2,𝑛𝑚2  by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑠𝑐𝑘𝑐3,𝑛𝑚3  by 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. Each of the NameManagers also generates a primary key 

and a ticket for the respective ClientApp to authenticate to the corresponding 

DataStore. Hence, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1, 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

, and 𝑠𝑠𝑘𝑛𝑚1,𝑐1 

to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 sends 𝑝𝑚𝑘𝑐2,𝑑𝑠1
2, 𝑡𝑘𝑡𝑐2,𝑑𝑠1

2
𝑛𝑚2

, and 𝑠𝑠𝑘𝑛𝑚2,𝑐2 to 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 sends 𝑝𝑚𝑘𝑐3,𝑑𝑠1
3, 𝑡𝑘𝑡𝑐3,𝑑𝑠1

3
𝑛𝑚3

, and 𝑠𝑠𝑘𝑛𝑚3,𝑐3 

to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3.  

c. Each of the ClientApps authenticates to the respective DataStore. The entity 

authentication for each pair of ClientApp and the respective DataStore is 

carried out by using the GE2A protocol with the DFS-C key established in (MF-

3) and the primary key established in (MF-4(b)). These keys are 𝑑𝑓𝑘1 and 

𝑝𝑚𝑘𝑐1,𝑑𝑠1
1  used by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑐2,𝑑𝑠1

2  by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 

𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑐3,𝑑𝑠1
3  by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. During the authentication, only a session 

key is transmitted. Hence, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, 

respectively, send 𝑠𝑠𝑘𝑐1,𝑑𝑠1
1 , 𝑠𝑠𝑘𝑐2,𝑑𝑠1

2 , and 𝑠𝑠𝑘𝑐3,𝑑𝑠1
3  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3.   

 After the input data are written to the respective DataStore and divided into 

InputSplits, each of the ClientApps generates AuthData for the InputSplit it provides, 

ensuring the authenticity of the InputSplit. This is done by using the ISAuthData-

Generation algorithm (explained in Section 6.5.4.1) with the private key (an 

asymmetric key) of the respective ClientApp. These private keys are 𝑠𝑘𝑐1  for 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑠𝑘𝑐2 for 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑠𝑘𝑐3 for 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. The algorithm 

generates AuthData tokens for the respective InputSplits, i.e., 𝜎𝑟ℎ
𝑐1  and 𝑆𝐴𝑐1  for 

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝜎𝑟ℎ
𝑐2  and 𝑆𝐴𝑐2  for 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 

𝜎𝑟ℎ
𝑐3

 and 𝑆𝐴𝑐3  for 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3.  
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(MF-5) Each of the ClientApps authenticates to the respective ResourceManager before 

notifying of the completion of data writing as described in (EF-5). The authentication 

process and the keys used are as described in (MF-3). The difference is that a new 

session key for the session and the public key of the ClientApp (for InputSplit 

verification by Mappers) are transmitted from the ClientApp to the respective 

ResourceManager. In other words, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, 

respectively, send 𝑠𝑠𝑘𝑐1,𝑟𝑚1  and 𝑝𝑘𝑐1, 𝑠𝑠𝑘𝑐2,𝑟𝑚2  and 𝑝𝑘𝑐2, and 𝑠𝑠𝑘𝑐3,𝑟𝑚3 and 𝑝𝑘𝑐3  

to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  

(MF-6) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑔𝑒𝑟2 and 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 before sending a request for inquiring status of data writing as 

described in (EF-6). The entity authentication is done by using the GP2A protocol 

with the JobDomain key 𝑗𝑘 established in (MF-2) and the primary key established 

prior to the job execution. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 uses 𝑗𝑘 and 𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚2  to 

authenticate to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑗𝑘 and 𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚3  to 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. It then sends secondary keys and session keys to the other 

ResourceManagers, i.e., 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2  and 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚2  to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 

𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3  and 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚3  to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  

(MF-7) When the input data (𝐹𝑖𝑙𝑒2 and 𝐹𝑖𝑙𝑒3) and job configuration files are written to the 

DFS clusters, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 authenticate to 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 before notifying of the completion of data writing as described 

in (EF-7). The entity authentication is done by using the SOA protocol with the 

secondary key established in (MF-6). The keys used are 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2  by 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3  by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. Each of 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 prepares the DFS-C key, a new 

primary key, and a respective ticket for 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to authenticate to 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively, send 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2, 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚2
𝑟𝑚2 , and 

𝑠𝑠𝑘𝑟𝑚2,𝑟𝑚1  and 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3, 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚3
𝑟𝑚3

, and 𝑠𝑠𝑘𝑟𝑚3,𝑟𝑚1  to 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.  

(MF-8) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 before sending a request 

for launching 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 as described in (EF-8). The entity authentication is 

carried out by using the GP2A protocol with the DPS-I key 𝑝𝑖𝑘1 and the primary key 

𝑝𝑚𝑘𝑤𝑚1
1,𝑟𝑚1  established prior to the job execution. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 generates 

a new primary key 𝑝𝑚𝑘𝑟𝑚1,𝑗𝑚 for 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to authenticate to 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, prepares DFS-C keys (𝑑𝑓𝑘1, 𝑑𝑓𝑘2, and 𝑑𝑓𝑘3), primary keys 

(𝑝𝑚𝑘𝑗𝑚,𝑛𝑚1, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2, and 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3), and tickets (𝑡𝑘𝑡𝑗𝑚,𝑛𝑚1
𝑟𝑚1

, 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚2
𝑟𝑚2

, and 

𝑡𝑘𝑡𝑗𝑚,𝑛𝑚3
𝑟𝑚3

) for 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to authenticate to the NameManagers. The keys and 

tickets are obtained in (MF-7). 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 also generates a session key 

𝑠𝑠𝑘𝑟𝑚1,𝑤𝑚1
1  for this session. All the keys and tickets are transmitted from 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1.  
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(MF-9) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 starts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 as described in (EF-9). The entity 

authentication is done locally using an existing method. It also passes the keys and 

tickets obtained in (MF-8) to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 generates a pair of a 

private key 𝑠𝑘𝑗𝑚 and a public key 𝑝𝑘𝑗𝑚. The keys are, respectively, used for signing 

and verifying aggregated AuthData tokens for PartitionSegments and FinalResults.  

(MF-10) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to notify that 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 has 

been launched as described in (EF-10). The entity authentication is done by using the 

SOA protocol with the secondary key 𝑠𝑐𝑘𝑐1,𝑟𝑚1  established in (MF-2). 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 generates a new primary key 𝑝𝑚𝑘𝑐1,𝑗𝑚 and a ticket 𝑡𝑘𝑡𝑐1,𝑗𝑚
𝑟𝑚1

 

for 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to authenticate to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends 

𝑝𝑚𝑘𝑐1,𝑗𝑚, 𝑡𝑘𝑡𝑐1,𝑗𝑚
𝑟𝑚1

, and a new session key 𝑠𝑠𝑘𝑟𝑚1 ,𝑐1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1.  

(MF-11) In addition to the operational step (EF-11), 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a request for 

ISAuthData tokens (for verifying the authenticity of 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 and 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3) 

to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 accept the requests 

and reply 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 with 𝜎𝑟ℎ
𝑐2 , 𝑆𝐴𝑐2 and 𝜎𝑟ℎ

𝑐3 , 𝑆𝐴𝑐3. These exchanges are done 

through secure communication channels.   

 Next, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 authenticates to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before inquiring the status 

of the job as described in (EF-11). The entity authentication is carried out by using 

the GE2A protocol with the DPS-C key 𝑝𝑐𝑘1 established in (MF-3) and the primary 

key 𝑝𝑚𝑘𝑐1,𝑗𝑚 established in (MF-10). 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a secondary key 𝑠𝑐𝑘𝑐1,𝑗𝑚 

and a session key 𝑠𝑠𝑘𝑐1,𝑗𝑚 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. Lastly, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends all the 

ISAuthData tokens (including 𝜎𝑟ℎ
𝑐1 , 𝑆𝐴𝑐1) to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 by using the ISAuthData-

Delivery protocol (explained in Section 6.5.4.3). 

(MF-12) Before 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 can read the job configuration files from all the DFS clusters as 

described in (EF-12), there are three interactions, hence, three entity authentication 

instances. The authentication process is similar to that of (MF-4)).  

a. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 before sending a request for reading the job configuration 

files. The authentication is done by using the GE2A protocol with the DFS-C key 

and the primary key established in (MF-9). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 uses 𝑑𝑓𝑘1 and 

𝑝𝑚𝑘𝑗𝑚,𝑛𝑚1  to authenticate to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2  to 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. Unlike 

(MF-4(a)), in addition to a secondary key and a session key, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 also 

generates a ticket sealing key for each of the NameManagers. The ticket 

sealing keys are used for the generation and verification of tickets issued by 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 for Mappers and Reducers to authenticate to the 

NameManagers. Hence, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚1 , 𝑡𝑠𝑘𝑛𝑚1,𝑗𝑚, and 

𝑠𝑠𝑘𝑗𝑚,𝑛𝑚1  to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚2, 𝑡𝑠𝑘𝑛𝑚2,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑛𝑚2  to 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚3 , 𝑡𝑠𝑘𝑛𝑚3,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑛𝑚3  to 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  
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b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 authenticate to 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before sending a reply to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. The entity 

authentication is done by using the SOA protocol with the secondary key 

established in (MF-12(a)), i.e., 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚1  by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚2  by 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚3  by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. For authentication to 

the respective DataStores, the NameManagers prepare and send the primary 

keys and tickets to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. Hence, in addition to session keys, the keys 

sent to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 are 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
1 , 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

1
𝑛𝑚1

, and 𝑠𝑠𝑘𝑛𝑚1,𝑗𝑚 by 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
2, 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

2
𝑛𝑚2

, and 𝑠𝑠𝑘𝑛𝑚2,𝑗𝑚 by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, 

and 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
3 , 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

3
𝑛𝑚3

, and 𝑠𝑠𝑘𝑛𝑚3,𝑗𝑚 by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  

c. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

2, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3 

before reading the job configuration files. The entity authentication is done by 

using the GE2A protocol with the DFS-C key established in (MF-9) and the 

primary key established in (MF-12(b)). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 uses 𝑑𝑓𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
1  

to authenticate to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1

2  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2, and 

𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
3  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1
1  to 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1

2  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2, and 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1

3  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3.  

(MF-13) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 before sending a request for 

Worker allocation as described in (EF-13). The entity authentication is done by using 

the GP2A protocol with the DPS-I key 𝑝𝑖𝑘1 and the primary key 𝑝𝑚𝑘𝑟𝑚1,𝑗𝑚 

established in (MF-9). During the authentication, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a secondary 

key 𝑠𝑐𝑘𝑟𝑚1,𝑗𝑚 and a session key 𝑠𝑠𝑘𝑗𝑚,𝑟𝑚1  to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.  

(MF-14) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 before sending a request for Worker allocation as described in 

(EF-14). The entity authentication is done by using the SOA protocol with the 

secondary keys (𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2  for authentication to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 

𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3  to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3) established in (MF-6). 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

sends a new session key 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚2  to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and a new session key 

𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚3  to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  

(MF-15) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 authenticate to 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 before sending a reply to the Worker allocation request as 

described in (EF-15). Like (MF-14), the entity authentication is done by using the SOA 

protocol with 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2  by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3  by 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 prepare and 

send 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 the DPS-C keys, the primary keys, and the tickets for 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to authenticate to the respective WorkerManagers 

(𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2 and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

3). They also send the public keys 𝑝𝑘𝑐2  

and 𝑝𝑘𝑐3  established in (MF-5) to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. The keys (including 𝑝𝑘𝑐1) 

will be distributed to the respective Mappers (via 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟) for verifying the 

authenticity of the InputSplits. Hence, along with session keys, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 
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sends 𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1

2
𝑟𝑚2

, 𝑝𝑘𝑐2, and 𝑠𝑠𝑘𝑟𝑚2,𝑟𝑚1  to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 sends 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
3, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1

3
𝑟𝑚3

, 𝑝𝑘𝑐3, and 𝑠𝑠𝑘𝑟𝑚3,𝑟𝑚1  to 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.  

(MF-16) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before sending a reply with a 

list of available WorkerNodes as described in (EF-16). The entity authentication is 

done by using the SOA protocol with the secondary key 𝑠𝑐𝑘𝑟𝑚1,𝑗𝑚 established in 

(MF-13). 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 prepares a primary key 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚2
1  and a ticket 

𝑡𝑘𝑡𝑗𝑚,𝑤𝑚2
1

𝑟𝑚1
 for 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to authenticate to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑔𝑒𝑟2

1. Along with 

𝑝𝑚𝑘𝑗𝑚,𝑤𝑚2
1, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚2

1
𝑟𝑚1

, and 𝑝𝑘𝑐1  (established in (MF-5)), 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

sends 𝑝𝑐𝑘2, 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1

3 , 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1
2

𝑟𝑚2
, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1

3
𝑟𝑚3

, 𝑝𝑘𝑐2, and 𝑝𝑘𝑐3 

obtained from 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 in (MF-15), and a 

new session key 𝑠𝑠𝑘𝑟𝑚1,𝑗𝑚 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.  

(MF-17) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, and 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3 before sending a request for launching Mappers and Reducers 

as described in (EF-17). The entity authentication is done by using the GE2A protocol 

with the DPS-C key (with the exception of the authentication to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1 

where the DPS-I key 𝑝𝑖𝑘1 is used) and the primary key established in (MF-16). These 

keys are 𝑝𝑖𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚2
1  for authentication to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

1, 𝑝𝑐𝑘2 and 

𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2  for authentication to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, and 𝑝𝑐𝑘3 and 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
3  for 

authentication to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 prepares the DPS-C key 𝑝𝑐𝑘1 

and the primary keys 𝑝𝑚𝑘𝑗𝑚,𝑚1
, 𝑝𝑚𝑘𝑗𝑚,𝑚2

, 𝑝𝑚𝑘𝑗𝑚,𝑚3
, 𝑝𝑚𝑘𝑗𝑚,𝑟1

, 𝑝𝑚𝑘𝑗𝑚,𝑟𝑚2
, and 

𝑝𝑚𝑘𝑗𝑚,𝑟𝑚3
 for 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, 𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1,. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 

to authenticate to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, respectively. It also prepares the ticket sealing keys 

𝑡𝑠𝑘𝑤𝑚2
1,𝑗𝑚, 𝑡𝑠𝑘𝑤𝑚1

2,𝑗𝑚, and 𝑡𝑠𝑘𝑤𝑚1
3 ,𝑗𝑚 for the generation and verification of tickets 

issued by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to Reducers for authentication to the respective 

WorkerManagers (to retrieve the assigned PartitionSegments). These keys and 

session keys 𝑠𝑠𝑘𝑗𝑚,𝑤𝑚2
1, 𝑠𝑠𝑘𝑗𝑚,𝑤𝑚1

2, and 𝑠𝑠𝑘𝑗𝑚,𝑤𝑚1
3  are, respectively, sent to 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3.   

