

Evolving a Secure Grid-Enabled,

Distributed Data Warehouse: A

Standards-Based Perspective

Xiaoyu Li

Evolving a Secure Grid-Enabled, Distributed Data

Warehouse: A Standards-Based Perspective

by

Xiao-yu Li

Dissertation

submitted in fulfilment

of the requirements

for the degree of

Magister Technologiae

in

Information Technology

in the

Faculty of Engineering

of the

Nelson Mandela Metropolitan University

Supervisor: Dr. Maree Pather

January 2007

 i

Declaration

I, Xiao-yu Li, hereby declare that:

• The work in this dissertation is my own work.

• All sources used or referred to have been documented and recognized.

• This dissertation has not previously been submitted in full or partial

fulfilment of the requirements for an equivalent or higher qualification at

any other recognized educational institution.

Xiao-yu. Li

12 January 2007

 ii

Abstract

As digital data-collection has increased in scale and number, it becomes an

important type of resource serving a wide community of researchers.

Cross-institutional data-sharing and collaboration introduce a suitable approach

to facilitate those research institutions that are suffering the lack of data and

related IT infrastructures.

Grid computing has become a widely adopted approach to enable

cross-institutional resource-sharing and collaboration. It integrates a

distributed and heterogeneous collection of locally managed users and

resources. This project proposes a distributed data warehouse system, which

uses Grid technology to enable data-access and integration, and collaborative

operations across multi-distributed institutions in the context of HV/AIDS

research.

This study is based on wider research into OGSA-based Grid services

architecture, comprising a data-analysis system which utilizes a data warehouse,

data marts, and near-line operational database that are hosted by distributed

institutions. Within this framework, specific patterns for collaboration,

interoperability, resource virtualization and security are included.

The heterogeneous and dynamic nature of the Grid environment introduces a

number of security challenges. This study also concerns a set of particular

security aspects, including PKI-based authentication, single sign-on, dynamic

delegation, and attribute-based authorization. These mechanisms, as supported

by the Globus Toolkit’s Grid Security Infrastructure, are used to enable

interoperability and establish trust relationship between various security

mechanisms and policies within different institutions; manage credentials; and

ensure secure interactions.

 iii

Acknowledgements

I am most grateful for the support and help of my supervisor, Dr Maree Pather,

and Mrs Bron Kaplan, language specialist in the School of ICT, both of whom

spent many hours correcting my special flavour of Sino-English.

Also, I am most grateful to my parents and brother, for their love, support and

encouragement. In addition, I would like to thank my colleagues, for their

assistance and understanding.

Furthermore, I would like to thank Nelson Mandela Metropolitan University,

whose financial support made this research possible.

