

AN EFFECTIVE AND EFFICIENT

AUTHENTICATION FRAMEWORK FOR MAPREDUCE

IN A MULTIPLE PUBLIC CLOUD ENVIRONMENT

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2021

Soontorn Sirapaisan

School of Engineering
Department of Computer Science

2

LIST OF CONTENTS

LIST OF CONTENTS 2

LIST OF TABLES 6

LIST OF FIGURES 8

ABBREVIATIONS 10

DEFINITIONS 12

ABSTRACT 14

DECLARATION 15

COPYRIGHT STATEMENT 16

ACKNOWLEDGEMENTS 17

Chapter 1 Introduction 18

1.1 Research Context 18

1.2 Research Motivation and Challenges 18

1.3 Research Aim and Objectives 21

1.4 Research Question and Hypothesis 22

1.5 Research Methodology 22

1.5.1 Literature Review and Knowledge Gap Identifications ... 22

1.5.2 Solution Design .. 22

1.5.3 Security Analysis and Performance Evaluation.. 23

1.5.4 Experiment Implementation .. 23

1.6 Novel Contributions and Publications 23

1.6.1 Novel Contributions ... 23

1.6.2 Publications .. 25

1.7 Thesis Structure 25

Chapter 2 Big Data Computing: Issues, Challenges, and Solutions 27

2.1 Chapter Introduction 27

2.2 Big Data Computing: Concepts and System Models 27

2.2.1 Big Data Computing and Collaborative Data Analysis ... 27

2.2.2 System Models ... 28

2.2.3 Cloud Computing ... 31

2.3 Issues and Challenges 34

2.4 Existing Authentication Solutions and Knowledge Gaps 35

2.4.1 Entity Authentication ... 35

2.4.2 Data Authentication ... 36

2.4.3 Knowledge Gaps ... 37

2.5 A Way Forward 38

2.6 Chapter Summary 38

Chapter 3 Cryptographic Building Blocks 39

3.1 Chapter Introduction 39

3.2 Selections and Justifications 39

3

3.3 Hash Functions 40

3.4 Hash Trees 41

3.5 Key Derivation Functions 41

3.6 Symmetric-key based Encryption Schemes 41

3.7 Asymmetric-key based Encryption Schemes 42

3.8 Message Authentication Code (MAC) Schemes 42

3.9 Digital Signature Schemes 42

3.10 Chapter Summary 43

Chapter 4 Multi-domain Decentralised Authentication (MDA) Framework 44

4.1 Chapter Introduction 44

4.2 Use Case Description 44

4.3 Generic Use Case Model Construction 46

4.3.1 Choosing a System Architecture .. 46

4.3.2 Choosing a Big Data Processing Model .. 51

4.3.3 MapReduce (MR) based Big Data Processing Model... 54

4.3.4 Our Collaborative Big Data Computation on a Multiple Public Cloud platform (CBDC-

MPC) Model .. 56

4.4 Threat Analysis 65

4.4.1 Threats and Attacks ... 65

4.4.2 Threat Model ... 66

4.5 Requirement Specifications 67

4.5.1 Functional Requirements ... 67

4.5.2 Security Requirements ... 67

4.5.3 Performance Requirements ... 68

4.6 The Running Example 68

4.7 An Overview of the MDA Framework 73

4.8 Chapter Summary 75

Chapter 5 Multi-factor Interaction based Entity Authentication (MIEA)
Framework 77

5.1 Chapter Introduction 77

5.2 Existing Entity Authentication Solutions 77

5.2.1 Non-MR Specific Solutions ... 78

5.2.2 MR Specific Solutions ... 80

5.2.3 What is Missing .. 82

5.3 High-level Ideas 83

5.4 Design Assumptions and Notations 87

5.4.1 Design Assumptions ... 87

5.4.2 Notations .. 87

5.5 MIEA in Detail 88

5.5.1 An Overview of the MIEA Architecture.. 88

5.5.2 Credentials ... 89

5.5.3 Credential Establishment Methods ... 93

5.5.4 Entity Authentication Protocols ... 94

4

5.5.5 Putting Everything Together: MIEA in Action .. 105

5.6 The Running Example 107

5.7 Security Analysis 110

5.7.1 Informal Analysis .. 110

5.7.2 Symbolic Analysis ... 113

5.7.3 Complexity Analysis ... 118

5.8 Performance Evaluation 120

5.8.1 Notations .. 120

5.8.2 Computational Overheads ... 120

5.8.3 Communication Overheads ... 124

5.9 Experimental Evaluation 127

5.9.1 Methodology and Evaluation Metrics ... 127

5.9.2 Testbed Setup .. 127

5.9.3 Parameters and Configurations ... 129

5.9.4 Experimental Results ... 129

5.10 Chapter Summary 134

Chapter 6 Communication Pattern based Data Authentication (CPDA)
Framework 135

6.1 Chapter Introduction 135

6.2 Existing Data Authentication Solutions 135

6.2.1 Non-MR Specific Solutions ... 135

6.2.2 MR Specific Solutions ... 137

6.2.3 What is Missing .. 139

6.3 High-level Ideas 140

6.3.1 TreeAgg Method .. 141

6.3.2 FlatAgg Method.. 144

6.3.3 HybridAgg Method ... 145

6.4 Design Assumptions and Notations 147

6.4.1 Design Assumptions ... 147

6.4.2 Notations .. 147

6.5 CPDA in Detail 147

6.5.1 An Overview of the CPDA Architecture ... 148

6.5.2 AuthData Aggregation Algorithms ... 149

6.5.3 Protocol Message Structure and Format ... 149

6.5.4 O2M Functional Block .. 150

6.5.5 M2M Functional Block ... 151

6.5.6 M2O Functional Block .. 153

6.5.7 Putting Everything Together: CPDA in Action .. 155

6.6 The Running Example 157

6.7 Security Analysis 160

6.7.1 Informal Analysis .. 160

6.7.2 Complexity Analysis ... 161

6.8 Performance Evaluation 163

5

6.8.1 Notations .. 163

6.8.2 Computational Overheads ... 163

6.8.3 Communication Overheads ... 165

6.9 Experimental Evaluation 168

6.9.1 Methodology and Evaluation Metrics ... 168

6.9.2 Testbed Setup .. 168

6.9.3 Parameters and Configurations ... 170

6.9.4 Experimental Results ... 172

6.10 Chapter Summary 179

Chapter 7 The Detailed Operational Steps for the Running Example 180

7.1 Chapter Introduction 180

7.2 Job Execution Flow 180

7.3 MDA in Action 186

7.4 Chapter Summary 203

Chapter 8 Conclusions and Future Work 204

8.1 Contributions 204

8.2 Conclusions 208

8.3 Future Work 209

References 211

Appendix A Symbolic Analysis Source Codes 225

Appendix B The Execution Flows of the Kerberos and NSLPK Protocols 231

B.1 Kerberos 231

B.2 NSLPK 232

Appendix C Algorithms Implementing the Methods of CPDA 235

Word count: 76,959

6

LIST OF TABLES

2.1: The comparisons of the grid and cloud models. .. 29

4.1: The comparisons of SC-SA and MC-SA.. 48

4.2: The comparisons of MR, Dryad, Hyracks, Nephele, and Apache Spark. 52

4.3: Interaction classifications. .. 64

4.4: The input (security log files) for the running example. .. 69

4.5: Notations for JobData objects used in the running example. .. 71

5.1: Related entity authentication solutions. .. 83

5.2: Notations used in the description of MIEA. .. 87

5.3: Ticket fields. .. 91

5.4: An example CStore of a component. .. 91

5.5: Keys and the respective establishment methods. .. 93

5.6: The header format of MIEA protocol messages. .. 96

5.7: Fields and their possible values. ... 96

5.8: Credential package format. .. 97

5.9: The comparisons of security properties achieved by the MIEA protocols, the Kerberos

protocol, and the NSLPK protocol.. 113

5.10: Notations used in the complexity analysis of MIEA. .. 118

5.11: The security strength of MIEA. ... 120

5.12: Notations used in performance evaluation of MIEA. ... 120

5.13: The comparisons of the computational overheads imposed on individual entities by

different entity authentication protocols. ... 123

5.14: The comparisons of the communication overheads introduced by different entity

authentication protocols. .. 126

5.15: Software specifications. .. 128

5.16: Hardware specifications. .. 128

6.1: Related data authentication solutions. .. 140

6.2: Notations used in the description of CPDA. ... 147

6.3: Values for PRO and MTYPE of ADD and ACK messages. ... 150

6.4: The comparisons of security properties achieved by CPDA, the MAC based scheme, and

the signature based scheme. ... 161

6.5: Notations used in the complexity analysis of CPDA. .. 161

6.6: The comparisons of the security strengths of CPDA, the MAC based scheme, and the

signature based scheme. ... 163

6.7: Notations used in performance evaluation of CPDA. ... 163

6.8: The comparisons of the computational overheads imposed on individual components by

different data authentication solutions. .. 165

6.9: The comparisons of the communication overheads introduced by different data

authentication solutions. ... 167

6.10: Software specifications. .. 169

6.11: Hardware specifications. .. 170

7

7.1: Output produced by the Mappers. ... 183

7.2: Input used by the Reducers. ... 184

7.3: Output produced by the Reducers. .. 185

7.4: Credentials established prior to the execution of the job. ... 186

7.5: The summary of entities, credentials, and AuthData involved in authentication when MDA

is applied to the job execution of the working example. .. 198

8

LIST OF FIGURES

1.1: The architecture of an example CBDC-MPC. .. 19

1.2: Thesis structure. .. 26

3.1: Cryptographic building blocks used in our entity authentication service. 40

3.2: Cryptographic building blocks used in our data authentication service. 40

4.1: Use case architecture.. 45

4.2: An example of SC-SA. .. 46

4.3: An example of MC-SA. .. 47

4.4: MR components. ... 54

4.5: Data flows during an MR job execution.. 55

4.6: An overview of the CBDC-MPC architecture. ... 56

4.7: A high-level view of a generic job execution flow in the CBDC-MPC model. 57

4.8: Interactions among entities. ... 59

4.9: The job execution flow of the running example. .. 72

4.10: MDA framework architecture. .. 74

4.11: Authentication flow using the MDA framework. ... 75

5.1: An example showing how the ideas used in designing MIEA are applied. 86

5.2: An overview of the MIEA architecture. .. 88

5.3: The classifications of credentials used in MIEA. ... 89

5.4: Ticket structure. .. 90

5.5: The key hierarchy of non-derived keys. .. 92

5.6: A generic message transaction flow of the three entity authentication protocols for

positive authentication. ... 95

5.7: The format of MIEA protocol messages. .. 95

5.8: The format of a credential package. ... 97

5.9: GP2A preliminary verification (R1). .. 99

5.10: GP2A RP1 verification (I2). .. 100

5.11: GP2A RP2 verification (R3). ... 101

5.12: GE2A preliminary verification (R1). .. 103

5.13: The job execution flow when MIEA is applied.. 107

5.14: The key hierarchy in step 2 through to step 4c. ... 110

5.15: Symbolic analysis of the three MIEA protocols using Scyther. 118

5.16: Testbed architecture for evaluating the entity authentication services. 128

5.17: The comparisons of the execution times of all the cryptographic algorithms on data

objects with the sizes of 16 B and 32 B. .. 130

5.18: The comparisons of the execution times of AES-128 Encryption and Decryption on

objects with varying sizes. ... 131

5.19: The comparisons of the execution times of all the protocols. 132

5.20: The comparisons of the execution times of GP2A, GE2A, and SOA against the size of

credential packages. .. 133

6.1: An AuthData tree for 8 objects. .. 142

9

6.2: The Sibling-AuthData for d3 in an AuthData tree for 8 objects. 143

6.3: AuthData transmitted among components in the O2M pattern. 144

6.4: AuthData transmitted among components in the M2O pattern. 145

6.5: AuthData exchanged among components in the M2M pattern. 146

6.6: An overview of the CPDA architecture. .. 148

6.7: A generic message transaction flow used in the AuthData-Delivery protocols of CPDA.

.. 149

6.8: The components involved, and the algorithms and the protocol used, in the O2M

functional block. ... 150

6.9: The components involved, and the algorithms and the protocol used, in the M2M

functional block. ... 152

6.10: The components involved, and the algorithms and the protocol, used in the M2O

functional block. ... 154

6.11: The operations of the CPDA framework during the entire course of a job execution. 156

6.12: The software architecture of our testbed. ... 169

6.13: Network topology and the deployment of MR components on the testbed. 170

6.14: The comparisons of the execution times of SHA-256, HMAC-128, and RSA-3072 on

objects with varying sizes. ... 172

6.15: The comparisons of the execution times of the data authentication algorithms used in

the MAC based, signature (SIG) based and CPDA. .. 175

6.16: The comparisons of the execution times of MR jobs with and without data

authentication. ... 178

10

ABBREVIATIONS

ACK Acknowledgement

ADD AuthData Delivery

AES Advanced Encryption Standard

API Application Programming Interface

APT Advanced Persistent Threat

CDBC Collaborative Big Data Computation

CDBC-MPC Collaborative Big Data Computation being executed on a Multiple

Public Cloud platform

CPDA Communication Pattern based Data Authentication

CPU Central Processing Unit

DFS Distributed File System

DPS Distributed Processing System

ECC Elliptic-Curve Cryptography

GHCN Global Historical Climatology Network

HDFS Hadoop Distributed File System

HKDF HMAC based Key Derivation Function

HMAC Hash based Message Authentication Code

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure-as-a-Service

IBE Identity-Based Encryption

ID Identifier

IDS Intrusion Detection System

IP Internet Protocol

IPS Intrusion Prevention System

KDF Key Derivation Function

LAN Local Area Network

M2M Many-to-Many

M2O Many-to-One

MAC Message Authentication Code

MC-SA Multi-Cloud System Architecture

MDA Multi-domain Decentralised Authentication

MIEA Multi-factor Interaction based Entity Authentication

MPC Multiple Public Clouds

MR MapReduce

NCEI National Centers for Environmental Information

NIST National Institute of Standards and Technology

O2M One-to-Many

PaaS Platform-as-a-Service

RAM Random Access Memory

11

RPC Remote Procedure Call

SaaS Software-as-a-Service

SASL Simple Authentication and Security Layer

SC-SA Single-Cloud System Architecture

SDK Software Development Kit

SSO Single Sign-On

TCB Trusted Compute Base

TCP/IP Transmission Control Protocol over Internet Protocol

TPM Trusted Platform Module

TTP Trusted Third Party

WAN Wide Area Network

12

DEFINITIONS

Cloud A cloud is an infrastructure for Internet-based services. It abstracts

a pool of resources of physical machines and provides shared

computing and storage resources to service consumers. Groups of

machines providing shared computing and storage resources are,

respectively, referred to as a computing cluster and a storage

cluster.

Cloud domain

(CloudDomain)

A cloud domain is a domain consisting of computing and storage

resources hosted in a cloud.

Collaborators Collaborators are a group of organisations that have established

collaborations and agreed to share datasets and resources for data

analyses or other collaborative purposes.

Consumer A consumer refers to an entity consuming (using) data.

Container A container is a subset of resources of a machine, which provides

an environment for running a piece of software (i.e., a software

runtime environment).

Data object (object) A data object refers to a unit of JobData (e.g., a file) used, generated,

or processed during the execution of a data processing job.

Distributed

Computing Service

A distributed computing service is a service that a service consumer

uses to process data. It uses computing and storage resources

hosted in a distributed cluster of machines (e.g., a cloud).

Distributed File

System (DFS) cluster

A DFS cluster is a cluster of MR components used to store JobData

during a job execution.

Domain A domain is a group of entities that belong to a particular

association or have a common purpose or function.

Distributed

Processing System

(DPS) cluster

A DPS cluster is a cluster of MR components used to perform data

processing tasks of a job execution.

Entity An entity collectively refers to a person (e.g., a user), an association

(e.g., an organisation, or a cloud service provider), or a service

component (e.g., a Mapper or a Reducer).

Job data (JobData) JobData are data that are used, generated, or processed during an

execution of a data processing job.

Job domain

(JobDomain)

A JobDomain is a domain containing MR components allocated to

a particular job execution.

MR cluster An MR cluster is a set of MR components with a particular function,

either processing or storing data.

MR component An MR component is a component of an MR service. It is used to

perform a particular task (e.g., data processing, data storage, and

task scheduling).

13

MR domain

(MRDomain)

An MRDomain is a domain containing all the MR components of an

MR service.

MR job An MR job is a data proceesing job submitted by a user to an MR

service.

MR service An MR service is an MR framework based application service.

Organisation An organisation refers to a group of people that belong to a

particular association, such as a government unit, a private

enterprise, or a financial institute. It subscribes to an MR service

offered by an MR service provider and may share the MR service

with users from other organisations.

Organisation domain

(OrgDomain)

An OrgDomain is a domain consisting of users and MR clients

(ClientApps) of an organisation.

Processing cluster A processing cluster is a set of machines in a cloud that provide

computing resources.

Processing service A processing service is a service run on a processing cluster of a

cloud. It provides computing resources to service consumers.

Producer A producer refers to an entity producing (generating or supplying)

data.

Resources CPUs, RAMs, storage, networks, and other resources used in

facilitating data processing are collectively referred to as resources.

Service consumer A service consumer is an entity consuming a service.

Service provider A service provider is an entity providing a service.

Storage cluster A storage cluster is a set of machines in a cloud that provide

storage resources.

Storage service A storage resource service is a service run on a storage cluster of a

cloud. It provides storage resources to service consumers.

User A user is a member of an organisation. The user uses an MR service

of his/her organisation.

14

ABSTRACT

Increasingly, there is a growing trend for inter-organisational collaborative Big Data sharing

and analysis. For efficiency reasons, such Big Data analysis is usually carried out by using

distributed computing services deployed in public clouds.

Executing Collaborative Big Data Computation (CBDC) in a Multiple Public Cloud (MPC)

environment introduces some open issues. One of these issues is how to maximise security

protection level with minimum overhead costs. We set to investigate these issues based on

the authentication property as authentication is the first line of defence in any computing

systems. The investigation has led to the design, prototype, and evaluation of a novel

authentication solution that takes into account of the characteristics of the underlying

system. To this end, this thesis has made the following contributions.

Firstly, the thesis has formulated a generic use case model for CBDC-MPC. This model

captures an extreme form of distributed computation where multiple collaborators jointly

perform CBDC on shared datasets using an example distributed computing framework,

MapReduce (MR), deployed in an MPC environment. The model is used to gain a thorough

understanding of the threats in relation to impersonation, unauthorised access, and

alteration to data in the context and guide the design of an effective, efficient, and scalable

authentication solution for distributed systems.

Secondly, the thesis has proposed a novel authentication framework for CBDC-MPC. The

framework, called the Multi-domain Decentralised Authentication (MDA) framework,

consists of two further novel components, the Multi-factor Interaction based Entity

Authentication (MIEA) framework and the Communication Pattern based Data

Authentication (CPDA) framework. The MIEA framework provides risk-aware entity

authentication to every interaction during the entire execution cycle of a data processing job.

The framework has been analysed and evaluated both theoretically and experimentally. The

analysis and evaluation results demonstrate that MIEA provides a stronger level of entity

authentication but with the same level of overhead cost compared with Kerberos, one of the

most used entity authentication protocols in a distributed computing environment.

The CPDA framework provides data authenticity and non-repudiation of origin for every

data object processed by the underlying system. To maximise the protection level while

minimising the overhead cost, a novel idea of communication pattern based aggregations of

authentication data (generation and verification operations) and communication is used in

conjunction with multiple cryptographic schemes. The theoretical and experimental

evaluation results show that the CPDA approach offers the strongest level of data authenticity

protection but reduces the overhead cost by up to 67% in comparison with the most related

solution that digitally signs every object individually.

The results demonstrate that the idea of tailoring the design of an authentication solution

in line with the characteristics of the underlying system brings much benefit in terms of

supporting efficient and scalable authentication in a large-scale distributed system.

15

DECLARATION

No portion of the work referred to in the thesis has been submitted in support of an
application for another degree or qualification of this or any other university or other institute
of learning.

16

COPYRIGHT STATEMENT

i. The author of this thesis (including any appendices and/or schedules to this thesis)
owns certain copyright or related rights in it (the “Copyright”) and s/he has given The
University of Manchester certain rights to use such Copyright, including for
administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as
amended) and regulations issued under it or, where appropriate, in accordance with
licensing agreements which the University has from time to time. This page must form
part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other
intellectual property (the “Intellectual Property”) and any reproductions of copyright
works in the thesis, for example graphs and tables (“Reproductions”), which may be
described in this thesis, may not be owned by the author and may be owned by third
parties. Such Intellectual Property and Reproductions cannot and must not be made
available for use without the prior written permission of the owner(s) of the relevant
Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property and/or
Reproductions described in it may take place is available in the University IP Policy
(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any
relevant Thesis restriction declarations deposited in the University Library, The University
Library’s regulations (see http://www.library.manchester.ac.uk/about/regulations/) and in
The University’s policy on Presentation of Theses.

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/

17

ACKNOWLEDGEMENTS

I wholeheartedly thank my supervisor, Dr Ning Zhang, for her kind guidance throughout the

journey of my PhD study. This journey would be impossible without her dedication and

constant support. She has taught me how to be a good independent researcher by

demonstration. Knowledge I have gained and skills I have learned are from her valuable

advice. With these knowledge and skills, I am confident that I can take on any assignments in

my future career. I really cannot thank her enough.

I would like to express my deepest gratitude to the University of Manchester for giving

me an opportunity to pursue my doctoral degree and for granting me a highly prestigious

scholarship, the Dean’s Doctoral Scholar Award, to support my research. My study would be

impossible without the support given by the university.

I also would like to thank my employer, the National Electronics and Computer Technology

Center, Thailand, and my work supervisors for allowing me to continue the PhD study and for

giving me valuable advice.

I thank my laboratory colleagues for fruitful discussions. These discussions uncovered my

mistakes and also inspired me to come up with brilliant ideas for my research. I also thank my

wonderful friends. They made me feel welcome and not alone when I stayed in Manchester.

I really enjoyed the times we went out, had meals, and laughed together. I will cherish these

memories for many years to come.

Lastly, I would like to thank my beloved parents and girlfriend for being there for me when

I was happy and when I was down throughout the whole journey of my PhD. Their emotional

support is really important to me. They are the greatest supporters of my life.

18

Chapter 1

Introduction

1.1 Research Context

Big Data computing is an emerging computing approach to systematically analyse and extract

valuable information from an ever-increasing amount of data or data that are too complex to

be efficiently handled by traditional data processing systems. Big Data computing has been

used in many fields, such as healthcare [1], agriculture [2], and environmental sustainability

[3]. As part of this, there is an increase in inter-organisational data sharing and Big Data

processing in which collaborative organisations jointly performed analysis on shared datasets

[4][5]. For efficiency reasons, Collaborative Big Data Computation (CBDC) is usually carried

out by using distributed computing services. In many cases, these services are hosted in public

clouds [6][7]. In line with a trend towards computing as a utility [8][9], it is assumed that

distributed computing services and cloud services are provided by different third-party

service providers. Collaborative Big Data Computation being executed on a Multiple Public

Cloud (CDBC-MPC) platform introduces a host of security concerns. The involvement of

multiple organisations and service providers with varying levels of trust and the use of

datasets from multiple sources with varying levels of sensitivity imply that the strongest

security protection is required.

Authentication is an essential security service for any computer systems, including

collaborative Big Data processing in this context. It provides authenticity protection, and it is

a prerequisite for other security services, such as authorisation and accounting. In this work,

authentication is considered in two dimensions, entity authentication and data

authentication. Entity authentication provides an assurance of the authenticity of an entity

identity. It ensures that the entity is whom it claims to be so that only authorised entities can

access the system. Data authentication ensures that data used during a data processing job

are authentic, i.e., data are produced by authorised entities and have not been tampered with

by any other entities. In addition, data authentication in this context should also provide non-

repudiation of origin protection, which is a security property to protect against false denial of

data generation.

1.2 Research Motivation and Challenges

There have been many examples of distributed data processing, or CBDC-like, applications

reported in literature, ranging from weather data analysis [10][11], biological image

processing [12], to collaborative spam detection [13] and mission-critical applications, such

as cyberthreat analyses [4][5]. Data sharing among multiple organisations and collaborative

(multi-domain) data analyses can lead to more discoveries than single-domain data analyses.

Using collaborative cyberthreat analysis as an example, performing analysis on shared

datasets, or datasets contributed by multiple organisations, can help to detect threats which

may, otherwise, be hard to detect by using a single-domain dataset, or a dataset contributed

by a single organisation [14]. Data used in collaborative data analyses are from multiple

19

sources and could be accessed by entities from different administrative domains. The data

and data processing components may be hosted in different clouds [13][15][16]. For

efficiency reasons, the computing services used to process the data could be deployed in a

Multiple Public Cloud (MPC) environment [17][18][19]. Owing to the complexity of CBDC-

MPC, the involvement of multiple administrative domains (i.e., collaborative organisations,

distributed computing service providers, and infrastructure service providers), and inter-

domain data transfer and processing, there is a host of security concerns in this environment

[20][21][22][23].

To show potential security issues in the context, a motivating example (which will also be

used as a running example) has been developed. The example considers a simplified use case

of cyberthreat analysis. Collaborative organisations (e.g., government agencies and private

enterprises) subscribe to distributed computing services provided by distributed computing

service providers. The distributed computing service providers, in turn, deploy their services

on infrastructures managed and provided by third-party infrastructure service providers. The

collaborative organisations have established an agreement to share their security logs

(containing network activity data) and perform periodical analyses (i.e., network activity

tracing) on the shared security logs (by using the distributed computing services). They need

to detect if there are any machine break-ins or compromises, and, if so, which other machines

have been connected to by the compromised machines, say in the last 30 days. The

architecture of the example is shown in Figure 1.1. In the figure, the subscripted numbers are

the indices for entities that are of the same classes or in the same domain. The superscripted

numbers indicate domains in which the entities belong to.

Figure 1.1: The architecture of an example CBDC-MPC.

From the figure, it can be seen that the data analysis job in the context is susceptible to

threats from multiple sources at multiple points. There are three collaborative organisations,

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1, 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛2, and 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3, and one organisation,

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛4, that does not have any collaboration with the other organisations.

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1 has two users, 𝑈𝑠𝑒𝑟1 and 𝑀𝑎𝑙1, and subscribes to a distributed computing

service, 𝐷𝐶𝑆1, deployed in 𝐶𝑙𝑜𝑢𝑑1 and 𝐶𝑙𝑜𝑢𝑑2. 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛2 has one user, 𝑈𝑠𝑒𝑟2, and

subscribes to another distributed computing service, 𝐷𝐶𝑆2, also deployed in 𝐶𝑙𝑜𝑢𝑑1 and

20

𝐶𝑙𝑜𝑢𝑑2. 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3 has one user, 𝑈𝑠𝑒𝑟3, and subscribes to a distributed computing

service, 𝐷𝐶𝑆3, deployed in 𝐶𝑙𝑜𝑢𝑑3. 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛4 has one user, 𝑀𝑎𝑙4, and subscribes to a

distributed computing service, 𝐷𝐶𝑆4, also deployed in 𝐶𝑙𝑜𝑢𝑑3. 𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3 are

allowed to submit and execute collaborative jobs on shared datasets, as indicated by

interactions, 1, 2, and 3, respectively. 𝐷𝐶𝑆1, 𝐷𝐶𝑆2, and 𝐷𝐶𝑆3 may exchange data with each

other, as indicated by interactions, 4, 5, and 6, respectively. Many of the communications

among the components of 𝐷𝐶𝑆1, 𝐷𝐶𝑆2, and 𝐷𝐶𝑆3 (e.g., those indicated by interactions 5 and

6) are of inter-cloud. 𝑀𝑎𝑙1, although not authorised to submit any collaborative jobs, may try

to access the data, as indicated by interaction 7. 𝑀𝑎𝑙4 may try to access the data through

𝐷𝐶𝑆4 (which is compromised) as indicated by interactions, 8 and 9, or intercept data-in-

transit as indicated by interaction 10. More details regarding the use case and the architecture

of the example are explained in Chapter 4 .

Without a proper authentication protection, an unauthorised entity may gain access to

the distributed computing services, security logs, and other data generated, processed, and

used during the analysis. In addition, if there is no mechanism to hold a participating entity (i.e.,

an authorised insider) accountable for its actions, the entity may cover up or falsely deny any

unintentional or accidental errors that may impact on the data analysis results. An authorised

entity (e.g., an unhappy or compromised employee) may even perform malicious actions on the

logs such as altering the contents of the logs (e.g., adding, modifying, and deleting log entries).

Examples of real-world incidents caused by insider attacks are reported in [24], [25], and [26].

From the perspective of the organisations (as a distributed computing service consumer),

violation of data authenticity protection may severely disrupt the analysis. Analysis results

that are produced with tampered or incomplete security logs are contaminated. Such

contaminated results will lead to wastage of resources and possibly more severe

consequences, e.g., some compromised machines may go undetected, which could be used

as springboards for launching further attacks.

From the perspective of the distributed computing service providers, such security

breaches could tarnish their brands and reputations, leading to the loss of customer loyalty.

Existing customers may switch to alternative service providers. The resulting negative

publicity may make it harder for the affected service providers to attract new customers. The

service providers may have to spend a large sum of money to repair their brands and

reputations. They may even be levied heavy fines for failing to comply with data protection

regulations (e.g., UK Data Protection Act 2018 [27] and General Data Protection Regulation [28]).

On the other hand, if an authentication service is implemented and applied, an

unauthorised entity could not gain access to the distributed computing services and the data

used in the analysis, making it more difficult to cause harm to the system and data.

Organisations are assured that only authorised entities are allowed to use the distributed

computing services and data, and entities can be hold accountable for their actions.

Distributed computing service providers can build up their reputation and earn trust of the

users (organisations). Hence, organisations need an authentication service to protect their

data. Service providers also have incentives to provide such an authentication service to meet

the demands of the organisations.

21

Existing authentication solutions are not specifically designed for distributed Big Data

computing services or CDBC in the MPC context. Some of the existing entity authentication

solutions [29], [30], [31], [32], [33] only authenticate entities at the gate level, i.e., before the

entities are granted with accesses to the services and data. They are designed to thwart

threats from outsiders or external entities. They do not address threats from authorised

insiders and are vulnerable to session hijacking attacks. Others [34], [35], [36] can support

more fine-grained authentication (i.e., interaction-level authentication), but the impact of

communication overheads on the authentication performance was not taken as a main design

consideration in these solutions. Therefore, their suitability to Big Data computation is not

high. With regard to data authentication solutions, there are solutions that are based on

cryptographic cryptosystems (symmetric-key based and asymmetric-key based) and other

solutions that use a task replication approach. The symmetric-key based solutions [37], [38]

cannot protect against insider threats as all the entities in a group would know the same

secret, so it is hard to identify who the perpetrator is if there is any tampering with the data.

Although the asymmetric-key based solutions [39], [40], [41], [42], [43] can address this issue,

i.e., by ensuring data authenticity and originator accountability, they are computationally

expensive (the execution time of an asymmetric-key operation could be a thousand times of

that of a symmetric-key operation [44][45]). The expensive cost makes this group of solutions

unsuited to time-sensitive Big Data applications. The task replication based solutions [46],

[47], [48], [49] [50] make use of a task replication approach for output verification. With this

approach, a single task is executed by multiple workers, thus multiplying the resources

required to execute each task. This could quickly deplete the computation resources and limit

the number of data processing jobs that can be run concurrently on the shared resources.

Motivated by these observations, this research aims to investigate how to support cross-

domain Big Data sharing and computing more securely and efficiently. Cross-domain

computation indicates that security should be provided at the strongest level while the trust

on participating entities should be minimal. Big Data computation indicates that security

mechanisms provided should be as efficient and as scalable as possible and introduce as less

overhead as possible. In other words, in this research, we need to address the following two

main challenges:

(CI1) How to provide the strongest authentication protection for inter-organisational Big

Data computing using distributed systems deployed on a multi-cloud platform?

(CI2) How to minimise the overhead incurred in achieving such authentication protection

and make the rate of increase in overhead in relation to the scale of the distributed

computing services as low as possible?

1.3 Research Aim and Objectives

The aim of this research is to investigate how to achieve effective, efficient, and scalable

authentication for CBDC-MPC. This aim is supported by the following objectives.

(RO1) To gain a better understanding of the characteristics of CBDC-MPC and how these

characteristics correlate to threats and security provisioning in relation to

authentication.

22

(RO2) To investigate how to best support entity authentication in the context in terms of

enhancing protection levels while minimising overhead cost.

(RO3) To investigate how to best support data authentication in the context in terms of

enhancing protection levels and achieving fine-grained protection while minimising

overhead costs.

1.4 Research Question and Hypothesis

The research question that guides this investigation is: how to achieve effective, efficient, and

scalable authentication to support multi-domain Big Data processing in the context of CBDC-

MPC? To answer this research question, we should answer the following further questions:

(Q1) What are avenues for authentication related threats, or how these threats are

mounted, in this environment?

(Q2) How to enhance the protection levels of entity authentication?

(Q3) How to enhance the protection levels of data authentication?

(Q4) How to minimise overhead introduced in providing these authentication services?

The hypothesis of this work is that by taking into account of the characteristics of the

underlying distributed computing services, processing and storage infrastructures, and

security facilities, we can strengthen the protection level with minimum cost.

1.5 Research Methodology

The research methodology used in this project consists of four components: literature review

and knowledge gap identifications, solution design, security analysis and performance

evaluation, and experimental implementation.

1.5.1 Literature Review and Knowledge Gap Identifications
The first task carried out in this research was to thoroughly study related work. A survey on

trends for distributed computing systems and architectures of commonly used distributed

computing frameworks was conducted to investigate their characteristics and how data

processing is carried out. We formulated a generic use case model, and based on this model,

we analysed authentication related threats and attacks to the system. Based on the identified

threats, a set of requirements were specified for an authentication solution. Next, we

extensively investigated and critically analysed related existing authentication solutions to

identify their strengths and limitations with the aim of building our solution on their strengths

but overcoming their limitations. Combined with the characteristics of the underlying systems,

the insights gained from related work survey have led us to the design of our effective, efficient,

and scalable authentication solution. In addition, we have been regularly reviewing relevant

literature throughout this research. The insights gained from the review are used to improve

and refine the design of our solution. This task accomplishes the objective (RO1).

1.5.2 Solution Design
The second task carried out in this research was to propose and design an authentication

solution for distributed systems in the context of CBDC-MPC. By using the characteristics

observed on the generic use case model and the merits of existing authentication solutions,

a number of novel ideas and measures were proposed to address the identified knowledge

23

gaps. This has led us to the design of a novel Multi-domain Decentralised Authentication

(MDA) framework. It consists of two frameworks, a novel Multi-factor Interaction based

Entity Authentication (MIEA) framework and a novel Communication Pattern based Data

Authentication (CPDA) framework. We took a modular approach to the designs of these

frameworks so that all or part of the frameworks can be applied to other distributed systems

in similar contexts. These frameworks have been repeatedly refined and polished by

considering new insights gained from regular literature survey and the results of analyses on

the frameworks.

1.5.3 Security Analysis and Performance Evaluation
The third task carried out in this research was to analyse the security and evaluate the

performance of the MIEA and CPDA frameworks. The security properties of the frameworks

were informally analysed against the specified security requirements. In addition, the security

properties of MIEA were also formally analysed by using a symbolic analysis method (assisted

with a software verification tool). The security strengths of the frameworks were then

formally analysed by using complexity analysis. The performances of the frameworks were

theoretically evaluated in terms of computational and communication costs introduced.

These overhead costs were, respectively, measured as the number of cryptographic

operations performed and the number and sizes of protocol messages exchanged.

1.5.4 Experiment Implementation
The performances of the MIEA and CPDA frameworks were further evaluated by experimental

evaluations. Two sets of experiments were conducted on real-system testbeds with mock-up

and real-world datasets under different parameter settings. For experiment setups,

evaluation metrics were defined, evaluation methods were designed, and parameters for

cryptographic building blocks were discussed. The components (i.e., authentication methods

and protocols) of the MIEA and CPDA frameworks were then implemented by using both C++

and Python programming languages with the Botan cryptographic library. In the first set of

experiments, the execution times of MIEA protocols were measured to evaluate the impacts

of different parameter settings on MIEA. In the second set of experiments, the times taken to

execute data processing jobs when the CPDA framework is applied were measured against

sets of parameters. The results were compared with those of the most related entity and data

authentication solutions.

Conclusions were drawn from the analyses and evaluations, and recommendations for

future work were given. The research findings were documented and published in a high-

ranking peer-reviewed journal. The design and evaluation of the MDA framework satisfy the

objectives (RO2) and (RO3).

1.6 Novel Contributions and Publications

The research work presented in this thesis has led to the following novel contributions and

publications.

1.6.1 Novel Contributions
The main contributions of this work are listed as follows.

24

(NC1) A generic use case model for CBDC-MPC: The first novel contribution is the

formulation of the CBDC-MPC model. CBDC in this model implies that there is a large

volume of data that are contributed by more than one organisation and that should

be processed in a timely manner. MPC means that the data are processed by a large

number of data processing components that are managed or provided by different

administrative organisations. CBDC-MPC indicates that security threats in this setting

are not only from outsiders but also from authorised insiders and requires that the

overhead introduced in protecting the data against these threats should be as low

as possible. Owing to the volume of data and the number of processing components

involved, a slight increase in the overhead introduced in protecting a single data item

(hereafter referred to as a data object) on an individual component could be greatly

amplified, the larger the volume of the data and the scale of the service, the larger

the amplification effect. The security related processing overhead may cause

performance bottlenecks in the system, depleting the benefit of using large-scale

distributed components. There are other multi-cloud models that support the

storage or transfer of a large volume of data but have a less stringent requirement

for timely data processing. Example of such models are distributed data storage

models that are based on blockchains [51][52] and data collection models from a

large scale (e.g., inter-region or inter-continent) wireless sensor networks or Internet

of Things [53][54][55]. Research problems addressed in these existing models are

different from ours. For example, the blockchain based model focuses on protecting

the integrity of data at rest, whereas our CBDC-MPC model is aimed at protecting

data in their entire processing lifecycle, from when the input is being entered into

the system to when final computational results are ready to be collected. This

lifecycle contains threats to data in-transit and threats to data that are processed by

multiple, potentially a large number of, components managed in different

administrative domains. Although the security issues in relation to data in-transit are

considered in the multi-cloud data collection models for wireless sensor networks

and Internet of Things, the design assumptions and requirements for the models are

different from those for CBDC-MPC due to the constraint of computation resources

and the need for minimising power consumption on data collecting devices. In these

models, data usually flow from multiple nodes (devices) to a single sink node and

there are minimal computations by, and communications among, the nodes,

whereas, in the CBDC-MPC model, individual data processing nodes may execute

resource-intensive tasks and interact with many other nodes. The CBDC-MPC model

captures the entities involved in the entire cycle of a CBDC job execution and how

the entities interconnect and communicate to collaboratively accomplish the

execution of a data processing job. This model shows the avenues for authentication

related threats and attacks and the characteristics that should be captured in the

design of an effective, efficient, and scalable authentication solution for CBDC-MPC.

The formulation of the model has laid the groundwork for other contributions made

in this thesis. This contribution answers the research question (Q1) and it is fully

described in Chapter 4 .

25

(NC2) A novel approach to entity authentication for CBDC-MPC: The second novel

contribution is the proposal and investigation of a novel approach, an interaction

based approach, to entity authentication in the context. This approach has been

implemented by the design, prototype, and evaluation of a novel entity

authentication framework, called the Multi-factor Interaction based Entity

Authentication (MIEA) framework. The framework provides entity authentication

protection to every interaction taking place during the entire cycle of the execution

of a data processing job. The level of protection is adjusted based on the level of risks

experienced by the interaction. This contribution answers the research questions

(Q2) and (Q4) and it is fully described in Chapter 5 .

(NC3) A novel approach to data authentication for CBDC-MPC: The third novel contribution

is the proposal and investigation of a novel approach, a communication pattern

based approach, to data authentication in the context. This approach has been

implemented by the design, prototype, and evaluation of a novel data

authentication framework, called the Communication Pattern based Data

Authentication (CPDA) framework. The framework optimises the trade-off between

security protection level and computational and communication overhead costs by

aggregating the operations of authentication data (data that are used for

authentication, e.g., MAC tokens and digital signatures, are collectively referred to

as authentication data (AuthData)) generation and verification, and the

communications transferring the AuthData, based on the communication patterns

between data producers and consumers. The framework provides a data

authentication service at the finest granularity level, with the strongest protection level,

but with an overhead cost that is lower than the related solutions. This contribution

answers the research questions (Q3) and (Q4) and it is fully described in Chapter 6 .

1.6.2 Publications
Parts of the research work presented in this thesis have been reported in the following

journals.

• Sirapaisan, S., & Zhang, N. (2021). Multi-factor Interaction Based Entity Authentication

(MIEA) Designed for Big Data Processing in a Multiple Public Cloud Environment. (In

progress)

• Sirapaisan, S., Zhang, N., & He, Q. (2020). Communication Pattern Based Data

Authentication (CPDA) Designed for Big Data Processing in a Multiple Public Cloud

Environment. IEEE Access, 8, 107716–107748. https://doi.org/10.1109/ACCESS.2020.3000989

1.7 Thesis Structure

The thesis structure is summarised in Figure 1.2. The remainder of this thesis is structured as

follows.

Chapter 2 introduces background for this research in the topics of Big Data computing

systems and platforms, and related existing entity and data authentication solutions.

Chapter 3 describes cryptographic building blocks used in the design of our novel

authentication solution.

https://doi.org/10.1109/ACCESS.2020.3000989

26

Chapter 4 explains the construction of a generic use case model for CBDC-MPC which is

the first novel contribution of this thesis. Based on the model, it gives threat analysis

and requirement specifications. It presents an overview of our novel authentication

framework, the MDA framework.

Chapter 5 details the design and evaluation of our novel entity authentication framework,

the MIEA framework, which is the second novel contribution in this thesis.

Parts of this research will be submitted for publication in a journal.

Chapter 6 details the design and evaluation of our novel data authentication framework,

the CPDA framework, which is the third novel contribution in this thesis.

Parts of this research have been published in a peer-reviewed journal as:

“Communication Pattern Based Data Authentication (CPDA) Designed for Big Data

Processing in a Multiple Public Cloud Environment” [44].

Chapter 7 gives detailed operational steps for the running example to explain how

MapReduce (an example Big Data processing model) executes a job without MDA (our

solution) and how it executes the job with MDA.

Chapter 8 concludes this thesis and suggests directions for future work.

Figure 1.2: Thesis structure.

27

Chapter 2

Big Data Computing: Issues, Challenges, and

Solutions

2.1 Chapter Introduction

This chapter introduces the concept of Big Data computing and compares systems and

platforms used to carry out Big Data computing. It then discusses security issues and

challenges in addressing such issues in the context of CBDC-MPC. It critically reviews existing

entity authentication and data authentication solutions with the aim of identifying knowledge

gaps and areas for improvement. In addition, this chapter also outlines a way forward to

address these knowledge gaps.

In detail, Section 2.2 introduces Big Data computing and systems supporting Big Data

computing. Section 2.3 identifies security issues of Big Data computing using distributed

computing systems and challenges in addressing the issues. Sections 2.4 gives critical analysis

on related existing entity and data authentication solutions and highlight what is missing.

Section 2.5 suggests a way forward to address the identified issues. Lastly, Section 2.6

concludes the chapter.

2.2 Big Data Computing: Concepts and System Models

This section introduces the concept of Big Data computing and a trend for inter-organisational

data sharing and analysis. It then compares two prominent system models, grid and cloud

models, that can support Big Data computing and select one as a reference distributed

computing system model.

2.2.1 Big Data Computing and Collaborative Data Analysis
Big Data computing is an emerging computing approach to systematically extract and analyse

valuable insights from data that are large in quantity or too complex to be dealt with

efficiently by traditional data processing applications [56][57]. Big Data are usually described

by three characteristics: (1) high volume, this refers to the quantity of data generated, stored,

and processed, the size of Big Data is usually larger than TBs (terabytes) and PBs (petabytes);

(2) high velocity, this refers to the speed at which Big Data are generated and processed, Big

Data are usually generated and processed at a high speed, e.g., real-time or near real-time;

and (3) high variety, this refers to the types of data, Big Data may contain data that are

different in types (e.g., sensor data, texts, images, and videos) and could be structured, semi-

structured, or unstructured. Typically, Big Data are collected from multiple distributed and

heterogenous sources [56], such as social media [58] and sensors [59].

To further diverse the sources of Big Data thus increasing the likelihood of capturing more

valuable insights, many organisations have established collaboration for inter-organisational

data sharing and performing analysis on the shared datasets. One example of such

collaborations is cyberthreat data sharing and analysis [4][5][60][14][61]. As individual

28

organisations usually have to routinely perform analysis on their datasets, collaborative data

analysis can reduce these repetitive tasks; they jointly perform analysis on the shared dataset

once, and the analysis result can be shared among the organisations. In addition, collaborative

data analysis may also help shorten the time needed to gather insights, allowing the

organisations to make use of the insights in a timely manner. This is crucial for many

applications, particularly those that are time sensitive. Using cyberthreat analysis and

detection as an example, collaborative cyberthreat analysis could lead to earlier detection of

threats such as Advance Persistent Threats (APTs) which are difficult for individual

organisations to detect, allowing faster application of countermeasures or implementation of

mitigation plans.

Owing to large quantity and high complexity, traditional computing systems are not suited

to handle Big Data processing with a stringent timeliness requirement. Rather, distributed

computing systems are frequently used for this task [62]. Comparisons of distributed

computing systems supporting Big Data computing are given in Section 2.2.2.

2.2.2 System Models
Generally, a distributed computing system refers to a system that consists of multiple

networked autonomous machines, each of the machines has its own processing and storage

components, and the machines communicate with each other through networks [63]. These

machines collectively form a pool of shared (processing and storage) resources. An

application running on a distributed computing system is referred to as a distributed

computing service. At a high level, the execution of a data processing job using a distributed

computing service is done by dividing the job into multiple smaller tasks and executing these

tasks on distributed machines concurrently, the higher the degree of concurrency, the higher

efficiency of the job execution.

Distributed computing systems are used in a wide range of applications with different

requirements thus models. Two of the most notable models that can support Big Data

computing are grid and cloud models [64][65][66]. From users’ perspective, grids and clouds

have many similarities as they both share the same goal of providing services to the users

through a pool of shared resources. They both support multi-tenancy (i.e., multiple users can

access a single grid or cloud service concurrently) and multi-tasking (i.e., each user may use

multiple application services hosted in the system to perform different tasks). Both grids and

clouds can also support many application services. To contrast the two models, we have

drawn the following criteria.

(SMC1) Deployment, management, and business opportunity: The adoption of a system

model is influenced by how a distributed computing system can be deployed and

managed, what applications can be hosted on the system, and what business models

are.

(SMC2) Usability: Usability is an important factor for the selection of a system model by

users. It is considered in terms of resource provisioning, infrastructure visibility,

performance, and scalability.

(SMC3) Security implications: The two system models are designed based on different design

assumptions. They may experience different threats and attacks. We should select a

29

model that presents a broader set of security issues so that a security solution

designed for the chosen model should also be able to address some or all of the

issues faced by the other model.

The comparisons of the grid and cloud models against the specified criteria are

summarised in Table 2.1.

Table 2.1: The comparisons of the grid and cloud models.

 Grid Cloud

(SMC1) Deployment Usually, a grid is constructed at a large
scale, i.e., a regional, national, or a
global scale. The infrastructures
supporting the system could be
provided by a government or
collaborative organisations with a
particular interest.

There are many options for cloud
deployment. For example, a cloud
could be deployed for exclusive use by
a single organisation or for shared use
by multiple organisations. The
infrastructures hosting the cloud could
be managed by the organisations
using the cloud or a third-party cloud
service provider.

Control and
management

The infrastructures hosting the system
could be provided by a single
organisation (e.g., a government) or
multiple collaborative organisations.
In the latter case, the control and
management of the system are shared
among the organisations.

A cloud is usually controlled and
managed by a single entity, either an
organisation (user) or a cloud service
provider. It is also possible to share the
control and management of clouds
among multiple organisations if the
cloud is hosted on infrastructures
managed by these organisations.

Supported
applications

A grid is commonly used to host
computation-intensive applications,
particularly large-scale collaborative
scientific research projects.

A cloud is designed to support a wide
range of online services and
applications, both generic and specific
purposes. It is particularly suited to
applications with dynamic demands
for computation resources.

Business model Grids are usually formed to support
particular projects and the
infrastructure hosting the systems
could be sponsored by governments,
international organisations, or
communities. The members of the
projects may use the grids free of
charge.

If a cloud is provided and managed by
a third-party service provider, users
may negotiate the price for using the
system with the service provider.
Currently, many service providers
adopt a pay-as-you-go model [67], i.e.,
users are only charged for the
resources they use.

(SMC2) Resource
provisioning

Most grids use a batch-scheduling
approach for resource provisioning,
i.e., a user submits a request for
resources for a period of time, the
request is queued, and when the
resources are available, the resources
will be allocated and assigned to the
user.

A cloud aggregates all available
distributed resources to create a pool
of resources. These resources are
shared by all the users. Clouds usually
respond to request for resources
submitted by users in a relatively
shorter time.

Infrastructure
visibility

There is no or little abstraction of
resources allocated to a user. The user
may be able to access the resources of
the underlying infrastructure directly.

Resources are isolated and abstracted
by using a virtualisation technology.
Users can only access the abstracted
resources and these resources can be
viewed as users’ private resources.
The underlying infrastructures are not
visible to the users.

30

 Grid Cloud

Performance Grids can support high performance
computing through federated
resources. In a grid, resource
scheduling is relatively light weight,
thus, causing less performance loss.

In a cloud, resources allocated for
different users are isolated and
abstracted by using a virtualisation
technology, causing performance
penalties. However, the advancement
of hardware virtualisation in recent
years has been gradually closing the
gaps of performance.

Scalability Resource scalability is relatively less
flexible. Users typically have to
negotiate resources with grids in
advance.

Clouds support on-demand resource
provisioning, i.e., resources allocated
to users are adjusted dynamically
upon users’ request.

(SMC3) Trust In a grid, there could be multiple
logical groups of users (collaborative
organisations), each group is called a
virtual organisation. A virtual
organisation is formed based on a set
of resource-sharing rules and
conditions. It is assumed that entities
of the same virtual organisation are
equally trustworthy.

In a cloud provisioned for exclusive use
by a group of organisations, users of
such a cloud are assumed to be equally
trustworthy. However, if a cloud is
provisioned for open use by any
organisations, users of such cloud are
assumed to be not equally
trustworthy.

Security
responsibility

Grids adopt a shared-responsibility
model, i.e., collaborative organisations
are responsible for implementing and
managing security protections for
different parts of the system. Security
responsibility for each organisation is
usually well defined.

Clouds also adopt a shared-
responsibility model. However, the
division of the responsibility is
different from that grids. Security
responsibility is divided between a
cloud service provider and users
(organisations) using the cloud. The
users should clearly discuss
responsibility division with the cloud
service provider when negotiate a
service contract.

Security
auditing

It is relatively simpler to facilitate
security auditing in grids. Individual
organisations may use existing
mechanisms to implement local
security auditing. All the organisations
may discuss how to implement global
security auditing.

It is relatively harder to facilitate
security auditing in clouds. Users of a
cloud can only view a virtualised
environment given by the cloud. They
cannot see what happen outside the
virtualised environment. In most
cases, users usually are not allowed to
perform security audit by themselves
on the cloud.

Networking A grid is established on shared
resources from different
administrative domains. Resources
hosted within an administrative
domain are usually connected via
Local Area Networks (LANs), whereas
resources hosted in different domains
are connected via Wide Area
Networks (WANs) or the Internet.

Cloud resources that are hosted within
each particular infrastructure are
usually connected via LANs or
dedicated private networks.
Resources that are hosted in different
infrastructures could be connected via
WANs or the Internet.

Security model Grids are built on an assumption that
infrastructures hosting grids are from
different geographical locations and
managed by different administrative
domains. As cross-domain data

The design of clouds mainly focuses on
the abstraction of a large pool of
shared resources and the support of
on-demand resource access by users.
Security protections are not

31

 Grid Cloud

transfer and computations are
vulnerable to various threats and
attacks, many security considerations
have been taken into the design of
grids, e.g., single sign-on
authentication, accounting, and
auditing.

incorporated into the design of clouds.
In many cloud implementations, third-
party security services are used to
provide desired security protections.

The summary shown in Table 2.1 suggests that the cloud model is a more suitable system

model for this research work. The cloud model provides a higher flexibility for system

deployment as it offers multiple deployment options each suited to a different group of users.

It also supports a wide range of distributed computing applications. This implies that the cloud

model may attract a wider group of users. With a cloud model, a user may choose to subscribe

to a cloud service provided by, or delegate the management of the cloud to, a third-party

cloud service provider. Many cloud service providers also adopt a pay-as-you-go pricing

model, i.e., users only pay for what they use. These could be more cost effective than

establishing and maintaining the underlying infrastructure by the users themselves. The cloud

model gives each of the users a private set of resources via resource isolation and hides the

complex structure of the underlying infrastructures from the users. These are beneficial and

more favourable to the users as they can pay more attention to the data analysis process

without the troubles of handling low-level resources of the infrastructures. Although, grids

generally give higher performance than that of clouds, the performance gaps between them

are closing as the virtualisation technology advances. In addition, clouds have higher flexibility

in scaling resources based on users’ demand. This could also be used to help improve the

performance of distributed computing services hosted in clouds. The cloud model

experiences a higher level of risk and may present a broader set of security issues than those

of the grid model. This is because users from different administrative domains which may not

be equally trustworthy have certain access to the shared resources provided by the same

cloud. Users of clouds do not have any visibility outside the virtualised environment given by

the cloud, so they have to trust the cloud service provider to implement necessary security

measures. In addition, as security was not one of the main considerations in the design of

clouds and clouds are susceptible to a wide range of threats and attacks due to the nature of

cross-geological-location resource sharing, there are rooms for improvement to strengthen

security protection for clouds. For these reasons, distributed computing systems discussed in

this research are based on the cloud model.

In the next section, we further examine the essential characteristics, the deployment

models, and the service models of clouds with the intention of identifying a deployment

model and a service model that are suited to collaborative Big Data computing in this context.

We also explain how the cloud model follows a trend for utility computing.

2.2.3 Cloud Computing
According to the definition of cloud computing given by National Institute of Standards and

Technology (NIST) [68], which is one of the most widely accepted definitions for cloud

computing, the cloud model consists of five essential characteristics: on-demand self-service,

broad network access, resource pooling, rapid elasticity, and measured service.

32

(CC1) On-demand self-service: Users can request for and acquire resources (e.g., CPU units

and size of storage) from a cloud dynamically as needed without contacting with a

human operator of the cloud service provider.

(CC2) Broad network access: Users can use network-enabled devices, such as laptops and

smartphones, to access services hosted in a cloud via networks.

(CC3) Resource pooling: The resources of a cloud are aggregated from multiple clusters of

machines which could be in different regions or countries. These resources are

dynamically assigned and reassigned to different users based on the users’ demand.

Users generally do not have a fine-grained control and knowledge over the exact

location of the provided resources.

(CC4) Rapid elasticity: Resources can be elastically provisioned to and released from users

automatically. In other words, resources allocated to each user can be scaled up and

down to meet the user’s requirement at any time.

(CC5) Measured service: Resource usage by each user is monitored, controlled, and

reported to both the user and the cloud service provider so that both parties can see

how much of each type of resources has been used.

These characteristics correlate to how security protections should be provided to cloud

based distributed computing services. This will be discussed in Section 2.3.

The deployment models for clouds can be largely categorised into four models: private

cloud, community cloud, public cloud, and hybrid cloud models.

(CD1) Private cloud model: A private cloud is provisioned for exclusive use by a single

organisation (which usually have multiple users, i.e., employees of the organisation).

It may be owned, managed, and operated by the organisation using the cloud or by

a third-party cloud service provider.

(CD2) Community cloud model: A community cloud is provisioned for exclusive use by a

group of organisations sharing the same interest (e.g., collaborative organisations).

It could be owned, managed, and operated by one or more members of the group

or by a third-party cloud service provider.

(CD3) Public cloud model: Unlike private clouds and community clouds, a public cloud is

provisioned for open use by any organisations or individual users. It is usually owned,

managed, and operated by a cloud service provider.

(CD4) Hybrid cloud model: A hybrid cloud is a composition of two or more distinct cloud

models described above. The clouds forming the hybrid cloud are connected by using

proprietary or standardised mechanisms.

In comparison with the private cloud, community cloud, and hybrid cloud models, the

public cloud model is exposed to a higher level of security risks as a public cloud is open for

public use by any organisations and users which are not equally trustworthy. Sensitive data

may be processed by, and stored in, the public cloud. Curious or malicious users may attempt

to mount attacks on the cloud to gain unauthorised access to the data. Therefore, the public

cloud model requires a more stringent security protection. For this reason, the research work

presented in this thesis will be based on the public cloud model.

33

Regarding service models for clouds, service models can be largely categorised into three

groups: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-

Service (IaaS) models.

(CS1) SaaS model: A cloud service provider provides application services to users. The

application services are running on a cloud infrastructure. The users may access the

applications by using client applications, such as web browsers, running on network-

enabled devices. The users do not control or manage the underlying cloud

infrastructure (i.e., hardware components such as storage and network appliances,

and software components such as operating systems and databases), but they are

usually allowed to change limited application-specific configuration settings.

(CS2) PaaS model: A cloud service provider provides software platform services to users.

A software platform service consists of software components, such as databases and

Software Development Kits (SDKs), which allow the users to build their cloud based

applications on the provided platform and deploy the applications in the cloud. The

users do not control or manage the underlying cloud infrastructure and the software

platform. However, they have control over the applications they developed and are

usually allowed to adjust limited configuration settings for the environment hosting

their applications.

(CS3) IaaS model: A cloud service provider provides computation resource services to

users. A computation resource service provides fundamental computation

resources, such as processing and storage, which can be used to build, deploy, and

run any software. The users do not control or manage the hardware components of

the underlying cloud infrastructure. However, they have full control over software

applications that are running on the provided computation resources and they can

also request for more (or less) resource provisioning on demand.

In the IaaS model, users have a higher degree of flexibility in terms of full control over

software components run on the cloud compared to the SaaS and PaaS models. In exchange

for such control, the users have to manage all the software components and apply security

measures to protect these software components by themselves. Applications and services

running in the cloud are exposed to a higher level of security risk as there are more avenues

for attacks and more opportunities for attackers to mount attacks on the applications and

services. Based on this observation, IaaS is chosen as the service model for cloud services used

in this research work.

With a wide variety in choices of deployment and service models and the characteristic of

metered service, clouds have been moving the ways computation services are provided and

consumed towards a utility computing model [8][9]. Cloud service providers can offer

different types of services, i.e., SaaS, PaaS, IaaS, or a combination of these. A resource sharing

approach improves resource utilisation, which is also beneficial to cloud service providers. As

different users may need different resources at different times, cloud service providers do

not have to excessively over provision resources for the users, resources released from one

user can be assigned to another user that requests for more resources. SaaS cloud service

providers can also build their services on top of PaaS or IaaS services offered by other cloud

service providers. Examples of such cases includes Netflix, Salesforce, and Snap Inc. who build

34

their applications on Amazon Web Service (AWS) offered by Amazon [69]. AWS provides

various computation resources to its customers. In addition, users also have freedom to

choose any services offered by any cloud service providers in any combination they like.

2.3 Issues and Challenges

Unlike single-domain Big Data computing where an organisation has full control over data and

the systems used for computation, the control and management of data and the systems in

this inter-organisational setting is much more complex due to the involvement of multiple

entities from different administrative domains. Data with varying levels of sensitivity are

shared among collaborative organisations, and within each of the organisations, users with

different levels of access permission also have access to storage hosting the data. These data

could also be transferred between the respective organisations and external infrastructures

for the purposes of data processing and storage. The organisations (data owners) do not have

full control over data that are stored in infrastructures managed by other entities (data

custodians and users) in other administrative domains. Unauthorised access to these data by

unauthorised entities could lead to serious consequences, particularly if the data are mission

critical. Using cyber threat analysis and attack detections [70][14] as well as medical condition

diagnosis [71] as examples, in the first example, unauthorised access to security logs allows

an attacker to learn critical information of the system and delete traces of unauthorised

access to the systems, making security breaches go undetected and allowing the attacker to

proceed with further attacks, causing more harm to the systems. In the second example,

unauthorised access to medical data by unrelated personnel not only violates the privacy of

patients, but also gives a malicious attacker an opportunity to tamper with the medical data

which could lead to misdiagnoses, causing harm to the patients or even loss of life.

Owing to the large size of data used in CBDC (e.g., hundreds of petabytes of particle

collision data for scientific research [72], 24 billion triples (a triple is a set of three elements,

i.e., a subject, a predicate, and an object) of Semantic Web data for reasoning [73], tens of

terabytes of data per day for social network analytics [74][75]), for efficiency reasons, large-

scale distributed computing services deployed in a Multiple Public Cloud (MPC) environment

are commonly used. Carrying out CBDC in an MPC environment further complicates the issues

as data with varying levels of sensitivity are stored in and processed by clouds which can be

accessed by entities with varying levels of trust. The datasets to be processed as well as the

computing and storage components used may be physically located in different geographical

locations and managed in different administrative domains. In such cases, the datasets, the

components, and the underlying infrastructures are likely to be connected via WANs or the

Internet, which are vulnerable to a wide range of security threats and attacks. The lack of

national boundaries and the anonymous nature of the Internet make the prevention and

detection of threats and attacks much more difficult, if not impossible. Furthermore, threats

imposed by authorised insiders are also a major concern [76][77][78]. Unlike external entities,

insiders usually have certain privileges to access data and the systems used to process the

data, so they have more opportunities to tamper with the data and systems. In addition, for

Big Data processing, the requirements of efficiency and scalability are more stringent. As a

distributed system is usually optimised to support concurrent data processing, a slight

35

increase in one or both of computational and communication overheads may significantly

deteriorate the performance of the entire system.

To efficiently support secure Big Data computing in the context of CBDC-MPC, the

following challenges should be addressed.

(CH1) How to provide security protection with minimum intervention by users and service

providers? Clouds are designed to serve users with minimum intervention from

human operators. During a data processing job, there will be many interactions

between service components and the user submitting the job may not always be

present as the job could last for a long time. Therefore, security protection should

be provided with minimum user and service provider intervention.

(CH2) How to achieve the strongest entity authentication throughout the execution of a

data processing job? Due to the involvement of multiple entities from different

administrative domains with varying levels of trust, the strongest level of entity

authentication protection is required to ensure that only authorised entities can gain

access to data and systems at any time during a data processing job.

(CH3) How to achieve the strongest data authentication at the finest granularity? Data with

varying levels of sensitivity are hosted in clouds managed by external cloud service

providers and these data could be accessed by entities from different administrative

domain. These data should be protected at the object level with the strongest data

authentication protection.

(CH4) How to minimise the overhead costs incurred in achieving such protections? In

CBDC-MPC, Big Data are implied. Because of a large volume of data are used during

a data processing job and a large number of service components are used to process

such data, a slight increase in overhead cost (computational and communication)

could considerably degrade the performance of system. Hence, the overhead cost

incurred in achieving such protection should be kept minimum.

(CH5) How to balance a trade-off between security protection and overhead costs?

Usually, the strength of security protection provided comes with overhead cost

imposed on the system, the higher the level of security protection, the higher the

overhead cost introduced. In this CBDC-MPC context, balancing a trade-off between

protection strength and overhead cost is crucial.

2.4 Existing Authentication Solutions and Knowledge Gaps

In line with our aim of investigating how to support secure CBDC on an MPC platform, we

have extensively reviewed existing authentication solutions with focus on entity and data

authentication. In the following, we give a high-level summary of these authentication

solutions and identify knowledge gaps.

2.4.1 Entity Authentication
Most existing entity authentication solutions are designed based on an assumption that

entities that are in the same administrative domain or domains that form a collaboration have

the same level of trust, but entities external to the domain are not as trustworthy or are

untrustworthy. Threats and attacks are mostly caused by entities external to the domain.

36

Hence, these solutions are designed to prevent those untrustworthy entities from accessing

assets hosted in the domain. In other words, they provide only a gate-level protection. Once

an entity is authenticated, it can access any assets within the domain to which it is authorised.

For intra-domain authentication, many solutions (e.g., [29], [34], [30], [79], and [80]) adopt a

centralised authentication approach, i.e., a trustworthy entity or a group of trustworthy

entities are designated for issuing credentials (security data used for identity verification) to

other entities in the domain and verifying the identities of the other entities. In a solution

report in [31], the verification of the identities of two interacting entities can be done without

using the central trustworthy entities at a cost of relatively higher computational overhead cost.

For inter-domain authentication, participating domains typically form a federation and

entities within a federated domain are also assumed to have the same level of trust. Some

solutions (e.g., [29] and [34]) require that all the participating domains have to use the same

authentication solution. In these solutions, the trustworthy entities of all the participating

domains form a trust hierarchy and the authentication of two entities from different domains

is done through the hierarchy. Some solutions (e.g., [81], [33], and [32]) allow the

participating domains to use different authentication solutions and the entities from different

domains can authenticate themselves with their home domain. This is done by exchanging

standardised security data between the trustworthy entities in the home and foreign domains.

The gate-level entity authentication solutions described above have one major limitation.

If the credential of an entity is stolen or a live session is hijacked by an attacker, the attacker

can impersonate the entity and gain access to the assets hosted in the domain. A number of

solutions (e.g., [82] and [83]) have been proposed to address this issue by using hardware or

biometric based credentials as additional factors for authentication, making stolen-credential

attacks more difficult. However, these solutions are only suited to the authentication of

human users. Other solutions (e.g., [35] and [84]) enhance authentication protection by

providing authentication at the interaction level. However, they do not provide a fine-grained

accountability. This is because they are designed based on an assumption that a group of

entities performing the same function are equally trustworthy, thus, the entities of the same

group could share and use the same credential. Without additional measures, it is impossible

or extremely difficult to distinguish entities sharing the same credential.

2.4.2 Data Authentication
Data authentication solutions can be largely classified into three groups based on the trust

assumption applied. The first group of solutions assume that all the entities involved in a data

processing job are equally trustworthy, but entities external to the data processing job are

untrustworthy and these entities may mount attacks on data used in the job. Hence, the

solutions in this group focus on how to protect the authenticity of the data against external

entities. The solutions in this group (e.g., [37] and [38]) provide data origin authentication and

data integrity protection but not non-repudiation of origin. These solutions are not suitable

for CBDC-MPC due to incompatible assumptions, i.e., in the context of CBDC-MPC, entities

involved in the job are from different administrative domains with varying levels of trust.

The second group of solutions assume that some of the entities involved in a data

processing job are trustworthy, but the remaining entities are untrustworthy. The solutions

37

in this group (e.g., [46], [47], [48], [49], and [50]) mainly focuses on the correctness (thus

integrity protection) of data generated during the execution of the job. Such data correctness

is ensured by task replication, i.e., each data processing task is assigned to multiple data

processing components and some of the tasks are also assigned to trustworthy data

processing components. Owing to redundancy, task replication could significantly add

computational and communication overhead cost to the job. These solutions are also not

suited to collaborative Big Data processing in this context due to incompatible assumptions

and high overhead cost imposed on the system.

The third group of the solutions assume minimal trust among entities and entities within

the same domain may not be equally trustworthy. Hence, the solutions in this group (e.g.,

[39], [40], [41], [42], and [43]) are designed to provide data origin authentication, data

integrity protection, as well as non-repudiation of origin. Some solutions can provide such

strong data authenticity protection at the object level. However, this is achieved at a cost of

high computational and communication overhead cost. Therefore, these solutions are also

not suited to CBDC-MPC which involves a large quantity of data and has a stringent

requirement for timeliness for data processing.

2.4.3 Knowledge Gaps
Based on observations made on the existing entity and data authentication solutions, we have

identified the following knowledge gaps.

(KG1) The gate-level entity authentication solutions do not provide protection against

insider threats. These solutions mainly focus on securing domain perimeters to deter

outsiders from mounting attacks against systems hosted in the domain. They are not

designed to counter insider threats which are a major source of concerns in this

context of CBDC-MPC.

(KG2) Some entity authentication solutions can provide a certain level of protection against

insider threats; however, the protection provided is coarse-grained. They can protect

against insider threats caused by different groups within the domain, but not threats

caused by entities within the same group. This could cause issues as, in a data

processing job, there could be a large number of entities tasked with the same

function thus assigned to the same group.

(KG3) Existing entity solutions supporting cross-domain authentication impose some

limitations. Some solutions require that all the participating organisations use the

same entity authentication solution, which is typically a centralised solution. Using a

centralised trusted entity, or a group of trusted entities, to authenticate a large

number of distributed entities is not efficient. The other solutions allow the use of

different entity authentication solutions among different organisations, but they add

another layer of authentication, introducing additional overhead cost thus inefficient.

(KG4) In this CBDC-MPC context, the issue of trade-offs among protection granularity,

protection strength, and efficiency has not been yet addressed in the existing data

authentication solutions. To provide a fine-grained and strong level of protection

(i.e., protecting against both outside and inside threats), each data objects should be

individually signed. This will introduce an excessive level of computational overhead,

38

particularly when being applied to a large volume of data. However, alternative

existing solutions do not protect against insider threats, although they are efficient.

2.5 A Way Forward

To address the knowledge gaps identified above, thus supporting secure Big Data

computation as efficient and scalable as possible in the context of CBDC-MPC, we propose to

apply the following ideas:

(W1) To enhance the protection of the system in this inter-organisational setting, the

protection should be provided at the finest granularity and should be against both

outside and inside threats. In other words, the protection should be applied at the

object level, and in addition to authenticity, accountability (in terms of non-

repudiation) should also be provided.

(W2) Entity identity and data authenticity should be verified at every interaction, or every

point where data change hands. Threats of impersonation, unauthorised data

access, unauthorised data modification, and non-repudiation of origin may be

realised at any interaction between a pair of entities or any point where there is a

data transmission and reception, so applying authentication at every interaction can

maximise the strength of protection.

(W3) Protection should be built on any already-established security infrastructure in

participating organisations. Participating organisations typically have already got

security infrastructures established in their respective domains. By making use of

these security infrastructures (such as secure channels for credential distribution)

already established, we can avoid duplicating efforts, thus reducing unnecessary

overheads required, in establishing such infrastructures, while allowing

organisations to streamline their security managements.

(W4) The aggregations of operations for generating and verifying AuthData and

communication messages can reduce computational as well as communication cost.

The cost incurred in providing strong protection at the finest granularity (as

explained in (W1)) could be high as individual components have to generate, verify,

and transmit AuthData for multiple data objects. The idea of aggregations, along

with minimising the use of computationally expensive cryptographic primitives, may

help us to minimise overhead costs incurred in enhancing the protection.

2.6 Chapter Summary

This chapter has presented the concept of Big Data computing and a trend for inter-

organisational Big Data computation. It has described and compared two prominent

distributed computing system models and then selected one for this research work. Based on

the selected system model, it has analysed and identified issues related to authentication and

challenges in addressing such issues. It has presented a critical analysis on the related existing

authentication solutions from a high-level perspective, highlighting knowledge gaps and areas

for improvements. Finally, it has outlined ideas for the design of an authentication solution

that can address the identified knowledge gaps to best support secure CBDC-MPC efficiently.

The next chapter presents the cryptographic building blocks used to design our solution.

39

Chapter 3

Cryptographic Building Blocks

3.1 Chapter Introduction

This chapter introduces cryptographic schemes that are used as building blocks for the

designs of our authentication solution. These building blocks provide the required security

protections and functions. This chapter describes the building blocks before listing the

algorithms of the building blocks and the interfaces (specifying the input and output) of the

algorithms.

In detail, Section 3.2 explains the selections of the cryptographic building blocks and gives

justifications for such selections. Sections 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9, respectively,

describe hash functions, hash trees, key derivation functions, symmetric-key based

encryption schemes, asymmetric-key based encryption schemes, Message Authentication

Code (MAC) schemes, and digital signature schemes. Section 3.10 concludes the chapter.

3.2 Selections and Justifications

In accomplishing entity and data authentication protections, our authentication solution

performs a number of tasks, including the generation, verification, and secure distribution of

credentials, AuthData, and other secrets used in facilitating the authentication process. For

these tasks, the following functions should be fulfilled: (1) to generate a digest for a set of

data objects; (2) to generate new keys from a given set of secrets; (3) to protect data

confidentiality; (4) and to ensure the authenticity of data objects.

A hash function and a hash tree are, respectively, used to generate a digest for a data

object and a set of data objects, respectively. A digest is a fixed-length token that is used to

represent the object, or the whole set of the objects. Hence, a hash function and a hash tree

can accomplish function (1). A key derivation function is used to derive new keys from a given

set of secrets (e.g., a master key and a nonce). It accomplishes function (2). A symmetric-key

based encryption scheme is used to obfuscate the content of a data object (and also to

reverse the process). It accomplishes function (3). A MAC scheme and a digital signature

scheme are used to generate and verify an authentication data token ensuring the

authenticity of an object. They accomplish function (4). Unlike MAC, a digital signature

scheme also provides protection of non-repudiation of origin to the object. It is worth noting

that, although asymmetric-key based encryption schemes are not used in the design of our

solution, they are used by an entity authentication solution to be compared with our solution.

Therefore, these schemes are also described in this chapter. Diagrams showing how these

cryptographic building blocks are used in achieving entity authentication and data

authentication are, respectively, depicted in Figure 3.1 and Figure 3.2.

40

Figure 3.1: Cryptographic building blocks used in our entity authentication service.

Figure 3.2: Cryptographic building blocks used in our data authentication service.

Any implementations of these cryptographic building blocks can be used to implement

our authentication solution interchangeably as long as they support the defined interfaces.

3.3 Hash Functions

A hash function (also known as a cryptographic hash function) is used to generate a digest of

an object, and the digest is called a hash. Some examples are SHA-2 [85], SHA-3 [86], and

BLAKE2 [87]. A hash function contains a hash generation algorithm. This algorithm takes a

variable-length object 𝑑 as input and returns a fixed-length hash ℎ as output, denoted as

ℎ = 𝐻(𝑑).

41

3.4 Hash Trees

A hash tree, also called a Merkle tree [88][89][90], is a tree containing aggregated hashes for

a set of objects. In a hash tree, each leaf node is the hash of a respective object and each

internal node is the hash of the concatenation of its child nodes. The root node (also called

the root hash) is the aggregated hash of all the objects. Sibling nodes along the path from a

given leaf node to the root node are collectively referred to as Sibling-AuthData. The hash

tree used in our solution contains three algorithms, Hash Tree Construction (HT-

Construction), Sibling-AuthData Extraction (SA-Extraction), and Root-AuthData Recovery (RA-

Recovery).

(HTA1) HT-Construction: HT-Construction takes a set of hashes ℎ1, ℎ2, … , ℎ𝑁 as input and

returns a hash tree ℎ𝑡 as output, denoted as ℎ𝑡 = 𝐻𝑇𝐶(ℎ1, ℎ2, … , ℎ𝑁).

(HTA2) SA-Extraction: SA-Extraction takes a hash tree ℎ𝑡 and a hash ℎ𝑖 (of an object 𝑑𝑖) as

input and returns a Sibling-AuthData token containing a set of hashes and their

positions (i.e., left or right) along the path from ℎ𝑖 to the root node as output,

denoted as 𝑠𝑎𝑖 = 𝑆𝐴𝐸(ℎ𝑡, ℎ𝑖). If a binary hash tree is used, the number of the

hashes contained in each 𝑠𝑎𝑖 is at most the height of the tree, i.e., ⌈log 𝑁⌉.

(HTA3) RA-Recovery: RA-Recovery takes a hash ℎ𝑖 and a Sibling-AuthData token 𝑠𝑎𝑖 as

input and returns a root hash 𝑟ℎ as output, denoted as 𝑟ℎ = 𝑅𝐴𝑅(ℎ𝑖, 𝑠𝑎𝑖).

3.5 Key Derivation Functions

A key derivation function is a cryptographic hash function specifically designed for generating

symmetric keys from secret values (e.g., a master secret key) and, optionally, other values

(e.g., a salt value). An example of commonly used key derivation functions is HMAC (Hash-

based Message Authentication Code)-based Key Derivation Function (HKDF) [91]. A key

derivation function contains one key derivation algorithm, referred to as Key-Derivation. The

algorithm takes a length 𝑙 (set for the derived key), an input key 𝑖𝑘, and a salt value 𝑠 as input

and returns a derived key 𝑑𝑘 as output, denoted as 𝑑𝑘 = 𝐻𝐾𝐷𝐹(𝑙, 𝑖𝑘, 𝑠).

3.6 Symmetric-key based Encryption Schemes

A symmetric-key based encryption scheme is commonly used to protect the confidentiality of

data. It provides two functions: encryption and decryption. Encryption is a function that hides

the content of data by transforming the data (also called plaintext) into encrypted data (also

called ciphertext) with a secret key. Decryption, the reverse function of encryption,

transforms ciphertext back to plaintext with the same key. Examples of symmetric-key based

encryption schemes include AES [92], Blowfish [93], and RC6 [94]. A scheme used in our design

should contain an encryption (Sym-Encryption) algorithm and a decryption (Sym-Decryption)

algorithm.

(SEA1) Sym-Encryption: Sym-Encryption is an algorithm that accepts a secret key k and a

plaintext d as input and returns a ciphertext 𝜓 as output, denoted as

𝜓 = 𝑆𝐸(𝑘, 𝑑).

42

(SEA2) Sym-Decryption: Sym-Decryption is an algorithm that accepts a secret key k and a

ciphertext 𝜓 as input and returns a plaintext 𝑑 as output, denoted as

𝑑 = 𝑆𝐷(𝑘, 𝜓).

3.7 Asymmetric-key based Encryption Schemes

An asymmetric-key based encryption scheme protects the confidentiality of data by using two

asymmetric keys, a public key and a private key of a receiver (an entity receiving the data).

The public key is used for encryption and the private key for decryption. In other words, any

entities knowing the public key can encrypt data (plaintext) to generate ciphertext, but only

the receiver can decrypt the ciphertext to recover the plaintext. Examples of asymmetric-key

based encryption schemes include RSA [95] and ElGamal [96]. An asymmetric-key based

encryption scheme should contain an encryption (Asym-Encryption) algorithm and a

decryption (Asym-Decryption) algorithm.

(AEA1) Asym-Encryption: Asym-Encryption is an algorithm that accepts a public key 𝑝𝑘 and

a plaintext d as input and returns a ciphertext 𝜓 as output, denoted as

𝜓 = 𝐴𝐸(𝑝𝑘, 𝑑).

(AEA2) Asym-Decryption: Asym-Decryption is an algorithm that accepts a private key 𝑠𝑘

and a ciphertext 𝜓 as input and returns a plaintext 𝑑 as output, denoted as

𝑑 = 𝐴𝐷(𝑠𝑘, 𝜓).

3.8 Message Authentication Code (MAC) Schemes

A MAC scheme is a symmetric-key based data authentication scheme. It provides two security

properties: data origin authentication and data integrity protection. To protect the

authenticity of a data object, a MAC scheme along with a secret key are used to generate an

AuthData token, called a tag, for the object. The authenticity of the object can then be verified

against the tag by using the same key. Some examples of MAC schemes are HMAC [37], OMAC

[38], and UMAC [97]. A MAC scheme should contain two algorithms, signing (MAC-Signing)

and verification (MAC-Verification).

(MA1) MAC-Signing: MAC-Signing is an algorithm that accepts a secret key k and a data

object d as input and returns a tag 𝜏 as output, denoted as 𝜏 = 𝑀𝑆(𝑘, 𝑑).