(MF-18) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3, respectively, 

start 𝑀𝑎𝑝𝑝𝑒𝑟1 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 

as described in (EF-18). Each of the WorkerManagers authenticates to the respective 

Mapper and Reducer by using an existing method. Each of the WorkerManagers 

embeds the group key (the DPS-I key or the DPS-C key) and the primary keys 

obtained in (MF-17) to the respective Mapper and Reducer by using an existing 

method (such as container template and shared memory). In other words, 𝑝𝑖𝑘1 and 

𝑝𝑚𝑘𝑗𝑚,𝑚1
 are given to 𝑀𝑎𝑝𝑝𝑒𝑟1 and 𝑝𝑖𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑟1

 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 by 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1; 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑚2

 are given to 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑝𝑐𝑘1 and 

𝑝𝑚𝑘𝑗𝑚,𝑟2
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 by 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2;  and 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑚3
 are given 

to 𝑀𝑎𝑝𝑝𝑒𝑟3 and 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑟3
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 by 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

3.  
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(MF-19) 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, 𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 authenticate 

to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before reporting their status as described in (EF-19). The entity 

authentication is done by using the GP2A protocol with the group key (the DPS-I key 

𝑝𝑖𝑘1 or the DPS-C key 𝑝𝑐𝑘1) and the primary key established in (MF-18). To 

authenticate to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝑀𝑎𝑝𝑝𝑒𝑟1 uses 𝑝𝑖𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑚1
, 𝑀𝑎𝑝𝑝𝑒𝑟2 uses 

𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑚2
, 𝑀𝑎𝑝𝑝𝑒𝑟3 uses 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑚3

, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 uses 𝑝𝑖𝑘1 and 

𝑝𝑚𝑘𝑗𝑚,𝑟1
, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 uses 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑟2

, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 uses 𝑝𝑐𝑘1 and 

𝑝𝑚𝑘𝑗𝑚,𝑟3
. Each of the Workers sends a secondary key and a session key to 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, i.e., 𝑠𝑐𝑘𝑗𝑚,𝑚1
 and 𝑠𝑠𝑘𝑚1,𝑗𝑚 are sent by 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑚2

 and 

𝑠𝑠𝑘𝑚2,𝑗𝑚 by 𝑀𝑎𝑝𝑝𝑒𝑟2, 𝑠𝑐𝑘𝑗𝑚,𝑚3
 and 𝑠𝑠𝑘𝑚3,𝑗𝑚 by 𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑠𝑐𝑘𝑗𝑚,𝑟1

 and 𝑠𝑠𝑘𝑟1,𝑗𝑚 

by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑟2
 and 𝑠𝑠𝑘𝑟2,𝑗𝑚 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑟3

 and 𝑠𝑠𝑘𝑟3,𝑗𝑚 by 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3.  

(MF-20) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 before issuing a 

command to start map tasks and giving the location of the assigned InputSplits as 

described in (EF-20). The entity authentication is done by using the SOA protocol 

with the secondary key (𝑠𝑐𝑘𝑗𝑚,𝑚1
 for 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑚2

 for 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑚3
 

for 𝑀𝑎𝑝𝑝𝑒𝑟3) established in (MF-19). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 prepares the DFS-C keys (𝑑𝑓𝑘1, 

𝑑𝑓𝑘2, and 𝑑𝑓𝑘3) and generates new primary keys (𝑝𝑚𝑘𝑚1,𝑛𝑚1, 𝑝𝑚𝑘𝑚2,𝑛𝑚2, and 

𝑝𝑚𝑘𝑚3,𝑛𝑚3) and tickets (𝑡𝑘𝑡
𝑚1,𝑛𝑚1
𝑗𝑚

, 𝑡𝑘𝑡
𝑚2,𝑛𝑚2
𝑗𝑚

, and 𝑡𝑘𝑡
𝑚3,𝑛𝑚3
𝑗𝑚

) for the Mappers to 

authenticate to the respective NameManagers. It prepares 𝑝𝑘𝑐1 , 𝑝𝑘𝑐2, and 𝑝𝑘𝑐3  

(obtained in (MF-16)) for the respective Mappers to verify the assigned InputSplits. 

It also generates new pairwise keys 𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, and 𝑘𝑚3,𝑗𝑚 for the respective 

Mappers to sign the PartitionSegments they produce. Hence, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends 

𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑚1,𝑛𝑚1, 𝑡𝑘𝑡
𝑚1,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑐1, 𝑘𝑚1,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑚1
 to 𝑀𝑎𝑝𝑝𝑒𝑟1; 𝑑𝑓𝑘2, 

𝑝𝑚𝑘𝑚2,𝑛𝑚2, 𝑡𝑘𝑡
𝑚2,𝑛𝑚2
𝑗𝑚

, 𝑝𝑘𝑐2, 𝑘𝑚2,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑚2
 to 𝑀𝑎𝑝𝑝𝑒𝑟2; and 𝑑𝑓𝑘3, 

𝑝𝑚𝑘𝑚3,𝑛𝑚3, 𝑡𝑘𝑡
𝑚3,𝑛𝑚3
𝑗𝑚

, 𝑝𝑘𝑐3, 𝑘𝑚3,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑚3
 to 𝑀𝑎𝑝𝑝𝑒𝑟3.   

 In addition, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 also sends all the ISAuthData tokens to the 

respective Mappers (i.e., 𝜎𝑟ℎ
𝑐1 and 𝑆𝐴𝑐1  to 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝜎𝑟ℎ

𝑐2 and 𝑆𝐴𝑐2  to 𝑀𝑎𝑝𝑝𝑒𝑟2, 

and 𝜎𝑟ℎ
𝑐3

and 𝑆𝐴𝑐3  to 𝑀𝑎𝑝𝑝𝑒𝑟3) by using the ISAuthData-Delivery protocol.  

(MF-21) Before 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 can read the assigned InputSplits from 

the respective DFS clusters as described in (EF-21), for each of the Mappers, three 

instances of entity authentication are taking place. The authentication process is 

similar to that of (MF-4).  

a. 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3, respectively, authenticate to 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. The entity 

authentication is done by using the GE2A protocol with the DFS-C key and the 

primary key obtained in (MF-20). The keys 𝑑𝑓𝑘1 and 𝑝𝑚𝑘𝑚1,𝑛𝑚1  are used by 

𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑚2,𝑛𝑚2 by 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑚3,𝑛𝑚3  by 

𝑀𝑎𝑝𝑝𝑒𝑟3. 𝑀𝑎𝑝𝑝𝑒𝑟1 sends 𝑠𝑐𝑘𝑚1,𝑛𝑚1  and 𝑠𝑠𝑘𝑚1,𝑛𝑚1  to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 
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𝑀𝑎𝑝𝑝𝑒𝑟2 sends 𝑠𝑐𝑘𝑚2,𝑛𝑚2  and 𝑠𝑠𝑘𝑚2,𝑛𝑚2  to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 

sends 𝑠𝑐𝑘𝑚3,𝑛𝑚3  and 𝑠𝑠𝑘𝑚3,𝑛𝑚3  to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.  

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively, 

authenticate to 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3. The entity authentication 

is done by using the SOA protocol with the secondary key established in (MF-

21(a)), i.e., 𝑠𝑐𝑘𝑚1,𝑛𝑚1  is used by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑠𝑐𝑘𝑚2,𝑛𝑚2  by 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑠𝑐𝑘𝑚3,𝑛𝑚3  by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. The NameManagers 

generates primary keys and tickets for the Mappers to authenticate to the 

respectively DataStores. The keys and the tickets are transmitted along with 

session keys. Hence, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends 𝑝𝑚𝑘𝑚1,𝑑𝑠1
1 , 𝑡𝑘𝑡𝑚1,𝑑𝑠1

1
𝑛𝑚1

, and 

𝑠𝑠𝑘𝑛𝑚1,𝑚1
 to 𝑀𝑎𝑝𝑝𝑒𝑟1; 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 sends 𝑝𝑚𝑘𝑚2,𝑑𝑠1

2 , 𝑡𝑘𝑡𝑚2,𝑑𝑠1
2

𝑛𝑚2
, and 

𝑠𝑠𝑘𝑛𝑚2,𝑚2
 to 𝑀𝑎𝑝𝑝𝑒𝑟2; and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 sends 𝑝𝑚𝑘𝑚3,𝑑𝑠1

3 , 𝑡𝑘𝑡𝑚3,𝑑𝑠1
3

𝑛𝑚3
, 

and 𝑠𝑠𝑘𝑛𝑚3,𝑚3
 to 𝑀𝑎𝑝𝑝𝑒𝑟3.  

c. 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3, respectively, authenticate to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3. The entity authentication is done by using the 

GE2A protocol with the DFS-C key established in (MF-20) and the primary key 

established in (MF-21(b)). The keys 𝑑𝑓𝑘1 and 𝑝𝑚𝑘𝑚1,𝑑𝑠1
1  are used by 

𝑀𝑎𝑝𝑝𝑒𝑟1; 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑚2,𝑑𝑠1
2  by 𝑀𝑎𝑝𝑝𝑒𝑟2; and 𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑚3,𝑑𝑠1

3  by 

𝑀𝑎𝑝𝑝𝑒𝑟3. 𝑀𝑎𝑝𝑝𝑒𝑟1 sends 𝑠𝑠𝑘𝑚1,𝑑𝑠1
1  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1, 𝑀𝑎𝑝𝑝𝑒𝑟2 sends 

𝑠𝑠𝑘𝑚2,𝑑𝑠1
2  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 sends 𝑠𝑠𝑘𝑚3,𝑑𝑠1
3  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3.  

(MF-22) Before performing the map tasks as described in (EF-22), 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 

𝑀𝑎𝑝𝑝𝑒𝑟3, respectively, verify the authenticity of 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1, 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2, and 

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 by using the ISAuthData-Verification algorithm (explained in Section 

6.5.4.2) with the public keys of the respective ClientApps established in (MF-20) 

against ISAuthData tokens received in (MF-20). The key 𝑝𝑘𝑐1  is used for the 

verification of 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 against 𝜎𝑟ℎ
𝑐1  and 𝑆𝐴𝑐1; 𝑝𝑘𝑐2 for 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 against 

𝜎𝑟ℎ
𝑐2

 and 𝑆𝐴𝑐2; and 𝑝𝑘𝑐3  for 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 against 𝜎𝑟ℎ
𝑐3

 and 𝑆𝐴𝑐3. If the 

verifications of all the InputSplits are positive, the Mappers can perform the map 

tasks on the assigned InputSplits.   

 When each of the Mappers finishes its map task and produces an 

IntermediateResult (containing multiple PartitionSegments), it signs its 

PartitionSegments by using the PGen-PSAuthData-Generation algorithm (explained 

in Section 6.5.5.1) with the pairwise key shared with 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 established in 

(MF-20). PGen-PSAuthData tokens are generated by the algorithm. 𝑀𝑎𝑝𝑝𝑒𝑟1 signs 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3 with 𝑘𝑚1,𝑗𝑚 to generate 𝑟ℎ𝑚1
, 

𝜏𝑟ℎ𝑚1
, and 𝑆𝐴𝑚1

; 𝑀𝑎𝑝𝑝𝑒𝑟2 signs 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2 

with 𝑘𝑚2,𝑗𝑚 to generate 𝑟ℎ𝑚2
, 𝜏𝑟ℎ𝑚2

, and 𝑆𝐴𝑚2
; and 𝑀𝑎𝑝𝑝𝑒𝑟3 signs 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3 with 𝑘𝑚3,𝑗𝑚 to generate 𝑟ℎ𝑚3
, 

𝜏𝑟ℎ𝑚3
, and 𝑆𝐴𝑚3

. The PGen-PSAuthData tokens will be used to generate AGen-

PSAuthData tokens by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.  
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(MF-23) 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 authenticate to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before notifying 

of the completion of the map tasks as described in (EF-23). The entity authentication 

is done by using the SOA protocol with the secondary key (i.e., 𝑠𝑐𝑘𝑗𝑚,𝑚1
 by 𝑀𝑎𝑝𝑝𝑒𝑟1, 

𝑠𝑐𝑘𝑗𝑚,𝑚2
 by 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑚3

 by 𝑀𝑎𝑝𝑝𝑒𝑟3) established in (MF-19). 𝑀𝑎𝑝𝑝𝑒𝑟1, 

𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3, respectively, send session keys 𝑠𝑠𝑘𝑚1,𝑗𝑚, 𝑠𝑠𝑘𝑚2,𝑗𝑚, and 

𝑠𝑠𝑘𝑚3,𝑗𝑚 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.   

 Each of the Mappers also sends the PGen-PSAuthData tokens generated in 

(MF-22) to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 by using the PSAuthData-Delivery protocol (explained in 

Section 6.5.5.4). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 invokes the AGen-PSAuthData-Generation algorithm 

(explained in Section 6.5.5.2) with the PGen-PSAuthData tokens (𝑟ℎ𝑚1
, 𝑟ℎ𝑚2

, 𝑟ℎ𝑚3
, 

𝜏𝑟ℎ𝑚1
, 𝜏𝑟ℎ𝑚2

, 𝜏𝑟ℎ𝑚3
, 𝑆𝐴𝑚1

, 𝑆𝐴𝑚2
, and 𝑆𝐴𝑚3

), the pairwise keys (𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, and 

𝑘𝑚3,𝑗𝑚 established in (MF-20)), and the private key 𝑠𝑘𝑗𝑚 (generated in (MF-9)) to 

generate AGen-PSAuthData tokens, 𝑐ℎ𝑗𝑚  and 𝜎𝑐ℎ𝑗𝑚
. The PGen-PSAuthData tokens 

together with the AGen-PSAuthData tokens are used for the verification of 

PartitionSegments by the Reducers.  

(MF-24) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3. The entity 

authentication is done by using the SOA protocol with the secondary key (𝑠𝑐𝑘𝑗𝑚,𝑟1
 

for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑟2
, for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑟3

 for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) established in 

(MF-19). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 prepares the DPS-C keys (𝑝𝑐𝑘1, 𝑝𝑐𝑘2, and 𝑝𝑐𝑘3) and 

generates new primary keys (𝑝𝑚𝑘𝑟1,𝑤𝑚1
2 , 𝑝𝑚𝑘𝑟2,𝑤𝑚2

1, 𝑝𝑚𝑘𝑟2,𝑤𝑚1
3, and 𝑝𝑚𝑘𝑟3,𝑤𝑚2

1,) 

and tickets (𝑡𝑘𝑡
𝑟1,𝑤𝑚1

2
𝑗𝑚

, 𝑡𝑘𝑡
𝑟2,𝑤𝑚2

1
𝑗𝑚

, 𝑡𝑘𝑡
𝑟2,𝑤𝑚1

3
𝑗𝑚

, and 𝑡𝑘𝑡
𝑟3,𝑤𝑚2

1
𝑗𝑚

) for the Reducers to 

authenticate to the respective WorkerManagers. It prepares the DFS-C key 𝑑𝑓𝑘1 and 

generates new primary keys (𝑝𝑚𝑘𝑟1,𝑛𝑚1 , 𝑝𝑚𝑘𝑟2,𝑛𝑚1 , and 𝑝𝑚𝑘𝑟3,𝑛𝑚1) and tickets 

(𝑡𝑘𝑡
𝑟1,𝑛𝑚1
𝑗𝑚

, 𝑡𝑘𝑡
𝑟2,𝑛𝑚1
𝑗𝑚

, and 𝑡𝑘𝑡
𝑟3,𝑛𝑚1
𝑗𝑚

) for the Reducers to authenticate to 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. It prepares its public key 𝑝𝑘𝑗𝑚 (generated in (MF-9)) for the 

Reducers to verify the assigned PartitionSegments. It also generates new pairwise 

keys 𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, and 𝑘𝑟3,𝑗𝑚 for the respective Reducers to sign the FinalResults 

they produce. Hence, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends 𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑟1,𝑤𝑚1
2, 𝑡𝑘𝑡

𝑟1,𝑤𝑚1
2

𝑗𝑚
, 𝑑𝑓𝑘1, 

𝑝𝑚𝑘𝑟1,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟1,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚, 𝑘𝑟1,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑟1
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1; 𝑝𝑐𝑘1, 𝑝𝑐𝑘3, 

𝑝𝑚𝑘𝑟2,𝑤𝑚2
1, 𝑝𝑚𝑘𝑟2,𝑤𝑚1

3, 𝑡𝑘𝑡
𝑟2,𝑤𝑚2

1
𝑗𝑚

, 𝑡𝑘𝑡
𝑟2,𝑤𝑚1

3
𝑗𝑚

, 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟2,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟2,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚, 

𝑘𝑟2,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑟2
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2; and 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑟3,𝑤𝑚2

1, 𝑡𝑘𝑡
𝑟3,𝑤𝑚2

1
𝑗𝑚

, 𝑑𝑓𝑘1, 

𝑝𝑚𝑘𝑟3,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟3,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚, 𝑘𝑟3,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑟3
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3.   