 iv

Table of Contents

List of Figures ... viii

List of Tables..ix

List of Acronym ..x

Chapter 1. Introduction ...1

1.1. Problem-Context...2

1.2. Problem Statement ...6

1.3. Research Objectives ...6

1.4. Methodology..7

1.5. Layout of Dissertation ..7

Chapter 2. The Grid Approach to Cross-Institutional Collaboration...........9

2.1. Grid Technology ...9

2.1.1. Grid definitions ...10

2.1.2. Virtual organization ...12

2.1.3. Grid architecture ..13

2.1.4. Standards-Bodies ..17

2.1.5. Grid evolution ...17

2.1.5.1. The First Generation ...18

2.1.5.2. The Second Generation ...18

2.1.5.3. The Third Generation..21

2.2. Combining Database and Grid Technology...................................23

2.2.1. Current database-management technologies.........................24

2.2.1.1. Basic Concepts ...24

2.2.1.2. Single-Site DBMSs ..25

2.2.1.3. Federated DBMSs..27

2.2.1.4. Security...29

2.2.2. Data life-cycle classification...29

2.2.3. Structured data, sources and resources..................................32

2.2.4. Categories of structured data and its applications33

2.2.5. Integration strategies..35

2.3. Summary ...36

Chapter 3. Grid-Enabled Distributed Data-Warehouse Systems................37

 v

3.1. Overview of Data Warehousing and Data-mining38

3.2. Description of Example VO ...40

3.3. System Functional-Capabilities...41

3.3.1. Virtualization ..42

3.3.1.1. Data-access Transparency ..42

3.3.2. Data-collection ..43

3.3.2.1. Extraction and Transport ..44

3.3.2.2. Transformation and Loading ..45

3.3.3. Data operations ...46

3.3.3.1. Data-Access and Integration...46

3.3.3.2. Data Analysis and Interpretation..47

3.3.4. Data resource publishing and discovery.................................47

3.3.5. Provenance ..48

3.3.6. Resource management ...48

3.3.7. Job execution management..49

3.3.8. Metadata management...50

3.3.9. Monitoring...51

3.3.10. Security ..52

3.4. Summary ...53

Chapter 4. A Proposed System Framework...54

4.1. Evolution of Distributed Computing ..55

4.1.1. Traditional distributing computing ..55

4.1.1.1. Socket Programming ...56

4.1.1.2. RPC ..56

4.1.1.3. Java RMI..57

4.1.1.4. DCOM ..57

4.1.1.5. CORBA...58

4.1.2. Service-Oriented Architecture ..58

4.1.3. Web Services ...60

4.1.3.1. SOAP ..61

4.1.3.2. WSDL ...62

4.1.3.3. UDDI and WS-Inspection ...63

4.2. Open Grid Services Architecture ..64

4.2.1. Advantages of Web Services for Grid computing64

 vi

4.2.2. Service-Oriented view ..65

4.2.3. The Grid Service ...66

4.2.4. OGSA core services ..67

4.3. WSRF and WS-Notification ..70

4.3.1. OGSA requires stateful services..70

4.3.2. WS-Resource ...71

4.3.3. WSRF and WS-Notification family of specifications73

4.3.4. WSRF and OGSI ..76

4.4. System Framework...77

4.4.1. Infrastructure services ...80

4.4.2. Core services ...82

4.4.2.1. Publishing and Discovery Services82

4.4.2.2. Resource Management Services ...83

4.4.2.3. Job Execution Management Services86

4.4.2.4. Information Services ...89

4.4.2.5. Data Services..93

4.4.3. Grid portal ..97

4.4.4. Models..100

4.4.4.1. Data-Collection Model ..101

4.4.4.2. Data-Access and Integration Model102

4.5. Summary ...104

Chapter 5. Security...106

5.1. A Brief Security Primer ...107

5.2. Security Technology ...108

5.2.1. Firewalls ..109

5.2.2. Intrusion Detection Systems ..109

5.2.3. Cryptography..110

5.2.3.1. Symmetric Cryptosystems ..111

5.2.3.2. Asymmetric Cryptosystems ..111

5.2.3.3. Digital Signatures ..112

5.2.3.4. Digital Certificates ...113

5.2.3.5. Public Key Infrastructure..113

5.3. Grid Security Problems ...114

5.3.1. Terminology ..115

 vii

5.3.2. Security requirements ..116

5.3.3. Security policy...117

5.4. A Grid Security Architecture ..118

5.5. Grid Security Infrastructure ...121

5.5.1. Authentication...121

5.5.1.1. Kerberos and SSH ...122

5.5.1.2. Using PKI for Authentication ...122

5.5.1.3. Grid Certificate Authority ...125

5.5.2. SSO and delegation...127

5.5.2.1. Proxy Certificates ..127

5.5.2.2. Uses for SSO ..129

5.5.2.3. Uses for Delegation ...129

5.5.3. Authorization ..130

5.5.3.1. Grid Authorization Framework Concepts131

5.5.3.2. Grid Authorization Architecture ...134

5.5.3.3. Grid Authorization Framework ..136

5.5.4. GSI security model for OGSA...139

5.5.4.1. Web Services Security..139

5.5.4.2. OGSA Security Model ...143

5.5.4.3. GSI Security Model for OGSA ..145

5.6. Security Solutions ...147

5.6.1. Message protection ...148

5.6.2. Authentication, delegation and SSO150

5.6.3. MyProxy protocol ...151

5.6.4. Authorization ..154

5.6.4.1. SAML ...156

5.6.4.2. Shibboleth ..157

5.6.4.3. GridShib ...158

5.6.4.4. XACML Authorization Framework158

5.6.4.5. GT4 SAML/XACML Authorization Framework................159

5.6.5. Putting it all together..161

5.7. Summary ...164

Chapter 6. Conclusion..166

References ...172

 viii

List of Figures

Chapter 2

Figure 2.1 Grid Architecture ..14

Chapter 3

Figure 3.1 VO Description ...41

Figure 3.2 Building a Data Warehouse ..44

Chapter 4

Figure 4.1 SOA...59

Figure 4.2 SOAP Envelope ..62

Figure 4.3 WSDL Document..63

Figure 4.4 Relationships between OGSA, WSRF, and Web Services71

Figure 4.5 System Framework ...77

Figure 4.6 Service Framework ...80

Figure 4.7 Service Discovery ...82

Figure 4.8 Job Execution Management ..88

Figure 4.9 An Example of Monitoring ...91

Figure 4.10 Grid Portal Architecture..98

Figure 4.11 Data-Collection Model..100

Figure 4.12 Data-Access and Integration Model..104

Chapter 5

Figure 5.1 Grid Security Architecture ..120

Figure 5.2 X.509 v3 Certificate Structure ..123

Figure 5.3 Grid Authorization Architecture ...134

Figure 5.4 Web Services Security Specifications...141

Figure 5.5 Point-to-Point and End-to-End Security ...148

Figure 5.6 SOAP Message Implementing WS-Security150

Figure 5.7 MyProxy Protocol ...152

Figure 5.8 XACML Authorization Model..159

Figure 5.9 GT4 Authorization Framework...160

Figure 5.10 Security Model ..162

 ix

List of Tables

Table 4.1 Resource Management ... 84

 x

List of Acronyms

AA: Attribute Authority

ACL: Access Control List

ADO: ActiveX Data Objects

ADF: Access control Decision Function

AEF: Access control Enforcement Function

API: Application Programming Interface

CA: Certificate Authority

CAS: Community Authorization Service

CERN: European Council for Nuclear Research

CIM: Common Information Model

COM: Component Object Model

CORBA: Common Object Request Broker Architecture

CRL: Certificate Revocation List

CSG: Candidate Set Generator

DBMS: Database Management System

DCE: Distributed Computing Environment

DCOM: Distributed Component Object Model

DES: Data Encryption Standard

DMTF: Distributed Management Task Force

DN: Distinguished Name

DNS: Domain Name System

DSS: Digital Signature Standard

EPR: (WS-Addressing) EndPoint Reference

EPS: Execution Planning Services

ETL: Extract, Transform, and Load

FIPA: Foundation for Intelligent Physical Agents

FIPA-ACL: FIPA - Agent Communication Language

FTP: File Transfer Protocol

GGF: Global Grid Forum

GMA: Grid Monitoring Architecture

GPDK: Grid Portal Development Kit

 xi

GSI: Grid Security Infrastructure

GT: Globus Toolkit

GUI: Graphical User Interface

HTTP: HyperText Transfer Protocol

IdP: Identity Provider

IDL: Interface Definition Language

IDS: Intrusion Detection System

ITU-T: International Telecommunication Union -

Telecommunication Standardization Sector

JDBC: Java Database Connectivity

JM: Job Manager

JSP: Java Server Page

LCG: LHC Computing Grid Project

LDAP: Lightweight Directory Access Protocol

LHC: Large Hadron Collider

MAC: Message Authentication Code

MIDL: Microsoft’s Interface Definition Language

OCSP: Online Certificate Status Protocol

ODBC: Open Database Connectivity

OGF: Open Grid Forum

OGSA: Open Grid Services Architecture

OGSA-DAI: Open Grid Services Architecture - Data-access and

Integration

OGSA-DQP: Open Grid Services Architecture - Distributed Query

Processor

OGSA-EMS: Open Grid Services Architecture - Execution Management

Services

OGSI: Open Grid Services Infrastructure

OID: Object Identifier

OMG: Object Management Group

ONC: Open Networking Computing

OODBMS: Object-Oriented Database Management System

OSF: Open Software Foundation

 xii

PAM: Pluggable Authentication Module

PAP: Policy Administration Point

PCI: Proxy Certificate Information

PDP: Policy Decision Point

PEP: Policy Enforcement Point

PGP: Pretty Good Privacy

PIP: Policy Information Point

PII: Personally Identifiable Information

PKI: Public Key Infrastructure

QoS: Quality of Service

RA: Registration Authority

RDF: Resource Description Framework

RDN: Relative Distinguished Name

RDBMS: Relational Database Management System

RMI: Remote Method Invocation

RPC: Remote Procedure Call

SAML: Security Assertion Markup Language

SASL: Simple Authentication and Security Layer

SCT: Security Context Token

SDK: Software Development Kit

SDSC: San Diego Supercomputer Centre

SOA: Service-Oriented Architecture

SOAP: Simple Object Access Protocol

SP: Service Provider

SQL: Structured Query Language

SRB: Storage Resource Broker

SSH: Secure Shell

SSO: Single Sign-On

STS: Security Token Service

TLS: Transport Level Security

UDDI: Universal Description, Discovery and Integration

UNICORE: UNiform Interface to COmputing REsources

URI: Uniform Resource Identifier

URL: Universal Resource Locator

 xiii

VO: Virtual Organization

W3C: World Wide Web Consortium

WBEM: Web-based Enterprise Management

WSDL: Web Services Description Language

WSDM: Web Services Distributed Management

WSDM-MUWS: Web Services Distributed Management - Management

Using Web Services

WSDM MOWS: Web Services Distributed Management - Management Of

Web Services

WSIL: Web Services Inspection Language

WSRF: Web Services Resource Framework

X.509 EEC: X.509 End-Entity Certificate

XACML: eXtensible Access Control Markup Language

XML: eXtensible Markup Language

XML GED: XML Global Element Declaration

 1

Chapter 1.