(MA2) MAC-Verification: MAC-Verification is an algorithm that accepts a secret key k, an

object d, and a tag τ as input and returns a verification result 𝑚𝑣 as output,

denoted as 𝑚𝑣 = 𝑀𝑉(𝑘, 𝑑, 𝜏). The output is either positive or negative.

3.9 Digital Signature Schemes

A digital signature scheme is an asymmetric-key based data authentication scheme which

provides three security properties: data origin authentication, data integrity protection, and

non-repudiation of origin. Unlike MAC, a private key and a public key of a sender (an entity

sending a data object) are, respectively, used for signing to generate an AuthData token,

called a signature, and for verifying the signature. In this way, only the sender can sign the

object whereas any entities knowing the public key of the sender can verify the authenticity

of the object. Some examples are RSA [95], DSA [98], and ECDSA [98]. It contains two

algorithms, signing (SIG-Signing) and verification (SIG-Verification).

43

(SA1) SIG-Signing: SIG-Signing is an algorithm that accepts a private key sk and an object

d as input and returns a signature σ as output, denoted as 𝜎 = 𝑆𝑆(𝑠𝑘, 𝑑).

(SA2) SIG-Verification: SIG-Verification is an algorithm that accepts a public key pk, an

object d, and a signature σ as input and returns a verification result 𝑠𝑣 as output,

denoted as 𝑠𝑣 = 𝑆𝑉(𝑝𝑘, 𝑑, 𝜎). The output is either positive or negative.

3.10 Chapter Summary

This chapter has presented the cryptographic building blocks used in the design of our

authentication solution. The next chapter presents the construction of a generic use case

model for CBDC-MPC. It also describes the architecture and the components of our novel

authentication solution, the Multi-domain Decentralised Authentication (MDA) framework.

44

Chapter 4

Multi-domain Decentralised Authentication

(MDA) Framework

4.1 Chapter Introduction

This chapter presents the formulation of a generic use case model for CBDC-MPC, which forms

the foundation for this research work. The CBDC-MPC model has been thoroughly

investigated and analysed to gain a better understanding of the characteristics of CBDC-MPC,

how these characteristics correlate to threats and attacks, and how they may influence the

provision of authentication protection. This chapter also presents the architecture of our

novel authentication framework, the Multi-domain Decentralised Authentication (MDA)

framework. It gives an overview of the components of the MDA framework and explain an

authentication flow when MDA is applied.

In detail, Section 4.2 describes the use case for this work. Section 4.3 examines potential

system architectures and Big Data processing models and constructs the CBDC-MPC model

based on the chosen architecture and models. Section 4.4 gives a threat analysis based on the

CBDC-MPC model. Section 4.5 gives a set of requirements to counter the identified threats.

Section 4.6 explains the architecture of the MDA framework. Lastly, Section 4.8 concludes the

chapter.

4.2 Use Case Description

This section formulates a generic use case model which is based on the running example

discussed in Section 1.2. The use case model is an extreme form of distributed computing in

which multiple collaborators from different administrative domains jointly perform a

collaborative data analysis on shared datasets using shared resources. The distributed

computing and infrastructure services used are provided by external providers. Minimal trust

among the organisations is assumed. The use case is chosen based on two main considerations.

Firstly, this use case captures the characteristics of Big Data processing using distributed

computing systems as described in Section 2.2. Secondly, it presents a broader set of challenges

encompassing those presented in other use cases (e.g., single-domain Big Data computation).

This means that a security solution design for this use case should also be applicable to the

other use cases as well. The architecture of the use case is depicted in Figure 4.1. It is worth

noting that the architecture shows only the entities involved in the collaborative job execution.

45

Figure 4.1: Use case architecture.

The figure shows the relations among entities involved in a collaborative job execution.

Based on their roles, the entities are classified into three groups, cloud service providers,

distributed computing service providers, and collaborators (organisations). Without losing

generality, it is assumed that there are three cloud service providers (𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1,

𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2, and 𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟3), two distributed computing service providers

(𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1 and 𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2), and three organisations (𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1,

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛2, and 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3). 𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1, 𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2, and

𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟3, respectively, manage clouds 𝐶𝑙𝑜𝑢𝑑1, 𝐶𝑙𝑜𝑢𝑑2, and 𝐶𝑙𝑜𝑢𝑑3. Each of the

clouds provides one or both of processing and storage services. A set of machines hosting a

processing service is referred to as a processing cluster, and a storage service as a storage

cluster. 𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1 and 𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2 use processing and storage services provided by

cloud service providers to build distributed computing services. 𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1 subscribes to

processing and storage services hosted in 𝐶𝑙𝑜𝑢𝑑1 and 𝐶𝑙𝑜𝑢𝑑2 (more details with regard to

system architectures for cluster deployment are given in Section 4.3.1), whereas

𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2 subscribes to both processing and storage services hosted in 𝐶𝑙𝑜𝑢𝑑3.

𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛1 and 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛2 each subscribe to a dedicated distributed computing

service (𝐷𝐶𝑆1 and 𝐷𝐶𝑆2, respectively) provided by 𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1, whereas 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3

subscribes to a distributed computing service (𝐷𝐶𝑆3) provided by a different provider,

𝐷𝐶𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2. Users (𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3) can use the distributed computing services

subscribed by their respective organisations, may request shared datasets as well as

computation resources, and carry out collaborative job executions on behalf of their

respective organisations.

Depending on the system architecture and Big Data processing model used, there are

multiple ways of carrying out this collaborative data analysis. These will be discussed in the

next section.

46

4.3 Generic Use Case Model Construction

In the following, we examine potential system architectures and Big Data processing models

and select ones to construct our CBDC-MPC model. We also report the characteristics

observed on the model.

4.3.1 Choosing a System Architecture
This section discusses two different system architectures, a Single-Cloud System Architecture

(SC-SA), and a Multi-Cloud System Architecture (MC-SA), for the deployment of distributed

computing service components in clouds and selects one for constructing the CBDC-MPC

model. The two system architectures are devised based on an observation that, at a high level,

a distributed computing service should consist of two clusters of components, processing and

storage components, and each of such clusters can be hosted in a different cloud. In the

following, we discuss the system architectures for the deployment of 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2 (shown

in Figure 4.1).

4.3.1.1 Single-Cloud System Architecture (SC-SA)
In the SC-SA architecture, both processing and storage components of a distributed

computing service are, respectively, hosted on processing and storage clusters of the same

cloud. An example of SC-SA where 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2 are deployed in a single cloud, 𝐶𝑙𝑜𝑢𝑑1, is

shown in Figure 4.2. From the figure, it can be seen that the underlying infrastructures for

both 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2 are managed by a single cloud service provider, 𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1.

Usually, after a user is authenticated to the cloud, the user can access any resources allocated

to the user.

Figure 4.2: An example of SC-SA.

SC-SA is adopted by many cloud service providers, such as Amazon Web Services [99] and

DigitalOcean [100]. Many providers choose to provide both of the processing and storage

services (e.g., Amazon EC2 [101] and Amazon S3 [102] are, respectively, examples of the

processing and storage services provided by Amazon Web Services) to reach a wider group of

users with different demands and to build their own ecosystems. This architecture has also

been used in many applications, including Amazon EMR [103], AzureMapReduce [104], and

Twister4Azure [105].

47

SC-SA brings a number of advantages. From a functional aspect, users are assured that

the connection between the clusters should be well established and maintained. They should

receive the best support the cloud service provider can offer. From a security aspect, SC-SA

should be less susceptible to threats caused by external entities owing to security measures

enforced by the cloud service provider. However, SC-SA also has a number of limitations. If

the cloud service provider uses a proprietary system, it may limit users’ freedom to choose

different services offered by different cloud service providers due to incompatibility issues. In

addition, the reliance on the ecosystem provided by a particular provider may cause an issue

of vendor lock-in. In other words, it might be technically difficult or cost-prohibitive for users

to migrate their services and data from one provider to another provider.

4.3.1.2 Multi-Cloud System Architecture
Contrarily, in the MC-SA architecture, the processing and storage components of the same

distributed computing service are, respectively, hosted in different clouds each managed by

a different cloud service provider. An example of MC-SA where the processing and storage

components of 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2 are, respectively, deployed in two clouds, 𝐶𝑙𝑜𝑢𝑑1 and

𝐶𝑙𝑜𝑢𝑑2, is shown in Figure 4.3.

Figure 4.3: An example of MC-SA.

As shown in the figure, unlike Figure 4.2, the processing components of 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2

are hosted in the processing clusters of 𝐶𝑙𝑜𝑢𝑑1, whereas the storage components of the two

distributed computing services are hosted in the storage clusters of 𝐶𝑙𝑜𝑢𝑑2. In other words,

the underlying infrastructures supporting a distributed computing service are managed by

multiple cloud service providers. Due to this difference, there are three implications for using

MC-SA. The first is that a user would need to be authenticated by two different authentication

services each hosted on a different cloud prior to accessing the services hosted in both of the

clouds, adding overhead costs. The second is that there may be interactions among

components hosted in different clouds during a data processing job, and such interactions

would also require authentication. These authentication requirements are of inter-cloud

nature, which is different from the SC-SA case where authentication requirements are of

intra-cloud nature. The third is that data involved in the job would need to be transferred

between clouds managed by different cloud service providers, i.e., there will be inter-cloud

data transfers. The networks connecting these clouds are likely to be Wide Area Networks

(WANs) or the Internet, which are open to a wide range of threats and attacks.

48

There are some existing works in prototyping the MC-SA architecture. Resilin [19] is one

of such works that develops a prototype using MC-SA. In this prototype, the processing and

storage components are hosted in different clouds provided by different cloud service

providers.

MC-SA gives a user greater flexibility in the selection of services as the user has a higher

degree of freedom to subscribes to services provided by different cloud service providers.

However, in comparison with SC-SA, there are additional security complications introduced

by MC-SA because of inter-domain communication. As multiple clouds are involved during a

job and different clouds may have varying levels of trust, the authentication services for inter-

cloud interactions, inter-cloud resource access, and inter-cloud data transfer should be

considered at multiple levels, which are more levels than the case for SC-SA. For example, the

authentication services may be required at job-level, component-level, user-level, distributed

computing service-level, and cloud-level. Also, inter-cloud data transfer may be through open

and insecure channels, increasing the risk of the authenticity of the data being compromised.

4.3.1.3 Making the Selection
With regard to architecture selection, we should select one that presents a greater set of

research issues and problems so that a solution, designed to address these issues and

problems, could be applied to both architectures. To this end, we have identified the following

four criteria to guide the selection.

(SAC1) Usability and flexibility from distributed computing service providers’ perspective: The

benefits and disadvantages are considered in terms of scalability, vendor dependency,

interoperability, and freedom of processing and storage service subscriptions.

(SAC2) Manageability and expandability from cloud service providers’ perspective: A system

architecture chosen by a cloud service provider may influence the provider’s business

potential. For example, it may restrict the number of services the provider could

provide, how they may expand their service in the future, or both. The chosen

architecture should best support the freedom in service offering, control, and

management, and provide flexibility in service capacity expansion.

(SAC3) Service deployment trend: The chosen system architecture should follow the trend for

CBDC-MPC so that an authentication solution designed based on the use case model

will be applicable to current and future applications.

(SAC4) Security complications: Clouds are vulnerable to various threats and attacks. Due to

different characteristics of different system architectures, distributed computing

services deployed on the clouds may encounter different sets of threats and attacks.

The analysis of SC-SA and MC-SA against the specified criteria is summarised in Table 4.1.

Table 4.1: The comparisons of SC-SA and MC-SA.

 SC-SA MC-SA

(SAC1) Scalability The resources accessible to a
distributed computing service
provider are limited by the resource
capacity of a single cloud. This also
limits the number of users the
provider can serve.

The resources accessible to a
distributed computing service
provider are not limited by the
resource capacity of a single cloud.
The distributed computing service
provider may subscribe to services
provided by more than one cloud.

49

 SC-SA MC-SA

Therefore, MC-SA may potentially
have more resources to serve a higher
number of users.

Vendor
dependency

A distributed computing service
provider may experience the issues of
vendor lock-in as well as service and
data migration.

The vendor lock-in issue is unlikely to
happen as there is incentive for cloud
service providers to use standardised
software and hardware. Data and
service migration should be possible
and with relatively less difficulty.

Interoperability Components hosted in different
clouds might not be able to
communicate with each other as
different implementations of cloud
services may not be compatible with
each other.

There is incentive for cloud service
providers to improve interoperability
[106]. Components hosted in different
clouds are more likely to be able to
communicate with each other as these
components are more likely to
conform to standard Application
Programming Interface (API)
specifications.

Freedom of
service
subscription

A distributed computing service
provider has to subscribe to both
processing and storage services
provided by the same cloud service
provider.

A distributed computing service
provider may subscribe to processing
and storage services offered by
different cloud service providers.

(SAC2) Freedom of
service offering

A cloud service provider should offer
both processing and storage services.

A cloud service provider may offer one
or both of processing and storage
services.

Control and
management

A cloud service provider is responsible
for managing and maintaining all the
services hosted on its cloud, and it has
complete control over the services.

A cloud service provider only has
control over the services hosted in its
cloud. It does not have to manage and
maintain the services that
interoperate with its services but are
offered by other cloud service
providers.

Resource
expansion

To increase the resource capacity to
meet the growth of distributed
computing service providers’
demands, a cloud service provider has
to add more hardware and software
components to its cloud.

The resource capacity can be
increased either by adding more
hardware and software components
or by establishing collaborations with
business partners. An example of such
partnership is reported in [107]. In this
way, multiple cloud service providers
can offer a combined pool of resources
or a bundled service to distributed
computing service providers.

(SAC3) Proposals in
literature

A similar system architecture is used in
AzureMapReduce [104] and
Twister4Azure [105].

A similar system architecture is used in
Resilin [19].

Commercial
services in use

A similar system architecture is used in
Amazon Web Services [99].

We have not found any commercial
services using the MC-SA architecture
or anything similar at the time of
writing.

Market
considerations

To gain a bigger market share, a cloud
service provider may increase service
variety and resource capacity. As a
result, the management tasks may
become more challenging or difficult,

As multiple cloud service providers are
involved in this architecture, service
variety and capacity can be increased
without overwhelming a particular
cloud service provider. The service

50

 SC-SA MC-SA

and the quality of service provided to
users may deteriorate.

capacity and variety can be increased
by pulling together the services
provided by multiple cloud service
providers.

(SAC4) Trust Usually, the components hosted in the
same cloud are equally trustworthy, as
they are managed by the same
administrative entity.

There are two possibilities: (a) multiple
cloud service providers form a
federation to agree on how and to
what level they form their mutual
trust, and in this case, they will follow
their agreement, and (b) different
cloud service providers handle their
trust of other cloud service providers
differently and individually, and in this
case, there will be different levels of
trust among components in different
clouds.

Identity
management

A cloud service provider usually uses a
private identity management scheme
to manage the identities of its users.

A distributed or federated identity
management scheme may be
deployed.

Data
authenticity

Usually, the authenticity of data
stored in storage (data-at-rest) and
data transmitted via networks (data-
in-transit) can be ensured by
mechanisms such as Message
Authentication Codes (MACs) and
digital signatures. Cloud service
providers may not enforce the use of
such methods but provide them as an
optional service.

Authenticity of data-at-rest and data-
in-transit should be protected as an
essential service and by using more
stringent mechanisms than those used
in the SC-SA case.

Data
confidentiality

A data confidentiality service should
also be provided to data-at-rest and
data-in-transit. As data are only
transmitted among components
hosted in the same cloud and there are
many mature security solutions, such
as firewall, Intrusion Detection System
(IDS) and Intrusion Prevention System
(IPS), that provide protection against
outsider attacks, therefore, the risk of
data exposure caused by a malicious
outsider is relatively lower.

In this architecture, the confidentiality
service is provided to both data-at-rest
and data-in-transit as an essential
service, especially when the data are
transmitted among components
hosted in different clouds.

Component
status
monitoring

In most cases, it is assumed that the
components in the same cloud work
correctly, as usually the components
on the same cloud are connected via
Local Area Networks (LANs) or
dedicated networks.

There might be a lack of trust among
the cloud service providers hosting the
components. The components hosted
in different clouds are usually
connected via public Wide Area
Networks (WANs), typically the
Internet, and security threats on
WANs are much higher than on LANs.
Hence, component status monitoring
and threats monitoring are required.

Attacks and
threats

In most cases, it is assumed that
components hosted in the same cloud
and data sent between the

Due to the same reason as mentioned
above, the level of threats in this
architecture is much higher. In
addition to attacks on data sent

51

 SC-SA MC-SA

components are safe from outside
attacks.

between components hosted in
different clouds, there are also threats
caused by authorised insiders, such as
compromised or malicious entities.

As summarised in Table 4.1, MC-SA is a more preferable choice as the system architecture

for our use case because of the following reasons. MC-SA provides a higher level of usability

and flexibility to distributed computing service providers. A distributed computing service

provider can subscribe to services offered by any cloud service providers without worrying

about the vendor lock-in and migration issue. MC-SA provides a higher level of manageability

and expandability to cloud service providers. A cloud service provider may provide one or

both of processing and storage services to service consumers. The capacity and quality of a

service provided by a cloud service provider can be enhanced by establishing collaborations

with other cloud service providers. MC-SA better resembles a growing trend of virtual

operators, i.e., entities that provide services built on top of services provided by other service

providers to service consumers. In addition, MC-SA captures a broader set of security issues

and requirements, so solutions designed based on MC-SA will also be applicable to SC-SA. For

these reasons, we have chosen MC-SA as the system architecture for our use case.

4.3.2 Choosing a Big Data Processing Model
As the popularity in Big Data analysis increases, there exist many distributed computing

models proposed for different applications. Based on applications, they can be classified into

application-specific models and non-application-specific models. Application-specific models

are formulated and optimised for some particular applications. Examples of such models

include GraphLab [108] which is designed for machine learning and data mining, Dremel [109]

which are designed for table based data query, Pregel [110] which is suitable for

implementing large-scale graph algorithms in distributed settings, and Apache Storm [111]

which is designed to process unbounded streams of data. Non-application-specific models are

usually constructed to serve a wide range of applications. Among these non-application-

specific models, the most notable models are MapReduce (MR) [112], Dryad [113], Hyracks

[114], Nephele [115], and Apache Spark [116].

All the Big Data processing models mentioned above capture essential characteristics of

distributed computing, i.e., data are transferred among, processed by, and stored on,

distributed and networked components, allowing tasks of a data processing job to be

executed concurrently. In line with our aim to design an authentication solution that can make

a greater impact on distributed computing, we should select a Big Data processing model that

is most used and is likely to be used in the future. For this reason, we exclude application-

specific models from the selection and consider only non-application-specific models. To

contrast the non-application-specific models, we have identified the following five criteria to

guide the selection.

(BMC1) Study and adoption: Big Data processing models that are well studied and widely

adopted by industry and academic are more likely to be considered and used by

users.

52

(BMC2) Implementations and support: A Big Data processing model could be implemented

by using different tools. Different implementations of the model could be conformed

to different standards and governed by different licences (proprietary or

opensource). Documentation and support for a model implementation are also

important for users, particularly when the Big Data processing service is used for

production. In addition, extensions that extend the features and functions of model

implementations also help to support a broader set of users’ demands.

(BMC3) Infrastructure requirements: Some Big Data processing models are designed based on

some specific hardware setups. They may only achieve their full potential on those

hardware setups. This may limit the selection of infrastructure service providers.

(BMC4) Security implications: Different Big Data processing models may be designed for

different environments with different security requirements. As discussed earlier,

we should choose a model with a broader set of security issues as an authentication

solution designed for this model could be applied to other models.

The analysis of MR, Dryad, Hyracks, Nephele, and Apache Spark against the criteria

specified above is summarised in Table 4.2.

Table 4.2: The comparisons of MR, Dryad, Hyracks, Nephele, and Apache Spark.

(BMC1) MR MR is well studied and widely adopted by both academia and industry. For
example, according to the Web of Science Core Collection database, there are
7,022 indexed papers regarding MR (by using the keyword “MapReduce” for
Topic search) between years 2000 and 2019. Examples where MR is used for
research and production purposes include High Energy Physics group at Caltech
[117], Facebook [75], and Twitter [118].

Dryad There are a limited number of papers published in literature. For example, using
the same database and time range as above, there are only 156 papers
containing the keyword “Dryad”. Dryad has been used in many applications,
including relational queries, large-scale matrix computations, and many text-
processing tasks [113].

Hyracks There are a limited number of papers published in literature. For example, there
are only 7 indexed papers shown when searched with the keyword “Hyracks”
using the same database and time range as above.

Nephele There are a limited number of papers published in literature, e.g., there are 33
indexed papers containing the keyword “Nephele” using the same database and
time range as above.

Apache Spark There is an increasing trend of study on, and usage of, Apache Spark reported
in literature. For example, there are 1,366 papers containing the keyword
“Apache Spark” using the same database and time range as above. Apache
Spark has been used in a number of applications, including SQL, streaming,
machine learning, and graph processing [119].

(BMC2) MR There have been many MR implementations developed by different
organisations. One of the most notable opensource Big Data system supporting
MR is Apache Hadoop [120]. MR is also commonly integrated as part of
commercial Big Data solutions, such as Hortonworks Data Platform [121], and
MapR Converged Data Platform [122]. Hence, there are extensive
documentation and support available. In addition, although MR was originally
designed for batch data processing, there are many extensions developed to
extend the capabilities of MR, such as the supports for stream [123] and
iterative [124] data processing .

Dryad There exist a limited number of systems using the Dryad model for data
processing, e.g., DryadLINQ [125] and Comet [126], thus limited documentation
and support.

53

Hyracks There is an opensource implementation of Hyracks by its authors [127]. Hyracks
is also used as an execution engine by AsterixDB [128]. There are limited
documentation and support available.

Nephele Nephele has been used in a number of Big Data processing systems, including
Nephele/PACT [129] and Apache Flink [130]. Apache Flink has been used by
many enterprises, including Amazon, Ebay, and Uber [131]. Documentation and
support are provided by its active community.

Apache Spark The most prominent implementation is an Apache project with the same name,
Apache Spark [119]. It is used by various enterprises, such as Alibaba Taobao,
Amazon, and Ebay [116]. Documentation and support are provided by its active
community. In addition, a number of extensions have been developed to
extends the functions of Apache Spark, i.e., SQL and DataFrames, Spark
Streaming, MLib, and GraphX [116].

(BMC3) MR MR is designed for the deployment on generic hardware and there are no
specific hardware requirements. It can be deployed on a physical platform such
as clusters of physical machines and on a virtualised platform such as clusters
of virtual machines hosted in clouds.

Dryad There are no specific hardware requirements.

Hyracks There are no specific hardware requirements.

Nephele Nephele uses in-memory channels for data transfer to optimise performance.
To benefit from this, Nephele based systems should be deployed on hardware
with high memory capacity.

Apache Spark Apache Spark maximises the use of in-memory channels to reduce overhead
cost incurred in disk reading and writing operations. It works best on hardware
with high memory capacity.

(BMC4) MR All the Big Data processing models do not incorporate any security measures in
the design of the models. It is assumed that security protections are provided
by third-party security services. Owing to similar characteristics of these
models, the Big Data processing services implementing the models should
experience the same level of threats when they are deployed in the same
environment.

Dryad

Hyracks

Nephele

Apache Spark

As summarised in the table, MR is a more preferrable Big Data processing model due to

the following reasons. Among the non-application-specific models, MR is the most well

studied and widely adopted Big Data processing model at the moment as indicated by the

number of papers published in literature. In addition, owing to its popularity, there are

extensive documentation and support available. For opensource MR implementations, users

can find support they need from opensource communities. They can also choose to get

support offered by commercial enterprises. MR is designed for deployment on generic

hardware, so it is compatible with a wide range of hardware configurations or setups. With

this model, users would have more options to choose from with regard to infrastructure

service providers. Although on some specific hardware setups, the performance of MR may

be lower than those of Nephele and Apache Spark. With regard to security implications, the

level of threats experienced by MR is the same as those of the other models. In other words,

all the models present a similar set of issues and challenges. An authentication solution

designed for MR should also be applicable to the other models as well. For these reasons, we

have chosen MR as the Big Data processing model for our use case. We will explain the MR

based Big Data processing model in Section 4.3.3 before describing our use case model in

Section 4.3.4.

54

4.3.3 MapReduce (MR) based Big Data Processing Model
MR [112] has been adopted in many applications thus architectures. In this report, we have

chosen the YARN [132] based architecture. YARN is one of the most used architectures for

resource scheduling, including MR. It is more scalable than other architectures for MR such

as the one reported in [112]. It can support large scale job executions involving tens of

thousands of tasks running on thousands of machines [133]. In addition, it is used in Apache

Hadoop [120], one of the most prominent Big Data systems.

To describe the MR based Big Data processing model, we first explain the components of

an MR service involved in the execution of a data processing job, before describing an MR

based job execution flow.

4.3.3.1 MR Components
The components used by an MR service are machines and containers (e.g., application

process) of resources that are hosted on the machines. Based on their functions, the MR

components can be largely classified into three groups: client components, processing

components, and storage components. Processing components and storage components can

be separately hosted in clusters of different clouds. For generality, each group is assumed to

be hosted in a separate cluster, thus leading to three clusters, i.e., a Client cluster, a

Distributed Processing System (DPS) cluster, and a Distributed File System (DFS) cluster. An

overview of the MR components of an MR service is depicted in Figure 4.4.

Figure 4.4: MR components.

The Client cluster hosts multiple ClientNodes. Each ClientNode hosts one ClientApp

container. ClientApp allows a user to submit jobs and input of the jobs, and to retrieve the

output of the jobs.

The DPS cluster consists of one MasterNode and multiple WorkerNodes. MasterNode

hosts one ResourceManager container. ResourceManager manages the resources of the MR

service and schedules job executions. Each WorkerNode hosts one WorkerManager container

and multiple sets of JobManager, Mapper, and Reducer containers; each such set serves a

particular job execution. WorkerManager manages the resources of the WorkerNode.

JobManager schedules and manages the execution of the tasks of a job carried out by Mappers

and Reducers assigned to the job. Each Mapper and Reducer, respectively, carry out a map task

and a reduce task. Mappers and Reducers are also collectively referred to as Workers.

The DFS cluster consists of one NameNode and multiple DataNodes. NameNode hosts one

NameManager container. NameManager maintains a file system, the metadata of all the files

55

(the input and output of the jobs), and directories storing the files. Each DataNode hosts one

DataStore container. DataStore keeps portions of the files, called data blocks.

4.3.3.2 Job Execution Flow
The process of a job execution consists of three phases: the job submission phase, the map

phase, and the reduce phase. In the job submission phase, a user uses ClientApp to submit a

job execution request to ResourceManager. If the request is accepted, the user uploads the

input data and the job configuration file onto the DFS cluster. The MR service will divide the

input data into multiple items, called InputSplits. The number of the InputSplits is set by the

user in the job configuration file, and this is determined by the size of each InputSplit and how

the InputSplits should be divided. The number of the InputSplits dictates the number of

Mappers assigned to the job, as the number of InputSplits should be equal to the number of

Mappers assigned to the job. In other words, each InputSplit will be processed (i.e., consumed)

by a different Mapper. After the user finishes uploading the InputSplits and notifies

ResourceManager, ResourceManager launches JobManager to manage and orchestrate the

execution of this job. JobManager starts Workers (Mappers and Reducers) and monitors the

progress of the execution of the tasks on the Workers.

In the map phase, each Mapper retrieves the assigned InputSplit from the DFS cluster,

executes a map task, and produces an output file, called IntermediateResult. Each

IntermediateResult contains multiple data items, called PartitionSegments. The maximum

number of PartitionSegments contained in an IntermediateResult is equal to the number of

Reducers assigned to the job. Each PartitionSegment will be retrieved and consumed by a

different Reducer. The PartitionSegments produced by a Mapper are stored in the local

storage of the WorkerNode hosting the Mapper.

In the reduce phase, each Reducer retrieves the assigned PartitionSegments (one from a

different Mapper) from the corresponding WorkerNodes, executes a reduce task, and produces

an output file, called FinalResult. The FinalResults produced by all the Reducers are uploaded onto

the DFS cluster. When the job execution finishes, ClientApp retrieves the FinalResults from the

DFS cluster and notifies the user. Data flows during an MR job execution is shown in Figure 4.5.

Figure 4.5: Data flows during an MR job execution.

56

4.3.4 Our Collaborative Big Data Computation on a Multiple Public Cloud

platform (CBDC-MPC) Model
In this section, we describe the CBDC-MPC model, which is constructed based on the chosen

MC-SA architecture and MR model. We give classifications of components and data used,

interactions taking place, and communication patterns exhibited by the model.

4.3.4.1 Model Description
In this CBDC-MPC model, the distributed computing services used are MR services, 𝑀𝑅1 and

𝑀𝑅2 managed by 𝑀𝑅𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1. MC-SA is applied in the deployment of the processing and

storage components of the MR services 𝑀𝑅1 and 𝑀𝑅2 in 𝐶𝑙𝑜𝑢𝑑1 (managed by

𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟1) and 𝐶𝑙𝑜𝑢𝑑2 (managed by 𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟2), respectively. An overview of

the CBDC-MPC architecture is depicted in Figure 4.6.

Figure 4.6: An overview of the CBDC-MPC architecture.

The process of a job execution in this CBDC-MPC model is complex as there are multiple

entities from different domains involved in the job execution. To describe this process, we

have formulated a generic job execution flow. Figure 4.7 shows a high-level view of the

generic job execution flow, highlighting entities (including MR components) involved and the

interactions among the components. The MR components involved in the job execution are

organised by using a multi-layer structure similar to the MR Layered Authentication Model

(MR-LAM) [84]. This multi-layer structure helps us to identify avenues for attacks at different

layers and what can we used in the design of our authentication solution to protect against

such attacks. In this structure, for each layer, entities are grouped into domains based on their

functions or their associations. Users and ClientApps of an organisation form a domain, called

an OrgDomain. Processing and storage resources hosted in a cloud form the second type of

domains, called a CloudDomain. Components allocated to an MR service form the third type

of domains, called an MRDomain. Components serving a particular job form the fourth type

of domains, called a JobDomain [84].

57

Figure 4.7: A high-level view of a generic job execution flow in the CBDC-MPC model.

The execution of a job starts from when 𝑈𝑠𝑒𝑟1 (referred to as JobSubmitter) sends a

request for shared datasets to users in other OrgDomains to when the results of the job

execution are ready for collection. As explained in Section 4.3.3, the job execution is divided

into three phases, the job submission phase, the map phase, and the reduce phase. As there

are many interactions among components in the job submission phase, for ease of discussion,

we further divide the job submission phase into two steps, the execution request step and

the worker allocation step. The execution request step starts from when JobSubmitter sends

a request for shared datasets to the other users to when all the users finish uploading the

shared datasets onto the respective DFS clusters. The worker allocation step starts from when

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 launches a 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to oversee the execution of the job to when

all the Workers are launched.

The interaction flows among entities in different job execution phases are shown in Figure

4.8. An interaction between a pair of components is shown as a unidirectional solid arrowed

line. For ease of presentation, a set of interactions among users from different organisations

58

(interaction 1) and a set of interactions between an entity and a DFS cluster (interactions 4,

12, 21, 26, and 29) are depicted as a bidirectional dashed arrowed line. It is also worth noting

that this figure omits interactions among components that are job-independent (i.e., those

that are not specifically created to serve a particular job) and are in the same MRDomain as

these interactions can be protected by using existing security solutions (e.g., an MR service

level authentication service). Examples of such interactions are data block duplication

between DataStores (of the same DFS cluster) and storage capacity report between

NameManager and ResourceManager (of the same MRDomain).

(a)

(b)

59

(c)

(d)

Figure 4.8: Interactions among entities.

(a) Job submission phase: execution request step.

(b) Job submission phase: worker allocation step. (c) Map phase. (d) Reduce phase.

The generic operational steps of a job execution are described in the following.

(GM1) 𝑈𝑠𝑒𝑟1 sends a reference identifier (ID) and a request for shared datasets and

resources to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3. 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3 receive and approve the request,

then reply the confirmation back to 𝑈𝑠𝑒𝑟1.

60

(GM2) Each user sends the reference ID and a request for a new job ID and a path to write

the dataset and the job configuration file to the ResourceManager of his/her MR

service via ClientApp.

(GM3) Each ResourceManager receives the request. If the job is accepted, it generates a job

ID based on the received reference ID (hence, all ResourceManagers generate the

same job ID) and replies the job ID and the path back to the respective user.

(GM4) Each ClientApp (on behalf of its user) receives the reply and writes the dataset and

the job configuration file onto the respective DFS cluster. The writing process

consists of three interactions.

a. Each ClientApp sends a request for data writing to the respective NameManager.

b. Each NameManager receives the request and replies the respective ClientApp with

a list of DataStores.

c. Each ClientApp receives the list. It contacts and writes the dataset and the job

configuration file to DataStores. The dataset is divided into multiple InputSplits.

(GM5) After each ClientApp finishes writing its data, it notifies the respective

ResourceManager.

(GM6) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 contacts 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 to

inquire the status of data writing.

(GM7) After 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 finish writing their data and notify their

respective ResourceManagers, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3

notify 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 of the completion of data writing.

(GM8) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends a request for launching 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 for the job to

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1.

(GM9) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 allocates resources and starts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.

(GM10) After 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 is successfully launched, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 notifies

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1.

(GM11) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 contacts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to inquire the progress of job execution. *

(GM12) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 reads the job configuration files from the DFS clusters. The reading

process consists of three interactions.

a. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a request for data reading to all NameManagers.

b. Each NameManager receives the request and replies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 with a list of

DataStores.

c. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 receives the list. It contacts the DataStores and read the job

configuration files.

(GM13) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a request for worker allocation to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

(GM14) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the request and sends a request for worker allocation

to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

(GM15) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 receive the request and reply

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 with lists of WorkerNodes with available resources.

(GM16) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the lists and forwards them to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.

(GM17) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a request to each of the WorkerManagers to launch Mappers

and Reducers.

61

(GM18) Each of the WorkerManagers receives the request and starts Mappers and Reducers

on its node.

(GM19) Each of the Mappers and Reducers contacts and reports their status to

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. *

(GM20) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 issues a command to all of Mappers to start map tasks.

(GM21) Each Mapper receives the command and reads the assigned InputSplit from the

respective DFS cluster. The reading process consists of three interactions.

a. Each Mapper sends a request for data reading to the respective NameManager.

b. Each NameManager receives the request and replies the respective Mapper with

a list of DataStores.

c. Each Mapper receives the list. It contacts and read the assigned InputSplit from

the DataStores.

(GM22) Each Mapper performs the map task on the assigned InputSplit. After the task

finishes, it writes an IntermediateResult (containing PartitionSegments) to the local

storage of the machine.

(GM23) Each Mapper notifies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 when the map task and the writing of the

IntermediateResult are finished.

(GM24) After all map tasks finishes, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 issues a command to all of the Reducers

to start reduce tasks.

(GM25) Each Reducer receives the command and reads the assigned PartitionSegments from

two sources: the local storage on the machine; and remote WorkerNodes (via

WorkerManagers)

(GM26) Each Reducer performs the reduce task on the assigned PartitionSegments. After the

task finishes, it writes a FinalResult to 𝐷𝐹𝑆1. The writing process consists of three

interactions.

a. Each Reducer sends a request for data writing to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the request and replies the respective Reducer with a

list of DataStores.

c. Each Reducer receives the list. It contacts and writes the FinalResult to DataStores.

(GM27) Each Reducer notifies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 when the reduce task and the writing of the

FinalResult finish.

(GM28) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 notifies 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 when the FinalResults are ready for retrieval.

(GM29) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the notification and retrieves the FinalResults for 𝑈𝑠𝑒𝑟1. The

reading process consists of three interactions.

a. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a request for data reading to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the request and replies 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 with a list of

DataStores.

c. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the list. It contacts and reads the FinalResults from

DataStores.

Note: While most interactions take place only once during the job execution, there are

interactions that will be repeated periodically. These interactions are referred to as recurrent

interactions. They are marked with an asterisk (*).

62

4.3.4.2 Component Classifications
This section presents the classifications of the MR components involved in a job execution.

Based on observation made on the CBDC-MPC model, we have identified two criteria, job

dependency and functions, for component classifications. Job dependency dictates the

selection authentication methods and credentials used, whereas functions indicate the levels

of risks experienced by the components.

Job dependency determines the lifetime of a component, i.e., when the component is

created and when it is terminated. With this criterion, components can be classified into job-

dependent and job-independent components. Job-dependent components are components

that are created to serve a particular job. They are created when the job is being executed

and they are terminated when the execution of the job is completed. The components in this

group are JobManager, Mapper, and Reducer. Job-independent components are components

that are created and destroyed independent of the execution of a job. These components

may serve multiple jobs, thus, their lifetimes are usually longer than those of job-dependent

components. The components in this group are ClientApp, ResourceManager,

NameManager, WorkerManager, and DataStore. Applying an authentication scheme with a

high credential generation cost to job-dependent components is not efficient as the lifetimes

of these components are relatively short. In addition, the number of these components could

be potentially large, particularly in a large-scale job execution. The costs incurred in

generating credentials for these components could be too high.

Based on functions, MR components can be largely classified into two groups:

management components and data-handling components. Management components are

components whose functions are to manage resources or supervise task executions. These

components are ResourceManager, NameManager, WorkerManagers, and JobManager.

Data-handling components are components whose functions are to produce, consume, or

store JobData. These components are ClientApps, Mappers, Reducers, and DataStores. As the

functions of management components are important to job executions and to the system,

there usually are security measures put in place to protect these components. There exists a

number of solutions that can accomplish this task and an example of such solutions is Trusted

Computing [134]. Data-handling components, on the other hand, may not have the same (or

adequate) level of protections or security assurance. This is because, firstly, these

components are in large quantities, so providing strong security protections to all of them

may not be practical due to efficiency reasons. Secondly, unlike management components

which interact with only other software components, data-handling components also interact

with users at large or execute user-supplied codes (i.e., map and reduce functions) which may

contain vulnerable or malicious codes. Thirdly, data are assets, hence, data-handling

components may be more attractive to attackers. Owing to these reasons, data-handling

components are more vulnerable to threats and attacks. They could be compromised for

attacking the data or be used as a springboard for further attacks against the system.

4.3.4.3 Data Classifications
For ease of discussion, data that are used, processed, and generated during a job execution

are collectively referred to as JobData. An entity producing (generating) JobData is called a

63

producer and an entity consuming (using) JobData is called a consumer. There are three

groups of JobData, InputSplits for the job submission phase, IntermediateResults and

PartitionSegments for the map phase, and FinalResults for the reduce phase.

An InputSplit is a portion of the input data (shared datasets) of a job. The InputSplits of an

organisation are generated (supplied) by the ClientApp of the user representing the

organisation and stored in the DFS cluster of the MR service subscribed by the organisation.

Each of the InputSplits is assigned to, and used (consumed) by, a different Mapper which

could be from a different MRDomain.

An IntermediateResult is an output data file produced by a Mapper. It contains multiple

data items, called PartitionSegments, one for a different Reducer. The PartitionSegments

produced by the same Mapper are stored in the local storage of the WorkerNode hosting the

Mapper. Each of the Reducers retrieves the assigned PartitionSegments from the

WorkerManagers of the WorkerNodes hosting the respective Mappers.

FinalResults are the output of the job execution, each of which is produced by a different

Reducer. All the FinalResults are uploaded onto the DFS cluster of the MR service of

JobSubmitter. When all the FinalResults are ready for collection, the ClientApp of

JobSubmitter retrieves the FinalResults from the DFS cluster.

Based on the data classifications described above, we can make the following

observations. As components hosted in different domains may not be equally trustworthy

and JobData objects could be from an attacker or a compromised component, a consumer

needs an assurance that the JobData it consumes are indeed produced by the claimed

producers and have not been tampered with. However, ensuring the authenticity (origin and

integrity) of the JobData is difficult in this context as JobData are stored and managed by

components other than the producers of the JobData. Producers do not have a complete

control over the JobData they produce after the generation of the JobData and consumers

cannot directly contact the respective producers to get the assigned JobData. The JobData

may be accessed and tampered with by an attacker at any point of data processing. In

addition, a producer may produce multiple JobData objects each for a different consumer,

and a consumer may also consume multiple JobData objects each produced by a different

producer. This indicates that data authenticity protection should be provided at the object

level and should be as efficient as possible due to the large quantity of JobData.

4.3.4.4 Interaction Classifications
Interactions highlighted in Figure 4.8, can be classified into two groups, initial and subsequent

interactions. An initial interaction refers to the first interaction between a pair of components,

such as an interaction between ClientApp and NameManager when the ClientApp inquires a

list of DataStores for writing InputSplits (in the job submission phase). A subsequent

interaction refers to an interaction between two components that have prior interactions,

such as an interaction between NameManager and ClientApp when the NameManager

replies a list of DataStores to the ClientApp. The classifications of these interactions are

summarised in Table 4.3.

Owing to the impact of allowing remote (and potentially untrustworthy) entities to access

local resources which may contain sensitive and high-value data, initial interactions introduce

64

a higher level of risks, particularly when data providing and consuming components are from

different organisations or domains (e.g., hosted in different clouds). If two entities of an

interaction are from different clouds, they are more likely being connected via public

networks, such as the Internet, which are vulnerable to a broader range of threats than

private networks. In addition, initial interactions typically involve entities that have yet

established any trust or shared secrets and these interactions are usually used to establish

such secrets. If initial interactions, or the secrets being established during the initial

interactions, are compromised, the security of subsequent interactions will also be put at risk.

Subsequent interactions, on the other hand, use temporary secrets established in the

authentication of preceding interactions. They may impact on a limited set of interactions

should the temporary secrets be compromised. Thus, they experience a lower level of risks.

Table 4.3: Interaction classifications.

Group Step numbers (as shown in Figure 4.8)

Initial interactions 2, 4a, 4c, 6, 8, 11, 12a, 12c, 13, 17, 19, 21a, 21c, 25, 26a, 26c

Subsequent interactions 3, 4b, 5, 7, 10, 12b, 14, 15, 16, 20, 21b, 23, 24, 26b, 27, 28

Notes: Steps 1, 9, 18, and 22 are excluded as these interactions can be authenticated by using existing authentication

mechanisms.

4.3.4.5 Communication Pattern Classifications
A different phase of the execution is characterised by a different communication pattern, i.e.,

the job submission phase is characterised by the one-to-many (O2M) pattern, the map phase

by the many-to-many (M2M) pattern, and the reduce phase by the many-to-one (M2O)

pattern.

In the O2M pattern, there is one producer (ClientApp) but multiple consumers (Mappers).

The producer produces multiple objects (InputSplits), one for each consumer. In the job

submission phase, although the input datasets for the job are from multiple users, each of

the users (through his/her ClientApp) provides a different set of InputSplits and each of the

InputSplits is assigned to a different Mapper, thus, characterised by the O2M pattern.

In the M2M pattern, there are multiple (𝑃) producers (Mappers) and multiple (𝑄)

consumers (Reducers). Each producer produces up to 𝑄 objects (PartitionSegments, each of

which contains a different set of key-value pairs), one for a different consumer. Each

consumer consumes up to 𝑃 objects, one from a different producer. The communication

between Mappers and Reducers in the map phase is characterised by the M2M pattern.

In the M2O pattern, there are multiple producers (Reducers) but one consumer

(ClientApp of 𝑈𝑠𝑒𝑟1). Objects (FinalResults) produced by different producers are typically

different (each of the FinalResults contains a different set of key-value pairs). This M2O

pattern captures the characteristics of the communication between Reducers and ClienApp

in the reduce phase.

By taking into account the characteristics of these communication patterns, we may be

able to improve the efficiency of our authentication solution. The communication patterns

help identify steps where components have to produce or consume a potentially large

number of JobData objects as the costs incurred in processing and transmitting these items

could be large, increasing risks of creating performance bottlenecks. These steps are

ClientApps producing InputSplits in the job submission phase, Mappers producing

65

PartitionSegments and Reducers consuming the PartitionSegments in the map phase, and

ClientApp (of JobSubmitter) consuming FinalResults in the reduce phase.

The job execution flow used in the CBDC-MPC model is based on the one reported in [112]

and [132]. The CBDC-MPC model, in its current form, does not support iterative job execution

(i.e., by chaining the output of Reducers in one iteration to the input of Mappers in the next

iteration). However, the communication patterns of an iterative job execution can still be

captured by the three patterns (O2M, M2M, and M2O). This means that an authentication

solution designed based on our model should also be applicable to other applications that

support iterative job execution.

4.4 Threat Analysis

Based on the CBDC-MPC model (described in Section 4.3.4), it can be seen that threats and

attacks can be mounted on the system at multiple points during a job execution. This section

gives a critical threat analysis, identifying threats with regard to violation of entity identity

and data authenticity protections. It presents threat classifications before describing a threat

model used for the design of our authentication solution.

4.4.1 Threats and Attacks
During a job execution, threats and attacks could be mounted at any of the job level, the MR

service level, and the cloud (or infrastructure) level.

At the job level, an unauthorised entity may impersonate, or gain interactions with, any

of the authorised entities. Such threats may happen at any interactions from when ClientApp

submits a job to ResourceManager to when it finishes reading the result of the job from the

DFS cluster. These threats may be mounted via Man-in-the-Middle (MITM) attacks, or theft

of an authorised entity’s authentication credential. If the unauthorised entity is successful in

mounting such an attack, it could gain access to MR services, users’ data, or both. This could

cause severe consequences, including, damages to the underlying systems and other systems

connected to these systems, users’ privacy being compromised, and contamination of the job

execution result.

At the MR service level, an MR service may serve multiple jobs submitted by different

users concurrently. In other words, users with different access rights (including those that are

not authorised to carry out a particular MR job) may use the same MR service. Curious or

malicious users may attempt to gain unauthorised access to data used in a particular job. They

may do so directly or indirectly via compromising service components.

At the cloud level, messages exchanged between MR components hosted in different

clouds may be transmitted through insecure communication channels connecting the

components; these channels are usually WAN (e.g., the Internet) based and are vulnerable to

a wide range of threats and attacks. Such attacks include intercepting, altering, and replaying

messages exchanged among the components. For example, an attacker may intercept a data

reading request sent by ClientApp to DFS and replay the request at a later time to gain access

to the data that the attacker is not authorised to access. In addition, resource sharing in clouds

allows multiple tenants to access shared resources. By exploiting vulnerabilities or

66

misconfiguration, tenants of the same cloud but external to the MR service may also gain

access to JobData used by the MR service.

In summary, the threats and attacks discussed above can be classified into the following

7 categories:

(T1) Impersonation attacks: Impersonation attacks refer to attempts to assume the

identity of an authorised entity. These attacks may be mounted via intercepting the

identity credential of an authorised entity or by guessing the secret related to the

credential. MITM attacks are one of such attacks. MITM attacks are performed by

relaying (and possibly altering) intercepted messages exchanged between

authorised entities or by hijacking a live session.

(T2) Confidential data exposure threats: Sensitive data (e.g., identity credentials) may be

exposed if not protected properly, particularly when data are transmitted over public

networks.

(T3) Replay attacks: These attacks refer to attempts to capture messages and repeat the

messages to entities. These attacks are commonly used to orchestrate

impersonation attacks, which allow an attacker to assume the identity of an

authorised entity without the knowledge of identity credential. Addressing these

attacks in the CBDC-MPC context is particularly important, as a job execution may

last for a long period of time, giving attackers many opportunities to launch such

attacks.

(T4) Message tampering attacks: These attacks refer to alteration of intercepted

messages before sending the modified messages to targets. Data sent by an

authorised entity may be replaced with fraudulent data, e.g., a fraudulent session

key planted by an attacker. An attacker may use such fraudulent data to launch

further attacks on the job and the systems.

(T5) Data injection attacks: These attacks refer to unauthorised attempts to inject new

instances of fraudulent JobData at any points of the data flow.

(T6) Data tampering attacks: These attacks refer to unauthorised alterations to JobData,

such as adding, modifying, deleting some portions of JobData. (T5) and (T6) are

external attacks. These attacks can lead to the contamination of the results of a job

execution.

(T7) Repudiation attacks: These attacks refer to any false denials of the generation of

JobData. Repudiation is commonly used to evade responsibility or accountability.

(T7) are insider attacks. Addressing these attacks is necessary in a collaborative

environment, such as the CBDC-MPC context, where multiple organisations are

involved and datasets from multiple organisations are used.

Threats(T1) through to (T4) are entity identity related threats, whereas threats (T5) through

to (T7) are data authenticity related threats.

4.4.2 Threat Model
A threat model defines the trust boundary of MR components. The threat model for our

solution should take into account of the characteristics of the underlying Big Data computing

platform, which is multi-cloud MR in this case. Existing threat models (or standard threat

67

models) do not capture the characteristics of MR based CDBC-MPC; they do not consider the

functions of the components and the characteristics of inter-domain communication,

therefore not suited to our problem context. As discussed in Section 4.3.4.2, based on

functions, MR components can be classified into management and data-handling

components. The level of risks experienced by data-handling components is higher than that of

management components. Based on these considerations, our threat model is defined as follows:

(TM1) The management components are trustworthy; they will perform their functions

faithfully.

(TM2) The data-handling components are untrustworthy; they may be malicious and

actively use any of the attack methods highlighted in Section 4.4.1.

Entities that are external to an MR job or the MR service, including those on the Internet,

are untrustworthy; they may gain access to the shared resources and mount attacks on the

job and the systems.

4.5 Requirement Specifications

To counter the threats and attacks identified in Section 4.4.1, we here specify a set of

requirements for an effective, efficient, and scalable authentication solution for CBDC-MPC.

The requirements will be used to guide the design of our solution. The requirements consist

of functional, security, and performance requirements.

4.5.1 Functional Requirements
(FR1) Full-cycle protection: Every interaction taking place, and every JobData object

transmitted, during a job execution should be authenticated, from when a user submits

a job execution request to when the user retrieves the result of the job execution.

(FR2) Cross-domain authentication: Entities involved in a job execution, including those

that are from different administrative domains should be able to mutually

authenticate each other.

(FR3) Automated authentication: After a user has submitted a job to the MR service, the

authentication of any interacting entities (i.e., component-to-component authentication)

should be accomplished without the intervention or involvement of the user.

(FR4) Fine-grained verifiability: JobData objects should be individually verifiable. This is

necessary as objects produced by a producer may be consumed by multiple different

consumers, objects assigned to a consumer are produced by different producers,

and different consumers may consume the assigned objects at different times.

(FR5) Limited JobData exposure: In providing data authentication, the exposure of JobData

should not increase. In other words, JobData should not be revealed to any other

components than those that are involved in the processing of the JobData.

4.5.2 Security Requirements
(SR1) Mutual authentication: Interacting entities should be able to verifies the identities

of each other before the interaction can be proceeded. Mutual authentication

ensures that entities are interacting with the intended entities. This requirement is

used to counter impersonation attacks (T1).

68

(SR2) Sensitive data confidentiality: The confidentiality of sensitive data (i.e., secrets)

exchanged during an authentication process should be preserved; they should not

be revealed to any other entities than the claimant and verifier of the authentication

process. This requirement is used to counter confidential data exposure threats (T2).

(SR3) Replay attack protection: Messages used in every authentication instance should be

fresh. Replayed messages should be detected by the receiving entities. This

requirement is used to counter replay attacks (T3).

(SR4) Message authenticity protection: The authenticity of messages exchanged in

achieving entity authentication should be protected. The authenticity protection

encompasses origin authentication (messages are generated by the claimed source)

and integrity protection (messages are not tampered with since their origination).

This requirement is used to counter message tampering attacks (T4).

(SR5) Data origin authentication: The origin of each JobData object should be verifiable to

ensure that the object is indeed produced by the claimed producer. This requirement

is used to counter data injection attacks (T5).

(SR6) Data integrity protection: The integrity of each JobData object should be verifiable

to ensure that the object has not been tampered with since its generation. This

requirement is used to counter data tampering attacks (T6).

(SR7) Non-repudiation of origin: The generation of each JobData object should be bound

to its producer so that any false denial of its generation can be detected. This

requirement is used to counter repudiation attacks (T7).

4.5.3 Performance Requirements
(PR1) Low overheads: The overheads imposed on a job execution as a result of achieving

authentication should be as low as possible. The overheads are considered in two

aspects: (1) computational overhead, i.e., computational cost of generating and

verifying AuthData; and (2) communication overhead, i.e., the amount of AuthData

transmitted over networks.

(PR2) High scalability: When the number of components and the volume of JobData

increase, the rate of increase in the overheads should be no more than linear.

4.6 The Running Example

This section further develops the running example discussed in Section 1.2, giving more

details about the input datasets for the job and how the job is executed by using MR in a

multi-cloud setting. The example is also used to explain the design decisions made in the

above sections and motivations for the decisions.

As described in Section 1.2, the three collaborative organisations (𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1,

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛2, and 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3) perform a data analysis job to identify any (potentially

compromised) machines in the collaborative organisations in the past 30 days (say May 2020).

Potentially compromised machines are machines that have been connected to by

compromised machines. The IP address blocks of the three organisations are, respectively,

10.1.0.0/16, 10.2.0.0/16, and 10.3.0.0/16. It is assumed that there are four compromised

machines and their IP addresses are 10.1.0.101, 10.1.0.102, 10.2.0.101, and 10.3.0.101.

69

The input of the job comprises three input datasets, one from each of the participating

organisations. Each dataset is a security log file containing network activities (connection

details) in the respective organisation. The file contains tabular data in which each entry (row)

contains date, time, source IP address, source port number, destination IP address, and

destination port number. It is assumed that the attacks are mounted only on port 22. The

contents of the files (𝐹𝑖𝑙𝑒1, 𝐹𝑖𝑙𝑒2, and 𝐹𝑖𝑙𝑒3) are shown in Table 4.4. The entries showing

connections from the compromised machines to the potentially compromised machines are

highlighted in grey.

Table 4.4: The input (security log files) for the running example.

Entry No. Date

(DD/MM/YYYY)

Time Source IP Source

Port

Destination IP Destination

Port

𝐹𝑖𝑙𝑒1

1 03/05/2020 01:00:00 10.1.0.101 61001 10.2.0.201 22

2 03/05/2020 01:30:00 10.2.0.201 62001 10.1.0.202 80

3 03/05/2020 02:00:00 10.1.0.101 61002 10.3.0.201 22

4 03/05/2020 03:00:00 10.1.0.102 61001 10.3.0.202 22

5 04/05/2020 10:30:00 10.3.0.201 63001 10.1.0.201 80

𝐹𝑖𝑙𝑒2

1 03/05/2020 01:30:00 10.2.0.201 22 10.1.0.101 61001

2 04/05/2020 01:00:00 10.2.0.101 62001 10.1.0.201 22

3 04/05/2020 01:30:00 10.1.0.201 61001 10.2.0.202 22

4 04/05/2020 02:00:00 10.2.0.101 62002 10.2.0.203 22

𝐹𝑖𝑙𝑒3

1 03/05/2020 09:30:00 10.1.0.202 61001 10.3.0.201 80

2 04/05/2020 09:30:00 10.3.0.201 63001 10.1.0.202 80

3 05/05/2020 01:00:00 10.3.0.101 63001 10.2.0.201 22

4 05/05/2020 02:00:00 10.3.0.101 63001 10.3.0.202 22

With regard to the system architecture for the deployment of distributed computing

service components in clouds, the MC-SA (multi-cloud) architecture is applied in the

deployment of the processing and storage components of 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2, i.e., the processing

components are hosted in 𝐶𝑙𝑜𝑢𝑑1 and the storage components in 𝐶𝑙𝑜𝑢𝑑2. Compared with

the SC-SA (single-cloud) architecture, MC-SA is more flexible and presents a broader set of

security challenges. The distributed computing service providers of 𝐷𝐶𝑆1 and 𝐷𝐶𝑆2 have

more options of infrastructure services to choose from. They may choose to subscribe to

processing and storage services provided by the same or different cloud service providers. In

this case, they subscribe to a processing service provided by 𝐶𝑙𝑜𝑢𝑑1 and a storage service

provided by 𝐶𝑙𝑜𝑢𝑑2. This also reduces the risk of vendor lock-in. As the networks connecting

𝐶𝑙𝑜𝑢𝑑1 and 𝐶𝑙𝑜𝑢𝑑2 are likely to be WANs or the Internet, the communication channels

connecting the processing components hosted in 𝐶𝑙𝑜𝑢𝑑1 and the storage components hosted

in 𝐶𝑙𝑜𝑢𝑑2 may not be secure and susceptible to threats and attacks caused by malicious

attackers (e.g., 𝑀𝑎𝑙4). An authentication solution designed for MC-SA based applications

should be applicable to SC-SA based applications, but the reverse is not true. Therefore, MC-

SA is chosen for this work.

The MR framework is chosen, as it is one of the most used Big Data processing models. It

is highly versatile and can support a wide range of applications, including cyberthreat analysis

70

jobs (such as the one addressed in this example and other jobs [135][136][137]). The map and

reduce computations of MR can be tailored by end users to process on unstructured (e.g.,

raw sensor data), semi-structured (e.g., images with metadata tags), and structured data (e.g.,

text data in a tabular format). Although, in many cases, SQL-based applications can answer

queries that can be answered by MR-based applications, SQL-based applications cannot

process unstructured data like MR. In this example, the map tasks are used to filter out

irrelevant network activities and to identify entries related to attacks on potentially

compromised machines, and the reduce tasks are used to merge and sort the entries and to

generate the reports. As MR is designed for deployment on generic hardware, it should be

compatible with processing and storage services provided by 𝐶𝑙𝑜𝑢𝑑1, 𝐶𝑙𝑜𝑢𝑑2, and 𝐶𝑙𝑜𝑢𝑑3.

In addition, MR shares many characteristics and has security implications with other Big Data

processing models. An authentication solution designed for MR should also work on the other

models as well.

As discussed above, MR is chosen as the Big Data processing model for the example, 𝐷𝐶𝑆1,

𝐷𝐶𝑆2, and 𝐷𝐶𝑆3 are MR services (hereafter referred to as 𝑀𝑅1, 𝑀𝑅2, and 𝑀𝑅3, respectively).

For the execution of a job, the users (𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3), from three respective

collaborative organisations (𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1, 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛2, and 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛3), use their

ClientApps (𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, respectively) to communicate with their

respective MR services. Three ResourceManagers (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3), three NameManagers (𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3), three DataStores (𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

2, and

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3), four WorkerManagers (𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1,

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

3), one JobManager (𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟), three

Mappers (𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3), and three Reducers (𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3), are involved in the job execution. 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 and 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 are hosted

on 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
1. 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

1, 𝑀𝑎𝑝𝑝𝑒𝑟1, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 are hosted on

𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1. 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 are hosted on 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
2.

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3, 𝑀𝑎𝑝𝑝𝑒𝑟3, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 are hosted on 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

3. This setting is

similar to that shown in Figure 4.7 but without 𝑀𝑎𝑙1, 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛4, and 𝑀𝑎𝑙4 (as these

entities are not involved in the job execution).

In this example, it is assumed that 𝑈𝑠𝑒𝑟1 initiates the execution of the job. The query of

the job is to identify any potentially compromised machines and how many times these

machines have been connected to by the compromised machines in the past 30 days. This

can be translated into the map tasks, i.e., to find the entries in the log files showing a

connection from a compromised machine to a potentially compromised machine on port 22,

and the reduce tasks, i.e., to count how many connections by the compromised machines

have been made to each of the compromised machines. The job execution flow follows the

steps outlined in Section 4.3.4.1. 𝑈𝑠𝑒𝑟1 (as JobSubmitter) contacts and sends a request for

the security log files (𝐹𝑖𝑙𝑒2 and 𝐹𝑖𝑙𝑒3) to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3, respectively. 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3

accept the request and upload their security log files onto the DFS cluster of their MR services,

respectively. The security log files (𝐹𝑖𝑙𝑒1, 𝐹𝑖𝑙𝑒2, and 𝐹𝑖𝑙𝑒3) are the input of the job. The input

will be divided into multiple items each assigned to a different Worker. The processing of the

data is carried out in two phases, the map phase and the reduce phase. The output of the job

71

is produced and ready for retrieval by the user at the end of the reduce phase. For ease of

discussion, the notations for JobData objects (InputSplits, IntermediateResults,

PartitionSegments, and FinalResults) used in this working example are described in Table 4.5.

Table 4.5: Notations for JobData objects used in the running example.

Symbol Meaning

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡𝑖,𝑗 An InputSplit containing data supplied by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝𝑖 and used by 𝑀𝑎𝑝𝑝𝑒𝑟𝑗

𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑖 An IntermediateResult produced by 𝑀𝑎𝑝𝑝𝑒𝑟𝑖

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑖,𝑗 A PartitionSegment produced by 𝑀𝑎𝑝𝑝𝑒𝑟𝑖 and used by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟𝑗

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑖,𝑗 A FinalResult produced by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟𝑖 and used by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝𝑗

The input data are divided into 3 InputSplits (𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1, 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2, and

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3). Each of the InputSplits corresponds to a respective security log file (𝐹𝑖𝑙𝑒1,

𝐹𝑖𝑙𝑒2, and 𝐹𝑖𝑙𝑒3), and is assigned to a different Mapper (𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3,

respectively). In the map phase, each of the Mappers identifies all the potentially

compromised machines, the machines that have ever come into contact with any of the

compromised machines (via port number 22), using the data in the given security log. Upon

the completion of the map tasks, each of the Mappers produces an output file

(𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡1, 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡2, and 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡3, respectively).

Each of these files contains multiple entries. Each entry is a pair of values, a destination IP

address (pointing to the potentially compromised machine) and a source IP address (pointing

to the compromised machine). For each 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑖, where 𝑖 ∈ {1, 2, 3}, the

entries are partitioned into segments (PartitionSegments) based on the destination IP

addresses (a segment for an IP address block). As a result, 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡1 is

partitioned into two PartitionSegments (𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3),

𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡2 is partitioned into two PartitionSegments (𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 and

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2), and 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡3 is partitioned into two

PartitionSegments (𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3). Each of the

PartitionSegments is assigned to a respective Reducer (𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3,

respectively). In the reduce phase, each of the Reducers combines the PartitionSegments from

the Mappers that are assigned to it and outputs a list of potentially compromised machines

along with the number of connections (i.e., connection count) each potentially compromised

machine has with the compromised machines. Upon the completion of the reduce tasks, each

of the Reducers produces an output file (𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1, respectively). The FinalResults are the output of the job execution. They are

stored in 𝐷𝐹𝑆1 and are ready for retrieval by 𝑈𝑠𝑒𝑟1. The flow of the job execution is

summarised in Figure 4.9. The operational steps are detailed in Section 7.2.

72

Figure 4.9: The job execution flow of the running example.

The job execution is susceptible to threats and attacks from multiple sources at multiple

points. Using Figure 1.1 and Figure 4.8 as a reference, in step 1, 𝑀𝑎𝑙1, which is not authorised

to initiate a collaborative job and access the shared datasets, may try to impersonate 𝑈𝑠𝑒𝑟1

and submit a request for shared dataset and starting a job execution to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3

(T1). In step 2, when 𝑈𝑠𝑒𝑟1 authenticates to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to submit a job execution

request to 𝑀𝑅1, 𝑀𝑎𝑙1 may intercept authentication credentials contained in messages

transmitted between 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛1 and 𝐶𝑙𝑜𝑢𝑑1 or hijack a session of 𝑈𝑠𝑒𝑟1 (T2). In step 3,

𝑀𝑎𝑙1 may replace a session key in the intercepted message with a fraudulent key to mount

MITM attacks (T4). During the job execution, in step 4, 𝑀𝑎𝑙1 may write fraudulent data onto

𝐷𝐹𝑆1 (T5) or tamper with JobData stored in 𝐷𝐹𝑆1 (T6). 𝑀𝑎𝑙1 may then falsely deny

performing such actions (T7). When the FinalResults are uploaded to 𝐷𝐹𝑆1 and ready for

retrieval by 𝑈𝑠𝑒𝑟1, in step 29, 𝑀𝑎𝑙4 may intercept the FinalResult reading request by 𝑈𝑠𝑒𝑟1

and replay the request to 𝐷𝐹𝑆1 at a later time (T3).

Owing to the involvement of entities from different administrative domains,

accomplishing authentication in this example is a challenging task. As shown in this example,

collaborative organisations, MR service providers, and cloud service providers are from

different administrative domains which may have varying levels of trust. The identities of

entities in each of the domains are managed by the respective domains. Verifying the identity

of an entity in another domain requires exchanging additional messages, adding overhead

cost thus a delay to the job execution. For example, when 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 authenticates to

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to write 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 has to contact the identity

provider or the authentication service of 𝑀𝑅2 to verify the identity of 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 and

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 may use the same method to verify the identity of 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, further

adding communication overhead. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and data processing components (i.e.,

𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, 𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) are job-dependent;

73

they are created when the job starts and terminated when the job finishes. This means that

the identities of these components and credentials for verifying the identities should be

established during the job execution process. As discussed earlier, attacks could be mounted

on the job and the system at multiple points during the job execution. Thus, strong

authentication protection should be provided to every interaction from when 𝑈𝑠𝑒𝑟1 submits

a request to start the job to when 𝑈𝑠𝑒𝑟1 retrieves the FinalResults. As outlined in Section

4.3.4.1, the job execution consists of 29 operational steps and the number of interactions in

each of the steps is dependent on the number of MR components involved in the step. In this

example, with just only three MR services (each with one ClientApp, one ResourceManager,

three Mappers, three Reducers, one NameManager, and one DataStore), there are a total of

about 100 entity and data authentication instances taking place during the job execution.

Therefore, an authentication solution designed for CBDC-MPC should be as efficient and

scalable as possible to minimise negative impacts on the performance of Big Data

computation.

4.7 An Overview of the MDA Framework

To support secure inter-organisational Big Data sharing and processing, we have designed a

novel authentication framework, called the Multi-domain Decentralised Authentication

(MDA) framework. The MDA framework provides two authentication services, entity and data

authentication services, which satisfies all the specified requirements. The entity

authentication service verifies the identities of entities involved in a job execution, ensuring

that entities are whom they claim to be. It is also used for establishing credentials that are

bound to the identities of the authorised entities. These credentials are necessary for other

security services, including a data authentication service. The data authentication service

ensures that JobData generated, processed, and used during the job execution can be traced

back to their origins and are free from unauthorised modification, ensuring the authenticity

of JobData and accountability of entities producing the JobData.

The MDA framework consists of one novel entity authentication framework and one novel

data authentication framework. The novel entity authentication framework, called the Multi-

factor Interaction based Entity Authentication (MIEA) framework implements the entity

authentication service. The novel data authentication framework, called the Communication

Pattern based Data Authentication (CPDA) framework, implements the data authentication

service. Figure 4.10 shows the architecture of the MDA framework, highlighting the

components of the MIEA and CPDA frameworks and how these components are collectively

used to support authentication for MR based distributed computing system in the context of

CBDC-MPC.

74

Figure 4.10: MDA framework architecture.

As shown in the figure, the MIEA framework contains credential establishment methods

and entity authentication protocols. The credential establishment methods are used to

establish credentials on MR components. These credentials are then used by the entity

authentication protocols to verify the identities of the two interacting entities. The entity

authentication protocols verify the identities of the interacting entities by verifying the

AuthData exchanged between the entities. Once the identities of the entities are verified,

these protocols also facilitate the transmission of new credentials for subsequent

authentication. The CPDA framework contains AuthData generation methods, AuthData

verification methods, and AuthData delivery protocols. The AuthData generation methods

use the credentials established during entity authentication to generate AuthData for JobData

objects. The AuthData verification methods use the credentials to verify the authenticity of

the objects against the generated AuthData. The AuthData delivery protocols are used to

deliver these AuthData from one component to another component.

Figure 4.11 demonstrates an authentication flow when the MDA framework is applied.

The authentication flow starts from when credentials for entity authentication are established

on entities (i.e., MR components) to when a component consuming JobData objects verifies

the authenticity of the objects assigned to it. The MIEA framework is used for entity

authentication from Step 1 through to Step 5 and the CPDA framework is used for data

authentication from Step 6 through to Step 8. Without losing generality, it is assumed that 𝐴

and 𝐵 are the interacting components, 𝐴 is a data producer, and 𝐵 is a data consumer. In Step

1, the credential establishment methods of MIEA are used to establish credentials needed for

entity authentication. From Step 2 through to Step 5, the entity authentication protocols of

MIEA are used to facilitate the mutual authentication (i.e., verification of the identities) of 𝐴

and 𝐵. For the verification of the identity of 𝐴, in Step 2, 𝐴 generates AuthData with its

credentials. In Step 3, 𝐴 then sends the AuthData to 𝐵. In Step 4, 𝐵 verifies the received

AuthData. If the verification result is positive, the identity of 𝐴 is positively verified. The

verification of the identity of 𝐵 is carried out using the same steps as outlined in Step 2, Step

3, and Step 4. In Step 5, if the identities of both of 𝐴 and 𝐵 are positively verified, new

credentials are established. With regard to data authentication, in Step 6, 𝐴 generates

AuthData for JobData objects it produces by using the AuthData generation methods of CPDA.

In Step 7, the AuthData delivery protocols are used to transmit the AuthData from 𝐴 to 𝐵. In

75

Step 8, 𝐵 verifies the authenticity of the objects assigned to it against the received AuthData.

If the verification result is positive, 𝐵 is assured that the objects it consumes are authentic.

Figure 4.11: Authentication flow using the MDA framework.

Detailed literature reviews with regard to entity authentication and data authentication,

the detailed descriptions of the MIEA and the CPDA frameworks, and their theoretical

analyses and experimental evaluations are given in Chapter 5 and Chapter 6 , respectively.

4.8 Chapter Summary

This chapter has described a reference use case model used by this research. In formulating

the use case model, it has examined possible system architectures and Big Data processing

models, and selected suitable ones for constructing our use case model. As a result, the MC-

SA architecture and the MR model are chosen for the use case model. Compared with SC-SA,

MC-SA is more flexible and presents a broader sets of security requirements. Big Data

processing models share many common characteristics. This means that an authentication

solution designed for one model should also be applicable to other models. Although some

models (e.g., Apache Spark) may perform better (in terms of job execution time) than MR

under certain conditions, considering that MR is designed for deployment on generic

hardware and that MR is one of the most widely used Big Data processing models and there

are extensive supports and documents available to MR users, we have chosen MR to

construct our generic use case model. Using the use case model, our threat analysis indicates

that MR based data processing in this context is susceptible to threats caused by not only

outsiders but also insiders. To counter the threats, this chapter has also specified a set of

requirements to guide the design of our authentication solution. The formulation of this use

case model is the first novel contribution (NC1) of this research work. The threat analysis on

the model answers the research question (Q1). In addition, the observations made on the use

case model show that some characteristics (e.g., communication patterns) can be used to

improve the efficiency of the authentication solution. This has led to the design of our

authentication solution, the MDA framework. An overview of the MDA framework has been

presented in this chapter. The detailed descriptions and the evaluations of the components

76

of MDA are to be presented in the following chapters, i.e., the MIEA framework for entity

authentication in Chapter 5 and the CPDA framework for data authentication in Chapter 6.

The next chapter presents in detail a novel approach, an interaction based approach, to

entity authentication which provides strong security protections against entity identity

related threats efficiently to every interaction during the execution of a job.

77

Chapter 5

Multi-factor Interaction based

Entity Authentication (MIEA) Framework

5.1 Chapter Introduction

This chapter presents a novel entity authentication framework, called the Multi-factor

Interaction based Entity Authentication (MIEA) framework, which is part of the MDA

framework. The MIEA framework is designed to provide entity authentication protection for

every interaction taking place during a data processing job but with minimal overhead cost.

The design of MIEA makes use of three main ideas. The first is Multi-factor Interaction based

Authentication (MIA) in which credentials and an authentication method are determined

based on the risk level associated with an interaction. The second is a Decentralised approach

with Combined use of group-and-entity-dependent Symmetric keys (DCS) in which the

distribution and the verification of credentials are carried out without the assistance of a

central server and symmetric-key cryptosystems are used to generate, verify, and securely

transmit credentials. The third is a Hierarchical Key Structure (HKS) where a limited set of

credentials (keys) is used to securely distribute additional keys for subsequent authentication

instances and to derive new keys for tasks (e.g., message authentication) facilitating the

authentication. The MIEA framework has been extensively evaluated by using both

theoretical analysis and experimental evaluation to demonstrate the effectiveness (the

strength of protections), efficiency (the cost incurred in providing the protections), and

scalability (the increase in cost in relation to the number of entities involved in a job

execution). The theoretical analysis is conducted by using both informal and formal methods.

The experiments are conducted by implementing authentication protocols and executing the

implemented protocols on a testbed under different parameter settings.

In detail, Section 5.2 critically reviews existing entity authentication solutions at a

technical level, highlighting knowledge gaps and areas for improvements. Sections 5.3, 5.4,

and 5.5 respectively, describe high-level ideas, notations and design assumptions, and

detailed description of MIEA. Sections 5.7, 5.8, and 5.9, respectively, report security analysis,

theoretical, and experimental performance evaluations. The results are compared with those

of the most related solutions. Lastly, Section 5.10 concludes the chapter.

5.2 Existing Entity Authentication Solutions

Existing entity authentication solutions designed for networked and distributed systems can

be largely classified into two groups: those that are designed for non-MR based services

(referred to as non-MR specific solutions) and those that are specifically designed for MR

services (referred to as MR specific solutions).

78

5.2.1 Non-MR Specific Solutions
Remote Authentication Dial-In User Service (RADIUS) [29], Kerberos [34][138][139], and

Security Assertion Markup Language (SAML) [140] are among the most commonly used

authentication solution families, which are designed for networked systems. In addition, this

section also describes the Needham-Schroeder-Lowe Public Key (NSLPK) protocol [31], one of

the most studied and referred asymmetric-key based authentication protocols proposed in

literature.

RADIUS [29] is a client-server networking protocol commonly used to implement an entity

authentication service to support secure access to resources hosted in the network of an

organisation. It supports both intra-domain and inter-domain (also called inter-realm or

roaming) authentication. To authenticate a user requesting to access a service located in the

same domain, the user sends a request to a gateway, called a RADIUS client. The client then

passes the request to an authentication server, called a RADIUS server. Then the user, via the

RADIUS client, communicates with the server to accomplish the authentication process. For

inter-domain authentication where a user and the requested service are in different domains

and each independently managed by their respective domains, a local authentication server

(also called a proxy server) of the user’s domain acts as a proxy between the user and a

remote authentication server (also called a master server) in the domain of the requested

service. RADIUS has a number of limitations [141][142]. One of the limitations is that it does

not have provisions for congestion control, so it has scalability and reliability issues. Eduroam

[143][144], a secure world-wide roaming access service developed for the international

research and education community, improves on the scalability problem by allowing the use

of multiple RADIUS servers and constructing the servers into a hierarchical network. Another

peer-to-peer based solution, called Diameter [30][145], was proposed to address some of the

limitations of RADIUS. Diameter uses a number of measures, namely the support of a reliable

transport mechanism (e.g., the Stream Control Transmission Protocol (SCTP) [146]), a fail-over

procedure, and a capability negotiation facility, to improve on the reliability, scalability, and

compatibility issues of RADIUS. It also provides a higher level of security protection (e.g., hop-

to-hop and end-to-end secure communication channel) than RADIUS. This is done by the use

of transport layer security solutions, such as the Internet Protocol Security (IPsec) protocol

suite [147] and the Transport Layer Security (TLS) protocol [148]. However, as the above

solutions are only a transport facility and does not have a built-in confidential channel, they

need external solutions to protect the confidentiality of any authentication credentials and

data sent over the channel. The overhead cost introduced by these solutions could be

excessive, particularly when multiple interactions (each with a different pair of entities) need

to be authenticated and each authentication is only for transmitting a small amount of data

(e.g., service status report), as in the case of our CBDC-MPC context. In addition, there is also

a usability issue, as each authentication instance may require the user to input his/her

credential manually (e.g., if password based credentials are used), and this is impractical for

Big Data processing where there are many component-to-component interactions and the

process of executing a job may last for a long time.

Kerberos [34][138][139], a symmetric-key based entity authentication solution, is

particularly suited for Single Sign-on (SSO) in an organisational environment. With Kerberos,

79

a user only uses one password to gain access to multiple service servers, with minimal

exposure of the password. It achieves this by introducing ideas of temporary secrets and a

hierarchical secret structure. In this structure, a user’s password is used to derive a master

key. The master key is only used for secure distribution of temporary secrets (keys). Access to

a service server is granted if the user (via the user’s client) demonstrates the knowledge of

the corresponding temporary secret. This approach makes the authentication service more

secure as users’ passwords are never sent over networks. In addition, the number of

interactions required from a user is reduced. This is because, once a ticket granting ticket (an

encrypted secret in the mid-level of the key hierarchy) is acquired, the user’s client can

acquire service tickets (an encrypted secret in the bottom-level of the key hierarchy) on behalf

of the user, making the system more user friendly than the RADIUS based solutions. However,

owing to the distribution of the temporary secrets, each new service access (or each

interaction with a service entity) requires 3 to 5 messages to complete a mutual

authentication process. This is excessive both in terms of computational and communication

costs, particularly if a user needs to access (or interact with) multiple service entities, and

each such interaction is just for transmitting small amount of data. For inter-domain

authentication, the authentication servers of participating domains are structured using a

hierarchical tree similar to that used in the Domain Name System (DNS) [149]. For a user to

gain access to a service server in another domain, the authentication process requires

traversing the tree of the authentication servers. This introduces a number of additional

messages, further increasing computational and communication costs.

SAML [140] is particularly suited for inter-domain authentication in a collaborative

environment where each domain represents a different organisation. With the use of SAML,

participating organisations do not have to use the same authentication solution and users

from different organisations can authenticate themselves with their home organisations

while accessing resources provided by external organisations. This is done by using a standard

for exchanging security data (e.g., authentication and authorisation data) among different

domains, in particular, between a service user and a service provider. Examples of SAML

based solutions are Active Directory Federation Services [81], Access Policy Manager [33], and

Shibboleth [32]. However, to authenticate a particular user, another layer of authentication

is required to authenticate the user to the user’s organisation before the user’s organisation

asserts the user’s identity and the associated attributes to a resource providing organisation.

For these reasons, SAML is not suited to our CBDC-MPC context.

NSLPK [31] is an authentication protocol based on asymmetric-key cryptography. Unlike

symmetric-key based solutions such as Kerberos, with NSLPK, a user and a service server do

not have to establish a share secret prior to authentication. However, a trusted third party

(e.g., a certificate authority) is required for certifying and distributing the public keys of the

user and the service server. Mutual authentication of the user and the service server is done

by demonstrating the knowledge of the corresponding private keys. The user and the service

server exchange a series of messages containing challenges and responses which are

protected (encrypted) with the public key of the other entity. Only the intended user or

service server can read the public-key-protected challenge with the respective private key

and be able to generate the corresponding response for the challenge. NSLPK introduces a

80

high level of computational cost due to the cost of asymmetric-key operations, which is more

expensive than that of symmetric-key operations [45]. This is not suitable for Big Data

processing in this context which has a stringent requirement for timeliness.

5.2.2 MR Specific Solutions
Based on the approaches used, MR specific authentication solutions can be largely classified

into three groups, password based, symmetric-key based, and asymmetric-key based.

Password based solutions are the most used for gate-level authentication. Gate-level

authentication authenticates a user when the user makes a request to access, or to interact

with, a service. As passwords are vulnerable to theft, some solutions, such as [79] and [80],

have been proposed to make password-stolen attacks more difficult. The approach used in

these solutions is to divide an authentication credential into multiple pieces and store each

of the pieces on a different server. In [79], a user’s credential is transformed and divided into

multiple pieces by using a mathematical method that is based on the properties of triangles.

These pieces are separately stored on three different servers, one authentication server and

two backend servers. The solution proposed in [80] generates multiple authentication tokens

from a single password. To generate the tokens, a user is issued with a new one-time secret

key (for a user’s password) when the user is registered to the system and when the user logs

out of the system each time. The password and the secret key are used to encrypt each other,

respectively, generating two tokens. The tokens are then stored on two different servers, an

authentication server and a backend server. Password based solutions usually require users

to manually enter their credentials into the system at the time of authentication. They are

not readily applicable to component-to-component authentication.