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 also sends all the PGen-PSAuthData tokens to the respective 

Reducers (i.e., 𝑠𝑎𝑚2,𝑟1
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑠𝑎𝑚1,𝑟2

, 𝑠𝑎𝑚2,𝑟2
, and 𝑠𝑎𝑚3,𝑟2

 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 

𝑠𝑎𝑚1,𝑟3
 and 𝑠𝑎𝑚3,𝑟3

 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) and AGen-PSAuthData tokens (𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚
) to 

all the Reducers by using the PSAuthData-Delivery protocol. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 then 

issues a command to all the Reducers to start the reduce tasks as described in (EF-24).  

(MF-25)  As described in (EF-25), each of the Reducers has to retrieve PartitionSegments from 

different WorkerManagers. The entity authentication is done by using the GE2A 
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protocol with DPS-C key and the primary key established in (MF-24). 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 uses 

𝑝𝑐𝑘2 and 𝑝𝑚𝑘𝑟1,𝑤𝑚1
2  to authenticate to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 uses 𝑝𝑐𝑘1 

and 𝑝𝑚𝑘𝑟2,𝑤𝑚2
1  and 𝑝𝑐𝑘3 and 𝑝𝑚𝑘𝑟2,𝑤𝑚1

3  to authenticate to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1 and 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3, respectively. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 uses 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑟3,𝑤𝑚2

1  to 

authenticate to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1. During the authentication, session keys are 

transmitted. A session key 𝑠𝑠𝑘𝑟1,𝑤𝑚1
2  is sent from 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, 

𝑠𝑠𝑘𝑟2,𝑤𝑚2
1  from 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

1, 𝑠𝑠𝑘𝑟2,𝑤𝑚1
3  from 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 to 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3 and 𝑠𝑠𝑘𝑟3,𝑤𝑚2

1  from 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1.   

 For each of the Reducers, the assigned PartitionSegments are verified before 

the PartitionSegments are merged. The verification of the PartitionSegments is done 

by using the PSAuthData-Verification algorithm with the public key 𝑝𝑘𝑗𝑚 of 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 against the AGen-PSAuthData tokens (𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚
) and the 

respective PGen-PSAuthData tokens (𝑠𝑎𝑚2,𝑟1
 is used by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1; 𝑠𝑎𝑚1,𝑟2

, 𝑠𝑎𝑚2,𝑟2
, 

and 𝑠𝑎𝑚3,𝑟2
 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2; and 𝑠𝑎𝑚1,𝑟3

 and 𝑠𝑎𝑚3,𝑟3
 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) obtained in (MF-24).  

(MF-26) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 perform the reduce tasks on the merged 

PartitionSegments and generate the FinalResults (𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, 

and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1, respectively), as described in (EF-26). Each of the Reducers signs 

the FinalResult it produces by using the PGen-FRAuthData-Generation algorithm 

(explained in Section 6.5.6.1) with the pairwise key shared with 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

established in (MF-24). PGen-FRAuthData tokens are generated by the algorithm. 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 signs 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1 with 𝑘𝑟1,𝑗𝑚 to generate ℎ𝑟1,𝑐1 and 𝜏ℎ
𝑟1,𝑐1 . 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 

signs 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1 with 𝑘𝑟2,𝑗𝑚 to generate ℎ𝑟2,𝑐1  and 𝜏ℎ
𝑟2,𝑐1 . 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 signs 

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1 with 𝑘𝑟3,𝑗𝑚 to generate ℎ𝑟3,𝑐1 and 𝜏ℎ
𝑟3,𝑐1 . The PGen-FRAuthData 

tokens will be used to generate the AGen-FRAuthData tokens by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.  

 Following the generation of the FinalResults, all the Reducers write the 

FinalResults to 𝐷𝐹𝑆1. Three instances of entity authentication are taking place.  

a. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 authenticate to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. The 

entity authentication is done by using the GE2A protocol with the DFS-C key 

𝑑𝑓𝑘1 and the primary key (𝑝𝑚𝑘𝑟1,𝑛𝑚1  by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑝𝑚𝑘𝑟2,𝑛𝑚1  by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, 

and 𝑝𝑚𝑘𝑟3,𝑛𝑚1  by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) established in (MF-24). 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, 

and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, respectively, send 𝑠𝑐𝑘𝑟1,𝑛𝑚1  and 𝑠𝑠𝑘𝑟1,𝑛𝑚1, 𝑠𝑐𝑘𝑟2,𝑛𝑚1  and 

𝑠𝑠𝑘𝑟2,𝑛𝑚1, and 𝑠𝑐𝑘𝑟3,𝑛𝑚1  and 𝑠𝑠𝑘𝑟3,𝑛𝑚1  to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.  

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3. The 

entity authentication is done by using the SOA protocol with the secondary key 

(𝑠𝑐𝑘𝑟1,𝑛𝑚1  for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑠𝑐𝑘𝑟2,𝑛𝑚1  for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑠𝑐𝑘𝑟3,𝑛𝑚1  for 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) established in (MF-26(a)). 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 prepares new primary 

keys and tickets for the Reducers to authenticate to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. It then sends 

the primary keys, the tickets, and session keys to the Reducers, i.e., 𝑝𝑚𝑘𝑟1,𝑑𝑠1
1, 
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𝑡𝑘𝑡𝑟1,𝑑𝑠1
1

𝑛𝑚1
, and 𝑠𝑠𝑘𝑛𝑚1,𝑟1

 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1; 𝑝𝑚𝑘𝑟2,𝑑𝑠1
1, 𝑡𝑘𝑡𝑟2,𝑑𝑠1

1
𝑛𝑚1

, and 𝑠𝑠𝑘𝑛𝑚1,𝑟2
 to 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2; and 𝑝𝑚𝑘𝑟3,𝑑𝑠1
1, 𝑡𝑘𝑡𝑟3,𝑑𝑠1

1
𝑛𝑚1

, and 𝑠𝑠𝑘𝑛𝑚1,𝑟3
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3.  

c. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 authenticate to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. The entity 

authentication is done by using the GE2A protocol with the DFS-C key 𝑑𝑓𝑘1 

established in (MF-24) and the primary key (𝑝𝑚𝑘𝑟1,𝑑𝑠1
1  by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑝𝑚𝑘𝑟2,𝑑𝑠1

1  

by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑝𝑚𝑘𝑟3,𝑑𝑠1
1  by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) established in (MF-26(b)). 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, respectively, send 𝑠𝑠𝑘𝑟1,𝑑𝑠1
1 , 𝑠𝑠𝑘𝑟2,𝑑𝑠1

1 , 

and 𝑠𝑠𝑘𝑟3,𝑑𝑠1
1  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1.  

(MF-27) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 authenticate to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before notifying 

of the completion of the reduce tasks as described in (EF-27). The entity 

authentication is done by using the SOA protocol with the secondary key (𝑠𝑐𝑘𝑟1,𝑗𝑚 

by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑠𝑐𝑘𝑟2,𝑗𝑚 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑠𝑐𝑘𝑟3,𝑗𝑚 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) established in (MF-

19). 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, respectively, send 𝑠𝑠𝑘𝑟1,𝑗𝑚, 𝑠𝑠𝑘𝑟2,𝑗𝑚, and 

𝑠𝑠𝑘𝑟3,𝑗𝑚 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.   

 Each of the Reducers sends PGen-FRAuthData tokens generated in (MF-26) to 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. The PGen-FRAuthData tokens are delivered by using the FRAuthData-

Delivery protocol (explained in Section 6.5.6.4). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 invokes the AGen-

FRAuthData-Generation algorithm (explained in Section 6.5.6.2) with the PGen-

FRAuthData tokens (ℎ𝑟1,𝑐1, ℎ𝑟2,𝑐1, ℎ𝑟3,𝑐1, 𝜏ℎ
𝑟1,𝑐1 , 𝜏ℎ

𝑟2,𝑐1 , and 𝜏ℎ
𝑟3,𝑐1 ), the pairwise keys 

(𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, and 𝑘𝑟3,𝑗𝑚) established in (MF-24), and the private key 𝑠𝑘𝑗𝑚 

(generated in (MF-9)) to generate AGen-FRAuthData tokens, 𝑐ℎ𝑗𝑚
∗  and 𝜎𝑐ℎ𝑗𝑚

∗ . The 

AGen-FRAuthData tokens are used for the verification of FinalResults by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. 

(MF-28) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 before notifying of the readiness of the 

FinalResults as described in (EF-28). The entity authentication is done by using the 

SOA protocol with the secondary key 𝑠𝑐𝑘𝑐1,𝑗𝑚 established in (MF-11). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

sends its public key 𝑝𝑘𝑗𝑚 (generated in (MF-9)) for 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to verify the 

authenticity of the FinalResults and a new session key 𝑠𝑠𝑘𝑗𝑚,𝑐1  to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. It also 

sends the AGen-FRAuthData tokens (𝑐ℎ𝑗𝑚
∗  and 𝜎𝑐ℎ𝑗𝑚

∗ ) generated in (MF-27) to 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 by using the FRAuthData-Delivery protocol.  

(MF-29) Before 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 reads the FinalResults stored in 𝐷𝐹𝑆1 as described in (EF-29), 

three instances of entity authentication are taking place.  

a. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 authenticates to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. The entity authentication is 

done by using the GE2A protocol with the DFS-C key 𝑑𝑓𝑘1 and the primary key 

𝑝𝑚𝑘𝑐1,𝑛𝑚1  established in (MF-3). 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a secondary key 

𝑠𝑐𝑘𝑐1,𝑛𝑚1  and 𝑠𝑠𝑘𝑐1,𝑛𝑚1  to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.  

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. The entity authentication is 

done by using the SOA protocol with the secondary key 𝑠𝑐𝑘𝑐1,𝑛𝑚1  established 

in (MF-29(a)). 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 prepares a new primary key 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1  and a 

new ticket 𝑡𝑘𝑡𝑐1,𝑑𝑠1
1

𝑛𝑚1
 for 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to authenticate to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1. Hence, 
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𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1 , 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

, and a new session key 𝑠𝑠𝑘𝑛𝑚1 ,𝑐1 

to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1.  

c. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 authenticates to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. The entity authentication is done 

by using the GE2A protocol with the DFS-C key 𝑑𝑓𝑘1 established in (MF-3) and 

the primary key 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1  established in (MF-29(b)). 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a 

session key 𝑠𝑠𝑘𝑐1,𝑑𝑠1
1  to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1.  

 After all the FinalResults (𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1 and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1) 

are retrieved, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 verifies the authenticity of the FinalResults. This is done 

by using the FRAuthData-Verification algorithm (explained in Section 6.5.6.3) with 

the public key 𝑝𝑘𝑗𝑚 of 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 against the AGen-FRAuthData tokens (𝑐ℎ𝑗𝑚
∗  and 

𝜎𝑐ℎ𝑗𝑚
∗ ) obtained in (MF-28). If the verification of all the FinalResults is positive, 𝑈𝑠𝑒𝑟1 

is assured that the output of the job is authentic and has not been tampered with by 

unauthorised entities.  

Table 7.5 summarises the entities, credentials, and AuthData involved in authenticating 

entities and JobData when MDA is applied to the job execution of the working example.  

 

Table 7.5: The summary of entities, credentials, and AuthData involved in authentication when 

MDA is applied to the job execution of the working example. 

Operational 

step 

Entities / Components 

/ JobData objects 

Authentication Protocol / 

Algorithm / 

Method 

Keys used for 

authentication1 

Keys transmitted / AuthData 

tokens generated 

(MF-1) 𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, 𝑈𝑠𝑒𝑟3  Entity 

authentication 

Existing 

method (EXT) 

-  𝑗𝑘  

(MF-2) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

GP2A 𝑜𝑘1, 𝑝𝑚𝑘𝑐1,𝑟𝑚1  𝑗𝑘, 𝑠𝑐𝑘𝑐1,𝑟𝑚1 , 𝑠𝑠𝑘𝑐1,𝑟𝑚1 

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 

Entity 

authentication 

GP2A 𝑜𝑘2, 𝑝𝑚𝑘𝑐2,𝑟𝑚2  𝑗𝑘, 𝑠𝑐𝑘𝑐2,𝑟𝑚2 , 𝑠𝑠𝑘𝑐2,𝑟𝑚2 

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 

Entity 

authentication 

GP2A 𝑜𝑘3, 𝑝𝑚𝑘𝑐3,𝑟𝑚3  𝑗𝑘, 𝑠𝑐𝑘𝑐3,𝑟𝑚3 , 𝑠𝑠𝑘𝑐3,𝑟𝑚3 

(MF-3) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐1,𝑟𝑚1   𝑝𝑐𝑘1, 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑛𝑚1 , 𝑡𝑘𝑡𝑐1,𝑛𝑚1
𝑟𝑚1

, 

𝑠𝑠𝑘𝑟𝑚1,𝑐1  

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐2,𝑟𝑚2   𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑐2,𝑛𝑚2 , 𝑡𝑘𝑡𝑐2,𝑛𝑚2
𝑟𝑚2

, 

𝑠𝑠𝑘𝑟𝑚2,𝑐2  

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐3,𝑟𝑚3   𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑐3,𝑛𝑚3 , 𝑡𝑘𝑡𝑐3,𝑛𝑚3
𝑟𝑚3

, 

𝑠𝑠𝑘𝑟𝑚3,𝑐3  

(MF-4) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑛𝑚1  𝑠𝑐𝑘𝑐1,𝑛𝑚1, 𝑠𝑠𝑘𝑐1,𝑛𝑚1  

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 

Entity 

authentication 

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑐2,𝑛𝑚2  𝑠𝑐𝑘𝑐2,𝑛𝑚2, 𝑠𝑠𝑘𝑐2,𝑛𝑚2  

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 

Entity 

authentication 

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑐3,𝑛𝑚3  𝑠𝑐𝑘𝑐3,𝑛𝑚3, 𝑠𝑠𝑘𝑐3,𝑛𝑚3  

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐1,𝑛𝑚1  𝑝𝑚𝑘𝑐1,𝑑𝑠1
1, 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑐1  

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐2,𝑛𝑚2  𝑝𝑚𝑘𝑐2,𝑑𝑠1
2, 𝑡𝑘𝑡𝑐2,𝑑𝑠1

2
𝑛𝑚2

, 𝑠𝑠𝑘𝑛𝑚2,𝑐2  

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐3,𝑛𝑚3  𝑝𝑚𝑘𝑐3,𝑑𝑠1
3, 𝑡𝑘𝑡𝑐3,𝑑𝑠1