Introduction

Digital data is now fundamental to all branches of science and engineering. It

plays a major role in medical research and diagnosis, and supports business and

governmental decision-making processes.

Individual collections of data typically specialise in holding information of

interest to particular communities. This information is held in databases, that

is, structured documents in structured assemblies of binary files. In an

increasing number of scientific disciplines, large data-collections are emerging

as important resources serving a wide community of researchers. The

communities of researchers that need to access and analyze this data are often

owned by multiple institutions and geographically distributed, as are the

computing and storage resources that these communities rely upon to store and

analyze their data.

Grid Computing (Foster & Kesselman, 1998) has emerged as a new field, using

multiple distributed resources to cooperatively work on a single application, as

there is a need for coordinate resource-sharing and problem-solving across

multiple institutions, both scientific and commercial. Applications in this

context include distributed computing for computationally demanding data

analysis (pooling of compute power and storage), the federation of diverse

distributed datasets, collaborative visualization of large scientific datasets

(pooling of expertise), and coupling of scientific instruments with remote

computers and archives. Both science and industry can benefit from Grids at

present.

In South Africa, there is an urgent need, for example, to establish

well-structured data and corresponding IT infrastructure (e.g., network and

programs) in order to facilitate data-based analysis in HIV/AIDS research areas.

In other words, it is necessary that the established resources (e.g., data,

computing facilities, and the Internet) can be used efficiently and effectively to

 2

promote cooperation between HIV research institutions. Grid Computing is a

suitable approach to realize these considerations.

This chapter, firstly, explores the HIV/AIDS research problem-context in South

Africa as an example of more general problems in which Grid Computing can

be applied. The difficulties and challenges implicit in this particular

problem-context make it a pertinent example. The research objectives,

methodology and the layout of this dissertation are described subsequently,

based on this problem-context.

1.1. Problem-Context

In South Africa, some HIV/AIDS research institutions suffer from a lack of

digital-data storage resources, data-management infrastructure, connectivity

infrastructure and corresponding data-intensive analysis facilities to perform

valid HIV/AIDS-specific research tasks. HIV/AIDS patients’ data is mostly

owned privately by medical institutions, such as hospitals and clinics. This

data is primarily used for recording patients’ personal and diagnostic

information and treatment histories, rather than for supporting

HIV/AIDS-specific data analysis. On the other hand, some research

institutions have already established their own data storage resources (such as

databases, data warehouses and data marts) to aggregate patients’ demographic

data, and have data-based analysis facilities to support their research.

However, this data can, typically, only be used for their own purposes.

Cross-institutional resource-sharing and systems-integration is an economical

way to provide high-performance computing to those institutions that lack

resources like server clusters, high-performance networks, huge data storage

resources or expensive analysis (data-mining) applications. Collaborative

HIV/AIDS research would obviously benefit from this approach, particularly in

developing countries. Ideally, this should enable data-sharing and facilitate

cooperation across multiple, disparate systems across research institutions, by

integrating existing standards and technologies and compensating for lack of

resources and infrastructure. Given the pandemic nature of HIV/AIDS, it is

imperative to build HIV/AIDS data storage-resources (e.g. to store patients’

 3

demographic data) and corresponding analysis services for access by all who

require such information. This dissertation examines how Grid Computing

and Data Warehousing can be utilised to provide interoperable collaboration

among research institutions and how secure access to “mined” information can

be provided.

To this end, data collection, data analysis and data-sharing are three key initial

steps towards collaborative HIV/AIDS research. They are elaborated below.

� Data-Collection

Data-collection in this problem-context implies collecting data from distributed

data-providers. It is used for building data storage resources on HIV/AIDS

patients (e.g. to allow for demographics-based analysis). This digital data is

typically stored in on-line operational databases that are owned by medical

institutions, such as hospitals or clinics, to support their day-to-day business

processing. The data is normally includes a patient’s personal information

(such as name, ID number, contact information, diagnosis, treatments, etc.), and

is frequently changed/edited.

However, a researcher might be interested in testing hypotheses and examining

trends in order to derive patterns from the statistical manipulation of this data.

For example, a researcher might need to gather as much as possible valid

HIV/AIDS patients’ data to test whether the number of HIV positive patients in

the Eastern Cape Province in South Africa has changed significantly since 2004,

or to establish what the average age of HIV-positive patients in the Eastern

Cape is. Access to such information (and the means for processing the data

and making it available) is crucial to HIV/AIDS research. Obviously, the

volume of data collected and processing-accuracy of the information produced

affects the analysis results directly. Data-collection typically involves the

collecting of the required data from multiple, disparate, physically-distributed

data-providers. The data in different institutions may be used for different

purposes, may be managed by a variety of management systems, and may be in

a range of possible formats.

 4

Various permutations for data-collection are possible. In the HIV/AIDS

demographics-based research, only the data relevant to demographics research

need be extracted, according to the requirements of the HIV/AIDS data analysis

(the relevant fact tables and dimension tables, in data warehousing parlance).

For example, HIV/AIDS patients’ names and ID would be relatively

unnecessary in this analysis, but patients’ age, treatment, diagnostic

information, etc., would be important. Moreover, personal names and IDs may

lead to ethical and privacy violations. The extracted data needs to be

transformed and loaded to appropriate destination storages; extract, transform

and load are typical data warehousing procedures.

In the problem-context under discussion, such data-collections would be

performed periodically. The collected data would only be updated when the

original data is changed.

� Data Analysis

In this scenario, assume HIV/AIDS research mainly concerns analyses based on

HIV/AIDS patients’ demographic data. Patients’ data is collected from

medical institutions through data-collection processes and becomes part of a

research institution’s data storage. This provides the fundamental data to

perform analysis tasks. Basically, the purposes of data analysis are: to identify

trends, collections/groupings and anomalies, to test theories and to derive

patterns. The development of specific data-analysis services’ is based on

researchers’ requirements. Typically, these are information-mining procedures

(programmatic functions) which may be called to interpret and satisfy a user’s

query. Various considerations emanate from this situation: resource-location,

resource-management, execution-management, security, etc.

� Data-sharing

Data-sharing is, obviously, an important capability to achieve collaborative

HIV/AIDS research. It implies access to, and integration of, data from

multiple data storage resources hosted by physically distributed institutions.

Data-collection can involve preparing the HIV/AIDS patients’ demographic

 5

data, to varying degrees. Each research institution could, for instance, build its

own aggregated data and data-analysis services. The collected data contents

would most likely be different because of different research interests or

directions. One institution may wish to perform a specific analysis task, but

the required data is only available at another institution.