A symmetric key, similar to a password but with a higher entropy, is also commonly used

to achieve authentication. A symmetric key (either a group key if it is shared among a group

of entities or a pairwise key if it is shared between two entities) is used to generate and verify

AuthData. Only the entities knowing the key can generate AuthData that can be verified with

the same key, ensuring the authenticity of the entity. Apache Hadoop [120], one of the most

prominent opensource Big Data solutions, employs a symmetric-key based authentication

solution, a Kerberos based system. Kerberos is used for authentication between a user (via

ClientApp) and the MR service (i.e., between ClientApp and ResourceManager), ClientApp

and NameManager, ClientApp and JobManager, and JobManager and WorkerManagers.

Additional authentication tokens are introduced to complement Kerberos and reduce the use

of Kerberos credentials (i.e., service tickets). Three sets of tokens are introduced, namely

delegation tokens, block access tokens, and job tokens. A delegation token is used by

components (e.g., ClientApp and Workers) to request services (e.g., file listing) from

NameManager. Similarly, a block access token is used by components to request access to

data blocks from DataStore. A job token is used by Mappers and Reducers to authenticate

themselves to WorkerManagers. The Apache Hadoop solution only support the deployment

of an MR service in a single domain.

To support the deployment of an MR service in a multi-cloud environment, an entity

authentication solution, called a Virtual Domain based Authentication Framework (VDAF)

[84][36], was proposed. In VDAF, a novel MR Layered Authentication Model (MR-LAM) is

81

proposed. The model consists of two layers of authentication. One is for authenticating

components serving multiple jobs. The other is for authenticating components serving a

particular job. The components serving a job form a virtual domain, called JobDomain. VDAF

enforces authentication at every interaction during a job execution. This is achieved by using

a Password and Token based Multi-point Multi-factor Authentication (PT2M-AuthN) method.

It implements two main ideas, one is the principle of the separation of duty-and-credential,

and the other is a key wrap-and-swap operation to support mutual authentication.

Symmetric-key based solutions have limitations. One is that establishing a pairwise

credential (e.g., a key) between every pair of interacting entities is resource-consuming,

especially when entities are from different domains with varying levels of trust. The overhead

cost of establishing a pairwise symmetric key increases at a polynomial rate as the number of

entities increases. The other is that the sharing of a symmetric key among a group of entities

limits the accountability of the entities. In such cases, it is difficult, if not impossible, to hold

any of the entities accountable for their actions.

Asymmetric-key based solutions are often used for cross-domain authentication, or in a

multi-domain (e.g., multi-cloud) environment, where there is a lack of trust among the

entities from different domains. In an asymmetric-key based solution, two keys (a private key

and a public key) are used to accomplish an authentication process. As long as the private key

is kept secret and the public key is certified, the identity of the entity owning the keys can be

verified thus authenticated. Although asymmetric-key based solutions are computationally

more expensive, they can reduce the number of keys an entity has to store and manage, and

relieve the key establishment issue existed with symmetric-key based methods. These

benefits are particularly significant when the number of entities one needs to interact with is

large. In [150], an asymmetric-key based solution was proposed for a multi-cloud based MR

architecture called G-Hadoop [151]. This solution supports authentication between users and

a management component, called a master node, and between the master node and data

processing components, called slave nodes. A central certificate authority is introduced to

issue and certify public-key certificates for all the components. The authentication between

a user and the master node is done by using a password based method, and the

authentication between the master node and each of the slave nodes is done by using an

asymmetric-key based method similar to the handshaking process of Secure Sockets Layer

(SSL) [152]. Trusted Scheme for Hadoop Cluster (TSHC) [153] introduces a Trusted Compute

Base (TCB) component to facilitate asymmetric-key based authentication in MR. TCB is used

to generate asymmetric keys for MR components by using an Identity-Based Encryption (IBE)

method. In [154], an Efficient Authentication Protocol for Hadoop (HEAP) was proposed. In

HEAP, two authentication servers are used to authenticate a user to the system. The user is

issued a set of credentials. A subset of the credentials is stored on each of the servers. During

the authentication process, AuthData exchanged between the user and the two servers are

generated by using an Elliptic-Curve Cryptography (ECC) based asymmetric system (for

signature generation) and an Advanced Encryption Standard (AES) based symmetric system

(for credential encryption). All the above solutions are vulnerable to software based attacks,

e.g., by exploiting the vulnerabilities of unpatched applications or operating systems to steal

authentication credentials from the memories or storage of the machines hosting the entities.

82

To enhance protection against software based attacks, a special hardware module, called

Trusted Platform Module (TPM), is used. TPM provides a number of cryptographic functions

(e.g., key generation, random number generation, and signature generation and verification)

as well as persistent and volatile memory to store both long-term (e.g., root keys) and short-

term (e.g., temporary secret keys) security data. In such a solution, a baseline state (i.e., an

uncompromised state) of a component is established by measuring the software installed and

the configurations used. The digest of the baseline state is then signed and stored in the

volatile memory of the TPM of the component, ensuring the integrity of the component. The

state of the component may be attested by another component (e.g., a management

component such as JobManager) periodically or before an interaction is started. Some

examples of such TPM based solutions include [155] and [156]. Owing to their limited

computational capabilities, the use of TPMs in performing a large number of cryptographic

operations (e.g., attesting the integrity of a large number of components) may increase the

execution time and lowering the performance of a job execution.

5.2.3 What is Missing
We have critically analysed the existing work presented above against the requirements with

regard to identity protection, i.e., (FR1), (FR2), (FR3), (SR1), (SR2), (SR3), (SR4), (PR1), and

(PR2), as specified in Section 4.5. The result of the analysis is summarised in Table 5.1. Based

on the analysis result, we can make the following remarks.

• None of the existing entity authentication solutions discussed above provides all the

specified functional requirements, i.e., full-cycle (FR1), cross-domain (FR2), and

automated (FR3) authentication protection. The non-MR specific solutions are

mainly designed for gate-level authentication to deter unauthorised entities from

accessing the service. They provide authentication services to authenticating users

to the service, not mutual authentication among service components. One

important characteristic of our use case model is that data processing components

are allocated and assigned to a job when the job is accepted by the MR service and

these components are terminated and released when the job finishes. This implies

that the identities of the data processing components are not known before the job

is executed. This characteristic was not specifically considered in the design of the

existing solutions, such as Kerberos and NSLPK, which support component-to-

component authentication. Therefore, when being applied to the CBDC-MPC

context, the execution time of the job may suffer due to the costs incurred in

generating, transmitting, and verifying AuthData tokens. None of the MR specific

solutions (with the exception of VDAF) supports interaction-level authentication for

entities throughout the whole cycle of the job execution. Although VDAF provides

full-cycle protection, it is not designed for cross-MR service authentication, thus, not

readily applicable to our use case.

• Password-based solutions are not suited to our use case as they require user

intervention which lower usability in this CBDC-MPC context where users may not

always be present. These password-based solutions are typically more suitable for

applications that require only gate-level authentication.

83

• Symmetric-key based solutions, as discussed earlier, have two main limitations. The

first is that establishing pairwise keys for every pair of components is resource-

consuming and the cost incurred increases at a polynomial rate as the number of the

components increase. The second is that using group keys cannot protect against

insider threats as any members of the group can use the keys to gain access to

protected resources. This also nullifies the protection of accountability.

• The overhead costs introduced by asymmetric-key based solutions are too high for

large-scale collaborative Big Data processing which has a stringent requirement for

timeliness. Although TPMs can enhance the security protection and make software-

based attacks much more difficult, the number of public clouds supporting such

specialised modules is limited. Furthermore, TPMs may increase the risk of creating

performance bottleneck and further lower the performance of the job owing to its

limited computation power and resources.

Table 5.1: Related entity authentication solutions.

 Requirements

Approaches (FR1) (FR2) (FR3) (SR1) (SR2) (SR3) (SR4) (PR1) (PR2)

Non-MR specific

RADIUS [29], Eduroam
[143][144], Diameter [30][145]

Kerberos [34][138][139]
SAML based [81][33][32]
NSLPK [31]
MR specific

Password based [79][80]
Symmetric-key based
[84][120] [36]

Asymmetric-key based
[150][153][154][155][156]

Notes:

: Requirement is addressed.

: Requirement can be addressed with additional plug-in modules or minor modifications, or there is room
for improvement.

: Requirement is not addressed.

To improve on the existing solutions and satisfy all the specified requirement, we have

proposed a novel entity authentication framework, the MIEA framework. The remaining of

this chapter explains high-level ideas, the detailed description, and the evaluation of the

framework.

5.3 High-level Ideas

MIEA is designed for CBDC-MPC, which is characterised by the following characteristics: (1)

each job execution potentially involves a large number data processing components; (2) these

components may be from different administrative domains and could be governed by

different policies; and (3) the data processing components are ephemeral (job-dependent),

they are dynamically created and deployed in the systems when a job is submitted and

terminated when the execution of the job is completed. In addition, it should also be

emphasised that, as such systems are intended for Big Data computation, there is a stringent

requirement for timeliness of job executions.

84

The design of MIEA makes use of three main ideas. The first is Multi-factor Interaction-

based Authentication (MIA), i.e., the number of factors (keys) used to authenticate two

entities involved in an interaction are determined based on the risk level associated with, and

the purpose of, the interaction. This idea is applied to every interaction taking place during a

job execution. In the context of CBDC-MPC, two risk levels, a high-risk level and a low-risk

level, have been identified. The high-risk level is tagged to initial interactions and the low-risk

level to non-initial (subsequent) interactions. Owing to the impact of allowing remote (and

potentially untrustworthy) entities to access local resources which may contain sensitive and

high-value data, initial interactions, such as an initial attempt to access data stored in DFS

clusters by a data processing component, introduce a higher level of risks, particularly when

data providing and consuming components are from different organisations or domains (e.g.,

hosted in different clouds). If two entities of an interaction are from different clouds, they are

more likely being connected via public networks, such as the Internet, which are vulnerable

to a broader range of threats than private networks. In addition, initial interactions typically

involve entities that have yet established any trust or shared secrets and these interactions

are usually used to establish such secrets. If initial interactions, or the secrets being

established during the initial interactions, are compromised, the security of subsequent

interactions will also be put at risk. For these reasons, a stronger level of protection, or a

higher level of assurance, should be obtained during authentication, thus, applying two-factor

authentication. Using two factors doubles the effort needed by an attacker to successfully

mount an attack on an authentication process, as the attacker has to compromise both

factors. Subsequent interactions, on the other hand, use temporary secrets established in the

authentication of preceding interactions. They may impact on a limited set of interactions

should the temporary secrets be compromised. Thus, they experience a lower level of risks,

so one-factor authentication can be applied.

The two-factor authentication is accomplished based on our observation that, usually, a

secret could be established among a group of entities sharing a common interest. This group

secret, along with a unique (pairwise) secret shared between two interacting entities can

facilitate two-factor authentication. In other words, in each two-factor authentication

instance, two credentials are used, one is a group key and the other is a pairwise key. A group

key is shared among the members of a particular group (e.g., a domain or a cluster). This

group key is used to deter outsider threats, i.e., threats caused by entities external to the

group. A pairwise key is shared between two interacting entities. It is used to counter insider

threats, i.e., threats caused by entities in the same group. This pairwise key also narrows the

accountability to the two entities sharing the key. In each one-factor authentication instance,

a pairwise key established during the preceding two-factor authentication is used. In MIA, the

credentials used for each authentication instance are selected from a pool of credentials

already being established at multiple points as the job execution progresses. Furthermore,

compared with the solutions that support only gate-level authentication, applying

authentication at every interaction, i.e., at the interaction level, can lower the risk of systems

being compromised. This approach shortens the time window during which an attacker can

launch an attack against a system, making it harder to compromise the system.

85

The second idea is a Decentralised approach with Combined use of group-and-entity-

dependent Symmetric keys (DCS). The ‘decentralised approach’ is implemented in two

dimensions. The first is the decentralised distribution of keys. The distribution of group keys

is handled by a trustworthy entity in each respective group. For two entities involving in an

initial interaction, their pairwise key is distributed by a trusted third party via the use of an

existing mechanism or via prior authentication (e.g., during initial interactions) with other

entities. For a non-initial interaction, a pairwise key sharing between two interacting entities

is established during the initial interaction. The second dimension of the ‘decentralised

approach’ lies in authentication verifications. All such verifications are performed by the

interacting entities. Owing to the characteristics of the distributed setting and the hybrid use

of group and pairwise keys, this approach has an inherent feature of the separation of duties,

or entity segregation, i.e., entities are compartmentalised into groups and a different group

key is dispatched to each group. The more distributed the setting is, or the more domains or

clusters the setting has, the more groups there are, thus the more separated the duties. This

feature can limit the impact should an entity be compromised or should a key be exposed. In

addition, the least privilege is applied in the usage of keys. Each entity obtains only a minimal

set of keys needed to perform its function.

The number of interactions among a large number of entities will be large, the cost of the

interaction-level authentication could thus be high. To reduce the cost, the computational

complexity of authentication verification should be as low as possible. For this reason, we

have chosen to use a symmetric-key based authentication method. In the MR context, most

entities are job-dependent (e.g., Mappers are created before the map phase and destroyed

once they finish their map tasks). In contrast, with an asymmetric-key based method, the

costs of credential establishment and authentication verification are computationally

expensive and inefficient. The delay introduced by the authentication operations may hinder

the performance of the underlying system, particularly for a time-sensitive data processing

system such as the one addressed in this paper.

The third idea is the use of a Hierarchical Key Structure (HKS). This idea is implemented in

two dimensions. The first is the distribution of keys for different interactions. Keys in a higher

level of the key hierarchy are used to securely distribute keys in a lower level of the key

hierarchy. This is based on an observation that there are multiple tasks (e.g., data access and

resource allocation) during a job execution, each task consists of multiple interactions, and

these interactions are taking place in order. For example, a data processing component has

to communicate with NameManager before sending a request to a DataStore to access job

data. In this case, the keys for the component to authenticate itself to the DataStore can be

established during the authentication of the component and the NameManager. The second

dimension of HKS is key diversification. Key diversification refers to the generation

(derivation) of new keys (i.e., keys in a lower level of the key hierarchy) from a limited set of

master keys (i.e., keys in a higher level of the key hierarchy). These new keys are used to

accomplish the specified security requirements (e.g., to ensure message authenticity). This is

done by using a key derivation function, such as a HMAC-based Key Derivation Function

(HKDF) [91]. This idea of HKS makes mounting an attack on an authentication process harder

as different sets of keys are used for different interactions, and for each interaction, different

86

keys are used for different authentication tasks. In addition, the scope of impact should keys be

compromised can be narrowed down. This is because theft of keys in the lower level of the key

hierarchy should not reveal keys in the higher level of the key hierarchy, and the exposure of

keys used in one interaction group does not affect the keys used in another interaction group.

In the following, we use an example, as shown in Figure 5.1, to explain, at a high level, how

the three ideas described above are implemented. From the figure, there are six components

serving two different jobs, 𝐽𝑜𝑏𝐷𝑜𝑚𝑎𝑖𝑛1 and 𝐽𝑜𝑏𝐷𝑜𝑚𝑎𝑖𝑛2. 𝐽𝑜𝑏𝐷𝑜𝑚𝑎𝑖𝑛1 consists of a DPS

cluster and a DFS cluster. The DPS cluster contains one 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and two Mappers,

𝑀𝑎𝑝𝑝𝑒𝑟1 and 𝑀𝑎𝑝𝑝𝑒𝑟2. The DFS cluster contains one 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and one 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒.

𝐽𝑜𝑏𝐷𝑜𝑚𝑎𝑖𝑛2 contains one Mapper, 𝑀𝑎𝑝𝑝𝑒𝑟3. 𝑀𝑎𝑝𝑝𝑒𝑟2 initially holds two sets of secret keys

established for authentication to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (the least privilege). The

first set consists of 𝑔𝑘1 and 𝑘𝑗𝑚,𝑚2
 and the second consists of 𝑔𝑘2 and 𝑘𝑛𝑚,𝑚2

. 𝑔𝑘1 and 𝑔𝑘2

are group keys whereas 𝑘𝑗𝑚,𝑚2
 and 𝑘𝑛𝑚,𝑚2

 are pairwise keys. The two sets of keys are,

respectively, issued by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (DCS: decentralised

distribution of keys). They are, respectively, used for the authentications between 𝑀𝑎𝑝𝑝𝑒𝑟2 and

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and between 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (DCS: decentralised authentication

verifications). The idea of MIA is applied in the authentication of 𝑀𝑎𝑝𝑝𝑒𝑟2 to each of

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒. When 𝑀𝑎𝑝𝑝𝑒𝑟2, respectively, initiates the

first interactions with 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒 (interactions 1, 2, and

4), two-factor authentication is applied (i.e., both a group key and a pairwise key are used). For

the subsequent interaction between 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (interaction 3), only one

pairwise key 𝑡𝑘𝑛𝑚,𝑚2 is used. The first dimension of HKS is applied in the distribution of 𝑡𝑘𝑛𝑚,𝑚2

and 𝑘𝑚2,𝑑𝑠. During the interaction 2, 𝑀𝑎𝑝𝑝𝑒𝑟2 is issued with two new pairwise keys, 𝑡𝑘𝑛𝑚,𝑚2

and 𝑘𝑚2,𝑑𝑠, by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 for authentication of succeeding interactions. 𝑀𝑎𝑝𝑝𝑒𝑟1

(assuming it is compromised) cannot successfully impersonate 𝑀𝑎𝑝𝑝𝑒𝑟2 when it sends a service

request to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (interaction 5) as it does not know 𝑘𝑗𝑚,𝑚2
. Similarly, 𝑀𝑎𝑝𝑝𝑒𝑟3

(assuming it is also compromised) cannot successfully impersonate 𝑀𝑎𝑝𝑝𝑒𝑟2 when it sends a

service request to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (interaction 6) as it knows neither 𝑔𝑘2 nor 𝑘𝑛𝑚,𝑚2
. The use

of key diversification (the second dimension of HKS) will be explained later on in Section 5.5.

Figure 5.1: An example showing how the ideas used in designing MIEA are applied.

87

5.4 Design Assumptions and Notations

This section details the design assumptions and the notations used in the design of MIEA.

5.4.1 Design Assumptions
The following assumptions are used in the design of MIEA.

(EAS1) Users are already authenticated prior to accessing the MR service. Collaborative

organisations have established trust and secure communication channels with each other.

(EAS2) In each MRDomain, the MR components that are job-independent, i.e., ClientApps,

ResourceManager, NameManager, WorkerManagers, and DataStores, are already

registered and authenticated to the MR service. ClientApps, NameManager, and

WorkerMangers have established a pairwise key with ResourceManager. DataStores

have also established pairwise keys with NameManager.

(EAS3) The ResourceManagers of the collaborative MR services have established trust and

pairwise keys with each other.

(EAS4) The time of all components are synchronised to the same time source.

(EAS5) Protection against message loss is provided by a lower layer of the network protocol

stack (e.g., the Transmission Control Protocol (TCP)).

5.4.2 Notations
The notations used in the description of MIEA are shown in Table 5.2.

Table 5.2: Notations used in the description of MIEA.

Symbols Meanings

𝐶 The numbers of collaborative organisations and MRDomains

𝑊, 𝐷 The numbers of WorkerNodes and DataNodes in each MRDomain

𝑀, 𝐸 The numbers of Mappers, Reducers

𝐼, 𝑅 Initiator, Respondent

𝑐𝑖 , 𝑟𝑚𝑖 , 𝑛𝑚𝑖 ClientApp, ResourceManager, NameManager of the 𝑖th MRDomain

𝑤𝑚𝑢
𝑖 , 𝑑𝑠𝑣

𝑖 The 𝑢th WorkerManager, 𝑣th DataStore of the 𝑖th MRDomain

𝑗𝑚 JobManager serving the current JobDomain

𝑚𝑎, 𝑟𝑏 The 𝑎th Mapper, 𝑏th Reducer serving the current JobDomain

𝑜𝑘𝑖 An OrgDomain key of the 𝑖th OrgDomain

𝑗𝑘 A JobDomain key of the current JobDomain

𝑝𝑖𝑘𝑖 A DPS Intra-cluster key of the 𝑖th MRDomain

𝑝𝑐𝑘𝑖 A DPS Cross-cluster key of the 𝑖th MRDomain

𝑑𝑓𝑘𝑖 A DFS Cross-cluster key of the 𝑖th MRDomain

𝑝𝑚𝑘𝑥,𝑦 A primary key shared between 𝑥 and 𝑦

𝑡𝑘𝑡𝑥,𝑦
𝑧 A ticket containing 𝑝𝑚𝑘𝑥,𝑦 issued by 𝑧

𝑠𝑐𝑘𝑥,𝑦 A secondary key shared between 𝑥 and y

𝑠𝑙𝑘𝑦,𝑧 A sealing key shared between 𝑦 and 𝑧

𝑠𝑠𝑘𝑥,𝑦 A session key shared between 𝑥 and 𝑦

𝑚𝑘𝑥,𝑦 MAC key

𝑐𝑘𝑥,𝑦 Credential encryption key used by 𝑥 and 𝑦

@𝑛 Operational step number 𝑛 as labelled in Figure 4.8

𝑆(𝑥) The size of 𝑥 in bytes (B).

Notes:
- 𝑖, 𝑗 ∈ {1, 2, … , 𝐶}, 𝑖 ≠ 𝑗, 𝑢 ∈ {1, 2, … , 𝑊}, 𝑣 ∈ {1, 2, … , 𝐷}, 𝑎 ∈ {1, 2, … , 𝑀}, 𝑏 ∈ {1, 2, … , 𝐸}
- Without losing generality, it is assumed that JobSubmitter is in 𝑂𝑟𝑔𝐷𝑜𝑚𝑎𝑖𝑛1 and the job is submitted via 𝑐1
in 𝑀𝑅𝐷𝑜𝑚𝑎𝑖𝑛1.

88

5.5 MIEA in Detail

This section describes in detail the MIEA framework. It gives an overview of MIEA, and then

explains the components of MIEA. Subsequently, it puts together all of the components and

shows how they are used to facilitate the authentication of every interaction during a job

execution.

5.5.1 An Overview of the MIEA Architecture
The MIEA framework consists of three building blocks, i.e., credentials, credential

establishment methods, and entity authentication protocols. An overview of the MIEA

architecture is depicted in Figure 5.2.

Figure 5.2: An overview of the MIEA architecture.

As shown in the figure, credentials used in authentication are classified into two groups,

non-derived keys (group keys and pairwise keys) and derived keys (MAC keys and credential

encryption keys). The credentials (keys) are established on each of the MR components by

using one of the four methods: the existing method, the embedded method, the

authenticated key exchange method, and the derivation method. The methods are selected

based on the characteristics and functions of the components. To support two classes of

interactions (initial and subsequent interactions), we have designed three entity

authentication protocols, namely the Group key and Pre-shared primary key Two-factor

Authentication (GP2A) protocol, the Group key and Encapsulated primary key Two-factor

Authentication (GE2A) protocol, and the Secondary key One-factor Authentication (SOA)

protocol. As indicated by the names, GP2A and GE2A are designed for initial interactions

whereas SOA is designed for subsequent interactions. The credentials, credential

establishment methods, and entity authentication protocols will be described in detail in the

89

following subsections. For ease of discussion, an entity initiating an interaction is referred to

as an initiator, and the other interacting entity is referred to as a respondent.

5.5.2 Credentials
To support authentication of complex interactions during the execution of a job, multiple

classes of credentials are introduced. The classifications of the credentials are summarised in

Figure 5.3.

Figure 5.3: The classifications of credentials used in MIEA.

As shown in the figure, at the highest level, there are two groups of credentials, non-

derived and derived keys. Non-derived keys are freshly generated independent of other keys,

whereas derived keys are derived from non-derived keys and other data (e.g., nonces). Non-

derived keys are classified into group keys and pairwise keys. Derived keys are classified into

MAC keys and credential encryption keys.

Based on the organisation of entities involved in a job execution, group keys are further

classified into five classes, namely OrgDomain keys, JobDomain keys, DPS Intra-cluster (DPS-

I) keys, DPS Cross-cluster (DPS-C) keys, and DFS Cross-cluster (DFS-C) keys. An OrgDomain key

is shared between ClientApps and ResourceManager of the same MR service. It is used to

authenticate a ClientApp to the ResourceManager when a job is submitted. A JobDomain key

is shared and used for authentication among ResourceManagers serving a particular job but

are in different MR services. It is established by the users (through their respective ClientApps)

prior to the submission of a collaborative job and dispatched to the ResourceManagers by the

respective ClientApps along with job submission requests. A DPS-I key is shared and used for

authentication among ResourceManager, WorkerManagers, and JobManagers hosted in the

same DPS cluster. ResourceManager creates and dispatches the key to the WorkerManagers

when they are registered to the MR service. The key is embedded into the JobManagers by

their WorkerManagers when they are created and initialised. A DPS-C key is issued by

ResourceManager of a DPS cluster, shared among the local components of the DPS cluster,

and dispatched to components external to the DPS cluster for access to this DPS cluster. The

local components are WorkerManagers, JobManagers, Mappers, and Reducers, and the

90

external components are ClientApps of the same MR service as well as JobManagers,

Mappers, and Reducers hosted by the other MR services. Similarly, a DFS-C key is issued by

NameManager of a DFS cluster, shared among the local components of the DFS cluster, and

dispatched to components external to the DFS cluster for access to this DFS cluster. The local

components are DataStores and the external components are ClientApps of the same MR

service, as well as JobManagers, Mappers, and Reducers hosted by the same and the other

MR services.

Pairwise keys are classified into four classes: primary keys, secondary keys, sealing keys,

and session keys. A primary key is a long-term secret key established on two interacting

components. By long-term, we mean the key is not job dependent and its lifetime is at least

as long as the lifecycle of a job execution. A primary key is used in the mutual authentication

of two entities starting an initial interaction to establish short-term credentials (which may

expire before the end of a job execution) for subsequent interactions. There are two groups

of primary keys, pre-shared and encapsulated. A pre-shared key is established on the two

interacting entities when they are initialised or when they are registered to their domains.

These keys are 𝑝𝑚𝑘𝑟𝑚𝑖,𝑟𝑚𝑗 , 𝑝𝑚𝑘𝑐𝑖,𝑟𝑚𝑖, 𝑝𝑚𝑘𝑤𝑚𝑢
𝑖 ,𝑟𝑚𝑖 , 𝑝𝑚𝑘𝑗𝑚,𝑟𝑚1, 𝑝𝑚𝑘𝑗𝑚,𝑚𝑎

, and 𝑝𝑚𝑘𝑗𝑚,𝑟𝑏
.

An encapsulated key is a key issued by a trusted third party (referred to as an issuer) which

has established a shared key with each of the two interacting entities. These keys are

𝑝𝑚𝑘𝑐𝑖,𝑛𝑚𝑖, 𝑝𝑚𝑘𝑐𝑖,𝑑𝑠𝑣
𝑖 , 𝑝𝑚𝑘𝑐1,𝑗𝑚, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚𝑖 , 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠𝑣

𝑖 , 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚𝑢
𝑖 , 𝑝𝑚𝑘𝑚𝑎,𝑛𝑚𝑖,

𝑝𝑚𝑘𝑚𝑎,𝑑𝑠𝑣
𝑖 , 𝑝𝑚𝑘𝑟𝑏,𝑤𝑚𝑢

𝑖 , 𝑝𝑚𝑘𝑟𝑏,𝑛𝑚𝑖 , and 𝑝𝑚𝑘𝑟𝑏,𝑑𝑠𝑣
𝑖 . Encapsulated keys are dispatched from

an initiator to a respondent at the start of the authentication process (to be explained later

on in the description of the GE2A protocol). To ensure that the key is not revealed to other

components than the respondent, the issuer encapsulate the key in a container encrypted

with a secret key (i.e., a sealing key) shared between the respondent and the issuer. The

encrypted container is called a ticket. The ticket structure is shown in Figure 5.4. A ticket

contains seven items. The descriptions of these items are summarised in Table 5.3. Possible

values for an action request (REQ) are shown in Table 5.7. Assuming that 𝑠𝑙𝑘𝑅,𝑧 is the sealing

key used to encrypt a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑧 ; 𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑖𝑑𝑧 are the IDs of the initiator, respondent, and

issuer, respectively; 𝑑𝑖𝑑𝐼 , 𝑑𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑧 are the domain IDs (DIDs) of the initiator, respondent,

and issuer, respectively; 𝑗𝑖𝑑 is the job ID (JID); 𝑟𝑒𝑞 is the action request; 𝑔𝑡, 𝑒𝑡 are the ticket

generation and expiration times, respectively; and 𝑝𝑚𝑘𝐼,𝑅 is the key to be encapsulated, the

ticket can be expressed as 𝑡𝑘𝑡𝐼,𝑅
𝑧 = 𝐸(𝑠𝑙𝑘𝑅,𝑧 , 𝑖𝑑𝐼 || 𝑑𝑖𝑑𝐼 || 𝑖𝑑𝑅 || 𝑑𝑖𝑑𝑅|| 𝑖𝑑𝑧 || 𝑑𝑖𝑑𝑧 || 𝑗𝑖𝑑

|| 𝑟𝑒𝑞 || 𝑔𝑡 || 𝑒𝑡 || 𝑝𝑚𝑘𝐼,𝑅) (for ease of presentation, the RSV field is omitted).

Figure 5.4: Ticket structure.

91

Table 5.3: Ticket fields.

Item
Size

(bytes)
Description

IID 2 Initiator ID

IDID 2 Initiator domain ID

RID 2 Respondent ID

RDID 2 Respondent domain ID

TID 2 Ticket issuer ID

TDID 2 Ticket domain ID

JID 2 Job ID

REQ 1 Action request

RSV 1 Reserved for future use

GT 8 Ticket generation time

ET 8 Ticket expiration time

PMK 𝑆(𝑝𝑚𝑘𝐼,𝑅) Primary key

Total 32+𝑆(𝑝𝑚𝑘𝐼,𝑅)

A secondary key is a short-term secret key established on two interacting components

during the preceding (initial) interaction. It is used to mutually authenticate the entities that

have previously interacted with each other. The use of secondary keys reduces the exposure

of primary keys, thus, lowering the risk of the primary keys being compromised. These keys

are 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚𝑗 , 𝑠𝑐𝑘𝑐𝑖,𝑟𝑚𝑖, 𝑠𝑐𝑘𝑐1,𝑗𝑚, 𝑠𝑐𝑘𝑐𝑖,𝑛𝑚𝑖 , 𝑠𝑐𝑘𝑗𝑚,𝑟𝑚1, 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚𝑖 , 𝑠𝑐𝑘𝑚𝑎,𝑗𝑚, 𝑠𝑐𝑘𝑟𝑏,𝑗𝑚,

𝑠𝑐𝑘𝑚𝑎,𝑛𝑚𝑖, and 𝑠𝑐𝑘𝑟𝑏,𝑛𝑚𝑖. A sealing key is a long-term secret key shared between a

respondent and an issuer. It is used to encrypt a ticket by the issuer and to decrypt the ticket

by the respondent. These keys are 𝑠𝑙𝑘𝑛𝑚𝑖,𝑟𝑚𝑖, 𝑠𝑙𝑘𝑑𝑠𝑣
𝑖 ,𝑛𝑚𝑖, 𝑠𝑙𝑘𝑤𝑚𝑢

𝑖 ,𝑟𝑚𝑖 , 𝑠𝑙𝑘𝑛𝑚𝑖,𝑗𝑚, and

𝑠𝑙𝑘𝑤𝑚𝑢
𝑖 ,𝑗𝑚. A session key is a short-term secret key established on two interacting

components during the authentication of each interaction. A session key is used to protect

the confidentiality of sensitive data exchanged after the interacting entities are positively

authenticated. The total number of session keys is equal to the number of interactions taking

place during a job execution. The key hierarchy of non-derived keys are depicted in Figure 5.5.

Non-derived keys, tickets, and their associated data (metadata) should be stored on

secure storage, referred to as Credential Store (CStore). CStore could be backed by protected

volatile memory or encrypted persistent storage. As a reference example, we use a table

based data structure to implement CStore. With this structure, a metadata entry consists of

credential ID; class (e.g., OrgDomain key and Primary key); component ID (only for a pairwise

key); domain ID; component class (e.g., Mapper); expiry; and the path of the credential. An

example CStore of a component is shown in Table 5.4.

Table 5.4: An example CStore of a component.

Cred. ID Class
Component
ID

Domain
ID

Component
Class

Expiry
(Unix time)

Path

00001 DPS-C - 0001 - 1588118400 /path/key1

00002 Primary key 0002 0001 Mapper 1588118400 /path/key2

…

92

Figure 5.5: The key hierarchy of non-derived keys.

Derived keys are short-term secret keys that are generated during the process of entity

authentication and deleted at the end of the process. Based on their purposes, derived keys

are classified into MAC keys and credential encryption keys. A MAC key is used for message

authentication. In other words, it is used to generate and verify MAC tags for messages used

93

in entity authentication protocols. A credential encryption key is used to encrypt and decrypt

credentials for subsequent authentication that are dispatched from an initiator to a

respondent. All of the keys (non-derived and derived) used in MIEA have the same length.

5.5.3 Credential Establishment Methods
As shown in Figure 5.2, four credential establishment methods, the existing method, the

embedded method, the authenticated key exchange method, and the derivation method

(respectively referred to as EXT, EMB, AKE, and DER) are used to establish credentials on

components; EXT, EMB, and AKE are for non-derived keys, and DER is for derived keys.

As indicated by the name, the existing method uses existing mechanisms, such as the

registration and authentication services of the underlying system, to establish keys on

components. This method is used to establish OrgDomain keys, DPS-I keys, DPS-C keys, DFS-

C keys, pre-shared primary keys, and sealing keys.

The embedded method is used by WorkerManagers to embed keys into newly created

containers, i.e., JobManagers, Mappers, and Reducers. The embedding can be done by using

methods such as memory sharing and configuration templates. DPS-I keys, DPS-C keys, DFS-C

keys, as well as pre-shared and encapsulated primary keys are established by using this method.

The authenticated key exchange method establishes keys on a respondent by using the

entity authentication protocols of MIEA. This method is used to establish JobDomain keys,

DPS-C keys, DFS-C keys, encapsulated primary keys, all the secondary keys, sealing keys, and

all the session keys.

The derivation method uses a key derivation function to generate derived keys (MAC keys

and credential encryption keys) from non-derived keys and nonces known to interacting

components during an authentication instance.

The descriptions of keys and their establishment methods are summarised in Table 5.5.

Table 5.5: Keys and the respective establishment methods.

Method Keys When the keys are established

EXT 𝑜𝑘𝑖(𝑟𝑚𝑖), 𝑝𝑚𝑘𝑐𝑖,𝑟𝑚𝑖 𝑐𝑖 is registered to 𝑟𝑚𝑖

EXT 𝑝𝑖𝑘𝑖, 𝑝𝑐𝑘𝑖 (𝑤𝑚𝑢
𝑖),

𝑝𝑚𝑘𝑤𝑚𝑢
𝑖 ,𝑟𝑚𝑖 , 𝑠𝑙𝑘𝑤𝑚𝑢

𝑖 ,𝑟𝑚𝑖
𝑤𝑚𝑢

𝑖 is registered to 𝑟𝑚𝑖

EXT 𝑑𝑓𝑘𝑖 (𝑟𝑚𝑖), 𝑠𝑙𝑘𝑛𝑚𝑖,𝑟𝑚𝑖 𝑛𝑚𝑖 is registered to 𝑟𝑚𝑖

EXT 𝑑𝑓𝑘𝑖 (𝑑𝑠𝑣
𝑖), 𝑠𝑙𝑘𝑑𝑠𝑣

𝑖 ,𝑛𝑚𝑖 𝑑𝑠𝑣
𝑖 is registered to 𝑛𝑚𝑖

EXT 𝑝𝑚𝑘𝑟𝑚𝑖,𝑟𝑚𝑗 Collaboration is established

EMB 𝑝𝑖𝑘1, 𝑝𝑐𝑘1, 𝑑𝑓𝑘𝑖 (𝑗𝑚),
𝑝𝑚𝑘𝑗𝑚,𝑟𝑚1 , 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚𝑖

𝑗𝑚 is launched by 𝑤𝑚𝑢
1 @9

EMB 𝑝𝑐𝑘1 (𝑚𝑎), 𝑝𝑚𝑘𝑗𝑚,𝑚𝑎
 𝑚𝑎 is launched by 𝑤𝑚𝑢

𝑖 @18

EMB 𝑝𝑐𝑘1 (𝑟𝑏), 𝑝𝑚𝑘𝑗𝑚,𝑟𝑏
 𝑟𝑏 is launched by 𝑤𝑚𝑢

𝑖 @18

AKE 𝑗𝑘 (𝑟𝑚𝑖), 𝑠𝑐𝑘𝑐𝑖,𝑟𝑚𝑖 𝑐𝑖 authenticates to 𝑟𝑚𝑖 @2

AKE 𝑝𝑐𝑘1 (𝑐1) 𝑟𝑚1 authenticates to 𝑐1 @3

AKE 𝑑𝑓𝑘𝑖 (𝑐𝑖),
𝑝𝑚𝑘𝑐𝑖,𝑛𝑚𝑖

𝑟𝑚𝑖 authenticates to 𝑐𝑖 @3

AKE 𝑝𝑚𝑘𝑐1,𝑗𝑚 𝑟𝑚1 authenticates to 𝑐1 @10

AKE 𝑝𝑐𝑘𝑗 (𝑟𝑚1) 𝑟𝑚𝑗 authenticates to 𝑟𝑚1 @15

AKE 𝑝𝑐𝑘𝑗 (𝑗𝑚), 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚𝑢
𝑖 𝑟𝑚1 authenticates to 𝑗𝑚 @16

AKE 𝑝𝑐𝑘𝑗 , 𝑑𝑓𝑘𝑖 (𝑟𝑏), 𝑗𝑚 authenticates to 𝑟𝑏 @24

94

Method Keys When the keys are established

𝑝𝑚𝑘𝑟𝑏,𝑤𝑚𝑢
𝑖 , 𝑝𝑚𝑘𝑟𝑏,𝑛𝑚𝑖

AKE 𝑑𝑓𝑘𝑗 (𝑟𝑚1) 𝑟𝑚𝑗 authenticates to 𝑟𝑚1 @7

AKE 𝑑𝑓𝑘𝑖 (𝑚𝑎), 𝑝𝑚𝑘𝑚𝑎,𝑛𝑚𝑖 𝑗𝑚 authenticates to 𝑚𝑎 @20

AKE 𝑝𝑚𝑘𝑐𝑖,𝑑𝑠𝑣
𝑖 𝑛𝑚𝑖 authenticates to 𝑐𝑖 @4b

AKE 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠𝑣
𝑖 𝑛𝑚𝑖 authenticates to 𝑗𝑚 @12b

AKE 𝑝𝑚𝑘𝑚𝑎,𝑑𝑠𝑣
𝑖 𝑛𝑚𝑖 authenticates to 𝑚𝑎 @21b

AKE 𝑝𝑚𝑘𝑟𝑏,𝑑𝑠𝑣
𝑖 𝑛𝑚𝑖 authenticates to 𝑟𝑏 @26b

AKE 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚𝑗 𝑟𝑚1 authenticates to 𝑟𝑚𝑗 @6

AKE 𝑠𝑐𝑘𝑐1,𝑗𝑚 𝑐1 authenticates to 𝑗𝑚 @11

AKE 𝑠𝑐𝑘𝑐𝑖,𝑛𝑚𝑖 𝑐𝑖 authenticates to 𝑛𝑚𝑖 @4a

AKE 𝑠𝑐𝑘𝑗𝑚,𝑟𝑚1 𝑗𝑚 authenticates to 𝑟𝑚1 @13

AKE 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚𝑖 , 𝑠𝑙𝑘𝑛𝑚𝑖,𝑗𝑚 𝑗𝑚 authenticates to 𝑛𝑚𝑖 @12a

AKE 𝑠𝑐𝑘𝑚𝑎,𝑗𝑚 𝑚𝑎 authenticates to 𝑗𝑚 @19

AKE 𝑠𝑐𝑘𝑟𝑏,𝑗𝑚 𝑟𝑏 authenticates to 𝑗𝑚 @19

AKE 𝑠𝑐𝑘𝑚𝑎,𝑛𝑚𝑖 𝑚𝑎 authenticates to 𝑛𝑚𝑖 @21a

AKE 𝑠𝑐𝑘𝑟𝑎,𝑛𝑚𝑖 𝑟𝑎 authenticates to 𝑛𝑚𝑖 @26a

AKE 𝑠𝑙𝑘𝑤𝑚𝑢
𝑖 ,𝑗𝑚 𝑗𝑚 authenticates to 𝑤𝑚𝑢

𝑖 @17

AKE 𝑠𝑠𝑘𝑥,𝑦 𝑥 authenticates to 𝑦

DER 𝑚𝑘𝑥,𝑦 𝑥 authenticates to 𝑦

DER 𝑐𝑘𝑥,𝑦 𝑥 authenticates to 𝑦

Note: “𝑔𝑘1, 𝑔𝑘2, … (𝑥)” means group keys 𝑔𝑘1, 𝑔𝑘2, … are established on 𝑥.

5.5.4 Entity Authentication Protocols
The GP2A, GE2A, and SOA protocols implement the ideas highlighted in Section 5.3. They

support the distribution of session keys and keys for authenticating subsequent interactions.

With each of the protocols, two interacting components (an initiator 𝐼 and a respondent 𝑅)

perform authentication by generating and verifying a series of challenges and responses (i.e.,

nonces). Such generation and verification are done using symmetric-key cryptosystems.

Depending on the number of factors used, the challenges and responses are encrypted with

a pairwise key or both of a group key and a pairwise key. The encrypted challenges and

responses are collectively referred to as authenticators. After the responses are positively

verified, the components are mutually authenticated, and the interaction can be proceeded.

The three protocols share a common transaction flow and message structure. There are

four classes of messages, Challenge (CH) messages, Response-and-Challenge (RC) messages,

Response (RP) messages, and Reject (RJ) messages. CH, RC, and RP messages are collectively

used to transmit challenges and responses between 𝐼 and 𝑅, whereas an RJ message is used

to inform the other component of negative authentication. For each positive authentication

instance, four operational steps are performed: Step 1, 𝐼 generates a challenge 𝐶𝐻1 (𝐼1) and

sends it to 𝑅; Step 2, 𝑅 performs preliminary verification (𝑅1), generates a response 𝑅𝑃1 (for

𝐶𝐻1) and a challenge 𝐶𝐻2 (𝑅2), and sends them back to 𝐼; Step 3, 𝐼 verifies 𝑅𝑃1 (𝐼2),

generates a response 𝑅𝑃2 (for 𝐶𝐻2) (𝐼3), and send 𝑅𝑃2 back to 𝑅; and Step 4, 𝑅 verifies 𝑅𝑃2

(𝑅3). During these steps, three messages are exchanged: a CH message is sent at Step 1, an

RC message at Step 2, and an RP message at Step 3. The exchange of these messages is

depicted in Figure 5.6.

95

Figure 5.6: A generic message transaction flow of the three entity authentication protocols for

positive authentication.

In a negative authentication instance, an RJ message is sent from one component to the

other to terminate the protocol. For example, if keys used to generate an authenticator 𝑎𝑢𝑡ℎ1

(at Step 1) are expired or invalid, 𝑅 will send an RJ message (instead of an RC message) to 𝐼

and abort the protocol (at Step 2).

The common message structure is shown in Figure 5.7. It consists of a header and a

payload. The header further consists of nine fields, and these fields are described in Table 5.6.

As the current version of all the protocols is set to 1, for ease of presentation, the VER field

will be omitted in the following message description.

Figure 5.7: The format of MIEA protocol messages.

96

Table 5.6: The header format of MIEA protocol messages.

Field Size (bytes) Description

PRO 1 Protocol

VER 1 Protocol version (the current version is 1)

MID 2 Message ID

MTYPE 1 Message type

PSIZE 3 The size of the payload in bytes (B)

SID 2 Sender ID

SDID 2 Sender Domain ID

RID 2 Receiver ID

RDID 2 Receiver Domain ID

Total 16

Note: Possible values for PRO and MTYPE are shown in Table 5.7.
Table 5.7: Fields and their possible values.

Field Numerical Value Notation Description

Protocol
(PRO)

1 𝐺𝑃2𝐴 GP2A protocol

2 𝐺𝐸2𝐴 GE2A protocol

3 𝑆𝑂𝐴 SOA protocol

Message
Type
(MTYPE)

1 𝐶𝐻 Challenge messages

2 𝑅𝐶 Response-and-Challenge messages

3 𝑅𝑃 Response messages

4 𝑅𝐽 Reject messages

Action
Request
(REQ)

1 𝐽𝑆𝑈𝐵 Job submission

2 𝑁𝐹𝑌 Notification

3 𝐼𝑁𝑄 Inquiry

4 𝐷𝑆𝐿𝑆𝑇 Get a list of DataStores

5 𝑊𝑅𝐼𝑇𝐸 Write data

6 𝑅𝐸𝐴𝐷 Read data

7 𝐿𝑁𝐶𝐻 Launch a container

Initiator and
Respondent
Classes
(ICL and RCL)

1 𝑅𝑀 ResourceManager

2 𝑁𝑀 NameManager

3 𝑊𝑀 WorkerManager

4 𝐷𝑆 DataStore

5 𝐶 ClientApp

6 𝐽𝑀 JobManager

7 𝑀 Mapper

8 𝑅 Reducer

Credential
Class
(CCL)

1 𝑂𝐾 OrgDomain key

2 𝐽𝐾 JobDomain key

3 𝑃𝐼𝐾 DPS-I key

4 𝑃𝐶𝐾 DPS-C key

5 𝐷𝐹𝐾 DFS-C key

6 𝑃𝑀𝐾 Primary key

7 𝑆𝐶𝐾 Secondary key

8 𝑆𝐿𝐾 Sealing key

9 𝑆𝑆𝐾 Session key

10 𝑇𝐾𝑇 Ticket

Error Code
(ERR)

1 𝑁𝐸𝐺𝑇𝐴𝐺 Negative tag verification

2 𝐼𝑁𝑉𝐽𝐼𝐷 𝑅 is not allocated for the job with 𝑗𝑖𝑑

3 𝐴𝐶𝑇𝑈𝑁 The requested action in unavailable on 𝑅

4 𝐴𝐶𝑇𝐷𝐸 𝐼 does not have a permission to perform the action

5 𝐼𝑁𝑉𝐶𝐷 Invalid credentials (e.g., wrong keys and expired keys)

6 𝑁𝐸𝐺𝑅𝑃 Negative response verification

97

For each of the four message classes (CH, RC, RP, and RJ), the payloads of messages used

in different protocols share a common structure (except for CH messages used in G2EA which

have one more item than those used in GP2A and SOA). For CH messages used in G2PA and

SOA, the payload consists of five items: Job ID (JID); action Request (REQ), indicating the

purpose of the interaction; Initiator Class (ICL), indicating the component class of 𝐼; an

authenticator containing a challenge (𝐶𝐻1) generated by 𝐼; and a MAC tag for the message.

For CH messages used in GE2A, the payload also contains a ticket containing a primary key

used for authenticating 𝐼 to 𝑅, which is positioned before the tag.

For RC messages, the payload consists of three items: the MID of the preceding CH

message; an authenticator containing a response (𝑅𝑃1) and a challenge (𝐶𝐻2) generated by

𝑅; and a tag.

For RP messages, the payload consists of four items: the MID of the preceding RC

message; an authenticator containing a response (𝑅𝑃2) generated by 𝐼; an encrypted

credential package (containing keys, tickets, and their metadata); and a tag. The credentials

contained in the package are dependent on interactions. In other words, the credentials

contained in different RP messages are different. The package structure and description of

metadata contained in the package are shown in Figure 5.8 and Table 5.8, respectively. Unlike

CH and RC messages whose payload lengths are fixed, the payloads of RP messages have

variable lengths.

Figure 5.8: The format of a credential package.

Table 5.8: Credential package format.

Field
Size

(bytes)
Description

CCL 2 Credential class

IID 2 Initiator ID

IDID 2 Initiator Domain ID

ICL 1 Initiator class

RID 2 Receiver ID

RDID 2 Receiver Domain ID

RCL 1 Respondent class

EXP 8 Expiry

Total 20

Note: Possible values for CCL, ICL and RCL are shown in Table 5.7.

98

For RJ messages, the payload consists of two items: the MID of the preceding (CH or RC)

message and an error code (which is dependent on the cause of negative verification). A MAC

tag is not included in each RJ message as the interacting components may not have

established shared secret keys that can be used to generate and verify the tag. Assuming 𝑝𝑟𝑜

is the current protocol used; 𝑚𝑖𝑑1and 𝑚𝑖𝑑2 are, respectively, the MIDs of the preceding and

this RJ messages; 𝑥 is the component sending the preceding message (𝑚𝑖𝑑1); 𝑦 is the

component sending this RJ message (𝑚𝑖𝑑2); and 𝑒𝑟𝑟 is an error code, the RJ message msg-RJ

can be expressed as msg-RJ: {𝑝𝑟𝑜, 𝑚𝑖𝑑2, 𝑅𝐽, 𝑆(𝑀𝐼𝐷) + 𝑆(𝐸𝑅𝑅), 𝑖𝑑𝑦, 𝑑𝑖𝑑𝑦, 𝑖𝑑𝑥, 𝑑𝑖𝑑𝑥,

𝑚𝑖𝑑1, 𝑒𝑟𝑟}. Like CH and RC messages, the payloads of RJ messages also have fixed lengths.

In the following, we describe the operational steps of each protocol in detail.

5.5.4.1 GP2A Protocol
The GP2A protocol is a two-factor (group key and pre-shared primary key) entity

authentication protocol for initial interactions between two components (𝐼 and 𝑅). It makes

use of: (1) a symmetric-key based encryption scheme to generate and verify authenticators;

(2) a MAC scheme to generate and verify tags contained in messages; and (3) a key derivation

function to generate a MAC key and a credential encryption key. The group and pre-shared

keys used are established on both components prior to the execution of the protocol. The

protocol consists of four operational steps, as illustrated in Figure 5.6.

Step 1: In 𝐼1, 𝐼 performs 𝐶𝐻1 generation, generates a CH message (msg-GP2A1), and

sends the message to 𝑅. For the generation of 𝐶𝐻1, 𝐼 generates a nonce 𝑛1 and uses it as a

challenge (𝐶𝐻1) for 𝑅. An authenticator 𝑎𝑢𝑡ℎ1 is then generated with 𝑛1 using nested

encryption, i.e., 𝑛1 is encrypted with a pre-shared primary key 𝑝𝑚𝑘𝐼,𝑅 and then is encrypted

again with a group key 𝑔𝑘. The generation of 𝑎𝑢𝑡ℎ1 is expressed as

𝑎𝑢𝑡ℎ1 = 𝑆𝐸(𝑔𝑘, 𝑆𝐸(𝑝𝑚𝑘𝐼,𝑅 , 𝑛1)).

𝐼 generates a MAC key 𝑚𝑘 with a length 𝑙 by invoking a key derivation algorithm with

𝑝𝑚𝑘𝐼,𝑅 and 𝑔𝑘. The generation of 𝑚𝑘 is expressed as 𝑚𝑘𝐼,𝑅 = 𝐻𝐾𝐷𝐹(𝑙, 𝑝𝑚𝑘𝐼,𝑅 , 𝑔𝑘).

Next, 𝐼 generates a MAC tag 𝜏1 using MAC-Signing with 𝑚𝑘 and message data which

consist of message ID 𝑚𝑖𝑑1 for this CH message, job ID 𝑗𝑖𝑑, action request 𝑟𝑒𝑞, initiator class

𝑖𝑐𝑙, and the authenticator 𝑎𝑢𝑡ℎ1. The generation of 𝜏1 is expressed as 𝜏1 = 𝑀𝑆(𝑚𝑘𝐼,𝑅 ,

𝑚𝑖𝑑1||𝑗𝑖𝑑||𝑟𝑒𝑞||𝑖𝑐𝑙||𝑎𝑢𝑡ℎ1). The other message fields are not signed because the alteration

of these fields can be easily detected, leading to negative verification (thus, termination of

the protocol). For example, the value of MTYPE of the message can only be 𝐶𝐻; and

fraudulent values of SID and SDID would lead to incorrect or unsuccessful key lookup. After

generating 𝜏1, 𝐼 then generates msg-GP2A1 and sends the message to 𝑅. msg-GP2A1 is

expressed as msg-GP2A1: {𝐺𝑃2𝐴, 𝑚𝑖𝑑1, 𝐶𝐻, 𝑆(𝐽𝐼𝐷) + 𝑆(𝑅𝐸𝑄) + 𝑆(𝐼𝐶𝐿) + 𝑆(𝑎𝑢𝑡ℎ1) +

𝑆(𝜏1), 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑗𝑖𝑑, 𝑟𝑒𝑞, 𝑖𝑐𝑙, 𝑎𝑢𝑡ℎ1, 𝜏1}.

Step 2: Upon receiving msg-GP2A1, 𝑅 performs preliminary verification (𝑅1), then

generates 𝑅𝑃1 and 𝐶𝐻2 (𝑅2), before generating an RC message (msg-GP2A2). In 𝑅1, 𝑅

generates a MAC key 𝑚𝑘 used for verifying the authenticity of msg-GP2A1 against 𝜏1. The

generation of 𝑚𝑘 is the same as that of Step 1. The verification of the authenticity of the

message using MAC-Verify is expressed as 𝑚𝑣1 = 𝑀𝑉(𝑚𝑘𝐼,𝑅 , 𝑚𝑖𝑑1||𝑗𝑖𝑑||𝑟𝑒𝑞||𝑖𝑐𝑙||𝑎𝑢𝑡ℎ1, 𝜏1).

99

Following a positive verification of 𝜏1, 𝑅 checks the validity of the interaction and keys

used for authentication. This is done by ensuring that: (1) 𝑅 is allocated for the job with a job

ID of 𝑗𝑖𝑑; (2) 𝐼 can interact with 𝑅 by checking 𝑖𝑐𝑙 (e.g., Reducers may interact with

WorkerManager, but Mappers may not); (3) 𝑅 supports the requested action 𝑟𝑒𝑞 (e.g.,

WorkerManagers support 𝑅𝐸𝐴𝐷 requested by Reducers but not 𝑊𝑅𝐼𝑇𝐸); (4) 𝐼 can perform

the requested action by checking 𝑟𝑒𝑞 (e.g., Mappers may read data from, but not write data

to, the DFS clusters); and (5) 𝑅 has established 𝑔𝑘 and 𝑝𝑚𝑘𝐼,𝑅 with 𝐼 by looking up 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼

and 𝑖𝑐𝑙 in its CStore, the key entries should exist and not expire. If any of these conditions is

not met, 𝑅 sends an RJ message back to 𝐼 with a corresponding error code and aborts the

protocol. The verification steps of 𝑅1 are shown in Figure 5.9.

Figure 5.9: GP2A preliminary verification (R1).

In 𝑅2, 𝑅 generates 𝑅𝑃1 for 𝐶𝐻1, generates 𝐶𝐻2, and generates msg-GP2A2. To generate

𝑅𝑃1, 𝑅 first decrypts 𝑎𝑢𝑡ℎ1 with 𝑔𝑘 and 𝑝𝑚𝑘𝐼,𝑅 to obtain 𝑛1 (used as 𝑅𝑃1). The process is

expressed as 𝑛1 = 𝑆𝐷(𝑝𝑚𝑘𝐼,𝑅 , 𝑆𝐷(𝑔𝑘, 𝑎𝑢𝑡ℎ1)).

𝑅 generates a nonce 𝑛2 as a challenge (𝐶𝐻2) for 𝐼. It then generates an authenticator

𝑎𝑢𝑡ℎ2 containing a concatenation of 𝑅𝑃1 and 𝐶𝐻2 using nested encryption. The generation

of 𝑎𝑢𝑡ℎ2 is expressed as 𝑎𝑢𝑡ℎ2 = 𝑆𝐸(𝑔𝑘, 𝑆𝐸(𝑝𝑚𝑘𝐼,𝑅 , 𝑛1||𝑛2)).

100

Next 𝑅 generates a tag 𝜏2 using MAC-Signing with 𝑚𝑘 and message data which consist of

the message ID 𝑚𝑖𝑑2 for this RC message, the message ID 𝑚𝑖𝑑1 of the preceding CH message,

and the authenticator 𝑎𝑢𝑡ℎ2. The generation of 𝜏2 is expressed as 𝜏2 = 𝑀𝑆(𝑚𝑘𝐼,𝑅 ,

𝑚𝑖𝑑2||𝑚𝑖𝑑1||𝑎𝑢𝑡ℎ2).

𝑅 generates msg-GP2A2 and sends the message back to 𝐼. msg-GP2A2 is expressed as

msg-GP2A2: {𝐺𝑃2𝐴, 𝑚𝑖𝑑2, 𝑅𝐶, 𝑆(𝑀𝐼𝐷) + 𝑆(𝑎𝑢𝑡ℎ2) + 𝑆(𝜏2), 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 ,

𝑚𝑖𝑑1, 𝑎𝑢𝑡ℎ2, 𝜏2}.

Step 3: 𝐼 receives msg-GP2A2, performs 𝑅𝑃1 verification (𝐼2) and 𝑅𝑃2 generation (𝐼3),

before generating an RP message (msg-GP2A3). In 𝐼2, 𝐼 verifies the authenticity of msg-GP2A2

against 𝜏2. The verification of the authenticity of the message using MAC-Verify is expressed

as 𝑚𝑣2 = 𝑀𝑉(𝑚𝑘𝐼,𝑅 , 𝑚𝑖𝑑2||𝑚𝑖𝑑1||𝑎𝑢𝑡ℎ2, 𝜏2).

If the verification is positive, 𝐼 continues the protocol; otherwise, 𝐼 sends an RJ message

(with an error code 𝑁𝐸𝐺𝑇𝐴𝐺) back to 𝑅 and terminates the protocol. Following a positive

verification of 𝜏2, 𝐼 decrypts 𝑎𝑢𝑡ℎ2 with 𝑔𝑘 and 𝑝𝑚𝑘𝐼,𝑅 to obtain 𝑅𝑃1 and 𝐶𝐻2, which are,

respectively, assigned to 𝑛1′ and 𝑛2. This operation is expressed as (𝑛1
′ , 𝑛2) = 𝑆𝐷(𝑝𝑚𝑘𝐼,𝑅 ,

𝑆𝐷(𝑔𝑘, 𝑎𝑢𝑡ℎ2)).

𝐼 verifies 𝑅𝑃1 by comparing 𝑛1
′ with 𝑛1 (the nonce it sent in Step 1). If 𝑛1

′ == 𝑛1 then the

verification is positive, 𝐼 will proceed to 𝐼3; otherwise, the verification is negative, 𝐼 will send

an RJ message back to 𝑅 and terminate the protocol. The verification steps of 𝐼2 are shown

in Figure 5.10.

Figure 5.10: GP2A RP1 verification (I2).

In 𝐼3, 𝐼 generates 𝑅𝑃2 for 𝐶𝐻2 using 𝑛2 obtained in 𝐼2, and prepares an RP message. To

generate 𝑅𝑃2, an authenticator 𝑎𝑢𝑡ℎ3 containing 𝑅𝑃2 (𝑛2) is generated using nested

encryption. The generation of 𝑎𝑢𝑡ℎ3 is expressed as 𝑎𝑢𝑡ℎ3 = 𝑆𝐸(𝑔𝑘, 𝑆𝐸(𝑝𝑚𝑘𝐼,𝑅 , 𝑛2)).

𝐼 generates a credential encryption key 𝑐𝑘 with a length 𝑙 using a key derivation algorithm

with 𝑝𝑚𝑘𝐼,𝑅 and 𝑛2. The generation of 𝑐𝑘 is expressed as 𝑐𝑘𝐼,𝑅 = 𝐻𝐾𝐷𝐹(𝑙, 𝑝𝑚𝑘𝐼,𝑅 , 𝑛2).

𝐼 generates a credential package containing credentials (keys, tickets, and their metadata)

to be dispatched and encrypts the package with 𝑐𝑘. The encrypted package 𝑝𝑘𝑔 is expressed

as 𝑝𝑘𝑔 = 𝑆𝐸(𝑐𝑘𝐼,𝑅 , 𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑐𝑘𝑎𝑔𝑒).

101

𝐼 generates a tag 𝜏3 using MAC-Signing with 𝑚𝑘 and message data consisting of the

message ID 𝑚𝑖𝑑3 for this RP message, the message ID 𝑚𝑖𝑑2 of the preceding RC message, the

authenticator 𝑎𝑢𝑡ℎ3, and the encrypted credential package 𝑝𝑘𝑔. The generation of 𝜏3 is

expressed as 𝜏3 = 𝑀𝑆(𝑚𝑘𝐼,𝑅 , 𝑚𝑖𝑑3||𝑚𝑖𝑑2||𝑎𝑢𝑡ℎ3||𝑝𝑘𝑔).

𝐼 generates msg-GP2A3 and sends the message back to 𝑅. The RP message is expressed

as msg-GP2A3: {𝐺𝑃2𝐴, 𝑚𝑖𝑑3, 𝑅𝑃, 𝑆(𝑀𝐼𝐷) + 𝑆(𝑎𝑢𝑡ℎ3) + 𝑆(𝑝𝑘𝑔) + 𝑆(𝜏3), 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 ,

𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑚𝑖𝑑2, 𝑎𝑢𝑡ℎ3, 𝑝𝑘𝑔, 𝜏3}.

Step 4: Upon receiving msg-GP2A3, 𝑅 performs 𝑅𝑃2 verification (𝑅3). In 𝑅3, similar to 𝐼2,

𝑅 verifies the authenticity of msg-GP2A3 against 𝜏3. The verification of the authenticity of the

message using MAC-Verify is expressed as 𝑚𝑣3 = 𝑀𝑉(𝑚𝑘𝐼,𝑅 , 𝑚𝑖𝑑3||𝑚𝑖𝑑2||𝑎𝑢𝑡ℎ3||𝑝𝑘𝑔, 𝜏3).

Following a positive verification, 𝑅 decrypts 𝑎𝑢𝑡ℎ3 with 𝑔𝑘 and 𝑝𝑚𝑘𝐼,𝑅 to obtain 𝑅𝑃2 and

then assign the obtained value to 𝑛2
′ . This operation is expressed as 𝑛2

′ = 𝑆𝐷(𝑝𝑚𝑘𝐼,𝑅 ,

𝑆𝐷(𝑔𝑘, 𝑎𝑢𝑡ℎ3)).

𝑅 verifies 𝑅𝑃2 by comparing 𝑛2
′ with 𝑛2 (the nonce it sent in Step 2). If 𝑛2

′ == 𝑛2 then

the verification is positive, 𝐼 and 𝑅 are mutually authenticated, 𝑅 then proceeds to the next

operation; otherwise, the verification is negative and 𝑅 will terminate the protocol. If the

verification is positive, 𝑅 generates a credential encryption key 𝑐𝑘 (used for decryption). The

generation of 𝑐𝑘 is the same as that of Step 3. 𝑅 then decrypts 𝑝𝑘𝑔 with 𝑐𝑘. The decryption

of 𝑝𝑘𝑔 is expressed as 𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 = 𝑆𝐷(𝑐𝑘𝐼,𝑅 , 𝑝𝑘𝑔).

Lastly, the decrypted credentials are stored in CStore of 𝑅. The verification steps of 𝑅3

are shown in Figure 5.11.

Figure 5.11: GP2A RP2 verification (R3).

5.5.4.2 GE2A Protocol
The GE2A protocol is also a two-factor (group key and encapsulated primary key) entity

authentication protocol. Like GP2A, it is used for authentication of initial interactions between

two components (𝐼 and 𝑅). Unlike GP2A, the encapsulated primary key is issued by a trusted

third party (𝑧). 𝐼 obtains the key and a ticket containing the key from 𝑧, and then sends the

ticket to 𝑅 with the first message (a CH message) of the protocol. Upon receiving the message,

102

𝑅 decrypts the ticket with the sealing key shared with 𝑧 to obtain the encapsulated key and

use it for authentication. The protocol also consists of four operational steps as shown in

Figure 5.6.

Step 1: In 𝐼1, 𝐼 performs 𝐶𝐻1 generation and generates a CH message (msg-GE2A1). For

these tasks, 𝐼 generates a nonce 𝑛1 and an authenticator 𝑎𝑢𝑡ℎ1, and then derives a MAC key

𝑚𝑘𝐼,𝑅 in the same manner as Step 1 of GP2A. However, the generation of a MAC tag 𝜏1 takes

one additional item, i.e., a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑧 . The generation of 𝜏1 is expressed as 𝜏1 = 𝑀𝑆(𝑚𝑘𝐼,𝑅 ,

𝑚𝑖𝑑1 || 𝑗𝑖𝑑 || 𝑟𝑒𝑞|| 𝑖𝑐𝑙 || 𝑎𝑢𝑡ℎ1 || 𝑡𝑘𝑡𝐼,𝑅
𝑧).

𝐼 then generates msg-GE2A1 and sends the message to 𝑅. msg-GE2A1 is expressed as

msg-GE2A1: {𝐺𝐸2𝐴, 𝑚𝑖𝑑1, 𝐶𝐻, 𝑆(𝐽𝐼𝐷) + 𝑆(𝑅𝐸𝑄) + 𝑆(𝐼𝐶𝐿) + 𝑆(𝑎𝑢𝑡ℎ1) + 𝑆(𝜏1), 𝑖𝑑𝐼 ,

𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑗𝑖𝑑, 𝑟𝑒𝑞, 𝑖𝑐𝑙, 𝑎𝑢𝑡ℎ1, 𝑡𝑘𝑡𝐼,𝑅
𝑧 , 𝜏1}.

Step 2: Upon receiving msg-GE2A1, 𝑅 performs preliminary verification (𝑅1), generates

𝑅𝑃1 and 𝐶𝐻2 (𝑅2), before generating an RC message (msg-GE2A2). In 𝑅1, 𝑅 decrypts 𝑡𝑘𝑡𝐼,𝑅
𝑧

with 𝑠𝑙𝑘𝑅,𝑧 to obtain 𝑝𝑚𝑘𝐼,𝑅 and the associated data. This operation is expressed as

(𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑖𝑑𝑧 , 𝑑𝑖𝑑𝑧 , 𝑗𝑖𝑑, 𝑟𝑒𝑞, 𝑔𝑡, 𝑒𝑡, 𝑝𝑚𝑘𝐼,𝑅) = 𝑆𝐷(𝑠𝑙𝑘𝑅,𝑧, 𝑡𝑘𝑡𝐼,𝑅
𝑧).

𝑅 checks the validity of 𝑝𝑚𝑘𝐼,𝑅 and performs preliminary verification. In addition to

conditions (1) to (4) listed in 𝑅1 of Step 2 of GP2A, the checking conditions here further

include: (1) 𝑅 has established 𝑔𝑘 with 𝐼; (2) the IDs and DIDs of the initiator and respondent

match the ones of 𝐼 and 𝑅, respectively; (3) 𝑟𝑒𝑞 contained in the ticket matches 𝑟𝑒𝑞 of the

message; and (4) 𝑝𝑚𝑘𝐼,𝑅 is not expired, i.e., the current time (observed by 𝑅) is not earlier

than the key generation time (𝑔𝑡) and not later than the key expiration time (𝑒𝑡). If any of

these conditions is not met, 𝑅 sends an RJ message back to 𝐼 with a corresponding error code

and aborts the protocol. The verification steps of 𝑅1 are shown in Figure 5.12.

Next, 𝑅 generates a MAC key 𝑚𝑘𝐼,𝑅 using the same method as Step 1. After that, it verifies

the authenticity of msg-GE2A1 against 𝜏1. The verification of 𝜏1 is expressed as

 𝑚𝑣1 = 𝑀𝑉(𝑚𝑘𝐼,𝑅 , 𝑚𝑖𝑑1||𝑗𝑖𝑑||𝑟𝑒𝑞||𝑖𝑐𝑙||𝑎𝑢𝑡ℎ1||𝑡𝑘𝑡𝐼,𝑅
𝑧 , 𝜏1).

In 𝑅2, 𝑅 generates 𝑅𝑃1 for 𝐶𝐻1, generates 𝐶𝐻2, and generates msg-GE2A2. The

operations are the same as those of 𝑅2 in Step 2 of GP2A. Therefore, msg-GE2A2 sent from

𝑅 back to 𝐼 is expressed as msg-GE2A2: {𝐺𝐸2𝐴, 𝑚𝑖𝑑2, 𝑅𝐶, 𝑆(𝑀𝐼𝐷) + 𝑆(𝑎𝑢𝑡ℎ2) + 𝑆(𝜏2),

𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑚𝑖𝑑1, 𝑎𝑢𝑡ℎ2, 𝜏2}.

Step 3: 𝐼 receives msg-GE2A2, performs 𝑅𝑃1 verification (𝐼2) and 𝑅𝑃2 generation (𝐼3),

before generating an RP message msg-GE2A3. This step is the same as that of GP2A. Hence,

msg-GE2A3 sent from 𝐼 to 𝑅 is expressed as msg-GE2A3: {𝐺𝐸2𝐴, 𝑚𝑖𝑑3, 𝑅𝑃, 𝑆(𝑀𝐼𝐷) +

𝑆(𝑎𝑢𝑡ℎ3) + 𝑆(𝑝𝑘𝑔) + 𝑆(𝜏3), 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑚𝑖𝑑2, 𝑎𝑢𝑡ℎ3, 𝑝𝑘𝑔, 𝜏3}.

Step 4: Upon receiving msg-GE2A3, 𝑅 performs 𝑅𝑃2 verification (𝑅3). This step is the

same as that of GP2A described earlier.

103

Figure 5.12: GE2A preliminary verification (R1).

5.5.4.3 SOA Protocol
The SOA protocol is a one-factor (secondary key) entity authentication protocol used for

authentication of subsequent interactions. SOA is different from GP2A in that only one

secondary (pairwise) key 𝑠𝑐𝑘𝐼,𝑅 is used for generating and verifying authenticators; a MAC

104

key 𝑚𝑘𝐼,𝑅 is generated with only 𝑠𝑐𝑘𝐼,𝑅; and a credential encryption key 𝑐𝑘𝐼,𝑅 is generated

with 𝑠𝑐𝑘𝐼,𝑅 instead of 𝑝𝑚𝑘𝐼,𝑅. Again, the protocol also consists of four operational steps as

shown in Figure 5.6. As these steps are similar to those of GP2A, in the following, we will

highlight only the differences.

Step 1: 𝐼 generates an authenticator 𝑎𝑢𝑡ℎ1 with 𝑠𝑐𝑘𝐼,𝑅. The generation of 𝑎𝑢𝑡ℎ1 is

expressed as 𝑎𝑢𝑡ℎ1 = 𝑆𝐸(𝑠𝑐𝑘𝐼,𝑅 , 𝑛1).

𝐼 generates a MAC key 𝑚𝑘𝐼,𝑅 with a length 𝑙 by invoking a key derivation algorithm with

𝑠𝑐𝑘𝐼,𝑅. The generation of 𝑚𝑘𝐼,𝑅 is expressed as 𝑚𝑘𝐼,𝑅 = 𝐻𝐾𝐷𝐹(𝑙, 𝑠𝑐𝑘𝐼,𝑅 , 𝑁𝑈𝐿𝐿).

A CH message msg-SOA1 generated by 𝐼 is expressed as msg-SOA1: {𝑆𝑂𝐴, 𝑚𝑖𝑑1, 𝐶𝐻,

𝑆(𝐽𝐼𝐷) + 𝑆(𝑅𝐸𝑄) + 𝑆(𝐼𝐶𝐿) + 𝑆(𝑎𝑢𝑡ℎ1) + 𝑆(𝜏1), 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑗𝑖𝑑, 𝑟𝑒𝑞, 𝑖𝑐𝑙,

𝑎𝑢𝑡ℎ1, 𝜏1}.

Step 2: Upon receiving msg-SOA1, in 𝑅1, 𝑅 generates a MAC key 𝑚𝑘𝐼,𝑅 using the same

method as Step 1 and verifies the authenticity of msg-SOA1 against 𝜏1. Following a positive

verification, 𝑅 checks the validity of the interaction and key used for authentication. The

checking conditions are the same as those in GP2A with the exception of the lack of a group

key 𝑔𝑘 in condition (5).

In 𝑅2, 𝑠𝑐𝑘𝐼,𝑅 is used to decrypt 𝑎𝑢𝑡ℎ1 and encrypt 𝑎𝑢𝑡ℎ2. The decryption of 𝑎𝑢𝑡ℎ1 to

obtain 𝑛1 is expressed as 𝑛1 = 𝑆𝐷(𝑠𝑐𝑘𝐼,𝑅 , 𝑎𝑢𝑡ℎ1).

With 𝑛1 along with 𝑛2 (generated by 𝑅), the generation of 𝑎𝑢𝑡ℎ2 is expressed as

 𝑎𝑢𝑡ℎ2 = 𝑆𝐸(𝑠𝑐𝑘𝐼,𝑅 , 𝑛1||𝑛2).

An RC message (msg-SOA2) generated by 𝑅 and to be sent to 𝐼 is expressed as msg-SOA2:

{𝑆𝑂𝐴, 𝑚𝑖𝑑2, 𝑅𝐶, 𝑆(𝑀𝐼𝐷) + 𝑆(𝑎𝑢𝑡ℎ2) + 𝑆(𝜏2), 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑚𝑖𝑑1, 𝑎𝑢𝑡ℎ2,

𝜏2}.

Step 3: Upon receiving msg-SOA2, in 𝐼2, the extraction of 𝑛1
′ and 𝑛2 from 𝑎𝑢𝑡ℎ2 is done

using 𝑠𝑐𝑘𝐼,𝑅, expressed as (𝑛1
′ , 𝑛2) = 𝑆𝐷(𝑝𝑚𝑘𝐼,𝑅 , 𝑎𝑢𝑡ℎ2). The steps for verifying 𝑛1

′ are the

same as those shown in Figure 5.10.

In 𝐼3, the generation of an authenticator 𝑎𝑢𝑡ℎ3 containing 𝑅𝑃2 (𝑛2) is expressed as

𝑎𝑢𝑡ℎ3 = 𝑆𝐸(𝑠𝑐𝑘𝐼,𝑅 , 𝑛2).

𝐼 generates a credential encryption key 𝑐𝑘𝐼,𝑅 with a length 𝑙 using a key derivation

algorithm with 𝑠𝑐𝑘𝐼,𝑅 and 𝑛2. The generation of 𝑐𝑘𝐼,𝑅 is expressed as 𝑐𝑘𝐼,𝑅 = 𝐻𝐾𝐷𝐹(𝑙,

𝑠𝑐𝑘𝐼,𝑅 , 𝑛2).

An RP message msg-SOA3 generated by 𝐼 for 𝑅 is expressed as msg-SOA3: {𝑆𝑂𝐴, 𝑚𝑖𝑑3,

𝑅𝑃, 𝑆(𝑀𝐼𝐷) + 𝑆(𝑎𝑢𝑡ℎ3) + 𝑆(𝑝𝑘𝑔) + 𝑆(𝜏3), 𝑖𝑑𝐼 , 𝑑𝑖𝑑𝐼 , 𝑖𝑑𝑅 , 𝑑𝑖𝑑𝑅 , 𝑚𝑖𝑑2, 𝑎𝑢𝑡ℎ3, 𝑝𝑘𝑔, 𝜏3}.

Step 4: Upon receiving msg-SOA3, in 𝑅3, 𝑅 extracts 𝑛2
′ from 𝑎𝑢𝑡ℎ3 with 𝑠𝑐𝑘𝐼,𝑅. The

extraction of 𝑛2
′ is expressed as 𝑛2

′ = 𝑆𝐷(𝑠𝑐𝑘𝐼,𝑅 , 𝑎𝑢𝑡ℎ3).

𝑅 then generates a credential encryption key 𝑐𝑘𝐼,𝑅 using the same method as Step 3. The

remaining verification steps are the same as those of GP2A.

Upon a successful completion of the execution of any of the GP2A, GE2A, and SOA

protocols (thus, positive authentication), each of the interacting components has an

assurance that (1) it is interacting with the claimed component; (2) the authentication

messages are authentic and freshly generated by the claimed component; and (3) session

keys and keys for authenticating subsequent interactions are securely transmitted.

105

5.5.5 Putting Everything Together: MIEA in Action
The job execution flow when MIEA is applied is depicted in Figure 5.13. The figure highlights

the protocol and the keys used to authenticate each of the interactions, the establishment

methods for such keys, and credentials exchanged during each authentication instance. It is

worth noting that, in the reduce phase @ 29 (shown in Figure 5.13 (d)), SOA is not used for

the authentication of 𝑐1 to 𝑛𝑚1. This is because there could be a long gap of time (e.g., hours)

since the last interaction between 𝑐1 and 𝑛𝑚1; the longer the gap, the higher risk of

credentials being compromised. Hence, GE2A is applied to achieve a higher level of protection.

(a)

106

(b)

(c)

107

(d)

Figure 5.13: The job execution flow when MIEA is applied.

(a) Job submission phase: execution request step.

(b) Job submission phase: worker allocation step. (c) The map phase. (d) The reduce phase.

5.6 The Running Example

We here use the running example described in Section 4.6 to explain how the components of

MIEA work when MIEA is applied to the cyberthreat analysis job in the example. The

explanation also covers how different classes of keys are used to accomplish entity

authentication and how the keys in a higher level of the key hierarchy are used to distribute

the keys in a lower level of the key hierarchy.

The execution of the job in the example consists of 29 operational steps (as detailed in

Section 7.2). In each of the steps, there can be interactions taking place between multiple

pairs of MR components involved. For example, in step 2 shown in Figure 4.8, there are three

interactions, one for each of the pairs, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2

and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. Entity authentication

is enforced before any interaction is taking place to verify and establish the identities of the

interacting components. Each such authentication instance is carried out by using one of the

108

MIEA protocols, i.e., GP2A, GE2A, and SOA. GP2A and GE2A are two-factor (two keys) entity

authentication protocols designed for initial interactions. SOA is a one-factor (one key) entity

authentication protocol designed for subsequent interactions. The classifications of the keys

used in the authentication are summarised in Figure 5.3 and the notations used to refer to

the keys are given in Table 5.2. For GP2A and GE2A, a group key and a primary key (pre-shared

and encapsulated, respectively) are used to generate and verify challenges and responses

exchanged between the interacting entities. The group key is used to deter attacks caused by

outsiders (e.g., components that do not have a DFS-C key 𝑑𝑓𝑘1 cannot access 𝐷𝐹𝑆1). The

primary key (pairwise key) makes it more difficulty for insiders to mount impersonation

attacks on the system (e.g., 𝑀𝑎𝑝𝑝𝑒𝑟2 cannot impersonate 𝑀𝑎𝑝𝑝𝑒𝑟1 when it contacts

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 as it does not have 𝑝𝑚𝑘𝑗𝑚,𝑚1
). The hybrid use of a group key and a primary key

also prepares the ground for future work or other researchers to incorporate other security

services, e.g., fault tolerance. For SOA, only a secondary key is used to accomplish the

authentication task. A sealing key is shared between two components for the distribution of

an encapsulated primary key (the container for an encapsulated primary key is called a ticket).

A session key is used to secure sensitive data transmitted between the components after they

are mutually authenticated, and it is only used for the session. A MAC key is used to ensure

the authenticity of the protocol messages. A credential encryption key is used to securely

distribute new keys for subsequent authentications. For each authentication instance, a MAC

key and a credential encryption key are derived locally on the components and with a

combined use of a group key, a primary key, a secondary key, and a nonce. This is described

in the descriptions of each of the GP2A, GE2A, and SOA protocols in Section 5.5.4.