3
𝑛𝑚3

, 𝑠𝑠𝑘𝑛𝑚3,𝑐3  
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Operational 

step 

Entities / Components 

/ JobData objects 

Authentication Protocol / 

Algorithm / 

Method 

Keys used for 

authentication1 

Keys transmitted / AuthData 

tokens generated 

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1 𝑠𝑠𝑘𝑐1,𝑑𝑠1

1  

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2 

Entity 

authentication 

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑐2,𝑑𝑠1
2 𝑠𝑠𝑘𝑐2,𝑑𝑠1

2  

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3 

Entity 

authentication 

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑐3,𝑑𝑠1
3 𝑠𝑠𝑘𝑐3,𝑑𝑠1

3  

 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1  Data 

authentication 

ISAuthData-

Generation 

𝑠𝑘𝑐1  𝜎𝑟ℎ𝑐1 , 𝑆𝐴𝑐1  

 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2  Data 

authentication 

ISAuthData-

Generation 

𝑠𝑘𝑐2  𝜎𝑟ℎ𝑐2 , 𝑆𝐴𝑐2  

 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3  Data 

authentication 

ISAuthData-

Generation 

𝑠𝑘𝑐3  𝜎𝑟ℎ𝑐3 , 𝑆𝐴𝑐3  

(MF-5) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐1,𝑟𝑚1   𝑠𝑠𝑘𝑟𝑚1,𝑐1 , 𝑝𝑘𝑐1   

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐2,𝑟𝑚2   𝑠𝑠𝑘𝑟𝑚2,𝑐2 , 𝑝𝑘𝑐2   

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐3,𝑟𝑚3   𝑠𝑠𝑘𝑟𝑚3,𝑐3 , 𝑝𝑘𝑐3   

(MF-6) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 

Entity 

authentication 

GP2A 𝑗𝑘, 𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚2  𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2 , 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚2  

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 

Entity 

authentication 

GP2A 𝑗𝑘, 𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚3  𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3 , 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚3  

(MF-7) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2  𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2 , 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚2
𝑟𝑚2

, 

𝑠𝑠𝑘𝑟𝑚2,𝑟𝑚1 

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3   𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3 , 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚3
𝑟𝑚3

, 

𝑠𝑠𝑘𝑟𝑚3,𝑟𝑚1 

(MF-8) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 

Entity 

authentication 

GP2A 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑤𝑚1
1,𝑟𝑚1  𝑑𝑓𝑘1, 𝑑𝑓𝑘2, 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑟𝑚1,𝑗𝑚, 

𝑝𝑚𝑘𝑗𝑚,𝑛𝑚1 , 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2 , 

𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3 , 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚1
𝑟𝑚1

, 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚2
𝑟𝑚2

, 

𝑡𝑘𝑡𝑗𝑚,𝑛𝑚3
𝑟𝑚3

, 𝑠𝑠𝑘𝑟𝑚1,𝑤𝑚1
1  

(MF-9) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

EXT -  𝑑𝑓𝑘1, 𝑑𝑓𝑘2, 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑟𝑚1,𝑗𝑚, 

𝑝𝑚𝑘𝑗𝑚,𝑛𝑚1 , 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2 , 

𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3 , 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚1
𝑟𝑚1

, 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚2
𝑟𝑚2

, 

𝑡𝑘𝑡𝑗𝑚,𝑛𝑚3
𝑟𝑚3

 

(MF-10) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐1,𝑟𝑚1   𝑝𝑚𝑘𝑐1,𝑗𝑚, 𝑡𝑘𝑡𝑐1,𝑗𝑚
𝑟𝑚1

, 𝑠𝑠𝑘𝑟𝑚1,𝑐1  

(MF-11) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

GE2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑐1,𝑗𝑚 𝑠𝑐𝑘𝑐1,𝑗𝑚, 𝑠𝑠𝑘𝑐1,𝑗𝑚  

(MF-12) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚1  𝑠𝑐𝑘𝑗𝑚,𝑛𝑚1 , 𝑡𝑠𝑘𝑛𝑚1,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑛𝑚1  

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 

Entity 

authentication 

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2  𝑠𝑐𝑘𝑗𝑚,𝑛𝑚2 , 𝑡𝑠𝑘𝑛𝑚2,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑛𝑚2  

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 

Entity 

authentication 

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3  𝑠𝑐𝑘𝑗𝑚,𝑛𝑚3 , 𝑡𝑠𝑘𝑛𝑚3,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑛𝑚3  

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚1   𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
1, 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑗𝑚 

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚2   𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
2, 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

2
𝑛𝑚2

, 𝑠𝑠𝑘𝑛𝑚2,𝑗𝑚 

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚3   𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
3, 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

3
𝑛𝑚3

, 𝑠𝑠𝑘𝑛𝑚3,𝑗𝑚 
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 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
1 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1

1  

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2 

Entity 

authentication 

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
2 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1

2  

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3 

Entity 

authentication 

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
3 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1

3  

(MF-13) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

GP2A 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑟𝑚1,𝑗𝑚  𝑠𝑐𝑘𝑟𝑚1,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑟𝑚1  

(MF-14) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2   𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚2  

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3   𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚3  

(MF-15) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2   𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2 , 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1

2
𝑟𝑚2

, 

𝑝𝑘𝑐2 , 𝑠𝑠𝑘𝑟𝑚2,𝑟𝑚1 

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3   𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
3 , 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1

3
𝑟𝑚3

, 

𝑝𝑘𝑐3 , 𝑠𝑠𝑘𝑟𝑚3,𝑟𝑚1 

(MF-16) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑗𝑚  𝑝𝑐𝑘2, 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚2
1  

𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1

3 , 

𝑡𝑘𝑡𝑗𝑚,𝑤𝑚2
1

𝑟𝑚1

, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1
2

𝑟𝑚2

, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1
3

𝑟𝑚3

, 

𝑝𝑘𝑐1 , 𝑝𝑘𝑐2 , 𝑝𝑘𝑐3 , 𝑠𝑠𝑘𝑟𝑚1,𝑗𝑚 

(MF-17) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1 

Entity 

authentication 

GE2A 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚2
1  𝑝𝑚𝑘𝑗𝑚,𝑚1

, 𝑝𝑚𝑘𝑗𝑚,𝑟1
, 𝑡𝑠𝑘𝑤𝑚2

1,𝑗𝑚, 

𝑠𝑠𝑘𝑗𝑚,𝑤𝑚2
1  

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2 

Entity 

authentication 

GE2A 𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2  𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚2

, 𝑝𝑚𝑘𝑗𝑚,𝑟2
, 

𝑡𝑠𝑘𝑤𝑚1
2,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑤𝑚1

2 

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3 

Entity 

authentication 

GE2A 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
3  𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚3

, 𝑝𝑚𝑘𝑗𝑚,𝑟3
, 

𝑡𝑠𝑘𝑤𝑚1
3,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑤𝑚1

3 

(MF-18) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 

𝑀𝑎𝑝𝑝𝑒𝑟1 

Entity 

authentication 

EXT - 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚1
 

 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 

Entity 

authentication 

EXT - 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑟1
 

 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2, 

𝑀𝑎𝑝𝑝𝑒𝑟2 

Entity 

authentication 

EXT - 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚2
 

 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 

Entity 

authentication 

EXT - 𝑝𝑐𝑘1 , 𝑝𝑚𝑘𝑗𝑚,𝑟2
  

 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3, 

𝑀𝑎𝑝𝑝𝑒𝑟3 

Entity 

authentication 

EXT - 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚3
 

 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 

Entity 

authentication 

EXT - 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑟3
 

(MF-19) 𝑀𝑎𝑝𝑝𝑒𝑟1, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

GP2A 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚1
 𝑠𝑐𝑘𝑗𝑚,𝑚1

, 𝑠𝑠𝑘𝑚1,𝑗𝑚 

 𝑀𝑎𝑝𝑝𝑒𝑟2, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

GP2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚2
 𝑠𝑐𝑘𝑗𝑚,𝑚2

, 𝑠𝑠𝑘𝑚2,𝑗𝑚 

 𝑀𝑎𝑝𝑝𝑒𝑟3, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

GP2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚3
 𝑠𝑐𝑘𝑗𝑚,𝑚3

, 𝑠𝑠𝑘𝑚3,𝑗𝑚 

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

GP2A 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑟1
 𝑠𝑐𝑘𝑗𝑚,𝑟1

,𝑠𝑠𝑘𝑟1,𝑗𝑚 

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

GP2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑟2
 𝑠𝑐𝑘𝑗𝑚,𝑟2

, 𝑠𝑠𝑘𝑟2,𝑗𝑚 

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

GP2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑟3
 𝑠𝑐𝑘𝑗𝑚,𝑟3

, 𝑠𝑠𝑘𝑟3,𝑗𝑚 
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(MF-20) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑀𝑎𝑝𝑝𝑒𝑟1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚1
  𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑚1,𝑛𝑚1, 𝑡𝑘𝑡

𝑚1,𝑛𝑚1
𝑗𝑚

, 

𝑝𝑘𝑐1 , 𝑘𝑚1,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑚1
 

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑀𝑎𝑝𝑝𝑒𝑟2 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚2
  𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑚2,𝑛𝑚2 , 𝑡𝑘𝑡

𝑚2,𝑛𝑚2
𝑗𝑚

, 

𝑝𝑘𝑐2 , 𝑘𝑚2,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑚2
 

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑀𝑎𝑝𝑝𝑒𝑟3 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚3
  𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑚3,𝑛𝑚3 , 𝑡𝑘𝑡

𝑚3,𝑛𝑚3
𝑗𝑚

, 

𝑝𝑘𝑐3 , 𝑘𝑚3,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑚3
 

(MF-21) 𝑀𝑎𝑝𝑝𝑒𝑟1, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑚1,𝑛𝑚1 𝑠𝑐𝑘𝑚1,𝑛𝑚1 , 𝑠𝑠𝑘𝑚1,𝑛𝑚1  

 𝑀𝑎𝑝𝑝𝑒𝑟2, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 

Entity 

authentication 

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑚2,𝑛𝑚2  𝑠𝑐𝑘𝑚2,𝑛𝑚2 , 𝑠𝑠𝑘𝑚2,𝑛𝑚2  

 𝑀𝑎𝑝𝑝𝑒𝑟3, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 

Entity 

authentication 

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑚3,𝑛𝑚3  𝑠𝑐𝑘𝑚3,𝑛𝑚3 , 𝑠𝑠𝑘𝑚3,𝑛𝑚3  

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑀𝑎𝑝𝑝𝑒𝑟1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑚1,𝑛𝑚1   𝑝𝑚𝑘𝑚1,𝑑𝑠1
1 , 𝑡𝑘𝑡𝑚1,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑚1
 

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, 

𝑀𝑎𝑝𝑝𝑒𝑟2 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑚2,𝑛𝑚2   𝑝𝑚𝑘𝑚2,𝑑𝑠1
2 , 𝑡𝑘𝑡𝑚2,𝑑𝑠1

2
𝑛𝑚2

, 𝑠𝑠𝑘𝑛𝑚2,𝑚2
 

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, 

𝑀𝑎𝑝𝑝𝑒𝑟3 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑚3,𝑛𝑚3   𝑝𝑚𝑘𝑚3,𝑑𝑠1
3 , 𝑡𝑘𝑡𝑚3,𝑑𝑠1

3
𝑛𝑚3

, 𝑠𝑠𝑘𝑛𝑚3,𝑚3
 

 𝑀𝑎𝑝𝑝𝑒𝑟1,  

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑚1,𝑑𝑠1
1 𝑠𝑠𝑘𝑚1,𝑑𝑠1

1   

 𝑀𝑎𝑝𝑝𝑒𝑟2,  

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2 

Entity 

authentication 

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑚2,𝑑𝑠1
2 𝑠𝑠𝑘𝑚2,𝑑𝑠1

2   

 𝑀𝑎𝑝𝑝𝑒𝑟3,  

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3 

Entity 

authentication 

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑚3,𝑑𝑠1
3 𝑠𝑠𝑘𝑚3,𝑑𝑠1

3   

(MF-22) 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1  Data 

authentication 

ISAuthData-

Verification 

𝑝𝑘𝑐1   - 

 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2  Data 

authentication 

ISAuthData-

Verification 

𝑝𝑘𝑐2   - 

 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3  Data 

authentication 

ISAuthData-

Verification 

𝑝𝑘𝑐3   - 

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2, 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3 

Data 

authentication 

PGen-

PSAuthData-

Generation 

𝑘𝑚1,𝑗𝑚  𝑟ℎ𝑚1
, 𝜏𝑟ℎ𝑚1

, 𝑆𝐴𝑚1
 

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1, 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2 

Data 

authentication 

PGen-

PSAuthData-

Generation 

𝑘𝑚2,𝑗𝑚  𝑟ℎ𝑚2
, 𝜏𝑟ℎ𝑚2

, 𝑆𝐴𝑚2
 

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2, 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3 

Data 

authentication 

PGen-

PSAuthData-

Generation 

𝑘𝑚3,𝑗𝑚  𝑟ℎ𝑚2
, 𝜏𝑟ℎ𝑚2

, 𝑆𝐴𝑚2
 

(MF-23) 𝑀𝑎𝑝𝑝𝑒𝑟1, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚1
  𝑠𝑠𝑘𝑚1,𝑗𝑚  

 𝑀𝑎𝑝𝑝𝑒𝑟2, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚2
  𝑠𝑠𝑘𝑚2,𝑗𝑚  

 𝑀𝑎𝑝𝑝𝑒𝑟3, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚3
  𝑠𝑠𝑘𝑚3,𝑗𝑚  

 𝑟ℎ𝑚1
, 𝑟ℎ𝑚2

, 𝑟ℎ𝑚3
, 

𝜏𝑟ℎ𝑚1
, 𝜏𝑟ℎ𝑚2

, 𝜏𝑟ℎ𝑚3
, 

𝑆𝐴𝑚1
, 𝑆𝐴𝑚2

, 𝑆𝐴𝑚3
 

Data 

authentication 

AGen-

PSAuthData-

Generation 

𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, 

𝑘𝑚3,𝑗𝑚, 𝑠𝑘𝑗𝑚   

𝑐ℎ𝑗𝑚, 𝜎𝑐ℎ𝑗𝑚
 

(MF-24) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟1
  𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑟1,𝑤𝑚1

2 , 𝑡𝑘𝑡
𝑟1,𝑤𝑚1

2
𝑗𝑚

, 

𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟1,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟1,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚 , 

𝑘𝑟1,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑟1
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 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟2
  𝑝𝑐𝑘1, 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑟2,𝑤𝑚2

1, 

𝑝𝑚𝑘𝑟2,𝑤𝑚1
3, 𝑡𝑘𝑡

𝑟2,𝑤𝑚2
1

𝑗𝑚
, 𝑡𝑘𝑡

𝑟2,𝑤𝑚1
3

𝑗𝑚
, 

𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟2,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟2,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚 , 

𝑘𝑟2,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑟2
 

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟3
  𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑟3,𝑤𝑚2

1, 𝑡𝑘𝑡
𝑟3,𝑤𝑚2

1
𝑗𝑚

, 

𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟3,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟3,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚 , 

𝑘𝑟3,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑟3
 

(MF-25) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2 

Entity 

authentication 

GE2A 𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑟1,𝑤𝑚1
2  𝑠𝑠𝑘𝑟1,𝑤𝑚1

2   

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1 

Entity 

authentication 

GE2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑟2,𝑤𝑚2
1 𝑠𝑠𝑘𝑟2,𝑤𝑚2

1   

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3 

Entity 

authentication 

GE2A 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑟2,𝑤𝑚1
3  𝑠𝑠𝑘𝑟2,𝑤𝑚1

3   

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, 

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1 

Entity 

authentication 

GE2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑟3,𝑤𝑚2
1 𝑠𝑠𝑘𝑟3,𝑤𝑚2

1   

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1  Data 

authentication 

PSAuthData-

Verification 

𝑝𝑘𝑗𝑚   - 

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2, 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2, 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2 