Data-sharing across multiple institutions provides a way to supply data to the

analysis process with no need to collect new data, which may be

time-consuming and costly. However, if institution A should need data from

institutions B and C to complete its analysis, institution A should have the

ability to locate and then access the data at institutions B and C. On the other

hand, institutions B and C should be able to publish their data in order to notify

other institutions which data storage resources are accessible. The data from

institutions B and C may be managed by different data-management systems in

different formats, so the retrieved data must be transformed into a unified

format and integrated into a single data set which can be interpreted by

institution A’s analysis process. The variety of data formats, models or

schemas used by different institutions could create an interoperability issue.

Thus, while data-sharing is crucial to support cross-institutional collaborative

operations, it needs to be highly managed. Security issues, such as

authentication and authorization, must also be handled effectively.

In brief, the collaborative HIV/AIDS research scenario discussed above is

intended to introduce a feasible way to facilitate such research. Multiple

(HIV/AIDS research) institutions can share their data and participate in

collaborative operations. The ultimate goal is building data-intensive analysis

capabilities, based on aggregated (HIV/AIDS patients’ demographic) data from

multiple distributed institutions. Data from all involved institutions is

integrated as a virtual data pool; similarly information-mining applications can

constitute a virtual processing pool. Furthermore, the sharing relationship can

be initiated among certain parties, accommodating new participants

dynamically. Thus, the nature and composition of the virtual organization will

vary over time. Obviously, the sharing relationship, therefore, has to be highly

 6

controlled. The interoperability and security issues must be handled

pre-emptively, for example.

1.2. Problem Statement

Based on requirements exemplified by the HIV/AIDS collaborative research

problem-context, can a secure distributed data warehouse system be proposed

for providing the key capabilities required by such a scenario using the Grid

paradigm? Can such a system a (Grid) system provide the required

infrastructure and capabilities for data-sharing and data-based collaborative

operations such as managed data-analysis methods executed over managed

distributed resources?

A Grid system typically involves a complex environment comprising

heterogeneous resources, dynamic administration mechanisms, and various

security policies within different institutions. Due to the nature of the Grid

environment, a proposed Grid-enabled, distributed data warehouse system needs

to address wide-ranging problems, including: interoperability, resource

virtualization, scalability, and security. This is the focus of this research.

1.3. Research Objectives

The first objective is to provide justification for using OGSA-based Grid

architecture and distributed data warehouse resources as the point-of-departure

for this system. OGSA (Foster, Kesselman, Nick & Tuecke, 2002) stands for

“Open Grid Services Architecture” which is a widely adopted Grid architecture

for developing a Grid system. This objective contains two sub-objectives: the

first is exploring all the essential capabilities specified in OGSA; the second is

deriving (two) models from the defined capabilities for data-collection,

data-access and integration.

The second objective is to examine particular relevant security concepts,

including authentication, single sign-on, dynamic delegation and authorization

for the proposed system. One sub-objective here, is to define a security model

 7

that integrates all the identified components necessary to provide the overall

required protection for the proposed system.

1.4. Methodology

The methodology to be employed is primarily based on literature survey and

theoretical argument. The literature study is divided into two parts: the first is

a broad study of current Grid technology, including the concept, the essential

Grid architecture, and Grid evolution. This study intends to give a

comprehensive understanding of the Grid paradigm and related technologies.

The second part is the study of the OGSA specification and all its supporting

standards and specifications, together with related implementations. OGSA is

the fundamental standard for the proposed system framework. Around OGSA,

there are a number of supporting standards and specifications that help define

the standard interfaces and protocols for handling various aspects (e.g.,

interoperability, security, etc.) in an OGSA-based Grid system.

Three possible models are proposed and argued for as the solutions to the

problems of realizing the key capabilities (including data-collection, data-access

and integration) required by HIV/AIDS collaborative research, and addressing

various security issues.

1.5. Layout of Dissertation

This dissertation is organized as follows:

Chapter 1. Introduction

The problem-context, the research objectives and the research methodology are

introduced here.

Chapter 2. The Grid Approach to Cross-Institutional Collaboration

A comprehensive introduction to the Grid is followed by a discussion of an

approach combining Grid and database technology. In the area of Grid

technology, the concept, architecture, characteristics and evolution are

 8

discussed. Due to the weaknesses of current database technology in supporting

distributed, heterogeneous data sources, the Grid approach is employed to

enable data-access and integration across distributed institutions. Based on the

classification of data in a Grid environment and categories of data-based

distributed applications, integration strategies are discussed.

Chapter 3. Grid-Enabled Distributed Data Warehouse System

Based on the discussion of the problem-context and approach, this chapter starts

discussing the proposed distributed data warehouse system enabled by the Grid

technology. The features of the envisaged environment are followed by a

thorough analysis of the system’s functional requirements.

Chapter 4. System Framework

The chapter focuses on the framework for the proposed system according to the

study of existing Grid-related standards and specifications. This framework

recognizes all supportive standards and defines essential services to meet the

requirements discussed in chapter 3. Two models are included to illustrate

how to realize the main capabilities within the problem-context.

Chapter 5. Security

This chapter firstly identifies the main security concerns in this dissertation. A

broad study of the Grid security architecture, mechanisms, standards and

implementations is followed by the discussion of solutions for each security

aspect in the proposed system. A model is included to show how to combine

all necessary security components to provide protection to the proposed system.

Chapter 6. Conclusion

A summary of the findings of this research is followed by a discussion of

possible future research.

 9

Chapter 2.

The Grid Approach to Cross-Institutional

Collaboration

The term ‘e-Science’ (http://www.nesc.ac.uk/nesc/define.html) is used to

describe computationally intensive science that is carried out in highly

distributed network environments, or science that uses immense data sets that

require Grid computing. It was created by Dr. John Taylor, the Director

General of the United Kingdom's Office of Science and Technology, in 1999

and was used to describe a large funding initiative started in November 2000.

E-Science is essentially about global collaboration in key areas, including

scientific, engineering and medical research, and the next generation of

infrastructure that will enable it. One of its primary features is a new and

systematic way of collecting, managing, sharing, publishing and exploiting large

volumes of data. Another crucial feature is growing international,

multi-disciplinary collaboration, which jointly addresses challenging problems.

The e-Science approach requires new technological infrastructure as well as

new behaviours. Existing database technology has been implemented

extensively by distributed applications in both scientific and commercial areas.

It is a determinant in planning and implementing data-access and integration.

Grid technology has been adopted widely to enable efficient cross-institutional

resource-sharing and collaboration. The combination of database and Grid

technology introduces a suitable approach for building infrastructure in the

e-Science environment. Therefore, the essential features of the Grid and

database technology, and the approach combining them is introduced in this

chapter.