To demonstrate how different classes of keys are used, we here explain how entity

authentication is carried out in step 2 through to step 4c (shown in Figure 5.13). In this

demonstration, we shall describe only the actions performed by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 and the keys needed for the

authentication of these components. It is assumed that, prior to the execution of the job, an

OrgDomain key (a group key) 𝑜𝑘1 and a pre-shared primary key 𝑝𝑚𝑘𝑐1,𝑟𝑚1 are established

on 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1; a DFS-C key (a group key) 𝑑𝑓𝑘1 is established on

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1; a sealing key 𝑠𝑙𝑘𝑛𝑚1,𝑟𝑚1 is

established on 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1; and a sealing key 𝑠𝑙𝑘𝑑𝑠1
1,𝑛𝑚1 is

established on 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

In step 2, 𝑈𝑠𝑒𝑟1 authenticates to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 by using an existing authentication service

(e.g., a password-based authentication for Linux systems). 𝑈𝑠𝑒𝑟1 then uses 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to

authenticate to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 before submitting a request to start the new job. The

authentication between 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 is done by using the GP2A

protocol with the OrgDomain key (group key) 𝑜𝑘1 and the primary key (pairwise key)

𝑝𝑚𝑘𝑐1,𝑟𝑚1. The detailed descriptions of the authentication flow and protocol messages of

GP2A have been given in Section 5.5.4.1. In the last protocol message, 𝑈𝑠𝑒𝑟1 sends the

secondary key 𝑠𝑐𝑘𝑐1,𝑟𝑚1 and a session key 𝑠𝑠𝑘𝑐1,𝑟𝑚1 to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. 𝑠𝑐𝑘𝑐1,𝑟𝑚1 will

be used to authenticate 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 in step 3 and 𝑠𝑠𝑘𝑐1,𝑟𝑚1 will be

109

used to secure data transmitted between 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 in this session

(all the remaining session keys in a similar fashion).

In step 3, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 accepts the request sent by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. It authenticates

to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 before sending a reply. The authentication is done by using the SOA protocol

with the secondary key 𝑠𝑐𝑘𝑐1,𝑟𝑚1 established in step 2. The detailed descriptions of the

authentication flow and protocol messages of SOA have been given in Section 5.5.4.3. In the

last protocol message, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends the DFS-C key 𝑑𝑓𝑘1, the primary key

𝑝𝑚𝑘𝑐1,𝑛𝑚1, the ticket 𝑡𝑘𝑡𝑐1,𝑛𝑚1
𝑟𝑚1

 (containing 𝑝𝑚𝑘𝑐1,𝑛𝑚1 which is encrypted with 𝑠𝑙𝑘𝑛𝑚1,𝑟𝑚1),

and a new session key 𝑠𝑠𝑘𝑟𝑚1,𝑐1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. 𝑑𝑓𝑘1 and 𝑝𝑚𝑘𝑐1,𝑛𝑚1 will be used to

authenticate 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 in step 4a and 𝑡𝑘𝑡𝑐1,𝑛𝑚1
𝑟𝑚1

 will be used to

distribute 𝑝𝑚𝑘𝑐1,𝑛𝑚1 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 in step 4a.

In step 4, after 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the reply containing the keys to authenticate to

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 from 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 authenticates to 𝐷𝐹𝑆1 to write

the input dataset (𝐹𝑖𝑙𝑒1) and the job configuration file onto 𝐷𝐹𝑆1. This step consists of three

further steps.

• In step 4a, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 authenticates to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 before sending a request

for a list of DataStores to write the data. The authentication is done by using the GE2A

protocol with the DFS-C key (group key) 𝑑𝑓𝑘1 and the primary key (pairwise key)

𝑝𝑚𝑘𝑐1,𝑛𝑚1 established in step 3. The authentication flow and protocol messages of

GE2A have been described in Section 5.5.4.2. It is worth noting that 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

obtains 𝑝𝑚𝑘𝑐1,𝑛𝑚1 from 𝑡𝑘𝑡𝑐1,𝑛𝑚1
𝑟𝑚1

 contained in the first protocol message sent by

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. In the last protocol message, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends the secondary key

𝑠𝑐𝑘𝑐1,𝑛𝑚1 and a session key 𝑠𝑠𝑘𝑐1,𝑛𝑚1 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. 𝑠𝑐𝑘𝑐1,𝑛𝑚1 will be used to

authenticate 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 in step 4b.

• In step 4b, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 accepts the request. It authenticates to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1

before sending the list of DataStores (here, the list contains only 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1). The

authentication is done by using the SOA protocol with the secondary key 𝑠𝑐𝑘𝑐1,𝑛𝑚1

established in step 4a. In the last protocol message, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends the

primary key 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1, the ticket 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

 (containing 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1 which is encrypted

with 𝑠𝑙𝑘𝑑𝑠1
1,𝑛𝑚1), and a new session key 𝑠𝑠𝑘𝑛𝑚1,𝑐1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. 𝑝𝑚𝑘𝑐1,𝑑𝑠1

1 will be

used to authenticate 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 and 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

 will be used to

distribute 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1 in step 4c.

• In step 4c, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the reply. It authenticates to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 before

writing the data to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. The authentication is done by using the GE2A

protocol with the DFS-C key 𝑑𝑓𝑘1 established in step 3 and the primary key 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1

established in step 4b. 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 obtains 𝑝𝑚𝑘𝑐1,𝑑𝑠1

1 from 𝑡𝑘𝑡𝑐1,𝑑𝑠1
1

𝑛𝑚1
 contained in the

first protocol message sent by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. In the last protocol message, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1

sends a session key 𝑠𝑠𝑘𝑐1,𝑑𝑠1
1 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1.

110

The key hierarchy showing how keys are distributed during step 2 through to step 4c is

shown in Figure 5.14. The detailed descriptions of all the operational steps are given in Section

7.3.

Figure 5.14: The key hierarchy in step 2 through to step 4c.

5.7 Security Analysis

The security of MIEA is analysed using informal and formal analysis methods. With the

informal analysis method, we analyse the security properties of MIEA against the security

requirements specified in Section 4.5.2. Next, MIEA is formally analysed by using symbolic

analysis and complexity analysis. The symbolic analysis validates the security properties of

each of the three protocols by finding traces of states that lead to the violation of the

properties. The complexity analysis is done on the weakest link of MIEA, showing how much

effort (in terms of computation) is required to mount any of the attacks identified in Section

4.4.1 against the system.

5.7.1 Informal Analysis
MIEA provides entity authentication to MR services throughout the course of a job execution.

Each of the interactions between MR components is protected by a corresponding protocol

(GP2A, GE2A, or SOA). As the three protocols have a common authentication flow, they

provide security protections in a similar manner. In the last subsection, we compare the

security properties of the MIEA protocols with those of the most related entity authentication

protocols, i.e., Kerberos and NSLPK.

111

5.7.1.1 Mutual Authentication
Two components, an initiator 𝐼 and a respondent 𝑅, of an interaction should be able to verify

the identity of each other. With GP2A, the identities of 𝐼 and 𝑅 are assured by demonstrating

the knowledge of a group key 𝑔𝑘 and a pairwise key (primary key) 𝑝𝑚𝑘𝐼,𝑅 which should be

known to only 𝐼 and 𝑅. As explained in Section 5.5.4.1, in Step 3, 𝐼 verifies the identity of 𝑅

by checking whether the response (𝑛1
′) generated by 𝑅 equals the challenge (𝑛1) generated

by 𝐼 in Step 1. If 𝑛1 == 𝑛1
′ , then 𝑅 is positively authenticated to 𝐼. Similarly, in Step 4, 𝑅

verifies the identity of 𝐼 by checking whether the response (𝑛2
′) generated by 𝐼 equals the

challenge (𝑛2) generated by 𝑅 in Step 2. If 𝑛2 == 𝑛2
′ , then 𝐼 is positively authenticated to 𝑅.

Without the knowledge of both group key and pre-shared primary key, it is difficult to learn

challenges (which are protected by nested encryption). In other words, it is hard for

components other than 𝐼 and 𝑅 to generate messages containing the correct responses to

the given challenges. Therefore, at the end of the execution of GP2A, both 𝐼 and 𝑅 are

mutually authenticated.

GE2A differs from GP2A in how 𝐼 and 𝑅 establish a primary key 𝑝𝑚𝑘𝐼,𝑅 used for mutual

authentication. In GE2A, 𝐼 obtains 𝑝𝑚𝑘𝐼,𝑅 from a trusted third party (a ticket issuer) 𝑧 whereas

𝑅 obtains 𝑝𝑚𝑘𝐼,𝑅 by decrypting 𝑡𝑘𝑡𝐼,𝑅
𝑧 sent from 𝐼 with a sealing key 𝑠𝑙𝑘𝑅,𝑧 shared with 𝑧. It

is difficult for components other than 𝑅 to obtain 𝑝𝑚𝑘𝐼,𝑅 from 𝑡𝑘𝑡𝐼,𝑅
𝑧 . After 𝑅 obtains 𝑝𝑚𝑘𝐼,𝑅,

the authentication flows are the same as those of GP2A. Therefore, using the same reasoning,

at the end of the execution of GE2A, both 𝐼 and 𝑅 are mutually authenticated.

With SOA, 𝐼 and 𝑅 verify the identities of each other in the same manner as that of GP2A

and GE2A. The only difference is that, instead of using two keys, a group key 𝑔𝑘 and a primary

key 𝑝𝑚𝑘𝐼,𝑅 , only one secondary key 𝑠𝑐𝑘𝐼,𝑅 is used to protect challenges and responses

exchanged between 𝐼 and 𝑅. Therefore, at the end of the execution of SOA, 𝐼 and 𝑅 are

mutually authenticated.

As a result of the above discussion, MIEA satisfies the requirement of mutual

authentication (SR1).

5.7.1.2 Sensitive Data Confidentiality
Entities other than 𝐼 and 𝑅 should not be able to learn sensitive data transmitted between 𝐼

and 𝑅; these data are authentication keys, nonces (challenges and responses), MAC keys,

credential encryption keys, and credential packages. In GP2A, authentication keys (𝑔𝑘 and

𝑝𝑚𝑘𝐼,𝑅) are established on 𝐼 and 𝑅 prior to the current authentication instance through a

secure channel and they are known to only 𝐼 and 𝑅. Nonces are protected using a nested

encryption method with both the authentication keys before transmitting with protocol

messages. A MAC key and a credential encryption key used are generated locally by each of 𝐼

and 𝑅. These keys are not transmitted over networks, thus, cannot be intercepted by any

other entities. A credential package is protected using encryption with a corresponding

credential encryption key. Although an attacker may intercept messages transmitted over

networks, without knowing the authentication keys, it is computationally difficult for the

attacker to decrypt the protected data and learn the nonces and credentials contained in

credential packages. In addition, in an event that an attacker was able to learn the MAC key

or the credential encryption key (e.g., by mounting brute-force attacks on tags or encrypted

112

credential package), the attacker should not be able to learn the authentication keys used to

derive the MAC and credential encryption keys owing to the security property provided by

key derivation functions. Therefore, the confidentiality of the sensitive data is protected.

In GE2A, a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑧 containing 𝑝𝑚𝑘𝐼,𝑅 is protected by a sealing key 𝑠𝑙𝑘𝑅,𝑧 shared

between 𝑅 and a trusted third party 𝑧. It is computationally difficult for entities other than 𝑅

to learn 𝑝𝑚𝑘𝐼,𝑅 from 𝑡𝑘𝑡𝐼,𝑅
𝑧 . As the authentication flow of GE2A is the same as that of GP2A,

using the same method with GP2A, it is computationally difficult to reveal the sensitive data

exchanged between 𝐼 and 𝑅 without knowing the authentication keys used, thus, the

confidentiality of the data is protected.

With SOA, a secondary key 𝑠𝑐𝑘𝐼,𝑅, rather than 𝑔𝑘 and 𝑝𝑚𝑘𝐼,𝑅, is used to protect sensitive

data exchanged between 𝐼 and 𝑅. 𝑠𝑐𝑘𝐼,𝑅 is securely distributed from 𝐼 to 𝑅 during the

preceding initial interaction. Thus, 𝑠𝑐𝑘𝐼,𝑅 should not be revealed to any entities other than 𝐼

and 𝑅. Again, using the same method with GP2A, the confidentiality of other sensitive data is

also protected.

Based on the above discussion, MIEA meets the requirement of sensitive data

confidentiality (SR2).

5.7.1.3 Replay Attack Protection
Protocol messages used for each authentication instance should be freshly generated. Any

messages captured and replayed should be detected. MIEA uses freshly generated nonces

(encrypted with authentication keys) to ensure the freshness of the messages. For a CH

message (msg-GP2A1 for GP2A, msg-GE2A1 for GE2A, and msg-SOA1 for SOA) used in each

of the protocols, even if an attacker can capture and replay the CH message, the attacker

cannot impersonate 𝐼 as it cannot read the challenge sent from 𝑅 and generate the respective

response in Step 3. In Step 3 of each of the protocols where 𝐼 receives an RC message (msg-

GP2A2 for GP2A, msg-GE2A2 for GE2A, and msg-SOA2 for SOA), if the nonce 𝑛1
′ contained in

the message matches the nonce 𝑛1 generated by 𝐼, 𝐼 is assured that the RC message is not

replayed and the component sending the message is indeed 𝑅. Similarly, in Step 4 of each of

the protocols where 𝑅 receives an RP message (msg-GP2A3 for GP2A, msg-GE2A3 for GE2A,

and msg-SOA3 for SOA), if the nonce 𝑛2
′ contained in the message matches the nonce 𝑛2

generated by 𝑅, 𝑅 is assured that the RP message is not replayed and the component sending

the message is indeed 𝐼. Therefore, MIEA provides a protection against replay attacks, thus,

satisfying the requirement of replay attack protection (SR3).

5.7.1.4 Message Authenticity Protection
Entities other than the component generating a message should not be able to tamper with

the message. Any tampered messages should be detected and discarded. This is achieved by

using MACs. Each protocol message used in MIEA contains a MAC tag that protects the

content of the message. The MAC key used to sign and verify the message is derived locally

from a group key and a primary key (with the exception of SOA where the MAC key is derived

from one secondary key) and the keys are kept secret by each of 𝐼 and 𝑅. It is computationally

difficult to forge a MAC tag for a new (or modified) message without knowing the MAC key

shared between 𝐼 and 𝑅. Any modifications made to a MAC-protected message will result in

a negative verification, thus, the fraudulent attempt will be detected. Therefore, MIEA

113

provides an assurance of message authenticity, meeting the requirement of message

authenticity protection (SR4).

5.7.1.5 The Comparisons of Security Properties
Kerberos provides security properties of mutual authentication and replay attack protection,

but not sensitive data confidentiality and message authenticity protection. With Kerberos, 𝐼

and 𝑅 mutually authenticate each other by demonstrating the knowledge of a pairwise secret

key (𝑘𝐼,𝑅 issued by 𝑇) shared between the two entities, thus, achieving mutual authentication.

Encrypted nonces (generated by 𝐾 and 𝑇) and timestamps (generated by 𝐼) are used to ensure

that messages are freshly (or recently) generated as only the entities knowing the secret key

can generate such messages. However, nonces sent by 𝐼 to 𝐾 and 𝑇 are not encrypted, thus,

could be intercepted by an attacker. There is no data authentication facility in Kerberos.

Therefore, it does not provide a protection of message authenticity.

NSLPK achieves mutual authentication, sensitive data confidentiality, and replay attack

protection, but not message authenticity protection. These security properties are achieved

by using nonces in conjunction with an asymmetric-key cryptosystem. With NSLPK, 𝐼 and 𝑅

exchange a number of messages containing challenges and responses encrypted with the

public keys of the receiving entities. As private keys are kept secret to the respective owners,

no other entities can decrypt a challenge message to obtain a nonce so that it can generate a

response message. By demonstrating the knowledge of the private keys, 𝐼 and 𝑅 are mutually

authenticated. As nonces and private keys are not revealed to other unrelated entities, the

confidentiality of sensitive data is preserved. As long as nonces used are freshly generated

and not repeated, a protection against replay attacks is achieved. Like Kerberos, there is no

data authentication facility in NSLPK, therefore, it does not provide a message authenticity

protection.

The comparisons of the security properties achieved by MIEA, Kerberos, and NSLPK are

summarised in Table 5.9.

Table 5.9: The comparisons of security properties achieved by the MIEA protocols, the Kerberos

protocol, and the NSLPK protocol.

Security Requirement Kerberos NSLPK MIEA

(SR1) Mutual authentication √ √ √

(SR2) Sensitive data confidentiality √ √

(SR3) Replay attack protection √ √ √

(SR4) Message authenticity protection √

5.7.2 Symbolic Analysis
Symbolic analysis validates the security properties provided by protocols and helps identify

security weaknesses that are subtle and could be missed by informal analysis [157][158]. An

example is a discovery of an MITM attack on the Needham-Schroeder Public Key (NSPK)

authentication protocol [159] by Lowe [31] using Casper [160] and Failures-Divergence

Refinement (FDR) checker [161] (also collectively referred to as Casper/FDR).

Compared with a computational approach which provides a strong security verification

proof, a symbolic approach is less complicated and can be used by inexperienced users. In

additions, a number of symbolic based software tools have been developed to automate the

verification of the security properties, and examples of such tools include Naval Research

114

Laboratory (NRL) protocol analyzer [162], Automated Validation of Internet Security Protocols

and Applications (AVISPA) [163], and FDR [161], all of which are based on a state-exploration

technique. This lowers the risk of errors made by the user [164][165].

With a symbolic approach, a security analysis is performed on an abstract view of a

protocol [164][165]. In this abstract view, data contained in protocol messages are expressed

using symbolic terms and cryptographic schemes are expressed as functions operated on the

terms. Generally, symbolic analysis consists of three operational steps: (1) formally modelling

a protocol; (2) specifying security properties to be verified; and (3) verifying the protocol

model against the specified security properties. Steps (1) and (2) are accomplished using a

high-level specification language. The selection of such a language is determined based on

the symbolic analysis tool used. In this way, a user may gain the benefits of software-assisted

verification. In Step (3), the tool is used to verify the protocol model formulated in Step (1)

against the security properties specified in Step (2). If no attacks are found under a certain set

of conditions (e.g., bounded or unbounded number of sessions), the tool returns a positive

verification; otherwise, the tool returns traces of possible attacks (i.e., steps to mount such

attacks), showing the flaws of the protocol.

In the following, we compare different verification tools reported in literature and select

one for our work. We explain the attacker model used. Next, we describe the security

properties that are supported by Scyther. We then describe how the protocols are formally

modelled, before presenting verification results.

5.7.2.1 Verification Tool Comparisons and Selection
There are a number of symbolic analysis tools reported in literature which have been

successfully used to verify the correctness of, or identify attacks on, security protocols.

Examples of such tools include NRL [162], Mur [166], Athena [167], Casper/FDR [160][161],

AVISPA [163], Scyther [168], ProVerif [165][169], and TAMARIN [170]. As NRL [162], Mur

[166], and Athena [167] are not publicly available at the time of this writing, they are excluded

from this work. In the following, we contrast the remaining tools before selecting one for our

work.

FDR [161] is a refinement checker designed to analyse formal models of protocols or

applications. The models are expressed in the Communicating Sequential Processes (CSP)

language [171]. Casper [160] was created to simplify the process of expressing a security

protocol with CSP. With Casper, a user can express a model using more abstract notations. A

file containing such notations is called a Casper script. Casper translates the Casper script into

CSP which can be processed by FDR. According to [172], the performance (in terms of

execution time) of Casper/FDR is typically lower than other tools.

AVISPA [163] integrates four different backends, namely On-the-Fly Model-Checker

(OFMC), CL-based Attack Searcher (CL-AtSe), SAT-based Model Checker (SATMC), and Tree-

Automata-based Protocol Analyzer (TA4SP), for the verification of protocols. The

specifications of a protocol and security properties are written in High-Level Protocol

Specification Language (HLPSL). The HLPSL file is then translated into an intermediate format

that is supported by the backend used. For demonstration, a number of security protocols

have been modelled in HLPSL and a collection of these protocol specifications are stored in

115

the AVISPA Library [173]. Despite its popularity and ease of use, the performance of AVISPA

is lower than those of other tools [172].

Scyther [168] extends the ideas used in Athena [167] to verify the security properties

(including authentication and secrecy) of a protocol. It uses a symbolic backward search based

on patterns. It supports bounded and unbounded verifications with guaranteed termination.

A protocol model and security properties can be expressed by using Security Protocol

Description Language (SPDL). With SPDL, the protocol model can be expressed using

notations similar to those used in literature for describing security protocols. Scyther has been

used to model protocols collected in the Security Protocols Open Repository (SPORE) library

[174]. Based on the experimental evaluation reported in [172], Scyther is the second fastest

tool after ProVerif.

ProVerif [165][169] abstracts a representation of a protocol by using a set of Horn clauses.

It can analyse the protocol for an unbounded number of sessions. It supports a wide range of

cryptographic primitives and can verify secrecy, correspondence, and a number of

equivalence properties. In comparison with other tools, the performance of ProVerif is the

highest [172]. However, in ProVerif, modelling a protocol is more difficult than other tools. In

addition, it may find false attacks and it also does not always terminate.

TAMARIN [170] generalises a backward search approach used by Scyther [168]. The

specifications of a protocol and security properties are done, respectively, by multiset

rewriting rules and in a guarded fragment of first-order logic. It supports complex control

flows (e.g., loops), complex security properties (e.g., eCK model [175] for key exchange

protocols), and equational theories (e.g., Diffie-Hellman and bilinear pairings). These features

are achieved at a cost of more complicated protocol modelling in comparison with other tools

such as Scyther. Another limitation of TAMARIN is that it does not always terminate.

Based on the above discussions, we have chosen Scyther as the symbolic analysis tool for

our work. The selection of Scyther is made based on the following reasons: (1) Scyther has

been successfully used to verify many security protocols, including those collected in the

SPORE library [174], this has demonstrated its capabilities and effectiveness; (2) it supports

the verification of authentication and secrecy which can be used to, respectively, verify the

security properties of mutual authentication (SR1) and sensitive data confidentiality (SR2); (3)

the notations used in SPDL are widely used in describing protocols published in literature,

thus, improving readability and understandability; (4) the verification of security properties

can be done automatically, eliminating errors that could be introduced by a manual

verification method; and (5) the performance of Scyther is much higher than other tools with

similar features [172].

5.7.2.2 Attacker Model
The following attacker model is used in the verification of the MIEA protocols using Scyther.

(EAM1) Perfect cryptography is assumed, cryptographic schemes are secure, and tokens

generated by the schemes cannot be reverse without corresponding keys.

(EAM2) An attacker can intercept and modify any messages, inject new messages, and send

them to any entities in the network.

116

(EAM3) The attacker can perform any cryptographic operations as long as it knows the

corresponding keys.

(EAM4) The attacker cannot mount cryptanalytical attacks and cannot guess secrets (e.g.,

nonces and keys).

5.7.2.3 Security Properties
Scyther supports the verifications of a number of security properties. For this work, we

consider two properties, non-injective synchronisation (authentication) and secrecy

(confidentiality) [176].

Non-injective synchronisation ensures that messages exchanged between two entities are

indeed sent and received by the claimed sender and receiver, the messages have not been

tampered with, and they are exchanged in the correct order. In other words, the message

exchange has occurred exactly as specified by the protocol description. We use this property

to verify the security requirement of mutual authentication (SR1). It is worth noting that non-

injective synchronisation only considers the contents and the ordering, but not the freshness,

of the messages. Hence, it does not provide a protection against replay attacks.

Secrecy ensures that data transmitted between two honest and uncompromised entities

are not revealed to an attacker, particularly when the data are transmitted over an insecure

network where the attacker may intercept any transmitted messages. We use this property

to verify the security requirement of sensitive data confidentiality (SR2).

5.7.2.4 Protocol Modelling
As mentioned earlier, with Scyther, the specifications of a protocol and security properties

are expressed in SPDL. Each SPDL file contains the descriptions of protocols and the associated

data (e.g., static constants, user-defined functions, and keys) for a single analysis. Each

protocol contains the descriptions of entity roles. Each role further consists of three sections:

constants and variables, messages, and security claims (security properties to be verified).

The detail SPDL specifications and how to use Scyther are explained in the manual of Scyther

(https://github.com/cascremers/scyther/blob/master/gui/scyther-manual.pdf).

In this work, each of the three MIEA protocols along with the corresponding security

properties is written in a separate SPDL file. The analyses of the protocols are conducted

independently. We do not consider multi-protocol or cross-protocol verification as the three

protocols are designed to run independently and the messages used in each of the protocols

are different (i.e., different PRO values).

For GP2A, two entity roles are defined, I for initiators and R for respondents. The contents

of the messages and the message flows are the same as those described in Section 5.5.4.1. In

each of I and R, there is one non-injective synchronisation claim and seven secrecy claims (for

𝑔𝑘, 𝑝𝑚𝑘𝐼,𝑅, 𝑚𝑘𝐼,𝑅, 𝑐𝑘𝐼,𝑅, 𝑛1, 𝑛2, and 𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑐𝑘𝑎𝑔𝑒).

For GE2A, in addition to I and R, an additional role Z for a trusted third party is introduced.

This is for the establishment of a primary key 𝑝𝑚𝑘𝐼,𝑅 and a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑍 on an initiator of role

I. At the beginning of the protocol description, two messages are exchanged between I and Z

to, respectively, request and dispatch 𝑝𝑚𝑘𝐼,𝑅 and 𝑡𝑘𝑡𝐼,𝑅
𝑧 . The remaining messages and

authentication flows are the same as those described in Section 5.5.4.2. Like GP2A, in each of

I and R, there is one non-injective synchronisation claim and seven secrecy claims (for 𝑔𝑘,

https://github.com/cascremers/scyther/blob/master/gui/scyther-manual.pdf

117

𝑝𝑚𝑘𝐼,𝑅, 𝑚𝑘𝐼,𝑅, 𝑐𝑘𝐼,𝑅, 𝑛1, 𝑛2, and 𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑎𝑐𝑘𝑎𝑔𝑒). There is one additional secrecy claim

for 𝑝𝑚𝑘𝐼,𝑅 in role Z.

The specifications of SOA and the corresponding security properties are similar to those

of GP2A. The only difference is that a group key 𝑔𝑘 is not used in SOA. Therefore, the secrecy

claim for 𝑔𝑘 is excluded from I and R.

The contents of the SPDL files for the three protocols (i.e., gp2a.spdl for GP2A, ge2a.spdl

for GE2A, and soa.spdl for SOA) are shown in Appendix A.

5.7.2.5 Verification Results
The verification results of the three protocols using Scyther under an unbounded number of

sessions are presented in Figure 5.15. The results show that each of the three protocol passed

the verifications against the specified security claims. Therefore, the three protocols satisfy the

security requirements of mutual authentication (SR1) and sensitive data confidentiality (SR2).

(a)

(b)

118

(c)

Figure 5.15: Symbolic analysis of the three MIEA protocols using Scyther.

(a) The GP2A protocol. (b) The GE2A protocol. (c) The SOA protocol.

5.7.3 Complexity Analysis
The strengths of the security protections offered by MIEA rely on the strengths of the

underlying cryptographic schemes. In the following, we first give a list of notations used in

this analysis, then the security strengths of the cryptographic schemes (i.e., a symmetric-key

based encryption scheme and a MAC scheme), before analysing the strength of MIEA.

5.7.3.1 Notations
The notations used in this analysis are shown in Table 5.10. The lengths are expressed in bits.

Table 5.10: Notations used in the complexity analysis of MIEA.

Symbol Meaning

𝐿𝑘 Key length

𝐿𝑑 Plaintext length

𝐿𝑚 MAC input data length

𝐿𝜏 MAC tag length
Notes: - All group keys and pairwise keys have the same lengths (𝐿𝑘).

- MAC input data refer to data to be signed with MAC.

5.7.3.2 The Strengths of Cryptographic Schemes
The strengths of cryptographic schemes are measured as the upper bound of computational

complexity needed to compromise an authentication token. Such complexity is usually

expressed as 2𝑛 where the value of 𝑛 is dependent on the scheme and parameters used.

Attacks on cryptographic schemes can be largely classified into two groups, cryptanalytical

attacks and brute-force attacks [177]. Cryptanalytical attacks on symmetric-key

cryptosystems (encryption and MAC schemes) can be mitigated by using schemes that have

been well studied and have no known vulnerabilities. Hence, these attacks are not considered

in this work.

Attacks on encryption schemes can be classified into two groups, encryption key attacks

(guessing the keys used for encryption) and plaintext attacks (guessing the plaintexts of given

encrypted data). Mounting such attacks requires complexities of 2𝐿𝑘 and 2𝐿𝑑 , respectively

[178]. Therefore, the complexity of successfully mounting an attack on an encryption scheme

is 2min (𝐿𝑘,𝐿𝑑).

119

Attacks on MACs are tag forgery. This is done by (1) finding a new data object that

produces the same tag, (2) guessing the key used to sign (and verify) the tag, or (3) guessing

the tag for a new data object. The complexities of these actions are 2𝐿𝑚 , 2𝐿𝑘, and 2𝐿𝜏,

respectively [178]. Therefore, the complexity of successfully mounting a tag forgery attack is

2min (𝐿𝑚,𝐿𝑘,𝐿𝜏).

5.7.3.3 Impersonation Attacks
To mount an impersonation attack, an attacker has to generate a response in correspondence

to a given challenge (a nonce) which is protected by encryption. To obtain such a challenge,

the adversary may either (1) guess the keys used for decryption or (2) guess the nonce. For

(1), two keys (a group key and a primary key) are used for encryption when GP2A or GE2A is

applied, thus, guessing these two keys requires a complexity of 2𝐿𝑘 + 2𝐿𝑘 = 2𝐿𝑘+1. When SOA

is applied, one key (a secondary key) is used for encryption, thus, the complexity of guessing

the key is 2𝐿𝑘. For (2), in all the cases, guessing the challenge requires a complexity of 2𝐿𝑑.

Therefore, the complexity of mounting a successful impersonation attack against MIEA is

2min (𝐿𝑘,𝐿𝑑).

5.7.3.4 Confidential Data Exposure Attacks
Confidential data used in MIEA are the nonces (used as challenges and responses), group keys,

and pairwise keys. The confidentiality is breached if any of these items are revealed. To

expose one of these items, the adversary should guess any of the keys (keys for encryption

and keys to be encrypted) and nonces, which requires a complexity of 2𝐿𝑘 and 2𝐿𝑑 ,

respectively. Therefore, the complexity of mounting a successful confidential data exposure

attack against MIEA is 2min (𝐿𝑘,𝐿𝑑).

5.7.3.5 Replay Attacks
As long as a challenge (nonce) is freshly generated and is not repeated, an adversary cannot

mount a replay attack due to the lack of a message containing a corresponding response.

Assuming that a challenge is repeated and the adversary has captured a message containing

the response to the challenge, to mount a replay attack, the adversary has to learn the

challenge (to find the corresponding response) which is protected with encryption. This is

similar to mounting an impersonation attack. As explained earlier, the complexities of

guessing the encryption keys are 2𝐿𝑘+1 when GP2A or GE2A is applied and 2𝐿𝑘 when SOA is

applied, whereas the complexity of guessing the challenge is 2𝐿𝑑. Therefore, the complexity

of mounting a successful replay attack against MIEA is also 2min (𝐿𝑘,𝐿𝑑).

5.7.3.6 Message Tampering Attacks
To tamper with a message without being detected, an adversary has to mount a tag forgery

on the message. As explained earlier, this requires a complexity of 2min (𝐿𝑚,𝐿𝑘,𝐿𝜏). Therefore,

the complexity of mounting a successful message tampering attack against MIEA is

2min (𝐿𝑚,𝐿𝑘,𝐿𝜏).

The security strength of MIEA is summarised in Table 5.11.

120

Table 5.11: The security strength of MIEA.

Attacks Complexity

(T1) Impersonation attacks 2min (𝐿𝑘,𝐿𝑑)

(T2) Confidential data exposure attacks 2min (𝐿𝑘,𝐿𝑑)

(T3) Replay attacks 2min (𝐿𝑘,𝐿𝑑)

(T4) Message tampering attacks 2min (𝐿𝑚,𝐿𝑘,𝐿𝜏)

5.8 Performance Evaluation

The performance of MIEA is theoretically evaluated in two aspects, computational and

communication overheads. For benchmarking, the results are compared with the most

related solutions, Kerberos [34][138][139] and NSLPK [31]. Kerberos is chosen because it is an

efficient symmetric-key based entity authentication protocol that provides strong security

protections and it is commonly used to provide secure access to many applications, such as

Apache Hadoop [179]. NSLPK is chosen because it is an asymmetric-key based entity

authentication protocol that have been well-studied and frequently discussed in literature.

Although asymmetric-key based entity authentication protocols can be used in a context

compatible with CBDC-MPC, they usually introduce a high-level of overhead costs. By

evaluating the performance of NSLPK, we could learn how much overhead costs an

asymmetric-key based entity authentication protocol introduces in comparison with

symmetric-key based ones such as ours and Kerberos. The message transaction flows and

operational steps of Kerberos and NSLPK are detailed in Appendix B.

5.8.1 Notations
The notations used in this performance evaluation are shown in Table 5.12.

Table 5.12: Notations used in performance evaluation of MIEA.

Symbols Meanings

𝑂𝑠𝑒 , 𝑂𝑠𝑑 Sym-Encryption, Sym-Decryption operation

𝑂𝑎𝑒 , 𝑂𝑎𝑑 Asym-Encryption, Asym-Decryption operation

𝑂𝑠𝑠, 𝑂𝑠𝑣 SIG-Signing, SIG-Verification operation

𝑂𝑚𝑠, 𝑂𝑚𝑣 MAC-Signing, MAC-Verification operation

𝑂𝑘𝑑 Key derivation operation

𝐿ℎ𝑑 The length of a message header

𝐿𝑗𝑖𝑑 , 𝐿𝑟𝑒𝑞 , 𝐿𝑖𝑐𝑙

𝐿𝑚𝑖𝑑 , 𝐿𝑒𝑖𝑑

The lengths of a JID field, a REQ field, an ICL field, an MID field, an entity ID (EID)
field

𝐿𝑛 , 𝐿𝑡 , 𝐿𝜎 , 𝐿𝜏 , 𝐿𝑡𝑘𝑡 The lengths of a nonce, a timestamp, a signature, a tag, a ticket

𝐿𝑘 , 𝐿𝑝𝑘 The lengths of a symmetric key, a public key

𝐿𝑝𝑘𝑔 The length of an encrypted credential package

5.8.2 Computational Overheads
The computational overheads are evaluated in terms of the number of cryptographic

operations performed by each of the entities involved in an authentication instance. Non-

cryptographic operations, such as equality check, are omitted as their costs (in terms of

execution times) are negligible in comparison with those of cryptographic operations.

Cryptographic operations are classified into five groups: Sym-Encryption and Sym-Decryption

(𝑂𝑠𝑒 , 𝑂𝑠𝑑), Asym-Encryption and Asym-Decryption (𝑂𝑎𝑒 , 𝑂𝑎𝑑), MAC-Signing and MAC-

121

Verification (𝑂𝑚𝑠, 𝑂𝑚𝑣), SIG-Signing and SIG-Verification (𝑂𝑠𝑠, 𝑂𝑠𝑣), and key derivation (𝑂𝑘𝑑).

As the costs of operations are dependent on the sizes of data objects, we mark operations on

potentially large objects with a superscripted asterisk (*).

5.8.2.1 GP2A Protocol
As shown in Figure 5.6, there are two entities, an initiator 𝐼 and a respondent 𝑅, involved in an

authentication instance. 𝐼 performs cryptographic operations in Step 1 and Step 3. In Step 1,

𝐼 performs three sets of operations: the first is for generating an authenticator 𝑎𝑢𝑡ℎ1, i.e.,

encrypting a nonce 𝑛1 (2 ∗ 𝑂𝑠𝑒); the second is for generating a MAC key (𝑂𝑘𝑑); and the third

is for generating a tag for a message msg-GP2A1 (𝑂𝑚𝑠). In Step 3, 𝐼 performs six sets of

operations: the first is for verifying a tag of a message msg-GP2A2 (𝑂𝑚𝑣); the second is for

verifying an authenticator 𝑎𝑢𝑡ℎ2, i.e., decrypting a concatenation of two nonces (2 ∗ 𝑂𝑠𝑑);

the third is for generating an authenticator 𝑎𝑢𝑡ℎ3, i.e., encrypting 𝑛2 (2 ∗ 𝑂𝑠𝑒); the fourth is

for generating a credential encryption key (𝑂𝑘𝑑); the fifth is for encrypting a credential package

(𝑂𝑠𝑒
∗); and the sixth is for generating a tag for a message msg-GP2A3 (𝑂𝑚𝑠

∗). The total number

of operations performed by 𝐼 is 4 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗ .

𝑅 performs cryptographic operations in Step 2 and Step 4. In Step 2, 𝑅 performs five sets

of operations: the first is for generating a MAC key (𝑂𝑘𝑑); the second is for verifying a tag of

a message msg-GP2A1 (𝑂𝑚𝑣); the third is for verifying an authenticator 𝑎𝑢𝑡ℎ1, i.e., decrypting

a nonce 𝑛1 (2 ∗ 𝑂𝑠𝑑); the fourth is for generating an authenticator 𝑎𝑢𝑡ℎ2, i.e., encrypting a

concatenation of two nonces (2 ∗ 𝑂𝑠𝑒); and the fifth is for generating a tag for a message msg-

GP2A2 (𝑂𝑚𝑠). In Step 4, 𝑅 performs four sets of operations: the first is for verifying a tag for

a message msg-GP2A3 (𝑂𝑚𝑣
∗); the second is for verifying an authenticator 𝑎𝑢𝑡ℎ3, i.e.,

decrypting 𝑛2 (2 ∗ 𝑂𝑠𝑑); the third is for generating a credential decryption key (𝑂𝑘𝑑); and the

fourth is for decrypting a credential package (𝑂𝑠𝑑
∗). The total number of operations performed

by 𝑅 is 2 ∗ 𝑂𝑠𝑒 + 4 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗ .

5.8.2.2 GE2A Protocol
With the GE2A protocol, cryptographic operations performed by 𝐼 and 𝑅 are similar to those

when GP2A is applied, with an exception that here, in Step 2, 𝑅 has to decrypt a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑧

to obtain a primary key 𝑝𝑚𝑘𝐼,𝑅, thus, having one additional decryption operation (𝑂𝑠𝑑).

Therefore, the numbers of operations performed by 𝐼 and 𝑅 are, respectively, 4 ∗ 𝑂𝑠𝑒 + 2 ∗

𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗ and 2 ∗ 𝑂𝑠𝑒 + 5 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 +

𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗ .

5.8.2.3 SOA Protocol
The authentication flow of SOA is similar to that of GP2A. The only difference is that, when

SOA is applied, only one secondary key is used for the generation and verification of

authenticators, cutting the total number of 𝑂𝑠𝑒 by 3 (2 for 𝐼 and 1 for 𝑅) and 𝑂𝑠𝑑 by 3 (1 for 𝐼

and 2 for 𝑅). Therefore, the numbers of operations performed by 𝐼 and 𝑅 are, respectively,

2 ∗ 𝑂𝑠𝑒 + 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗ and 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗

𝑂𝑘𝑑 + 𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗ .

122

5.8.2.4 Kerberos Protocol
As shown in Figure B.1 in Appendix B, there are four entities, an initiator 𝐼, a KDC server 𝐾, a

TGS server 𝑇, and a respondent 𝑅, involved in an authentication instance. 𝐼 performs

cryptographic operations in Step 3 and Step 5. In each of these steps, 𝐼 performs two sets of

operations: the first is for decrypting the encrypted concatenation of a key and a nonce (𝑂𝑠𝑑);

and the second is for generating an authenticator, i.e., encrypting a timestamp (𝑂𝑠𝑒). Hence,

the total number of operations performed by 𝐼 is 2 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑.

𝐾 performs two sets of operations in Step 2: the first is for encrypting a concatenation of

a pairwise key and a nonce (𝑂𝑠𝑒); and the second is for generating a ticket 𝑡𝑘𝑡𝐼,𝑇
𝐾 (𝑂𝑠𝑒). Hence,

the total number of operations is 2 ∗ 𝑂𝑠𝑒.

𝑇 performs four sets of operations in Step 4: the first is for decrypting a ticket 𝑡𝑘𝑡𝐼,𝑇
𝐾 to

obtain 𝑘𝐼,𝑇 (𝑂𝑠𝑑); the second is for verifying an authenticator 𝑎𝑢𝑡ℎ1, i.e., decrypting 𝑎𝑢𝑡ℎ1

(𝑂𝑠𝑑); the third is for encrypting a concatenation of a pairwise key and a nonce (𝑂𝑠𝑒); and the

fourth is for generating a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑇 (𝑂𝑠𝑒). Hence, the total number of operations is 2 ∗ 𝑂𝑠𝑒 +

2 ∗ 𝑂𝑠𝑑.

𝑅 performs two sets of operations in Step 6: the first is for decrypting a ticket 𝑡𝑘𝑡𝐼,𝑅
𝑇 to

obtain 𝑘𝐼,𝑅 (𝑂𝑠𝑑); and the second is for verifying an authenticator 𝑎𝑢𝑡ℎ2, i.e., decrypting

𝑎𝑢𝑡ℎ2 (𝑂𝑠𝑑). Hence, the total number of operations is 2 ∗ 𝑂𝑠𝑑.

In a case that 𝐼 have already obtained 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾 from 𝐾, 𝐼 can reuse the key and the

ticket, thus, performing one less decryption operation (𝑂𝑠𝑑), 𝐾 needs not perform any

operation, and each of 𝑇 and 𝑅 performs the same number of operations.

5.8.2.5 NSLPK Protocol
As shown in Figure B.2 in Appendix B, there are three entities, an initiator 𝐼, a key server 𝑍,

and a respondent 𝑅, involved in an authentication instance. 𝐼 performs cryptographic

operations in Step 3 and Step 7. In Step 3, 𝐼 performs two sets of operations: the first is for

verifying the public key 𝑝𝑘𝑅 (𝑂𝑠𝑣); and the second is for encrypting a concatenation of a nonce

and an EID (𝑂𝑎𝑒). In Step 7, 𝐼 performs two sets of operations: the first is for decrypting the

encrypted concatenation of two nonces and an EID (𝑂𝑎𝑑); and the second is for encrypting 𝑛2
(𝑂𝑎𝑒). Hence, the total number of operations is 2 ∗ 𝑂𝑎𝑒 + 𝑂𝑎𝑑 + 𝑂𝑠𝑣.

𝑍 performs cryptographic operations in Step 2 and Step 5. In each of these steps, 𝑍

performs one operation, i.e., signing a concatenation of a public key and an entity ID (𝑂𝑠𝑠).

Hence, the total number of operations is 2 ∗ 𝑂𝑠𝑠.

𝑅 performs cryptographic operations in Step 4, Step 6, and Step 8. In Step 4, 𝑅 performs

one operation, i.e., decrypting the encrypted concatenation of a nonce and an EID (𝑂𝑎𝑑). In

Step 6, 𝑅 performs two sets of operations: the first is for verifying the public key 𝑝𝑘𝐼 (𝑂𝑠𝑣);

and the second is for encrypting a concatenation of two nonces and an EID (𝑂𝑎𝑒). In Step 8, 𝑅

performs one operation, i.e., decrypting the encrypted 𝑛2 (𝑂𝑎𝑑). Hence, the total number of

operations is 𝑂𝑎𝑒 + 2 ∗ 𝑂𝑎𝑑 + 𝑂𝑠𝑣.

In a case that both 𝐼 and 𝑅 already know the public key of each other, 𝐼 performs one less

SIG-Verification operation (𝑂𝑠𝑣), 𝐾 needs not perform any operation, and 𝑅 performs one less

SIG-Verification operation (𝑂𝑠𝑣).

123

5.8.2.6 The Comparisons of Computational Overheads
The computational overheads imposed on individual entities when different entity

authentication protocols are applied are summarised in Table 5.13. The result shows that,

among the protocols, the three MIEA protocols (GP2A, GE2A, and SOA) introduce the largest

number of cryptographic operations and the NSLPK protocol introduces the lowest number

of operations. However, when the protocols are deployed on real systems, the computational

overhead cost (in terms of execution times) introduced by the NSLPK protocol is likely to be

the highest and the cost introduced by Kerberos should be the lowest. This is because the

operations of the NSLPK protocol are asymmetric-key based, which is much more

computationally expensive (a few magnitudes [45]) than symmetric-key based [177]. In

contrast, the MIEA protocols and Kerberos, which are symmetric-key based, should be more

efficient. In the CBDC-MPC context, NSLPK and Kerberos may increase the risk of creating

performance bottlenecks on centralised credential servers (𝑍 for NSLPK and 𝐾 and 𝑇 for

Kerberos) when being applied to large-scale job executions involving a large number of Workers

(particularly in the map phase). This is due to a large number of authentication requests by the

Workers when they read data from and write data to the DFS clusters (each of a reading or

writing request requires three interactions thus three authentication instances).

Table 5.13: The comparisons of the computational overheads imposed on individual entities by

different entity authentication protocols.

Kerberos

 Without 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾 caching With 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇

𝐾 caching

𝐼 2 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 2 ∗ 𝑂𝑠𝑒 + 𝑂𝑠𝑑

𝐾 2 ∗ 𝑂𝑠𝑒 -

𝑇 2 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 2 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑

𝑅 2 ∗ 𝑂𝑠𝑑 2 ∗ 𝑂𝑠𝑑

Total 6 ∗ 𝑂𝑠𝑒 + 6 ∗ 𝑂𝑠𝑑 4 ∗ 𝑂𝑠𝑒 + 5 ∗ 𝑂𝑠𝑑

NSLPK

 Without 𝑝𝑘𝐼 and 𝑝𝑘𝑅 caching With 𝑝𝑘𝐼 and 𝑝𝑘𝑅 caching

𝐼 2 ∗ 𝑂𝑎𝑒 + 𝑂𝑎𝑑 + 𝑂𝑠𝑣 2 ∗ 𝑂𝑎𝑒 + 𝑂𝑎𝑑

𝑍 2 ∗ 𝑂𝑠𝑠. -

𝑅 𝑂𝑎𝑒 + 2 ∗ 𝑂𝑎𝑑 + 𝑂𝑠𝑣 𝑂𝑎𝑒 + 2 ∗ 𝑂𝑎𝑑

Total 3 ∗ 𝑂𝑎𝑒 + 3 ∗ 𝑂𝑎𝑑 + 2 ∗ 𝑂𝑠𝑠 + 2 ∗ 𝑂𝑠𝑣 3 ∗ 𝑂𝑎𝑒 + 3 ∗ 𝑂𝑎𝑑

GP2A

𝐼 4 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗

𝑅 2 ∗ 𝑂𝑠𝑒 + 4 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗

Total 6 ∗ 𝑂𝑠𝑒 + 6 ∗ 𝑂𝑠𝑑 + 2 ∗ 𝑂𝑚𝑠 + 2 ∗ 𝑂𝑚𝑣 + 4 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑠𝑑

∗ + 𝑂𝑚𝑠
∗ + 𝑂𝑚𝑣

∗

GE2A

𝐼 4 ∗ 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗

𝑅 2 ∗ 𝑂𝑠𝑒 + 5 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗

Total 6 ∗ 𝑂𝑠𝑒 + 7 ∗ 𝑂𝑠𝑑 + 2 ∗ 𝑂𝑚𝑠 + 2 ∗ 𝑂𝑚𝑣 + 4 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑠𝑑

∗ + 𝑂𝑚𝑠
∗ + 𝑂𝑚𝑣

∗

SOA

𝐼 2 ∗ 𝑂𝑠𝑒 + 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑚𝑠

∗

𝑅 𝑂𝑠𝑒 + 2 ∗ 𝑂𝑠𝑑 + 𝑂𝑚𝑠 + 𝑂𝑚𝑣 + 2 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑑
∗ + 𝑂𝑚𝑣

∗

Total 3 ∗ 𝑂𝑠𝑒 + 3 ∗ 𝑂𝑠𝑑 + 2 ∗ 𝑂𝑚𝑠 + 2 ∗ 𝑂𝑚𝑣 + 4 ∗ 𝑂𝑘𝑑 + 𝑂𝑠𝑒
∗ + 𝑂𝑠𝑑

∗ + 𝑂𝑚𝑠
∗ + 𝑂𝑚𝑣

∗

124

5.8.3 Communication Overheads
The communication overheads are evaluated in terms of the number and sizes of messages

exchanged among entities involved in an authentication instance. The total size of a message

equals the sum of the size of the header and the size of the payload. For all messages, the size

of the headers is fixed (𝐿ℎ𝑑). The size of the payload is dependent on the number and sizes of

data items (e.g., authenticators, tickets, and tags) contained in the payload. For comparison,

it is assumed that the messages used in Kerberos and NSLPK have the same header as shown

in Figure 5.7 (thus, the header size is 𝐿ℎ𝑑) and the tickets used in Kerberos share the same

ticket structure as shown in Figure 5.4 (thus, the ticket size is 𝐿𝑡𝑘𝑡).

5.8.3.1 GP2A Protocol
There are three messages exchanged between 𝐼 and 𝑅. In Step 1, 𝐼 sends msg-GP2A1 to 𝑅.

The message contains one JID (𝐿𝑗𝑖𝑑), one REQ (𝐿𝑟𝑒𝑞), one ICL 𝐿𝑖𝑐𝑙, one authenticator1

(containing one nonce) (𝐿𝑛), and one tag (𝐿𝜏). Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑗𝑖𝑑 +

𝐿𝑟𝑒𝑞 + 𝐿𝑖𝑐𝑙 + 𝐿𝑛 + 𝐿𝜏. In Step 2, 𝑅 sends msg-GP2A2 to 𝐼. The message contains one MID

(𝐿𝑚𝑖𝑑), one authenticator (containing two nonces) (2 ∗ 𝐿𝑛), and one tag (𝐿𝜏). Hence, the size

of the message is 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝜏. In Step 3, 𝐼 sends msg-GP2A3 to 𝑅. The message

contains one MID (𝐿𝑚𝑖𝑑), one authenticator (containing one nonce) (𝐿𝑛), one credential

package, and one tag (𝐿𝜏). The size of the credential package is interaction dependent. For

ease of discussion and without losing generality, here the size of the credential package is

denoted as 𝐿𝑝𝑘𝑔. Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 𝐿𝑛 + 𝐿𝑝𝑘𝑔 + 𝐿𝜏.

5.8.3.2 GE2A Protocol
Similar to GP2A, there are also three messages exchanged between 𝐼 and 𝑅. The only

difference is that, in Step 1, the first message (msg-GE2A1) sent by 𝐼 to 𝑅 contains one

additional item, i.e., a ticket. Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑗𝑖𝑑 + 𝐿𝑟𝑒𝑞 + 𝐿𝑖𝑐𝑙 +

𝐿𝑛 + 𝐿𝑡𝑘𝑡 + 𝐿𝜏.

5.8.3.3 SOA Protocol
With SOA, the number and the sizes of messages exchanged between 𝐼 and 𝑅 are the same

as those of GP2A2.

5.8.3.4 Kerberos Protocol
Without 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇

𝐾 caching, there are a total of five messages exchanged among entities:

two messages exchanged between 𝐼 and 𝐾; two messages exchanged between 𝐼 and 𝑇; and

one message sent from 𝐼 to 𝑅. For messages exchanged between 𝐼 and 𝐾, in Step 1, 𝐼 sends

msg-K1 to 𝐾. The message contains two EIDs (2 ∗ 𝐿𝑒𝑖𝑑) and one nonce (𝐿𝑛). Hence, the size

of the message is 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑 + 𝐿𝑛. In Step 2, 𝐾 sends msg-K2 to 𝐼. The message contains

one encrypted concatenation of a pairwise key and a nonce (𝐿𝑘 + 𝐿𝑛) and one ticket (𝐿𝑡𝑘𝑡).

Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑘 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡. For messages exchanged between 𝐼

1 The size of an encrypted data token, such as an authenticator, is dependent on the size of the plaintext (input data) to be
encrypted as well as the encryption scheme used. Some block cipher-based encryption schemes add padding to the input
data and produce an encrypted data token whose size is multiple of block sizes (specific to a particular scheme) or key sizes.
2 Depending on an encryption scheme and a padding scheme used, nested encryption may produce larger encrypted tokens.
In other words, SOA may produce smaller messages than those of GP2A.

125

and 𝑇, in Step 3, 𝐼 sends msg-K3 to 𝑇. The message contains one authenticator (containing

one timestamp) (𝐿𝑡), one ticket (𝐿𝑡𝑘𝑡), one EID (𝐿𝑒𝑖𝑑), and one nonce (𝐿𝑛). Hence, the size of

the message is 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡 + 𝐿𝑒𝑖𝑑 + 𝐿𝑛. In Step 4, 𝑇 sends msg-K4 to 𝐼. The message

contains one encrypted concatenation of a pairwise key and a nonce (𝐿𝑘 + 𝐿𝑛) and one ticket

(𝐿𝑡𝑘𝑡). Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑘 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡. For the message (msg-K5) sent

from 𝐼 to 𝑅, the message contains one authenticator (containing one timestamp) (𝐿𝑡) and one

ticket (𝐿𝑡𝑘𝑡). Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡.

With 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾 caching, there are three messages (msg-K3, msg-K4, and msg-K5)

exchanged among 𝐼, 𝑇, and 𝑅. The sizes of these messages are the same as analysed above.

5.8.3.5 NSLPK Protocol
Without 𝑝𝑘𝐼 and 𝑝𝑘𝑅 caching, there are a total of seven messages exchanged among entities:

two messages exchanged between 𝐼 and 𝑍; two messages exchanged between 𝑍 and 𝑅; and

three messages between 𝐼 and 𝑅. For the messages exchanged between 𝐼 and 𝑍, in Step 1, 𝐼

sends msg-N1 to 𝑍. The message contains two EIDs (2 ∗ 𝐿𝑒𝑖𝑑). Hence, the size of the message

is 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑. In Step 2, 𝑍 sends msg-N2 to 𝐼. The message contains a concatenation of a

public key and an EID (𝐿𝑝𝑘 + 𝐿𝑒𝑖𝑑) and a corresponding signature (𝐿𝜎). Hence, the size of the

message is 𝐿ℎ𝑑 + 𝐿𝑝𝑘 + 𝐿𝑒𝑖𝑑 + 𝐿𝜎. The messages (msg-N4 and msg-N5) exchanged between

𝑍 and 𝑅 are similar to those (msg-N1 and msg-N2) exchanged between 𝐼 and 𝑍. Hence, the

sizes of the messages are, respectively, 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑 and 𝐿ℎ𝑑 + 𝐿𝑝𝑘 + 𝐿𝑒𝑖𝑑 + 𝐿𝜎. For the

messages exchanged between 𝐼 and 𝑅, in Step 3, 𝐼 sends msg-N3 to 𝑅. The message contains

one encrypted concatenation of a nonce and an EID (𝐿𝑛 + 𝐿𝑒𝑖𝑑). Hence, the size of the

message is 𝐿ℎ𝑑 + 𝐿𝑛 + 𝐿𝑒𝑖𝑑. In Step 6, 𝑅 sends msg-N6 to 𝐼. The message contains one

encrypted concatenation of two nonces and an EID (2 ∗ 𝐿𝑛 + 𝐿𝑒𝑖𝑑). Hence, the size of the

message is 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝑒𝑖𝑑. In Step 7, 𝐼 sends msg-N7 to 𝑅. The message contains one

encrypted nonce (𝐿𝑛). Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝑛.

With 𝑝𝑘𝐼 and 𝑝𝑘𝑅 caching, there are only three messages (msg-N3, msg-N6, and msg-N7)

exchanged between 𝐼 and 𝑅. The sizes of these messages are the same as analysed above.

5.8.3.6 The Comparisons of Communication Overheads
The communication overheads when different entity authentication protocols are applied are

shown in Table 5.14. The result shows that GP2A, GE2A, and SOA introduce the same number

and sizes of messages with the exception of msg-GE2A1 which has one additional 𝐿𝑡𝑘𝑡. In

comparison with Kerberos without 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾 caching and NSLPK without 𝑝𝑘𝐼 and 𝑝𝑘𝑅

caching, the MIEA protocols introduce fewer number of messages, reducing message

transmission overhead (e.g., network-level packet headers). When key caching is applied, the

MIEA protocols introduce the same number of messages, i.e., 3 messages, as those of

Kerberos and NSLPK. However, each of the messages used in each of the MIEA protocols

contains more data items (i.e., tags and credentials for subsequent authentication) than those

in Kerberos or NSLPK.

126

Table 5.14: The comparisons of the communication overheads introduced by different entity

authentication protocols.

Kerberos

 Without 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾 caching With 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇

𝐾 caching

Between

𝐼 and 𝐾

2 messages:

msg-K1: 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑 + 𝐿𝑛

msg-K2: 𝐿ℎ𝑑 + 𝐿𝑘 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡

-

Between

𝐼 and 𝑇

2 messages:

msg-K3: 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡 + 𝐿𝑒𝑖𝑑 + 𝐿𝑛

msg-K4: 𝐿ℎ𝑑 + 𝐿𝑘 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡

2 messages:

msg-K3: 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡 + 𝐿𝑒𝑖𝑑 + 𝐿𝑛

msg-K4: 𝐿ℎ𝑑 + 𝐿𝑘 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡

Between

𝐼 and 𝑅

1 message:

msg-K5: 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡

1 message:

msg-K5: 𝐿ℎ𝑑 + 𝐿𝑡 + 𝐿𝑡𝑘𝑡

Total 5 messages 3 messages

NSLPK

 Without 𝑝𝑘𝐼 and 𝑝𝑘𝑅 caching With 𝑝𝑘𝐼 and 𝑝𝑘𝑅 caching

Between

𝐼 and 𝑍

2 messages:

msg-N1: 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑

msg-N2: 𝐿ℎ𝑑 + 𝐿𝑝𝑘 + 𝐿𝑒𝑖𝑑 + 𝐿𝜎

-

Between

𝑍 and 𝑅

2 messages:

msg-N4: 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑒𝑖𝑑

msg-N5: 𝐿ℎ𝑑 + 𝐿𝑝𝑘 + 𝐿𝑒𝑖𝑑 + 𝐿𝜎

-

Between

𝐼 and 𝑅

3 messages:

msg-N3: 𝐿ℎ𝑑 + 𝐿𝑛 + 𝐿𝑒𝑖𝑑

msg-N6: 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝑒𝑖𝑑

msg-N7: 𝐿ℎ𝑑 + 𝐿𝑛

3 messages:

msg-N3: 𝐿ℎ𝑑 + 𝐿𝑛 + 𝐿𝑒𝑖𝑑

msg-N6: 𝐿ℎ𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝑒𝑖𝑑

msg-N7: 𝐿ℎ𝑑 + 𝐿𝑛

Total 7 messages 3 messages

GP2A

Between

𝐼 and 𝑅

3 messages:

msg-GP2A1: 𝐿ℎ𝑑 + 𝐿𝑗𝑖𝑑 + 𝐿𝑟𝑒𝑞 + 𝐿𝑖𝑐𝑙 + 𝐿𝑛 + 𝐿𝜏

msg-GP2A2: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝜏

msg-GP2A3: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 𝐿𝑛 + 𝐿𝑝𝑘𝑔 + 𝐿𝜏

Total 3 messages

GE2A

Between

𝐼 and 𝑅

3 messages:

msg-GE2A1: 𝐿ℎ𝑑 + 𝐿𝑗𝑖𝑑 + 𝐿𝑟𝑒𝑞 + 𝐿𝑖𝑐𝑙 + 𝐿𝑛 + 𝐿𝑡𝑘𝑡 + 𝐿𝜏

msg-GE2A2: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝜏

msg-GE2A3: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 𝐿𝑛 + 𝐿𝑝𝑘𝑔 + 𝐿𝜏

Total 3 messages

SOA

Between

𝐼 and 𝑅

3 messages:

msg-SOA1: 𝐿ℎ𝑑 + 𝐿𝑗𝑖𝑑 + 𝐿𝑟𝑒𝑞 + 𝐿𝑖𝑐𝑙 + 𝐿𝑛 + 𝐿𝜏

msg-SOA2: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 2 ∗ 𝐿𝑛 + 𝐿𝜏

msg-SOA3: 𝐿ℎ𝑑 + 𝐿𝑚𝑖𝑑 + 𝐿𝑛 + 𝐿𝑝𝑘𝑔 + 𝐿𝜏

Total 3 messages

127

5.9 Experimental Evaluation

To evaluate performance of each of the three MIEA protocols (GP2A, GE2A, and SOA) when

deployed on a real-world system, we have implemented the protocols and conducted

experiments to measure protocol execution times under different sets of parameter values.

For benchmarking, the results are compared with those of the Kerberos protocol and the

NSLPK protocol. In this section, we first explain methodology and evaluation metrics, then

describe testbed setup and parameters used, before reporting our experimental results.

5.9.1 Methodology and Evaluation Metrics
The performances of the MIEA protocols are dependent on computational (operational costs

generating and verifying AuthData) and communication (volume of traffics transmitted over

networks for the exchange of protocol messages) overheads introduced by the protocols. To

evaluate such overheads, each of the MIEA protocols is implemented and executed on a

testbed. The evaluation consists of two experiments, Exp1 and Exp2. Exp1 evaluates the costs

of cryptographic algorithms used in the MIEA protocols, i.e., Sym-Encryption, Sym-

Decryption, MAC-Signing, MAC-Verification, and key derivation. For comparison, it also

evaluates the costs of Asym-Encryption, Asym-Decryption, SIG-Signing, and SIG-Verification

which are used in NSLPK. Exp2 evaluates the performance of each of the MIEA protocols,

Kerberos, and NSLPK when executed on the testbed.

The costs of the cryptographic algorithms and the performance of the protocols are,

respectively, measured in terms of the execution times of the algorithms and the protocols.

Multiple samples of execution times are collected for each particular set of parameter values.

Statistical values are calculated from the collected samples. These values are mean values for

showing the costs and standard error of the mean for estimating measurement errors (i.e.,

showing how dispersed sample means are in relation to the population mean).

5.9.2 Testbed Setup
The testbed consists of five entity authentication services, respectively, implementing GP2A,

GE2A, SOA, Kerberos, and NSLPK. These services are deployed on a single machine. Only one

machine is used due to accessibility to equipment. The software and hardware used are

described in detail in the following.

5.9.2.1 Software
The architecture of our testbed is shown in Figure 5.16. In this figure, an executable file (red

rectangle) implementing all the protocols (GP2A, GE2A, SOA, Kerberos, and NSLPK), called

ProtocolServices, is hosted on a machine (green rectangle). Each dotted rectangle is an

application process implementing an entity instance (e.g., an initiator or a respondent). The

number of the processes and their tasks are dependent on the protocol used. For example,

three processes (Initiator, Respondent, and Key server) are executed when NSLPK is applied,

whereas two processes (Initiator and Respondent) are executed when each of GP2A, GE2A,

and SOA is applied. The initiation of the processes (i.e., entity instances) is shown as dotted

unidirectional arrowed lines. The communication among the processes is shown as solid

bidirectional arrowed lines. It is implemented by using a TCP connection.

128

Figure 5.16: Testbed architecture for evaluating the entity authentication services.

ProtocolServices is written in C++. The cryptographic functions used are provided by the

Botan cryptographic library [180]. Botan is selected as it has been used in a wide range of

projects and supported by many organisations (including the German government,

opensource communities, and commercial enterprises) [181]. To implement the required

cryptographic algorithms, we have chosen the following schemes: (1) AES with the CBC mode,

PKCS#7 padding, and 128-bit keys (referred to as AES-128) for the symmetric-key based

encryption scheme; (2) RSA with SHA-256, OAEP padding, and 3072-bit keys (referred to as

RSAEnc-3072) for the asymmetric-key based encryption scheme; (3) RSA with SHA-256, PSS

padding, and 3072-bit keys (referred to as RSASig-3072) for the digital signature scheme; (4)

HMAC with SHA-256 and 128-bit keys (referred to as HMAC-128) for the MAC scheme; and

(5) HKDF with HMAC and SHA-256 (outputting 128-bit keys) for the key derivation scheme.

The sizes of keys, tags, signatures, and nonces are set to achieve a sufficient level of security

protection; at the time of this writing, NIST [182] has recommended a security level of 128 bits.

The specifications of the underlying operating system, the C/C++ compiler, and the

cryptographic library used are given in Table 5.15.

Table 5.15: Software specifications.

Component Specification

Operating system Linux Manjaro 20.1 Mikah
Kernel: 4.14.193-1-MANJARO x86_64

C/C++ compiler gcc 10.1.0

Cryptographic library botan 2.15.0

5.9.2.2 Hardware
The testbed consists of one machine. The machine hosts the ProtocolServices executable file.

All the inter-process communications are TCP connections over the loopback (with the IP

address 127.0.0.1) interface of the machine. The specifications of the machine are

summarised in Table 5.16.

Table 5.16: Hardware specifications.

Component Specification

CPU Quad Core Intel Core i7-6700, 64-bit, max 4.0 GHz

RAM DDR4, 2133 MT/s, 16 GB

Storage HDD 1 TB

129

5.9.3 Parameters and Configurations
In both Exp1 and Exp2, the sizes of data objects are expressed in bytes (B). In Exp1, we

measure the execution times of all the cryptographic algorithms performed on data objects

with the sizes of 16 B (the size of one nonce) and 32 B (the total size of two nonces)3. In

addition, we also measure the execution times of symmetric-key based encryption algorithms

(AES encryption and decryption) performed on objects of different sizes. The sizes range from

16 B to 16,384 B4 with an increment of twofold. The objects used are randomly generated

binary data5. The sample size for each measurement is 4,000.

In Exp2, we measure the execution times of all the protocols (GP2A, GE2A, SOA, Kerberos,

and NSLPK) when credentials for subsequent authentication are not transmitted. As the MIEA

protocols are also used to transmit credentials for subsequent authentication, we also

measure the execution times of each of the MIEA protocols against the size of credential

packages. The package size ranges from 16 B to 16,384 B (for justification, please see footnote

5). As the content of the package should not affect the evaluations, the data used are

randomly generated binary data. Each measurement for a specific set of parameter values is

collected from 1,000 samples.

The accuracy of the measurements of the execution times is statistically evaluated by

using standard error of the mean. By choosing the sample sizes of 4,000 for Exp1 and 1,000

for Exp2, the uncertainties of the mean execution times in terms of relative standard error of

the mean (standard error of the mean divided by the mean execution times) are lower than

1%. Although using a larger sample size should result in more accurate results, a slight

increase in the sample sizes would greatly increase the time needed for conducting the

experiments. This does not justify a marginal gain of accuracy.

5.9.4 Experimental Results
In this section, we report the experimental results and discuss our findings.

5.9.4.1 Exp1: Costs of Cryptographic Algorithms
The execution times of all the cryptographic algorithms on 16-B and 32-B data objects, and

AES-128 Encryption and Decryption on objects with varying sizes, are depicted in Figure 5.17

and Figure 5.18, respectively.

3 In actual protocol executions, most operations in a symmetric-key based protocol are performed on small objects and the
sizes of these objects are mainly dependent on the sizes of nonces (here, the size of a nonce is 16 B). In contrast, when NSLPK,
an asymmetric-key based protocol, is applied, operations are performed on much larger objects (e.g., signature signing on
an asymmetric key with the size of 384 B). For comparison, we only measure the execution times of the operations performed
on objects with the sizes of 16 B and 32 B.
4 In each of the MIEA protocols, the AES algorithms are performed on objects with different sizes, i.e., packages of credentials
and associated metadata. The largest package is transmitted when 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends credentials to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟
(@16) and when 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends credentials to each 𝑅𝑒𝑑𝑢𝑐𝑒𝑟𝑏 (@24); these credentials are for authentication to each

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟𝑢
𝑗
. For an MR service with 1,000 Workers, the number of WorkerNodes (thus WorkerManagers) is

approximately 100. The size of the package is approximately the number of WorkerManagers times the sum of the sizes of
metadata, a primary key, and a ticket = 100 * (20 + 16 + 48) B = 8,400 B.
5 The cryptographic algorithms used in the experiments operate on binary data.

130

Figure 5.17: The comparisons of the execution times of all the cryptographic algorithms on data

objects with the sizes of 16 B and 32 B.

From Figure 5.17, we can see that, the execution times of the symmetric-key based

algorithms are much lower than those of the asymmetric-key based algorithms. Among the

symmetric-key based algorithms, HMAC-128 cost the smallest (in terms of the execution

times), and AES-128 and HKDF introduce the same level of costs. For example, when the

object size is 16 B, the values of HMAC-128 Sign and Verify are approximately 5 microseconds,

the values of AES-128 Encrypt and Decrypt and HKDF Derive are 7 microseconds, the values

of RSAEnc-3072 Encrypt and RSASig-3072 Verify are 100 microseconds, and the values of

RSAEnc-3072 Decrypt and RSASig-3072 Sign are 4,800 microseconds. The values of RSAEnc-

3072 Encrypt and RSASig-3072 Verify are one magnitude higher than those of the symmetric-

key based algorithms, and RSAEnc-3072 Decrypt and RSASig-3072 are two magnitudes higher.

Such large differences are because of the complexity of computation in asymmetric-key based

algorithms. In addition, in RSA based algorithms, there are a large difference in computational

costs for operations with different keys; operations with private keys are more

computationally expensive than those with public keys.

When AES-128 Encrypt and Decrypt and HMAC-128 Sign and Verify are applied on objects

with the sizes of 16 B and 32 B, respectively, there are slight increases in the execution times.

However, when RSA based algorithms are applied, the values are at the same level. For

example, AES-128 Encrypt takes 7.5 microseconds and 8 microseconds to execute when

performed on 16 B and 32 B, respectively, resulting in an increase of 0.5 microseconds (6.7%).

RSASig-3072 Verify takes 94 microseconds to execute on both object sizes. This is because,

when the AES-128 based algorithms are applied, 16-B and 32-B are, respectively, padded to

32 B and 48 B, resulting in difference execution times. However, when the RSA based

algorithms are applied, both 16-B and 32-B data are padded to 384 B, thus, yielding the same

execution times.

131

Figure 5.18: The comparisons of the execution times of AES-128 Encryption and Decryption on

objects with varying sizes.

From Figure 5.18, we can make the following observations. The execution times of AES-

128 Encrypt and Decrypt increase almost linearly as the size of objects increases. In addition,

the rate of increase in the execution time of AES-128 Encrypt is higher than that of AES-128

Decrypt. For example, when the object size increases from 16 B to 16,364 B (an order of 103

increase), the execution times of AES-128 Encrypt and Decrypt increase from 7.5

microseconds and 8.0 microseconds to 910 microseconds and 750 microseconds,

respectively. These approximately equal the increases of 120 times and 94 times, respectively.

The reason is that the larger size of the objects increases the workload of the algorithms thus

the execution times. This is consistent with the experimental results of the costs of

cryptographic algorithms used in data authentication reported in [44].

These results indicate that. Asymmetric-key based algorithms are much more expensive

than symmetric-key based algorithms. In other words, using the symmetric-key based

algorithms for entity authentication is more efficient and can considerably lower the

overhead cost introduced. For example, when the object size is 16 B, AES-128 Decrypt costs

approximately 0.16% of RSAEnc-3072 Decrypt cost. When applying the same algorithm on

objects of small sizes (16 B and 32 B), the difference in execution times is small. In addition,

for AES-128 based algorithms, when the object size increases, the execution time of the

algorithm also increases.

5.9.4.2 Exp2: Costs of Entity Authentication Protocols
The execution times of all the five protocols, and the three MIEA protocols (GP2A, GE2A, and

SOA) against the size of credential packages (credentials established for subsequent

authentication), are depicted in Figure 5.19 and Figure 5.20, respectively.

132

Figure 5.19: The comparisons of the execution times of all the protocols.

From Figure 5.19, it can be seen that NSLPK costs the highest and the MIEA protocols cost

the lowest. In addition, among the MIEA protocols, SOA takes the shortest time to execute.

The execution times of NSLPK (the highest) and SOA (the lowest) are, respectively, 1,000

milliseconds and 2.4 milliseconds, having a difference of 420 times. There are two reasons for

such a large difference. The first is that NSLPK transmits the highest number of messages (i.e.,

7 messages), whereas each of the MIEA protocols transmits only 3 messages; the more the

messages, the higher communication overhead thus the cost. The second is that NSLPK

performs a total of 10 expensive asymmetric-key operations, whereas SOA performs a total

of 18 inexpensive symmetric-key operations. Although the number of operations performed

in SOA is larger than that of NSLPK, the cost of the symmetric-key operations is much lower,

as shown in the results of Exp1.

When comparing SOA with Kerberos, both of which are one-factor and symmetric-key

based protocols, SOA introduces lower cost than Kerberos. This is because, in comparison

with Kerberos, SOA markedly cut the communication cost from 5 messages to 3 messages

(i.e., the reduction of 40%). In our testbed where a high-performance machine is used, the

cost of a symmetric-key operation is usually a few microseconds, whereas the cost of a

message transmission could be 50 microseconds6 or higher. Hence, reducing the number of

messages transmitted has larger impact on cost reduction.

6 The time of a message transmission is measured by using ‘ping’, a tool commonly used to check reachability of machines
in networks.

133

Figure 5.20: The comparisons of the execution times of GP2A, GE2A, and SOA against the size of

credential packages.

From Figure 5.20, we can make the following observations. The execution times of the

MIEA protocols increase as the credential package size increases. When the size of credential

packages increases from 16 B to 512 B, the increase in the execution times is small. For

example, when GP2A is applied, the execution times increase from 3.2 milliseconds to 4.0

milliseconds, which is an increase of 25%. However, when the size goes beyond 1,024 B, the

execution times sharply increase, particularly when the credential package size is 8,192 B. For

example, GP2A takes about 12 milliseconds and 21 milliseconds to execute when the

credential package size increases from 8,192 B to 16,384 B, respectively; the execution time

is almost doubled. This is because the increase in the credential package size increases the

workload of cryptographic algorithms (thus computational overhead) and the volume of data

to be transmitted via networks (thus communication overhead). When the size of credential

packages is smaller than 512 B, the computational cost (i.e., tenths of milliseconds) has small

impact on the execution time of the protocols, as can be seen in the figure. However, when

the size goes beyond 8,192 B, the impact of the increased computational and communication

becomes more apparent; the execution times of the protocol increase proportionally to the

size of the credential packages.

Among the MIEA protocols, GE2A costs the highest whereas SOA costs the lowest. For

example, when the size of credential packages is 16 B, GE2A and SOA takes about 3.3

milliseconds and 2.7 milliseconds to execute, respectively. The difference is larger when the

credential package size is smaller. The largest difference occurs when the size is 64 B, which

is about 24%. This is because GP2A and GE2A use a nested encryption approach to generate

and verify challenges and responses, i.e., the generation and the verification of an

authenticator each require two operations; whereas only one operation is required when SOA

is applied. In addition, when GE2A is applied, a pairwise key shared between an initiator 𝐼 and

a respondent 𝑅 is distributed via a ticket. 𝑅 has to verify and decrypt the ticket to obtain the

key before using the key for authentication, increasing the execution time of the protocol.

The above experimental results indicate that GP2A, GE2A, and SOA can achieve the same

level of protection (in terms of efforts needed to break an authentication token) as that

134

provided by NSLPK but at two-magnitude lower cost. In comparison with Kerberos, the MIEA

protocols can provide stronger protections (with an exception that SOA uses only one factor

for authentication) while introducing the same level of overhead cost.

5.10 Chapter Summary

This chapter has presented a novel approach, a multi-factor interaction based approach, to

entity authentication for MR based CBDC-MPC and a novel entity authentication framework,

the MIEA framework, that implements the approach. By conducting a critical analysis on the

related work, we discover that none of the existing solutions can satisfy all the specified

requirements as these solutions are designed for applications in different contexts. Most of

the solutions are designed to protect against external threats, thus, the authentication is

applied only at the gate level (i.e., before an entity is allowed to access the service); it is not

required at the interaction level (during the course of a job execution). Some solutions are

not efficient for this context as they make use of computationally expensive cryptographic

operations at the object level and use many protocol messages to accomplish authentication.

MIEA is designed to address the knowledge gap. In the design of MIEA, three main ideas have

been used. The first idea is MIA in which critical interactions (the interactions that are used

to establish credentials for subsequent authentication) are protected with two-factor

authentication and non-critical interactions are protected with one-factor. This doubles the

effort needed to break an authentication token used to protect the critical interaction. This

idea allows us to achieve a stronger level of protection compared with the related work (e.g.,

Kerberos) that use only one factor. The second idea is DCS in which symmetric keys are

distributed by distributed trustworthy components and the authentication between two

components is carried out without a centralised authentication entity. Combined with the

third idea called HKS, which constructs a key hierarchy and the keys in the higher level of the

hierarchy are used to distribute the keys in the lower level of the hierarchy, the number of

protocol messages needed to accomplish authentication is reduced to three. Compared with

Kerberos and NSLPK without credential caching which require five and seven protocol

messages, respectively, MIEA can significantly reduce the communication overhead cost in

terms of the times needed for exchanging the protocol messages. The results of the

performance evaluation show that the performance of MIEA is at the same level as that of

Kerberos and is much lower than that of NSLPK (a difference of 420 times). This means that

MIEA is as efficient as Kerberos, one of the most used entity authentication protocols. MIEA

can provide protection to every interaction without using a centralised authentication server.

The applicability of MIEA is not limited to MR based services, it should also be applicable to

other distributed computing services (e.g., Apache Spark) that exhibit similar characteristics,

e.g., multi-stage data processing. The approach to entity authentication and the design and

evaluations of MIEA presented in this chapter is the second contribution (NC2) of this research

work. The contribution answers the research questions (Q2) and (Q4).

The next chapter presents in detail a novel approach, a communication pattern based

approach, to data authentication which provides the strongest protection to data authenticity

and non-repudiation at the finest granularity throughout the whole cycle of a job execution

while minimising overhead costs imposed on components and the underlying system.

135

Chapter 6

Communication Pattern based

Data Authentication (CPDA) Framework

6.1 Chapter Introduction

This chapter presents a novel data authentication framework, called the Communication

Pattern based Data Authentication (CPDA) framework, which is also part of the MDA

framework. The CPDA framework aims to provide the strongest level of JobData authenticity

protection (i.e., assuring data origin and integrity authentication, as well as non-repudiation

of origin) at the finest granularity (at the object level), but with as less overhead cost as

possible. The design of CPDA has exploited two main ideas. The first is AuthData and

Communication Aggregation (ACA) in which the operations of AuthData generation and

verification as well as communications transmitting the AuthData are aggregated. The

aggregation methods are selected based on the communication patterns exhibited. The

second idea is a Hybrid use of multiple cryptographic schemes with Segregation of Credentials

(HYSC). Computationally less expensive mechanisms (i.e., hash functions and MACs) are used

to protect individual objects that are transferred between untrustworthy and trustworthy

entities whereas computationally more expensive mechanisms (digital signatures) are used

to secure aggregated AuthData, thus, extending the protection to all data objects. Each of

untrustworthy entities is assigned a different pairwise key for securing objects it produces,

hence, accountability can be pinpointed to entities sharing the key. To demonstrate the

effectiveness, the efficiency, and the scalability of the CPDA framework, the CPDA framework

has been extensively evaluated both theoretically and experimentally. Theoretically analyses

have been conducted by using both informal and formal methods. Experimental evaluations

are carried out on a testbed consisting of five networked machines with a real-world dataset.

In detail, Section 6.2 critically analyses related data authentication solutions against the

requirements specified in Section 4.5 and discusses what is missing. Sections 6.3, 6.4, and 6.5,

respectively, give high-level ideas, notations and design assumptions used, and low-level

description of CPDA. Sections 6.7, 6.8, and 6.9, respectively, present security analysis,

theoretical, and experimental performance evaluations of CPDA and the most related

solutions. Finally, Section 6.10 concludes the chapter.