Data 

authentication 

PSAuthData-

Verification 

𝑝𝑘𝑗𝑚   - 

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3, 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3 

Data 

authentication 

PSAuthData-

Verification 

𝑝𝑘𝑗𝑚   - 

(MF-26) 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1  Data 

authentication 

PGen-

FRAuthData-

Generation 

𝑘𝑟1,𝑗𝑚  ℎ𝑟1,𝑐1, 𝜏ℎ𝑟1,𝑐1  

 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1  Data 

authentication 

PGen-

FRAuthData-

Generation 

𝑘𝑟2,𝑗𝑚  ℎ𝑟2,𝑐1, 𝜏ℎ𝑟2,𝑐1  

 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1  Data 

authentication 

PGen-

FRAuthData-

Generation 

𝑘𝑟3,𝑗𝑚  ℎ𝑟3,𝑐1, 𝜏ℎ3,𝑐1  

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟1,𝑛𝑚1   𝑠𝑐𝑘𝑟1,𝑛𝑚1, 𝑠𝑠𝑘𝑟1,𝑛𝑚1  

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟2,𝑛𝑚1  𝑠𝑐𝑘𝑟2,𝑛𝑚1, 𝑠𝑠𝑘𝑟2,𝑛𝑚1  

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟3,𝑛𝑚1  𝑠𝑐𝑘𝑟3,𝑛𝑚1, 𝑠𝑠𝑘𝑟3,𝑛𝑚1  

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑟1,𝑛𝑚1  𝑝𝑚𝑘𝑟1,𝑑𝑠1
1, 𝑡𝑘𝑡𝑟1,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑟1
 

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑟2,𝑛𝑚1  𝑝𝑚𝑘𝑟2,𝑑𝑠1
1, 𝑡𝑘𝑡𝑟2,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑟2
 

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑟3,𝑛𝑚1  𝑝𝑚𝑘𝑟3,𝑑𝑠1
1, 𝑡𝑘𝑡𝑟3,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑟3
 

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟1,𝑑𝑠1
1 𝑠𝑠𝑘𝑟1,𝑑𝑠1

1  

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟2,𝑑𝑠1
1 𝑠𝑠𝑘𝑟2,𝑑𝑠1

1  

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟3,𝑑𝑠1
1 𝑠𝑠𝑘𝑟3,𝑑𝑠1

1  

(MF-27) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟1
  𝑠𝑠𝑘𝑟1,𝑗𝑚  
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Operational 

step 

Entities / Components 

/ JobData objects 

Authentication Protocol / 

Algorithm / 

Method 

Keys used for 

authentication1 

Keys transmitted / AuthData 

tokens generated 

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟2
  𝑠𝑠𝑘𝑟2,𝑗𝑚  

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, 

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟3
  𝑠𝑠𝑘𝑟3,𝑗𝑚  

 ℎ𝑟1,𝑐1, ℎ𝑟2,𝑐1, ℎ𝑟3,𝑐1 , 

𝜏ℎ𝑟1,𝑐1 , 𝜏ℎ𝑟2,𝑐1 , 𝜏ℎ𝑟3,𝑐1  

Data 

authentication 

AGen-

FRAuthData-

Generation 

𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, 

𝑘𝑟3,𝑗𝑚, 𝑠𝑘𝑗𝑚  

𝑐ℎ𝑗𝑚
∗ , 𝜎𝑐ℎ𝑗𝑚

∗  

(MF-28) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐1,𝑗𝑚  𝑝𝑘𝑗𝑚 , 𝑠𝑠𝑘𝑗𝑚,𝑐1  

(MF-29) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑛𝑚1  𝑠𝑐𝑘𝑐1,𝑛𝑚1, 𝑠𝑠𝑘𝑐1,𝑛𝑚1  

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 

Entity 

authentication 

SOA 𝑠𝑐𝑘𝑐1,𝑛𝑚1  𝑝𝑚𝑘𝑐1,𝑑𝑠1
1, 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑐1  

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 

Entity 

authentication 

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1 𝑠𝑠𝑘𝑐1,𝑑𝑠1

1  

 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, 

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1  

Data 

authentication 

FRAuthData-

Verification 

𝑝𝑘𝑗𝑚   - 

Note: 1 – The times and establishment methods for keys for entity authentication are summarised in Table 5.5.  

7.4 Chapter Summary 

This chapter has used the running example to first illustrate how the job is executed using MR 

based services without our MDA framework, and then with our MDA framework, in a CBDC-

MPC setting. The job execution flow of MR is not application-specific, so it could support a 

wide range of applications, including those in which data used are mission critical and may be 

sensitive. By applying the MDA framework, all the entities involved in the job execution are 

authenticated, and these entity authentications are applied whenever the entities are 

involved in an interaction to send, receive, or process data, regardless of when the interaction 

is taking place during the job execution cycle. In addition, the MDA framework also provides 

data authentication protection, and the protection is applied to all the data used and 

generated in the entire job execution cycle. The chapter has explained in detail how different 

components of the MDA framework are applied in each of the operational steps of the job 

execution to facilitate these entity and data authentication protections. The example 

presented in this chapter has demonstrated that the MDA framework is an authentication 

solution that is suited to MR based data processing in a CBDC-MPC context.  

The next chapter concludes this thesis and presents future work.  
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Chapter 8   

Conclusions and Future Work 

With the advancement of Big Data processing and cloud computing, there is a growing trend 

for CBDC-MPC. In this context, there are open security issues and challenges that have yet to 

be addressed. This thesis investigates how to achieve effective, efficient, and scalable 

authentication to support secure CBDC-MPC using distributed computing services. This 

chapter summarises the work presented in this thesis, highlighting the contributions and 

findings. It also gives recommendations for future work.  

8.1 Contributions 

The contributions of this thesis are summarised on a chapter-by-chapter basis as follows.  

 

Chapter 4: Generic Use Case Model and MDA Framework 

In this chapter, a generic use case model for CBDC-MPC has been formulated and the 

architecture of our novel effective, efficient, and scalable authentication framework, the 

Multi-domain Decentralised Authentication (MDA) framework, for MR based CBDC-MPC has 

been described.  

The CBDC-MPC model is formulated based on an extreme version of collaborative data 

analysis using distributed computing services. All the data, the data processing services, and 

the underlying infrastructure are assumed to be from different administrative domains and 

there is minimal trust among the entities involved. In formulating the use case, two system 

architectures and five Big Data processing models have been examined. Compared with SA-

SC (all the components of a data processing service are hosted in a single cloud), SA-MC (the 

components of a service are hosted in different cloud) resembles a trend for utility computing 

as it gives a higher level of flexibility to service consumers and providers. With greater 

flexibility, it presents a broader set of security challenges. This implies that an authentication 

solution designed for SA-MC should also be able to address security challenges faced by SA-

SC. Based on our analysis, different Big Data processing models have many common 

characteristics. This means that a solution designed for one model should also be applicable 

to the other models. Although some models, e.g., Apache Spark, perform better than MR 

under certain conditions and settings, MR is one of the most used Big Data processing models 

and there are extensive supports and documents available to users and service providers. As 

a result, the SA-MC architecture and the MR model have been chosen for the construction of 

the CBDC-MPC model. The model shows in detail the entities involved in a job execution and 

how these components interconnect to accomplish the job. The model can not only be used 

to serve the design of our authentication solution, but also help with threat analyses and the 

designs of other security solutions for other applications that exhibit similar characteristics.  

Using the model, we have analysed where in the system that attacks could be mounted 

and how the attacks may be countered with as less overhead as possible. For this purpose, 

the classifications of MR components involved, data used, and interactions taking place have 
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been carried out, and communication patterns identified. Threats and attacks with regard to 

violation of entity identity and data authenticity protection have been identified. A set of 

requirements have been specified to counter the identified threats. The observations on the 

model along with the specified requirements have been used to guide the design of the MDA 

framework. The MDA framework consists of the Multi-factor Interaction based Entity 

Authentication (MIEA) framework and the Communication Pattern based Data 

Authentication (CPDA) framework. MIEA and CPDA, respectively, provide an entity 

authentication facility and a data authentication facility to support secure job execution in 

the context. Different from other existing authentication solutions, MDA is specifically 

designed for the CBDC-MPC context, and it provides a strong security protection (both 

content authenticity and origin non-repudiation) at the finest granularity level with minimal 

impacts on the performance of the underlying system. Although we have chosen MR as the 

underlying distributed computing service framework, MDA can be applied to any distributed 

computing service frameworks so long as they possess the characteristics of MR, namely, 

multi-stage data processing, the use of multiple data producers and data consumers, and the 

use of any or all of the communication patterns captured in MDA. In addition, owing to the 

modular design of MDA, components of MDA can be applied to other applications as needed. 

They can also be used with other security services, e.g., with an authorisation service to 

provide access control, or with an auditing service as part of a detective security measure. 

Although the main ideas used in the design of MDA have been used or applied in other fields 

or contexts, the application of these ideas in the CBDC-MPC context is novel.  

 

Chapter 5: MIEA Framework  

In this chapter, a novel approach, an interaction based approach, to entity authentication for 

CBDC-MPC has been proposed, implemented, and evaluated.  

The proposed approach provides entity authentication protection to every interaction 

taking place during the whole cycle of a job execution. This is done by utilising three main 

ideas: (1) the idea of Multi-factor Interaction based Authentication (MIA) in which credentials 

and authentication methods are selected based on the risk level tagged to each of the 

interactions; (2) the idea of a Decentralised approach with Combined use of group-and-entity-

dependent Symmetric keys (DCS) in which the distribution and verification of credentials are 

done by distributed entities while maximising the use of computationally-efficient symmetric-

key cryptosystems; and (3) the idea of a Hierarchical Key Structure (HKS) in which the 

distribution of keys is based on a hierarchical structure, keys in a higher level of the structure 

are used to securely distribute keys in a lower level of the structure.  

The approach has been implemented in the design of a novel entity authentication 

framework, the MIEA framework. Compared with entity authentication solutions that provide 

only gate-level protection, MIEA provides protection at a much finer granularity (the 

interaction level) which covers the entire cycle of a data processing job. This is to deter threats 

and attacks caused by both outsiders and insiders. Compared with symmetric-key based 

solutions, such as Kerberos, MIEA uses two-factor authentication to protect critical 

interactions, thus, making breaking authentication tokens harder. It also minimises the 

number of messages exchanged to facilitate the authentication, thus, lowering 
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communication overhead introduced. Compared with asymmetric-key based solutions, such 

as NSLPK, MIEA uses symmetric-key operations, which is significantly cheaper 

computationally than their asymmetric-key based counterparts, thus introducing a lower 

level of computational overhead cost. To demonstrate the effectiveness and the efficiency of 

the MIEA framework, the framework has been extensively evaluated by using both theoretical 

and experimental methods. Informal, symbolic, and complexity analysis methods have been 

used to evaluate the security properties and strengths of MIEA. The results show that the 

MIEA framework satisfies all the specified security requirements with regard to entity 

authentication (i.e., (SR1), (SR2), (SR3), and (SR4)) and the strengths of the protections are 

dependent on the parameter values (e.g., key lengths). In theoretical performance evaluation, 

the computational and communication overheads introduced by MIEA have been analysed in 

terms of the number of cryptographic operations performed and the volume of AuthData 

transmitted over networks, respectively. The results have been compared with those of the 

most related entity authentication solutions, i.e., the Kerberos and the NSLPK protocols. The 

results show that, for computational overhead, MIEA introduces the highest number of 

cryptographic operations (all of which are symmetric-key based and are less computationally 

expensive). Regarding communication overhead, the number of protocol messages 

exchanged when MIEA is applied is only 3, fewer than those of Kerberos and NSLPK without 

ticket and public key caching. However, the messages used in the MIEA protocols have larger 

payload sizes compared with those of Kerberos and NSLPK. Experimental evaluations have 

been conducted on a real-system testbed. The results show that the execution times of the 

MIEA protocols (particularly, the SOA protocol) are the shortest due to the smallest number 

of transmitted messages and the use of computationally less expensive symmetric-key 

cryptosystems. In addition, the performance of MIEA is dependent on the sizes of message 

payloads, the larger the payload (i.e., an entity may interact with many other entities, thus, 

more credentials to be transmitted for subsequent authentication), the longer the execution 

times. The results of the evaluations indicate that MIEA outperforms other related solutions 

for MR based data processing under the parameters and settings used in the experiments. It 

provides a stronger level of entity authentication protection but at no higher cost, than 

Kerberos, one of the most used entity authentication solutions. The identities of entities can 

be established and verified, laying a groundwork for other security services. The more 

efficient the entity authentication process, the sooner the data processing tasks can start, the 

sooner the job can finish, the sooner the output can be produced, the more the jobs can be 

processed in a given time for a given resource setting.  

 

Chapter 6: CPDA Framework 

In this chapter, a novel approach, a communication pattern based approach, to data 

authentication for MR based CBDC-MPC has been proposed, implemented, and evaluated.  

The proposed approach protects the authenticity (encompassing origin authentication 

and integrity protection) of all the JobData and achieves accountability (by providing non-

repudiation of origin) at the finest granularity (i.e., at the object level) while being highly 

efficient and scalable. This is accomplished by using two main ideas: (1) the idea of AuthData 

and Communication Aggregation (ACA) which reduces the number of objects to be signed and 
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verified with computationally-expensive cryptographic algorithms and aggregates the 

communications transmitting the AuthData; and (2) the idea of a Hybrid use of multiple 

cryptographic schemes with Segregation of Credentials (HYSC) which further cuts the 

overhead introduced by maximising the use of computationally-inexpensive cryptographic 

algorithms and improves accountability by using a different pairwise key for each pair of 

untrustworthy and trustworthy components.  

The approach has been implemented in the design of a novel data authentication 

framework, the CPDA framework. Compared with symmetric-key based solutions without any 

form of asymmetry, CPDA can provide non-repudiation of origin protection which is necessary 

to hold entities accountable. Data producers cannot falsely deny having produced their data, 

thus, preventing fraudulent data injection and tampering. Compared with the secret-share 

based, task-replication based, and asymmetric-key based without signature amortisation 

solutions, CPDA requires less computation resources and introduces a lower level of overhead 

cost. To evaluate the security protections provided by and the performance of CPDA, 

theoretical analyses and experimental evaluations have been carried out. The results have 

been compared with those of the most related object-level solutions, i.e., the schemes that 

secure individual objects with a MAC and a digital signature, respectively. An informal analysis 

method and a complexity analysis method have been used to analyse the security properties 

and strength of CPDA. The results show that CPDA can achieve all the specified security 

requirements with regard to data authentication (i.e., (SR5), (SR6), and (SR7)) as the strongest 

solution, i.e., the signature based scheme, but with less overhead cost introduced. The 

theoretical performance evaluation of CPDA has been carried out by analysing the number of 

cryptographic operations performed by individual components and the volume of traffics 

transmitted for AuthData delivery. The results show that, in comparison with the signature 

based scheme, CPDA can bring a significant reduction in computational overhead cost 

imposed on data processing components by cutting down the number of expensive 

cryptographic operations on large objects to one. This is achieved at a cost of additional 

cryptographic operations imposed on Aggregator and a larger message size (more items in 

the payload). Experimental evaluations have been conducted on a real-system testbed 

(consisting of 5 networked machines running up to 400 Workers) with a real-world weather 

dataset. The results show that (1) CPDA is significantly more efficient compared to the 

signature based scheme; (2) the cost incurred by CPDA is close to those of the MAC based 

scheme; and (3) the reduction in overhead costs brought by CPDA is significant, particularly 

when CPDA is applied to a large-scale job execution involving a large quantity of objects with 

small size. The evaluation results show that CPDA provides the same level of protection (origin 

authentication, integrity protection, non-repudiation of origin) as that of the most secure 

object based solution (i.e., the solution that digitally signs and verifies individual data objects) 

at the finest level of granularity (the object level) but with performance closer to the MAC 

based solution. The strongest level of data authenticity protection ensures that the JobData 

used throughout the execution of the job are produced by the claimed entities and are not 

contaminated by unauthorised entities. In other words, the output of the job is authentic. 