2.1. Grid Technology

Grid computing has emerged as a new field using multiple, distributed resources

to cooperatively work on a single application. Grid concepts and technologies

 10

were originally developed to enable resource-sharing within scientific

collaboration, first within early gigabit/sec test-beds, and then on increasingly

larger scales. Applications in this context include distributed computing for

computationally demanding data analysis (pooling of computer power and

storage), the federation of diverse distributed datasets, collaborative

visualization of large scientific datasets (pooling of expertise), and coupling of

scientific instruments with remote computers and archives. More recently,

similar requirements arose in commercial settings, not only for scientific and

technical computing applications, but also for commercially distributed ones,

including enterprise-application integration and business-to-business partner

collaboration over the Internet. Both science and industry can benefit from the

Grid at present. In brief, the Grid approach coordinates resource-sharing and

problem-solving across multiple organizations.

2.1.1. Grid definitions

Grid is not a new idea. The concept of using multiple distributed resources to

cooperatively work on a single application has been around for several decades.

The word ’grid’ is used by analogy with electric power grid, which provide

pervasive access to electricity. The term ‘the Grid’ was coined in the

mid-1990s to denote a proposed distributed computing infrastructure for

advanced science and engineering. In 1998, Foster and Kesselman defined a

computational Grid as, “a hardware and software infrastructure that provides

dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities” (Foster & Kesselman, 1998). Before this, efforts

to coordinate wide-area distributed resources were known as metacomputing

(Smarr & Catlett, 1992). Metacomputing represents applications enabled by

the construction of networked virtual supercomputers, or metacomputers. The

term ‘metacomputer’ denotes a networked virtual supercomputer, constructed

dynamically from geographically distributed resources linked by high-speed

networks. An example of such a system is the I-WAY experiment (DeFanti,

Foster, Papka, Stevens & Kuhfuss, 1996). Since the earliest definition, there

have been a number of other attempts to define what a Grid is. For example, “

A Grid is a software framework providing layers of services to access and

 11

manage distributed hardware and software resources”

(http://www.extreme.indiana.edu/ccat/glossary.html) or a “widely distributed

network of high-performance computers, stored data, instruments, and

collaboration environments shared across institutional boundaries”

(http://www.ipg.nasa.gov/ipgflat/aboutipg/glossary.html). In 2001, the

definition of a Grid was refined by Foster, Kesselman and Tuecke as:

“coordinated resource-sharing and problem-solving in dynamic,

multi-institutional virtual organizations” (Foster, Kesselman & Tuecke, 2001).

This is the most commonly used definition at present. From a commercial

view point, IBM (IBM Grid Computing,

http://www-1.ibm.com/grid/grid_literature.shtml) defines a Grid as “a

standard-based application/resource-sharing architecture that makes it possible

for heterogeneous systems and applications to share, compute and storage

resources transparently”.

A simple checklist (Foster, 2002
2
) is used to help understand the essence of the

Grid definition:

� Coordinating resources that are not subject to centralized control. A Grid

integrates and coordinates resources and users that live within different

control domains — for example: different administrative units of the same

company; or different companies; and addresses the issues of security,

policy, payment, membership, and so forth that arise in these settings.

� Using standard, open, general-purpose protocols and interfaces, a Grid is

built from multi-purpose protocols and interfaces that address such

fundamental issues as authentication, authorization, resource discovery, and

resource access. These protocols and interfaces are standard and open.

� Delivering non-trivial qualities of service. A Grid allows its constituent

resources to be used in a coordinated fashion to deliver various qualities of

service, relating, for example, to response time, throughput, availability,

and security, and/or co-allocation of multiple resource types to meet

complex user demands, so that the utility of the combined system is

significantly greater than that of the sum of its parts.

 12

2.1.2. Virtual organization

The Grid concept is about coordinated resource-sharing and problem-solving in

dynamic, multi-institutional virtual organizations. A set of individuals and/or

institutions, defined by such sharing rules, is called a virtual organization (VO)

(Foster et al., 2001). The LHC (Large Hadron Collider) Computing Grid

Project (LCG, http://lcg.web.cern.ch/LCG/) at European Council for Nuclear

Research (CERN) is a classic example of where VOs are being used. A VO

normally consists of a number of mutually untrusted participants with varying

degrees of prior relationship (perhaps none at all) who want to share resources

in order to perform some tasks.

The Grid is about resource-sharing. The sharing concerned is not primarily

file exchange, but rather direct access to computers, software, data storage,

sensors, networks and other resources, as required by a range of collaborative

problem-solving and resource-brokering strategies emerging in industry,

science, and engineering. This sharing is highly controlled. It is obviously

always conditional and based on factors like trust, resource-based policies,

negotiation and how payment should be considered. For example, the resource

providers and consumers define clearly and carefully just what is shared, who is

allowed to share, and the conditions under which sharing occur. Sharing

relationships can vary dynamically over time, in terms of the resources

involved, the nature of the access permitted, and the participants to whom

access is permitted. These relationships do not necessarily involve an

explicitly named set of individuals, but rather may be defined implicitly by the

policies that govern access to resources. The dynamic nature of sharing

relationships requires mechanisms for discovering and characterizing the nature

of the relationships that exist at a particular point in time. Sharing

relationships are often not simply client-server, but peer-to-peer: providers can

be consumers, and sharing relationships can exist among any subset of

participants. Sharing relationships may be combined to coordinate use across

many resources, each owned by different organizations. The same resource

may be used in different ways, depending on the restrictions placed on the

sharing and its goals. The Grid also includes coordinated problem-solving,

 13

which may need combinations of distributed data-analysis, computation and

collaboration. These characteristics and requirements define what is called VO.

The broad applicability of VO concepts makes the Grid paradigm important to

modern computing.

2.1.3. Grid architecture

This section introduces a high-level Grid architecture (Foster et al., 2001) that

identifies fundamental system components, specifies their purpose and function,

and indicates how they interact with one another. It does not provide a complete

enumeration of all required protocols (and services, APIs, and SDKs), but rather

identifies requirements for general classes of components. It is an extendible,

open architectural structure within which can be placed solutions to key VO

requirements.

Interoperability is the central issue to be addressed. In a VO environment: the

sharing relationship can be initiated among arbitrary parties, accommodating

new participants dynamically, across different platforms, languages, and

programming environments. In this context, the standard protocols and

syntaxes for general resource-sharing are required to enable interoperability

across organizational boundaries, operational policies and resource types. A

protocol definition specifies how distributed system elements interact with one

another in order to achieve a specified behaviour, and the structure of the

information exchanged during this interaction. This focuses on externals

(interactions) rather than internals (software, resource, characteristics), because

VOs complement, rather than replace, existing institutions. Sharing

mechanisms cannot require substantial changes to local policies and must allow

individual institutions to maintain ultimate control over their own resources. A

service is defined in terms of the protocol one uses to interact with it, and the

behaviour expected in response to various protocol-message exchanges. The

definition of standard services, i.e., access to computation and data, resource

discovery, co-scheduling, data replication, and so forth, enhance the services

offered to VO participants and also take out resource-specific details that would

otherwise hinder the development of VO applications. Moreover, Application

 14

Programming Interfaces (APIs) and Software Development Kits (SDKs) are also

need to be considered. These provide the programming abstractions required to

create a usable Grid. In brief, this approach to Grid architecture emphasizes

the identification and definition of protocols and services firstly; and APIs and

SDKs secondly.