6.2 Existing Data Authentication Solutions

Based on targeted systems, related data authentication solutions can also be largely classified

into two groups: non-MR specific solutions and MR specific solutions.

6.2.1 Non-MR Specific Solutions
Depending on the cryptographic schemes used, non-MR specific solutions can be further

classified into three groups: secret-share based, symmetric-key based, and asymmetric-key

based.

136

In a secret-share based solution, AuthData are generated with a secret but verified with a

secret-share derived from the secret. A single secret is divided into 𝑁 secret-shares. Any 𝑘 or

more (out of 𝑁) secret-shares can be used to reconstruct the secret, but 𝑘 − 1 or fewer

secret-shares cannot. Desmedt et al. [183] proposed such a scheme for multicast services

where one producer sends a data object to multiple consumers. In this scheme, for each

object, the producer uses two polynomials of degree 𝑘 − 1 (known only to the producer) to

generate AuthData and 𝑁 secret-shares. Each secret-share is distributed to a different

consumer so that each consumer can independently verify the AuthData. Safavi-Naini and

Wang [184][185] improved on the Desmedt’s scheme by reducing the number of polynomials

required to authenticate multiple objects. To authenticate 𝑚 objects, the producer uses only

𝑚 + 1 polynomials, as opposed to 2 ∗ 𝑚 polynomials as required by the Desmedt’s scheme.

This cuts the costs in generating and storing AuthData by half. Nonetheless, the secret-share

based solutions incur a high level of computational overhead due to the cost of computing

polynomials of degree 𝑘 − 1, especially when 𝑘 is large.

Symmetric-key based data authentication solutions, such as MACs, are designed to

counter external attacks. They do not provide non-repudiation protections, making them

vulnerable to threats, e.g., tag forgeries, imposed by authorised insiders. To address this issue,

the idea of asymmetry is used. There are two forms of asymmetry: information asymmetry

and time asymmetry. With an information-asymmetry based scheme [186], a producer has a

full view of a secret (a set of secret keys) whereas each consumer has only a partial view of

the secret (a subset of the secret keys). The entire set of the secret keys is used to generate

AuthData (tags), whereas a subset of the secret keys is used to verify the tags. A subset of the

secret keys is made available for each consumer and these subsets are different from each

other. Tag forgeries are countered by limiting the number of secret keys revealed to each

consumer. This approach incurs a high level of computational as well as storage overheads,

as multiple tags are processed (generated and verified) and multiple secret keys are required

for the processing of such tags.

With a time-asymmetry based scheme, tag forgeries are countered by controlling when a

secret key is used for generating tags and when the key is being made available for verifying

the tags. In other words, the secret key is used to generate tags in one time period, and it is

released for the verification of the tags in another time period. Examples of such schemes

include Chained Stream Authentication (CSA) [187], Timed Efficient Stream Loss-tolerant

Authentication (TESLA) [39][188][189], and µTESLA [190]. Although delaying the release of

the keys does not introduce additional computational overhead, it increases the data

processing time and offsets the benefit of parallel computations provided by distributed

computing frameworks such as MR.

To ensure data authenticity and provide non-repudiation of origin, digital signatures are

frequently used. With a digital signature based solution, two asymmetric keys (a private key

and a public key) are used, respectively, for generating and verifying AuthData (signatures).

As long as the public key is certified and the private key is kept secret, it is computationally

infeasible for another entity, rather than the owner of the private key, to forge signatures.

However, signature operations (generation and verification) are computationally expensive,

much more expensive than MAC operations [45]. In addition, for the same security level, the

137

lengths of asymmetric keys and signatures are usually much longer than those of symmetric

keys and tags, respectively [191][192][193]. Therefore, using digital signatures to secure

individual objects in Big Data applications is neither efficient nor scalable.

A number of data authentication schemes have been proposed with an intention to

reduce the number of signatures used. These schemes employ a signature amortisation

technique. Such a technique builds a chain of AuthData in a way that the AuthData of one

object are linked to those of other objects. In this way, only a subset of the objects is signed

but the protection is provided to the whole set of the objects. Related work in this category

has been focusing on how to construct such AuthData chains so that the dependency among

the objects and the amount of AuthData embedded in the objects can be reduced. In the

method proposed by Gennaro and Rohatgi [194], a chain of AuthData is constructed by

embedding the AuthData of one object in the preceding object and the first object is signed

with a digital signature scheme. This method is not designed for applications where data are

sent over unreliable networks as the loss of one object would make the succeeding objects

unverifiable. A number of schemes have been proposed to address this limitation, and these

are Efficient Multi-chained Stream Signature (EMSS) [39], p-Random Authentication [40], the

piggybacking scheme [40], Golle and Modadugu’s scheme [41], and Adaptive source

Authentication protocol for multiCAST streams (A2Cast) [42]. The essence of these schemes

is to embed the AuthData of one object in a number of other objects. In this way, the remaining

objects will still be verifiable even if some of the objects are lost. Nonetheless, this is achieved by

using redundancy and at the cost of increased communication and storage overheads.

To reduce the redundancy thus the overheads, a number of schemes employing error

correction codes are proposed. These schemes are Signature Amortization using IDA (SAIDA)

[195][196] and Data Authentication Model based on Reed-Solomon Error-correcting Code

(DAM-RSEC) [197]. In these schemes, the hashes of the whole set of objects and the signature

of the aggregated hashes are encoded with an error correcting code and the resulting code is

split and embedded in the objects. In this way, the AuthData can be reconstructed from a

subset of the objects and the amount of AuthData carried by each object is reduced.

All the above schemes are designed for multicast and broadcast services where there is

only one data producer but multiple consumers. A major limitation of these schemes when

being applied to the CBDC-MPC context is that they do not allow each of the objects to be

independently verifiable. An exception is the scheme proposed by Wong and Lam [88]. This

scheme allows the verification of individual objects while reducing the number of objects to

be signed and verified. This is done by constructing a hash tree of the objects and signing only

the hash of the root node of the tree. The verification of a particular object is done by using

the hash of the object, the hashes along the path leading to the root node, and the signature.

6.2.2 MR Specific Solutions
Data authentication solutions specifically designed for MR applications can be largely

classified into two groups, task-replication based and non-task-replication based.

As indicated by the name, task-replication based solutions use task replication to ensure

the correctness of JobData that are generated during a job execution, thus providing data

integrity protection. With a task-replication based solution, each data processing task (a map

138

or reduce task) is assigned to multiple Workers and the outputs produced by these Workers

are compared to detect inconsistencies. This approach has been used by a number of schemes

published in literature, and these are Verification-based Integrity Assurance Framework for

MR (VIAF) [46], Cross Cloud MapReduce (CCMR) [47], IntegrityMR [48], Verification-based

Anti-collusive Worker Scheduling (VAWS) [49], and HAdoop Trust MANager (Hatman) [50].

However, the above schemes do not protect against repudiation of origin attacks. AssureMR

[198] and CorrectMR [199] improve on this by making use of a Pedersen-Merkle-R-Tree based

authenticated data structure and a digital signature scheme in addition to task replication.

Task replication imposes a high level of resource requirements; it multiplies the

computational resource required to process each task. In addition, the approach also depletes

scalability. To lower the resource requirements, TrustMR [200], Trusted Sampling-based

Third-party Result Verification (TS-TRV) [201], and Accountable MR [202][203] are proposed.

These schemes replicate only a subset of the tasks, thus reducing the resource consumption.

Nonetheless, they still introduce a high level of overhead cost and do not protect against

repudiation of origin attacks. SecureMR [204] counters such attacks by employing task

replication in conjunction with other measures, namely a commitment protocol, a verification

protocol, and a digital signature scheme. However, like the earlier mentioned task-replication

based schemes, the approach is still costly. More importantly, the task-replication based

schemes mostly apply protections at the task level; they do not provide fine-grained, or

object-level, protections.

Non-task-replication based solutions make use of cryptographic primitives and security

protocols to protect the authenticity of JobData. The most notable solution is the one

employed by Apache Hadoop [120]. In this solution, a number of security measures are taken

[35]. To protect data-in-transit, it uses the Simple Authentication and Security Layer (SASL)

framework, encryption schemes (e.g., AES), and Hypertext Transfer Protocol Secure (HTTPS)

to, respectively, protect messages transmitted over Remote Procedure Call (RPC),

Transmission Control Protocol over Internet Protocol (TCP/IP), and HTTP. However, these

security measures are intended for countering external attacks. They do not provide data

authenticity protection to data-at-rest, and they are intended for an MR service deployed in

a single domain. In [43], Zhou et al. proposed a secure data processing system for distributed

computing services, called Declarative Secure Distributed System (DS2). As a proof of concept,

the system is used to implement an MR service with a data authentication facility, called

Authenticated MapReduce. In this system, each JobData object produced by a Mapper is

signed with a data authentication scheme, i.e., HMAC-SHA1 (MAC) or RSA-1024 (digital

signature). Their experimental results show that, with the respective use of HMAC-SHA1 and

RSA-1024, the query completion latency of a job execution is increased by 17.4% and 78.3%,

in comparison with the case where no data authentication measure is used. This indicates

that, when using a MAC scheme (HMAC-SHA1), the protection level is insufficient as non-

repudiation of origin is not provided, but when applying the digital signature scheme to secure

each individual object (in order to provide non-repudiation), a significant level of delay is

added onto a job execution process and is highly inefficient.

139

6.2.3 What is Missing
The data authentication solutions discussed above are critically analysed against the

requirements with regards to data authenticity and non-repudiation of origin protections, i.e.,

(FR1), (FR4), (FR5), (SR5), (SR6), (SR7), (PR1), and (PR2), specified in Section 4.5. The

knowledge gaps are identified and summarised in Table 6.1. From this table, we can make the

following observations.

• None of the existing data authentication solutions provides a full-cycle protection

(FR1) of data authentication to MR based distributed computing in this CBDC-MPC

context. Most of the non-MR specific solutions are either designed for

broadcast/multicast applications or for data collection applications. In a

broadcast/multicast application, a single producer produces and sends the same data

object to multiple consumers. In a data collection application, there are multiple

producers but a single consumer; the different producers produce data objects

(typically containing different contents) but send them to the same consumer. These

applications are different from MR based applications where a single job execution

consists of multiple stages, each stage is characterised by a different communication

pattern, and some pattern (i.e., the M2M pattern) involves multiple producers each

producing different data objects for different consumers or multiple consumers each

consumes different data objects that are produced by different producers. Existing MR

specific solutions are mostly designed for addressing external threats. The issue of

assuring non-repudiation of data origin in an MPC environment was not specifically

considered in the design of these solutions.

• As mentioned in earlier chapters, multi-stage Big Data processing in this

environment indicates that it is important to reduce processing delays as introduced

by security protections as much as possible (PR1), while providing the full-cycle

protection (FR1). Digitally signing every data object to protect non-repudiation of

origin is not desirable to satisfy requirement (PR1), particularly in cases where (i)

there are multiple producers each producing a different data object for a different

consumer and (ii) there are multiple consumers each consumes a different data object

produced by a different producer. This is because in case (i) it would require each

producer to generate a separate digital signature for a data object destined to a

different consumer. If there is a large number of consumers, then the producers would

be prone to becoming a performance bottleneck. Similarly, in case (ii), it would require

each consumer to verify multiple signatures each signed by a different producer. If

there is a large number of producers, the consumers would be prone to becoming a

performance bottleneck.

• Symmetric-key based solutions without applying any form of asymmetry are not

applicable to our use case due to the lack of non-repudiation of origin protection.

Information-asymmetry based solutions imposed a high-level of computational and

communication overhead costs on entities and the underlying networks,

respectively. Time-asymmetry based solutions introduce additional delays to the

execution of a job due to the deferment of the release of verification keys. These

140

solutions are not suited to time-sensitive applications such as one addressed in this

research project.

• Task-replication based solutions are designed to verify the correctness of the output

of a job under an assumption that there are sufficient redundant resources allocated

for the job. This assumption is not compatible with the use case considered in this

research. In this use case, a data processing job is carried out on computation

resources shared by multiple organisations. In other words, all the available

resources are to be shared fairly to all the collaborative organisations and the

resources that can be allocated for the job could be limited.

Table 6.1: Related data authentication solutions.

 Requirements

Approaches (FR1) (FR4) (FR5) (SR5) (SR6) (SR7) (PR1) (PR2)

Non-MR specific

Secret-share based [183][184]
Symmetric-key with information-asymmetry
based [186]

Symmetric-key with time-asymmetry based
[187][39][190]

Asymmetric-key with AuthData-chain based
[39][194][40][41][42]

Asymmetric-key with error-correcting-code
based [195][197]

Asymmetric-key with hash-tree based [88]
MR specific

Task-replication without digital-signature
based [46][47][48][49][50] [200][201][202]

Task-replication with digital-signature based
[198][199][204]

Measures used in Apache Hadoop [35]
DS2 [43]

• Notes:

• : Requirement is addressed.

• : Requirement can be addressed with additional plug-in modules or minor modifications, or there is
room for improvement.

• : Requirement is not addressed.

6.3 High-level Ideas

In this section, we describe high-level ideas used in the design of CPDA. Two main ideas are

used in the design of CPDA. The first is AuthData and Communication Aggregation (ACA). With

this idea, we apply and maximise the use of aggregation to the generation and verification of

AuthData as well as communications between components. AuthData aggregation lowers the

computational overhead costs imposed on data processing components by reducing the

number of objects to be signed and verified with an expensive cryptographic scheme (i.e.,

digital signature). Communication aggregation can reduce the number of communications

(interactions) among the components, reducing network traffics thus communication

overhead cost. Communication aggregation can be done by introducing a third-party

aggregator (referred to as Aggregator). Depending on the communication pattern used,

AuthData aggregation and communication aggregation can be applied separately, or in a

141

hybrid manner, to maximise the benefits they both bring. We have thus adopted a

communication pattern based approach, i.e., we identify and classify different

communication patterns among the data processing components during different phases of

a job execution and apply one or both of AuthData aggregation and communication

aggregation accordingly.

The second idea is a Hybrid use of multiple cryptographic schemes with Segregation of

Credentials (HYSC). As mentioned earlier, a MAC scheme is computationally more efficient

but does not provide non-repudiation of data origin, whereas a digital signature scheme

provides the non-repudiation protection but is computationally expensive. To provide all of

these protections at the finest granularity but with minimal overhead, we apply the MAC

scheme to AuthData tokens that are pairwise transmitted (between one producer and

Aggregator) but apply the digital signature scheme to aggregated AuthData that are used by

multiple consumers. This hybrid use of cryptographic scheme can ensure the accountability

of producers. With regard to credential segregation, pairwise keys used by different

producers are segregated. In other words, each producer uses a different key to generate

AuthData. This narrows the scope of accountability to the two entities sharing a key.

In the following, we describe, at a high level, how the two ideas described above are

implemented. With regard to the communication pattern based AuthData aggregation, as

there are three communication patterns, i.e., the one-to-many (O2M) pattern taking place in

the job submission phase, the many-to-many (M2M) pattern in the map phase, and the many-

to-one (M2O) pattern in the reduce phase, three AuthData aggregation methods are

designed, one for each pattern. The three methods are, respectively, called Tree based

AuthData Aggregation (TreeAgg) for O2M, Hybrid AuthData Aggregation (HybridAgg) for

M2M, and Flat AuthData Aggregation (FlatAgg) for M2O. Before describing HybridAgg, we

explain TreeAgg and FlatAgg as these two methods are used as building blocks for the design

of HybridAgg.

6.3.1 TreeAgg Method
In the O2M pattern, the producer has to generate AuthData for multiple objects. To minimize

the cost in protecting objects, we should require the producer to perform only one signature

signing operation, but the resulting AuthData should allow each consumer to verify the object

assigned to it independently.

The TreeAgg method is designed to accomplish this function. With this method, a binary

tree containing aggregated AuthData for the whole set of 𝑁 objects is constructed. The tree

consists of 𝑁 leaf nodes and 𝑁 − 1 internal nodes layered at multiple levels. Each leaf node

represents the AuthData of a different object. Each internal node at the next level up in the

hierarchy represents aggregated AuthData derived from its children (child nodes). The

internal node at the top level is called the root node. The root node is the aggregated

AuthData (referred to as Root-AuthData) for the entire set of the objects. The signature is

then signed on the Root-AuthData. To minimize the amount of AuthData needed to verify

142

each individual object, we make this tree a balanced full binary tree7 [88]. An example of an

AuthData tree for 8 objects is shown in Figure 6.1.

Figure 6.1: An AuthData tree for 8 objects.

AuthData needed for the verification of each object are object dependent, i.e., for

different objects, their respective AuthData are different. This is because, as mentioned

earlier, objects consumed by different consumers are typically different, and paths

connecting each object to the root (Root-AuthData) of the tree are different. Furthermore, to

minimise the size of each such AuthData thus minimising the computational and

communication overheads, any redundant item in AuthData should be excluded. For these

reasons, the AuthData associated to a particular object are constructed as the signature of

the Root-AuthData (this token is the same for all of the objects) along with a set of object-

specific AuthData tokens (these tokens are specifically tailored for each consumer). The

object-specific AuthData tokens are Sibling-AuthData, i.e., the sibling nodes along the path

from the leaf node (associated to the object) to the root node. The Sibling-AuthData for an

object are illustrated in Figure 6.2. From the figure, we can see that the Sibling-AuthData for

𝑑3 consist of three tokens: the AuthData of 𝑑4, the AuthData of 𝑑1 to 𝑑2, and the AuthData

of 𝑑5 to 𝑑8. Comparing with using all the leaf nodes to reconstruct the whole tree (thus the

other seven nodes have to be transmitted along with the signature of Root-AuthData), our

approach yields a reduction of 50% in communication overhead in terms of the number of

tokens transmitted8.

7 A balanced full binary tree is a tree in which every internal node has exactly two child nodes and the left and the right
subtrees of every node differ in height by no more than one. The height of such a tree for 𝑁 objects is ⌈log 𝑁⌉.
8 The tree-reconstruction approach requires 8 tokens (1 signature of the Root-AuthData and 7 Sibling-AuthData tokens) to
be transmitted whereas our approach requires only 4 tokens (1 signature of the Root-AuthData and 3 Sibling-AuthData
tokens) to be transmitted, thus the reduction of 4/8 = 50%.

143

Figure 6.2: The Sibling-AuthData for 𝒅𝟑 in an AuthData tree for 8 objects.

Figure 6.3 contrasts the process and AuthData tokens sent by a producer to 𝑄 consumers

with and without applying the TreeAgg method. As shown in the figure, when TreeAgg is not

applied, the producer would need to sign the AuthData for each of the 𝑄 objects, respectively,

before dispatching them to the consumers. This means that the producer needs to perform

𝑄 signature signing operations. In contrast, when TreeAgg is applied, the producer only needs

to perform one AuthData aggregation operation and one signing operation.

(a)

144

(b)

Figure 6.3: AuthData transmitted among components in the O2M pattern.

(a) Without the use of the TreeAgg method. (b) With the use of the TreeAgg method.

6.3.2 FlatAgg Method
In the M2O pattern, the consumer has to verify multiple objects. To minimize computational

overhead incurred in verifying the objects, we should require the consumer to perform only

one signature verification operation. To achieve this, we have introduced an idea of a third-

party based aggregation method. The third party, called Aggregator, off-loads computational

overhead away from the consumer as much as possible. It obtains and verifies AuthData

generated and signed (with a MAC scheme) by different producers, then generates

aggregated AuthData and signs (with a digital signature scheme) the aggregated AuthData

before dispatching both the aggregated AuthData and the signature to the consumer. The

size of the AuthData has also been reduced as much as possible to minimise bandwidth

consumptions.

These measures have been captured in the FlatAgg method. Figure 6.4 illustrates the

AuthData exchanged among the producers and the consumer with and without the use of the

FlatAgg method.

(a)

145

(b)

Figure 6.4: AuthData transmitted among components in the M2O pattern.

(a) Without the use of the FlatAgg method. (b) With the use of the FlatAgg method.

6.3.3 HybridAgg Method
The M2M pattern can be viewed as the integration of the O2M and M2O patterns. Without

any additional measures, each producer will need to sign 𝑄 objects, and each consumer will

need to verify 𝑃 objects. Furthermore, as there are AuthData to be transmitted between each

pair of producer and consumer, there are up to 𝑃 ∗ 𝑄 interactions taking place in this job

execution phase, introducing a high-level of communication overhead cost. As mentioned

earlier, to minimise the computational overhead cost, each producer should only perform

one MAC signing operation, and each consumer should only perform one signature

verification operation. To accomplish this, we apply two levels of AuthData aggregation, i.e.,

the intra-producer level aggregation and the inter-producer level aggregation. The intra-

producer level aggregation is performed by each producer by using the TreeAgg method to

aggregate the AuthData for the objects it produces, but only signing the Root-AuthData with

a MAC scheme. The inter-producer level aggregation is performed by the Aggregator; as

described in the FlatAgg method, it verifies and aggregates AuthData generated by different

producers, and then signs the aggregated AuthData using a digital signature scheme. By

introducing Aggregator, we can also apply communication aggregation. Each of the producers

only sends AuthData it generates to Aggregator. Aggregator then dispatches the AuthData to

each of the consumers. This cuts the number of interactions to only 𝑃 + 𝑄.

This idea has been implemented in the HybridAgg method. Figure 6.5 shows the flows of

AuthData exchanged among components with and without the use of the HybridAgg method.

146

(a)

(b)

Figure 6.5: AuthData exchanged among components in the M2M pattern.

(a) Without the use of the HybridAgg method. (b) With the use of the HybridAgg method.

The second idea, i.e., a hybrid use of MAC and digital signature schemes in conjunction

with the segregation of credentials, is implemented in the FlatAgg and HybridAgg methods.

As explained in these methods, a MAC scheme is used to protect AuthData transferred

between each producer and Aggregator and a digital signature scheme is used to protect

aggregated AuthData dispatched by the Aggregator to consumers. For pairwise transmitted

147

AuthData, MAC can provide a sufficient level of protection. This is because the key used

between a producer and the Aggregator is a pairwise key, the AuthData from each producer

will be further aggregated and digitally signed by the Aggregator, and the Aggregator is

trustworthy. If any fraudulent AuthData token is detected, its origin can be traced via the

verification of the signature signed by the Aggregator and the verification of the tag signed

(using a pairwise key) by the originator of the AuthData. The use of different pairwise keys

captures the segregation of credentials.

6.4 Design Assumptions and Notations

In the design of the CPDA framework, we use the following design assumptions and notations.

6.4.1 Design Assumptions
The following assumptions are used in the design of CPDA.

(DAS1) Users are already authenticated prior to accessing the MR service.

(DAS2) The MR components allocated to a particular JobDomain are already authenticated

prior to executing the job.

(DAS3) All the cryptographic keys that are used in data authentication are established when

the MR components are authenticated; the public keys are certified and known to

their respective users.

6.4.2 Notations
In addition to the notations listed in Table 5.2, additional notations used in the description of

CPDA are shown in Table 6.2.

Table 6.2: Notations used in the description of CPDA.

Symbols Meanings

𝑃, 𝑄 The numbers of producers, consumers

𝑘𝑥,𝑦 A pairwise key shared between 𝑥 and 𝑦.

𝑠𝑘𝑥 A private key of 𝑥.

𝑝𝑘𝑥 A public key of 𝑥.

𝑑𝑥,𝑦 A data object produced by 𝑥 and consumed by 𝑦.

ℎ𝑥,𝑦 The hash of 𝑑𝑥,𝑦.

𝑟ℎ𝑥 A root hash of a hash tree constructed by 𝑥.

𝑐ℎ𝑥 A concatenated hash generated by 𝑥.

𝜏𝑜 A tag of an object 𝑜.

𝜎𝑜 A signature of an object 𝑜.

𝑠𝑎𝑥,𝑦 The Sibling-AuthData token for 𝑑𝑥,𝑦.

𝑆𝐴𝑥 A set of Sibling-AuthData tokens {𝑠𝑎𝑥,1, 𝑠𝑎𝑥,2, … , 𝑠𝑎𝑥,𝐶} for the objects generated

by 𝑥.

6.5 CPDA in Detail

This section describes our novel data authentication solution, the CPDA framework. It gives

an overview, and then the detailed description, of the framework. In the last subsection, it

shows how the methods and protocols of the framework are collectively used to protect

JobData throughout the whole cycle of a job execution. The algorithms implementing the

methods used in the framework are formally described in Appendix C.

148

6.5.1 An Overview of the CPDA Architecture
As explained in Section 4.3.3, an MR job execution comprises three phases and each phase is

characterised by a different communication pattern. Hence, the CPDA architecture consists

of three modularised functional blocks, one for each job execution phase. These functional

blocks are, respectively, the O2M block for the job submission phase, the M2M block for the

map phase, and the M2O block for the reduce phase. An overview of the CPDA architecture

is depicted in Figure 6.6.

Figure 6.6: An overview of the CPDA architecture.

As shown in the figure, each functional block consists of two AuthData generation

algorithms (with the exception of the O2M block which has only one algorithm), one AuthData

verification algorithm, and one AuthData delivery protocol. The AuthData generation

algorithms are used to generate AuthData for JobData objects. They each utilise one of the

three AuthData aggregation methods explained in Section 6.3. The AuthData verification

algorithms are used to verify the authenticity of objects with the generated AuthData. The

AuthData delivery protocols are used to deliver the AuthData from producers to Aggregator

and from Aggregator to consumers. The delivery of AuthData is decoupled from the built-in

JobData delivery mechanisms so that CPDA is not tightly bound to a specific MR

implementation. In this way, it can be applied as an add-on and the modifications made to

the underlying MR service are minimal.

Before describing the three functional blocks in detail, we first explain two AuthData

aggregation algorithms (collectively implementing the three AuthData aggregation methods)

and generic protocol message structure.

149

6.5.2 AuthData Aggregation Algorithms
The TreeAgg, FlatAgg, and HybridAgg methods can be realised by two AuthData aggregation

algorithms, namely Hash-Tree based AuthData-Aggregation (HT-AuthData-Aggregation) and

Hash-Concatenation based AuthData-Aggregation (HC-AuthData-Aggregation). TreeAgg is

implemented by HT-AuthData-Aggregation, FlatAgg by HC-AuthData-Aggregation, and

HybridAgg by both algorithms.

6.5.2.1 HT-AuthData-Aggregation Algorithm
The HT-AuthData-Aggregation algorithm uses a balanced full binary hash tree to aggregate

AuthData for a set of 𝑄 objects produced by a producer 𝑥. It takes the hashes

ℎ𝑥,1, ℎ𝑥,2, … , ℎ𝑥,𝑄 of the objects as input and returns a root hash 𝑟ℎ𝑥 and a set of Sibling-

AuthData tokens 𝑆𝐴𝑥 = {𝑠𝑎𝑥,1, 𝑠𝑎𝑥,2, … , 𝑠𝑎𝑥,𝑄} as output. The algorithm constructs a hash

tree ℎ𝑡 by invoking the HT-Construction algorithm with the hashes and assigns the root hash

to 𝑟ℎ𝑥. Then, it iteratively invokes the SA-Extraction algorithm with each of ℎ𝑥,1, ℎ𝑥,2, … , ℎ𝑥,𝑄

and appends the result to 𝑆𝐴𝑥. Lastly, it returns 𝑟ℎ𝑥 and 𝑆𝐴𝑥 as output. The algorithm is

detailed in Algorithm 6.1.1 (given in the Appendix C).

6.5.2.2 HC-AuthData-Aggregation Algorithm
The HC-AuthData-Aggregation algorithm is used by Aggregator 𝛼 to generate aggregated

AuthData for a set of 𝑃 objects. These objects are consumed by a consumer 𝑦. It takes the

hashes ℎ1,𝑦, ℎ2,𝑦, … , ℎ𝑃,𝑦 of the objects as input and returns a concatenated hash 𝑐ℎ𝛼 as

output. This is done by concatenating all of the hashes and returning the resulting

concatenated hash 𝑐ℎ𝛼 as output. The algorithm is detailed in Algorithm 6.1.2.

6.5.3 Protocol Message Structure and Format
The three AuthData-Delivery protocols, respectively, used in each of the job execution phases

share a common transaction flow and message structure. For each AuthData delivery

transaction, there are two protocol messages, namely an AuthData Delivery (ADD) message

and an Acknowledgement (ACK) message. The ADD message is sent from an initiator to a

respondent to transmit AuthData. The ACK message is conversely sent from the respondent

back to the initiator to confirm the receipt of the ADD message. The exchange of these

messages is depicted in Figure 6.7.

Figure 6.7: A generic message transaction flow used in the AuthData-Delivery protocols of CPDA.

The structure of ADD messages and ACK messages is the same as those used in the entity

authentication protocols of MIEA, as shown in Figure 5.7. It consists of a header and a payload.

The descriptions of the fields contained in the header are summarised in Table 5.6. Unlike the

messages used in MIEA, ADD and ACK messages use different PRO and MTYPE values, which

are summarised in Table 6.3.

150

Table 6.3: Values for PRO and MTYPE of ADD and ACK messages.

Field
Numerical

Value
Notation Description

Protocol
(PRO)

4 𝐼𝑆𝐴𝐷 ISAuthData-Delivery protocol

5 𝑃𝑆𝐴𝐷 PSAuthData-Delivery protocol

6 𝐹𝑅𝐴𝐷 FRAuthData-Delivery protocol

Message Type
(MTYPE)

5 𝐴𝐷𝐷1
ADD message sent from a producer to Aggregator
(JobManager)

6 𝐴𝐷𝐷2 ADD message sent from Aggregator to a consumer

7 𝐴𝐶𝐾
ACK message acknowledging the preceding ADD
message.

The payloads of different ADD messages have variable lengths. These will be further

explained later on in each of the three functional blocks. For each ACK message, on the other

hand, the payload contains only one item, i.e., the MID of the preceding ADD message, and

has a fixed length. In other words, ACK messages of different protocols have the same format.

Assuming that 𝑝𝑟𝑜 is the current protocol used; 𝑚𝑖𝑑1 and 𝑚𝑖𝑑2 are, respectively, the MIDs

of the preceding ADD message and this ACK message; 𝑦 and 𝑥 are, respectively, the sender (a

respondent) and the receiver (an initiator), the ACK message msg-ACK can be expressed as

msg-ACK: {𝑝𝑟𝑜, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑦, 𝑑𝑖𝑑𝑦, 𝑖𝑑𝑥, 𝑑𝑖𝑑𝑥, 𝑚𝑖𝑑1}.

6.5.4 O2M Functional Block
The O2M functional block consists of the InputSplit AuthData-Generation (ISAuthData-

Generation) algorithm, the InputSplit AuthData-Verification (ISAuthData-Verification)

algorithm, and the InputSplit AuthData-Delivery (ISAuthData-Delivery) protocol. The

ISAuthData-Generation algorithm is used by ClientApp to generate AuthData for 𝑀

InputSplits. These AuthData are referred to as ISAuthData. The ISAuthData-Verification

algorithm is used by each of the 𝑀 Mappers for the verification of an InputSplit assigned to

the Mapper. The ISAuthData-Delivery protocol is used to deliver the AuthData from ClientApp

to JobManager and from JobManager to each of the Mappers. A high-level view of the O2M

functional block is shown in Figure 6.8.

Figure 6.8: The components involved, and the algorithms and the protocol used, in the O2M

functional block.

6.5.4.1 ISAuthData-Generation Algorithm
The ISAuthData-Generation algorithm uses the HT-AuthData-Aggregation algorithm

(implementing TreeAgg) and a digital signature scheme to, respectively, generate and sign

ISAuthData. It takes InputSplits 𝑑𝑐,𝑚1
, 𝑑𝑐,𝑚2

, … , 𝑑𝑐,𝑚𝑀
 (submitted by ClientApp 𝑐) and the

private key 𝑠𝑘𝑐 as input and generates a signature 𝜎𝑟ℎ𝑐
 (of a root hash 𝑟ℎ𝑐) and a set of

Sibling-AuthData tokens 𝑆𝐴𝑐 = {𝑠𝑎𝑐,𝑚1
, 𝑠𝑎𝑐,𝑚2

, … , 𝑠𝑎𝑐,𝑚𝑀
} as output. Firstly, it iteratively

151

invokes the hash generation algorithm with each of the InputSplits to generate the hashes of

the InputSplits and invokes the HT-AuthData-Aggregation algorithm with the hashes to obtain

𝑟ℎ𝑐 and 𝑆𝐴𝑐. It then invokes the SIG-Signing algorithm with 𝑠𝑘𝑐 and 𝑟ℎ𝑐 to generate 𝜎𝑟ℎ𝑐
.

Lastly, it returns 𝜎𝑟ℎ𝑐
 and 𝑆𝐴𝑐 as output. The algorithm is detailed in Algorithm 6.2.1.

6.5.4.2 ISAuthData-Verification Algorithm
The ISAuthData-Verification algorithm verifies the authenticity of an InputSplit with

ISAuthData (i.e., the signature of the root hash and the corresponding Sibling-AuthData

token). It takes an InputSplit 𝑑𝑐,𝑚𝑎
 (submitted by ClientApp 𝑐 and assigned to Mapper 𝑚𝑎),

the signature 𝜎𝑟ℎ𝑐
 (of the root hash 𝑟ℎ𝑐), the Sibling-AuthData token 𝑠𝑎𝑐,𝑚𝑎

, and the public

key 𝑝𝑘𝑐 as input and returns the verification result 𝑠𝑣 as output. Firstly, it invokes the hash

generation algorithm with 𝑑𝑐,𝑚𝑎
 to generate the hash ℎ′𝑐,𝑚𝑎

 of the InputSplit and invokes the

RA-Recovery algorithm with ℎ′𝑐,𝑚𝑎
 and 𝑠𝑎𝑐,𝑚𝑎

 to obtain 𝑟ℎ′𝑐. It then invokes the SIG-

Verification algorithm with 𝑝𝑘𝑐, 𝑟ℎ′𝑐, and 𝜎𝑟ℎ𝑐
 and returns the verification result 𝑠𝑣 as output.

The algorithm is detailed in Algorithm 6.2.2.

6.5.4.3 ISAuthData-Delivery Protocol
As described earlier in Section 6.5.3, two messages, i.e., an ADD message and an ACK

message, are used in each AuthData delivery transaction. For the delivery of the signature

𝜎𝑟ℎ𝑐
 and a set of Sibling-AuthData tokens 𝑠𝑎𝑐,𝑚1

, … , 𝑠𝑎𝑐,𝑚𝑀
 from ClientApp 𝑐 to JobManager

𝑗𝑚, the ISAuthData-Delivery protocol uses two messages, msg-ISADD1 and msg-ISACK1.

These two messages are, respectively, expressed as: msg-ISADD1: {𝐼𝑆𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷1,

𝑆(𝜎𝑟ℎ𝑐
) + 𝑆({𝑠𝑎𝑐,𝑚1

, … , 𝑠𝑎𝑐,𝑚𝑀
}), 𝑖𝑑𝑐, 𝑑𝑖𝑑𝑐, 𝑖𝑑𝑗𝑚 , 𝑑𝑖𝑑𝑗𝑚, 𝜎𝑟ℎ𝑐

, 𝑠𝑎𝑐,𝑚1
, … , 𝑠𝑎𝑐,𝑚𝑀

} and

msg-ISACK1: {𝐼𝑆𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑐, 𝑑𝑖𝑑𝑐, 𝑚𝑖𝑑1}.

For the delivery of the signature 𝜎𝑟ℎ𝑐
 and the respective Sibling-AuthData token 𝑠𝑎𝑐,𝑚𝑎

from JobManager 𝑗𝑚 to each Mapper 𝑚𝑎, the ISAuthData-Delivery protocol also uses two

messages, msg-ISADD2 and msg-ISACK2. These two messages are, respectively, expressed as:

msg-ISADD2: {𝐼𝑆𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷2, 𝑆(𝜎𝑟ℎ𝑐
) + 𝑆(𝑠𝑎𝑐,𝑚𝑎

), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑚𝑖
, 𝑑𝑖𝑑𝑚𝑖

, 𝜎𝑟ℎ𝑐
,

𝑠𝑎𝑐,𝑚𝑎
} and msg-ISACK2: {𝐼𝑆𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑚𝑎

, 𝑑𝑖𝑑𝑚𝑎
 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑚𝑖𝑑1}.

6.5.5 M2M Functional Block
The M2M functional block consists of the Producer-Generated PartitionSegment AuthData-

Generation (PGen-PSAuthData-Generation) algorithm, the Aggregator-Generated

PartitionSegment AuthData-Generation (AGen-PSAuthData-Generation) algorithm, the

PartitionSegment AuthData-Verification (PSAuthData-Verification) algorithm, and the

PartitionSegment AuthData-Delivery (PSAuthData-Delivery) protocol. The PGen-PSAuthData-

Generation algorithm is used by each of the 𝑀 Mappers to generate AuthData for a set of 𝐸

PartitionSegments that are produced by the Mapper. These AuthData are referred to as PGen-

PSAuthData. The AGen-PSAuthData-Generation algorithm is used by JobManager to generate

aggregated AuthData for the PartitionSegments produced by all the Mappers. These

AuthData are referred to as AGen-PSAuthData. The PSAuthData-Verification algorithm is used

by each of the 𝐸 Reducers to verify a set of 𝑀 PartitionSegments that are assigned to the

Reducer. The PSAuthData-Delivery protocol is used to deliver PGen-PSAuthData from each

152

Mapper to JobManager and to deliver PGen-PSAuthData and AGen-PSAuthData from

JobManager to each Reducer. A high-level view of the M2M functional block is shown in

Figure 6.9.

Figure 6.9: The components involved, and the algorithms and the protocol used, in the M2M

functional block.

6.5.5.1 PGen-PSAuthData-Generation Algorithm
The PGen-PSAuthData-Generation algorithm uses the HT-AuthData-Aggregation algorithm

(which implements the intra-producer level AuthData aggregation of HybridAgg) and a MAC

scheme to, respectively, generate and sign PGen-PSAuthData. It takes the PartitionSegments

𝑑𝑚𝑎,𝑟1
, 𝑑𝑚𝑎,𝑟2

, … , 𝑑𝑚𝑎,𝑟𝐸
 (produced by a Mapper 𝑚𝑎) and the pairwise key 𝑘𝑚𝑎,𝑗𝑚 as input

and generates a root hash 𝑟ℎ𝑚𝑎
, a tag 𝜏𝑟ℎ𝑚𝑎

 (of the root hash), and a set of Sibling-AuthData

tokens 𝑆𝐴𝑚𝑎
= {𝑠𝑎𝑚𝑎,𝑟1

, 𝑠𝑎𝑚𝑎,𝑟2
, … , 𝑠𝑎𝑚𝑎,𝑟𝐸

} as output. Firstly, it iteratively invokes the hash

generation algorithm with each of the PartitionSegments to generate the hashes of the

PartitionSegments and invokes the HT-AuthData-Aggregation algorithm with the hashes to

obtain 𝑟ℎ𝑚𝑎
 and 𝑆𝐴𝑚𝑎

. It then invokes the MAC-Signing algorithm with 𝑘𝑚𝑎,𝑗𝑚 and 𝑟ℎ𝑚𝑎
 to

generate 𝜏𝑟ℎ𝑚𝑎
. Lastly, it returns 𝑟ℎ𝑚𝑎

, 𝜏𝑟ℎ𝑚𝑎
, and 𝑆𝐴𝑚𝑎

 as output. The algorithm is detailed

in Algorithm 6.3.1.

6.5.5.2 AGen-PSAuthData-Generation Algorithm
The AGen-PSAuthData-Generation algorithm (used by JobManager) verifies PGen-

PSAuthData generated by different producers and uses the HC-AuthData-Aggregation

algorithm (which implements the inter-producer level AuthData aggregation of HybridAgg)

and a digital signature scheme to, respectively, generate and sign AGen-PSAuthData. It takes

the root hashes 𝑟ℎ𝑚1
, 𝑟ℎ𝑚2

, … , 𝑟ℎ𝑚𝑀
 (generated by different Mappers), the tags

𝜏𝑟ℎ𝑚1
, 𝜏𝑟ℎ𝑚2

, … , 𝜏𝑟ℎ𝑚𝑀
 (of the root hashes), the pairwise keys 𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, … , 𝑘𝑚𝑀,𝑗𝑚, and

the private key 𝑠𝑘𝑗𝑚 as input and generates a concatenated hash 𝑐ℎ𝑗𝑚 and the signature

𝜎𝑐ℎ𝑗𝑚
 (of the concatenated hash) as output. Firstly, it iteratively invokes the MAC-Verify

algorithm with each set of 𝑘𝑚𝑎,𝑗𝑚, 𝑟ℎ𝑚𝑎
, and 𝜏𝑟ℎ𝑚𝑎

 to verify the authenticity of 𝑟ℎ𝑚𝑎
, where

1 ≤ 𝑎 ≤ 𝑀. If all of the root hashes are authentic, then it invokes the HC-AuthData-

Aggregation algorithm with the root hashes to generate 𝑐ℎ𝑗𝑚. Subsequently, it invokes the

SIG-Signing algorithm with 𝑠𝑘𝑗𝑚 and 𝑐ℎ𝑗𝑚 to generate 𝜎𝑐ℎ𝑗𝑚
. It returns 𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚

 as

output. The algorithm is detailed in Algorithm 6.3.2.

153

6.5.5.3 PSAuthData-Verification Algorithm
The verification process consists of two phases. In the first phase, the authenticity of the

concatenated hash 𝑐ℎ𝑗𝑚 is verified against the signature 𝜎𝑐ℎ𝑗𝑚
. If the verification result is

positive, then the process continues to the second phase. In the second phase, each

PartitionSegment is verified against the respective Sibling-AuthData token and the respective

root hash contained in 𝑐ℎ𝑗𝑚. The PSAuthData-Verification algorithm takes the

PartitionSegments 𝑑𝑚1,𝑟𝑏
, 𝑑𝑚2,𝑟𝑏

, … , 𝑑𝑚𝑀,𝑟𝑏
 (assigned to a Reducer 𝑟𝑏), a set of Sibling-

AuthData tokens {𝑠𝑎𝑚1,𝑟𝑏
, 𝑠𝑎𝑚2,𝑟𝑏

, … , 𝑠𝑎𝑚𝑀,𝑟𝑏
}, the concatenated hash 𝑐ℎ𝑗𝑚, the signature

𝜎𝑐ℎ𝑗𝑚
 (of the concatenated hash), and the public key 𝑝𝑘𝑗𝑚 (of JobManager) as input and

returns the verification result as output. It invokes the SIG-Verification algorithm with 𝑝𝑘𝑗𝑚,

𝑐ℎ𝑗𝑚, and 𝜎𝑐ℎ𝑗𝑚
 to verify the authenticity of 𝑐ℎ𝑗𝑚. If the result is negative, return negative;

otherwise, proceed to the next step. It iteratively invokes the hash generation algorithm with

each of the PartitionSegments to generate the hashes of the PartitionSegments and invokes

the RA-Recovery algorithm with each of the hashes and the respective SiblingAuthData token

to generate root hashes 𝑟ℎ′
𝑚1

, 𝑟ℎ′
𝑚2

, … , 𝑟ℎ′
𝑚𝑀

. It compares each 𝑟ℎ𝑚𝑎
′ with 𝑟ℎ𝑚𝑎

(extracted from 𝑐ℎ𝑗𝑚) and returns the comparison result. The algorithm is detailed in

Algorithm 6.3.3.

6.5.5.4 PSAuthData-Delivery Protocol
The PSAuthData-Delivery protocol also uses two messages, i.e., an ADD message and an ACK

message, to, respectively, deliver AuthData and acknowledge the receipt of the AuthData. For

the delivery of a root hash 𝑟ℎ𝑚𝑎
, a tag 𝜏𝑟ℎ𝑚𝑎

, and a set of Sibling-AuthData tokens

{𝑠𝑎𝑚𝑎,𝑟1
, … , 𝑠𝑎𝑚𝑎,𝑟𝐸

} from each Mapper 𝑚𝑎 to JobManager 𝑗𝑚, the PSAuthData-Delivery

protocol uses to messages, msg-PSADD1 and msg-PSACK1. These two messages are,

respectively, expressed as: msg-PSADD1: {𝑃𝑆𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷1, 𝑆(𝑟ℎ𝑚𝑎
) + 𝑆(𝜏𝑟ℎ𝑚𝑎

) +

𝑆({𝑠𝑎𝑚𝑎,𝑟1
, … , 𝑠𝑎𝑚𝑎,𝑟𝐸

}), 𝑖𝑑𝑚𝑎
, 𝑑𝑖𝑑𝑚𝑎

, 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑟ℎ𝑚𝑎
, 𝜏𝑟ℎ𝑚𝑎

, 𝑠𝑎𝑚𝑎,𝑟1
, … , 𝑠𝑎𝑚𝑎,𝑟𝐸

} and

msg-PSACK1: {𝑃𝑆𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑚𝑎
, 𝑑𝑖𝑑𝑚𝑎

, 𝑚𝑖𝑑1}.

For the delivery of the concatenated hash 𝑐ℎ𝑗𝑚, the signature 𝜎𝑐ℎ𝑗𝑚
 and a respective set

of Sibling-AuthData tokens {𝑠𝑎𝑚1,𝑟𝑏
, … , 𝑠𝑎𝑚𝑀,𝑟𝑏

} from JobManager 𝑗𝑚 to each Reducer 𝑟𝑏,

the PSAuthData-Delivery protocol uses two messages, msg-PSADD2 and msg-PSACK2. These

two messages are, respectively, expressed as: msg-PSADD2: {𝑃𝑆𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷2,

𝑆(𝑐ℎ𝑗𝑚) + 𝑆(𝜎𝑐ℎ𝑗𝑚
) + 𝑆({𝑠𝑎𝑚1,𝑟𝑏

, … , 𝑠𝑎𝑚𝑀,𝑟𝑏
}), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑟𝑏

, 𝑑𝑖𝑑𝑟𝑏
, 𝑐ℎ𝑗𝑚 , 𝜎𝑐ℎ𝑗𝑚

,

𝑠𝑎𝑚1,𝑟𝑏
, … , 𝑠𝑎𝑚𝑀,𝑟𝑏

} and msg-PSACK2: {𝑃𝑆𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑟𝑏
, 𝑑𝑖𝑑𝑟𝑏

, 𝑖𝑑𝑗𝑚,

𝑑𝑖𝑑𝑗𝑚, 𝑚𝑖𝑑1}.

6.5.6 M2O Functional Block
The M2O functional block consists of the Producer-Generated FinalResult AuthData-

Generation (PGen-FRAuthData-Generation) algorithm, the Aggregator-Generated FinalResult

AuthData-Generation (AGen-FRAuthData-Generation) algorithm, the FinalResult AuthData-

Verification (FRAuthData-Verification) algorithm, and the FinalResult AuthData-Delivery

(FRAuthData-Delivery) protocol. The PGen-FRAuthData-Generation algorithm is used by each

of the 𝐸 Reducers to generate AuthData for the FinalResult produced by the Reducer. These

154

AuthData are referred to as PGen-FRAuthData. The AGen-FRAuthData-Generation algorithm

is used by JobManager to generate aggregated AuthData for FinalResults produced by all the

Reducers. These AuthData are referred to as AGen-FRAuthData. The FRAuthData-Verification

algorithm is used by ClientApp for the verification of the entire set of the 𝐸 FinalResults. The

FRAuthData-Delivery protocol is used to deliver PGen-FRAuthData from each Reducer to

JobManager and to deliver AGen-FRAuthData from JobManager to ClientApp. A high-level

view of the M2O functional block is shown in Figure 6.10.

Figure 6.10: The components involved, and the algorithms and the protocol, used in the M2O

functional block.

6.5.6.1 PGen-FRAuthData-Generation Algorithm
The PGen-FRAuthData-Generation algorithm uses a hash function and a MAC scheme to,

respectively, generate and sign AuthData for a FinalResult produced by a Reducer. It takes a

FinalResult 𝑑𝑟𝑏,𝑐 (produced by a Reducer 𝑟𝑏) and the pairwise key 𝑘𝑟𝑏,𝑗𝑚 as input and

generates the hash ℎ𝑟𝑏,𝑐 (of the FinalResult) and the tag 𝜏ℎ𝑟𝑏,𝑐
 (of the hash) as output. Firstly,

it invokes the hash generation algorithm with 𝑑𝑟𝑏,𝑐 to obtain ℎ𝑟𝑏,𝑐. It then invokes the MAC-

Signing function with 𝑘𝑟𝑏,𝑗𝑚 and ℎ𝑟𝑏,𝑐 to obtain 𝜏ℎ𝑟𝑏,𝑐
. Lastly, it returns ℎ𝑟𝑏,𝑐 and 𝜏ℎ𝑟𝑏,𝑐

 as

output. The algorithm is detailed in Algorithm 6.4.1.

6.5.6.2 AGen-FRAuthData-Generation Algorithm
The AGen-FRAuthData-Generation algorithm verifies PGen-FRAuthData generated by

different Reducers and uses the HC-AuthData-Aggregation algorithm (which implements

FlatAgg) and a digital signature scheme to, respectively, generate and sign AGen-FRAuthData.

It takes the hashes ℎ𝑟1,𝑐 , ℎ𝑟2,𝑐, … , ℎ𝑟𝐸,𝑐 (of the FinalResults produced by all the Reducers), the

tags 𝜏ℎ𝑟1,𝑐
, 𝜏ℎ𝑟2,𝑐

, … , 𝜏ℎ𝑟𝐸,𝑐
 (of the hashes), the pairwise keys 𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, … , 𝑘𝑟𝐸,𝑗𝑚, and the

private key 𝑠𝑘𝑗𝑚 as input and generates a concatenated hash 𝑐ℎ𝑗𝑚 and the signature 𝜎𝑐ℎ𝑗𝑚

(of the concatenated hash) as output. Firstly, it iteratively invokes the MAC-Verify algorithm

with each set of 𝑘𝑟𝑏,𝑗𝑚, ℎ𝑟𝑏,𝑐, and 𝜏ℎ𝑟𝑏,𝑐
 to verify the authenticity of ℎ𝑟𝑏,𝑐, where 1 ≤ 𝑏 ≤ 𝐸.

If all hashes are authentic, then it invokes the HC-AuthData-Aggregation algorithm with the

hashes to generate 𝑐ℎ𝑗𝑚. Subsequently, it invokes the SIG-Signing algorithm with 𝑠𝑘𝑗𝑚 and

𝑐ℎ𝑗𝑚 to generate 𝜎𝑐ℎ𝑗𝑚
. It returns 𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚

 as output. The algorithm is detailed in

Algorithm 6.4.2.

155

6.5.6.3 FRAuthData-Verification Algorithm
Similar to PSAuthData-Verification, the verification process here also consists of two phases.

In the first phase, the authenticity of the concatenated hash is verified, and, in the second

phase, the hashes of the FinalResults are compared against the hashes contained in the

concatenated hash. The FRAuthData-Verification algorithm takes the FinalResults

𝑑𝑟1,𝑐, 𝑑𝑟2,𝑐, … , 𝑑𝑟𝐸,𝑐 (consumed by ClientApp 𝑐), the concatenated hash 𝑐ℎ𝑗𝑚, the signature

𝜎𝑐ℎ𝑗𝑚
 (of the concatenated hash), and the public key 𝑝𝑘𝑗𝑚 as input and returns the

verification result as output. Firstly, it invokes the SIG-Verification function with 𝑝𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚,

and 𝜎𝑐ℎ𝑗𝑚
 to verify the authenticity of 𝑐ℎ𝑗𝑚. If the result is negative, return negative;

otherwise, proceed to the next step. It iteratively invokes the hash generation algorithm with

each of 𝑑𝑟1,𝑐, 𝑑𝑟2,𝑐, … , 𝑑𝑟𝐸,𝑐 to generate the hashes ℎ′𝑟1,𝑐, ℎ′𝑟2,𝑐, … , ℎ′𝑟𝐸,𝑐. It compares each

ℎ𝑟𝑏,𝑐
′ with the respective ℎ𝑟𝑏,𝑐 extracted from 𝑐ℎ𝑗𝑚. It returns the comparison result as output.

The algorithm is detailed in Algorithm 6.4.3.

6.5.6.4 FRAuthData-Delivery Protocol
Like the two AuthData-Delivery protocols explained earlier, the FRAuthData-Delivery protocol

uses two messages, i.e., an ADD message and an ACK message, in each AuthData delivery

transaction. For the delivery of a hash ℎ𝑟𝑏,𝑐 and a tag 𝜏ℎ𝑟𝑏,𝑐
 from each Reducer 𝑟𝑏 to

JobManager 𝑗𝑚, the FRAuthData-Delivery protocol uses two messages, msg-FRADD1 and

msg-FRACK1. These two messages are, respectively, expressed as: msg-FRADD1:

{𝐹𝑅𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷1, 𝑆(ℎ𝑟𝑏,𝑐) + 𝑆(𝜏ℎ𝑟𝑏,𝑐
), 𝑖𝑑𝑟𝑏

, 𝑑𝑖𝑑𝑟𝑏
, 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, ℎ𝑟𝑏,𝑐 , 𝜏ℎ𝑟𝑏,𝑐

} and msg-

FRACK1: {𝐹𝑅𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑟𝑏
, 𝑑𝑖𝑑𝑟𝑏

, 𝑚𝑖𝑑1}.

For the delivery of the concatenated hash 𝑐ℎ𝑗𝑚 and the signature 𝜎𝑐ℎ𝑗𝑚
 from JobManager

𝑗𝑚 to ClientApp 𝑐, the FRAuthData-Delivery protocol uses two messages, msg-FRADD2 and

msg-FRACK2. These two messages are, respectively, expressed as: msg-FRADD2:

{𝐹𝑅𝐴𝐷, 𝑚𝑖𝑑1, 𝐴𝐷𝐷2, 𝑆(𝑐ℎ𝑗𝑚) + 𝑆(𝜎𝑐ℎ𝑗𝑚
), 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚, 𝑖𝑑𝑐 , 𝑑𝑖𝑑𝑐, 𝑐ℎ𝑗𝑚 , 𝜎𝑐ℎ𝑗𝑚

} and msg-

FRACK2: {𝐹𝑅𝐴𝐷, 𝑚𝑖𝑑2, 𝐴𝐶𝐾, 𝑆(𝑀𝐼𝐷), 𝑖𝑑𝑐, 𝑑𝑖𝑑𝑐 , 𝑖𝑑𝑗𝑚, 𝑑𝑖𝑑𝑗𝑚 , 𝑚𝑖𝑑1}.

6.5.7 Putting Everything Together: CPDA in Action
The operation flow of CPDA when applied to a job execution is depicted as a sequence

diagram shown in Figure 6.11. The sequence diagram highlights what and when the

algorithms and the protocols are used by which components. Up on a successful execution of

CPDA, (1) AuthData for all objects are generated and delivered to the respective consumers,

(2) the authenticity (SR5) and (SR6) of each object can be verified against the related

AuthData, and (3) producers cannot falsely deny producing their objects (SR7).

156

Figure 6.11: The operations of the CPDA framework during the entire course of a job execution.

157

6.6 The Running Example

To demonstrate how CPDA works and to motivate the discussion, we further build on the

running example described in Section 5.6 by applying CPDA to the job execution process. The

example shows how the components of CPDA are used at different phases of the execution

of the job to ensure the authenticity of JobData.

The result of the analysis in the running example is mission critical. If the result is

contaminated and the organisations are misinformed, the organisations may misjudge the

situation and make an inappropriate response, leading to potentially severe consequences.

For example, if the potentially compromised machines are indeed compromised and these

machines are not discovered during the security log analysis due to unauthorised alteration

to the log files, the machines could be used as a backdoor to continue to cause harm to the

systems of the organisations. For these reasons, the end users (i.e., the authorised employees

of the respective organisations) should verify the authenticity of the analysis result to ensure

that the output files produced by the distributed computing service (i.e., MR in this example)

are processed by the authorised components and that the data used in the processing are

from the expected sources and have not been tampered with. CPDA provides a data

authentication service that protect the authenticity of JobData used, generated, and

processed in every phase of a job execution, from when the input data are submitted to the

MR services to when the output data are retrieved by the JobSubmitter. This is done by

applying a different CPDA functional block to each phase of the job execution, i.e., the O2M

functional block to the job submission phase, the M2M functional block to the map phase,

and the M2O block to the reduce phase. Each of the functional blocks consists of three

components: AuthData-Generation algorithms (except the O2M functional block which has

only one algorithm), an AuthData-Verification algorithm, and an AuthData-Delivery protocol.

The AuthData-Generation algorithms are used to generate AuthData (e.g., MAC tags and

digital signatures) for JobData objects when the objects are produced by data producers (with

the exception of InputSplits which are supplied by Users via ClientApps). The AuthData-

Verification algorithms are used to verify the authenticity of the objects against the AuthData

before the objects are consumed by data consumers. The AuthData-Delivery protocols are

used to deliver AuthData from a data producer to the Aggregator (here it is 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟)

and from the Aggregator to a data consumer.

In the example, respective AuthData-Generation algorithms are used by ClientApps in

step 4 (shown in Figure 4.8), Mappers in step 22, Reducers in step 26, and 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in

steps 23 and 27. Respective AuthData-Verification algorithms are used by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 in step

29, by Mappers in step 22, and by Reducers in step 25. Respective AuthData-Delivery

protocols are used to transfer AuthData from ClientApps to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in step 11, from

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to Mappers in step 20, from Mappers to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in step 23,

from 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to Reducers in step 24, from Reducers to JobManager in step 27, and from

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 in step 28.

CPDA makes a hybrid use of symmetric-key and asymmetric-key cryptosystems for

generating and verifying AuthData for protecting the authenticity of JobData objects. With

regards to keys used, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 each, respectively, generate

158

a pair of private and public keys, i.e., 𝑠𝑘𝑐1 and 𝑝𝑘𝑐1 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑠𝑘𝑐2 and 𝑝𝑘𝑐2 by

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑠𝑘𝑐3 and 𝑝𝑘𝑐3 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. These keys are generated before the

execution of the job. Each of the private keys is used for signing (generating AuthData for) the

respective InputSplit by the respective ClientApp in step 4. Each of the public keys is used for

verifying the assigned InputSplit by the respective Mapper in step 22. 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2,

𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 are issued pairwise (symmetric) keys, i.e.,

𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, 𝑘𝑚3,𝑗𝑚, 𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, and 𝑘𝑟3,𝑗𝑚, respectively, by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 (keys for the

Mappers are issued in step 20 and keys for the Reducers in step 24). The keys 𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚,

and 𝑘𝑚3,𝑗𝑚 are used by the Mappers to sign the PartitionSegments they produce in step 22

and by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to verify AuthData (PGen-PSAuthData) generated by the Mappers in

step 23. The keys 𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, and 𝑘𝑟3,𝑗𝑚 are used by the Reducers to sign the FinalResults

they produce in step 26 and by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to verify AuthData (PGen-FRAuthData)

generated by the Reducers in step 27. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 generates a pair of private and public

keys, 𝑠𝑘𝑗𝑚 and 𝑝𝑘𝑗𝑚, when 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 is launched in step 9. The private key 𝑠𝑘𝑗𝑚 is used

by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to generate AGen-PSAuthData for the PartitionSegments produced by the

Mappers in step 23 and to generate AGen-FRAuthData for the FinalResults produced by the

Reducers in step 27. The public key 𝑝𝑘𝑗𝑚 is used by the Reducers to verify the assigned

PartitionSegments in step 25 and by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to verify the FinalResults in step 29. All the

keys used in providing this data authentication service are distributed to the respective

components by using the entity authentication service provided by MIEA.

In the following, we demonstrate how the different components of CPDA are used at

different phases of the job execution. In this demonstration, we describe only operational

steps related to data authentication (signing and verification) by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑀𝑎𝑝𝑝𝑒𝑟1,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, and 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.

In the job submission phase, in step 4, after 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 writes 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 onto 𝐷𝐹𝑆1,

it signs 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 by using the ISAuthData-Generation algorithm (explained in Section

6.5.4.1) with its private key 𝑠𝑘𝑐1, generating ISAuthData tokens 𝜎𝑟ℎ
𝑐1 (the signature of the

root hash for 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1) and 𝑆𝐴𝑐1 (a set of Sibling-AuthData token containing only one

𝑠𝑎𝑐1,𝑚1
). The ISAuthData tokens 𝜎𝑟ℎ

𝑐1 and 𝑆𝐴𝑐1 are sent from 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

in step 11 and from 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to 𝑀𝑎𝑝𝑝𝑒𝑟1 in step 20 by using the ISAuthData-Delivery

protocol (explained in Section 6.5.4.3). The public key 𝑝𝑘𝑐1 of 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 is distributed from

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 in step 59, from 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

in step 16, and from 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to 𝑀𝑎𝑝𝑝𝑒𝑟1 in step 20. In step 20, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 also sends

a pairwise key 𝑘𝑚1,𝑗𝑚 to 𝑀𝑎𝑝𝑝𝑒𝑟1 for signing the PartitionSegments produced by 𝑀𝑎𝑝𝑝𝑒𝑟1.

In step 22, after 𝑀𝑎𝑝𝑝𝑒𝑟1 reads 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 from 𝐷𝐹𝑆1, it verifies the authenticity of

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 by using the ISAuthData-Verification algorithm (explained in Section 6.5.4.2)

with 𝑝𝑘𝑐1, 𝜎𝑟ℎ
𝑐1 , and 𝑆𝐴𝑐1 before executing its map task in the map phase.

In the map phase, in step 22, 𝑀𝑎𝑝𝑝𝑒𝑟1 performs its map tasks on 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 and

produces 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3. It signs 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2

9 ResourceManagers gets the public keys of the respective ClientApps in step 5. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 collects all the public
keys from the other ResourceManagers in step 15 before sending all the public keys to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in step 16.

159

and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3 by using the PGen-PSAuthData-Generation algorithm (explained

in Section 6.5.5.1) with 𝑘𝑚1,𝑗𝑚, generating PGen-PSAuthData tokens 𝑟ℎ𝑚1
 (the root hash for

the PartitionSegments), 𝜏𝑟ℎ𝑚1
 (a MAC tag of the root hash), and 𝑆𝐴𝑚1

 (a set of Sibling-

AuthData tokens containing 𝑠𝑎𝑚1,𝑟2
 and 𝑠𝑎𝑚1,𝑟3

). The PGen-PSAuthData tokens 𝑟ℎ𝑚1
, 𝜏𝑟ℎ𝑚1

,

and 𝑆𝐴𝑚1
 are sent from 𝑀𝑎𝑝𝑝𝑒𝑟1 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in step 23 by using the PSAuthData-

Delivery protocol (explained in Section 6.5.5.4). After 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 receives all the PGen-

PSAuthData tokens generated by all the Mappers (including 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑀𝑎𝑝𝑝𝑒𝑟3),

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 generates AGen-PSAuthData, 𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚
, for all the PartitionSegments by

using the AGen-PSAuthData-Generation algorithm (explained in Section 6.5.5.2) with its

private key 𝑠𝑘𝑗𝑚, all the PGen-PSAuthData tokens, and the pairwise keys shared with the

Mappers (𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, and 𝑘𝑚3,𝑗𝑚). In step 24, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends the respective Sibling-

AuthData token (𝑠𝑎𝑚2,𝑟1
) and AGen-PSAuthData (𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚

) to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 by using the

PSAuthData-Delivery protocol. It also sends its public key 𝑝𝑘𝑗𝑚 and a pairwise key 𝑘𝑟1,𝑗𝑚 to

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 by using the entity authentication service provided by MIEA. These keys are for

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 to verify the assigned PartitionSegments and to sign 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, respectively.

In step 25, after 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 reads 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 from 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2, it verifies

the authenticity of 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 by using the PSAuthData-Verification algorithm

(explained in Section 6.5.5.3) with 𝑝𝑘𝑗𝑚, 𝑠𝑎𝑚2,𝑟1
, 𝑐ℎ𝑗𝑚, and 𝜎𝑐ℎ𝑗𝑚

 before executing its reduce

task in the reduce phase.

In the reduce phase, in step 26, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 performs its reduce task on
𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 and produces 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1. It signs 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1 by using the

PGen-FRAuthData-Generation algorithm (explained in Section 6.5.6.1) with 𝑘𝑟1,𝑗𝑚, generating

PGen-FRAuthData tokens ℎ𝑟1,𝑐1 (the hash of 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1) and 𝜏ℎ
𝑟1,𝑐1 (the MAC tag of the

hash). It then sends ℎ𝑟1,𝑐1 and 𝜏ℎ
𝑟1,𝑐1 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 in step 27 by using the FRAuthData-

Delivery protocol (explained in Section 6.5.6.4). After 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 receives all the PGen-
FRAuthData tokens generated by all the Reducers (including 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3),
𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 generates AGen-FRAuthData, 𝑐ℎ𝑗𝑚

∗ and 𝜎𝑐ℎ𝑗𝑚
∗ , for all the FinalResults by using

the AGen-FRAuthData-Generation algorithm (explained in Section 6.5.6.2) with its private key
𝑠𝑘𝑗𝑚, all the PGen-FRAuthData tokens, and the pairwise keys shared with the Reducers

(𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, and 𝑘𝑟3,𝑗𝑚). In step 28, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends the AGen-PSAuthData (𝑐ℎ𝑗𝑚
∗ and

𝜎𝑐ℎ𝑗𝑚
∗) to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 by using the FRAuthData-Delivery protocol. It also sends its public key

𝑝𝑘𝑗𝑚 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 for verifying all the FinalResults (𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1). In other words, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 needs only one public key 𝑝𝑘𝑗𝑚 to verify the

authenticity of the result of the analysis job. In step 29, after 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 reads all the
FinalResults from 𝐷𝐹𝑆1, it verifies the authenticity of the FinalResults by using the
FRAuthData-Verification algorithm (explained in Section 6.5.6.3) with 𝑝𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚

∗ , and 𝜎𝑐ℎ𝑗𝑚
∗

before presenting the FinalResults to 𝑈𝑠𝑒𝑟1.
The detailed operational steps when both entity authentication (provided by MIEA) and

data authentication (provided by CPDA) are applied to the job in the running example are
elaborated in Section 7.3.

160

6.7 Security Analysis

The security of CPDA is analysed by using both an informal (property) method and a formal

(complexity) analysis method. With the informal analysis method, we analyse CPDA against

the security requirements (SR5), (SR6), and (SR7). The complexity analysis shows how much

effort is required to successfully mount any of the attacks (T5) and (T6) against the system.

The results are compared with those of the most related object based methods, i.e., the

methods that secure individual objects by using a MAC scheme and a digital signature

scheme, respectively. These methods are hereafter referred to as the MAC based scheme and

the signature based scheme.

6.7.1 Informal Analysis
CPDA protects the authenticity of all the objects submitted or generated throughout the

course of a job execution. In the job submission phase, each InputSplit can be verified against

the respective Sibling-AuthData token and the signature of the root hash generated by

ClientApp.

In the map phase, each PartitionSegment can be verified against the respective Sibling-

AuthData token generated by the respective Mapper and the respective root hash contained

in the concatenated hash which, in turn, is generated by JobManager. The authenticity of the

concatenated hash is ensured by the signature generated by JobManager.

In the reduce phase, each FinalResult can be verified against the respective hash

contained in the concatenated hash generated by JobManager. The authenticity of the

concatenated hash, similarly, is ensured by the signature generated by JobManager.

6.7.1.1 Data Origin Authentication
Entities external to a job should not be able to inject a fraudulent object into the job. No

entities should be able to falsify the origin of an object because it is computationally difficult

to find an object that is different from an authentic one, but produces the same hash value,

or to forge a new AuthData token (e.g., a tag or signature) for a fraudulent object. Hence, the

CPDA framework satisfies the requirement of data origin authentication (SR5).

6.7.1.2 Data Integrity Protection
Any modifications made to any of the objects would change the hashes of the objects, thus

different from when the objects are generated. When the tampered objects are verified

against the respective AuthData, the result will be negative and such attempts will be detected.

Therefore, the CPDA framework meets the requirement of data integrity protection (SR6).

6.7.1.3 Non-repudiation of Origin
In the job submission phase, non-repudiation is achieved by ClientApp signing the root hash

of the hash tree. As only ClientApp knows the signature signing key and the signature

verification key has been certified by a trusted entity (e.g., a certificate authority), any

signature that has been positively verified must be from ClientApp.

In the map phase, JobManager provides a signature-protected concatenated hash

containing authentic root hashes. The authenticity of the root hashes is ensured by the tags

that are generated by the respective Mappers using their respective pairwise keys uniquely

161

shared between each Mapper and JobManager. As JobManager is a trustworthy component

and each pairwise key is only known by JobManager and the corresponding Mapper, it is hard

for the Mapper to falsely deny that it has produced the PartitionSegments.

Similarly, in the reduce phase, JobManager provides a signature-protected concatenated

hash containing authentic hashes. The authenticity of the hashes is, in turn, protected by

using pairwise keys that are known only by JobManager and the respective Reducers. It is

hard for each of the Reducers to falsely deny having produced the respective FinalResult.

Therefore, the CPDA framework satisfies the requirement of non-repudiation of origin (SR7).

6.7.1.4 The Comparisons of the Security Properties
There are some differences in the security properties offered by the MAC based and the

signature based schemes. Here, in Table 6.4, we provide a summary of the security properties

provided by CPDA and these two schemes along with the use of JobManager, a trusted third

party (TTP). The result shows that CPDA satisfies all of the specified security requirements,

and it provides the same level of security protection as that provided by digitally signing all

the data objects individually.

Table 6.4: The comparisons of security properties achieved by CPDA, the MAC based scheme, and

the signature based scheme.

Security Requirement MAC MAC with TTP Signature CPDA

(SR5) Data origin authentication √ √ √ √

(SR6) Data integrity protection √ √ √ √

(SR7) Non-repudiation of origin √ √ √

6.7.2 Complexity Analysis
The strengths of the security protections provided by CPDA are analysed in terms of

computational complexity required to successfully mount a data injection attack (T5) and a

data tampering attack (T6), respectively. In the following, we first give a list of notations used

in the analysis, then the security strengths of cryptographic schemes (a hash function and a

digital signature scheme) in addition to those discussed in Section 5.7.3.2, before comparing

the strength of CPDA with those of the MAC based and signature based schemes.

6.7.2.1 Notations
Table 6.5 shows the notations used in this analysis; all of the lengths are expressed in bits.

Table 6.5: Notations used in the complexity analysis of CPDA.

Symbol Meaning

𝐿ℎ Hash length

𝐿𝑑 Object length

𝐿𝜏 MAC tag length

𝐿𝜎 Signature length

𝐿𝑘 Secret key length

𝐿𝑠𝑘 Private key length

𝑙 Security level

6.7.2.2 The Strength of Cryptographic Schemes
In Section 5.7.3.2, we have discussed the strengths of a number of cryptographic schemes,

including a MAC scheme. In this section, we further analyse the strengths of a hash function

and a digital signature scheme in terms of computational complexity needed to break an

162

authentication token. The complexity is also expressed as 2𝑛. Cryptanalytical attacks on hash

functions are omitted as these attacks can also be mitigated by using a scheme with no known

vulnerabilities.

Attacks on hash functions can be classified into preimage attacks (finding a preimage of a

given hash), second preimage attacks (given a preimage, finding a second preimage that

produces the same hash), and collision attacks (finding two different preimages that produce

the same hash). The complexities of launching a preimage attack and a second preimage

attack are 2𝐿ℎ [178], whereas the computational complexity of launching a collision attack is

2𝐿ℎ 2⁄ [178]. Hence, the minimum complexity needed to successfully mount an attack on a

hash is 2𝐿ℎ/2.

For digital signatures, there exist signature forgery attacks that are more efficient than

exhaustive search of new data objects, private keys, or signatures [205]. In other words, the

computational complexity required to break a signature is much less than 2min (𝐿𝑑,𝐿𝑠𝑘,𝐿𝜎).

Rather, such complexity is usually expressed by using a notion of security levels, i.e., 2𝑙 where

𝑙 is a specified security level. A number of organisations, such as NIST [191], ENISA [206], and

IETF [207], have estimated key lengths needed to achieve different security levels. For

example, according to NIST [191], 3072-bit RSA and 256-bit ECDSA could be used to achieve

a security level of 128-bit.

6.7.2.3 Data Injection Attacks
When CPDA is applied, to inject a fraudulent object into a job execution without being

detected, an adversary may (1) find a new object that would yield the same hash as an existing

object; (2) find a new object and a new Sibling-AuthData token that would produce the same

root hash as the existing ones; or (3) forge a new tag or signature. For (1) and (2), finding a

new object that produces the same hash requires a complexity of 2𝑑, or an attacker may

perform one of preimage, second preimage, and collusion attacks, which requires a minimum

computational complexity of 2𝐿ℎ/2. For (3), forging a new tag and a new signature,

respectively, requires computational complexities of 2min (𝐿𝑑,𝐿𝑘,𝐿𝜏) and 2𝑙. Therefore, the

complexity of successfully launching a data injection attack is 2min(𝐿𝑑,
𝐿ℎ
2

,𝐿𝑘,𝐿𝜏,𝑙).

6.7.2.4 Data Tampering Attacks
To tamper with an existing object without being detected, an adversary may modify an

existing object in a way that the modified object yields the same hash as an existing object,

or generate fraudulent AuthData (e.g., Sibling-AuthData tokens, tags, and signatures) for the

modified object. Besides finding a new object that produces the same AuthData token, a

successful data tampering attack requires compromising a hash, a tag, or a signature.

Therefore, the complexity of successfully launching a data tampering attack is also

2min(𝐿𝑑,
𝐿ℎ
2

,𝐿𝑘,𝐿𝜏,𝑙).

6.7.2.5 The Comparisons of the Security Strengths
The strengths of the MAC based and signature based schemes are equal to the strengths of

the underlying cryptographic schemes, i.e., 2min (𝐿𝑑,𝐿𝑘,𝐿𝜏) and 2𝑙, respectively. The strengths

of CPDA and these two schemes are summarised in Table 6.6.

163

Table 6.6: The comparisons of the security strengths of CPDA, the MAC based scheme, and the

signature based scheme.

Attacks MAC Signature CPDA

(T5) Data injection attacks 2min(𝐿𝑑,𝐿𝑘,𝐿𝜏) 2𝑙
2min(𝐿𝑑,

𝐿ℎ
2

,𝐿𝑘,𝐿𝜏,𝑙)

(T6) Data tampering attacks 2min(𝐿𝑑,𝐿𝑘,𝐿𝜏) 2𝑙
2min(𝐿𝑑,

𝐿ℎ
2

,𝐿𝑘,𝐿𝜏,𝑙)

6.8 Performance Evaluation

The overheads introduced by CPDA are theoretically evaluated in two aspects, computational

overhead and communication overhead. The results are then compared with the overheads

introduced by the MAC based and signature based schemes.

6.8.1 Notations
Table 6.7 shows the notations used in this performance evaluation.

Table 6.7: Notations used in performance evaluation of CPDA.

Symbols Meanings

𝑀, 𝐸 The numbers of Mappers, Reducers

𝑂𝑆ℎ, 𝑂𝐿ℎ Hash operation on a small object, a large object

𝑂𝑆𝑚𝑠 , 𝑂𝐿𝑚𝑠 MAC-Signing operation on a small object, a large object

𝑂𝑆𝑚𝑣 , 𝑂𝐿𝑚𝑣 MAC-Verification operation on a small object, a large object

𝑂𝑆𝑠𝑠, 𝑂𝐿𝑠𝑠 SIG-Signing operation on a small object, a large object

𝑂𝑆𝑠𝑣 , 𝑂𝐿𝑠𝑣 SIG-Verification operation on a small object, a large object

𝐿ℎ𝑑 The header length of an ADD message

𝐿𝑎𝑐𝑘 The total length of an ACK message

 𝐿ℎ , 𝐿𝜏, 𝐿𝜎 The lengths of a hash, a tag, a signature

6.8.2 Computational Overheads
The computational overheads are evaluated in terms of the number of cryptographic

operations performed by each of the CPDA components. Non-cryptographic operations (such

as tree traversal and hash concatenation) are omitted as their costs (in terms of execution

times) are negligible in comparison with those of cryptographic operations. The cryptographic

operations are classified into five groups: hash generation (𝑂𝑆ℎ, 𝑂𝐿ℎ), MAC-Signing

(𝑂𝑆𝑚𝑠, 𝑂𝐿𝑚𝑠), MAC-Verification (𝑂𝑆𝑚𝑣, 𝑂𝐿𝑚𝑣), SIG-Signing (𝑂𝑆𝑠𝑠, 𝑂𝐿𝑠𝑠), and SIG-Verification

(𝑂𝑆𝑠𝑣, 𝑂𝐿𝑠𝑣). As the cost of an operation is also affected by the size of an object, we count

the operations performed on small objects (𝑂𝑆ℎ, 𝑂𝑆𝑚𝑠, 𝑂𝑆𝑚𝑣, 𝑂𝑆𝑠𝑠, and 𝑂𝑆𝑠𝑣) and on

(potentially) large objects (𝑂𝐿ℎ, 𝑂𝐿𝑚𝑠, 𝑂𝐿𝑚𝑣, 𝑂𝐿𝑠𝑠, and 𝑂𝐿𝑠𝑣), separately.

6.8.2.1 CPDA Framework
In the job submission phase, two data authentication algorithms are used, ISAuthData-

Generation and ISAuthData-Verification. ISAuthData-Generation is executed by ClientApp. It

contains two sets of operations: one is for constructing a hash tree for 𝑀 InputSplits (𝑀 ∗

𝑂𝐿ℎ + (𝑀 − 1) ∗ 𝑂𝑆ℎ), and the other is for signing the root hash with a digital signature

scheme (𝑂𝑆𝑠𝑠). Hence, the total number of operations is 𝑀 ∗ 𝑂𝐿ℎ + (𝑀 − 1) ∗ 𝑂𝑆ℎ + 𝑂𝑆𝑠𝑠.

ISAuthData-Verification is executed by each Mapper. It contains three sets of operations,

respectively, for computing the hash of its InputSplit (𝑂𝐿ℎ), for recovering the root hash from

164

the hash (⌈log 𝑀⌉ ∗ 𝑂𝑆ℎ), and for verifying the root hash against the signature (𝑂𝑆𝑠𝑣). Hence,

the total number of operations is 𝑂𝐿ℎ + ⌈log 𝑀⌉ ∗ 𝑂𝑆ℎ + 𝑂𝑆𝑠𝑣.

In the map phase, three data authentication algorithms are used, PGen-PSAuthData-

Generation, AGen-PSAuthData-Generation, and PSAuthData-Verification. PGen-PSAuthData-

Generation is executed by each Mapper. It contains two sets of operations, respectively, for

constructing a hash tree for 𝐸 PartitionSegments (𝐸 ∗ 𝑂𝐿ℎ + (𝐸 − 1) ∗ 𝑂𝑆ℎ), and for signing

the root hash with a MAC scheme (𝑂𝑆𝑚𝑠). Hence, the total number of operations is 𝐸 ∗ 𝑂𝐿ℎ +

(𝐸 − 1) ∗ 𝑂𝑆ℎ + 𝑂𝑆𝑚𝑠. AGen-PSAuthData-Generation is executed by JobManager. It

contains two sets of operations, respectively, for verifying the authenticity of 𝑀 root hashes

against the respective tags (𝑀 ∗ 𝑂𝑆𝑚𝑣), and for signing the concatenated hash with a digital

signature scheme (𝑂𝐿𝑠𝑠). Hence, the total number of operations is 𝑂𝐿𝑠𝑠 + 𝑀 ∗ 𝑂𝑆𝑚𝑣.

PSAuthData-Verification is executed by each Reducer. It contains three sets of operations,

respectively, for verifying the authenticity of the concatenated hash against the signature

(𝑂𝐿𝑠𝑣), for computing the hashes of 𝑀 PartitionSegments (𝑀 ∗ 𝑂𝐿ℎ), and for recovering 𝑀

root hashes from the hashes (𝑀 ∗ ⌈log 𝐸⌉ ∗ 𝑂𝑆ℎ). Hence, the total number of operations is

𝑀 ∗ 𝑂𝐿ℎ + 𝑂𝐿𝑠𝑣 + 𝑀 ∗ ⌈log 𝐸⌉ ∗ 𝑂𝑆ℎ.