This is particularly important for mission-critical jobs or applications. As JobData objects are 

individually verifiable, there are no dependency among data consumers and the data 
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consumers can start their tasks as soon as the assigned objects are ready. A lower level of 

overhead cost introduced in signing and verifying objects means a shorter delay is added to 

the execution of the job. CDPA is highly scalable, thus, it is suited to Big Data processing 

applications.  

8.2 Conclusions 

From this research, we can draw the following conclusions:  

• Designing an authentication solution for CBDC in an MPC environment is a challenging 

task, as for CBDC, the solution should be highly efficient and scalable and, for the MPC 

environment, the design of the solution should assume the components are less 

trustworthy. This implies that the security protection provided should be the 

strongest, but the overhead cost introduced should be the lowest. A strong level of 

protection usually incurs a high level of overhead cost. Applying the same level of 

strong protection to every interaction and every data object is neither efficient nor 

practical. The design of an authentication solution for large-scale Big Data processing, 

which is the case for this work, should balance the trade-off between the level of 

protection needed and the overhead cost introduced. The way we balanced this trade-

off is that: an appropriate level of protection is applied to a different point in the data 

processing flow; a stronger level of protection with a higher level of overhead cost is 

applied to more-critical points, whereas a weaker level of protection with a lower level 

of overhead cost is applied to less-critical points.  

• The design of an authentication solution that takes into account of the characteristics 

of the underlying distributed computing system brings much benefit in terms of 

supporting effective, efficient, and scalable authentication in a large-scale distributed 

computing setting. These characteristics help us identify the weak points of the 

system, the level of protection required, and how to improve efficiency and scalability. 

This is captured in the ideas of MIA (discussed in Section 5.3) where stronger security 

protection with higher overhead cost is only applied to interactions (i.e., initial 

interactions) experiencing a higher level of risks, and ACA (discussed in Section 6.3) 

where a different aggregation method for AuthData and communications is selected 

based on a communication pattern exhibited. Furthermore, by applying decentralised 

authentication, which is in alignment with the characteristics of distributed 

computing, we can make good use of resource parallelism offered by the underlying 

system to evenly balance the workload imposed on the system and improve on service 

resilience. 

• A hybrid use of asymmetric key and symmetric key cryptosystems allows us to achieve 

strong security protection while lowering the computational overhead cost 

introduced. As can be seen in the design of CPDA, by applying a digital signature 

scheme only on aggregated AuthData tokens (which are smaller in size and quantity 

compared with JobData objects), we can extend the strong security protection of the 

digital signature scheme to all JobData objects but with a fraction of computational 

overhead cost introduced.  
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• Each of the components of the MDA framework, i.e., the MIEA framework and the 

CPDA framework, offers respective merits and demerits in terms of the reduction in 

overhead cost when applied to small-scale and large-scale MR services, respectively. 

For small-scale MR services, the overhead cost introduced by the MIEA framework is 

at the same level as that of Kerberos and is only 0.25% of that of NSLPK. On the other 

hand, the CPDA framework can bring a larger cut in overhead cost when applied to 

large-scale MR services. CPDA can cut the delay in job execution time by two thirds 

compared with the signature based scheme. These results show that the MDA 

framework are highly efficient and scalable in supporting secure distributed 

computing in this context of CBDC-MPC. It is worth noting that MDA may not be the 

best framework for distributed computing services in some contexts. For example, in 

a setting where an organisation has full control over the system, an existing solution 

such as Kerberos can provide a sufficient level of protection more efficiently.  

• Owing to the modular design of the MDA framework, different components of MDA 

can be applied together or separately to distributed computing services. The 

components of MDA can work with other security services as long as the security 

services support the required functions (e.g., credential distribution). MDA can be 

applied as add-on modules so minimal modifications to the system are required. For 

these reasons, we believe that MDA can be applied to a wider range of distributed 

computing services.  

• While we try our best to generalise our MDA framework as much as possible so that 

it can be applied in a broader set of applications in similar contexts. The performance 

of MDA when deployed for production may differ from the results reported in this 

thesis. This is because the performance of MDA is not only dependent on the scale of 

the underlying distributed computing services but also other factors, e.g., jobs to be 

processed, infrastructures used, and how the MDA framework is implemented. In all 

the experimental evaluations presented in this thesis, we have clearly specified which 

parameter values are used. The experimental results reported in this thesis should 

only be interpreted based on the specified sets of parameters.  

8.3 Future Work 

The following recommendations are given as directions for future work.  

• We may evaluate the performance of the MDA framework under different settings, 

i.e., (1) different implementations of MR services (e.g., Apache Hadoop); (2) different 

jobs (e.g., cyber threat analysis and biomedical research); (3) larger scale of MR 

services (e.g., thousands of Workers); and (4) different infrastructures (e.g., public 

clouds). These could give us more empirical evidence and make the evaluation results 

more conclusive.  

• We may investigate how the MDA could be applied to other distributed computing 

frameworks, such as Flink [131], Spark [116], and Storm [111]. Some of the 

characteristics exhibited by these frameworks may not be captured in MR, which may 

affect the applicability, effectiveness, efficiency, and scalability of the MDA 
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framework. In addition, these frameworks may also present other challenging issues 

that are yet to be addressed.  

• The MDA framework could be extended to support other security properties (such as 

authorisation), thus, providing a more comprehensive security protection against 

unauthorised access to data and system. This could be done by integrating other 

security measures (e.g., access control to support authorisation) and technologies 

(e.g., blockchain to provide verifiable security records).  

• In this research work, we take a customised approach in the design of our 

authentication solution, i.e., the design of our solution is tailored in line with the 

characteristics of the underlying systems, to achieve effective, efficient, and scalable 

authentication. The findings from this work also support that the approach can indeed 

achieve the aim of this research. However, there is also a growing trend for Security-

as-a-Service which implements a generalised approach. It would be interesting to 

investigate what are merits and demerits of both approaches when applied to 

distributed computing in the same context.  
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Appendix A   

Symbolic Analysis Source Codes  

The contents of the three SPDL files (gp2a.spdl, ge2a.spdl, and soa.spdl) used for symbolic 

analysis of the MIEA protocols are shown as follows. 

 

gp2a.spdl 
 
/* 

 * Group key and Pre-shared primary key Two-factor Authentication (GP2A) protocol 

 */ 

// -- Custom types 

usertype Protocol; 

usertype MessageID; 

usertype MessageType; 

usertype PayloadSize; 

usertype DomainID; 

usertype JobID; 

usertype ActionRequest; 

usertype InitiatorClass; 

usertype Credential;      // keys exchanged in an RP message 

 

// -- Functions 

// for the built-in encryption function: {y}x means a data item y encrypted with a key x 

const DID: Function;      // DID(x) returns the DomainID of x 

hashfunction HKDF;     // HKDF(x, y) returns the key derived from x and y 

 

// -- Authentication keys;    

secret pmk: Function;     // pre-shared primary key 

secret gk: Function;      // group key 

 

// -- Static constants 

const GP2A: Protocol; 

const CH: MessageType; 

const RC: MessageType; 

const RP: MessageType; 

 

const psize1: PayloadSize; 

const psize2: PayloadSize; 

const psize3: PayloadSize; 

 

// -- Macros (for brevity) 

// I and R are, respectively, used as idI and idR 

// authenticators containing challenges and responses and encrypted with authentication keys 

macro auth1 = {{n1}pmk(I, R)}gk; 

macro auth2 = {{n1, n2}pmk(I, R)}gk; 

macro auth3 = {{n2}pmk(I, R)}gk; 

 

// MAC key and credential encryption key 

macro mkIR = HKDF(pmk(I, R), gk); 

macro ckIR = HKDF(pmk(I, R), n2); 

 

// an encryption based approach is used to generate MAC tags 

macro tag1 = {mid1, jid, req, icl, auth1}mkIR; 

macro tag2 = {mid2, mid1, auth2}mkIR; 

macro tag3 = {mid3, mid2, auth3, {creds}ckIR}mkIR; 

 

macro msg1 = (GP2A, mid1, CH, psize1, I, DID(I), R, DID(R), jid, req, icl, auth1, tag1); 

macro msg2 = (GP2A, mid2, RC, psize2, R, DID(R), I, DID(I), mid1, auth2, tag2); 

macro msg3 = (GP2A, mid3, RP, psize3, I, DID(I), R, DID(R), mid2, auth3, {creds}ckIR, tag3); 

 

protocol GP2A-protocol(I,R) 

{ 

    // -- Roles 

    role I    // for initiators 

    { 

        // -- Fresh constants 

        fresh mid1: MessageID; 

        fresh jid: JobID; 

        fresh req: ActionRequest; 

        fresh icl: InitiatorClass; 

        fresh n1: Nonce; 

         

        fresh mid3: MessageID; 

        fresh creds: Credential; 

         

        // -- Variables 
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        var mid2: MessageID; 

        var n2: Nonce; 

         

        // ------------------------------------------ 

        // Step 1: Send a CH message (msg1). 

        send_msg1(I, R, msg1); 

         

        // ------------------------------------------ 

        // Step 3: Receive the RC message (msg2),  

        //         and send an RP message (msg3). 

        recv_msg2(R, I, msg2); 

        send_msg3(I, R, msg3); 

         

        // ------------------------------------------ 

        // -- Claims 

        claim_I1(I, Nisynch); 

        claim_I2(I, Secret, gk); 

        claim_I3(I, Secret, pmk(I, R)); 

        claim_I4(I, Secret, mkIR); 

        claim_I5(I, Secret, ckIR); 

        claim_I6(I, Secret, n1); 

        claim_I7(I, Secret, n2); 

        claim_I8(I, Secret, creds); 

    } 

     

    role R    // for respondents 

    { 

        // -- Fresh constants 

        fresh mid2: MessageID; 

        fresh n2: Nonce; 

         

        // -- Variables 

        var mid1: MessageID; 

        var jid: JobID; 

        var req: ActionRequest; 

        var icl: InitiatorClass; 

        var n1: Nonce; 

         

        var mid3: MessageID; 

        var creds: Credential; 

         

        // ------------------------------------------ 

        // Step 2: Receive the CH message (msg1),  

        //         and send an RC message (msg2).  

        recv_msg1(I, R, msg1); 

        send_msg2(R, I, msg2); 

         

        // ------------------------------------------ 

        // Step 4: Receive the RP message (msg3). 

        recv_msg3(I, R, msg3); 

         

        // ------------------------------------------ 

        // -- Claims 

        claim_R1(R, Nisynch); 

        claim_R2(R, Secret, gk); 

        claim_R3(R, Secret, pmk(I, R)); 

        claim_R4(R, Secret, mkIR); 

        claim_R5(R, Secret, ckIR); 

        claim_R6(R, Secret, n1); 

        claim_R7(R, Secret, n2); 

        claim_R8(R, Secret, creds); 

    } 

} 

 

 
ge2a.spdl 
 
/* 

 * Group key and Encapsulated primary key Two-factor Authentication (GE2A) protocol 

 */ 

// -- Custom types 

usertype Protocol; 

usertype MessageID; 

usertype MessageType; 

usertype PayloadSize; 

usertype DomainID; 

usertype JobID; 

usertype ActionRequest; 

usertype InitiatorClass; 

usertype Credential;      // keys exchanged in an RP message 

usertype Timestamp; 

usertype PrimaryKey; 

 

// -- Functions 

// for the built-in encryption function: {y}x means a data item y encrypted with a key x 
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const DID: Function;      // DID(x) returns the DomainID of x 

hashfunction HKDF;     // HKDF(x, y) returns the key derived from x and y 

 

// -- Authentication keys; 

// for the built-in secret key: k(x, y) means a secret key shared between x and y 

secret slk: Function;     // sealing key 

secret gk: Function;      // group key 

 

// -- Static constants 

const GE2A: Protocol; 

const CH: MessageType; 

const RC: MessageType; 

const RP: MessageType; 

 

const psize1: PayloadSize; 

const psize2: PayloadSize; 

const psize3: PayloadSize; 

 

// -- Macros (for brevity) 

// I and R are, respectively, used as idI and idR 

macro tkt = {I, DID(I), R, DID(R), Z, DID(Z), jid, req, gt, et, pmkIR}slk(R, Z); 

 

// messages for transmitting pmkIR and tkt 

macro msg0A = ({jid, req, R}k(I, Z)); 

macro msg0B = ({pmkIR}k(I, Z), tkt); 

 

// authenticators containing challenges and responses and encrypted with authentication keys 

macro auth1 = {{n1}pmkIR}gk; 

macro auth2 = {{n1, n2}pmkIR}gk; 

macro auth3 = {{n2}pmkIR}gk; 

 

// MAC key and credential encryption key 

macro mkIR = HKDF(pmkIR, gk); 

macro ckIR = HKDF(pmkIR, n2); 

 

// an encryption based approach is used to generate MAC tags 

macro tag1 = {mid1, jid, req, icl, auth1, tkt}mkIR; 

macro tag2 = {mid2, mid1, auth2}mkIR; 

macro tag3 = {mid3, mid2, auth3, {creds}ckIR}mkIR; 

 

macro msg1 = (GE2A, mid1, CH, psize1, I, DID(I), R, DID(R), jid, req, icl, auth1, tkt, tag1); 

macro msg2 = (GE2A, mid2, RC, psize2, R, DID(R), I, DID(I), mid1, auth2, tag2); 

macro msg3 = (GE2A, mid3, RP, psize3, I, DID(I), R, DID(R), mid2, auth3, {creds}ckIR, tag3); 

 

protocol GE2A-protocol(I,R,Z) 

{ 

    // -- Roles 

    role I    // for initiators 

    { 

        // -- Fresh constants 

        fresh mid1: MessageID; 

        fresh jid: JobID; 

        fresh req: ActionRequest; 

        fresh icl: InitiatorClass; 

        fresh n1: Nonce; 

         

        fresh mid3: MessageID; 

        fresh creds: Credential; 

         

        // -- Variables 

        var mid2: MessageID; 

        var n2: Nonce; 

         

        var et: Timestamp; 

        var gt: Timestamp; 

        var pmkIR: PrimaryKey;   // issued by Z 

         

        // ------------------------------------------ 

        // Step 0-A: Send a message (msg0A) to Z to request a ticket for authentication to R. 

        send_msg0A(I, Z, msg0A); 

         

        // ------------------------------------------ 

        // Step 0-C: Recieve a message (msg0B). 

        recv_msg0B(Z, I, msg0B); 

         

        // ------------------------------------------ 

        // Step 1: Send a CH message (msg1). 

        send_msg1(I, R, msg1); 

         

        // ------------------------------------------ 

        // Step 3: Receive the RC message (msg2),  

        //         and send an RP message (msg3). 

        recv_msg2(R, I, msg2); 

        send_msg3(I, R, msg3); 

         

        // ------------------------------------------ 

        // -- Claims 

        claim_I1(I, Nisynch); 
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        claim_I2(I, Secret, gk); 

        claim_I3(I, Secret, pmkIR); 

        claim_I4(I, Secret, mkIR); 

        claim_I5(I, Secret, ckIR); 

        claim_I6(I, Secret, n1); 

        claim_I7(I, Secret, n2); 

        claim_I8(I, Secret, creds); 