As shown in Figure 2.1 (Foster et al., 2001), the components of this architecture

are organized into layers. The description of this architecture is high level and

places few constraints on design and implementation. Each layer is introduced

as follows:

 Figure 2.1 Grid Architecture

� The Fabric layer provides the resources to which shared access is

mediated by Grid protocols: for example, computational resources, storage

systems, catalogues, network resources, and sensors. A ’resource’ may be a

logical entity, such as a distributed file system, computer cluster, or

distributed computer pool. Fabric components implement the local,

resource-specific operations that occur in specific resources (whether

physical or logical) as a result of sharing operations at higher levels. At a

minimum, resources should implement enquiry mechanisms that permit

discovery of their structure, state, and capabilities on the one hand, and

resource management mechanisms that provide some controls of delivered

 15

quality of service on the other.

� The Connectivity layer defines core communication and authentication

protocols required for Grid-specific network transactions. Communication

protocols enable the exchange of data between Fabric-layer resources.

Communication requirements include transport, routing, and naming. The

alternatives to these protocols are drawn from TCP/IP protocol stack:

specifically, the Internet (IP and ICMP), transport (TCP, UDP), and

application (DNS, OSPF, RSVP, etc.) layers of the Internet layered protocol

architecture (Baker, 1995). The security aspects of the Connectivity layer

should be addressed based on existing standards, whenever possible. As

with communication, many of these security standards, which were

developed within the context of the Internet protocol suite, are applicable.

Authentication solutions for VO environments should have characteristics

such as single sign-ons, delegation, and user-based trust-relationships

(Butler et al., 2000) (Foster, Kesselman, Tsudik & Tuecke, 1998). They

should integrate with, rather than replace local security solutions. Grid

security solutions should also provide flexible support for communication

protection (e.g., control over the degree of protection, independent data unit

protection for unreliable protocols, and support for reliable transport

protocols other than TCP) and enable stakeholder control over authorization

decisions, including the ability to restrict the delegation of rights in various

ways.

� The Resource layer builds on the Connectivity layer communication and

authentication protocols in order to define protocols (and APIs and SDKs)

for the secure negotiation, initiation, monitoring, control, accounting, and

payment of sharing operations of individual resources. Resource-layer

implementations of these protocols call on Fabric-layer functions to access

and control local resources. Resource-layer protocols are concerned entirely

with individual resources, and hence ignore issues of global state and

atomic actions across distributed collections. Resource-layer protocols

can be divided into two primary classes: information protocols and

management protocols. Information protocols are used to obtain

information about the structure and state of a resource, for example, its

 16

configuration, current load, and usage policy. Management protocols are

used to negotiate access to a shared resource, specifying, for example,

resource requirements (including advanced reservation and quality of

service) and the operations to be performed, such as process creation, or

data-access. Since management protocols are responsible for instantiating

sharing relationships; they must serve as a “policy application point”,

ensuring that the requested protocol operations are consistent with the

policy under which the resource is to be shared.

� While the Resource layer is focused on interactions with a single resource,

the Collective layer contains protocols and services (and APIs and SDKs)

that are not associated with any one specific resource, but are rather global

in nature and capture interactions across collections of resources. The

collective components can implement a wide variety of sharing behaviours

without placing new requirements on the resources being shared, for

example, directory services, co-allocation, scheduling, and brokering

services, monitoring and diagnostics services, etc. Collective functions

can be implemented as persistent services, with associated protocols, or as

SDKs (with associated APIs), designed to be linked with applications.

Collective components may be tailored to the requirements of a specific

user community, VO, or application domain, for example, an SDK that

implements an application-specific coherency protocol, or a co-reservation

service for a specific set of network resources. Other collective

components can be more general-purpose.

� The Application layer comprises the user applications that operate within

a VO environment. Applications are constructed in terms of, and by calling

upon, services defined at any layer.

In summary, it is a standards-based open architecture that facilitates

extensibility, interoperability, portability, and code-sharing. It uses standard

protocols to make it easy to define standard services that provide enhanced

capabilities.

 17

2.1.4. Standards-Bodies

This section gives a brief overview of Grid standards-bodies. For Grid-related

technologies, tools and utilities to be taken up widely by the community at

large, it is vital that developers design their software to conform to the relevant

standards. The most important standards organization is the Global Grid

Forum (GGF, http://www.ggf.org). In September 11 2006, the GGF and the

Enterprise Grid Alliance merged to form the Open Grid Forum (OGF,

http://www.ogf.org).

OASIS (http://www.oasis-open.org) is a non-profit consortium that drives the

development, convergence and adoption of e-business standards, which is

having an increasing influence on Grid standards. Other bodies that are

involved with related standards efforts are the Distributed Management Task

Force (DMTF, http://www.dmtf.org/): Common Information Model (CIM) and

the Web-based Enterprise Management (WBEM). In addition, the World

Wide Web Consortium (W3C, http://www.w3.org) is also active in setting Web

services standards, particularly those that relate to eXtensible Markup Language

(XML) and Simple Object Access Protocol (SOAP).

2.1.5. Grid evolution

The Grid technology is evolving at a very fast rate. At present, three

generations of Grid systems are identified by De Roure (Eds.) (De Roure,

Baker, Jennings & Shadbolt, 2003): the first-generation systems were the

forerunners of the Grid; the second-generation systems focused on middleware

to support large-scale data and computation; and the current third-generation

systems shift the emphasis to distributed global collaboration, a service-oriented

approach and information layer issues. As discussed in section 2.1.1, the

commonly used definition of a Grid as “a flexible, secure, coordinated

resource-sharing among dynamic collections of individuals, institutions, and

resources”, emphasizes the importance of information aspects, essential for

resource discovery and interoperability. Current Grid projects are beginning to

take this further, from information to knowledge. These aspects of the Grid

 18

are related to the evolution of Web technologies and standards, such as XML to

support machine-to-machine communication and the Resource Description

Framework (RDF, http://www.w3.org/RDF/) (W3C, 2004
1
) (W3C, 2004

2
) to

represent interchangeable metadata. The Grid currently has a close

relationship with World Wide Web. Evolving Web technology will provide

the basis for the next generation of Grid systems.