In the reduce phase, three data authentication algorithms are used, PGen-FRAuthData-

Generation, AGen-FRAuthData-Generation, and FRAuthData-Verification. PGen-FRAuthData-

Generation is executed by each Reducer. It contains two sets of operations, respectively, for

computing the hash of its FinalResult (𝑂𝐿ℎ) and for signing the resulting hash with a MAC

scheme (𝑂𝑆𝑚𝑠). Hence, the total number of operations is 𝑂𝐿ℎ + 𝑂𝑆𝑚𝑠. AGen-FRAuthData-

Generation is executed by JobManager. It contains two sets of operations, respectively, for

verifying 𝐸 hashes against the respective tags (𝐸 ∗ 𝑂𝑆𝑚𝑣) and for signing the concatenated

hash with a digital signature scheme (𝑂𝐿𝑠𝑠). Hence, the total number of operations is 𝑂𝐿𝑠𝑠 +

𝐸 ∗ 𝑂𝑆𝑚𝑣. FRAuthData-Verification is executed by ClientApp and contains two sets of

operations, respectively, for verifying the authenticity of the concatenated hash against the

signature (𝑂𝐿𝑠𝑣) and for computing the hashes of 𝐸 FinalResults (𝐸 ∗ 𝑂𝐿ℎ). Hence, the total

number of operations is 𝐸 ∗ 𝑂𝐿ℎ + 𝑂𝐿𝑠𝑣.

6.8.2.2 MAC based and Signature based Schemes
With the MAC based scheme, each object is signed and verified individually using a MAC

scheme. Similarly, with the signature based scheme, each object is individually protected by

using a digital signature scheme. Hence, the number of operations performed by an individual

component is equal to the number of objects to be protected.

With the MAC based scheme, in the job submission phase, ClientApp signs 𝑀 InputSplits

(ISAuthData-Generation). Each Mapper verifies one InputSplit (ISAuthData-Verification).

Therefore, the numbers of operations performed by ClientApp and each Mapper are 𝑀 ∗

𝑂𝐿𝑚𝑠 and 𝑂𝐿𝑚𝑣, respectively.

In the map phase, each Mapper signs 𝐸 PartitionSegments (PGen-PSAuthData-

Generation). Each Reducer verifies 𝑀 PartitionSegments (PSAuthData-Verification).

Therefore, the numbers of operations performed by each Mapper and each Reducer are 𝐸 ∗

𝑂𝐿𝑚𝑠 and 𝑀 ∗ 𝑂𝐿𝑚𝑣, respectively.

165

In the reduce phase, each Reducer signs one FinalResult (PGen-FRAuthData-Generation).

ClientApp verifies 𝐸 FinalResults (FRAuthData-Verification). Therefore, the numbers of

operations performed by each Reducer and ClientApp are 𝑂𝐿𝑚𝑠 and 𝐸 ∗ 𝑂𝐿𝑚𝑣, respectively.

Using the same method with the signature based scheme, the numbers of operations

performed by each of the components are the same as those using the MAC based scheme.

The only difference lies in the cost of each signing and verification operation; here the

operation is a signature operation, rather than a MAC operation.

6.8.2.3 The Comparisons of the Computational Overheads
The computational overheads when different data authentication solutions are applied are

summarised in Table 6.8. The operations performed on large objects are highlighted in red.

The result shows that CPDA reduces the number of expensive signature signing and verifying

operations performed by each data processing component to one and these operations are

performed on aggregated AuthData (root hashes and concatenated hashes) which are usually

smaller than non-aggregated ones. This is achieved at a cost of additional operations imposed

on JobManager. We anticipate that the level of reduction by CPDA should increase as the

number of objects increases owing to a more significant level of decrease in expensive

operations performed on large objects.

Table 6.8: The comparisons of the computational overheads imposed on individual components by

different data authentication solutions.

The Job Submission Phase

Component Algorithm MAC Signature CPDA

ClientApp ISAuthData-Generation
𝑀 ∗ 𝑂𝐿𝑚𝑠 𝑀 ∗ 𝑂𝐿𝑠𝑠 𝑀 ∗ 𝑂𝐿ℎ + (𝑀 − 1)

∗ 𝑂𝑆ℎ + 𝑂𝑆𝑠𝑠

Each Mapper ISAuthData-Verification
𝑂𝐿𝑚𝑣 𝑂𝐿𝑠𝑣 𝑂𝐿ℎ + ⌈log 𝑀⌉ ∗ 𝑂𝑆ℎ

+ 𝑂𝑆𝑠𝑣

The Map Phase

Component Algorithm MAC Signature CPDA

Each Mapper
PGen-PSAuthData-

Generation

𝐸 ∗ 𝑂𝐿𝑚𝑠 𝐸 ∗ 𝑂𝐿𝑠𝑠 𝐸 ∗ 𝑂𝐿ℎ + (𝐸 − 1)

∗ 𝑂𝑆ℎ + 𝑂𝑆𝑚𝑠

JobManager AGen-PSAuthData-

Generation

- - 𝑂𝐿𝑠𝑠 + 𝑀 ∗ 𝑂𝑆𝑚𝑣

Each

Reducer
PSAuthData-Verification

𝑀 ∗ 𝑂𝐿𝑚𝑣 𝑀 ∗ 𝑂𝐿𝑠𝑣 𝑀 ∗ 𝑂𝐿ℎ + 𝑂𝐿𝑠𝑣 + 𝑀
∗ ⌈log 𝐸⌉ ∗ 𝑂𝑆ℎ

The Reduce Phase

Component Algorithm MAC Signature CPDA

Each

Reducer

PGen-FRAuthData-

Generation

𝑂𝐿𝑚𝑠 𝑂𝐿𝑠𝑠 𝑂𝐿ℎ + 𝑂𝑆𝑚𝑠

JobManager AGen-FRAuthData-

Generation

- - 𝑂𝐿𝑠𝑠 + 𝐸 ∗ 𝑂𝑆𝑚𝑣

ClientApp FRAuthData-Verification 𝐸 ∗ 𝑂𝐿𝑚𝑣 𝐸 ∗ 𝑂𝐿𝑠𝑣 𝐸 ∗ 𝑂𝐿ℎ + 𝑂𝐿𝑠𝑣

6.8.3 Communication Overheads
The communication overheads are evaluated in terms of the number and the sizes of

messages exchanged between components. As explained in Section 6.5.3, each AuthData

delivery transaction consists of two messages, one ADD message and one ACK message. The

total size of an ADD message is equal to the sum of the size of the header (𝐿ℎ𝑑) and the size

of the payload. The size of the payload is dependent on the number and sizes of AuthData

166

tokens (𝐿ℎ, 𝐿𝜏, and 𝐿𝜎) contained in the payload. The size of an ACK message is 𝐿𝑎𝑐𝑘. For

comparison, it is assumed that, for the cases where the MAC based and signature based

schemes are used, AuthData sent from producers to consumers are also through JobManager,

in the same way as the case for CPDA.

6.8.3.1 CPDA Framework
In the job submission phase, ClientApp sends one ADD message containing one signature and

𝑀 instances of Sibling-AuthData (each containing up to ⌈log 𝑀⌉ hashes) to JobManager.

Hence, the size of the message is 𝐿ℎ𝑑 + 𝐿𝜎 + 𝑀 ∗ ⌈log 𝑀⌉ ∗ 𝐿ℎ. JobManager replies with an

ACK message with the size of 𝐿𝑎𝑐𝑘 to ClientApp. It then sends one ADD message containing

one signature and one instance of Sibling-AuthData to each Mapper. The size of the message

is 𝐿ℎ𝑑 + 𝐿𝜎 + ⌈log 𝑀⌉ ∗ 𝐿ℎ. Each Mapper replies with an ACK message with the size of 𝐿𝑎𝑐𝑘

to JobManager.

In the map phase, each Mapper sends one ADD message containing one tag, one root

hash, and 𝐸 instances of Sibling-AuthData (each containing up to ⌈log 𝐸⌉ hashes) to

JobManager. The size of the message is 𝐿ℎ𝑑 + 𝐿𝜏 + 𝐿ℎ + 𝐸 ∗ ⌈log 𝐸⌉ ∗ 𝐿ℎ. JobManager

replies with an ACK message with the size of 𝐿𝑎𝑐𝑘 to each Mapper. After it generates AGen-

PSAuthData, it sends one ADD message containing one signature, one concatenated hash

(containing 𝑀 root hashes), and 𝑀 instances of Sibling-AuthData to each Reducer. The size of

the message is 𝐿ℎ𝑑 + 𝐿𝜎 + 𝑀 ∗ 𝐿ℎ + 𝑀 ∗ ⌈log 𝐸⌉ ∗ 𝐿ℎ. Each Reducer replies with an ACK

message with the size of 𝐿𝑎𝑐𝑘 to JobManager.

In the reduce phase, each Reducer sends one ADD message containing one tag and one

hash to JobManager. The size of the message is 𝐿ℎ𝑑 + 𝐿𝜏 + 𝐿ℎ. JobManager replies with an

ACK message with the size of 𝐿𝑎𝑐𝑘 to each Reducer. After it generates AGen-FRAuthData, it

sends one ADD message containing one signature and one concatenated hash (containing 𝐸

hashes) to ClientApp. The size of the message is 𝐿ℎ𝑑 + 𝐿𝜎 + 𝐸 ∗ 𝐿ℎ. ClientApp replies with an

ACK message with the size of 𝐿𝑎𝑐𝑘 to JobManager.

6.8.3.2 MAC based and Signature based Schemes
In the MAC based and signature based schemes, the size of the payload of each ADD message

is dependent on the number and the size of authentication tokens to be delivered.

With the MAC based scheme, in the job submission phase, ClientApp sends one ADD

message containing 𝑀 tags to JobManager and JobManager replies with an ACK message to

ClientApp. The sizes of these messages are respectively 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜏 and 𝐿𝑎𝑐𝑘. JobManager

sends one ADD message containing one tag to each Mapper and each Mapper replies with an

ACK message to JobManager. The sizes of these messages are respectively 𝐿ℎ𝑑 + 𝐿𝜏 and 𝐿𝑎𝑐𝑘.

In the map phase, each Mapper sends one ADD message containing 𝐸 tags to JobManager

and JobManager replies with an ACK message to each Mapper. The sizes of these messages

are respectively 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜏 and 𝐿𝑎𝑐𝑘. JobManager sends one ADD message containing 𝑀

tags to each Reducer and each Reducer replies with an ACK message to JobManager. The sizes

of these messages are respectively 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜏 and 𝐿𝑎𝑐𝑘.

In the reduce phase, each Reducer sends one ADD message containing one tag to

JobManager and JobManager replies with an ACK message to each Reducer. The sizes of these

messages are respectively 𝐿ℎ𝑑 + 𝐿𝜏 and 𝐿𝑎𝑐𝑘. JobManager sends one ADD message

167

containing 𝐸 tags to ClientApp and ClientApp replies with an ACK message to JobManager.

The sizes of these messages are respectively 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜏 and 𝐿𝑎𝑐𝑘.

Similarly, with the digital signature based scheme, the number of messages exchanged

between components and the number of items contained in each of the messages are the

same as those by using the MAC based scheme. The only difference is that the sizes of

authentication tokens contained in the payloads of the messages used in these two schemes

are different (i.e., 𝐿𝜎 rather than 𝐿𝜏).

6.8.3.3 The Comparisons of the Communication Overheads
The communication overheads when different data authentication solutions are applied are

shown in Table 6.9. The result shows that, the three solutions introduce the same numbers

of messages. However, among the three solutions, the sizes of the ADD messages used in

CPDA are the largest. We argue that the impact of the increased payload size to the underlying

networks is insignificant as an ADD message is much smaller than a JobData object. For

example, in the job submission phase when CPDA is applied, assuming that 𝑀 = 1000,

 𝐿ℎ = 256 bits, and 𝐿𝜎 = 3072 bits, the payload size of an ADD message that JobManager

sends to each Mapper is equal to 3072 + ⌈log 1000⌉ ∗ 256 = 5632 bits = 704 B which is

much smaller than the size of a 128-MiB InputSplit. Moreover, with CPDA, it is possible to

reduce the communication overhead introduced by using signature caching. One copy of the

same signature can be sent and cached on each WorkerNode rather than sending multiple

copies to different Workers hosted on the same WorkerNode. The signature caching

technique is not applicable to the MAC based and signature based schemes as AuthData

tokens for different objects are different.

Table 6.9: The comparisons of the communication overheads introduced by different data

authentication solutions.

The Job Submission Phase

Interactions MAC Signature CPDA

Between ClientApp

and JobManager

1*ADD: 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜏

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜎

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎 + 𝑀 ∗ ⌈log 𝑀⌉ ∗ 𝐿ℎ

1*ACK: 𝐿𝑎𝑐𝑘

Between JobManager

and each Mapper

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜏

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎 + ⌈log 𝑀⌉ ∗ 𝐿ℎ

1*ACK: 𝐿𝑎𝑐𝑘

The Map Phase

Interactions MAC Signature CPDA

Between each Mapper

and JobManager

1*ADD: 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜏

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜎

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜏 + 𝐿ℎ + 𝐸 ∗ ⌈log 𝐸⌉ ∗ 𝐿ℎ

1*ACK: 𝐿𝑎𝑐𝑘

Between JobManager

and each Reducer

1*ADD: 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜏

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝑀 ∗ 𝐿𝜎

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎 + 𝑀 ∗ 𝐿ℎ + 𝑀 ∗ ⌈log 𝐸⌉ ∗ 𝐿ℎ

1*ACK: 𝐿𝑎𝑐𝑘

The Reduce Phase

Interactions MAC Signature CPDA

Between each Reducer

and JobManager

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜏

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜏 + 𝐿ℎ

1*ACK: 𝐿𝑎𝑐𝑘

Between JobManager

and ClientApp

1*ADD: 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜏

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝐸 ∗ 𝐿𝜎

1*ACK: 𝐿𝑎𝑐𝑘

1*ADD: 𝐿ℎ𝑑 + 𝐿𝜎 + 𝐸 ∗ 𝐿ℎ

1*ACK: 𝐿𝑎𝑐𝑘

168

6.9 Experimental Evaluation

The performance of CPDA is experimentally evaluated when applied to MR job executions on

a real-system testbed. For benchmarking, we compare the results with those of the MAC

based and signature based schemes. In the following, we first explain methodology and

evaluation metrics, then describe testbed setup and parameters used, before reporting our

experimental results.

6.9.1 Methodology and Evaluation Metrics
The performance of CPDA is influenced by computational (operational costs imposed on

components) as well as communication overheads (volume of traffics transmitted via

networks for AuthData delivery). To evaluate such overhead costs, we have implemented

three data authentication services (CDPA, the MAC based scheme, and the signature based

scheme) and applied them to an MR service deployed on a cluster of machines. The evaluation

consists of three experiments, Exp1, Exp2, and Exp3. Exp1 evaluates the costs of the

cryptographic algorithms used, i.e., hash generation, MAC-Signing, MAC-Verification, SIG-

Signing, and SIG-Verification. Exp2 evaluates the costs of data authentication algorithms, i.e.,

AuthData-Generation and AuthData-Verification algorithms, imposed on individual MR

components. Exp3 evaluates the performance of the data authentication services when

applied to job executions.

The costs of the cryptographic algorithms, the data authentication algorithms, and

performance of the data authentication services are measured in terms of the execution

times of the algorithms and jobs, respectively. For each particular set of parameter values,

we collect multiple samples of execution times to calculate statistical values (i.e., mean values

and standard error of the mean).

6.9.2 Testbed Setup
Our testbed consists of an MR service and the three data authentication services deployed on

five networked machines. In the following, we describe the software and hardware of the

testbed.

6.9.2.1 Software
Figure 6.12 depicts the software architecture of our testbed. It consists of a (simplified) MR

service and three data authentication services. The interactions between MR components are

shown as solid arrowed lines. The invocations of the three data authentication services are

shown as dashed arrowed lines.

The MR service is implemented using MapReduce Lite [208] which is developed by

Tencent. It provides job submission, task scheduling, and task execution functions. It has two

types of components, Scheduler and Worker, which are written in Python. Scheduler

performs the functions of both ClientApp and JobManager whereas each Worker performs

the function of either a Mapper or a Reducer. To execute a task, Worker calls external data

processing functions, i.e., map and reduce functions, and these functions are written in C++

and supplied by users. Workers are executed as application processes and they can be run on

a single machine or multiple distributed machines. To enable data authentication for

169

MapReduce Lite, we have made a number of improvements to allow the invocations of the

data authentication services and the transmission of AuthData.

Figure 6.12: The software architecture of our testbed.

The three data authentication services are implemented as a single executable file, called

DataAuthTools, which is written in C++. The cryptographic functions are implemented using

the Botan cryptographic library [180]. In these implementations, we have selected (1) SHA-

256 for the hash scheme; (2) HMAC with SHA-256 and 128-bit keys (referred to as HMAC-128)

for the MAC scheme; and (3) RSA with SHA-256, 3072-bit keys, and the PSS padding scheme

(referred to as RSA-3072) for the digital signature scheme. These schemes are chosen as they

are widely accepted by academia and in industries. Examples where these schemes are used

include the Transport Layer Security (TLS) protocol [148], the Internet Protocol Security

(IPSec) protocol suite [209], and the Secure Shell (SSH) protocol [210]. The key and token sizes

are set to achieve a sufficient level of security protection, which is 128 bits as recommended

by NIST [191].

The specifications of the underlying operating system, the C/C++ compiler, the Python

interpreter, and the cryptographic library used are given in Table 6.10.

Table 6.10: Software specifications.

Component Specification

Operating system Linux Manjaro 18.0.0 Illyria
Kernel: 4.14.81-1-MANJARO x86_64

C/C++ compiler gcc 8.2.1

Python interpreter python 3.7.1

Cryptographic library botan 2.8.0

6.9.2.2 Hardware
The testbed consists of five machines, labelled as PC1 through to PC5. PC1 is used to conduct

Exp1 and Exp2 whereas all the PCs are used to conduct Exp3. The same set of software is

installed on all machines. The hardware specifications of the machines are summarised in

Table 6.11.

170

Table 6.11: Hardware specifications.

Machine Components and Specifications

PC1 CPU: Quad Core Intel Core i7-6700, 64-bit, max 4.0 GHz
RAM: 16 GB HDD: 1 TB

PC2 CPU: Quad Core Intel Core i5-3470, 64-bit, max 3.6 GHz
RAM: 8 GB HDD: 500 GB

PC3 CPU: Quad Core Intel Core i5-3470, 64-bit, max 3.6 GHz
RAM: 8 GB HDD: 500 GB

PC4 CPU: Quad Core Intel Core i7-2600, 64-bit, max 3.8 GHz
RAM: 8 GB HDD: 500 GB

PC5 CPU: Dual Core Intel Core i3-2100, 64-bit, max 3.1 GHz
RAM: 4 GB HDD: 250 GB

All the machines (PC1 through to PC5) are connected to a LAN via a 100-Mbps switch, as

shown in Figure 6.13. ClientApp and JobManager are hosted on PC1, whereas Workers

(Mappers and Reducers) are hosted on all of the machines. The distribution of the Workers is

25%, 20%, 20%, 20%, and 15%, respectively. The distribution is made based on the

specifications of the machines.

Figure 6.13: Network topology and the deployment of MR components on the testbed.

6.9.3 Parameters and Configurations
The sizes of data objects used in the experiments are expressed in bytes (B). For ease of

presentation, we use a binary unit prefix to express multiples of units. This binary prefix

signifies a multiplication by a power of 2, i.e., 1 KiB (kibibyte) refers to 210 B = 1024 B and 1

MiB (mebibyte) refers to 210 KiB = 1048576 B.

In Exp1, we measure the execution times of cryptographic algorithms performed on

objects of different sizes. Each mean execution time is obtained from 1,000 samples. The sizes

of the objects range from 32 B (the size of a hash) to 128 MiB (the size of an InputSplit) with

an increment of twofold. The input data used are randomly generated binary data.

In Exp2, we measure the execution times of the algorithms used in implementing the

three data authentication services with varying object sizes and varying numbers of Mappers

and Reducers. Each mean execution time is obtained from 100 samples. The sizes of input

objects are, respectively, 1 MiB, 16 MiB, and 128 MiB for ISAuthData-Generation and

ISAuthData-Verification; 128 KiB, 1 MiB, and 16 MiB for PGen-PSAuthData-Generation,

PSAuthData-Verification, PGen-FRAuthData-Generation, and FRAuthData-Verification; and

171

32 B (for each hash or root hash) for AGen-PSAuthData-Generation and AGen-FRAuthData-

Generation. The object sizes are set based on the following considerations: (1) InputSplits are

usually large (e.g., 128 MiB); (2) PartitionSegments and FinalResults are usually smaller than

the InputSplits; and (3) the sizes of hashes and root hashes are fixed (32 B). The numbers of

Mappers and Reducers are set to 1, 10, 20, …, 100. Like Exp1, the input data used in Exp2 are

also randomly generated binary data.

In Exp3, we measure the execution times of jobs without data authentication and with

each of the three data authentication services, respectively, given varying numbers of

Mappers and Reducers. The time is measured from when ClientApp starts performing

ISAuthData-Generation to when ClientApp finishes performing FRAuthData-Verification. Each

mean execution time is obtained from 25 samples. The numbers of Mappers and Reducers

used are set to 5, 50, 100, 200 and 5, 40, 80, 120, 160, 200, respectively. It is worth noting

that, although deploying 400 Workers on a testbed of 5 machines (due to hardware

accessibility) may be unusual in practice, the purpose of the experiment is to compare the

performances of different data authentication services when being applied to an MR job using

the same MR service and the same set of hardware. The wide range in Worker scaling allows

us to see the trends in the performances of different data authentication services against the

number of Workers. In this way, we can anticipate what the performance of our solution

would be like when applying it to a larger scale MR service. We use the MR job described in

Section 4.2 for the experiment. In this job, the map tasks (executed by Mappers) are to filter

the weather data and output temperature values observed by each of the weather stations.

For this task, each of the Mappers scans its InputSplit line-by-line and output a list of key-

value pairs of a weather station ID and a temperature value. The reduce tasks (executed by

Reducers) are to find the highest temperature value observed by each of the weather

stations. Each of the Reducers the merged PartitionSegments key-by-key. For each key

(weather station ID), the Reducer scans a list of values (temperature values) to find the

highest value. It then outputs a list of key-value pairs of a weather station ID and the highest

temperature value. The input data for the job are GHCN-Daily version 3.25 provided by NCEI10

[211][212]. The input data are divided into multiple 128-MiB InputSplits. The InputSplits are

stored on all of the machines prior to a job submission and the FinalResults are stored on the

machine hosting ClientApp (i.e., PC1).

All of the input data for all the experiments are stored in RAM to minimize I/O overhead.

In Exp3, due to the large size of weather data, 10-year data (approximately 12 GiB) cannot fit

into RAMs of PC2 to PC5. As the content of input data should not affect how jobs are executed,

we use a symbolic link approach to create a set of 10-year data from a smaller set of data.

With this approach, we divide 2 years (2016 and 2017) of data into 10 of 128-MiB InputSplits. The

remaining InputSplits are symbolic links pointing to the 10 InputSplits in a round-robin fashion. In

this way, all InputSplits (including symbolic links) can be stored in RAMs of all the machines.

Like the experimental evaluations of MIEA (reported in Section 5.9), we also use standard

error of the mean to estimate the error of sample means. According to our experiments, the

results (the execution times) sampled in Exp1 are more dispersed than those in Exp2 and

10 In particular, we use files stored in the “by_year” directory on the website.

172

Exp3, respectively. Therefore, to get more accurate results, Exp1 requires more samples than

those of Exp2 and Exp3, respectively. The justification for the chosen sample sizes (1,000 for

Exp1, 100 for Exp2, and 25 for Exp3) is that, with these sample sizes, the uncertainties of the

mean execution times in terms of the relative standard error of the mean are lower than 1.5%.

Again, a slight increase in the sample sizes will considerably increase experimental times,

which does not justify a marginal gain of accuracy.

6.9.4 Experimental Results
This section reports the experimental results and discuss our findings.

6.9.4.1 Exp1: Costs of Cryptographic Algorithms
The execution times of SHA-256, HMAC-128, and RSA-3072 on objects with varying sizes are

depicted in Figure 6.14.

Figure 6.14: The comparisons of the execution times of SHA-256, HMAC-128, and RSA-3072 on

objects with varying sizes.

From the figure, we can make the following observations. The mean execution times for

SHA-256, HMAC-128-Signing and HMAC-128-Verification have similar values and they

increase almost linearly as the size of the objects increases. For example, when the object size

increases from 32B to 128 MiB (an order of 106 increase), the execution time increases from

less than 2 microseconds, to about 440,000 microseconds (an order of 105 increase). This is

because the larger size of the objects increases the workload of the algorithms thus the

execution times.

With regard to RSA-3072-Signing and RSA-3072-Verification, their execution times are of

similar values when the size of each object goes beyond 512 KiB, and the values and trend are

similar to those of the hash function and MAC based algorithms mentioned above. In other

words, the differences in the costs of these algorithms are insignificant. However, when the

object sizes are small, the execution time of RSA-3072-Signing is much higher than that of

RSA-3072-Verification, and they do not change much when the object size is smaller than 32

KiB. For example, when the object size is 32B, RSA-3072-Signing takes about 1,700

microseconds to execute whereas for RSA-3072-Verification, the value is 65 microseconds.

This means that, for small sized objects, RSA-3072-Signing is 26 times more expensive than

173

RSA-3072-Verification. This is because of the difference in their internal operations. The

executions of these two algorithms are mostly influenced by two internal operations, (1) hash

generation applied on the object and (2) a signature operation (signing or verification) applied

on the resulting hash. The execution time of (1) increases when the object size increases but

the execution time of (2) is fixed (as the hash size is fixed). When the object size is small (e.g.,

32 B), the execution time of (2) is much longer than that of (1) (due to difficulty of computing

asymmetric-key algorithms). In addition, RSA SIG-Signing is much more computationally

expensive than SIG-Verification. However, the execution time of (1) surpasses that of (2) when

the object size goes beyond a certain threshold (e.g., 512 KiB) and becomes the dominant

cost of the signature based algorithms; the larger the object sizes, the closer the execution

times of hash function, MAC based, and signature based algorithms thus the smaller

difference in the execution times.

These results lead to the following findings: (1) the overhead introduced by data

authentication solutions constructed based on these cryptographic algorithms should

increase when the object sizes increase; (2) the hybrid approach to data authentication

solutions, which minimises the use of digital signatures combined with the use of hash

functions and MACs assisted with pairwise keys shared with a trusted third party, can bring

significant reduction in computational overheads in providing data authentication; and (3)

this reduction is more significant when the sizes of the objects to be protected are smaller,

for example, when the object size is 32B, the hash function and MAC cost approximately 0.1%

and 2.6% of RSA based signature signing and verification costs, respectively.

6.9.4.2 Exp2: Costs of Data Authentication Algorithms
The execution times of AuthData-Generation and AuthData-Verification algorithms used in

the MAC based, signature (SIG) based, and CPDA are compared under different parameter

value settings in terms of object sizes and the numbers of Workers used. The experimental

results are shown in Figure 6.15.

(a) (b)

174

(c) (d)

(e) (f)

(g) (h)

175

(i) (j)

Figure 6.15: The comparisons of the execution times of the data authentication algorithms used in
the MAC based, signature (SIG) based and CPDA.

(a) ISAuthData-Generation. (b) ISAuthData-Verification with 𝑴 = 𝟏.
(c) ISAuthData-Verification of CPDA. (d) PGen-PSAuthData-Generation with 𝑴 = 𝟏.

(e) AGen-PSAuthData-Generation. (f) PSAuthData-Verification with 𝑹 = 𝟏.
(g) PSAuthData-Verification of CPDA with 𝑴 = 𝟏. (h) PGen-FRAuthData-Generation.

(i) AGen-FRAuthData-Generation. (j) FRAuthData-Verification.

Figure 6.15(a) shows the execution times of ISAuthData-Generation (executed by

ClientApp) against the size of objects and number of Mappers. From the figure, we can see

that the execution times increase as the object size increases, but the differences among the

execution times are disappearing when the object sizes are large. For example, with 100

Mappers and 1-MiB object, the mean execution times of the MAC based, signature based,

and CPDA are respectively 0.35 seconds, 0.76 seconds, and 0.35 seconds; whereas, with

objects of 128-MiB size, all the mean execution times are approximately 44 seconds. This is

because the execution times of ISAuthData-Generation are dependent on the execution times

of the underlying cryptographic algorithms. The execution times of these algorithms increase

as the size of the object increases and the difference among the execution times of different

algorithms disappears when the object size is sufficiently large (as explained in Exp1).

In addition, the execution times also increase as the number of Mappers increases. This is

because the increase in Mappers increases the number of InputSplits to be signed and

verified, hence, the increase in execution times.

The most important observation from these results is that CPDA markedly outperforms

the signature based when the size of the objects is small. For example, as reported above,

given 100 Mappers, the mean execution times for the MAC based, the signature based, and

CPDA are, respectively, 0.35 seconds, 0.76 seconds, and 0.35 seconds. This shows that CPDA

gives a similar performance as the MAC based method. It is 53% more efficient than the

signature based method.

Figure 6.15(b) shows the execution times of ISAuthData-Verification using the three

different methods as against different object sizes. This verification operation is performed

by a single Mapper. From the results, it can be seen that the three methods introduce a similar

level of costs at any given object size and the costs only increase as the object size increases.

For example, with 1-MiB sized objects, the mean execution times are 0.004 seconds, whereas,

with 128-MiB sized objects, the mean execution times are 0.4 seconds. The costs of the

176

algorithms used in three different solutions are at the same level because: (1) the costs of the

algorithms are dependent on the numbers, and costs, of the underlying cryptographic

operations used (as summarised in Table 6.8); (2) all the three solutions each perform one

cryptographic operation (but different class of cryptographic operation) on the assigned

InputSplit (which is large), with an exception of CPDA which introduces additional operations

(i.e., root hash recovery and SIG-Verification on the root hash) on small objects; (3) as

discussed in Exp1, when the object size is large, the three classes of cryptographic operations

introduce the same level of costs, i.e., the differences in costs among different classes are

very small; and (4) the costs of operations on small objects are negligible in comparison with

those of operations on large objects when InputSplits are sufficiently large (e.g., 1 MiB).

Figure 6.15(c) shows the execution times of ISAuthData-Verification using CPDA with

objects of different sizes and different numbers of Mappers. From the figure, it can be seen

that the size of objects has a major effect on the execution times, the larger the size of the

objects, the longer the execution time. This result is within our expectation, as the cost of

hash generation increases as the object (InputSplit) size increases. However, for any given

object size, the increase in execution times caused by the increase in Mappers is negligible.

This is consistent with our theoretical analysis result, i.e., an increase in the number of

Mappers would lead to an increase in the overhead of the method by ⌈log 𝑀⌉ ∗ 𝑂𝑆ℎ =

⌈log 100⌉ ∗ 1 microseconds = 7 microseconds, which is negligible compared with the values

of 𝑂𝐿ℎ = 440,000 microseconds and 𝑂𝑆𝑠𝑣 = 66 microseconds11.

Figure 6.15(d) shows the execution times of PGen-PSAuthData-Generation (performed by

a Mapper) against different object sizes and different numbers of Reducers. The trend in the

results is very similar to the that in Figure 6.15(a), with an exception that here, in this figure,

there are larger performance gaps between CPDA and the signature based and the gaps

expand to medium (1-MiB) sized objects. This means that CPDA performs better in

comparison with the signature based method with regard to this algorithm. The reason for

this is that, in this algorithm, a MAC scheme is used to sign each root hash and the reduction

in costs is larger than the ISAuthData-Generation algorithm.

Figure 6.15(e) shows the execution times of AGen-PSAuthData-Generation (performed by

JobManager) against different numbers of Mappers. The execution times increase as the

number of Mappers increases; they increased from 0.004 seconds to 0.005 seconds (an

increase of 25%) when the number of Mappers increased from 1 to 100 (an order of two-

magnitude increase). This indicates that, with regard to this algorithm, CPDA is highly scalable

as the increase in the execution time is a fraction of the increased number of Mappers. As

explained in Section 6.8.2, the increase in the number of Mappers increases the times needed

for verifying the root hashes using MAC-Verify and the size of concatenated hash to be

digitally signed thus the increase in the execution times of the algorithm. However, such

increase is small compared to the execution time of SIG-Signing.

Figure 6.15(f) shows the execution times of PSAuthData-Verification (performed by a

Reducer) against different object sizes and different numbers of Mappers. The trend is similar

11 Here, 𝑂𝑆ℎ is a hash operation on 64-byte data (a concatenation of two hashes), 𝑂𝐿ℎ is a hash operation on 128-MiB data,
and 𝑂𝑆𝑠𝑣 is a SIG-Verification operation on 32-byte data (with padding to 3072 bits = 384 B).

177

to that shown in Figure 6.15(a) with an exception that the gaps between the results of CPDA

and those of the signature based are smaller here. Although CPDA greatly reduce the number

of signature verification operations used in this algorithm, the cost incurred in hash

generation and MAC-Verify is close to that incurred in RSA SIG-Verification thus small

reduction in the execution times.

Figure 6.15(g) shows the execution times of PSAuthData-Verification using CPDA

(performed by a Reducer) against object sizes with the use of one Mapper and varying

numbers of Reducers. The results show the similar patterns as those in Figure 6.15(c).

Figure 6.15(h) shows the execution times of PGen-FRAuthData-Generation (performed by

a Reducer) against object sizes. Similar to the results shown in Figure 6.15(b), the execution

times increase as the object size increases. In addition, as explained in Figure 6.15(d), as CPDA

uses MAC scheme to sign each root hash, which is much cheaper than the digital signature

based method, we get a larger cut in execution times in PGen-FRAuthData-Generation.

Figure 6.15(i) shows the execution times of AGen-FRAuthData-Generation (performed by

JobManager) against the number of Reducers. The trend is similar to that in Figure 6.15(e).

Figure 6.15(j) shows the execution times of FRAuthData-Verification (performed by

ClientApp) against object sizes with different numbers of Reducers. It exhibits the same trend

as that in Figure 6.15(f).

The results from Exp2 show that the costs incurred by the CPDA algorithms are remarkably

close to those introduced by the MAC based algorithms. CPDA is markedly more efficient than

the signature based method, particularly when the data objects to be protected are of smaller

sizes and the quantities of the objects are large (i.e., large number of producers and

consumers). This is due to the reduction in expensive operations by CPDA and large

differences in computational costs among different classes of cryptographic operations when

applied to small objects. The cost reduction benefits all the data processing components in

the system. The largest reduction occurs in PGen-PSAuthData-Generation; in comparison with

the signature based method, bringing a cost reduction of 90%.

6.9.4.3 Exp3: Performance of Data Authentication Services
The times taken to execute jobs (job execution times) under four different conditions, i.e.,

without any data authentication (No-Auth) and with each of the three data authentication

services (MAC based, signature (SIG) based and CPDA) are investigated against varying

numbers of Workers (Mappers and Reducers). The results are depicted in Figure 6.16.

(a) (b)

178

(c) (d)

Figure 6.16: The comparisons of the execution times of MR jobs with and without data

authentication.

(a) 𝑴 = 𝟓. (b) 𝑴 = 𝟓𝟎. (c) 𝑴 = 𝟏𝟎𝟎. (d) 𝑴 = 𝟐𝟎𝟎.

Based on the results shown in the figures, we can make the following observations. Firstly,

as the numbers of Mappers and Reducers increase, the job execution times in all the four

cases (without data authentication and with each of the three services applied) increase. For

example, when 5 Mappers are used, with 5 Reducers, the job execution times are

approximately 9 seconds (No-Auth), 12 seconds (MAC), 13 seconds (SIG), and 14 seconds

(CPDA), but with 200 Reducers, the corresponding values are 56 seconds, 60 seconds, 65

seconds, and 64 seconds. The rates of increase for the four cases are respectively, 6.2 (No-

Auth), 5 (MAC), 5 (SIG), and 4.5 (CPDA). The reason for the increase in job execution times as

the number of Workers (one or both of the Mappers and Reducers) increases is that when

the number of these Workers increases, the number of objects to be signed and verified also

increases, and this introduces additional overhead costs (e.g., process initialisation, memory

allocation, and inter-process communication). These overhead costs offset the benefit of task

parallelism due to the limited number of tasks that can be executed concurrently.

The second observation is that, among the three data authentication services, the MAC

based service adds the smallest amount of delay whereas the signature based service adds

the largest. The more the Workers that are used, the smaller the gaps between the CPDA and

MAC based service and the larger the gaps between the CPDA and signature based service,

which means the bigger the benefit CPDA brings in terms of cutting down execution times.

For example, when 5 Mappers and 200 Reducers are used, the differences in job execution

times between CPDA and the MAC based service and between CPDA and the signature based

service are, respectively, 4.6 and 1 seconds. However, when 200 Mappers and 200 Reducers

are used, these values are, respectively, 12 and 24 seconds. This means that, in this setting,

CPDA cuts down up to two thirds of the additional overhead cost while still providing the

same level of protection as that of the signature based service. This reduction is significant,

as, in some application contexts such as security threat analysis or intrusion detection, a

minor reduction in a job execution time means sooner production of analysis results, which,

in turn, means an earlier intrusion detection and a faster reaction (or a mitigating response).

The above experimental results indicate that, at the cost closer to that of the MAC based

service, CPDA can provide the same security protections as the signature based service that

179

is stronger in security protection but computationally much more expensive than the MAC

based service. The more Workers that are used, the closer they are.

6.10 Chapter Summary

This chapter has presented a novel approach, a communication pattern based approach, to

data authenticity and non-repudiation of origin protections for MR based CBDC-MPC and a

novel data authentication framework, the CPDA framework, that implements the approach.

The critical analysis on the related work indicates that there are rooms for improvements in

existing solutions with regard to efficient provisioning of the protections in the context. None

of the solutions are designed to provide protection to every data object generated and

processed during a job execution. Some solutions (i.e., symmetric-key based without a form

of asymmetry) are efficient but do not provide non-repudiation of origin protection. Some

solutions (e.g., secret-share based and task-replication based) introduce a high level of

overhead cost which may hinder the performance of the underlying services. Via literature

research, we discovered that the overhead cost introduced by expensive asymmetric-key

operations can be reduced by using a signature amortisation technique, and this inspired the

design of CPDA. The design of CPDA makes use of two main ideas. The first is ACA in which

aggregation is applied to AuthData generation and verification as well as communications

among MR components. The aggregation of AuthData generation and verification reduces

number of expensive cryptographic operations to be performed by data processing

components, thus reducing computational overhead cost. The aggregation of

communications reduces the number of communications among the components by using a

third-party aggregator, reducing network traffics thus communication overhead cost. The

second idea is HYSC which makes a hybrid use of multiple cryptographic primitives. The

computationally less expensive scheme (i.e., the MAC scheme) is applied to protect JobData

that are pairwise transmitted and the computationally more expensive scheme (i.e., the

digital signature scheme) is applied to protect JobData that are used by multiple data

consumers. This hybrid use of cryptographic scheme can ensure the accountability of data

producers while minimising the computational overhead cost. The security analysis and

performance evaluation have been conducted on CPDA and the most related object-based

solutions. The results show that CPDA can provide the same level of protections as the MAC

based scheme with TTP and the signature based scheme. In addition, the overhead cost

introduced by CPDA is lower than that of the signature based scheme (a maximum reduction

of 66%) and the overhead cost grows closer to that of the MAC based scheme when CPDA is

applied to a larger scale of MR service. CPDA is also suited to other applications, such as

wireless sensors networks and IoT applications, that can be characterised by some or all of

the O2M, M2M, and M2O patterns. The approach to data authentication and the design and

evaluations of CPDA presented in this chapter is the third contribution (NC3) of this research

work. The contribution answers the research questions (Q3) and (Q4).

The next chapter presents a working example to demonstrate how a cyberthreat analysis

job is carried out by using the MR framework in the CBDC-MPC context, and how the MDA

framework is applied to the job execution to provide authentication protections.

180

Chapter 7

The Detailed Operational Steps for the Running

Example

7.1 Chapter Introduction

This chapter provides detailed operational steps for the running example to illustrate how an

example MR based cyberthreat analysis job is executed without our MDA framework and how

the job is executed when the MDA framework is applied. The chapter explains all the

operational steps for the job execution. This complements the example job execution flow

given in Section 4.6. It then explains how different components of the MDA framework are

used to achieve both entity and data authentication protections at the finest granularity (i.e.,

at every interaction and for every JobData object) throughout the entire cycle of the job

execution. It also highlights how credentials used for the authentication are established on

the MR components and how AuthData are transmitted during the job execution. This

complements the descriptions of the running example given in Sections 5.6 and 6.6.

In detail, Section 7.2 gives a step-by-step description of the job execution flow for the

running example. Section 7.3 explains in detail the operations of the MDA framework when

being applied to the job execution. Section 7.4 concludes the chapter.

7.2 Job Execution Flow

This section explains the operational steps for the execution of the job in the running example

described in Section 4.6. The operational steps are based on the operational steps (GM-1)

through to (GM-29) explained in Section 4.3.4. In the following, the steps (EF-1) through to

(EF-7) are captured in Figure 4.8(a), (EF-8) through to (EF-19) in Figure 4.8(b), (EF-20) through

to (EF-23) in Figure 4.8(c), and (EF-24) through to (EF-29) in Figure 4.8(d).

(EF-1) 𝑈𝑠𝑒𝑟1, as the JobSubmitter, sends a request for security log files, 𝐹𝑖𝑙𝑒2 and 𝐹𝑖𝑙𝑒3,

for the job to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3 via existing secure communication channels. The

request contains a reference ID with a value of 0001 for the job. 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3

receive and approve the request and send a confirmation back to 𝑈𝑠𝑒𝑟1.

(EF-2) 𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3, respectively, use 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 to send a request with the reference ID for a new job ID and a path to

write the security log files and job configuration files (e.g., the size of each InputSplit

and the number of Reducers) to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively.

(EF-3) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3,

respectively, receive and accept the request sent from 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2,

and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. Each of the ResourceManagers replies the respective ClientApp

with a job ID with a value of 0001 and a path with a value of “/Job/0001”.

(EF-4) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, respectively, receive the reply from

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

181

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, respectively, write 𝐹𝑖𝑙𝑒1, 𝐹𝑖𝑙𝑒2, and

𝐹𝑖𝑙𝑒3 and the job configuration files to the path “/Job/0001” on the respective DFS

clusters. The writing process involves three further steps.

a. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3, respectively, send a request for

writing the data (the security log files and the job configuration files) to

“/Job/0001” to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives and accepts the request. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

determines that the data can be stored on 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. Therefore,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 replies 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to write the data to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1.

Similarly, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, receives the requests and,

respectively, reply 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 to write the data to

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2 and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3.

c. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 receive the reply from the

respective NameManager and, respectively, contact and write the data to

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

2, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3. 𝐹𝑖𝑙𝑒1, 𝐹𝑖𝑙𝑒2, and 𝐹𝑖𝑙𝑒3 are,

respectively, used as 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1, 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2, and 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3.

(EF-5) Once each of the ClientApps finishes writing the data, it notifies the respective

ResourceManager of the writing completion.

(EF-6) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends a request for inquiring the status of data writing to

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

(EF-7) When the writing of data by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 completes,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively, reply

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 of the completion of writing.

(EF-8) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends a request for launching 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 for the job to

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 (managing 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

1). Along the request,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends a list of NameManagers (𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3) for J𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to contact and the path

“/Job/0001” to read the job configuration files.

(EF-9) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 starts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and pass the data to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.

(EF-10) Once 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 is launched, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 notifies 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to

contact 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.

(EF-11) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 contacts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. Throughout the job execution, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 will

periodically contacts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to inquire the status of job.

(EF-12) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 reads the job configuration files from the DFS clusters. The reading

process involves three further steps.

a. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a request for reading the job configuration files from the

path “/Job/0001” to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 receive and

accept the request and, respectively, reply 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to read the job

configuration files from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

2, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3.

c. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 receives the reply from the NameManagers and read the job

configuration files from the respective DataStores.

182

(EF-13) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 decides the number of Workers (Mappers and Reducers) needed for

the job based on the configuration files. In this case, 3 Mappers (𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2,

and 𝑀𝑎𝑝𝑝𝑒𝑟3) and 3 Reducers (𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) will be used.

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 then sends a request for worker allocation (3 Mappers and 3

Reducers) to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

(EF-14) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the request. As 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1 can host only 1

Mapper and 1 Reducer, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends a request for worker allocation

(2 Mappers and 2 Reducers) to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

(EF-15) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 receive the request. After they

examine their available resources, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3,

respectively, reply 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 that 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
2 and 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

3

each can host 1 Mapper and 1 Reducer.

(EF-16) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives the reply from 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 replies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 that each of

𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
3 can host 1 Mapper and 1

Reducer, a total of 3 Mappers and 3 Reducers.

(EF-17) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a request for launching 1 Mapper and 1 Reducer to each of

𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
3. The request is handled by the

WorkerManager of each WorkerNode, i.e., 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1,

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

3.

(EF-18) Each of 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3 starts 1

Mapper and 1 Reducer on its WorkerNode, i.e., 𝑀𝑎𝑝𝑝𝑒𝑟1 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 on

𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1, 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 on 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 and

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 on 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
3.

(EF-19) Each of 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, 𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3

contacts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. During the executions of map and reduce tasks, the Mappers

and Reducers will periodically report the progress of the task execution to

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.

(EF-20) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 issues a command to 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 to start map

tasks and to specify the locations of the assigned InputSplits, i.e., 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 for

𝑀𝑎𝑝𝑝𝑒𝑟1 is in 𝐷𝐹𝑆1, 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 for 𝑀𝑎𝑝𝑝𝑒𝑟2 is in 𝐷𝐹𝑆2, and 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 for

𝑀𝑎𝑝𝑝𝑒𝑟3 is in 𝐷𝐹𝑆3.

(EF-21) 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 receive the command and read the assigned

InputSplits from the respective DFS clusters. The reading processing involves three

further steps.

a. 𝑀𝑎𝑝𝑝𝑒𝑟1 sends a request for reading 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 from the path “/Job/0001”

to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. Similarly, 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑀𝑎𝑝𝑝𝑒𝑟3 each send a request to

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively.

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives and accepts the request. It replies 𝑀𝑎𝑝𝑝𝑒𝑟1 to read

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. Similarly, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 replies 𝑀𝑎𝑝𝑝𝑒𝑟2

to read 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 replies

𝑀𝑎𝑝𝑝𝑒𝑟3 to read 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3.

183

c. 𝑀𝑎𝑝𝑝𝑒𝑟1 receives the reply from 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. It then contacts and reads

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. Similarly, 𝑀𝑎𝑝𝑝𝑒𝑟2 reads 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 from

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2 and 𝑀𝑎𝑝𝑝𝑒𝑟3 reads 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3.

(EF-22) 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 perform the map tasks on the assigned

InputSplits. Each of the Mappers scans the entries in the respective InputSplit. If an

entry shows that the source IP address is one of the compromised machines and the

destination port number is 22, the Mapper will output a key-value pair of destination

and source IP addresses, expressed as {𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃, 𝑆𝑜𝑢𝑟𝑐𝑒 𝐼𝑃}. For 𝑀𝑎𝑝𝑝𝑒𝑟1,

three key-value pairs are output, {10.2.0.201, 10.1.0.101}, {10.3.0.201, 10.1.0.101},

and {10.3.0.202, 10.1.0.102}. The output will be partitioned into

PartitionSegments12.

 The key-value pairs will be partitioned based on the key (the destination IP

address), i.e., the IP address block 10.1.0.0/16 will be in the first PartitionSegment

(for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1), the IP address block 10.2.0.0/16 in the second PartitionSegment (for

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2), and the IP address block 10.3.0.0/16 in the third PartitionSegment (for

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3). As a result, 𝑀𝑎𝑝𝑝𝑒𝑟1 produces an IntermediateResult

(𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡1) containing 2 PartitionSegments, 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2

containing {10.2.0.201, 10.1.0.101} and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3 containing

{10.3.0.201, 10.1.0.101; 10.3.0.202, 10.1.0.102}. Using the same method, 𝑀𝑎𝑝𝑝𝑒𝑟2

and 𝑀𝑎𝑝𝑝𝑒𝑟3, respectively, produce 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡2 and

𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡3. 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡2 contains 2 PartitionSegments,

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 containing {10.1.0.201, 10.2.0.101} and

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2 containing {10.2.0.203, 10.2.0.101}. 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡3

contains 2 PartitionSegments, 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2 containing {10.2.0.201,

10.3.0.101} and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3 containing {10.3.0.202, 10.3.0.101}. The

IntermediateResults are stored in the local storage of the respective WorkerNodes.

The contents of the IntermediateResults are summarised in Table 7.1.

Table 7.1: Output produced by the Mappers.

Mapper Output file 𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒆𝒈𝒎𝒆𝒏𝒕𝒊,𝟏

(for 𝑹𝒆𝒅𝒖𝒄𝒆𝒓𝟏)

𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒆𝒈𝒎𝒆𝒏𝒕𝒊,𝟐

(for 𝑹𝒆𝒅𝒖𝒄𝒆𝒓𝟐)

𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒆𝒈𝒎𝒆𝒏𝒕𝒊,𝟑

(for 𝑹𝒆𝒅𝒖𝒄𝒆𝒓𝟑)

𝑀𝑎𝑝𝑝𝑒𝑟1 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡1 - 10.2.0.201, 10.1.0.101; 10.3.0.201, 10.1.0.101;

10.3.0.202, 10.1.0.102;

𝑀𝑎𝑝𝑝𝑒𝑟2 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡2 10.1.0.201, 10.2.0.101; 10.2.0.203, 10.2.0.101; -

𝑀𝑎𝑝𝑝𝑒𝑟3 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑅𝑒𝑠𝑢𝑙𝑡3 - 10.2.0.201, 10.3.0.101; 10.3.0.202, 10.3.0.101;

(EF-23) Each of 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 notifies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 when its map task

finishes and its IntermediateResult is ready.

(EF-24) Once all the map tasks complete, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 issues a command to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 to start reduce tasks and specify the locations of the

assigned PartitionSegments. The locations for the PartitionSegments are as follows:

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 is stored in 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
2,

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2, 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2, and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2 for

12 The implementation of the partition function is MR implementation dependent. In this work, it is assumed that the
partition is carried out by the MR service after each of the Mappers carries out its map task.

184

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 are stored in 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1
3,

respectively, and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3 for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3

are stored in 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒2
1 and 𝑊𝑜𝑟𝑘𝑒𝑟𝑁𝑜𝑑𝑒1

3, respectively.

(EF-25) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 receive the command and retrieve the assigned

PartitionSegments.

a. If the PartitionSegments are stored in the local storage of its WorkerNode, the

Reducer can retrieve the PartitionSegments locally and no inter-node data

transfer is required. In this example, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 can,

respectively, retrieve 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3 from

the local storage of their nodes.

b. If the PartitionSegments are stored on the other WorkerNodes, the Reducer

sends requests for the PartitionSegments to the WorkerManagers of the

respective WorkerNodes. Once the requests are received and approved, the

Reducers can retrieve the requested PartitionSegments. In this example,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 has to send a request for a PartitionSegment to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1 and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

3, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 to

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1.

 The assigned PartitionSegments will be processed (merged) by the merge

function13. This is done by grouping the values (the source IP addresses)

corresponding to the same key (the destination IP address) together. Hence, the

input of 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 are, respectively, {10.1.0.201,

[10.2.0.101]}, {10.2.0.201, [10.1.0.101, 10.3.0.101]; 10.2.0.203, [10.2.0.101]}, and

{10.3.0.201, [10.1.0.101]; 10.3.0.202, [10.1.0.102, 10.3.0.101]}. This is summarised

in Table 7.2.

Table 7.2: Input used by the Reducers.

Reducer Input (merged PartitionSegments)

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 10.1.0.201, [10.2.0.101];

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 10.2.0.201, [10.1.0.101, 10.3.0.101];

10.2.0.203, [10.2.0.101];

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 10.3.0.201, [10.1.0.101];

10.3.0.202, [10.1.0.102, 10.3.0.101];

(EF-26) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 perform the reduce tasks on the respective

merged PartitionSegments. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 processes its input key by key. For each key, it

counts the number of source IP addresses (i.e., how many times the machine had

been connected to by the compromised machines) and outputs a key-value pair of

destination IP address and connection count, expressed as {𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃,

𝐶𝑜𝑢𝑛𝑡}. Hence, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 produces an output file, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, containing

{10.1.0.201, 1}. Using the same method, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 produces 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1

containing {10.2.0.201, 2; 10.2.0.203, 1} and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 produces 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1

containing {10.3.0.201, 1; 10.3.0.202, 2}. This is summarised in Table 7.3.

13 The implementation of the merge function is MR implementation dependent. In this work, it is assumed that the merge
function is carried out by the MR service before each of the Reducers carries out its reduce task.

185

Table 7.3: Output produced by the Reducers.

Reducer Output file Content

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1 10.1.0.201, 1;

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1 10.2.0.201, 2;

10.2.0.203, 1;

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1 10.3.0.201, 1;

10.3.0.202, 2;

 After the reduce tasks finish, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 writes

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1 to 𝐷𝐹𝑆1. The writing process

involves three further steps.

a. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, respectively, send a request for writing

the output files (𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1) to

“/Job/0001” to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives and accepts the request. It replies 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 to write the FinalResults to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1.

c. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 receive the reply from 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

The Reducers then, respectively, contact and write the data to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1.

(EF-27) Each of 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 notifies 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 when its reduce

task finishes and the FinalResult is written to 𝐷𝐹𝑆1.

(EF-28) Once 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 receives the notifications from all the Reducers, it notifies

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 that FinalResults are ready for retrieval.

(EF-29) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the notification from 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 and reads the FinalResults

stored on 𝐷𝐹𝑆1 for 𝑈𝑠𝑒𝑟1. The reading process involves three further steps.

a. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a request for reading all the FinalResults of the job

(𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1) from the path

“/Job/0001” to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 receives and accepts the request. It replies 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to

read the requested data from 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1.

c. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 receives the reply from 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. It contacts

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1 and reads 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1, and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1.

The execution of the job is complete successfully.

It is worth mentioning that the MR framework can be used to execute data analysis jobs

with various levels of sophistication; this is dependent on the problem to be analysed, the MR

implementations used, and the software codes of the Mappers and Reducers. One of the

more sophisticated data analysis jobs than our working example described above is a job used

to trace back to the origin of the attacks mounted on a compromised machine. The job is

executed in multiple rounds of executions, each round consists of a separate pair of map and

reduce phases. The output from an earlier round is used as the input of the next round. For

example, the first round is used to identify machines that have ever connected to any of the

compromised machines. The subsequent rounds are used to identify machines that have

made connections to the machines identified in the previous rounds. The execution continues

until there are no more machines to trace back.

186

The next section explains in detail how the MDA framework is applied to the working

example described above to protect the authenticity of JobData used, processed, and

generated by the MR services during the job execution.

7.3 MDA in Action

This section explains in detail how the MDA framework provides entity and data

authentication protections to the job in the running example. It complements the

demonstration given in Section 5.6 and Section 6.6. Based on the operational steps (EF-1)

through to (EF-29) described earlier, this section explains the operational steps when MDA is

applied to the job execution, showing how different components of the MDA framework are

used at different stages of the job execution to protect every JobData object at every

interaction.

In each of the operational steps, we describe which MDA components are applied, what

credentials are used for each authentication instance, and what credentials are distributed

and established for subsequent authentication. We use the same assumptions as those given

in Section 5.4.1 and Section 6.4.1. The certification and verification processes of the public

keys are omitted. The notations used in describing the keys and entities involved in the

authentication process are shown in Table 5.2 (Section 5.4.2) and Table 6.2 (Section 6.4.2).

Keys that are established on components prior to the execution of the job are summarised in

Table 7.4. These keys are established by using existing mechanisms, such as MR service-level

authentication services.

Table 7.4: Credentials established prior to the execution of the job.

Keys Components involved When the keys are being established

𝑜𝑘1 , 𝑝𝑚𝑘𝑐1,𝑟𝑚1 𝑐1 and 𝑟𝑚1 𝑐1 is registered to 𝑟𝑚1

𝑜𝑘2, 𝑝𝑚𝑘𝑐2,𝑟𝑚2 𝑐2 and 𝑟𝑚2 𝑐2 is registered to 𝑟𝑚2

𝑜𝑘3, 𝑝𝑚𝑘𝑐3,𝑟𝑚3 𝑐3 and 𝑟𝑚3 𝑐3 is registered to 𝑟𝑚3

𝑝𝑖𝑘1 , 𝑝𝑐𝑘1
𝑝𝑚𝑘𝑤𝑚1

1,𝑟𝑚1 , 𝑠𝑙𝑘𝑤𝑚1
1,𝑟𝑚1

𝑤𝑚1
1 and 𝑟𝑚1 𝑤𝑚1

1 is registered to 𝑟𝑚1

𝑝𝑖𝑘1 , 𝑝𝑐𝑘1
𝑝𝑚𝑘𝑤𝑚2

1,𝑟𝑚1 , 𝑠𝑙𝑘𝑤𝑚2
1,𝑟𝑚1

𝑤𝑚2
1 and 𝑟𝑚1 𝑤𝑚2

1 is registered to 𝑟𝑚1

𝑑𝑓𝑘1 , 𝑠𝑙𝑘𝑛𝑚1,𝑟𝑚1 𝑛𝑚1 and 𝑟𝑚1 𝑛𝑚1 is registered to 𝑟𝑚1

𝑑𝑓𝑘2, 𝑠𝑙𝑘𝑛𝑚2,𝑟𝑚2 𝑛𝑚2 and 𝑟𝑚2 𝑛𝑚2 is registered to 𝑟𝑚2

𝑑𝑓𝑘3, 𝑠𝑙𝑘𝑛𝑚3,𝑟𝑚3 𝑛𝑚3 and 𝑟𝑚3 𝑛𝑚3 is registered to 𝑟𝑚3

𝑑𝑓𝑘1 , 𝑠𝑙𝑘𝑑𝑠1
1,𝑛𝑚1 𝑑𝑠1

1 and 𝑛𝑚1 𝑑𝑠1
1 is registered to 𝑛𝑚1

𝑑𝑓𝑘2, 𝑠𝑙𝑘𝑑𝑠1
2,𝑛𝑚2 𝑑𝑠1

2 and 𝑛𝑚2 𝑑𝑠1
2 is registered to 𝑛𝑚2

𝑑𝑓𝑘3, 𝑠𝑙𝑘𝑑𝑠1
3,𝑛𝑚3 𝑑𝑠1

3 and 𝑛𝑚3 𝑑𝑠1
3 is registered to 𝑛𝑚3

𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚2 𝑟𝑚1 and 𝑟𝑚2 Collaboration is established

𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚3 𝑟𝑚1 and 𝑟𝑚3 Collaboration is established

𝑝𝑚𝑘𝑟𝑚2,𝑟𝑚3 𝑟𝑚2 and 𝑟𝑚3 Collaboration is established

𝑠𝑘𝑐1, 𝑝𝑘𝑐1 𝑐1 Before job submission

𝑠𝑘𝑐2, 𝑝𝑘𝑐2 𝑐2 Before job submission

𝑠𝑘𝑐3, 𝑝𝑘𝑐3 𝑐3 Before job submission

(MF-1) Prior to sending a request for security log files (𝐹𝑖𝑙𝑒2 and 𝐹𝑖𝑙𝑒3) as described in (EF-

1), 𝑈𝑠𝑒𝑟1 authenticates to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3 by using existing authentication

services. After the users are successfully authenticated, 𝑈𝑠𝑒𝑟1 can then proceed to

187

sending the request to 𝑈𝑠𝑒𝑟2 and 𝑈𝑠𝑒𝑟3. A JobDomain key 𝑗𝑘 is generated and

distributed to all the users.

(MF-2) 𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3, respectively, authenticate to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2,

and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 by using an existing authentication service (e.g., an operating

system-level authentication service). Before 𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, and 𝑈𝑠𝑒𝑟3 (through

their ClientApps) can send a request to start a new job and to write the input data

(the security log files) and job configuration files to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 as described in (EF-2), ClientApps

and the respective ResourceManagers should be mutually authenticated. The

authentication of each pair of 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2

and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 is done by

using the GP2A protocol. The operational steps for the GP2A protocol are given in

Section 5.5.4.1. The keys used for the entity authentication are the respective

OrgDomain key and the primary key shared between a ClientApp and the respective

ResourceManager, i.e., 𝑜𝑘1 and 𝑝𝑚𝑘𝑐1,𝑟𝑚1 are used by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑜𝑘2 and

𝑝𝑚𝑘𝑐2,𝑟𝑚2 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑜𝑘3 and 𝑝𝑚𝑘𝑐3,𝑟𝑚3 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. Each of the

ClientApps sends 𝑗𝑘 for 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to authenticate to

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, a secondary key (𝑠𝑐𝑘𝑐1,𝑟𝑚1 by

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑠𝑐𝑘𝑐2,𝑟𝑚2 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑠𝑐𝑘𝑐3,𝑟𝑚3 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3) for

subsequent authentication between the ClientApp and the respective

ResourceManager, and a session key (𝑠𝑠𝑘𝑐1,𝑟𝑚1 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑠𝑠𝑘𝑐2,𝑟𝑚2 by

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑠𝑠𝑘𝑐3,𝑟𝑚3 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3) for protecting data exchanged during

the session.

(MF-3) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3,

respectively, authenticate to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 before

sending replies as described in (EF-3). As each of the ResourceManagers has been

interacted with the respective ClientApp, the authentication is carried out by using

the SOA protocol with the secondary key (𝑠𝑐𝑘𝑐1,𝑟𝑚1 by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑠𝑐𝑘𝑐2,𝑟𝑚2 by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑠𝑐𝑘𝑐3,𝑟𝑚3 by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3)

established in (MF-2). The operational steps of the SOA protocol are given in Section

5.5.4.3. Each of the ResourceManagers prepares a DFS-C key, a primary key, and a

ticket (containing the encrypted primary key) for the respective ClientApp to

authenticate to the corresponding NameManager. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 also gives

a DPS-C key 𝑝𝑐𝑘1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 for authentication to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. Hence,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends 𝑝𝑐𝑘1, 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑛𝑚1, 𝑡𝑘𝑡𝑐1,𝑛𝑚1
𝑟𝑚1

, and 𝑠𝑠𝑘𝑟𝑚1,𝑐1 to

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1; 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 sends 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑐2,𝑛𝑚2 , 𝑡𝑘𝑡𝑐2,𝑛𝑚2
𝑟𝑚2

, and

𝑠𝑠𝑘𝑟𝑚2,𝑐2 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2; and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 sends 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑐3,𝑛𝑚3,

𝑡𝑘𝑡𝑐3,𝑛𝑚3
𝑟𝑚3

, and 𝑠𝑠𝑘𝑟𝑚3,𝑐3 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3.

(MF-4) As described in (EF-4), the writing of security log files and the job configuration files

to the respective DFS cluster involves three interactions.

188

a. Each of the ClientApps authenticates to the respective NameManager by using

the GE2A protocol. The operational steps of the GE2A protocol are given in

Section 5.5.4.2. For each authentication instance, the DFS-C key and the

primary key established in (MF-3) are used, i.e., 𝑑𝑓𝑘1 and 𝑝𝑚𝑘𝑐1,𝑛𝑚1 by

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑐2,𝑛𝑚2 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑐3,𝑛𝑚3

by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. It is worth noting that the primary key for authentication

between a ClientApp and a NameManager is contained in the ticket sent from

the ClientApp to the NameManager in the first protocol message (the CH

message). During the authentication, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends 𝑠𝑐𝑘𝑐1,𝑛𝑚1 and

𝑠𝑠𝑘𝑐1,𝑛𝑚1 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 sends 𝑠𝑐𝑘𝑐2,𝑛𝑚2 and 𝑠𝑠𝑘𝑐2,𝑛𝑚2 to

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 sends 𝑠𝑐𝑘𝑐3,𝑛𝑚3 and 𝑠𝑠𝑘𝑐3,𝑛𝑚3 to

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

b. Before each of the NameManagers sends a reply back to the corresponding

ClientApp, it authenticates to the respective ClientApp by using the SOA

protocol with the secondary key established in (MF-4(a)), i.e., 𝑠𝑐𝑘𝑐1,𝑛𝑚1 by

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑠𝑐𝑘𝑐2,𝑛𝑚2 by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑠𝑐𝑘𝑐3,𝑛𝑚3 by

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. Each of the NameManagers also generates a primary key

and a ticket for the respective ClientApp to authenticate to the corresponding

DataStore. Hence, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1, 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

, and 𝑠𝑠𝑘𝑛𝑚1,𝑐1

to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 sends 𝑝𝑚𝑘𝑐2,𝑑𝑠1
2, 𝑡𝑘𝑡𝑐2,𝑑𝑠1

2
𝑛𝑚2

, and 𝑠𝑠𝑘𝑛𝑚2,𝑐2 to

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 sends 𝑝𝑚𝑘𝑐3,𝑑𝑠1
3, 𝑡𝑘𝑡𝑐3,𝑑𝑠1

3
𝑛𝑚3

, and 𝑠𝑠𝑘𝑛𝑚3,𝑐3

to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3.

c. Each of the ClientApps authenticates to the respective DataStore. The entity

authentication for each pair of ClientApp and the respective DataStore is

carried out by using the GE2A protocol with the DFS-C key established in (MF-

3) and the primary key established in (MF-4(b)). These keys are 𝑑𝑓𝑘1 and

𝑝𝑚𝑘𝑐1,𝑑𝑠1
1 used by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑐2,𝑑𝑠1

2 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and

𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑐3,𝑑𝑠1
3 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. During the authentication, only a session

key is transmitted. Hence, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3,

respectively, send 𝑠𝑠𝑘𝑐1,𝑑𝑠1
1 , 𝑠𝑠𝑘𝑐2,𝑑𝑠1

2 , and 𝑠𝑠𝑘𝑐3,𝑑𝑠1
3 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3.

 After the input data are written to the respective DataStore and divided into

InputSplits, each of the ClientApps generates AuthData for the InputSplit it provides,

ensuring the authenticity of the InputSplit. This is done by using the ISAuthData-

Generation algorithm (explained in Section 6.5.4.1) with the private key (an

asymmetric key) of the respective ClientApp. These private keys are 𝑠𝑘𝑐1 for

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝑠𝑘𝑐2 for 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝑠𝑘𝑐3 for 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. The algorithm

generates AuthData tokens for the respective InputSplits, i.e., 𝜎𝑟ℎ
𝑐1 and 𝑆𝐴𝑐1 for

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝜎𝑟ℎ
𝑐2 and 𝑆𝐴𝑐2 for 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and

𝜎𝑟ℎ
𝑐3

 and 𝑆𝐴𝑐3 for 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3.

189

(MF-5) Each of the ClientApps authenticates to the respective ResourceManager before

notifying of the completion of data writing as described in (EF-5). The authentication

process and the keys used are as described in (MF-3). The difference is that a new

session key for the session and the public key of the ClientApp (for InputSplit

verification by Mappers) are transmitted from the ClientApp to the respective

ResourceManager. In other words, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2, and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3,

respectively, send 𝑠𝑠𝑘𝑐1,𝑟𝑚1 and 𝑝𝑘𝑐1, 𝑠𝑠𝑘𝑐2,𝑟𝑚2 and 𝑝𝑘𝑐2, and 𝑠𝑠𝑘𝑐3,𝑟𝑚3 and 𝑝𝑘𝑐3

to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

(MF-6) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑔𝑒𝑟2 and

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 before sending a request for inquiring status of data writing as

described in (EF-6). The entity authentication is done by using the GP2A protocol

with the JobDomain key 𝑗𝑘 established in (MF-2) and the primary key established

prior to the job execution. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 uses 𝑗𝑘 and 𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚2 to

authenticate to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑗𝑘 and 𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚3 to

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. It then sends secondary keys and session keys to the other

ResourceManagers, i.e., 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2 and 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚2 to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and

𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3 and 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚3 to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

(MF-7) When the input data (𝐹𝑖𝑙𝑒2 and 𝐹𝑖𝑙𝑒3) and job configuration files are written to the

DFS clusters, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 authenticate to

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 before notifying of the completion of data writing as described

in (EF-7). The entity authentication is done by using the SOA protocol with the

secondary key established in (MF-6). The keys used are 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2 by

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3 by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. Each of

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 prepares the DFS-C key, a new

primary key, and a respective ticket for 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to authenticate to

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively, send 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2, 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚2
𝑟𝑚2 , and

𝑠𝑠𝑘𝑟𝑚2,𝑟𝑚1 and 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3, 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚3
𝑟𝑚3

, and 𝑠𝑠𝑘𝑟𝑚3,𝑟𝑚1 to

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

(MF-8) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 before sending a request

for launching 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 as described in (EF-8). The entity authentication is

carried out by using the GP2A protocol with the DPS-I key 𝑝𝑖𝑘1 and the primary key

𝑝𝑚𝑘𝑤𝑚1
1,𝑟𝑚1 established prior to the job execution. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 generates

a new primary key 𝑝𝑚𝑘𝑟𝑚1,𝑗𝑚 for 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to authenticate to

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, prepares DFS-C keys (𝑑𝑓𝑘1, 𝑑𝑓𝑘2, and 𝑑𝑓𝑘3), primary keys

(𝑝𝑚𝑘𝑗𝑚,𝑛𝑚1, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2, and 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3), and tickets (𝑡𝑘𝑡𝑗𝑚,𝑛𝑚1
𝑟𝑚1

, 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚2
𝑟𝑚2

, and

𝑡𝑘𝑡𝑗𝑚,𝑛𝑚3
𝑟𝑚3

) for 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to authenticate to the NameManagers. The keys and

tickets are obtained in (MF-7). 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 also generates a session key

𝑠𝑠𝑘𝑟𝑚1,𝑤𝑚1
1 for this session. All the keys and tickets are transmitted from

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1.

190

(MF-9) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1 starts 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 as described in (EF-9). The entity

authentication is done locally using an existing method. It also passes the keys and

tickets obtained in (MF-8) to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 generates a pair of a

private key 𝑠𝑘𝑗𝑚 and a public key 𝑝𝑘𝑗𝑚. The keys are, respectively, used for signing

and verifying aggregated AuthData tokens for PartitionSegments and FinalResults.

(MF-10) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to notify that 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 has

been launched as described in (EF-10). The entity authentication is done by using the

SOA protocol with the secondary key 𝑠𝑐𝑘𝑐1,𝑟𝑚1 established in (MF-2).

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 generates a new primary key 𝑝𝑚𝑘𝑐1,𝑗𝑚 and a ticket 𝑡𝑘𝑡𝑐1,𝑗𝑚
𝑟𝑚1

for 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to authenticate to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends

𝑝𝑚𝑘𝑐1,𝑗𝑚, 𝑡𝑘𝑡𝑐1,𝑗𝑚
𝑟𝑚1

, and a new session key 𝑠𝑠𝑘𝑟𝑚1 ,𝑐1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1.

(MF-11) In addition to the operational step (EF-11), 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a request for

ISAuthData tokens (for verifying the authenticity of 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 and 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3)

to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2 and 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3 accept the requests

and reply 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 with 𝜎𝑟ℎ
𝑐2 , 𝑆𝐴𝑐2 and 𝜎𝑟ℎ

𝑐3 , 𝑆𝐴𝑐3. These exchanges are done

through secure communication channels.

 Next, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 authenticates to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before inquiring the status

of the job as described in (EF-11). The entity authentication is carried out by using

the GE2A protocol with the DPS-C key 𝑝𝑐𝑘1 established in (MF-3) and the primary

key 𝑝𝑚𝑘𝑐1,𝑗𝑚 established in (MF-10). 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a secondary key 𝑠𝑐𝑘𝑐1,𝑗𝑚

and a session key 𝑠𝑠𝑘𝑐1,𝑗𝑚 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. Lastly, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends all the

ISAuthData tokens (including 𝜎𝑟ℎ
𝑐1 , 𝑆𝐴𝑐1) to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 by using the ISAuthData-

Delivery protocol (explained in Section 6.5.4.3).

(MF-12) Before 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 can read the job configuration files from all the DFS clusters as

described in (EF-12), there are three interactions, hence, three entity authentication

instances. The authentication process is similar to that of (MF-4)).

a. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 before sending a request for reading the job configuration

files. The authentication is done by using the GE2A protocol with the DFS-C key

and the primary key established in (MF-9). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 uses 𝑑𝑓𝑘1 and

𝑝𝑚𝑘𝑗𝑚,𝑛𝑚1 to authenticate to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2 to

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. Unlike

(MF-4(a)), in addition to a secondary key and a session key, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 also

generates a ticket sealing key for each of the NameManagers. The ticket

sealing keys are used for the generation and verification of tickets issued by

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 for Mappers and Reducers to authenticate to the

NameManagers. Hence, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚1 , 𝑡𝑠𝑘𝑛𝑚1,𝑗𝑚, and

𝑠𝑠𝑘𝑗𝑚,𝑛𝑚1 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚2, 𝑡𝑠𝑘𝑛𝑚2,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑛𝑚2 to

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚3 , 𝑡𝑠𝑘𝑛𝑚3,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑛𝑚3 to

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

191

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 authenticate to

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before sending a reply to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. The entity

authentication is done by using the SOA protocol with the secondary key

established in (MF-12(a)), i.e., 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚1 by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚2 by

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚3 by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. For authentication to

the respective DataStores, the NameManagers prepare and send the primary

keys and tickets to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. Hence, in addition to session keys, the keys

sent to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 are 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
1 , 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

1
𝑛𝑚1

, and 𝑠𝑠𝑘𝑛𝑚1,𝑗𝑚 by

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
2, 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

2
𝑛𝑚2

, and 𝑠𝑠𝑘𝑛𝑚2,𝑗𝑚 by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2,

and 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
3 , 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

3
𝑛𝑚3

, and 𝑠𝑠𝑘𝑛𝑚3,𝑗𝑚 by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

c. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

2, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3

before reading the job configuration files. The entity authentication is done by

using the GE2A protocol with the DFS-C key established in (MF-9) and the

primary key established in (MF-12(b)). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 uses 𝑑𝑓𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
1

to authenticate to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1

2 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2, and

𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
3 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1
1 to

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1, 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1

2 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2, and 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1

3 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3.

(MF-13) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 before sending a request for

Worker allocation as described in (EF-13). The entity authentication is done by using

the GP2A protocol with the DPS-I key 𝑝𝑖𝑘1 and the primary key 𝑝𝑚𝑘𝑟𝑚1,𝑗𝑚

established in (MF-9). During the authentication, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends a secondary

key 𝑠𝑐𝑘𝑟𝑚1,𝑗𝑚 and a session key 𝑠𝑠𝑘𝑗𝑚,𝑟𝑚1 to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

(MF-14) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 before sending a request for Worker allocation as described in

(EF-14). The entity authentication is done by using the SOA protocol with the

secondary keys (𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2 for authentication to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and

𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3 to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3) established in (MF-6). 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

sends a new session key 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚2 to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and a new session key

𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚3 to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

(MF-15) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 authenticate to

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 before sending a reply to the Worker allocation request as

described in (EF-15). Like (MF-14), the entity authentication is done by using the SOA

protocol with 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2 by 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3 by

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 prepare and

send 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 the DPS-C keys, the primary keys, and the tickets for

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to authenticate to the respective WorkerManagers

(𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2 and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

3). They also send the public keys 𝑝𝑘𝑐2

and 𝑝𝑘𝑐3 established in (MF-5) to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. The keys (including 𝑝𝑘𝑐1)

will be distributed to the respective Mappers (via 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟) for verifying the

authenticity of the InputSplits. Hence, along with session keys, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

192

sends 𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1

2
𝑟𝑚2

, 𝑝𝑘𝑐2, and 𝑠𝑠𝑘𝑟𝑚2,𝑟𝑚1 to 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 sends 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
3, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1

3
𝑟𝑚3

, 𝑝𝑘𝑐3, and 𝑠𝑠𝑘𝑟𝑚3,𝑟𝑚1 to

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

(MF-16) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before sending a reply with a

list of available WorkerNodes as described in (EF-16). The entity authentication is

done by using the SOA protocol with the secondary key 𝑠𝑐𝑘𝑟𝑚1,𝑗𝑚 established in

(MF-13). 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 prepares a primary key 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚2
1 and a ticket

𝑡𝑘𝑡𝑗𝑚,𝑤𝑚2
1

𝑟𝑚1
 for 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to authenticate to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑔𝑒𝑟2

1. Along with

𝑝𝑚𝑘𝑗𝑚,𝑤𝑚2
1, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚2

1
𝑟𝑚1

, and 𝑝𝑘𝑐1 (established in (MF-5)), 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

sends 𝑝𝑐𝑘2, 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1

3 , 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1
2

𝑟𝑚2
, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1

3
𝑟𝑚3

, 𝑝𝑘𝑐2, and 𝑝𝑘𝑐3

obtained from 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 in (MF-15), and a

new session key 𝑠𝑠𝑘𝑟𝑚1,𝑗𝑚 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.

(MF-17) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, and

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3 before sending a request for launching Mappers and Reducers

as described in (EF-17). The entity authentication is done by using the GE2A protocol

with the DPS-C key (with the exception of the authentication to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1

where the DPS-I key 𝑝𝑖𝑘1 is used) and the primary key established in (MF-16). These

keys are 𝑝𝑖𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚2
1 for authentication to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

1, 𝑝𝑐𝑘2 and

𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2 for authentication to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, and 𝑝𝑐𝑘3 and 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
3 for

authentication to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 prepares the DPS-C key 𝑝𝑐𝑘1

and the primary keys 𝑝𝑚𝑘𝑗𝑚,𝑚1
, 𝑝𝑚𝑘𝑗𝑚,𝑚2

, 𝑝𝑚𝑘𝑗𝑚,𝑚3
, 𝑝𝑚𝑘𝑗𝑚,𝑟1

, 𝑝𝑚𝑘𝑗𝑚,𝑟𝑚2
, and

𝑝𝑚𝑘𝑗𝑚,𝑟𝑚3
 for 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, 𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1,. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3

to authenticate to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, respectively. It also prepares the ticket sealing keys

𝑡𝑠𝑘𝑤𝑚2
1,𝑗𝑚, 𝑡𝑠𝑘𝑤𝑚1

2,𝑗𝑚, and 𝑡𝑠𝑘𝑤𝑚1
3 ,𝑗𝑚 for the generation and verification of tickets

issued by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 to Reducers for authentication to the respective

WorkerManagers (to retrieve the assigned PartitionSegments). These keys and

session keys 𝑠𝑠𝑘𝑗𝑚,𝑤𝑚2
1, 𝑠𝑠𝑘𝑗𝑚,𝑤𝑚1

2, and 𝑠𝑠𝑘𝑗𝑚,𝑤𝑚1
3 are, respectively, sent to

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3.

(MF-18) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1, 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2, and 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3, respectively,

start 𝑀𝑎𝑝𝑝𝑒𝑟1 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3

as described in (EF-18). Each of the WorkerManagers authenticates to the respective

Mapper and Reducer by using an existing method. Each of the WorkerManagers

embeds the group key (the DPS-I key or the DPS-C key) and the primary keys

obtained in (MF-17) to the respective Mapper and Reducer by using an existing

method (such as container template and shared memory). In other words, 𝑝𝑖𝑘1 and

𝑝𝑚𝑘𝑗𝑚,𝑚1
 are given to 𝑀𝑎𝑝𝑝𝑒𝑟1 and 𝑝𝑖𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑟1

 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 by

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1; 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑚2

 are given to 𝑀𝑎𝑝𝑝𝑒𝑟2 and 𝑝𝑐𝑘1 and

𝑝𝑚𝑘𝑗𝑚,𝑟2
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 by 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2; and 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑚3
 are given

to 𝑀𝑎𝑝𝑝𝑒𝑟3 and 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑟3
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 by 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

3.