    } 

     

    role R    // for respondents 

    { 

        // -- Fresh constants 

        fresh mid2: MessageID; 

        fresh n2: Nonce; 

         

        // -- Variables 

        var mid1: MessageID; 

        var jid: JobID; 

        var req: ActionRequest; 

        var icl: InitiatorClass; 

        var n1: Nonce; 

         

        var mid3: MessageID; 

        var creds: Credential; 

         

        var gt: Timestamp; 

        var et: Timestamp; 

        var pmkIR: PrimaryKey;   // contained in tkt in msg1 

         

        // ------------------------------------------ 

        // Step 2: Receive the CH message (msg1),  

        //         and send an RC message (msg2).  

        recv_msg1(I, R, msg1); 

        send_msg2(R, I, msg2); 

         

        // ------------------------------------------ 

        // Step 4: Receive the RP message (msg3). 

        recv_msg3(I, R, msg3); 

         

        // ------------------------------------------ 

        // -- Claims 

        claim_R1(R, Nisynch); 

        claim_R2(R, Secret, gk); 

        claim_R3(R, Secret, pmkIR); 

        claim_R4(R, Secret, mkIR); 

        claim_R5(R, Secret, ckIR); 

        claim_R6(R, Secret, n1); 

        claim_R7(R, Secret, n2); 

        claim_R8(R, Secret, creds); 

    } 

     

    role Z    // for a trusted third party 

    { 

        // -- Fresh constants 

        fresh gt: Timestamp; 

        fresh et: Timestamp; 

        fresh pmkIR: PrimaryKey;    // for authentication between I and R 

         

        // -- Variables 

        var jid: JobID; 

        var req: ActionRequest; 

     

        // ------------------------------------------ 

        // Step 0-B: Recieve the request message (msg0A)  

        //           and reply a message (msg0B) containing pmkIR and tkt back to I. 

        recv_msg0A(I, Z, msg0A); 

        send_msg0B(Z, I, msg0B); 

         

        // ------------------------------------------ 

        // -- Claims 

        claim_Z0(Z, Secret, pmkIR); 

    } 

} 

 

 
soa.spdl 
 
/* 

 * Secondary key One-factor Authentication (SOA) protocol 

 */ 

// -- Custom types 

usertype Protocol; 

usertype MessageID; 

usertype MessageType; 

usertype PayloadSize; 
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usertype DomainID; 

usertype JobID; 

usertype ActionRequest; 

usertype InitiatorClass; 

usertype Credential;      // keys exchanged in an RP message 

 

// -- Functions 

// for the built-in encryption function: {y}x means a data item y encrypted with a key x 

const DID: Function;      // DID(x) returns the DomainID of x 

hashfunction HKDF;     // HKDF(x, y) returns the key derived from x and y 

 

// -- Authentication key; 

secret sck: Function;     // secondary key 

 

// -- Static constants 

const SOA: Protocol; 

const CH: MessageType; 

const RC: MessageType; 

const RP: MessageType; 

 

const psize1: PayloadSize; 

const psize2: PayloadSize; 

const psize3: PayloadSize; 

 

// -- Macros (for brevity) 

// I and R are, respectively, used as idI and idR 

// authenticators containing challenges and responses and encrypted with authentication keys 

macro auth1 = {n1}sck(I, R); 

macro auth2 = {n1, n2}sck(I, R); 

macro auth3 = {n2}sck(I, R); 

 

// MAC key and credential encryption key 

macro mkIR = HKDF(sck(I, R)); 

macro ckIR = HKDF(sck(I, R), n2); 

 

// an encryption based approach is used to generate MAC tags 

macro tag1 = {mid1, jid, req, icl, auth1}mkIR; 

macro tag2 = {mid2, mid1, auth2}mkIR; 

macro tag3 = {mid3, mid2, auth3, {creds}ckIR}mkIR; 

 

macro msg1 = (SOA, mid1, CH, psize1, I, DID(I), R, DID(R), jid, req, icl, auth1, tag1); 

macro msg2 = (SOA, mid2, RC, psize2, R, DID(R), I, DID(I), mid1, auth2, tag2); 

macro msg3 = (SOA, mid3, RP, psize3, I, DID(I), R, DID(R), mid2, auth3, {creds}ckIR, tag3); 

 

protocol SOA-protocol(I,R) 

{ 

    // -- Roles 

    role I    // for initiators 

    { 

        // -- Fresh constants 

        fresh mid1: MessageID; 

        fresh jid: JobID; 

        fresh req: ActionRequest; 

        fresh icl: InitiatorClass; 

        fresh n1: Nonce; 

         

        fresh mid3: MessageID; 

        fresh creds: Credential; 

         

        // -- Variables 

        var mid2: MessageID; 

        var n2: Nonce; 

         

        // ------------------------------------------ 

        // Step 1: Send a CH message (msg1). 

        send_msg1(I, R, msg1); 

         

        // ------------------------------------------ 

        // Step 3: Receive the RC message (msg2),  

        //         and send an RP message (msg3). 

        recv_msg2(R, I, msg2); 

        send_msg3(I, R, msg3); 

         

        // ------------------------------------------ 

        // -- Claims 

        claim_I1(I, Nisynch); 

        claim_I3(I, Secret, sck(I, R)); 

        claim_I4(I, Secret, mkIR); 

        claim_I5(I, Secret, ckIR); 

        claim_I6(I, Secret, n1); 

        claim_I7(I, Secret, n2); 

        claim_I8(I, Secret, creds); 

    } 

     

    role R    // for respondents 

    { 

        // -- Fresh constants 

        fresh mid2: MessageID; 
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        fresh n2: Nonce; 

         

        // -- Variables 

        var mid1: MessageID; 

        var jid: JobID; 

        var req: ActionRequest; 

        var icl: InitiatorClass; 

        var n1: Nonce; 

         

        var mid3: MessageID; 

        var creds: Credential; 

         

        // ------------------------------------------ 

        // Step 2: Receive the CH message (msg1),  

        //         and send an RC message (msg2).  

        recv_msg1(I, R, msg1); 

        send_msg2(R, I, msg2); 

         

        // ------------------------------------------ 

        // Step 4: Receive the RP message (msg3). 

        recv_msg3(I, R, msg3); 

         

        // ------------------------------------------ 

        // -- Claims 

        claim_R1(R, Nisynch); 

        claim_R3(R, Secret, sck(I, R)); 

        claim_R4(R, Secret, mkIR); 

        claim_R5(R, Secret, ckIR); 

        claim_R6(R, Secret, n1); 

        claim_R7(R, Secret, n2); 

        claim_R8(R, Secret, creds); 

    } 

} 
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Appendix B   

The Execution Flows of the Kerberos and NSLPK 

Protocols 

This section explains the operational steps of Kerberos [34][138][139] and NSLPK [31]. It 

highlights authentication flows and describes how AuthData are generated and transmitted.  

B.1 Kerberos 

There are four entities involved in each authentication instance: an initiator 𝐼, a Key 

Distribution Center (KDC) server 𝐾, a Ticket-Granting Service (TGS) server 𝑇, and a respondent 

𝑅. 𝐾 is a server that issues (mid-level) credentials to 𝐼 for authentication to 𝑇, whereas 𝑇 is a 

server that issues (bottom-level) credentials to 𝐼 for authentication to 𝑅. The Kerberos 

protocol consists of 6 operational steps and there are a total of 5 messages exchanged, as 

shown in Figure B.1. 

 
Figure B.1: The message transaction flow of Kerberos. 
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Step 1: In 𝐼1, 𝐼 generates a nonce 𝑛1 (𝐼1) and sends a request for credentials, i.e., a 

pairwise key 𝑘𝐼,𝑇 (for authentication between 𝐼 and 𝑇) and a ticket (encrypted pairwise key) 

𝑡𝑘𝑡𝐼,𝑇
𝐾 , to 𝐾. The message (msg-K1) contains the ID of 𝐼 𝑖𝑑𝐼, the ID of 𝑇 𝑖𝑑𝑇 and 𝑛1, expressed 

as: msg-K1: {𝑖𝑑𝐼 , 𝑖𝑑𝑇 , 𝑛1}.  

Step 2: Upon receiving msg-K1, in 𝐾1, 𝐾 generates 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾 , and sends these items 

back to 𝐼. To ensure that the reply message (msg-K2) is not replayed, 𝐾 encrypts 𝑘𝐼,𝑇 and 𝑛1 

with a pairwise key 𝑘𝐼,𝐾 shared between 𝐼 and 𝐾. The message contains the encrypted 𝑘𝐼,𝑇 

and 𝑛1 along with 𝑡𝑘𝑡𝐼,𝑇
𝐾 , expressed as: msg-K2: {𝑆𝐸(𝑘𝐼,𝐾, 𝑘𝐼,𝑇||𝑛1), 𝑡𝑘𝑡𝐼,𝑇

𝐾 }. 

Step 3: After receiving msg-K2, in 𝐼2, 𝐼 decrypts the encrypted pairwise key and nonce, 

expressed as (𝑘𝐼,𝑇 || 𝑛1
′ ) = 𝑆𝐷(𝑘𝐼,𝐾, 𝑆𝐸(𝑘𝐼,𝐾, 𝑘𝐼,𝑇||𝑛1)), and checks 𝑛1

′  with 𝑛1 (generated in 

Step 1). If the result is positive, in 𝐼3, 𝐼 generates an authenticator 𝑎𝑢𝑡ℎ1, expressed as 

𝑎𝑢𝑡ℎ1 = 𝑆𝐸(𝑘𝐼,𝑇 , 𝑡1) where 𝑡1 is a current timestamp, and a nonce 𝑛2, and then sends a 

request for credentials, i.e., a pairwise key 𝑘𝐼,𝑅 (for authentication between 𝐼 and 𝑅) and a 

ticket (encrypted pairwise key) 𝑡𝑘𝑡𝐼,𝑅
𝑇 , to 𝑇. The message msg-K3 contains 𝑎𝑢𝑡ℎ1, 𝑡𝑘𝑡𝐼,𝑇

𝐾 , the 

ID of 𝑅 𝑖𝑑𝑅, and 𝑛2, expressed as msg-K3: {𝑎𝑢𝑡ℎ1, 𝑡𝑘𝑡𝐼,𝑇
𝐾 , 𝑖𝑑𝑅 , 𝑛2}. 

Step 4: Upon receiving msg-K3, in 𝑇1, 𝑇 decrypts 𝑡𝑘𝑡𝐼,𝑇
𝐾  to obtain 𝑘𝐼,𝑇 and the related data, 

(𝑖𝑑𝐼||𝑘𝐼,𝑇||𝑠𝑡1||𝑒𝑡1) where 𝑠𝑡1 and 𝑒𝑡1 are, respectively, the creation and expiry times of the 

key. 𝑇 checks whether the ticket is for 𝐼 and the key is not expired. 𝑇 then uses 𝑘𝐼,𝑇 to verify 

𝑎𝑢𝑡ℎ1 by decrypting 𝑎𝑢𝑡ℎ1 and checking the timestamp, 𝑡1 = 𝑆𝐷(𝑘𝐼,𝑇 , 𝑎𝑢𝑡ℎ1). If 𝑡1 is fresh, 

in 𝑇2, 𝑇 prepares the requested credentials for 𝐼 similar to 𝐾1 in Step 2. The message msg-

K4 is expressed as: msg-K4: {𝑆𝐸(𝑘𝐼,𝑇 , 𝑘𝐼,𝑅||𝑛2), 𝑡𝑘𝑡𝐼,𝑅
𝑇 }.  

Step 5: After receiving msg-K4, in 𝐼4, 𝐼 verifies the received 𝑘𝐼,𝑅 and 𝑛2
′ , and in 𝐼5, sends 

a request for service access to 𝑅. The processes of 𝐼4 and 𝐼5 are similar to 𝐼2 and 𝐼3 in Step 

3, respectively, but the content of the message is different. The generation of 𝑎𝑢𝑡ℎ2 is 

expressed as 𝑎𝑢𝑡ℎ2 = 𝑆𝐸(𝑘𝐼,𝑅 , 𝑡2) where 𝑡2 is a current timestamp. The message msg-K5 is 

expressed as: msg-K5 {𝑎𝑢𝑡ℎ2, 𝑡𝑘𝑡𝐼,𝑅
𝑇 }.  

Step 6: Upon receiving msg-K5, in 𝑅1, 𝑅 verifies 𝑎𝑢𝑡ℎ2 using the process similar to 𝑇1 in 

Step 4.  

If the protocol is successfully executed and all verifications are positive, 𝐼 and 𝑅 are 

mutually authenticated. It is worth noting that, when 𝐼 wants to communicate with a new 

respondent (e.g., a new service server), 𝐼 does not have to obtain a new pairwise key and a 

new ticket from 𝐾 again as long as 𝑡𝑘𝑡𝐼,𝑇
𝐾  is not expired. 𝐼 may use 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇

𝐾  to request 

credentials for the new respondent from 𝑇. In this case, Step 1 and Step 2 can be skipped and 

only 3 messages (msg-K3, msg-K4, and msg-K5) are used for authentication. 

B.2 NSLPK 

There are three entities involved in each authentication instance: an initiator 𝐼, a trusted key 

server 𝑍, and a respondent 𝑅. 𝑍 certifies (by generating signatures) and issues the public key 

of 𝐼 to 𝑅, and the public key of 𝑅 to 𝐼. It is assumed that the public key of 𝑍 (𝑝𝑘𝑍) is certified 

and known to 𝐼 and 𝑅. The NSLPK protocol consists of 8 operational steps and there are a 

total of 7 messages exchanged, as shown in Figure B.2. 
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Figure B.2: The message transaction flow of NSLPK.  

Step 1: In 𝐼1, 𝐼 sends a request for the public key of 𝑅 𝑝𝑘𝑅 to 𝑍. The message (msg-N1) 

contains the ID of 𝐼 𝑖𝑑𝐼 and the ID of 𝑅 𝑖𝑑𝑅, expressed as: msg-N1: {𝑖𝑑𝐼 , 𝑖𝑑𝑅}.  

Step 2: Upon receiving msg-N1, in 𝑍1, 𝑍 signs 𝑝𝑘𝑅 || 𝑖𝑑𝑅 with its private key 𝑠𝑘𝑍 and sends 

a reply message back to 𝐼. The signing process is expressed as  𝜎𝑝𝑘𝑅 || 𝑖𝑑𝑅
= 𝑆𝑆(𝑠𝑘𝑧 ,

𝑝𝑘𝑅 || 𝑖𝑑𝑅). The message (msg-N2) contains the concatenation of 𝑝𝑘𝑅||𝑖𝑑𝑅 and a signature, 

expressed as: msg-N2: {𝑝𝑘𝑅 || 𝑖𝑑𝑅 , 𝜎𝑝𝑘𝑅 || 𝑖𝑑𝑅
}.  

Step 3: After receiving msg-N2, in 𝐼2, 𝐼 verifies the signature with the public key of 𝑍 𝑝𝑘𝑍 

and obtains 𝑝𝑘𝑅. The verification process is expressed as 𝑠𝑣 =  𝑆𝑉(𝑝𝑘𝑍, 𝑝𝑘𝑅 || 𝑖𝑑𝑅 ,

𝜎𝑝𝑘𝑅 || 𝑖𝑑𝑅
). If the verification is positive, in 𝐼3, 𝐼 generates a nonce 𝑛1, encrypts 𝑛1 || 𝑖𝑑𝐼 (a 

challenge) with 𝑝𝑘𝑅, and sends a message to 𝑅. The message (msg-N3) is expressed as: msg-

N3: {𝐴𝐸(𝑝𝑘𝑅 , 𝑛1 || 𝑖𝑑𝐼)}.  