2.1.5.1. The First Generation

The first-generation systems were recognised as forerunners of Grids. The

early to mid 1990s marked the emergence of the early metacomputing or Grid

environments. Typically, the objective of these early metacomputing projects

was to provide computational resources for a range of high-performance

applications. These projects differed in many ways, but they all had to solve a

number of similar problems, including communications, resource management,

and the manipulation of remote data, to be able to work efficiently and

effectively. Two representative projects in the vanguard of this type of

technology were FAFNER (http://www.npac.syr.edu/factoring.html) and

I-WAY (Foster, Geisler, Nickless, Smith & Tuecke, 1997). Both FAFNER and

I-WAY were highly innovative and successful. FAFNER was tailored to a

particular factoring application that was, in itself, trivially parallel and was not

dependent on fast inter-connectivity. I-WAY was designed to cope with a

range of diverse high-performance applications that typically needed a fast

inter-connectivity and powerful resources. However, both of them lacked

scalability.

2.1.5.2. The Second Generation

The second-generation systems focus on middleware to support large scale data

and computation. Middleware is generally considered to be the layer of

software sandwiched between the operating system and applications, providing

a variety of services required by an application to function correctly. Recently,

middleware has re-emerged as a means of integrating software applications

running in distributed heterogeneous environments. In a Grid, middleware is

used to hide the heterogeneous nature and provide users and applications in a

 19

homogeneous and seamless environment by providing a set of standardized

interfaces to a variety of services. The key second-generation Grid

technologies include core technologies, distributed object systems, resource

brokers and schedulers, complete integrated systems and peer-to-peer systems.

There are growing numbers of Grid-related projects, such as Globus and Legion,

dealing with areas such as infrastructure, key services, collaborations, specific

applications and domain portals. These projects represent the core technologies

of the second generation. The Globus project is a multi-institutional research

effort that seeks to enable the construction of computational Grids. Globus

(Foster & Kesselman, 1997) provides a software infrastructure that enables

applications to handle distributed heterogeneous computing resources as a single

virtual machine. A central element of the Globus system is the Globus Toolkit

(GT), which defines the basic services and capabilities required to construct a

computational Grid (Foster & Kesselman, 1999). The toolkit consists of a set of

components that implement basic services, such as security, resource location,

resource management, and communications. Globus has evolved from its

original, first-generation incarnation as I-WAY, through version 1 (GT1) to

version 2 (GT2) (Foster & Kesselman, 1998). The protocols and services that

Globus provide have changed as it has evolved, and its emphasis has moved away

from supporting high-performance applications towards more pervasive services

that can support virtual organizations. Legion (Grimshaw et al., 1997) is an

object-based metasystem which encapsulated all of its components as objects.

This method has all the normal advantages of an object-oriented approach, such

as data-abstraction, encapsulation, inheritance and polymorphism. It provides

the software infrastructure so that a system of heterogeneous, geographically

distributed, high-performance machines can interact seamlessly.

Earlier representatives of the distributed object system include the Common

Object Request Broker Architecture (CORBA, http://www.corba.org) and Jini

(http://www.jini.org). CORBA automates many common network

programming tasks, such as object registration, location, and activation; request

de-multiplexing; framing and error-handling; parameter marshalling and

de-marshalling; and operation dispatching. Although CORBA provides a rich

 20

set of services, it does not contain Grid-level allocation and scheduling services.

Jini has been designed to provide a software infrastructure that can form a

distributed computing environment that offers network plug and play. In Jini,

applications are normally written in Java and communicated using the Java

Remote Method Invocation (RMI) mechanism. The Common Component

Architecture Forum (Armstrong et al., 1999) attempts to define a minimal set of

standard features that a high-performance component framework would need to

provide in order to use components developed within different frameworks.

There are a number of systems available whose primary focus is batching,

resources scheduling and resource brokering. Condor

(http://www.cs.wisc.edu/condor/) is a software package for executing batch jobs

on a variety of UNIX platforms, in particular those that would otherwise be idle.

The major features of Condor are automatic resource location and job

allocation, check pointing, and the migration of processes. The Storage

Resource Broker (SRB) (Rajasekar & Moore, 2001) has been developed at San

Diego Supercomputer Centre (SDSC) to provide uniform access to distributed

storage across a range of storage devices, via a well-defined API. A key feature

of the SRB is that it supports metadata associated with a distributed file system,

such as location, size and creation date information. It also supports the notion of

application-level (or domain-dependent) metadata, specific to the content, which

cannot be generalized across all data sets. Nimrod-G is a Grid broker that

performs resource-management and scheduling of parameter-sweep and

task-farming applications (Buyya, Abramson & Giddy, 2000). The Nimrod-G

scheduler has the ability to lease Grid resources and services depending on their

capability, cost, and availability. It also supports resource discovery, selection,

scheduling, and the execution of user jobs on remote resources.

As the second generation of Grid components emerged, a number of international

groups started projects that connected these components into coherent systems,

called integrated systems. The European DataGrid project

(http://eu-datagrid.web.cern.ch/), led by CERN, is funded by the European Union

with the aim of setting up a computational and data-intensive Grid of resources

for the analysis of data coming from scientific exploration (Hoschek,

 21

Jaen-Martinez, Samar, Stockinger & Stockinger, 2000). The DataGrid is built

on top of the GT. The primary objective of the DataGrid project is

implementing middleware for fabric and Grid management, including the

evaluation, test, and integration of existing middleware and research and

development of new software as appropriate. Uniform Interface to Computing

Resources (UNICORE) (Almond & Snelling, 1999) is another important

integrated system that needs to be mentioned. It is a project funded by the

German Ministry of Education and Research. The design goals of UNICORE

include a uniform and easy-to-use Graphical User Interface (GUI), an open

architecture based on the concept of an abstract job, consistent security

architecture, minimal interference with local administrative procedures, and

exploitation of existing and emerging technologies through standard Java and

Web technologies. UNICORE provides an interface for job preparation and

secure submission to distributed supercomputer resources.

The traditional client-server model can be a performance bottleneck and a single

point-of-failure. Peer-to-Peer (P2P) computing (Clark, 2001) implemented by

several systems are examples of the more general computational structures that

are taking advantage of globally distributed resources. In P2P computing,

machines share data and resources, such as spare computing cycles and storage

capacity, via the Internet or private networks. Machines can also communicate

directly and manage computing tasks without using central servers. This

permits P2P computing to scale more effectively than traditional client-server

systems. Project JXTA (http://www.jxta.org/), created by Sun Microsystems, is

an open-source development community for P2P infrastructure and applications.

JXTA is a specification, rather than software.