193

(MF-19) 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, 𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 authenticate

to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before reporting their status as described in (EF-19). The entity

authentication is done by using the GP2A protocol with the group key (the DPS-I key

𝑝𝑖𝑘1 or the DPS-C key 𝑝𝑐𝑘1) and the primary key established in (MF-18). To

authenticate to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝑀𝑎𝑝𝑝𝑒𝑟1 uses 𝑝𝑖𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑚1
, 𝑀𝑎𝑝𝑝𝑒𝑟2 uses

𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑚2
, 𝑀𝑎𝑝𝑝𝑒𝑟3 uses 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑚3

, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 uses 𝑝𝑖𝑘1 and

𝑝𝑚𝑘𝑗𝑚,𝑟1
, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 uses 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑗𝑚,𝑟2

, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 uses 𝑝𝑐𝑘1 and

𝑝𝑚𝑘𝑗𝑚,𝑟3
. Each of the Workers sends a secondary key and a session key to

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟, i.e., 𝑠𝑐𝑘𝑗𝑚,𝑚1
 and 𝑠𝑠𝑘𝑚1,𝑗𝑚 are sent by 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑚2

 and

𝑠𝑠𝑘𝑚2,𝑗𝑚 by 𝑀𝑎𝑝𝑝𝑒𝑟2, 𝑠𝑐𝑘𝑗𝑚,𝑚3
 and 𝑠𝑠𝑘𝑚3,𝑗𝑚 by 𝑀𝑎𝑝𝑝𝑒𝑟3, 𝑠𝑐𝑘𝑗𝑚,𝑟1

 and 𝑠𝑠𝑘𝑟1,𝑗𝑚

by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑟2
 and 𝑠𝑠𝑘𝑟2,𝑗𝑚 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑟3

 and 𝑠𝑠𝑘𝑟3,𝑗𝑚 by

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3.

(MF-20) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 before issuing a

command to start map tasks and giving the location of the assigned InputSplits as

described in (EF-20). The entity authentication is done by using the SOA protocol

with the secondary key (𝑠𝑐𝑘𝑗𝑚,𝑚1
 for 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑚2

 for 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑚3

for 𝑀𝑎𝑝𝑝𝑒𝑟3) established in (MF-19). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 prepares the DFS-C keys (𝑑𝑓𝑘1,

𝑑𝑓𝑘2, and 𝑑𝑓𝑘3) and generates new primary keys (𝑝𝑚𝑘𝑚1,𝑛𝑚1, 𝑝𝑚𝑘𝑚2,𝑛𝑚2, and

𝑝𝑚𝑘𝑚3,𝑛𝑚3) and tickets (𝑡𝑘𝑡
𝑚1,𝑛𝑚1
𝑗𝑚

, 𝑡𝑘𝑡
𝑚2,𝑛𝑚2
𝑗𝑚

, and 𝑡𝑘𝑡
𝑚3,𝑛𝑚3
𝑗𝑚

) for the Mappers to

authenticate to the respective NameManagers. It prepares 𝑝𝑘𝑐1 , 𝑝𝑘𝑐2, and 𝑝𝑘𝑐3

(obtained in (MF-16)) for the respective Mappers to verify the assigned InputSplits.

It also generates new pairwise keys 𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, and 𝑘𝑚3,𝑗𝑚 for the respective

Mappers to sign the PartitionSegments they produce. Hence, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends

𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑚1,𝑛𝑚1, 𝑡𝑘𝑡
𝑚1,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑐1, 𝑘𝑚1,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑚1
 to 𝑀𝑎𝑝𝑝𝑒𝑟1; 𝑑𝑓𝑘2,

𝑝𝑚𝑘𝑚2,𝑛𝑚2, 𝑡𝑘𝑡
𝑚2,𝑛𝑚2
𝑗𝑚

, 𝑝𝑘𝑐2, 𝑘𝑚2,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑚2
 to 𝑀𝑎𝑝𝑝𝑒𝑟2; and 𝑑𝑓𝑘3,

𝑝𝑚𝑘𝑚3,𝑛𝑚3, 𝑡𝑘𝑡
𝑚3,𝑛𝑚3
𝑗𝑚

, 𝑝𝑘𝑐3, 𝑘𝑚3,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑚3
 to 𝑀𝑎𝑝𝑝𝑒𝑟3.

 In addition, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 also sends all the ISAuthData tokens to the

respective Mappers (i.e., 𝜎𝑟ℎ
𝑐1 and 𝑆𝐴𝑐1 to 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝜎𝑟ℎ

𝑐2 and 𝑆𝐴𝑐2 to 𝑀𝑎𝑝𝑝𝑒𝑟2,

and 𝜎𝑟ℎ
𝑐3

and 𝑆𝐴𝑐3 to 𝑀𝑎𝑝𝑝𝑒𝑟3) by using the ISAuthData-Delivery protocol.

(MF-21) Before 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 can read the assigned InputSplits from

the respective DFS clusters as described in (EF-21), for each of the Mappers, three

instances of entity authentication are taking place. The authentication process is

similar to that of (MF-4).

a. 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3, respectively, authenticate to

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. The entity

authentication is done by using the GE2A protocol with the DFS-C key and the

primary key obtained in (MF-20). The keys 𝑑𝑓𝑘1 and 𝑝𝑚𝑘𝑚1,𝑛𝑚1 are used by

𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑚2,𝑛𝑚2 by 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑚3,𝑛𝑚3 by

𝑀𝑎𝑝𝑝𝑒𝑟3. 𝑀𝑎𝑝𝑝𝑒𝑟1 sends 𝑠𝑐𝑘𝑚1,𝑛𝑚1 and 𝑠𝑠𝑘𝑚1,𝑛𝑚1 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

194

𝑀𝑎𝑝𝑝𝑒𝑟2 sends 𝑠𝑐𝑘𝑚2,𝑛𝑚2 and 𝑠𝑠𝑘𝑚2,𝑛𝑚2 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3

sends 𝑠𝑐𝑘𝑚3,𝑛𝑚3 and 𝑠𝑠𝑘𝑚3,𝑛𝑚3 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3.

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3, respectively,

authenticate to 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3. The entity authentication

is done by using the SOA protocol with the secondary key established in (MF-

21(a)), i.e., 𝑠𝑐𝑘𝑚1,𝑛𝑚1 is used by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1, 𝑠𝑐𝑘𝑚2,𝑛𝑚2 by

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2, and 𝑠𝑐𝑘𝑚3,𝑛𝑚3 by 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3. The NameManagers

generates primary keys and tickets for the Mappers to authenticate to the

respectively DataStores. The keys and the tickets are transmitted along with

session keys. Hence, 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends 𝑝𝑚𝑘𝑚1,𝑑𝑠1
1 , 𝑡𝑘𝑡𝑚1,𝑑𝑠1

1
𝑛𝑚1

, and

𝑠𝑠𝑘𝑛𝑚1,𝑚1
 to 𝑀𝑎𝑝𝑝𝑒𝑟1; 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2 sends 𝑝𝑚𝑘𝑚2,𝑑𝑠1

2 , 𝑡𝑘𝑡𝑚2,𝑑𝑠1
2

𝑛𝑚2
, and

𝑠𝑠𝑘𝑛𝑚2,𝑚2
 to 𝑀𝑎𝑝𝑝𝑒𝑟2; and 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3 sends 𝑝𝑚𝑘𝑚3,𝑑𝑠1

3 , 𝑡𝑘𝑡𝑚3,𝑑𝑠1
3

𝑛𝑚3
,

and 𝑠𝑠𝑘𝑛𝑚3,𝑚3
 to 𝑀𝑎𝑝𝑝𝑒𝑟3.

c. 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3, respectively, authenticate to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2, and 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3. The entity authentication is done by using the

GE2A protocol with the DFS-C key established in (MF-20) and the primary key

established in (MF-21(b)). The keys 𝑑𝑓𝑘1 and 𝑝𝑚𝑘𝑚1,𝑑𝑠1
1 are used by

𝑀𝑎𝑝𝑝𝑒𝑟1; 𝑑𝑓𝑘2 and 𝑝𝑚𝑘𝑚2,𝑑𝑠1
2 by 𝑀𝑎𝑝𝑝𝑒𝑟2; and 𝑑𝑓𝑘3 and 𝑝𝑚𝑘𝑚3,𝑑𝑠1

3 by

𝑀𝑎𝑝𝑝𝑒𝑟3. 𝑀𝑎𝑝𝑝𝑒𝑟1 sends 𝑠𝑠𝑘𝑚1,𝑑𝑠1
1 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1, 𝑀𝑎𝑝𝑝𝑒𝑟2 sends

𝑠𝑠𝑘𝑚2,𝑑𝑠1
2 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 sends 𝑠𝑠𝑘𝑚3,𝑑𝑠1
3 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

3.

(MF-22) Before performing the map tasks as described in (EF-22), 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and

𝑀𝑎𝑝𝑝𝑒𝑟3, respectively, verify the authenticity of 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1, 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2, and

𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 by using the ISAuthData-Verification algorithm (explained in Section

6.5.4.2) with the public keys of the respective ClientApps established in (MF-20)

against ISAuthData tokens received in (MF-20). The key 𝑝𝑘𝑐1 is used for the

verification of 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 against 𝜎𝑟ℎ
𝑐1 and 𝑆𝐴𝑐1; 𝑝𝑘𝑐2 for 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 against

𝜎𝑟ℎ
𝑐2

 and 𝑆𝐴𝑐2; and 𝑝𝑘𝑐3 for 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 against 𝜎𝑟ℎ
𝑐3

 and 𝑆𝐴𝑐3. If the

verifications of all the InputSplits are positive, the Mappers can perform the map

tasks on the assigned InputSplits.

 When each of the Mappers finishes its map task and produces an

IntermediateResult (containing multiple PartitionSegments), it signs its

PartitionSegments by using the PGen-PSAuthData-Generation algorithm (explained

in Section 6.5.5.1) with the pairwise key shared with 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 established in

(MF-20). PGen-PSAuthData tokens are generated by the algorithm. 𝑀𝑎𝑝𝑝𝑒𝑟1 signs

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3 with 𝑘𝑚1,𝑗𝑚 to generate 𝑟ℎ𝑚1
,

𝜏𝑟ℎ𝑚1
, and 𝑆𝐴𝑚1

; 𝑀𝑎𝑝𝑝𝑒𝑟2 signs 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2

with 𝑘𝑚2,𝑗𝑚 to generate 𝑟ℎ𝑚2
, 𝜏𝑟ℎ𝑚2

, and 𝑆𝐴𝑚2
; and 𝑀𝑎𝑝𝑝𝑒𝑟3 signs

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2 and 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3 with 𝑘𝑚3,𝑗𝑚 to generate 𝑟ℎ𝑚3
,

𝜏𝑟ℎ𝑚3
, and 𝑆𝐴𝑚3

. The PGen-PSAuthData tokens will be used to generate AGen-

PSAuthData tokens by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.

195

(MF-23) 𝑀𝑎𝑝𝑝𝑒𝑟1, 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3 authenticate to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before notifying

of the completion of the map tasks as described in (EF-23). The entity authentication

is done by using the SOA protocol with the secondary key (i.e., 𝑠𝑐𝑘𝑗𝑚,𝑚1
 by 𝑀𝑎𝑝𝑝𝑒𝑟1,

𝑠𝑐𝑘𝑗𝑚,𝑚2
 by 𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑚3

 by 𝑀𝑎𝑝𝑝𝑒𝑟3) established in (MF-19). 𝑀𝑎𝑝𝑝𝑒𝑟1,

𝑀𝑎𝑝𝑝𝑒𝑟2, and 𝑀𝑎𝑝𝑝𝑒𝑟3, respectively, send session keys 𝑠𝑠𝑘𝑚1,𝑗𝑚, 𝑠𝑠𝑘𝑚2,𝑗𝑚, and

𝑠𝑠𝑘𝑚3,𝑗𝑚 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.

 Each of the Mappers also sends the PGen-PSAuthData tokens generated in

(MF-22) to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 by using the PSAuthData-Delivery protocol (explained in

Section 6.5.5.4). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 invokes the AGen-PSAuthData-Generation algorithm

(explained in Section 6.5.5.2) with the PGen-PSAuthData tokens (𝑟ℎ𝑚1
, 𝑟ℎ𝑚2

, 𝑟ℎ𝑚3
,

𝜏𝑟ℎ𝑚1
, 𝜏𝑟ℎ𝑚2

, 𝜏𝑟ℎ𝑚3
, 𝑆𝐴𝑚1

, 𝑆𝐴𝑚2
, and 𝑆𝐴𝑚3

), the pairwise keys (𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚, and

𝑘𝑚3,𝑗𝑚 established in (MF-20)), and the private key 𝑠𝑘𝑗𝑚 (generated in (MF-9)) to

generate AGen-PSAuthData tokens, 𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚
. The PGen-PSAuthData tokens

together with the AGen-PSAuthData tokens are used for the verification of

PartitionSegments by the Reducers.

(MF-24) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3. The entity

authentication is done by using the SOA protocol with the secondary key (𝑠𝑐𝑘𝑗𝑚,𝑟1

for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑠𝑐𝑘𝑗𝑚,𝑟2
, for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑠𝑐𝑘𝑗𝑚,𝑟3

 for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) established in

(MF-19). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 prepares the DPS-C keys (𝑝𝑐𝑘1, 𝑝𝑐𝑘2, and 𝑝𝑐𝑘3) and

generates new primary keys (𝑝𝑚𝑘𝑟1,𝑤𝑚1
2 , 𝑝𝑚𝑘𝑟2,𝑤𝑚2

1, 𝑝𝑚𝑘𝑟2,𝑤𝑚1
3, and 𝑝𝑚𝑘𝑟3,𝑤𝑚2

1,)

and tickets (𝑡𝑘𝑡
𝑟1,𝑤𝑚1

2
𝑗𝑚

, 𝑡𝑘𝑡
𝑟2,𝑤𝑚2

1
𝑗𝑚

, 𝑡𝑘𝑡
𝑟2,𝑤𝑚1

3
𝑗𝑚

, and 𝑡𝑘𝑡
𝑟3,𝑤𝑚2

1
𝑗𝑚

) for the Reducers to

authenticate to the respective WorkerManagers. It prepares the DFS-C key 𝑑𝑓𝑘1 and

generates new primary keys (𝑝𝑚𝑘𝑟1,𝑛𝑚1 , 𝑝𝑚𝑘𝑟2,𝑛𝑚1 , and 𝑝𝑚𝑘𝑟3,𝑛𝑚1) and tickets

(𝑡𝑘𝑡
𝑟1,𝑛𝑚1
𝑗𝑚

, 𝑡𝑘𝑡
𝑟2,𝑛𝑚1
𝑗𝑚

, and 𝑡𝑘𝑡
𝑟3,𝑛𝑚1
𝑗𝑚

) for the Reducers to authenticate to

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. It prepares its public key 𝑝𝑘𝑗𝑚 (generated in (MF-9)) for the

Reducers to verify the assigned PartitionSegments. It also generates new pairwise

keys 𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, and 𝑘𝑟3,𝑗𝑚 for the respective Reducers to sign the FinalResults

they produce. Hence, 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 sends 𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑟1,𝑤𝑚1
2, 𝑡𝑘𝑡

𝑟1,𝑤𝑚1
2

𝑗𝑚
, 𝑑𝑓𝑘1,

𝑝𝑚𝑘𝑟1,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟1,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚, 𝑘𝑟1,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑟1
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1; 𝑝𝑐𝑘1, 𝑝𝑐𝑘3,

𝑝𝑚𝑘𝑟2,𝑤𝑚2
1, 𝑝𝑚𝑘𝑟2,𝑤𝑚1

3, 𝑡𝑘𝑡
𝑟2,𝑤𝑚2

1
𝑗𝑚

, 𝑡𝑘𝑡
𝑟2,𝑤𝑚1

3
𝑗𝑚

, 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟2,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟2,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚,

𝑘𝑟2,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑟2
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2; and 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑟3,𝑤𝑚2

1, 𝑡𝑘𝑡
𝑟3,𝑤𝑚2

1
𝑗𝑚

, 𝑑𝑓𝑘1,

𝑝𝑚𝑘𝑟3,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟3,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚, 𝑘𝑟3,𝑗𝑚, and 𝑠𝑠𝑘𝑗𝑚,𝑟3
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3.

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 also sends all the PGen-PSAuthData tokens to the respective

Reducers (i.e., 𝑠𝑎𝑚2,𝑟1
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑠𝑎𝑚1,𝑟2

, 𝑠𝑎𝑚2,𝑟2
, and 𝑠𝑎𝑚3,𝑟2

 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and

𝑠𝑎𝑚1,𝑟3
 and 𝑠𝑎𝑚3,𝑟3

 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) and AGen-PSAuthData tokens (𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚
) to

all the Reducers by using the PSAuthData-Delivery protocol. 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 then

issues a command to all the Reducers to start the reduce tasks as described in (EF-24).

(MF-25) As described in (EF-25), each of the Reducers has to retrieve PartitionSegments from

different WorkerManagers. The entity authentication is done by using the GE2A

196

protocol with DPS-C key and the primary key established in (MF-24). 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 uses

𝑝𝑐𝑘2 and 𝑝𝑚𝑘𝑟1,𝑤𝑚1
2 to authenticate to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 uses 𝑝𝑐𝑘1

and 𝑝𝑚𝑘𝑟2,𝑤𝑚2
1 and 𝑝𝑐𝑘3 and 𝑝𝑚𝑘𝑟2,𝑤𝑚1

3 to authenticate to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1 and

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3, respectively. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 uses 𝑝𝑐𝑘1 and 𝑝𝑚𝑘𝑟3,𝑤𝑚2

1 to

authenticate to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1. During the authentication, session keys are

transmitted. A session key 𝑠𝑠𝑘𝑟1,𝑤𝑚1
2 is sent from 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

2,

𝑠𝑠𝑘𝑟2,𝑤𝑚2
1 from 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

1, 𝑠𝑠𝑘𝑟2,𝑤𝑚1
3 from 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2 to

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3 and 𝑠𝑠𝑘𝑟3,𝑤𝑚2

1 from 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 to 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1.

 For each of the Reducers, the assigned PartitionSegments are verified before

the PartitionSegments are merged. The verification of the PartitionSegments is done

by using the PSAuthData-Verification algorithm with the public key 𝑝𝑘𝑗𝑚 of

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 against the AGen-PSAuthData tokens (𝑐ℎ𝑗𝑚 and 𝜎𝑐ℎ𝑗𝑚
) and the

respective PGen-PSAuthData tokens (𝑠𝑎𝑚2,𝑟1
 is used by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1; 𝑠𝑎𝑚1,𝑟2

, 𝑠𝑎𝑚2,𝑟2
,

and 𝑠𝑎𝑚3,𝑟2
 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2; and 𝑠𝑎𝑚1,𝑟3

 and 𝑠𝑎𝑚3,𝑟3
 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) obtained in (MF-24).

(MF-26) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 perform the reduce tasks on the merged

PartitionSegments and generate the FinalResults (𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1,

and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1, respectively), as described in (EF-26). Each of the Reducers signs

the FinalResult it produces by using the PGen-FRAuthData-Generation algorithm

(explained in Section 6.5.6.1) with the pairwise key shared with 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

established in (MF-24). PGen-FRAuthData tokens are generated by the algorithm.

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1 signs 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1 with 𝑘𝑟1,𝑗𝑚 to generate ℎ𝑟1,𝑐1 and 𝜏ℎ
𝑟1,𝑐1 . 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2

signs 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1 with 𝑘𝑟2,𝑗𝑚 to generate ℎ𝑟2,𝑐1 and 𝜏ℎ
𝑟2,𝑐1 . 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 signs

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1 with 𝑘𝑟3,𝑗𝑚 to generate ℎ𝑟3,𝑐1 and 𝜏ℎ
𝑟3,𝑐1 . The PGen-FRAuthData

tokens will be used to generate the AGen-FRAuthData tokens by 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.

 Following the generation of the FinalResults, all the Reducers write the

FinalResults to 𝐷𝐹𝑆1. Three instances of entity authentication are taking place.

a. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 authenticate to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. The

entity authentication is done by using the GE2A protocol with the DFS-C key

𝑑𝑓𝑘1 and the primary key (𝑝𝑚𝑘𝑟1,𝑛𝑚1 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑝𝑚𝑘𝑟2,𝑛𝑚1 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2,

and 𝑝𝑚𝑘𝑟3,𝑛𝑚1 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) established in (MF-24). 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2,

and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, respectively, send 𝑠𝑐𝑘𝑟1,𝑛𝑚1 and 𝑠𝑠𝑘𝑟1,𝑛𝑚1, 𝑠𝑐𝑘𝑟2,𝑛𝑚1 and

𝑠𝑠𝑘𝑟2,𝑛𝑚1, and 𝑠𝑐𝑘𝑟3,𝑛𝑚1 and 𝑠𝑠𝑘𝑟3,𝑛𝑚1 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3. The

entity authentication is done by using the SOA protocol with the secondary key

(𝑠𝑐𝑘𝑟1,𝑛𝑚1 for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑠𝑐𝑘𝑟2,𝑛𝑚1 for 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑠𝑐𝑘𝑟3,𝑛𝑚1 for

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) established in (MF-26(a)). 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 prepares new primary

keys and tickets for the Reducers to authenticate to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. It then sends

the primary keys, the tickets, and session keys to the Reducers, i.e., 𝑝𝑚𝑘𝑟1,𝑑𝑠1
1,

197

𝑡𝑘𝑡𝑟1,𝑑𝑠1
1

𝑛𝑚1
, and 𝑠𝑠𝑘𝑛𝑚1,𝑟1

 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1; 𝑝𝑚𝑘𝑟2,𝑑𝑠1
1, 𝑡𝑘𝑡𝑟2,𝑑𝑠1

1
𝑛𝑚1

, and 𝑠𝑠𝑘𝑛𝑚1,𝑟2
 to

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2; and 𝑝𝑚𝑘𝑟3,𝑑𝑠1
1, 𝑡𝑘𝑡𝑟3,𝑑𝑠1

1
𝑛𝑚1

, and 𝑠𝑠𝑘𝑛𝑚1,𝑟3
 to 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3.

c. 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 authenticate to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. The entity

authentication is done by using the GE2A protocol with the DFS-C key 𝑑𝑓𝑘1

established in (MF-24) and the primary key (𝑝𝑚𝑘𝑟1,𝑑𝑠1
1 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑝𝑚𝑘𝑟2,𝑑𝑠1

1

by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑝𝑚𝑘𝑟3,𝑑𝑠1
1 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) established in (MF-26(b)).

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, respectively, send 𝑠𝑠𝑘𝑟1,𝑑𝑠1
1 , 𝑠𝑠𝑘𝑟2,𝑑𝑠1

1 ,

and 𝑠𝑠𝑘𝑟3,𝑑𝑠1
1 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1.

(MF-27) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3 authenticate to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 before notifying

of the completion of the reduce tasks as described in (EF-27). The entity

authentication is done by using the SOA protocol with the secondary key (𝑠𝑐𝑘𝑟1,𝑗𝑚

by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑠𝑐𝑘𝑟2,𝑗𝑚 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑠𝑐𝑘𝑟3,𝑗𝑚 by 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3) established in (MF-

19). 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2, and 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3, respectively, send 𝑠𝑠𝑘𝑟1,𝑗𝑚, 𝑠𝑠𝑘𝑟2,𝑗𝑚, and

𝑠𝑠𝑘𝑟3,𝑗𝑚 to 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟.

 Each of the Reducers sends PGen-FRAuthData tokens generated in (MF-26) to

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟. The PGen-FRAuthData tokens are delivered by using the FRAuthData-

Delivery protocol (explained in Section 6.5.6.4). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 invokes the AGen-

FRAuthData-Generation algorithm (explained in Section 6.5.6.2) with the PGen-

FRAuthData tokens (ℎ𝑟1,𝑐1, ℎ𝑟2,𝑐1, ℎ𝑟3,𝑐1, 𝜏ℎ
𝑟1,𝑐1 , 𝜏ℎ

𝑟2,𝑐1 , and 𝜏ℎ
𝑟3,𝑐1), the pairwise keys

(𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚, and 𝑘𝑟3,𝑗𝑚) established in (MF-24), and the private key 𝑠𝑘𝑗𝑚

(generated in (MF-9)) to generate AGen-FRAuthData tokens, 𝑐ℎ𝑗𝑚
∗ and 𝜎𝑐ℎ𝑗𝑚

∗ . The

AGen-FRAuthData tokens are used for the verification of FinalResults by 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1.

(MF-28) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 authenticates to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 before notifying of the readiness of the

FinalResults as described in (EF-28). The entity authentication is done by using the

SOA protocol with the secondary key 𝑠𝑐𝑘𝑐1,𝑗𝑚 established in (MF-11). 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

sends its public key 𝑝𝑘𝑗𝑚 (generated in (MF-9)) for 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to verify the

authenticity of the FinalResults and a new session key 𝑠𝑠𝑘𝑗𝑚,𝑐1 to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. It also

sends the AGen-FRAuthData tokens (𝑐ℎ𝑗𝑚
∗ and 𝜎𝑐ℎ𝑗𝑚

∗) generated in (MF-27) to

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 by using the FRAuthData-Delivery protocol.

(MF-29) Before 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 reads the FinalResults stored in 𝐷𝐹𝑆1 as described in (EF-29),

three instances of entity authentication are taking place.

a. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 authenticates to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1. The entity authentication is

done by using the GE2A protocol with the DFS-C key 𝑑𝑓𝑘1 and the primary key

𝑝𝑚𝑘𝑐1,𝑛𝑚1 established in (MF-3). 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a secondary key

𝑠𝑐𝑘𝑐1,𝑛𝑚1 and 𝑠𝑠𝑘𝑐1,𝑛𝑚1 to 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1.

b. 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 authenticates to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1. The entity authentication is

done by using the SOA protocol with the secondary key 𝑠𝑐𝑘𝑐1,𝑛𝑚1 established

in (MF-29(a)). 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 prepares a new primary key 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1 and a

new ticket 𝑡𝑘𝑡𝑐1,𝑑𝑠1
1

𝑛𝑚1
 for 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 to authenticate to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1. Hence,

198

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1 sends 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1 , 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

, and a new session key 𝑠𝑠𝑘𝑛𝑚1 ,𝑐1

to 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1.

c. 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 authenticates to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1. The entity authentication is done

by using the GE2A protocol with the DFS-C key 𝑑𝑓𝑘1 established in (MF-3) and

the primary key 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1 established in (MF-29(b)). 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 sends a

session key 𝑠𝑠𝑘𝑐1,𝑑𝑠1
1 to 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1

1.

 After all the FinalResults (𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1, 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1 and 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1)

are retrieved, 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1 verifies the authenticity of the FinalResults. This is done

by using the FRAuthData-Verification algorithm (explained in Section 6.5.6.3) with

the public key 𝑝𝑘𝑗𝑚 of 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟 against the AGen-FRAuthData tokens (𝑐ℎ𝑗𝑚
∗ and

𝜎𝑐ℎ𝑗𝑚
∗) obtained in (MF-28). If the verification of all the FinalResults is positive, 𝑈𝑠𝑒𝑟1

is assured that the output of the job is authentic and has not been tampered with by

unauthorised entities.

Table 7.5 summarises the entities, credentials, and AuthData involved in authenticating

entities and JobData when MDA is applied to the job execution of the working example.

Table 7.5: The summary of entities, credentials, and AuthData involved in authentication when

MDA is applied to the job execution of the working example.

Operational

step

Entities / Components

/ JobData objects

Authentication Protocol /

Algorithm /

Method

Keys used for

authentication1

Keys transmitted / AuthData

tokens generated

(MF-1) 𝑈𝑠𝑒𝑟1, 𝑈𝑠𝑒𝑟2, 𝑈𝑠𝑒𝑟3 Entity

authentication

Existing

method (EXT)

- 𝑗𝑘

(MF-2) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

GP2A 𝑜𝑘1, 𝑝𝑚𝑘𝑐1,𝑟𝑚1 𝑗𝑘, 𝑠𝑐𝑘𝑐1,𝑟𝑚1 , 𝑠𝑠𝑘𝑐1,𝑟𝑚1

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

Entity

authentication

GP2A 𝑜𝑘2, 𝑝𝑚𝑘𝑐2,𝑟𝑚2 𝑗𝑘, 𝑠𝑐𝑘𝑐2,𝑟𝑚2 , 𝑠𝑠𝑘𝑐2,𝑟𝑚2

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3

Entity

authentication

GP2A 𝑜𝑘3, 𝑝𝑚𝑘𝑐3,𝑟𝑚3 𝑗𝑘, 𝑠𝑐𝑘𝑐3,𝑟𝑚3 , 𝑠𝑠𝑘𝑐3,𝑟𝑚3

(MF-3) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1

Entity

authentication

SOA 𝑠𝑐𝑘𝑐1,𝑟𝑚1 𝑝𝑐𝑘1, 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑛𝑚1 , 𝑡𝑘𝑡𝑐1,𝑛𝑚1
𝑟𝑚1

,

𝑠𝑠𝑘𝑟𝑚1,𝑐1

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2,

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2

Entity

authentication

SOA 𝑠𝑐𝑘𝑐2,𝑟𝑚2 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑐2,𝑛𝑚2 , 𝑡𝑘𝑡𝑐2,𝑛𝑚2
𝑟𝑚2

,

𝑠𝑠𝑘𝑟𝑚2,𝑐2

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3,

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3

Entity

authentication

SOA 𝑠𝑐𝑘𝑐3,𝑟𝑚3 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑐3,𝑛𝑚3 , 𝑡𝑘𝑡𝑐3,𝑛𝑚3
𝑟𝑚3

,

𝑠𝑠𝑘𝑟𝑚3,𝑐3

(MF-4) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑛𝑚1 𝑠𝑐𝑘𝑐1,𝑛𝑚1, 𝑠𝑠𝑘𝑐1,𝑛𝑚1

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

Entity

authentication

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑐2,𝑛𝑚2 𝑠𝑐𝑘𝑐2,𝑛𝑚2, 𝑠𝑠𝑘𝑐2,𝑛𝑚2

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3

Entity

authentication

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑐3,𝑛𝑚3 𝑠𝑐𝑘𝑐3,𝑛𝑚3, 𝑠𝑠𝑘𝑐3,𝑛𝑚3

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1

Entity

authentication

SOA 𝑠𝑐𝑘𝑐1,𝑛𝑚1 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1, 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑐1

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2,

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2

Entity

authentication

SOA 𝑠𝑐𝑘𝑐2,𝑛𝑚2 𝑝𝑚𝑘𝑐2,𝑑𝑠1
2, 𝑡𝑘𝑡𝑐2,𝑑𝑠1

2
𝑛𝑚2

, 𝑠𝑠𝑘𝑛𝑚2,𝑐2

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3,

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3

Entity

authentication

SOA 𝑠𝑐𝑘𝑐3,𝑛𝑚3 𝑝𝑚𝑘𝑐3,𝑑𝑠1
3, 𝑡𝑘𝑡𝑐3,𝑑𝑠1

3
𝑛𝑚3

, 𝑠𝑠𝑘𝑛𝑚3,𝑐3

199

Operational

step

Entities / Components

/ JobData objects

Authentication Protocol /

Algorithm /

Method

Keys used for

authentication1

Keys transmitted / AuthData

tokens generated

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1 𝑠𝑠𝑘𝑐1,𝑑𝑠1

1

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2

Entity

authentication

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑐2,𝑑𝑠1
2 𝑠𝑠𝑘𝑐2,𝑑𝑠1

2

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3

Entity

authentication

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑐3,𝑑𝑠1
3 𝑠𝑠𝑘𝑐3,𝑑𝑠1

3

 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 Data

authentication

ISAuthData-

Generation

𝑠𝑘𝑐1 𝜎𝑟ℎ𝑐1 , 𝑆𝐴𝑐1

 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 Data

authentication

ISAuthData-

Generation

𝑠𝑘𝑐2 𝜎𝑟ℎ𝑐2 , 𝑆𝐴𝑐2

 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 Data

authentication

ISAuthData-

Generation

𝑠𝑘𝑐3 𝜎𝑟ℎ𝑐3 , 𝑆𝐴𝑐3

(MF-5) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

SOA 𝑠𝑐𝑘𝑐1,𝑟𝑚1 𝑠𝑠𝑘𝑟𝑚1,𝑐1 , 𝑝𝑘𝑐1

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝2,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

Entity

authentication

SOA 𝑠𝑐𝑘𝑐2,𝑟𝑚2 𝑠𝑠𝑘𝑟𝑚2,𝑐2 , 𝑝𝑘𝑐2

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝3,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3

Entity

authentication

SOA 𝑠𝑐𝑘𝑐3,𝑟𝑚3 𝑠𝑠𝑘𝑟𝑚3,𝑐3 , 𝑝𝑘𝑐3

(MF-6) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

Entity

authentication

GP2A 𝑗𝑘, 𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚2 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2 , 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚2

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3

Entity

authentication

GP2A 𝑗𝑘, 𝑝𝑚𝑘𝑟𝑚1,𝑟𝑚3 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3 , 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚3

(MF-7) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2 , 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚2
𝑟𝑚2

,

𝑠𝑠𝑘𝑟𝑚2,𝑟𝑚1

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3 , 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚3
𝑟𝑚3

,

𝑠𝑠𝑘𝑟𝑚3,𝑟𝑚1

(MF-8) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1

Entity

authentication

GP2A 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑤𝑚1
1,𝑟𝑚1 𝑑𝑓𝑘1, 𝑑𝑓𝑘2, 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑟𝑚1,𝑗𝑚,

𝑝𝑚𝑘𝑗𝑚,𝑛𝑚1 , 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2 ,

𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3 , 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚1
𝑟𝑚1

, 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚2
𝑟𝑚2

,

𝑡𝑘𝑡𝑗𝑚,𝑛𝑚3
𝑟𝑚3

, 𝑠𝑠𝑘𝑟𝑚1,𝑤𝑚1
1

(MF-9) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
1,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

EXT - 𝑑𝑓𝑘1, 𝑑𝑓𝑘2, 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑟𝑚1,𝑗𝑚,

𝑝𝑚𝑘𝑗𝑚,𝑛𝑚1 , 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2 ,

𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3 , 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚1
𝑟𝑚1

, 𝑡𝑘𝑡𝑗𝑚,𝑛𝑚2
𝑟𝑚2

,

𝑡𝑘𝑡𝑗𝑚,𝑛𝑚3
𝑟𝑚3

(MF-10) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1

Entity

authentication

SOA 𝑠𝑐𝑘𝑐1,𝑟𝑚1 𝑝𝑚𝑘𝑐1,𝑗𝑚, 𝑡𝑘𝑡𝑐1,𝑗𝑚
𝑟𝑚1

, 𝑠𝑠𝑘𝑟𝑚1,𝑐1

(MF-11) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

GE2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑐1,𝑗𝑚 𝑠𝑐𝑘𝑐1,𝑗𝑚, 𝑠𝑠𝑘𝑐1,𝑗𝑚

(MF-12) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚1 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚1 , 𝑡𝑠𝑘𝑛𝑚1,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑛𝑚1

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

Entity

authentication

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚2 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚2 , 𝑡𝑠𝑘𝑛𝑚2,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑛𝑚2

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3

Entity

authentication

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑛𝑚3 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚3 , 𝑡𝑠𝑘𝑛𝑚3,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑛𝑚3

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚1 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
1, 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑗𝑚

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚2 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
2, 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

2
𝑛𝑚2

, 𝑠𝑠𝑘𝑛𝑚2,𝑗𝑚

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑛𝑚3 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
3, 𝑡𝑘𝑡𝑗𝑚,𝑑𝑠1

3
𝑛𝑚3

, 𝑠𝑠𝑘𝑛𝑚3,𝑗𝑚

200

Operational

step

Entities / Components

/ JobData objects

Authentication Protocol /

Algorithm /

Method

Keys used for

authentication1

Keys transmitted / AuthData

tokens generated

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
1 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1

1

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2

Entity

authentication

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
2 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1

2

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3

Entity

authentication

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑑𝑠1
3 𝑠𝑠𝑘𝑗𝑚,𝑑𝑠1

3

(MF-13) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

GP2A 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑟𝑚1,𝑗𝑚 𝑠𝑐𝑘𝑟𝑚1,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑟𝑚1

(MF-14) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

Entity

authentication

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚2

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3

Entity

authentication

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3 𝑠𝑠𝑘𝑟𝑚1,𝑟𝑚3

(MF-15) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚2 𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2 , 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1

2
𝑟𝑚2

,

𝑝𝑘𝑐2 , 𝑠𝑠𝑘𝑟𝑚2,𝑟𝑚1

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3,

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑟𝑚3 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
3 , 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1

3
𝑟𝑚3

,

𝑝𝑘𝑐3 , 𝑠𝑠𝑘𝑟𝑚3,𝑟𝑚1

(MF-16) 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

SOA 𝑠𝑐𝑘𝑟𝑚1,𝑗𝑚 𝑝𝑐𝑘2, 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚2
1

𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1

3 ,

𝑡𝑘𝑡𝑗𝑚,𝑤𝑚2
1

𝑟𝑚1

, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1
2

𝑟𝑚2

, 𝑡𝑘𝑡𝑗𝑚,𝑤𝑚1
3

𝑟𝑚3

,

𝑝𝑘𝑐1 , 𝑝𝑘𝑐2 , 𝑝𝑘𝑐3 , 𝑠𝑠𝑘𝑟𝑚1,𝑗𝑚

(MF-17) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1

Entity

authentication

GE2A 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚2
1 𝑝𝑚𝑘𝑗𝑚,𝑚1

, 𝑝𝑚𝑘𝑗𝑚,𝑟1
, 𝑡𝑠𝑘𝑤𝑚2

1,𝑗𝑚,

𝑠𝑠𝑘𝑗𝑚,𝑤𝑚2
1

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2

Entity

authentication

GE2A 𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
2 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚2

, 𝑝𝑚𝑘𝑗𝑚,𝑟2
,

𝑡𝑠𝑘𝑤𝑚1
2,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑤𝑚1

2

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3

Entity

authentication

GE2A 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑗𝑚,𝑤𝑚1
3 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚3

, 𝑝𝑚𝑘𝑗𝑚,𝑟3
,

𝑡𝑠𝑘𝑤𝑚1
3,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑤𝑚1

3

(MF-18) 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1,

𝑀𝑎𝑝𝑝𝑒𝑟1

Entity

authentication

EXT - 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚1

 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1

Entity

authentication

EXT - 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑟1

 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2,

𝑀𝑎𝑝𝑝𝑒𝑟2

Entity

authentication

EXT - 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚2

 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2

Entity

authentication

EXT - 𝑝𝑐𝑘1 , 𝑝𝑚𝑘𝑗𝑚,𝑟2

 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3,

𝑀𝑎𝑝𝑝𝑒𝑟3

Entity

authentication

EXT - 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚3

 𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3

Entity

authentication

EXT - 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑟3

(MF-19) 𝑀𝑎𝑝𝑝𝑒𝑟1,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

GP2A 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚1
 𝑠𝑐𝑘𝑗𝑚,𝑚1

, 𝑠𝑠𝑘𝑚1,𝑗𝑚

 𝑀𝑎𝑝𝑝𝑒𝑟2,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

GP2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚2
 𝑠𝑐𝑘𝑗𝑚,𝑚2

, 𝑠𝑠𝑘𝑚2,𝑗𝑚

 𝑀𝑎𝑝𝑝𝑒𝑟3,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

GP2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑚3
 𝑠𝑐𝑘𝑗𝑚,𝑚3

, 𝑠𝑠𝑘𝑚3,𝑗𝑚

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

GP2A 𝑝𝑖𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑟1
 𝑠𝑐𝑘𝑗𝑚,𝑟1

,𝑠𝑠𝑘𝑟1,𝑗𝑚

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

GP2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑟2
 𝑠𝑐𝑘𝑗𝑚,𝑟2

, 𝑠𝑠𝑘𝑟2,𝑗𝑚

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

GP2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑗𝑚,𝑟3
 𝑠𝑐𝑘𝑗𝑚,𝑟3

, 𝑠𝑠𝑘𝑟3,𝑗𝑚

201

Operational

step

Entities / Components

/ JobData objects

Authentication Protocol /

Algorithm /

Method

Keys used for

authentication1

Keys transmitted / AuthData

tokens generated

(MF-20) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑀𝑎𝑝𝑝𝑒𝑟1

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚1
 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑚1,𝑛𝑚1, 𝑡𝑘𝑡

𝑚1,𝑛𝑚1
𝑗𝑚

,

𝑝𝑘𝑐1 , 𝑘𝑚1,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑚1

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑀𝑎𝑝𝑝𝑒𝑟2

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚2
 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑚2,𝑛𝑚2 , 𝑡𝑘𝑡

𝑚2,𝑛𝑚2
𝑗𝑚

,

𝑝𝑘𝑐2 , 𝑘𝑚2,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑚2

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑀𝑎𝑝𝑝𝑒𝑟3

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚3
 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑚3,𝑛𝑚3 , 𝑡𝑘𝑡

𝑚3,𝑛𝑚3
𝑗𝑚

,

𝑝𝑘𝑐3 , 𝑘𝑚3,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑚3

(MF-21) 𝑀𝑎𝑝𝑝𝑒𝑟1,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑚1,𝑛𝑚1 𝑠𝑐𝑘𝑚1,𝑛𝑚1 , 𝑠𝑠𝑘𝑚1,𝑛𝑚1

 𝑀𝑎𝑝𝑝𝑒𝑟2,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2

Entity

authentication

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑚2,𝑛𝑚2 𝑠𝑐𝑘𝑚2,𝑛𝑚2 , 𝑠𝑠𝑘𝑚2,𝑛𝑚2

 𝑀𝑎𝑝𝑝𝑒𝑟3,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3

Entity

authentication

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑚3,𝑛𝑚3 𝑠𝑐𝑘𝑚3,𝑛𝑚3 , 𝑠𝑠𝑘𝑚3,𝑛𝑚3

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑀𝑎𝑝𝑝𝑒𝑟1

Entity

authentication

SOA 𝑠𝑐𝑘𝑚1,𝑛𝑚1 𝑝𝑚𝑘𝑚1,𝑑𝑠1
1 , 𝑡𝑘𝑡𝑚1,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑚1

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟2,

𝑀𝑎𝑝𝑝𝑒𝑟2

Entity

authentication

SOA 𝑠𝑐𝑘𝑚2,𝑛𝑚2 𝑝𝑚𝑘𝑚2,𝑑𝑠1
2 , 𝑡𝑘𝑡𝑚2,𝑑𝑠1

2
𝑛𝑚2

, 𝑠𝑠𝑘𝑛𝑚2,𝑚2

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟3,

𝑀𝑎𝑝𝑝𝑒𝑟3

Entity

authentication

SOA 𝑠𝑐𝑘𝑚3,𝑛𝑚3 𝑝𝑚𝑘𝑚3,𝑑𝑠1
3 , 𝑡𝑘𝑡𝑚3,𝑑𝑠1

3
𝑛𝑚3

, 𝑠𝑠𝑘𝑛𝑚3,𝑚3

 𝑀𝑎𝑝𝑝𝑒𝑟1,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑚1,𝑑𝑠1
1 𝑠𝑠𝑘𝑚1,𝑑𝑠1

1

 𝑀𝑎𝑝𝑝𝑒𝑟2,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
2

Entity

authentication

GE2A 𝑑𝑓𝑘2, 𝑝𝑚𝑘𝑚2,𝑑𝑠1
2 𝑠𝑠𝑘𝑚2,𝑑𝑠1

2

 𝑀𝑎𝑝𝑝𝑒𝑟3,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
3

Entity

authentication

GE2A 𝑑𝑓𝑘3, 𝑝𝑚𝑘𝑚3,𝑑𝑠1
3 𝑠𝑠𝑘𝑚3,𝑑𝑠1

3

(MF-22) 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡1,1 Data

authentication

ISAuthData-

Verification

𝑝𝑘𝑐1 -

 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡2,2 Data

authentication

ISAuthData-

Verification

𝑝𝑘𝑐2 -

 𝐼𝑛𝑝𝑢𝑡𝑆𝑝𝑙𝑖𝑡3,3 Data

authentication

ISAuthData-

Verification

𝑝𝑘𝑐3 -

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2,

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3

Data

authentication

PGen-

PSAuthData-

Generation

𝑘𝑚1,𝑗𝑚 𝑟ℎ𝑚1
, 𝜏𝑟ℎ𝑚1

, 𝑆𝐴𝑚1

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1,

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2

Data

authentication

PGen-

PSAuthData-

Generation

𝑘𝑚2,𝑗𝑚 𝑟ℎ𝑚2
, 𝜏𝑟ℎ𝑚2

, 𝑆𝐴𝑚2

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2,

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3

Data

authentication

PGen-

PSAuthData-

Generation

𝑘𝑚3,𝑗𝑚 𝑟ℎ𝑚2
, 𝜏𝑟ℎ𝑚2

, 𝑆𝐴𝑚2

(MF-23) 𝑀𝑎𝑝𝑝𝑒𝑟1,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚1
 𝑠𝑠𝑘𝑚1,𝑗𝑚

 𝑀𝑎𝑝𝑝𝑒𝑟2,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚2
 𝑠𝑠𝑘𝑚2,𝑗𝑚

 𝑀𝑎𝑝𝑝𝑒𝑟3,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑚3
 𝑠𝑠𝑘𝑚3,𝑗𝑚

 𝑟ℎ𝑚1
, 𝑟ℎ𝑚2

, 𝑟ℎ𝑚3
,

𝜏𝑟ℎ𝑚1
, 𝜏𝑟ℎ𝑚2

, 𝜏𝑟ℎ𝑚3
,

𝑆𝐴𝑚1
, 𝑆𝐴𝑚2

, 𝑆𝐴𝑚3

Data

authentication

AGen-

PSAuthData-

Generation

𝑘𝑚1,𝑗𝑚, 𝑘𝑚2,𝑗𝑚,

𝑘𝑚3,𝑗𝑚, 𝑠𝑘𝑗𝑚

𝑐ℎ𝑗𝑚, 𝜎𝑐ℎ𝑗𝑚

(MF-24) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟1
 𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑟1,𝑤𝑚1

2 , 𝑡𝑘𝑡
𝑟1,𝑤𝑚1

2
𝑗𝑚

,

𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟1,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟1,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚 ,

𝑘𝑟1,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑟1

202

Operational

step

Entities / Components

/ JobData objects

Authentication Protocol /

Algorithm /

Method

Keys used for

authentication1

Keys transmitted / AuthData

tokens generated

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟2
 𝑝𝑐𝑘1, 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑟2,𝑤𝑚2

1,

𝑝𝑚𝑘𝑟2,𝑤𝑚1
3, 𝑡𝑘𝑡

𝑟2,𝑤𝑚2
1

𝑗𝑚
, 𝑡𝑘𝑡

𝑟2,𝑤𝑚1
3

𝑗𝑚
,

𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟2,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟2,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚 ,

𝑘𝑟2,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑟2

 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟3
 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑟3,𝑤𝑚2

1, 𝑡𝑘𝑡
𝑟3,𝑤𝑚2

1
𝑗𝑚

,

𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟3,𝑛𝑚1 , 𝑡𝑘𝑡
𝑟3,𝑛𝑚1
𝑗𝑚

, 𝑝𝑘𝑗𝑚 ,

𝑘𝑟3,𝑗𝑚, 𝑠𝑠𝑘𝑗𝑚,𝑟3

(MF-25) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1,

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
2

Entity

authentication

GE2A 𝑝𝑐𝑘2, 𝑝𝑚𝑘𝑟1,𝑤𝑚1
2 𝑠𝑠𝑘𝑟1,𝑤𝑚1

2

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2,

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1

Entity

authentication

GE2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑟2,𝑤𝑚2
1 𝑠𝑠𝑘𝑟2,𝑤𝑚2

1

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2,

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟1
3

Entity

authentication

GE2A 𝑝𝑐𝑘3, 𝑝𝑚𝑘𝑟2,𝑤𝑚1
3 𝑠𝑠𝑘𝑟2,𝑤𝑚1

3

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3,

𝑊𝑜𝑟𝑘𝑒𝑟𝑀𝑎𝑛𝑎𝑔𝑒𝑟2
1

Entity

authentication

GE2A 𝑝𝑐𝑘1, 𝑝𝑚𝑘𝑟3,𝑤𝑚2
1 𝑠𝑠𝑘𝑟3,𝑤𝑚2

1

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,1 Data

authentication

PSAuthData-

Verification

𝑝𝑘𝑗𝑚 -

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,2,

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡2,2,

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,2

Data

authentication

PSAuthData-

Verification

𝑝𝑘𝑗𝑚 -

 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡1,3,

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡3,3

Data

authentication

PSAuthData-

Verification

𝑝𝑘𝑗𝑚 -

(MF-26) 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1 Data

authentication

PGen-

FRAuthData-

Generation

𝑘𝑟1,𝑗𝑚 ℎ𝑟1,𝑐1, 𝜏ℎ𝑟1,𝑐1

 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1 Data

authentication

PGen-

FRAuthData-

Generation

𝑘𝑟2,𝑗𝑚 ℎ𝑟2,𝑐1, 𝜏ℎ𝑟2,𝑐1

 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1 Data

authentication

PGen-

FRAuthData-

Generation

𝑘𝑟3,𝑗𝑚 ℎ𝑟3,𝑐1, 𝜏ℎ3,𝑐1

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟1,𝑛𝑚1 𝑠𝑐𝑘𝑟1,𝑛𝑚1, 𝑠𝑠𝑘𝑟1,𝑛𝑚1

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟2,𝑛𝑚1 𝑠𝑐𝑘𝑟2,𝑛𝑚1, 𝑠𝑠𝑘𝑟2,𝑛𝑚1

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟3,𝑛𝑚1 𝑠𝑐𝑘𝑟3,𝑛𝑚1, 𝑠𝑠𝑘𝑟3,𝑛𝑚1

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟1

Entity

authentication

SOA 𝑠𝑐𝑘𝑟1,𝑛𝑚1 𝑝𝑚𝑘𝑟1,𝑑𝑠1
1, 𝑡𝑘𝑡𝑟1,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑟1

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟2

Entity

authentication

SOA 𝑠𝑐𝑘𝑟2,𝑛𝑚1 𝑝𝑚𝑘𝑟2,𝑑𝑠1
1, 𝑡𝑘𝑡𝑟2,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑟2

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝑅𝑒𝑑𝑢𝑐𝑒𝑟3

Entity

authentication

SOA 𝑠𝑐𝑘𝑟3,𝑛𝑚1 𝑝𝑚𝑘𝑟3,𝑑𝑠1
1, 𝑡𝑘𝑡𝑟3,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑟3

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟1,𝑑𝑠1
1 𝑠𝑠𝑘𝑟1,𝑑𝑠1

1

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟2,𝑑𝑠1
1 𝑠𝑠𝑘𝑟2,𝑑𝑠1

1

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑟3,𝑑𝑠1
1 𝑠𝑠𝑘𝑟3,𝑑𝑠1

1

(MF-27) 𝑅𝑒𝑑𝑢𝑐𝑒𝑟1,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟1
 𝑠𝑠𝑘𝑟1,𝑗𝑚

203

Operational

step

Entities / Components

/ JobData objects

Authentication Protocol /

Algorithm /

Method

Keys used for

authentication1

Keys transmitted / AuthData

tokens generated

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟2,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟2
 𝑠𝑠𝑘𝑟2,𝑗𝑚

 𝑅𝑒𝑑𝑢𝑐𝑒𝑟3,

𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟

Entity

authentication

SOA 𝑠𝑐𝑘𝑗𝑚,𝑟3
 𝑠𝑠𝑘𝑟3,𝑗𝑚

 ℎ𝑟1,𝑐1, ℎ𝑟2,𝑐1, ℎ𝑟3,𝑐1 ,

𝜏ℎ𝑟1,𝑐1 , 𝜏ℎ𝑟2,𝑐1 , 𝜏ℎ𝑟3,𝑐1

Data

authentication

AGen-

FRAuthData-

Generation

𝑘𝑟1,𝑗𝑚, 𝑘𝑟2,𝑗𝑚,

𝑘𝑟3,𝑗𝑚, 𝑠𝑘𝑗𝑚

𝑐ℎ𝑗𝑚
∗ , 𝜎𝑐ℎ𝑗𝑚

∗

(MF-28) 𝐽𝑜𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟,

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1

Entity

authentication

SOA 𝑠𝑐𝑘𝑐1,𝑗𝑚 𝑝𝑘𝑗𝑚 , 𝑠𝑠𝑘𝑗𝑚,𝑐1

(MF-29) 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1,

𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑛𝑚1 𝑠𝑐𝑘𝑐1,𝑛𝑚1, 𝑠𝑠𝑘𝑐1,𝑛𝑚1

 𝑁𝑎𝑚𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟1,

𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1

Entity

authentication

SOA 𝑠𝑐𝑘𝑐1,𝑛𝑚1 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1, 𝑡𝑘𝑡𝑐1,𝑑𝑠1

1
𝑛𝑚1

, 𝑠𝑠𝑘𝑛𝑚1,𝑐1

 𝐶𝑙𝑖𝑒𝑛𝑡𝐴𝑝𝑝1,

𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒1
1

Entity

authentication

GE2A 𝑑𝑓𝑘1, 𝑝𝑚𝑘𝑐1,𝑑𝑠1
1 𝑠𝑠𝑘𝑐1,𝑑𝑠1

1

 𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡1,1,

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡2,1,

𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡3,1

Data

authentication

FRAuthData-

Verification

𝑝𝑘𝑗𝑚 -

Note: 1 – The times and establishment methods for keys for entity authentication are summarised in Table 5.5.

7.4 Chapter Summary

This chapter has used the running example to first illustrate how the job is executed using MR

based services without our MDA framework, and then with our MDA framework, in a CBDC-

MPC setting. The job execution flow of MR is not application-specific, so it could support a

wide range of applications, including those in which data used are mission critical and may be

sensitive. By applying the MDA framework, all the entities involved in the job execution are

authenticated, and these entity authentications are applied whenever the entities are

involved in an interaction to send, receive, or process data, regardless of when the interaction

is taking place during the job execution cycle. In addition, the MDA framework also provides

data authentication protection, and the protection is applied to all the data used and

generated in the entire job execution cycle. The chapter has explained in detail how different

components of the MDA framework are applied in each of the operational steps of the job

execution to facilitate these entity and data authentication protections. The example

presented in this chapter has demonstrated that the MDA framework is an authentication

solution that is suited to MR based data processing in a CBDC-MPC context.

The next chapter concludes this thesis and presents future work.

204

Chapter 8

Conclusions and Future Work

With the advancement of Big Data processing and cloud computing, there is a growing trend

for CBDC-MPC. In this context, there are open security issues and challenges that have yet to

be addressed. This thesis investigates how to achieve effective, efficient, and scalable

authentication to support secure CBDC-MPC using distributed computing services. This

chapter summarises the work presented in this thesis, highlighting the contributions and

findings. It also gives recommendations for future work.

8.1 Contributions

The contributions of this thesis are summarised on a chapter-by-chapter basis as follows.

Chapter 4: Generic Use Case Model and MDA Framework

In this chapter, a generic use case model for CBDC-MPC has been formulated and the

architecture of our novel effective, efficient, and scalable authentication framework, the

Multi-domain Decentralised Authentication (MDA) framework, for MR based CBDC-MPC has

been described.

The CBDC-MPC model is formulated based on an extreme version of collaborative data

analysis using distributed computing services. All the data, the data processing services, and

the underlying infrastructure are assumed to be from different administrative domains and

there is minimal trust among the entities involved. In formulating the use case, two system

architectures and five Big Data processing models have been examined. Compared with SA-

SC (all the components of a data processing service are hosted in a single cloud), SA-MC (the

components of a service are hosted in different cloud) resembles a trend for utility computing

as it gives a higher level of flexibility to service consumers and providers. With greater

flexibility, it presents a broader set of security challenges. This implies that an authentication

solution designed for SA-MC should also be able to address security challenges faced by SA-

SC. Based on our analysis, different Big Data processing models have many common

characteristics. This means that a solution designed for one model should also be applicable

to the other models. Although some models, e.g., Apache Spark, perform better than MR

under certain conditions and settings, MR is one of the most used Big Data processing models

and there are extensive supports and documents available to users and service providers. As

a result, the SA-MC architecture and the MR model have been chosen for the construction of

the CBDC-MPC model. The model shows in detail the entities involved in a job execution and

how these components interconnect to accomplish the job. The model can not only be used

to serve the design of our authentication solution, but also help with threat analyses and the

designs of other security solutions for other applications that exhibit similar characteristics.

Using the model, we have analysed where in the system that attacks could be mounted

and how the attacks may be countered with as less overhead as possible. For this purpose,

the classifications of MR components involved, data used, and interactions taking place have

205

been carried out, and communication patterns identified. Threats and attacks with regard to

violation of entity identity and data authenticity protection have been identified. A set of

requirements have been specified to counter the identified threats. The observations on the

model along with the specified requirements have been used to guide the design of the MDA

framework. The MDA framework consists of the Multi-factor Interaction based Entity

Authentication (MIEA) framework and the Communication Pattern based Data

Authentication (CPDA) framework. MIEA and CPDA, respectively, provide an entity

authentication facility and a data authentication facility to support secure job execution in

the context. Different from other existing authentication solutions, MDA is specifically

designed for the CBDC-MPC context, and it provides a strong security protection (both

content authenticity and origin non-repudiation) at the finest granularity level with minimal

impacts on the performance of the underlying system. Although we have chosen MR as the

underlying distributed computing service framework, MDA can be applied to any distributed

computing service frameworks so long as they possess the characteristics of MR, namely,

multi-stage data processing, the use of multiple data producers and data consumers, and the

use of any or all of the communication patterns captured in MDA. In addition, owing to the

modular design of MDA, components of MDA can be applied to other applications as needed.

They can also be used with other security services, e.g., with an authorisation service to

provide access control, or with an auditing service as part of a detective security measure.

Although the main ideas used in the design of MDA have been used or applied in other fields

or contexts, the application of these ideas in the CBDC-MPC context is novel.

Chapter 5: MIEA Framework

In this chapter, a novel approach, an interaction based approach, to entity authentication for

CBDC-MPC has been proposed, implemented, and evaluated.

The proposed approach provides entity authentication protection to every interaction

taking place during the whole cycle of a job execution. This is done by utilising three main

ideas: (1) the idea of Multi-factor Interaction based Authentication (MIA) in which credentials

and authentication methods are selected based on the risk level tagged to each of the

interactions; (2) the idea of a Decentralised approach with Combined use of group-and-entity-

dependent Symmetric keys (DCS) in which the distribution and verification of credentials are

done by distributed entities while maximising the use of computationally-efficient symmetric-

key cryptosystems; and (3) the idea of a Hierarchical Key Structure (HKS) in which the

distribution of keys is based on a hierarchical structure, keys in a higher level of the structure

are used to securely distribute keys in a lower level of the structure.

The approach has been implemented in the design of a novel entity authentication

framework, the MIEA framework. Compared with entity authentication solutions that provide

only gate-level protection, MIEA provides protection at a much finer granularity (the

interaction level) which covers the entire cycle of a data processing job. This is to deter threats

and attacks caused by both outsiders and insiders. Compared with symmetric-key based

solutions, such as Kerberos, MIEA uses two-factor authentication to protect critical

interactions, thus, making breaking authentication tokens harder. It also minimises the

number of messages exchanged to facilitate the authentication, thus, lowering

206

communication overhead introduced. Compared with asymmetric-key based solutions, such

as NSLPK, MIEA uses symmetric-key operations, which is significantly cheaper

computationally than their asymmetric-key based counterparts, thus introducing a lower

level of computational overhead cost. To demonstrate the effectiveness and the efficiency of

the MIEA framework, the framework has been extensively evaluated by using both theoretical

and experimental methods. Informal, symbolic, and complexity analysis methods have been

used to evaluate the security properties and strengths of MIEA. The results show that the

MIEA framework satisfies all the specified security requirements with regard to entity

authentication (i.e., (SR1), (SR2), (SR3), and (SR4)) and the strengths of the protections are

dependent on the parameter values (e.g., key lengths). In theoretical performance evaluation,

the computational and communication overheads introduced by MIEA have been analysed in

terms of the number of cryptographic operations performed and the volume of AuthData

transmitted over networks, respectively. The results have been compared with those of the

most related entity authentication solutions, i.e., the Kerberos and the NSLPK protocols. The

results show that, for computational overhead, MIEA introduces the highest number of

cryptographic operations (all of which are symmetric-key based and are less computationally

expensive). Regarding communication overhead, the number of protocol messages

exchanged when MIEA is applied is only 3, fewer than those of Kerberos and NSLPK without

ticket and public key caching. However, the messages used in the MIEA protocols have larger

payload sizes compared with those of Kerberos and NSLPK. Experimental evaluations have

been conducted on a real-system testbed. The results show that the execution times of the

MIEA protocols (particularly, the SOA protocol) are the shortest due to the smallest number

of transmitted messages and the use of computationally less expensive symmetric-key

cryptosystems. In addition, the performance of MIEA is dependent on the sizes of message

payloads, the larger the payload (i.e., an entity may interact with many other entities, thus,

more credentials to be transmitted for subsequent authentication), the longer the execution

times. The results of the evaluations indicate that MIEA outperforms other related solutions

for MR based data processing under the parameters and settings used in the experiments. It

provides a stronger level of entity authentication protection but at no higher cost, than

Kerberos, one of the most used entity authentication solutions. The identities of entities can

be established and verified, laying a groundwork for other security services. The more

efficient the entity authentication process, the sooner the data processing tasks can start, the

sooner the job can finish, the sooner the output can be produced, the more the jobs can be

processed in a given time for a given resource setting.

Chapter 6: CPDA Framework

In this chapter, a novel approach, a communication pattern based approach, to data

authentication for MR based CBDC-MPC has been proposed, implemented, and evaluated.

The proposed approach protects the authenticity (encompassing origin authentication

and integrity protection) of all the JobData and achieves accountability (by providing non-

repudiation of origin) at the finest granularity (i.e., at the object level) while being highly

efficient and scalable. This is accomplished by using two main ideas: (1) the idea of AuthData

and Communication Aggregation (ACA) which reduces the number of objects to be signed and

207

verified with computationally-expensive cryptographic algorithms and aggregates the

communications transmitting the AuthData; and (2) the idea of a Hybrid use of multiple

cryptographic schemes with Segregation of Credentials (HYSC) which further cuts the

overhead introduced by maximising the use of computationally-inexpensive cryptographic

algorithms and improves accountability by using a different pairwise key for each pair of

untrustworthy and trustworthy components.

The approach has been implemented in the design of a novel data authentication

framework, the CPDA framework. Compared with symmetric-key based solutions without any

form of asymmetry, CPDA can provide non-repudiation of origin protection which is necessary

to hold entities accountable. Data producers cannot falsely deny having produced their data,

thus, preventing fraudulent data injection and tampering. Compared with the secret-share

based, task-replication based, and asymmetric-key based without signature amortisation

solutions, CPDA requires less computation resources and introduces a lower level of overhead

cost. To evaluate the security protections provided by and the performance of CPDA,

theoretical analyses and experimental evaluations have been carried out. The results have

been compared with those of the most related object-level solutions, i.e., the schemes that

secure individual objects with a MAC and a digital signature, respectively. An informal analysis

method and a complexity analysis method have been used to analyse the security properties

and strength of CPDA. The results show that CPDA can achieve all the specified security

requirements with regard to data authentication (i.e., (SR5), (SR6), and (SR7)) as the strongest

solution, i.e., the signature based scheme, but with less overhead cost introduced. The

theoretical performance evaluation of CPDA has been carried out by analysing the number of

cryptographic operations performed by individual components and the volume of traffics

transmitted for AuthData delivery. The results show that, in comparison with the signature

based scheme, CPDA can bring a significant reduction in computational overhead cost

imposed on data processing components by cutting down the number of expensive

cryptographic operations on large objects to one. This is achieved at a cost of additional

cryptographic operations imposed on Aggregator and a larger message size (more items in

the payload). Experimental evaluations have been conducted on a real-system testbed

(consisting of 5 networked machines running up to 400 Workers) with a real-world weather

dataset. The results show that (1) CPDA is significantly more efficient compared to the

signature based scheme; (2) the cost incurred by CPDA is close to those of the MAC based

scheme; and (3) the reduction in overhead costs brought by CPDA is significant, particularly

when CPDA is applied to a large-scale job execution involving a large quantity of objects with

small size. The evaluation results show that CPDA provides the same level of protection (origin

authentication, integrity protection, non-repudiation of origin) as that of the most secure

object based solution (i.e., the solution that digitally signs and verifies individual data objects)

at the finest level of granularity (the object level) but with performance closer to the MAC

based solution. The strongest level of data authenticity protection ensures that the JobData

used throughout the execution of the job are produced by the claimed entities and are not

contaminated by unauthorised entities. In other words, the output of the job is authentic.

This is particularly important for mission-critical jobs or applications. As JobData objects are

individually verifiable, there are no dependency among data consumers and the data

208

consumers can start their tasks as soon as the assigned objects are ready. A lower level of

overhead cost introduced in signing and verifying objects means a shorter delay is added to

the execution of the job. CDPA is highly scalable, thus, it is suited to Big Data processing

applications.

8.2 Conclusions

From this research, we can draw the following conclusions:

• Designing an authentication solution for CBDC in an MPC environment is a challenging

task, as for CBDC, the solution should be highly efficient and scalable and, for the MPC

environment, the design of the solution should assume the components are less

trustworthy. This implies that the security protection provided should be the

strongest, but the overhead cost introduced should be the lowest. A strong level of

protection usually incurs a high level of overhead cost. Applying the same level of

strong protection to every interaction and every data object is neither efficient nor

practical. The design of an authentication solution for large-scale Big Data processing,

which is the case for this work, should balance the trade-off between the level of

protection needed and the overhead cost introduced. The way we balanced this trade-

off is that: an appropriate level of protection is applied to a different point in the data

processing flow; a stronger level of protection with a higher level of overhead cost is

applied to more-critical points, whereas a weaker level of protection with a lower level

of overhead cost is applied to less-critical points.

• The design of an authentication solution that takes into account of the characteristics

of the underlying distributed computing system brings much benefit in terms of

supporting effective, efficient, and scalable authentication in a large-scale distributed

computing setting. These characteristics help us identify the weak points of the

system, the level of protection required, and how to improve efficiency and scalability.

This is captured in the ideas of MIA (discussed in Section 5.3) where stronger security

protection with higher overhead cost is only applied to interactions (i.e., initial

interactions) experiencing a higher level of risks, and ACA (discussed in Section 6.3)

where a different aggregation method for AuthData and communications is selected

based on a communication pattern exhibited. Furthermore, by applying decentralised

authentication, which is in alignment with the characteristics of distributed

computing, we can make good use of resource parallelism offered by the underlying

system to evenly balance the workload imposed on the system and improve on service

resilience.

• A hybrid use of asymmetric key and symmetric key cryptosystems allows us to achieve

strong security protection while lowering the computational overhead cost

introduced. As can be seen in the design of CPDA, by applying a digital signature

scheme only on aggregated AuthData tokens (which are smaller in size and quantity

compared with JobData objects), we can extend the strong security protection of the

digital signature scheme to all JobData objects but with a fraction of computational

overhead cost introduced.

209

• Each of the components of the MDA framework, i.e., the MIEA framework and the

CPDA framework, offers respective merits and demerits in terms of the reduction in

overhead cost when applied to small-scale and large-scale MR services, respectively.

For small-scale MR services, the overhead cost introduced by the MIEA framework is

at the same level as that of Kerberos and is only 0.25% of that of NSLPK. On the other

hand, the CPDA framework can bring a larger cut in overhead cost when applied to

large-scale MR services. CPDA can cut the delay in job execution time by two thirds

compared with the signature based scheme. These results show that the MDA

framework are highly efficient and scalable in supporting secure distributed

computing in this context of CBDC-MPC. It is worth noting that MDA may not be the

best framework for distributed computing services in some contexts. For example, in

a setting where an organisation has full control over the system, an existing solution

such as Kerberos can provide a sufficient level of protection more efficiently.

• Owing to the modular design of the MDA framework, different components of MDA

can be applied together or separately to distributed computing services. The

components of MDA can work with other security services as long as the security

services support the required functions (e.g., credential distribution). MDA can be

applied as add-on modules so minimal modifications to the system are required. For

these reasons, we believe that MDA can be applied to a wider range of distributed

computing services.

• While we try our best to generalise our MDA framework as much as possible so that

it can be applied in a broader set of applications in similar contexts. The performance

of MDA when deployed for production may differ from the results reported in this

thesis. This is because the performance of MDA is not only dependent on the scale of

the underlying distributed computing services but also other factors, e.g., jobs to be

processed, infrastructures used, and how the MDA framework is implemented. In all

the experimental evaluations presented in this thesis, we have clearly specified which

parameter values are used. The experimental results reported in this thesis should

only be interpreted based on the specified sets of parameters.

8.3 Future Work

The following recommendations are given as directions for future work.

• We may evaluate the performance of the MDA framework under different settings,

i.e., (1) different implementations of MR services (e.g., Apache Hadoop); (2) different

jobs (e.g., cyber threat analysis and biomedical research); (3) larger scale of MR

services (e.g., thousands of Workers); and (4) different infrastructures (e.g., public

clouds). These could give us more empirical evidence and make the evaluation results

more conclusive.

• We may investigate how the MDA could be applied to other distributed computing

frameworks, such as Flink [131], Spark [116], and Storm [111]. Some of the

characteristics exhibited by these frameworks may not be captured in MR, which may

affect the applicability, effectiveness, efficiency, and scalability of the MDA

210

framework. In addition, these frameworks may also present other challenging issues

that are yet to be addressed.

• The MDA framework could be extended to support other security properties (such as

authorisation), thus, providing a more comprehensive security protection against

unauthorised access to data and system. This could be done by integrating other

security measures (e.g., access control to support authorisation) and technologies

(e.g., blockchain to provide verifiable security records).

• In this research work, we take a customised approach in the design of our

authentication solution, i.e., the design of our solution is tailored in line with the

characteristics of the underlying systems, to achieve effective, efficient, and scalable

authentication. The findings from this work also support that the approach can indeed

achieve the aim of this research. However, there is also a growing trend for Security-

as-a-Service which implements a generalised approach. It would be interesting to

investigate what are merits and demerits of both approaches when applied to

distributed computing in the same context.

211

References

[1] S. Chakrabarty, P. LaMontagne, D. S. Marcus, and M. Milchenko, “Preprocessing of
clinical neuro-oncology MRI studies for big data applications,” in Medical Imaging
2020: Imaging Informatics for Healthcare, Research, and Applications, 2020, p. 8, doi:
10.1117/12.2548371.

[2] S. Wolfert, L. Ge, C. Verdouw, and M.-J. Bogaardt, “Big Data in Smart Farming – A
review,” Agric. Syst., vol. 153, pp. 69–80, May 2017, doi: 10.1016/j.agsy.2017.01.023.

[3] S. E. Bibri, “The IoT for smart sustainable cities of the future: An analytical framework
for sensor-based big data applications for environmental sustainability,” Sustain. Cities
Soc., vol. 38, pp. 230–253, Apr. 2018, doi: 10.1016/j.scs.2017.12.034.

[4] N. Thomas, “Cyber Security in East Asia: Governing Anarchy,” Asian Secur., vol. 5, no.
1, pp. 3–23, Jan. 2009, doi: 10.1080/14799850802611446.

[5] Y. Zhang, F. Patwa, and R. Sandhu, “Community-Based Secure Information and
Resource Sharing in AWS Public Cloud,” in 2015 IEEE Conference on Collaboration and
Internet Computing (CIC), 2015, pp. 46–53, doi: 10.1109/CIC.2015.42.

[6] M. Böhm, S. Leimeister, C. Riedl, and H. Krcmar, “Cloud Computing – Outsourcing 2.0
or a new Business Model for IT Provisioning?,” in Application Management,
Wiesbaden: Gabler, 2011, pp. 31–56.

[7] S. Dhar, “From outsourcing to Cloud computing: evolution of IT services,” Manag. Res.
Rev., vol. 35, no. 8, pp. 664–675, Jul. 2012, doi: 10.1108/01409171211247677.

[8] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility,” Futur. Gener. Comput. Syst., vol. 25, no. 6, pp. 599–616, Jun. 2009, doi:
10.1016/j.future.2008.12.001.

[9] E. Brynjolfsson, P. Hofmann, and J. Jordan, “Cloud Computing and Electricity: Beyond
the Utility Model,” Commun. ACM, vol. 53, no. 5, p. 32, May 2010, doi:
10.1145/1735223.1735234.

[10] V. Chang, “Towards data analysis for weather cloud computing,” Knowledge-Based
Syst., vol. 127, pp. 29–45, Jul. 2017, doi: 10.1016/j.knosys.2017.03.003.

[11] V. Lakshmanan and T. W. Humphrey, “A MapReduce Technique to Mosaic Continental-
Scale Weather Radar Data in Real-Time,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,
vol. 7, no. 2, pp. 721–732, Feb. 2014, doi: 10.1109/JSTARS.2013.2282040.

[12] C. Zhang, H. De Sterck, A. Aboulnaga, H. Djambazian, and R. Sladek, “Case Study of
Scientific Data Processing on a Cloud Using Hadoop,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 5976 LNCS, 2010, pp. 400–415.

[13] A. AlMahmoud, E. Damiani, H. Otrok, and Y. Al-Hammadi, “Spamdoop: A Privacy-
Preserving Big Data Platform for Collaborative Spam Detection,” IEEE Trans. Big Data,
vol. 5, no. 3, pp. 293–304, Sep. 2019, doi: 10.1109/TBDATA.2017.2716409.

212

[14] W. Zhao and G. White, “A Collaborative Information Sharing Framework for
Community Cyber Security,” 2012 IEEE Int. Conf. Technol. Homel. Secur., pp. 457–462,
2012, doi: 10.1109/THS.2012.6459892.

[15] J. Luo, M. Wu, D. Gopukumar, and Y. Zhao, “Big Data Application in Biomedical
Research and Health Care: A Literature Review,” Biomed. Inform. Insights, vol. 8, p.
BII.S31559, Jan. 2016, doi: 10.4137/BII.S31559.

[16] S. Dolev, P. Florissi, E. Gudes, S. Sharma, and I. Singer, “A Survey on Geographically
Distributed Big-Data Processing Using MapReduce,” IEEE Trans. Big Data, vol. 5, no. 1,
pp. 60–80, Mar. 2019, doi: 10.1109/TBDATA.2017.2723473.

[17] M. Mattess, R. N. Calheiros, and R. Buyya, “Scaling MapReduce applications across
hybrid clouds to meet soft deadlines,” Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA, pp.
629–636, 2013, doi: 10.1109/AINA.2013.51.

[18] C.-Y. Wang, T.-L. Tai, S. Jui-Shing, C. Jyh-Biau, and S. Ce-Kuen, “Federated MapReduce
to Transparently Run Applications on Multicluster Environment,” in 2014 IEEE
International Congress on Big Data, 2014, pp. 296–303, doi:
10.1109/BigData.Congress.2014.50.

[19] A. Iordache, C. Morin, N. Parlavantzas, E. Feller, and P. Riteau, “Resilin: Elastic
MapReduce over multiple clouds,” Proc. - 13th IEEE/ACM Int. Symp. Clust. Cloud, Grid
Comput. CCGrid 2013, pp. 261–268, 2013, doi: 10.1109/CCGrid.2013.48.

[20] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. Ullah Khan, “The rise
of ‘big data’ on cloud computing: Review and open research issues,” Inf. Syst., vol. 47,
pp. 98–115, Jan. 2015, doi: 10.1016/j.is.2014.07.006.

[21] E. Huedo, R. S. Montero, R. Moreno, I. M. Llorente, A. Levin, and P. Massonet,
“Interoperable Federated Cloud Networking,” IEEE Internet Comput., vol. 21, no. 5, pp.
54–59, 2017, doi: 10.1109/MIC.2017.3481337.

[22] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and V. Sassone, “Blockchain-
based database to ensure data integrity in cloud computing environments,” 2017.

[23] A. Singh and K. Chatterjee, “Cloud security issues and challenges: A survey,” J. Netw.
Comput. Appl., vol. 79, no. November 2016, pp. 88–115, Feb. 2017, doi:
10.1016/j.jnca.2016.11.027.

[24] “Marriott International Notifies Guests of Property System Incident.” [Online].
Available: https://news.marriott.com/news/2020/03/31/marriott-international-
notifies-guests-of-property-system-incident. [Accessed: 30-Jun-2021].

[25] “Trade Secret Theft.” [Online]. Available: https://www.fbi.gov/news/stories/two-
guilty-in-theft-of-trade-secrets-from-ge-072920. [Accessed: 30-Jun-2021].

[26] “Ex-Cisco Engineer Pleads Guilty in Insider Threat Case.” [Online]. Available:
https://www.bankinfosecurity.com/ex-cisco-engineer-pleads-guilty-in-insider-threat-
case-a-14917. [Accessed: 30-Jun-2021].

[27] Data Protection Act 2018. UK.

[28] UK General Data Protection Regulation. .

213

[29] A. Rubens, C. Rigney, S. Willens, and W. A. Simpson, “Remote Authentication Dial In
User Service (RADIUS),” no. 2865. RFC Editor, Jun-2000, doi: 10.17487/rfc2865.

[30] V. Fajardo, J. Arkko, J. Loughney, and G. Zorn, “Diameter Base Protocol,” no. 6733. RFC
Editor, Oct-2012, doi: 10.17487/rfc6733.

[31] G. Lowe, “Breaking and fixing the Needham-Schroeder Public-Key Protocol using FDR,”
1996, pp. 147–166.

[32] “Shibboleth.” [Online]. Available: https://shibboleth.net/. [Accessed: 14-Feb-2020].

[33] “Access Policy Manager.” [Online]. Available:
https://www.f5.com/products/security/access-policy-manager. [Accessed: 14-Feb-
2020].

[34] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Kerberos Network Authentication
Service (V5),” Jul. 2005.

[35] B. Spivey and J. Echeverria, Hadoop Security: Protecting your big data platform. “
O’Reilly Media, Inc.,” 2015.

[36] I. Lahmer, “Towards a Virtual Domain based Authentication Solution for the
MapReduce Application,” the University of Manchester, 2018.

[37] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Message
Authentication,” Feb. 1997.

[38] M. J. Dworkin, “Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication,” Gaithersburg, MD, 2016.

[39] A. Perrig, R. Canetti, J. D. Tygar, and Dawn Song, “Efficient authentication and signing
of multicast streams over lossy channels,” in Proceeding 2000 IEEE Symposium on
Security and Privacy. S&P 2000, 2000, pp. 56–73, doi: 10.1109/SECPRI.2000.848446.

[40] S. Miner and J. Staddon, “Graph-based authentication of digital streams,” in
Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001, 2001, pp. 232–
246, doi: 10.1109/SECPRI.2001.924301.

[41] P. Golle and N. Modadugu, “Authenticating Streamed Data in the Presence of Random
Packet Loss,” Proc. Symp. Netw. Distrib. Syst. Secur. (NDSS 2001), pp. 13–22, 2001.

[42] Y. Challal, H. Bettahar, and A. Bouabdallah, “A/sup 2/cast: an adaptive source
authentication protocol for multicast streams,” in Proceedings. ISCC 2004. Ninth
International Symposium on Computers And Communications (IEEE Cat. No.04TH8769),
vol. 1, pp. 363–368, doi: 10.1109/ISCC.2004.1358431.

[43] W. Zhou et al., “Towards a data-centric view of cloud security,” in Proceedings of the
second international workshop on Cloud data management - CloudDB ’10, 2010, p. 25,
doi: 10.1145/1871929.1871934.

[44] S. Sirapaisan, N. Zhang, and Q. He, “Communication Pattern Based Data Authentication
(CPDA) Designed for Big Data Processing in a Multiple Public Cloud Environment,” IEEE
Access, vol. 8, pp. 107716–107748, 2020, doi: 10.1109/ACCESS.2020.3000989.

[45] “Speed Comparison of Popular Crypto Algorithms.” [Online]. Available:
https://www.cryptopp.com/benchmarks.html. [Accessed: 25-Oct-2019].