Step 4: Upon receiving msg-N3, in 𝑅1, 𝑅 decrypts the content of the message with its 

private key 𝑠𝑘𝑅 to obtain 𝑛1 and 𝑖𝑑𝐼. The decryption process is expressed as 

 (𝑛1 || 𝑖𝑑𝐼) =  𝐴𝐷(𝑠𝑘𝑅 , 𝐴𝐸(𝑝𝑘𝑅 , 𝑛1 || 𝑖𝑑𝐼)). 𝑅 then uses the same method as 𝐼1 in Step 1 
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to sends a request for the public key of 𝐼 𝑝𝑘𝐼 to 𝑍. The message (msg-N4) is expressed as: 

msg-N4: {𝑖𝑑𝑅 , 𝑖𝑑𝐼}.  

Step 5: Upon receiving msg-N4, in 𝑍2, 𝑍 replies a message containing 𝑝𝑘𝐼 using the same 

method as 𝑍1 in Step 2. The message (msg-N5) is expressed as: msg-N5: {𝑝𝑘𝐼 || 𝑖𝑑𝐼 , 𝜎𝑝𝑘𝐼 || 𝑖𝑑𝐼
}.  

Step 6: After receiving msg-N5, in 𝑅2, 𝑅 verifies the signature and obtains 𝑝𝑘𝐼 using the 

same method as 𝐼2 in Step 3. In 𝑅3, 𝑅 generates a nonce 𝑛2, encrypts 𝑛1|| 𝑛2 || 𝑖𝑑𝑅 (used as 

a response and a new challenge) with 𝑝𝑘𝐼, and sends a reply message back to 𝐼. The message 

(msg-N6) is expressed as: msg-N6: {𝐴𝐸(𝑝𝑘𝐼 , 𝑛1|| 𝑛2 || 𝑖𝑑𝑅)}.  

Step 7: Upon receiving msg-N6, in 𝐼4, 𝐼 decrypts the content of the message with its 

private key 𝑠𝑘𝐼 to obtain 𝑛1
′  and 𝑛2. If 𝑛1

′  equals 𝑛1 (generated in 𝐼3 in Step 3), then 𝐼 is 

assured of the identity of 𝑅 and 𝐼 proceeds to 𝐼5. In 𝐼5, 𝐼 sends a reply message containing 

𝑛2 (used as a response) encrypted with 𝑝𝑘𝑅 back to 𝑅. The message (msg-N7) is expressed 

as: msg-N7: {𝐴𝐸(𝑝𝑘𝑅 , 𝑛2)}.  

Step 8: After receiving msg-N7, in 𝑅4, 𝑅 decrypts the content of the message with 𝑠𝑘𝑅 to 

obtain 𝑛2
′ . If 𝑛2

′  equals 𝑛2 (generated in 𝑅3 in Step 6), then 𝑅 is assured of the identity of 𝐼 

and the protocol is successfully terminated. 

At the end of the execution of the protocol, if all verifications are positive, then 𝐼 and 𝑅 

are positively authenticated to each other. It is worth noting that 𝐼 and 𝑅 may cache the public 

key of the other entity. In this way, msg-N1, msg-N2, msg-N4, and msg-N5 can be omitted in 

subsequent authentication instances. In other words, only 3 messages (msg-N3, msg-N6, and 

msg-N7) are needed for subsequent authentication. 
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Appendix C   

Algorithms Implementing the Methods of CPDA 

The algorithms implementing the methods used in the design of CPDA are formally described 

in the following.  

 
 Algorithm 6.1.1: HT-AuthData-Aggregation 

1: algorithm 𝐻𝑇𝐴𝐴(ℎ𝑥,1, ℎ𝑥,2, … , ℎ𝑥,𝑄) 

2:     ℎ𝑡 = 𝐻𝑇𝐶(ℎ𝑥,1, ℎ𝑥,2, … , ℎ𝑥,𝑄) 

3:     𝑟ℎ𝑥 = the value contained in the root node of ℎ𝑡 

4:     for 𝑖 =  1 𝑡𝑜 𝑄 do  

5:         𝑠𝑎𝑥,𝑖 = 𝑆𝐴𝐸(ℎ𝑡, ℎ𝑥,𝑖) 

6:     end for  

7:     𝑆𝐴𝑥 = {𝑠𝑎𝑥,1, 𝑠𝑎𝑥,2, … , 𝑠𝑎𝑥,𝑄} 

8:     return {𝑟ℎ𝑥 , 𝑆𝐴𝑥} 

9: end algorithm  
 

 Algorithm 6.1.2: HC-AuthData-Aggregation 

1: algorithm 𝐻𝐶𝐴𝐴(ℎ1,𝑦, ℎ2,𝑦 , … , ℎ𝑃,𝑦) 

2:     𝑐ℎ𝛼 = ℎ1,𝑦||ℎ2,𝑦||  … ||ℎ𝑃,𝑦 

3:     return 𝑐ℎ𝛼 

4: end algorithm  
 

 Algorithm 6.2.1: ISAuthData-Generation 

1: algorithm 𝐼𝑆𝐴𝐷𝐺(𝑑𝑐,𝑚1
, 𝑑𝑐,𝑚2

, … , 𝑑𝑐,𝑚𝑀
, 𝑠𝑘𝑐) 

2:     for 𝑖 = 1 𝑡𝑜 𝑀 do 

3:         ℎ𝑐,𝑚𝑖
= 𝐻(𝑑𝑐,𝑚𝑖

) 

4:     end for  

5:      {𝑟ℎ𝑐 , 𝑆𝐴𝑐} = 𝐻𝑇𝐴𝐴(ℎ𝑐,𝑚1
, ℎ𝑐,𝑚2

, … , ℎ𝑐,𝑚𝑀
) 

6:     𝜎𝑟ℎ𝑐
= 𝑆𝑆(𝑠𝑘𝑐 , 𝑟ℎ𝑐) 

7:     return {𝜎𝑟ℎ𝑐
, 𝑆𝐴𝑐} 

8: end algorithm  
 

 Algorithm 6.2.2: ISAuthData-Verification 

1: algorithm 𝐼𝑆𝐴𝐷𝑉(𝑑𝑐,𝑚𝑎
, 𝜎𝑟ℎ𝑐

, 𝑠𝑎𝑐,𝑚𝑎
, 𝑝𝑘𝑐) 

2:     ℎ′𝑐,𝑚𝑎
= 𝐻(𝑑𝑐,𝑚𝑎

) 

3:     𝑟ℎ𝑐
′ = 𝑅𝐴𝑅(ℎ𝑐,𝑚𝑎

′ , 𝑠𝑎𝑐,𝑚𝑎
) 

4:     𝑠𝑣 = 𝑆𝑉(𝑝𝑘𝑐 , 𝑟ℎ𝑐
′ , 𝜎𝑟ℎ𝑐

) 

5:     return 𝑠𝑣 

6: end algorithm  
 

 Algorithm 6.3.1: PGen-PSAuthData-Generation 

1: algorithm 𝑃𝑃𝑆𝐴𝐷𝐺(𝑑𝑚𝑎,𝑟1
, … , 𝑑𝑚𝑎,𝑟𝐸

, 𝑘𝑚𝑎,𝑗𝑚) 

2:     for 𝑗 = 1 𝑡𝑜 𝐸 do 

3:         ℎ𝑚𝑎,𝑟𝑗
= 𝐻(𝑑𝑚𝑎,𝑟𝑗

) 

4:     end for  

5:      {𝑟ℎ𝑚𝑎
, 𝑆𝐴𝑚𝑎

} = 𝐻𝑇𝐴𝐴(ℎ𝑚𝑎,𝑟1
, ℎ𝑚𝑎,𝑟2

, … , ℎ𝑚𝑎,𝑟𝐸
) 

6:     𝜏𝑟ℎ𝑚𝑎
= 𝑀𝑆(𝑘𝑚𝑎,𝑗𝑚, 𝑟ℎ𝑚𝑎

) 

7:     return {𝑟ℎ𝑚𝑎
, 𝜏𝑟ℎ𝑚𝑎

, 𝑆𝐴𝑚𝑎
} 

8: end algorithm  
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 Algorithm 6.3.2: AGen-PSAuthData-Generation 

1: algorithm 𝐴𝑃𝑆𝐴𝐷𝐺(𝑟ℎ𝑚1
, … , 𝑟ℎ𝑚𝑀

, 𝜏𝑟ℎ𝑚1
, … , 𝜏𝑟ℎ𝑚𝑀

, 𝑘𝑚1,𝑗𝑚 ,

… , 𝑘𝑚𝑀,𝑗𝑚, 𝑠𝑘𝑗𝑚) 

2:     for 𝑖 = 1 𝑡𝑜 𝑀 do 

3:         𝑚𝑣 =  𝑀𝑉(𝑘𝑚𝑖,𝑗𝑚, 𝑟ℎ𝑚𝑖
, 𝜏𝑟ℎ𝑚𝑖

 ) 

4:         if 𝑚𝑣 is 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 then  

5:             throw Exception(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑖) 

6:         end if 

7:     end for  

8:     𝑐ℎ𝑗𝑚 = 𝐻𝐶𝐴𝐴(𝑟ℎ𝑚1
, 𝑟ℎ𝑚2

, … , 𝑟ℎ𝑚𝑀
) 

9:     𝜎𝑐ℎ𝑗𝑚
= 𝑆𝑆(𝑠𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚) 

10:     return {𝑐ℎ𝑗𝑚, 𝜎𝑐ℎ𝑗𝑚
} 

11: end algorithm  

 

 Algorithm 6.3.3: PSAuthData-Verification 

1: algorithm 𝑃𝑆𝐴𝐷𝑉(𝑑𝑚1,𝑟𝑏
, … , 𝑑𝑚𝑀,𝑟𝑏

, 𝑠𝑎𝑚1,𝑟𝑏
, … , 𝑠𝑎𝑚𝑀,𝑟𝑏

,

𝑐ℎ𝑗𝑚, 𝜎𝑐ℎ𝑗𝑚
, 𝑝𝑘𝑗𝑚) 

2:     𝑠𝑣 = 𝑆𝑉(𝑝𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚 , 𝜎𝑐ℎ𝑗𝑚
) 

3:     if 𝑠𝑣 is 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 then  

4:         return {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, "𝑐ℎ𝑗𝑚"} 

5:     end if 

6:     Extract {𝑟ℎ𝑚1
, … , 𝑟ℎ𝑚𝑀

} from 𝑐ℎ𝑗𝑚 

7:     𝐼𝑁𝐷𝐼𝐶𝐸𝑆 = {} 

8:     for 𝑖 = 1 𝑡𝑜 𝑀 do 

9:         ℎ′𝑚𝑖,𝑟𝑏
= 𝐻(𝑑𝑚𝑖,𝑟𝑏

) 

10:         𝑟ℎ𝑚𝑖
′ = 𝑅𝐴𝑅(ℎ𝑚𝑖,𝑟𝑏

′ , 𝑠𝑎𝑚𝑖,𝑟𝑏
) 

11:         if 𝑟ℎ𝑚𝑖
′ ! = 𝑟ℎ𝑚𝑖

 then  

12:             Add 𝑖 to 𝐼𝑁𝐷𝐼𝐶𝐸𝑆 

13:        end if 

14:     end for 

15:     if 𝐼𝑁𝐷𝐼𝐶𝐸𝑆 is 𝑒𝑚𝑝𝑡𝑦 then 

16:         return {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒} 

17:     else 

18:         return {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝐼𝑁𝐷𝐼𝐶𝐸𝑆} 

19:     end if 

20: end algorithm  

 

 Algorithm 6.4.1: PGen-FRAuthData-Generation  

1: algorithm 𝑃𝐹𝑅𝐴𝐷𝐺(𝑑𝑟𝑏,𝑐 , 𝑘𝑟𝑏,𝑗𝑚) 

2:     ℎ𝑟𝑏,𝑐 = 𝐻(𝑑𝑟𝑏,𝑐) 

3:     𝜏ℎ𝑟𝑏,𝑐
= 𝑀𝑆(𝑘𝑟𝑏,𝑗𝑚, ℎ𝑟𝑏,𝑐) 

4:     return {ℎ𝑟𝑏,𝑐, 𝜏ℎ𝑟𝑏,𝑐
} 

5: end algorithm  
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 Algorithm 6.4.2: AGen-FRAuthData-Generation 

1: algorithm 𝐴𝐹𝑅𝐴𝐷𝐺(ℎ𝑟1,𝑐 , … , ℎ𝑟𝐸,𝑐, 𝜏ℎ𝑟1,𝑐
, … ,  𝜏ℎ𝑟𝐸,𝑐

, 𝑘𝑟1,𝑗𝑚 , … ,

𝑘𝑟𝐸,𝑗𝑚 , 𝑠𝑘𝑗𝑚)  

2:     for 𝑗 = 1 𝑡𝑜 𝐸 do 

3:         𝑚𝑣 =  𝑀𝑉(𝑘𝑟𝑗,𝑗𝑚, ℎ𝑟𝑗,𝑐 , 𝜏ℎ𝑟𝑗,𝑐
 ) 

4:         if 𝑚𝑣 is 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 then  

5:             throw Exception(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑗) 

6:         end if 

7:     end for  

8:     𝑐ℎ𝑗𝑚 = 𝐻𝐶(ℎ𝑟1,𝑐, ℎ𝑟2,𝑐 , … , ℎ𝑟𝐸,𝑐) 

9:     𝜎𝑐ℎ𝑗𝑚
= 𝑆𝑆(𝑠𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚) 

10:     return {𝑐ℎ𝑗𝑚, 𝜎𝑐ℎ𝑗𝑚
} 

11: end algorithm  
 

 Algorithm 6.4.3: FRAuthData-Verification 

1: algorithm 𝐹𝑅𝐴𝐷𝑉(𝑑𝑟1,𝑐, … , 𝑑𝑟𝐸,𝑐, 𝑐ℎ𝑗𝑚 , 𝜎𝑐ℎ𝑗𝑚
, 𝑝𝑘𝑗𝑚) 

2:     𝑠𝑣 = 𝑆𝑉(𝑝𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚 , 𝜎𝑐ℎ𝑗𝑚
) 

3:     if 𝑠𝑣 is 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 then  

4:         return {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, "𝑐ℎ𝑗𝑚"} 

5:     end if 

6:     Extract {ℎ𝑟1,𝑐 , … , ℎ𝑟𝐸,𝑐} from 𝑐ℎ𝑗𝑚 

7:     𝐼𝑁𝐷𝐼𝐶𝐸𝑆 = {} 

8:     for 𝑗 = 1 𝑡𝑜 𝐸 do 

9:         ℎ′𝑟𝑗,𝑐 = 𝐻(𝑑𝑟𝑗,𝑐) 

10:         if ℎ𝑟𝑗,𝑐
′ ! = ℎ𝑟𝑗,𝑐  then  

11:             Add 𝑗 to 𝐼𝑁𝐷𝐼𝐶𝐸𝑆 

12:        end if 

13:     end for 

14:     if 𝐼𝑁𝐷𝐼𝐶𝐸𝑆 is 𝑒𝑚𝑝𝑡𝑦 then 

15:         return {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒} 

16:     else 

17:         return {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝐼𝑁𝐷𝐼𝐶𝐸𝑆} 

18:     end if 

19: end algorithm  
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