214

[46] Y. Wang and J. Wei, “VIAF: Verification-based integrity assurance framework for
MapReduce,” Proc. - 2011 IEEE 4th Int. Conf. Cloud Comput. CLOUD 2011, pp. 300–307,
2011, doi: 10.1109/CLOUD.2011.33.

[47] Y. Wang, J. Wei, and M. Srivatsa, “Cross Cloud MapReduce: A Result Integrity Check
Framework on Hybrid Clouds,” Int. J. Cloud Comput., vol. 1, no. 1, pp. 26–39, 2013.

[48] Y. Wang, J. Wei, M. Srivatsa, Y. Duan, and W. Du, “IntegrityMR: Integrity assurance
framework for big data analytics and management applications,” in 2013 IEEE
International Conference on Big Data, 2013, pp. 33–40, doi:
10.1109/BigData.2013.6691780.

[49] Y. Ding, H. Wang, L. Wei, S. Chen, H. Fu, and X. Xu, “VAWS: Constructing trusted open
computing system of mapreduce with verified participants,” IEICE Trans. Inf. Syst., vol.
E97-D, no. 4, pp. 721–732, 2014, doi: 10.1587/transinf.E97.D.721.

[50] S. M. Khan and K. W. Hamlen, “Hatman: Intra-cloud trust management for Hadoop,”
Proc. - 2012 IEEE 5th Int. Conf. Cloud Comput. CLOUD 2012, pp. 494–501, 2012, doi:
10.1109/CLOUD.2012.64.

[51] R. Neisse, G. Steri, and I. Nai-Fovino, “A Blockchain-based Approach for Data
Accountability and Provenance Tracking,” in Proceedings of the 12th International
Conference on Availability, Reliability and Security, 2017, vol. Part F1305, pp. 1–10, doi:
10.1145/3098954.3098958.

[52] R. K. Kodali, S. Yerroju, and B. Y. K. Yogi, “Blockchain Based Energy Trading,” in TENCON
2018 - 2018 IEEE Region 10 Conference, 2018, vol. 2018-Octob, no. October, pp. 1778–
1783, doi: 10.1109/TENCON.2018.8650447.

[53] M. A. Mustafa, Ning Zhang, G. Kalogridis, and Zhong Fan, “DEP2SA: A Decentralized
Efficient Privacy-Preserving and Selective Aggregation Scheme in Advanced Metering
Infrastructure,” IEEE Access, vol. 3, pp. 2828–2846, 2015, doi:
10.1109/ACCESS.2015.2506198.

[54] A. Naureen and N. Zhang, “A Comparative Study of Data Aggregation Approaches for
Wireless Sensor Networks,” in Proceedings of the 12th ACM Symposium on QoS and
Security for Wireless and Mobile Networks, 2016, pp. 125–128, doi:
10.1145/2988272.2988285.

[55] R. Ali, A. K. Pal, S. Kumari, M. Karuppiah, and M. Conti, “A secure user authentication
and key-agreement scheme using wireless sensor networks for agriculture
monitoring,” Futur. Gener. Comput. Syst., vol. 84, pp. 200–215, Jul. 2018, doi:
10.1016/j.future.2017.06.018.

[56] B. Furht and F. Villanustre, “Introduction to Big Data,” in Big Data Technologies and
Applications, Cham: Springer International Publishing, 2016, pp. 3–11.

[57] M. Chen, S. Mao, and Y. Liu, “Big Data: A Survey,” Mob. Networks Appl., vol. 19, no. 2,
pp. 171–209, Apr. 2014, doi: 10.1007/s11036-013-0489-0.

[58] M. Birjali, A. Beni-Hssane, and M. Erritali, “Analyzing Social Media through Big Data
using InfoSphere BigInsights and Apache Flume,” Procedia Comput. Sci., vol. 113, pp.
280–285, 2017, doi: 10.1016/j.procs.2017.08.299.

215

[59] L. G. Rios and J. A. I. Diguez, “Big Data Infrastructure for analyzing data generated by
Wireless Sensor Networks,” in 2014 IEEE International Congress on Big Data, 2014, pp.
816–823, doi: 10.1109/BigData.Congress.2014.142.

[60] L. Dandurand and O. Serrano, “Towards Improved Cyber Security Information Sharing,”
5th Int. Conf. Cyber Confl., p. 16, 2013, doi: 10.1109/HICSS.2014.252.

[61] P. Hui et al., “Towards efficient collaboration in cyber security,” 2010 Int. Symp. Collab.
Technol. Syst. CTS 2010, pp. 489–498, 2010, doi: 10.1109/CTS.2010.5478473.

[62] X. Liu, N. Iftikhar, and X. Xie, “Survey of real-time processing systems for big data,” in
Proceedings of the 18th International Database Engineering & Applications Symposium
on - IDEAS ’14, 2014, pp. 356–361, doi: 10.1145/2628194.2628251.

[63] K. Hwang, J. Dongarra, and G. C. Fox, Distributed and Cloud Computing: From Parallel
Processing to the Internet of Things, 1st ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011.

[64] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid Computing 360-Degree
Compared,” in 2008 Grid Computing Environments Workshop, 2008, pp. 1–10, doi:
10.1109/GCE.2008.4738445.

[65] I. Brandic and S. Dustdar, “Grid vs Cloud — A Technology Comparison,” it - Inf. Technol.,
vol. 53, no. 4, pp. 173–179, Jul. 2011, doi: 10.1524/itit.2011.0640.

[66] F. Oesterle, S. Ostermann, R. Prodan, and G. J. Mayr, “Experiences with distributed
computing for meteorological applications: grid computing and cloud computing,”
Geosci. Model Dev., vol. 8, no. 7, pp. 2067–2078, Jul. 2015, doi: 10.5194/gmd-8-2067-
2015.

[67] P. F. Hsu, S. Ray, and Y. Y. Li-Hsieh, “Examining cloud computing adoption intention,
pricing mechanism, and deployment model,” Int. J. Inf. Manage., vol. 34, no. 4, pp.
474–488, 2014, doi: 10.1016/j.ijinfomgt.2014.04.006.

[68] P. M. Mell and T. Grance, “The NIST definition of cloud computing,” Gaithersburg, MD,
2011.

[69] “AWS Customer Success.” [Online]. Available:
https://aws.amazon.com/solutions/case-studies/. [Accessed: 13-Jul-2017].

[70] S. Barnum, “Standardizing cyber threat intelligence information with the Structured
Threat Information eXpression (STIXTM),” MITRE Corp. July, pp. 1–20, 2014.

[71] R. Zhang and L. Liu, “Security Models and Requirements for Healthcare Application
Clouds,” in 2010 IEEE 3rd International Conference on Cloud Computing, 2010, pp. 268–
275, doi: 10.1109/CLOUD.2010.62.

[72] Mélissa Gaillard and S. Pandolfi, “CERN Data Centre passes the 200-petabyte
milestone,” Jul. 2017.

[73] J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen, and H. Bal, “WebPIE: A Web-scale
Parallel Inference Engine using MapReduce,” J. Web Semant., vol. 10, pp. 59–75, Jan.
2012, doi: 10.1016/j.websem.2011.05.004.

[74] G. J. Chen et al., “Realtime Data Processing at Facebook,” Proc. 2016 Int. Conf. Manag.
Data, pp. 1087–1098, 2016, doi: 10.1145/2882903.2904441.

216

[75] A. Thusoo, Z. Shao, and S. Anthony, “Data warehousing and analytics infrastructure at
facebook,” … Manag. data, p. 1013, 2010, doi: 10.1145/1807167.1807278.

[76] A. J. Duncan, S. Creese, and M. Goldsmith, “Insider attacks in cloud computing,” Proc.
11th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. - 11th IEEE Int. Conf.
Ubiquitous Comput. Commun. IUCC-2012, pp. 857–862, 2012, doi:
10.1109/TrustCom.2012.188.

[77] W. R. Claycomb and A. Nicoll, “Insider threats to cloud computing: Directions for new
research challenges,” Proc. - Int. Comput. Softw. Appl. Conf., pp. 387–394, 2012, doi:
10.1109/COMPSAC.2012.113.

[78] “Top Threats to Cloud Computing: Egregious Eleven,” 2019. [Online]. Available:
https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-egregious-
eleven/. [Accessed: 30-Jun-2021].

[79] G. S. Sadasivam, K. A. Kumari, and S. Rubika, “A novel authentication service for hadoop
in cloud environment,” IEEE Cloud Comput. Emerg. Mark. CCEM 2012 - Proc., pp. 23–
28, 2012, doi: 10.1109/CCEM.2012.6354591.

[80] N. Somu, A. Gangaa, and V. S. Shankar Sriram, “Authentication service in hadoop using
one time pad,” Indian J. Sci. Technol., vol. 7, no. April, pp. 56–62, 2014.

[81] “Active Directory Federation Services.” [Online]. Available:
https://docs.microsoft.com/en-us/windows-server/identity/active-directory-
federation-services. [Accessed: 14-Feb-2020].

[82] X. Huang, Y. Xiang, E. Bertino, J. Zhou, and L. Xu, “Robust multi-factor authentication
for fragile communications,” IEEE Trans. Dependable Secur. Comput., vol. 11, no. 6, pp.
568–581, 2014, doi: 10.1109/TDSC.2013.2297110.

[83] W. Liu, A. S. Uluagac, and R. Beyah, “MACA: A privacy-preserving multi-factor cloud
authentication system utilizing big data,” in 2014 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2014, pp. 518–523, doi:
10.1109/INFCOMW.2014.6849285.

[84] I. Lahmer and N. Zhang, “Towards a Virtual Domain Based Authentication on
MapReduce,” IEEE Access, vol. 4, pp. 1658–1675, 2016, doi:
10.1109/ACCESS.2016.2558456.

[85] Q. H. Dang, “Secure Hash Standard,” Gaithersburg, MD, Jul. 2015.

[86] M. J. Dworkin, “SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions,” Gaithersburg, MD, Jul. 2015.

[87] “The BLAKE2 Cryptographic Hash and Message Authentication Code (MAC),” Nov.
2015.

[88] Chung Kei Wong and S. S. Lam, “Digital signatures for flows and multicasts,” in
Proceedings Sixth International Conference on Network Protocols (Cat.
No.98TB100256), 1999, vol. 7, no. 4, pp. 198–209, doi: 10.1109/ICNP.1998.723740.

[89] R. C. Merkle, “Method of providing digital signatures,” US4309569A, 1982.

[90] R. C. Merkle, “A Certified Digital Signature,” in Advances in Cryptology — CRYPTO’ 89
Proceedings, vol. 435 LNCS, New York, NY: Springer New York, 1990, pp. 218–238.

217

[91] H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key Derivation Function
(HKDF),” May 2010.

[92] “Specification for the Advanced Encryption Standard (AES).” 2001.

[93] B. Schneier, “Description of a new variable-length key, 64-bit block cipher (Blowfish),”
1994, pp. 191–204.

[94] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, “The RC6 Block Cipher,” in in First
Advanced Encryption Standard (AES) Conference, 1998, p. 16.

[95] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978, doi:
10.1145/359340.359342.

[96] T. Elgamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4, pp. 469–472, Jul. 1985, doi:
10.1109/TIT.1985.1057074.

[97] T. Krovetz, Ed., “UMAC: Message Authentication Code using Universal Hashing,” Mar.
2006.

[98] “Digital Signature Standard (DSS),” Gaithersburg, MD, Jul. 2013.

[99] “Amazon Web Services (AWS).” [Online]. Available: https://aws.amazon.com/.
[Accessed: 23-Sep-2020].

[100] “Digital Ocean.” [Online]. Available: https://www.digitalocean.com/. [Accessed: 16-
Feb-2017].

[101] “Amazon Elastic Compute Cloud (EC2).” [Online]. Available:
https://aws.amazon.com/ec2/. [Accessed: 23-Sep-2020].

[102] “Amazon Simple Storage Service (S3).” [Online]. Available:
https://aws.amazon.com/s3/. [Accessed: 23-Sep-2020].

[103] “Amazon EMR.” [Online]. Available: https://aws.amazon.com/emr/. [Accessed: 01-
Sep-2020].

[104] T. Gunarathne, T. L. Wu, J. Qiu, and G. Fox, “MapReduce in the clouds for science,”
Proc. - 2nd IEEE Int. Conf. Cloud Comput. Technol. Sci. CloudCom 2010, vol. 2, pp. 565–
572, 2010, doi: 10.1109/CloudCom.2010.107.

[105] T. Gunarathne, B. Zhang, T. L. Wu, and J. Qiu, “Scalable parallel computing on clouds
using Twister4Azure iterative MapReduce,” Futur. Gener. Comput. Syst., vol. 29, no. 4,
pp. 1035–1048, 2012, doi: 10.1016/j.future.2012.05.027.

[106] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected Cloud Computing
Environments,” ACM Comput. Surv., vol. 47, no. 1, pp. 1–47, May 2014, doi:
10.1145/2593512.

[107] “How We Extended CloudFlare’s Performance and Security Into Mainland China.”
[Online]. Available: https://blog.cloudflare.com/how-we-extended-cloudflares-
performance-and-security-into-mainland-china/. [Accessed: 16-Dec-2020].

[108] “GraphLab.” [Online]. Available: https://turi.com/. [Accessed: 29-Nov-2020].

218

[109] S. Melnik et al., “Dremel: interactive analysis of web-scale datasets,” Proc. VLDB
Endow., vol. 3, no. 1–2, pp. 330–339, Sep. 2010, doi: 10.14778/1920841.1920886.

[110] G. Malewicz et al., “Pregel: A System for Large-Scale Graph Processing,” in Proceedings
of the 2010 international conference on Management of data - SIGMOD ’10, 2010, p.
135, doi: 10.1145/1807167.1807184.

[111] “Apache Storm.” [Online]. Available: https://storm.apache.org/. [Accessed: 11-Nov-
2020].

[112] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”
Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008, doi: 10.1145/1327452.1327492.

[113] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks,” in Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007 - EuroSys ’07, 2007,
p. 59, doi: 10.1145/1272996.1273005.

[114] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica, “Hyracks: A flexible and
extensible foundation for data-intensive computing,” in 2011 IEEE 27th International
Conference on Data Engineering, 2011, pp. 1151–1162, doi:
10.1109/ICDE.2011.5767921.

[115] D. Warneke and O. Kao, “Nephele: efficient parallel data processing in the cloud,” in
Proceedings of the 2nd Workshop on Many-Task Computing on Grids and
Supercomputers - MTAGS ’09, 2009, pp. 1–10, doi: 10.1145/1646468.1646476.

[116] “Apache Spark.” [Online]. Available: https://spark.apache.org/. [Accessed: 11-Nov-
2020].

[117] J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce for Data Intensive Scientific
Analyses,” in 2008 IEEE Fourth International Conference on eScience, 2008, pp. 277–
284, doi: 10.1109/eScience.2008.59.

[118] O. Boykin, S. Ritchie, I. O ’connell, and J. Lin, “Summingbird: A Framework for
Integrating Batch and Online MapReduce Computations,” Proc. VLDB Endow., vol. 7,
no. 13, pp. 1441--1451, 2014, doi: 10.14778/2733004.2733016.

[119] M. Zaharia et al., “Apache Spark,” Commun. ACM, vol. 59, no. 11, pp. 56–65, Oct. 2016,
doi: 10.1145/2934664.

[120] “Apache Hadoop.” [Online]. Available: https://hadoop.apache.org/. [Accessed: 01-Sep-
2020].

[121] “Hortonworks Data Platform (HDP).” [Online]. Available:
http://hortonworks.com/products/data-center/hdp/. [Accessed: 08-Feb-2017].

[122] “MapR Converged Data Platform.” [Online]. Available:
https://www.mapr.com/products/mapr-converged-data-platform. [Accessed: 09-Feb-
2017].

[123] V. Kumar, H. Andrade, B. Gedik, and K.-L. Wu, “DEDUCE: at the intersection of
MapReduce and stream processing,” in Proceedings of the 13th International
Conference on Extending Database Technology - EDBT ’10, 2010, p. 657, doi:
10.1145/1739041.1739120.

219

[124] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “iMapReduce: A Distributed Computing
Framework for Iterative Computation,” J. Grid Comput., vol. 10, no. 1, pp. 47–68, Mar.
2012, doi: 10.1007/s10723-012-9204-9.

[125] Y. Y. M. I. D. Fetterly, M. Budiu, Ú. Erlingsson, and P. K. G. J. Currey, “DryadLINQ: A
system for general-purpose distributed data-parallel computing using a high-level
language,” Proc. LSDS-IR, vol. 8, 2009.

[126] B. He et al., “Comet: batched stream processing for data intensive distributed
computing,” in Proceedings of the 1st ACM symposium on Cloud computing - SoCC ’10,
2010, p. 63, doi: 10.1145/1807128.1807139.

[127] “Hyracks.” [Online]. Available: https://code.google.com/archive/p/hyracks/.
[Accessed: 01-Dec-2020].

[128] “Apache AsterixDB.” [Online]. Available: https://asterixdb.apache.org/index.html.
[Accessed: 01-Dec-2020].

[129] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke, “Nephele/PACTs: A
Programming Model and Execution Framework for Web-Scale Analytical Processing,”
in Proceedings of the 1st ACM symposium on Cloud computing - SoCC ’10, 2010, p. 119,
doi: 10.1145/1807128.1807148.

[130] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “Apache
Flink: Stream and batch processing in a single engine,” Bull. IEEE Comput. Soc. Tech.
Comm. Data Eng., vol. 36, no. 4, 2015.

[131] “Apache Flink.” [Online]. Available: https://flink.apache.org/. [Accessed: 11-Nov-
2020].

[132] V. K. Vavilapalli et al., “Apache Hadoop yarn: Yet another resource negotiator,” Annu.
Symp. Cloud Comput., p. 5, 2013, doi: 10.1145/2523616.2523633.

[133] T. White, Hadoop: The Definitive Guide 4rd edition. 2015.

[134] T. C. Group, “Trusted Computing.” [Online]. Available:
https://trustedcomputinggroup.org/trusted-computing/. [Accessed: 03-May-2019].

[135] Savitha and Vijaya, “Mining of Web Server Logs in a Distributed Cluster Using Big Data
Technologies,” Int. J. Adv. Comput. Sci. Appl., vol. 5, no. 1, pp. 137–142, 2014.

[136] M. Kumar and M. Hanumanthappa, “Scalable intrusion detection systems log analysis
using cloud computing infrastructure,” 2013 IEEE Int. Conf. Comput. Intell. Comput.
Res., pp. 1–4, 2013, doi: 10.1109/ICCIC.2013.6724158.

[137] J. Therdphapiyanak and K. Piromsopa, “Applying Hadoop for log analysis toward
distributed IDS,” Proc. 7th Int. Conf. Ubiquitous Inf. Manag. Commun. - ICUIMC ’13, pp.
1–6, 2013, doi: 10.1145/2448556.2448559.

[138] B. C. Neuman and T. Ts’o, “Kerberos: an authentication service for computer
networks,” IEEE Commun. Mag., vol. 32, no. 9, pp. 33–38, Sep. 1994, doi:
10.1109/35.312841.

[139] J. T. Kohl, B. C. Neuman, and T. Y. Ts’o, “The evolution of the Kerberos authentication
service,” 1994, pp. 78–94.

220

[140] J. Hughes and E. Maler, “Security Assertion Markup Language (SAML) V2. 0 Technical
Overview,” 2008.

[141] C. Metz, “AAA protocols: Authentication, authorization, and accounting for the
internet,” IEEE Internet Comput., vol. 3, no. 6, pp. 75–79, 1999, doi:
10.1109/4236.807015.

[142] A. Hosia, “Comparison between RADIUS and Diameter,” Changes, vol. 1, p. 2, 2003.

[143] “eduroam.” [Online]. Available: https://www.eduroam.org/. [Accessed: 12-Feb-2020].

[144] K. Wierenga and L. Florio, “Eduroam: past, present and future,” Comput. Methods Sci.
Technol., vol. 11, no. 2, pp. 169–173, 2005, doi: 10.12921/cmst.2005.11.02.169-173.

[145] J. Liu, S. Jiang, and L. Hicks, “Introduction to Diameter Get the next generation AAA
protocol.” pp. 1–12, 2006.

[146] R. Stewart, Ed., “Stream Control Transmission Protocol,” Sep. 2007.

[147] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,” Dec. 2005.

[148] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2 -
RFC5246,” Aug. 2008.

[149] P. V. Mockapetris, “Domain names - concepts and facilities,” Nov. 1987.

[150] J. Zhao et al., “A security framework in G-Hadoop for big data computing across
distributed Cloud data centres,” J. Comput. Syst. Sci., vol. 80, no. 5, pp. 994–1007, 2014,
doi: 10.1016/j.jcss.2014.02.006.

[151] L. Wang et al., “G-Hadoop: MapReduce across distributed data centers for data-
intensive computing,” Futur. Gener. Comput. Syst., vol. 29, no. 3, pp. 739–750, 2013,
doi: 10.1016/j.future.2012.09.001.

[152] A. Freier, P. Karlton, and P. Kocher, “The Secure Sockets Layer (SSL) Protocol Version
3.0 - RFC6101,” Aug. 2011.

[153] Z. Quan, D. Xiao, D. Wu, C. Tang, and C. Rong, “TSHC: Trusted Scheme for Hadoop
Cluster,” in 2013 Fourth International Conference on Emerging Intelligent Data and
Web Technologies, 2013, pp. 344–349, doi: 10.1109/EIDWT.2013.66.

[154] D. Chattaraj, M. Sarma, A. K. Das, N. Kumar, J. J. P. C. Rodrigues, and Y. Park, “HEAP: An
Efficient and Fault-Tolerant Authentication and Key Exchange Protocol for Hadoop-
Assisted Big Data Platform,” IEEE Access, vol. 6, pp. 75342–75382, 2018, doi:
10.1109/ACCESS.2018.2883105.

[155] A. Ruan and A. Martin, “TMR: Towards a trusted MapReduce infrastructure,” Proc. -
2012 IEEE 8th World Congr. Serv. Serv. 2012, pp. 141–148, 2012, doi:
10.1109/SERVICES.2012.28.

[156] I. Khalil, Z. Dou, and A. Khreishah, “TPM-Based Authentication Mechanism for Apache
Hadoop,” vol. 152, J. Tian, J. Jing, and M. Srivatsa, Eds. Cham: Springer International
Publishing, 2015, pp. 105–122.

221

[157] C. A. Meadows and C. A. Meadows, “Formal verification of cryptographic protocols: A
survey,” in Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 917, J. Pieprzyk and R.
Safavi-Naini, Eds. Berlin, Heidelberg: Springer, 1995, pp. 133–150.

[158] C. Meadows, “Formal methods for cryptographic protocol analysis: emerging issues
and trends,” IEEE J. Sel. Areas Commun., vol. 21, no. 1, pp. 44–54, Jan. 2003, doi:
10.1109/JSAC.2002.806125.

[159] R. M. Needham and M. D. Schroeder, “Using encryption for authentication in large
networks of computers,” Commun. ACM, vol. 21, no. 12, pp. 993–999, Dec. 1978, doi:
10.1145/359657.359659.

[160] G. Lowe, “Casper: A compiler for the analysis of security protocols,” J. Comput. Secur.,
vol. 6, no. 1–2, pp. 53–84, 1998.

[161] B. Roscoe, “Model-checking CSP.” Prentice-Hall, 1994.

[162] R. Kemmerer, C. Meadows, and J. Millen, “Three systems for cryptographic protocol
analysis,” J. Cryptol., vol. 7, no. 2, pp. 79–130, Jun. 1994, doi: 10.1007/BF00197942.

[163] L. Viganò, “Automated Security Protocol Analysis With the AVISPA Tool,” Electron.
Notes Theor. Comput. Sci., vol. 155, no. 1, pp. 61–86, May 2006, doi:
10.1016/j.entcs.2005.11.052.

[164] V. Cortier, S. Kremer, and B. Warinschi, “A Survey of Symbolic Methods in
Computational Analysis of Cryptographic Systems,” J. Autom. Reason., vol. 46, no. 3–4,
pp. 225–259, Apr. 2011, doi: 10.1007/s10817-010-9187-9.

[165] B. Blanchet, “Security Protocol Verification: Symbolic and Computational Models,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 7215 LNCS, 2012, pp. 3–29.

[166] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol Verification as a Hardware
Design Aid.,” in ICCD, 1992, vol. 92, pp. 522–525.

[167] Dawn Xiaodong Song, “Athena: a new efficient automatic checker for security protocol
analysis,” in Proceedings of the 12th IEEE Computer Security Foundations Workshop,
pp. 192–202, doi: 10.1109/CSFW.1999.779773.

[168] C. J. F. Cremers, “The Scyther Tool: Verification, Falsification, and Analysis of Security
Protocols,” in Computer Aided Verification, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 414–418.

[169] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of selected
equivalences for security protocols,” J. Log. Algebr. Program., vol. 75, no. 1, pp. 3–51,
Feb. 2008, doi: 10.1016/j.jlap.2007.06.002.

[170] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN Prover for the Symbolic
Analysis of Security Protocols,” 2013, pp. 696–701.

[171] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall, 1985.

222

[172] C. J. F. Cremers, P. Lafourcade, and P. Nadeau, “Comparing State Spaces in Automatic
Security Protocol Analysis,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5458
LNCS, 2009, pp. 70–94.

[173] “The AVISPA Project.” [Online]. Available: http://www.avispa-project.org/. [Accessed:
14-Jun-2020].

[174] “Security Protocols Open Repository.” [Online]. Available:
http://www.lsv.fr/Software/spore/. [Accessed: 14-Jun-2020].

[175] B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger Security of Authenticated Key
Exchange,” in Provable Security, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–
16.

[176] C. Cremers and S. Mauw, Operational Semantics and Verification of Security Protocols.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[177] W. Stallings, Cryptography and Network Security: Principles and Practice. Pearson
Education, 2017.

[178] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, vol.
19964964. CRC Press, 1996.

[179] B. Lakhe, “Introducing Hadoop Security,” in Practical Hadoop Security, Berkeley, CA:
Apress, 2014, pp. 37–47.

[180] “Botan: Crypto and TLS for Modern C++.” [Online]. Available:
https://botan.randombit.net/. [Accessed: 21-Aug-2020].

[181] “Users of Botan.” [Online]. Available:
https://github.com/randombit/botan/wiki/Users. [Accessed: 21-Aug-2020].

[182] E. Barker, “Recommendation for key management:,” Gaithersburg, MD, May 2020.

[183] Y. Desmedt, Y. Frankel, and M. Yung, “Multi-receiver/multi-sender network security:
efficient authenticated multicast/feedback,” in [Proceedings] IEEE INFOCOM ’92: The
Conference on Computer Communications, 1992, pp. 2045–2054 vol.3, doi:
10.1109/INFCOM.1992.263476.

[184] R. Safavi-Naini and H. Wang, “New results on multi-receiver authentication codes,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 1403, 1998, pp. 527–541.

[185] R. Safavi-Naini and H. Wang, “Multireceiver Authentication Codes: Models, Bounds,
Constructions, and Extensions,” Inf. Comput., vol. 151, no. 1–2, pp. 148–172, May 1999,
doi: 10.1006/inco.1998.2769.

[186] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas, “Multicast security:
a taxonomy and some efficient constructions,” in IEEE INFOCOM ’99. Conference on
Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320),
1999, pp. 708–716 vol.2, doi: 10.1109/INFCOM.1999.751457.

223

[187] F. Bergadano, D. Cavagnino, and B. Crispo, “Individual single source authentication on
the MBONE,” in 2000 IEEE International Conference on Multimedia and Expo.
ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia
(Cat. No.00TH8532), 2000, vol. 1, no. c, pp. 541–544, doi: 10.1109/ICME.2000.869659.

[188] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “The TESLA Broadcast Authentication
Protocol,” CryptoBytes, vol. 5, no. 2, pp. 2–13, 2002.

[189] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, “Efficient and secure source
authentication for multicast,” in Network and Distributed System Security Symposium,
NDSS, 2001, vol. 1, no. 2001, pp. 35–46.

[190] A. Perrig et al., “SPINS: Security Protocols for Sensor Networks SPINS : Security
Protocols for Sensor Networks,” Wirel. Networks, vol. 8, no. September, pp. 521–534,
2002, doi: 10.1023/A:1016598314198.

[191] E. Barker, “Recommendation for Key Management Part 1: General,” Gaithersburg, MD,
Jan. 2016.

[192] “Elliptic Curve Cryptography - OpenSSLWiki.” [Online]. Available:
https://wiki.openssl.org/index.php/Elliptic_Curve_Cryptography. [Accessed: 28-May-
2018].

[193] “Keylength - Cryptographic Key Length Recommendation.” [Online]. Available:
https://www.keylength.com/en/. [Accessed: 28-May-2018].

[194] R. Gennaro and P. Rohatgi, “How to Sign Digital Streams,” Inf. Comput., vol. 165, no. 1,
pp. 100–116, Feb. 2001, doi: 10.1006/inco.2000.2916.

[195] J. M. Park, E. K. P. Chong, and H. J. Siegel, “Efficient multicast packet authentication
using signature amortization,” in Proceedings 2002 IEEE Symposium on Security and
Privacy, 2002, vol. 2002-Janua, pp. 227–240, doi: 10.1109/SECPRI.2002.1004374.

[196] J. M. Park, E. K. P. Chong, and H. J. Siegel, “Efficient multicast stream authentication
using erasure codes,” ACM Trans. Inf. Syst. Secur., vol. 6, no. 2, pp. 258–285, May 2003,
doi: 10.1145/762476.762480.

[197] J. Xu, X. Zhou, J. Han, F. Li, and F. Zhou, “Data Authentication Model Based on Reed-
solomon Error-correcting Codes in Wireless Sensor Networks,” IETE Tech. Rev., vol. 30,
no. 3, p. 191, 2013, doi: 10.4103/0256-4602.113496.

[198] B. Zhang, B. Dong, and W. H. Wang, “AssureMR: Verifiable SQL Execution on
MapReduce,” in 2018 IEEE 34th International Conference on Data Engineering (ICDE),
2018, no. 1, pp. 1228–1231, doi: 10.1109/ICDE.2018.00117.

[199] B. Zhang, B. Dong, and H. Wang, “CorrectMR: Authentication of Distributed SQL
Execution on MapReduce,” IEEE Trans. Knowl. Data Eng., vol. PP, no. c, pp. 1–1, 2019,
doi: 10.1109/TKDE.2019.2935968.

[200] H. Ulusoy, M. Kantarcioglu, and E. Pattuk, “TrustMR: Computation integrity assurance
system for MapReduce,” in 2015 IEEE International Conference on Big Data (Big Data),
2015, pp. 441–450, doi: 10.1109/BigData.2015.7363785.

224

[201] Y. Ding, H. Wang, P. Shi, H. Fu, C. Guo, and M. Zhang, “Trusted sampling-based result
verification on mass data processing,” Proc. - 2013 IEEE 7th Int. Symp. Serv. Syst. Eng.
SOSE 2013, pp. 391–396, 2013, doi: 10.1109/SOSE.2013.65.

[202] Z. Xiao and Y. Xiao, “Accountable MapReduce in cloud computing,” Comput. Commun.
Work. (INFOCOM WKSHPS), 2011 IEEE Conf., pp. 1082–1087, 2011, doi:
10.1109/INFCOMW.2011.5928788 M4 - Citavi.

[203] Z. Xiao and Y. Xiao, “Achieving Accountable MapReduce in cloud computing,” Futur.
Gener. Comput. Syst., vol. 30, no. 1, pp. 1–13, 2014, doi: 10.1016/j.future.2013.07.001.

[204] W. Wei, J. Du, T. Yu, and X. Gu, “SecureMR: A service integrity assurance framework
for MapReduce,” Proc. - Annu. Comput. Secur. Appl. Conf. ACSAC, pp. 73–82, 2009, doi:
10.1109/ACSAC.2009.17.

[205] A. K. Lenstra, “Key Length: Contribution to The Handbook of Information Security,” pp.
1–32, 2004.

[206] M. Abdalla et al., “Algorithms, key size and parameters report 2014,” 2014.

[207] H. Orman and P. Hoffman, “Determining Strengths For Public Keys Used For Exchanging
Symmetric Keys,” Apr. 2004.

[208] “MapReduce Lite.” [Online]. Available: https://github.com/wangkuiyi/mapreduce-lite.
[Accessed: 28-Aug-2018].

[209] S. Kelly and S. Frankel, “Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512
with IPsec,” May 2007.

[210] O. Sury, “Use of the SHA-256 Algorithm with RSA, Digital Signature Algorithm (DSA),
and Elliptic Curve DSA (ECDSA) in SSHFP Resource Records,” Apr. 2012.

[211] M. J. Menne, I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, “An Overview of the
Global Historical Climatology Network-Daily Database,” J. Atmos. Ocean. Technol., vol.
29, no. 7, pp. 897–910, Jul. 2012, doi: 10.1175/JTECH-D-11-00103.1.

[212] M. J. Menne et al., “Global Historical Climatology Network - Daily (GHCN-Daily), Version
3.25,” 2012. [Online]. Available: http://doi.org/10.7289/V5D21VHZ. [Accessed: 27-
Aug-2018].

225

Appendix A

Symbolic Analysis Source Codes

The contents of the three SPDL files (gp2a.spdl, ge2a.spdl, and soa.spdl) used for symbolic

analysis of the MIEA protocols are shown as follows.

gp2a.spdl

/*

 * Group key and Pre-shared primary key Two-factor Authentication (GP2A) protocol

 */

// -- Custom types

usertype Protocol;

usertype MessageID;

usertype MessageType;

usertype PayloadSize;

usertype DomainID;

usertype JobID;

usertype ActionRequest;

usertype InitiatorClass;

usertype Credential; // keys exchanged in an RP message

// -- Functions

// for the built-in encryption function: {y}x means a data item y encrypted with a key x

const DID: Function; // DID(x) returns the DomainID of x

hashfunction HKDF; // HKDF(x, y) returns the key derived from x and y

// -- Authentication keys;

secret pmk: Function; // pre-shared primary key

secret gk: Function; // group key

// -- Static constants

const GP2A: Protocol;

const CH: MessageType;

const RC: MessageType;

const RP: MessageType;

const psize1: PayloadSize;

const psize2: PayloadSize;

const psize3: PayloadSize;

// -- Macros (for brevity)

// I and R are, respectively, used as idI and idR

// authenticators containing challenges and responses and encrypted with authentication keys

macro auth1 = {{n1}pmk(I, R)}gk;

macro auth2 = {{n1, n2}pmk(I, R)}gk;

macro auth3 = {{n2}pmk(I, R)}gk;

// MAC key and credential encryption key

macro mkIR = HKDF(pmk(I, R), gk);

macro ckIR = HKDF(pmk(I, R), n2);

// an encryption based approach is used to generate MAC tags

macro tag1 = {mid1, jid, req, icl, auth1}mkIR;

macro tag2 = {mid2, mid1, auth2}mkIR;

macro tag3 = {mid3, mid2, auth3, {creds}ckIR}mkIR;

macro msg1 = (GP2A, mid1, CH, psize1, I, DID(I), R, DID(R), jid, req, icl, auth1, tag1);

macro msg2 = (GP2A, mid2, RC, psize2, R, DID(R), I, DID(I), mid1, auth2, tag2);

macro msg3 = (GP2A, mid3, RP, psize3, I, DID(I), R, DID(R), mid2, auth3, {creds}ckIR, tag3);

protocol GP2A-protocol(I,R)

{

 // -- Roles

 role I // for initiators

 {

 // -- Fresh constants

 fresh mid1: MessageID;

 fresh jid: JobID;

 fresh req: ActionRequest;

 fresh icl: InitiatorClass;

 fresh n1: Nonce;

 fresh mid3: MessageID;

 fresh creds: Credential;

 // -- Variables

226

 var mid2: MessageID;

 var n2: Nonce;

 // --

 // Step 1: Send a CH message (msg1).

 send_msg1(I, R, msg1);

 // --

 // Step 3: Receive the RC message (msg2),

 // and send an RP message (msg3).

 recv_msg2(R, I, msg2);

 send_msg3(I, R, msg3);

 // --

 // -- Claims

 claim_I1(I, Nisynch);

 claim_I2(I, Secret, gk);

 claim_I3(I, Secret, pmk(I, R));

 claim_I4(I, Secret, mkIR);

 claim_I5(I, Secret, ckIR);

 claim_I6(I, Secret, n1);

 claim_I7(I, Secret, n2);

 claim_I8(I, Secret, creds);

 }

 role R // for respondents

 {

 // -- Fresh constants

 fresh mid2: MessageID;

 fresh n2: Nonce;

 // -- Variables

 var mid1: MessageID;

 var jid: JobID;

 var req: ActionRequest;

 var icl: InitiatorClass;

 var n1: Nonce;

 var mid3: MessageID;

 var creds: Credential;

 // --

 // Step 2: Receive the CH message (msg1),

 // and send an RC message (msg2).

 recv_msg1(I, R, msg1);

 send_msg2(R, I, msg2);

 // --

 // Step 4: Receive the RP message (msg3).

 recv_msg3(I, R, msg3);

 // --

 // -- Claims

 claim_R1(R, Nisynch);

 claim_R2(R, Secret, gk);

 claim_R3(R, Secret, pmk(I, R));

 claim_R4(R, Secret, mkIR);

 claim_R5(R, Secret, ckIR);

 claim_R6(R, Secret, n1);

 claim_R7(R, Secret, n2);

 claim_R8(R, Secret, creds);

 }

}

ge2a.spdl

/*

 * Group key and Encapsulated primary key Two-factor Authentication (GE2A) protocol

 */

// -- Custom types

usertype Protocol;

usertype MessageID;

usertype MessageType;

usertype PayloadSize;

usertype DomainID;

usertype JobID;

usertype ActionRequest;

usertype InitiatorClass;

usertype Credential; // keys exchanged in an RP message

usertype Timestamp;

usertype PrimaryKey;

// -- Functions

// for the built-in encryption function: {y}x means a data item y encrypted with a key x

227

const DID: Function; // DID(x) returns the DomainID of x

hashfunction HKDF; // HKDF(x, y) returns the key derived from x and y

// -- Authentication keys;

// for the built-in secret key: k(x, y) means a secret key shared between x and y

secret slk: Function; // sealing key

secret gk: Function; // group key

// -- Static constants

const GE2A: Protocol;

const CH: MessageType;

const RC: MessageType;

const RP: MessageType;

const psize1: PayloadSize;

const psize2: PayloadSize;

const psize3: PayloadSize;

// -- Macros (for brevity)

// I and R are, respectively, used as idI and idR

macro tkt = {I, DID(I), R, DID(R), Z, DID(Z), jid, req, gt, et, pmkIR}slk(R, Z);

// messages for transmitting pmkIR and tkt

macro msg0A = ({jid, req, R}k(I, Z));

macro msg0B = ({pmkIR}k(I, Z), tkt);

// authenticators containing challenges and responses and encrypted with authentication keys

macro auth1 = {{n1}pmkIR}gk;

macro auth2 = {{n1, n2}pmkIR}gk;

macro auth3 = {{n2}pmkIR}gk;

// MAC key and credential encryption key

macro mkIR = HKDF(pmkIR, gk);

macro ckIR = HKDF(pmkIR, n2);

// an encryption based approach is used to generate MAC tags

macro tag1 = {mid1, jid, req, icl, auth1, tkt}mkIR;

macro tag2 = {mid2, mid1, auth2}mkIR;

macro tag3 = {mid3, mid2, auth3, {creds}ckIR}mkIR;

macro msg1 = (GE2A, mid1, CH, psize1, I, DID(I), R, DID(R), jid, req, icl, auth1, tkt, tag1);

macro msg2 = (GE2A, mid2, RC, psize2, R, DID(R), I, DID(I), mid1, auth2, tag2);

macro msg3 = (GE2A, mid3, RP, psize3, I, DID(I), R, DID(R), mid2, auth3, {creds}ckIR, tag3);

protocol GE2A-protocol(I,R,Z)

{

 // -- Roles

 role I // for initiators

 {

 // -- Fresh constants

 fresh mid1: MessageID;

 fresh jid: JobID;

 fresh req: ActionRequest;

 fresh icl: InitiatorClass;

 fresh n1: Nonce;

 fresh mid3: MessageID;

 fresh creds: Credential;

 // -- Variables

 var mid2: MessageID;

 var n2: Nonce;

 var et: Timestamp;

 var gt: Timestamp;

 var pmkIR: PrimaryKey; // issued by Z

 // --

 // Step 0-A: Send a message (msg0A) to Z to request a ticket for authentication to R.

 send_msg0A(I, Z, msg0A);

 // --

 // Step 0-C: Recieve a message (msg0B).

 recv_msg0B(Z, I, msg0B);

 // --

 // Step 1: Send a CH message (msg1).

 send_msg1(I, R, msg1);

 // --

 // Step 3: Receive the RC message (msg2),

 // and send an RP message (msg3).

 recv_msg2(R, I, msg2);

 send_msg3(I, R, msg3);

 // --

 // -- Claims

 claim_I1(I, Nisynch);

228

 claim_I2(I, Secret, gk);

 claim_I3(I, Secret, pmkIR);

 claim_I4(I, Secret, mkIR);

 claim_I5(I, Secret, ckIR);

 claim_I6(I, Secret, n1);

 claim_I7(I, Secret, n2);

 claim_I8(I, Secret, creds);

 }

 role R // for respondents

 {

 // -- Fresh constants

 fresh mid2: MessageID;

 fresh n2: Nonce;

 // -- Variables

 var mid1: MessageID;

 var jid: JobID;

 var req: ActionRequest;

 var icl: InitiatorClass;

 var n1: Nonce;

 var mid3: MessageID;

 var creds: Credential;

 var gt: Timestamp;

 var et: Timestamp;

 var pmkIR: PrimaryKey; // contained in tkt in msg1

 // --

 // Step 2: Receive the CH message (msg1),

 // and send an RC message (msg2).

 recv_msg1(I, R, msg1);

 send_msg2(R, I, msg2);

 // --

 // Step 4: Receive the RP message (msg3).

 recv_msg3(I, R, msg3);

 // --

 // -- Claims

 claim_R1(R, Nisynch);

 claim_R2(R, Secret, gk);

 claim_R3(R, Secret, pmkIR);

 claim_R4(R, Secret, mkIR);

 claim_R5(R, Secret, ckIR);

 claim_R6(R, Secret, n1);

 claim_R7(R, Secret, n2);

 claim_R8(R, Secret, creds);

 }

 role Z // for a trusted third party

 {

 // -- Fresh constants

 fresh gt: Timestamp;

 fresh et: Timestamp;

 fresh pmkIR: PrimaryKey; // for authentication between I and R

 // -- Variables

 var jid: JobID;

 var req: ActionRequest;

 // --

 // Step 0-B: Recieve the request message (msg0A)

 // and reply a message (msg0B) containing pmkIR and tkt back to I.

 recv_msg0A(I, Z, msg0A);

 send_msg0B(Z, I, msg0B);

 // --

 // -- Claims

 claim_Z0(Z, Secret, pmkIR);

 }

}

soa.spdl

/*

 * Secondary key One-factor Authentication (SOA) protocol

 */

// -- Custom types

usertype Protocol;

usertype MessageID;

usertype MessageType;

usertype PayloadSize;

229

usertype DomainID;

usertype JobID;

usertype ActionRequest;

usertype InitiatorClass;

usertype Credential; // keys exchanged in an RP message

// -- Functions

// for the built-in encryption function: {y}x means a data item y encrypted with a key x

const DID: Function; // DID(x) returns the DomainID of x

hashfunction HKDF; // HKDF(x, y) returns the key derived from x and y

// -- Authentication key;

secret sck: Function; // secondary key

// -- Static constants

const SOA: Protocol;

const CH: MessageType;

const RC: MessageType;

const RP: MessageType;

const psize1: PayloadSize;

const psize2: PayloadSize;

const psize3: PayloadSize;

// -- Macros (for brevity)

// I and R are, respectively, used as idI and idR

// authenticators containing challenges and responses and encrypted with authentication keys

macro auth1 = {n1}sck(I, R);

macro auth2 = {n1, n2}sck(I, R);

macro auth3 = {n2}sck(I, R);

// MAC key and credential encryption key

macro mkIR = HKDF(sck(I, R));

macro ckIR = HKDF(sck(I, R), n2);

// an encryption based approach is used to generate MAC tags

macro tag1 = {mid1, jid, req, icl, auth1}mkIR;

macro tag2 = {mid2, mid1, auth2}mkIR;

macro tag3 = {mid3, mid2, auth3, {creds}ckIR}mkIR;

macro msg1 = (SOA, mid1, CH, psize1, I, DID(I), R, DID(R), jid, req, icl, auth1, tag1);

macro msg2 = (SOA, mid2, RC, psize2, R, DID(R), I, DID(I), mid1, auth2, tag2);

macro msg3 = (SOA, mid3, RP, psize3, I, DID(I), R, DID(R), mid2, auth3, {creds}ckIR, tag3);

protocol SOA-protocol(I,R)

{

 // -- Roles

 role I // for initiators

 {

 // -- Fresh constants

 fresh mid1: MessageID;

 fresh jid: JobID;

 fresh req: ActionRequest;

 fresh icl: InitiatorClass;

 fresh n1: Nonce;

 fresh mid3: MessageID;

 fresh creds: Credential;

 // -- Variables

 var mid2: MessageID;

 var n2: Nonce;

 // --

 // Step 1: Send a CH message (msg1).

 send_msg1(I, R, msg1);

 // --

 // Step 3: Receive the RC message (msg2),

 // and send an RP message (msg3).

 recv_msg2(R, I, msg2);

 send_msg3(I, R, msg3);

 // --

 // -- Claims

 claim_I1(I, Nisynch);

 claim_I3(I, Secret, sck(I, R));

 claim_I4(I, Secret, mkIR);

 claim_I5(I, Secret, ckIR);

 claim_I6(I, Secret, n1);

 claim_I7(I, Secret, n2);

 claim_I8(I, Secret, creds);

 }

 role R // for respondents

 {

 // -- Fresh constants

 fresh mid2: MessageID;

230

 fresh n2: Nonce;

 // -- Variables

 var mid1: MessageID;

 var jid: JobID;

 var req: ActionRequest;

 var icl: InitiatorClass;

 var n1: Nonce;

 var mid3: MessageID;

 var creds: Credential;

 // --

 // Step 2: Receive the CH message (msg1),

 // and send an RC message (msg2).

 recv_msg1(I, R, msg1);

 send_msg2(R, I, msg2);

 // --

 // Step 4: Receive the RP message (msg3).

 recv_msg3(I, R, msg3);

 // --

 // -- Claims

 claim_R1(R, Nisynch);

 claim_R3(R, Secret, sck(I, R));

 claim_R4(R, Secret, mkIR);

 claim_R5(R, Secret, ckIR);

 claim_R6(R, Secret, n1);

 claim_R7(R, Secret, n2);

 claim_R8(R, Secret, creds);

 }

}

231

Appendix B

The Execution Flows of the Kerberos and NSLPK

Protocols

This section explains the operational steps of Kerberos [34][138][139] and NSLPK [31]. It

highlights authentication flows and describes how AuthData are generated and transmitted.

B.1 Kerberos

There are four entities involved in each authentication instance: an initiator 𝐼, a Key

Distribution Center (KDC) server 𝐾, a Ticket-Granting Service (TGS) server 𝑇, and a respondent

𝑅. 𝐾 is a server that issues (mid-level) credentials to 𝐼 for authentication to 𝑇, whereas 𝑇 is a

server that issues (bottom-level) credentials to 𝐼 for authentication to 𝑅. The Kerberos

protocol consists of 6 operational steps and there are a total of 5 messages exchanged, as

shown in Figure B.1.

Figure B.1: The message transaction flow of Kerberos.

232

Step 1: In 𝐼1, 𝐼 generates a nonce 𝑛1 (𝐼1) and sends a request for credentials, i.e., a

pairwise key 𝑘𝐼,𝑇 (for authentication between 𝐼 and 𝑇) and a ticket (encrypted pairwise key)

𝑡𝑘𝑡𝐼,𝑇
𝐾 , to 𝐾. The message (msg-K1) contains the ID of 𝐼 𝑖𝑑𝐼, the ID of 𝑇 𝑖𝑑𝑇 and 𝑛1, expressed

as: msg-K1: {𝑖𝑑𝐼 , 𝑖𝑑𝑇 , 𝑛1}.

Step 2: Upon receiving msg-K1, in 𝐾1, 𝐾 generates 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇
𝐾 , and sends these items

back to 𝐼. To ensure that the reply message (msg-K2) is not replayed, 𝐾 encrypts 𝑘𝐼,𝑇 and 𝑛1

with a pairwise key 𝑘𝐼,𝐾 shared between 𝐼 and 𝐾. The message contains the encrypted 𝑘𝐼,𝑇

and 𝑛1 along with 𝑡𝑘𝑡𝐼,𝑇
𝐾 , expressed as: msg-K2: {𝑆𝐸(𝑘𝐼,𝐾, 𝑘𝐼,𝑇||𝑛1), 𝑡𝑘𝑡𝐼,𝑇

𝐾 }.

Step 3: After receiving msg-K2, in 𝐼2, 𝐼 decrypts the encrypted pairwise key and nonce,

expressed as (𝑘𝐼,𝑇 || 𝑛1
′) = 𝑆𝐷(𝑘𝐼,𝐾, 𝑆𝐸(𝑘𝐼,𝐾, 𝑘𝐼,𝑇||𝑛1)), and checks 𝑛1

′ with 𝑛1 (generated in

Step 1). If the result is positive, in 𝐼3, 𝐼 generates an authenticator 𝑎𝑢𝑡ℎ1, expressed as

𝑎𝑢𝑡ℎ1 = 𝑆𝐸(𝑘𝐼,𝑇 , 𝑡1) where 𝑡1 is a current timestamp, and a nonce 𝑛2, and then sends a

request for credentials, i.e., a pairwise key 𝑘𝐼,𝑅 (for authentication between 𝐼 and 𝑅) and a

ticket (encrypted pairwise key) 𝑡𝑘𝑡𝐼,𝑅
𝑇 , to 𝑇. The message msg-K3 contains 𝑎𝑢𝑡ℎ1, 𝑡𝑘𝑡𝐼,𝑇

𝐾 , the

ID of 𝑅 𝑖𝑑𝑅, and 𝑛2, expressed as msg-K3: {𝑎𝑢𝑡ℎ1, 𝑡𝑘𝑡𝐼,𝑇
𝐾 , 𝑖𝑑𝑅 , 𝑛2}.

Step 4: Upon receiving msg-K3, in 𝑇1, 𝑇 decrypts 𝑡𝑘𝑡𝐼,𝑇
𝐾 to obtain 𝑘𝐼,𝑇 and the related data,

(𝑖𝑑𝐼||𝑘𝐼,𝑇||𝑠𝑡1||𝑒𝑡1) where 𝑠𝑡1 and 𝑒𝑡1 are, respectively, the creation and expiry times of the

key. 𝑇 checks whether the ticket is for 𝐼 and the key is not expired. 𝑇 then uses 𝑘𝐼,𝑇 to verify

𝑎𝑢𝑡ℎ1 by decrypting 𝑎𝑢𝑡ℎ1 and checking the timestamp, 𝑡1 = 𝑆𝐷(𝑘𝐼,𝑇 , 𝑎𝑢𝑡ℎ1). If 𝑡1 is fresh,

in 𝑇2, 𝑇 prepares the requested credentials for 𝐼 similar to 𝐾1 in Step 2. The message msg-

K4 is expressed as: msg-K4: {𝑆𝐸(𝑘𝐼,𝑇 , 𝑘𝐼,𝑅||𝑛2), 𝑡𝑘𝑡𝐼,𝑅
𝑇 }.

Step 5: After receiving msg-K4, in 𝐼4, 𝐼 verifies the received 𝑘𝐼,𝑅 and 𝑛2
′ , and in 𝐼5, sends

a request for service access to 𝑅. The processes of 𝐼4 and 𝐼5 are similar to 𝐼2 and 𝐼3 in Step

3, respectively, but the content of the message is different. The generation of 𝑎𝑢𝑡ℎ2 is

expressed as 𝑎𝑢𝑡ℎ2 = 𝑆𝐸(𝑘𝐼,𝑅 , 𝑡2) where 𝑡2 is a current timestamp. The message msg-K5 is

expressed as: msg-K5 {𝑎𝑢𝑡ℎ2, 𝑡𝑘𝑡𝐼,𝑅
𝑇 }.

Step 6: Upon receiving msg-K5, in 𝑅1, 𝑅 verifies 𝑎𝑢𝑡ℎ2 using the process similar to 𝑇1 in

Step 4.

If the protocol is successfully executed and all verifications are positive, 𝐼 and 𝑅 are

mutually authenticated. It is worth noting that, when 𝐼 wants to communicate with a new

respondent (e.g., a new service server), 𝐼 does not have to obtain a new pairwise key and a

new ticket from 𝐾 again as long as 𝑡𝑘𝑡𝐼,𝑇
𝐾 is not expired. 𝐼 may use 𝑘𝐼,𝑇 and 𝑡𝑘𝑡𝐼,𝑇

𝐾 to request

credentials for the new respondent from 𝑇. In this case, Step 1 and Step 2 can be skipped and

only 3 messages (msg-K3, msg-K4, and msg-K5) are used for authentication.

B.2 NSLPK

There are three entities involved in each authentication instance: an initiator 𝐼, a trusted key

server 𝑍, and a respondent 𝑅. 𝑍 certifies (by generating signatures) and issues the public key

of 𝐼 to 𝑅, and the public key of 𝑅 to 𝐼. It is assumed that the public key of 𝑍 (𝑝𝑘𝑍) is certified

and known to 𝐼 and 𝑅. The NSLPK protocol consists of 8 operational steps and there are a

total of 7 messages exchanged, as shown in Figure B.2.

233

Figure B.2: The message transaction flow of NSLPK.

Step 1: In 𝐼1, 𝐼 sends a request for the public key of 𝑅 𝑝𝑘𝑅 to 𝑍. The message (msg-N1)

contains the ID of 𝐼 𝑖𝑑𝐼 and the ID of 𝑅 𝑖𝑑𝑅, expressed as: msg-N1: {𝑖𝑑𝐼 , 𝑖𝑑𝑅}.

Step 2: Upon receiving msg-N1, in 𝑍1, 𝑍 signs 𝑝𝑘𝑅 || 𝑖𝑑𝑅 with its private key 𝑠𝑘𝑍 and sends

a reply message back to 𝐼. The signing process is expressed as 𝜎𝑝𝑘𝑅 || 𝑖𝑑𝑅
= 𝑆𝑆(𝑠𝑘𝑧 ,

𝑝𝑘𝑅 || 𝑖𝑑𝑅). The message (msg-N2) contains the concatenation of 𝑝𝑘𝑅||𝑖𝑑𝑅 and a signature,

expressed as: msg-N2: {𝑝𝑘𝑅 || 𝑖𝑑𝑅 , 𝜎𝑝𝑘𝑅 || 𝑖𝑑𝑅
}.

Step 3: After receiving msg-N2, in 𝐼2, 𝐼 verifies the signature with the public key of 𝑍 𝑝𝑘𝑍

and obtains 𝑝𝑘𝑅. The verification process is expressed as 𝑠𝑣 = 𝑆𝑉(𝑝𝑘𝑍, 𝑝𝑘𝑅 || 𝑖𝑑𝑅 ,

𝜎𝑝𝑘𝑅 || 𝑖𝑑𝑅
). If the verification is positive, in 𝐼3, 𝐼 generates a nonce 𝑛1, encrypts 𝑛1 || 𝑖𝑑𝐼 (a

challenge) with 𝑝𝑘𝑅, and sends a message to 𝑅. The message (msg-N3) is expressed as: msg-

N3: {𝐴𝐸(𝑝𝑘𝑅 , 𝑛1 || 𝑖𝑑𝐼)}.

Step 4: Upon receiving msg-N3, in 𝑅1, 𝑅 decrypts the content of the message with its

private key 𝑠𝑘𝑅 to obtain 𝑛1 and 𝑖𝑑𝐼. The decryption process is expressed as

 (𝑛1 || 𝑖𝑑𝐼) = 𝐴𝐷(𝑠𝑘𝑅 , 𝐴𝐸(𝑝𝑘𝑅 , 𝑛1 || 𝑖𝑑𝐼)). 𝑅 then uses the same method as 𝐼1 in Step 1

234

to sends a request for the public key of 𝐼 𝑝𝑘𝐼 to 𝑍. The message (msg-N4) is expressed as:

msg-N4: {𝑖𝑑𝑅 , 𝑖𝑑𝐼}.

Step 5: Upon receiving msg-N4, in 𝑍2, 𝑍 replies a message containing 𝑝𝑘𝐼 using the same

method as 𝑍1 in Step 2. The message (msg-N5) is expressed as: msg-N5: {𝑝𝑘𝐼 || 𝑖𝑑𝐼 , 𝜎𝑝𝑘𝐼 || 𝑖𝑑𝐼
}.

Step 6: After receiving msg-N5, in 𝑅2, 𝑅 verifies the signature and obtains 𝑝𝑘𝐼 using the

same method as 𝐼2 in Step 3. In 𝑅3, 𝑅 generates a nonce 𝑛2, encrypts 𝑛1|| 𝑛2 || 𝑖𝑑𝑅 (used as

a response and a new challenge) with 𝑝𝑘𝐼, and sends a reply message back to 𝐼. The message

(msg-N6) is expressed as: msg-N6: {𝐴𝐸(𝑝𝑘𝐼 , 𝑛1|| 𝑛2 || 𝑖𝑑𝑅)}.

Step 7: Upon receiving msg-N6, in 𝐼4, 𝐼 decrypts the content of the message with its

private key 𝑠𝑘𝐼 to obtain 𝑛1
′ and 𝑛2. If 𝑛1

′ equals 𝑛1 (generated in 𝐼3 in Step 3), then 𝐼 is

assured of the identity of 𝑅 and 𝐼 proceeds to 𝐼5. In 𝐼5, 𝐼 sends a reply message containing

𝑛2 (used as a response) encrypted with 𝑝𝑘𝑅 back to 𝑅. The message (msg-N7) is expressed

as: msg-N7: {𝐴𝐸(𝑝𝑘𝑅 , 𝑛2)}.

Step 8: After receiving msg-N7, in 𝑅4, 𝑅 decrypts the content of the message with 𝑠𝑘𝑅 to

obtain 𝑛2
′ . If 𝑛2

′ equals 𝑛2 (generated in 𝑅3 in Step 6), then 𝑅 is assured of the identity of 𝐼

and the protocol is successfully terminated.

At the end of the execution of the protocol, if all verifications are positive, then 𝐼 and 𝑅

are positively authenticated to each other. It is worth noting that 𝐼 and 𝑅 may cache the public

key of the other entity. In this way, msg-N1, msg-N2, msg-N4, and msg-N5 can be omitted in

subsequent authentication instances. In other words, only 3 messages (msg-N3, msg-N6, and

msg-N7) are needed for subsequent authentication.

235

Appendix C

Algorithms Implementing the Methods of CPDA

The algorithms implementing the methods used in the design of CPDA are formally described

in the following.

 Algorithm 6.1.1: HT-AuthData-Aggregation

1: algorithm 𝐻𝑇𝐴𝐴(ℎ𝑥,1, ℎ𝑥,2, … , ℎ𝑥,𝑄)

2: ℎ𝑡 = 𝐻𝑇𝐶(ℎ𝑥,1, ℎ𝑥,2, … , ℎ𝑥,𝑄)

3: 𝑟ℎ𝑥 = the value contained in the root node of ℎ𝑡

4: for 𝑖 = 1 𝑡𝑜 𝑄 do

5: 𝑠𝑎𝑥,𝑖 = 𝑆𝐴𝐸(ℎ𝑡, ℎ𝑥,𝑖)

6: end for

7: 𝑆𝐴𝑥 = {𝑠𝑎𝑥,1, 𝑠𝑎𝑥,2, … , 𝑠𝑎𝑥,𝑄}

8: return {𝑟ℎ𝑥 , 𝑆𝐴𝑥}

9: end algorithm

 Algorithm 6.1.2: HC-AuthData-Aggregation

1: algorithm 𝐻𝐶𝐴𝐴(ℎ1,𝑦, ℎ2,𝑦 , … , ℎ𝑃,𝑦)

2: 𝑐ℎ𝛼 = ℎ1,𝑦||ℎ2,𝑦|| … ||ℎ𝑃,𝑦

3: return 𝑐ℎ𝛼

4: end algorithm

 Algorithm 6.2.1: ISAuthData-Generation

1: algorithm 𝐼𝑆𝐴𝐷𝐺(𝑑𝑐,𝑚1
, 𝑑𝑐,𝑚2

, … , 𝑑𝑐,𝑚𝑀
, 𝑠𝑘𝑐)

2: for 𝑖 = 1 𝑡𝑜 𝑀 do

3: ℎ𝑐,𝑚𝑖
= 𝐻(𝑑𝑐,𝑚𝑖

)

4: end for

5: {𝑟ℎ𝑐 , 𝑆𝐴𝑐} = 𝐻𝑇𝐴𝐴(ℎ𝑐,𝑚1
, ℎ𝑐,𝑚2

, … , ℎ𝑐,𝑚𝑀
)

6: 𝜎𝑟ℎ𝑐
= 𝑆𝑆(𝑠𝑘𝑐 , 𝑟ℎ𝑐)

7: return {𝜎𝑟ℎ𝑐
, 𝑆𝐴𝑐}

8: end algorithm

 Algorithm 6.2.2: ISAuthData-Verification

1: algorithm 𝐼𝑆𝐴𝐷𝑉(𝑑𝑐,𝑚𝑎
, 𝜎𝑟ℎ𝑐

, 𝑠𝑎𝑐,𝑚𝑎
, 𝑝𝑘𝑐)

2: ℎ′𝑐,𝑚𝑎
= 𝐻(𝑑𝑐,𝑚𝑎

)

3: 𝑟ℎ𝑐
′ = 𝑅𝐴𝑅(ℎ𝑐,𝑚𝑎

′ , 𝑠𝑎𝑐,𝑚𝑎
)

4: 𝑠𝑣 = 𝑆𝑉(𝑝𝑘𝑐 , 𝑟ℎ𝑐
′ , 𝜎𝑟ℎ𝑐

)

5: return 𝑠𝑣

6: end algorithm

 Algorithm 6.3.1: PGen-PSAuthData-Generation

1: algorithm 𝑃𝑃𝑆𝐴𝐷𝐺(𝑑𝑚𝑎,𝑟1
, … , 𝑑𝑚𝑎,𝑟𝐸

, 𝑘𝑚𝑎,𝑗𝑚)

2: for 𝑗 = 1 𝑡𝑜 𝐸 do

3: ℎ𝑚𝑎,𝑟𝑗
= 𝐻(𝑑𝑚𝑎,𝑟𝑗

)

4: end for

5: {𝑟ℎ𝑚𝑎
, 𝑆𝐴𝑚𝑎

} = 𝐻𝑇𝐴𝐴(ℎ𝑚𝑎,𝑟1
, ℎ𝑚𝑎,𝑟2

, … , ℎ𝑚𝑎,𝑟𝐸
)

6: 𝜏𝑟ℎ𝑚𝑎
= 𝑀𝑆(𝑘𝑚𝑎,𝑗𝑚, 𝑟ℎ𝑚𝑎

)

7: return {𝑟ℎ𝑚𝑎
, 𝜏𝑟ℎ𝑚𝑎

, 𝑆𝐴𝑚𝑎
}

8: end algorithm

236

 Algorithm 6.3.2: AGen-PSAuthData-Generation

1: algorithm 𝐴𝑃𝑆𝐴𝐷𝐺(𝑟ℎ𝑚1
, … , 𝑟ℎ𝑚𝑀

, 𝜏𝑟ℎ𝑚1
, … , 𝜏𝑟ℎ𝑚𝑀

, 𝑘𝑚1,𝑗𝑚 ,

… , 𝑘𝑚𝑀,𝑗𝑚, 𝑠𝑘𝑗𝑚)

2: for 𝑖 = 1 𝑡𝑜 𝑀 do

3: 𝑚𝑣 = 𝑀𝑉(𝑘𝑚𝑖,𝑗𝑚, 𝑟ℎ𝑚𝑖
, 𝜏𝑟ℎ𝑚𝑖

)

4: if 𝑚𝑣 is 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 then

5: throw Exception(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑖)

6: end if

7: end for

8: 𝑐ℎ𝑗𝑚 = 𝐻𝐶𝐴𝐴(𝑟ℎ𝑚1
, 𝑟ℎ𝑚2

, … , 𝑟ℎ𝑚𝑀
)

9: 𝜎𝑐ℎ𝑗𝑚
= 𝑆𝑆(𝑠𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚)

10: return {𝑐ℎ𝑗𝑚, 𝜎𝑐ℎ𝑗𝑚
}

11: end algorithm

 Algorithm 6.3.3: PSAuthData-Verification

1: algorithm 𝑃𝑆𝐴𝐷𝑉(𝑑𝑚1,𝑟𝑏
, … , 𝑑𝑚𝑀,𝑟𝑏

, 𝑠𝑎𝑚1,𝑟𝑏
, … , 𝑠𝑎𝑚𝑀,𝑟𝑏

,

𝑐ℎ𝑗𝑚, 𝜎𝑐ℎ𝑗𝑚
, 𝑝𝑘𝑗𝑚)

2: 𝑠𝑣 = 𝑆𝑉(𝑝𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚 , 𝜎𝑐ℎ𝑗𝑚
)

3: if 𝑠𝑣 is 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 then

4: return {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, "𝑐ℎ𝑗𝑚"}

5: end if

6: Extract {𝑟ℎ𝑚1
, … , 𝑟ℎ𝑚𝑀

} from 𝑐ℎ𝑗𝑚

7: 𝐼𝑁𝐷𝐼𝐶𝐸𝑆 = {}

8: for 𝑖 = 1 𝑡𝑜 𝑀 do

9: ℎ′𝑚𝑖,𝑟𝑏
= 𝐻(𝑑𝑚𝑖,𝑟𝑏

)

10: 𝑟ℎ𝑚𝑖
′ = 𝑅𝐴𝑅(ℎ𝑚𝑖,𝑟𝑏

′ , 𝑠𝑎𝑚𝑖,𝑟𝑏
)

11: if 𝑟ℎ𝑚𝑖
′ ! = 𝑟ℎ𝑚𝑖

 then

12: Add 𝑖 to 𝐼𝑁𝐷𝐼𝐶𝐸𝑆

13: end if

14: end for

15: if 𝐼𝑁𝐷𝐼𝐶𝐸𝑆 is 𝑒𝑚𝑝𝑡𝑦 then

16: return {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒}

17: else

18: return {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝐼𝑁𝐷𝐼𝐶𝐸𝑆}

19: end if

20: end algorithm

 Algorithm 6.4.1: PGen-FRAuthData-Generation

1: algorithm 𝑃𝐹𝑅𝐴𝐷𝐺(𝑑𝑟𝑏,𝑐 , 𝑘𝑟𝑏,𝑗𝑚)

2: ℎ𝑟𝑏,𝑐 = 𝐻(𝑑𝑟𝑏,𝑐)

3: 𝜏ℎ𝑟𝑏,𝑐
= 𝑀𝑆(𝑘𝑟𝑏,𝑗𝑚, ℎ𝑟𝑏,𝑐)

4: return {ℎ𝑟𝑏,𝑐, 𝜏ℎ𝑟𝑏,𝑐
}

5: end algorithm

237

 Algorithm 6.4.2: AGen-FRAuthData-Generation

1: algorithm 𝐴𝐹𝑅𝐴𝐷𝐺(ℎ𝑟1,𝑐 , … , ℎ𝑟𝐸,𝑐, 𝜏ℎ𝑟1,𝑐
, … , 𝜏ℎ𝑟𝐸,𝑐

, 𝑘𝑟1,𝑗𝑚 , … ,

𝑘𝑟𝐸,𝑗𝑚 , 𝑠𝑘𝑗𝑚)

2: for 𝑗 = 1 𝑡𝑜 𝐸 do

3: 𝑚𝑣 = 𝑀𝑉(𝑘𝑟𝑗,𝑗𝑚, ℎ𝑟𝑗,𝑐 , 𝜏ℎ𝑟𝑗,𝑐
)

4: if 𝑚𝑣 is 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 then

5: throw Exception(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑗)

6: end if

7: end for

8: 𝑐ℎ𝑗𝑚 = 𝐻𝐶(ℎ𝑟1,𝑐, ℎ𝑟2,𝑐 , … , ℎ𝑟𝐸,𝑐)

9: 𝜎𝑐ℎ𝑗𝑚
= 𝑆𝑆(𝑠𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚)

10: return {𝑐ℎ𝑗𝑚, 𝜎𝑐ℎ𝑗𝑚
}

11: end algorithm

 Algorithm 6.4.3: FRAuthData-Verification

1: algorithm 𝐹𝑅𝐴𝐷𝑉(𝑑𝑟1,𝑐, … , 𝑑𝑟𝐸,𝑐, 𝑐ℎ𝑗𝑚 , 𝜎𝑐ℎ𝑗𝑚
, 𝑝𝑘𝑗𝑚)

2: 𝑠𝑣 = 𝑆𝑉(𝑝𝑘𝑗𝑚, 𝑐ℎ𝑗𝑚 , 𝜎𝑐ℎ𝑗𝑚
)

3: if 𝑠𝑣 is 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 then

4: return {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, "𝑐ℎ𝑗𝑚"}

5: end if

6: Extract {ℎ𝑟1,𝑐 , … , ℎ𝑟𝐸,𝑐} from 𝑐ℎ𝑗𝑚

7: 𝐼𝑁𝐷𝐼𝐶𝐸𝑆 = {}

8: for 𝑗 = 1 𝑡𝑜 𝐸 do

9: ℎ′𝑟𝑗,𝑐 = 𝐻(𝑑𝑟𝑗,𝑐)

10: if ℎ𝑟𝑗,𝑐
′ ! = ℎ𝑟𝑗,𝑐 then

11: Add 𝑗 to 𝐼𝑁𝐷𝐼𝐶𝐸𝑆

12: end if

13: end for

14: if 𝐼𝑁𝐷𝐼𝐶𝐸𝑆 is 𝑒𝑚𝑝𝑡𝑦 then

15: return {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒}

16: else

17: return {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝐼𝑁𝐷𝐼𝐶𝐸𝑆}

18: end if

19: end algorithm

	LIST OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	DEFINITIONS
	ABSTRACT
	DECLARATION
	COPYRIGHT STATEMENT
	ACKNOWLEDGEMENTS
	Chapter 1 Introduction
	1.1 Research Context
	1.2 Research Motivation and Challenges
	1.3 Research Aim and Objectives
	1.4 Research Question and Hypothesis
	1.5 Research Methodology
	1.5.1 Literature Review and Knowledge Gap Identifications
	1.5.2 Solution Design
	1.5.3 Security Analysis and Performance Evaluation
	1.5.4 Experiment Implementation

	1.6 Novel Contributions and Publications
	1.6.1 Novel Contributions
	1.6.2 Publications

	1.7 Thesis Structure

	Chapter 2 Big Data Computing: Issues, Challenges, and Solutions
	2.1 Chapter Introduction
	2.2 Big Data Computing: Concepts and System Models
	2.2.1 Big Data Computing and Collaborative Data Analysis
	2.2.2 System Models
	2.2.3 Cloud Computing

	2.3 Issues and Challenges
	2.4 Existing Authentication Solutions and Knowledge Gaps
	2.4.1 Entity Authentication
	2.4.2 Data Authentication
	2.4.3 Knowledge Gaps

	2.5 A Way Forward
	2.6 Chapter Summary

	Chapter 3 Cryptographic Building Blocks
	3.1 Chapter Introduction
	3.2 Selections and Justifications
	3.3 Hash Functions
	3.4 Hash Trees
	3.5 Key Derivation Functions
	3.6 Symmetric-key based Encryption Schemes
	3.7 Asymmetric-key based Encryption Schemes
	3.8 Message Authentication Code (MAC) Schemes
	3.9 Digital Signature Schemes
	3.10 Chapter Summary

	Chapter 4 Multi-domain Decentralised Authentication (MDA) Framework
	4.1 Chapter Introduction
	4.2 Use Case Description
	4.3 Generic Use Case Model Construction
	4.3.1 Choosing a System Architecture
	4.3.1.1 Single-Cloud System Architecture (SC-SA)
	4.3.1.2 Multi-Cloud System Architecture
	4.3.1.3 Making the Selection

	4.3.2 Choosing a Big Data Processing Model
	4.3.3 MapReduce (MR) based Big Data Processing Model
	4.3.3.1 MR Components
	4.3.3.2 Job Execution Flow

	4.3.4 Our Collaborative Big Data Computation on a Multiple Public Cloud platform (CBDC-MPC) Model
	4.3.4.1 Model Description
	4.3.4.2 Component Classifications
	4.3.4.3 Data Classifications
	4.3.4.4 Interaction Classifications
	4.3.4.5 Communication Pattern Classifications

	4.4 Threat Analysis
	4.4.1 Threats and Attacks
	4.4.2 Threat Model

	4.5 Requirement Specifications
	4.5.1 Functional Requirements
	4.5.2 Security Requirements
	4.5.3 Performance Requirements

	4.6 The Running Example
	4.7 An Overview of the MDA Framework
	4.8 Chapter Summary

	Chapter 5 Multi-factor Interaction based Entity Authentication (MIEA) Framework
	5.1 Chapter Introduction
	5.2 Existing Entity Authentication Solutions
	5.2.1 Non-MR Specific Solutions
	5.2.2 MR Specific Solutions
	5.2.3 What is Missing

	5.3 High-level Ideas
	5.4 Design Assumptions and Notations
	5.4.1 Design Assumptions
	5.4.2 Notations

	5.5 MIEA in Detail
	5.5.1 An Overview of the MIEA Architecture
	5.5.2 Credentials
	5.5.3 Credential Establishment Methods
	5.5.4 Entity Authentication Protocols
	5.5.4.1 GP2A Protocol
	5.5.4.2 GE2A Protocol
	5.5.4.3 SOA Protocol

	5.5.5 Putting Everything Together: MIEA in Action

	5.6 The Running Example
	5.7 Security Analysis
	5.7.1 Informal Analysis
	5.7.1.1 Mutual Authentication
	5.7.1.2 Sensitive Data Confidentiality
	5.7.1.3 Replay Attack Protection
	5.7.1.4 Message Authenticity Protection
	5.7.1.5 The Comparisons of Security Properties

	5.7.2 Symbolic Analysis
	5.7.2.1 Verification Tool Comparisons and Selection
	5.7.2.2 Attacker Model
	5.7.2.3 Security Properties
	5.7.2.4 Protocol Modelling
	5.7.2.5 Verification Results

	5.7.3 Complexity Analysis
	5.7.3.1 Notations
	5.7.3.2 The Strengths of Cryptographic Schemes
	5.7.3.3 Impersonation Attacks
	5.7.3.4 Confidential Data Exposure Attacks
	5.7.3.5 Replay Attacks
	5.7.3.6 Message Tampering Attacks

	5.8 Performance Evaluation
	5.8.1 Notations
	5.8.2 Computational Overheads
	5.8.2.1 GP2A Protocol
	5.8.2.2 GE2A Protocol
	5.8.2.3 SOA Protocol
	5.8.2.4 Kerberos Protocol
	5.8.2.5 NSLPK Protocol
	5.8.2.6 The Comparisons of Computational Overheads

	5.8.3 Communication Overheads
	5.8.3.1 GP2A Protocol
	5.8.3.2 GE2A Protocol
	5.8.3.3 SOA Protocol
	5.8.3.4 Kerberos Protocol
	5.8.3.5 NSLPK Protocol
	5.8.3.6 The Comparisons of Communication Overheads

	5.9 Experimental Evaluation
	5.9.1 Methodology and Evaluation Metrics
	5.9.2 Testbed Setup
	5.9.2.1 Software
	5.9.2.2 Hardware

	5.9.3 Parameters and Configurations
	5.9.4 Experimental Results
	5.9.4.1 Exp1: Costs of Cryptographic Algorithms
	5.9.4.2 Exp2: Costs of Entity Authentication Protocols

	5.10 Chapter Summary

	Chapter 6 Communication Pattern based Data Authentication (CPDA) Framework
	6.1 Chapter Introduction
	6.2 Existing Data Authentication Solutions
	6.2.1 Non-MR Specific Solutions
	6.2.2 MR Specific Solutions
	6.2.3 What is Missing

	6.3 High-level Ideas
	6.3.1 TreeAgg Method
	6.3.2 FlatAgg Method
	6.3.3 HybridAgg Method

	6.4 Design Assumptions and Notations
	6.4.1 Design Assumptions
	6.4.2 Notations

	6.5 CPDA in Detail
	6.5.1 An Overview of the CPDA Architecture
	6.5.2 AuthData Aggregation Algorithms
	6.5.2.1 HT-AuthData-Aggregation Algorithm
	6.5.2.2 HC-AuthData-Aggregation Algorithm

	6.5.3 Protocol Message Structure and Format
	6.5.4 O2M Functional Block
	6.5.4.1 ISAuthData-Generation Algorithm
	6.5.4.2 ISAuthData-Verification Algorithm
	6.5.4.3 ISAuthData-Delivery Protocol

	6.5.5 M2M Functional Block
	6.5.5.1 PGen-PSAuthData-Generation Algorithm
	6.5.5.2 AGen-PSAuthData-Generation Algorithm
	6.5.5.3 PSAuthData-Verification Algorithm
	6.5.5.4 PSAuthData-Delivery Protocol

	6.5.6 M2O Functional Block
	6.5.6.1 PGen-FRAuthData-Generation Algorithm
	6.5.6.2 AGen-FRAuthData-Generation Algorithm
	6.5.6.3 FRAuthData-Verification Algorithm
	6.5.6.4 FRAuthData-Delivery Protocol

	6.5.7 Putting Everything Together: CPDA in Action

	6.6 The Running Example
	6.7 Security Analysis
	6.7.1 Informal Analysis
	6.7.1.1 Data Origin Authentication
	6.7.1.2 Data Integrity Protection
	6.7.1.3 Non-repudiation of Origin
	6.7.1.4 The Comparisons of the Security Properties

	6.7.2 Complexity Analysis
	6.7.2.1 Notations
	6.7.2.2 The Strength of Cryptographic Schemes
	6.7.2.3 Data Injection Attacks
	6.7.2.4 Data Tampering Attacks
	6.7.2.5 The Comparisons of the Security Strengths

	6.8 Performance Evaluation
	6.8.1 Notations
	6.8.2 Computational Overheads
	6.8.2.1 CPDA Framework
	6.8.2.2 MAC based and Signature based Schemes
	6.8.2.3 The Comparisons of the Computational Overheads

	6.8.3 Communication Overheads
	6.8.3.1 CPDA Framework
	6.8.3.2 MAC based and Signature based Schemes
	6.8.3.3 The Comparisons of the Communication Overheads

	6.9 Experimental Evaluation
	6.9.1 Methodology and Evaluation Metrics
	6.9.2 Testbed Setup
	6.9.2.1 Software
	6.9.2.2 Hardware

	6.9.3 Parameters and Configurations
	6.9.4 Experimental Results
	6.9.4.1 Exp1: Costs of Cryptographic Algorithms
	6.9.4.2 Exp2: Costs of Data Authentication Algorithms
	6.9.4.3 Exp3: Performance of Data Authentication Services

	6.10 Chapter Summary

	Chapter 7 The Detailed Operational Steps for the Running Example
	7.1 Chapter Introduction
	7.2 Job Execution Flow
	7.3 MDA in Action
	7.4 Chapter Summary

	Chapter 8 Conclusions and Future Work
	8.1 Contributions
	8.2 Conclusions
	8.3 Future Work

	References
	Appendix A Symbolic Analysis Source Codes
	Appendix B The Execution Flows of the Kerberos and NSLPK Protocols
	B.1 Kerberos
	B.2 NSLPK

	Appendix C Algorithms Implementing the Methods of CPDA