2.1.5.3. The Third Generation

Current third-generation systems shift emphasis to distributed global

collaboration, a service-oriented approach and information layer issues. New

Grid applications desire to be able to reuse existing components and information

resources, and to assemble these components in a flexible manner. The

adoption of a service-oriented model and increasing attention to metadata are

 22

two key characteristics of third-generation systems. The third generation is a

more holistic view of Grid computing and can be said to address the

infrastructure for e-Science. By 2001, a number of Grid architectures were

apparent in a variety of projects, for example, the one introduced in section

2.1.3. Around this time, the emergence and wide adoption of Web services

technology (W3C, 2004
3
) introduced promising standards to support the

service-oriented approach. In fact, one research community, focussing on

agent-based computing, had already undertaken extensive work in this area:

software agents can be seen as producers, consumers and indeed, brokers of

services. Web services and software-agent technologies are closely aligned to

the third-generation Grid at present.

“The Open Grid Services Architecture (OGSA) Framework”, the Globus-IBM

vision for the convergence of Web services and Grid computing, was presented

at the GGF meeting held in Toronto in February 2002. It was initially

described as a “physiology” paper (Foster et al., 2002). It introduced a

service-oriented Grid architecture which tailors a Web services approach to

meet some Grid-specific requirements. The OGSA supports the creation,

maintenance, and application of ensembles of services maintained by VOs.

Here, a service is defined as a network-enabled entity that provides some

capability, such as computational resources, storage resources, networks,

programs and databases.

Web services provide interoperability to Grid computing. However, they do

not provide a new solution for many of the challenges of large-scale distributed

systems. Agent-based computing (Jennings, 2001) (Foster, 2004) is suggested

as another input to inform the service-oriented Grid vision. An agent “is an

encapsulated computer system that is situated in some environment, and that is

capable of flexible, autonomous action in that environment in order to meet its

design objectives” (Wooldridge, 1997). Agent-based computing is particularly

well suited to a dynamically changing environment, where the autonomy of

agents enables the computation to adapt to changing circumstances. The

Foundation for Intelligent Physical Agents (FIPA, http://www.fipa.org) is an

international organization, dedicated to promoting the commercial application

 23

of intelligent-agent technology, by openly developing specifications supporting

interoperability for agents and agent-based services. FIPA produces software

standards for heterogeneous and interacting agents and agent-based systems,

including extensive specifications. In the FIPA abstract architecture, agents

communicate by exchanging messages using speech act-based FIPA Agent

Communication Language (FIPA-ACL) (FIPA, 2002) to promote

interoperability. FIPA-ACL is a language with precisely defined syntax,

semantics and pragmatics that is the basis of communication between

independently designed and developed software agents.

2.2. Combining Database and Grid Technology

Key elements of e-Science are in-silico experimentation and design, and

information-based discovery through data-mining and visualization of

integrated, large data-collections. The maturity of database technology means

that it is used extensively in applications, including virtually all of those in the

e-Science domain, and in building the infrastructure itself. However, the

integration of large-size data-sets, the geographic distribution of users and

resources, and computationally-intensive analyses result in complex and

stringent performance demands not being satisfied by any existing

data-management infrastructure. The Grid approach provides a platform that

potentially enables this integration.

Combining Grid technology with database access and integration technology is

an essential approach to meeting those infrastructure requirements and to

supporting the evolving behaviours. The infrastructure should provide the

technology required to enable e-Scientists to make effective and convenient use

of structured data. The data-access and integration are primary targets to be

considered for two reasons. Firstly, a great many Grid applications include a

significant data-access and integration requirement. Virtually every scientific,

engineering, medical and decision-support application depends on accessing

distributed heterogeneous collections of structured data. Secondly, the Grid

itself uses many structured data-collections for its own operation and

administration. As the Grid technology becomes more sophisticated and

 24

autonomic, the number, volume and diversity of these collections will increase.

It is, therefore, imperative that Grid designers and developers support and use

systematic data-access and integration methods.

This section, firstly, reviews the current data-management technologies and

limitations, and then introduces the approaches that have been adopted to

support integration of data-intensive services, according to the scope of

applications and the variety of structured data.

2.2.1. Current database-management technologies

Data management technologies, such as Database Management Systems

(DBMSs), have been studied for several decades, and are well established.

The Grid introduces new challenges like scale, heterogeneity, distribution, and

autonomy. However, current data-management software has already addressed

these challenges to some extent, especially heterogeneity and distribution

transparency. This section reviews current database-management

technologies. A good database text (Elmasri & Navathe, 2000) provides more

related information.

2.2.1.1. Basic Concepts

A database is defined as an organized collection of data. DBMSs are frequently

chosen to provide a higher-level interface to manage structured data. A

schema is metadata that describes the logical structure of a database in terms of

some data model, such as the relational model. There may be additional

metadata available, describing the physical organization of the database, the

access policies and some of its enforced invariants, called integrity constraints.

Notations for describing subsets of data are called query languages. These

have been extended to include object-oriented features and to allow embedded

programming language expressions, such as Java static methods. The term

‘query language’ also includes those parts of the language used to perform

updates. A view mechanism represents the state of a subset of a database,

specified as a query. Views are used to give application developers a

controlled and simplified view of the data, appropriate to their task.

 25

Materialised views avoid the repeated evaluation of the query defining the view.

Updates are propagated to the view by a consistency protocol that may be

driven by triggers.

2.2.1.2. Single-Site DBMSs

Traditionally, DBMSs have focused on structured data, laid out in tabular form.

In recent years, they have been extended to provide support for non-tabular data,

including large objects, abstract data types, user-defined functions, and so on

(Stonebraker & Moore, 1996). The organization of data held in a DBMS tends

to be highly structured, and the logical groupings must conform to a defined

data schema. The grouping can be based on fields, records and files. In a

relational database management system (RDBMS), the grouping is based on

columns, rows, and tables, and in an object-oriented database (OODBMS), it is

based on objects and classes. XML (W3C, 2006
1
) has now become popular,

not only as a markup language for data exchange, but also as a data format for

semi-structured data. Therefore DBMSs have been adapted to store XML

data, either shredded into relational rows (without the markup), or stored intact

in the tables (with the markup). XML offers great flexibility in how the

structure, and the syntactical and semantic rules of data are conveyed, and how

structural links and non-linear pathways between data can be defined. A new

query language for XML, called XQuery (W3C, 2006
6
), is under design in the

W3C. Prototype implementations for XQuery are gradually becoming

available, including implementations that query over XML views of relational

data (Funderburk, Kiernan, Shanmugasundaram, Shekita & Wei, 2002).

DBMSs provide a high-level interface to manage structured data. This

interface virtualizes the details of the physical data organization, and provides

applications with a high level, declarative query language, SQL (Structured

Query Language). Besides declarative access, DBMSs also provide several

business-critical features such as transactional updates, data integrity, reliability,

availability, high performance, concurrency, parallelism, and replication. They

automatically control access to data, manage the referential integrity of data

within transactions, log changes made to data, audit database activity,

 26

synchronise data replicated in a distributed environment, and recover data to a

consistent state. Applications only need to specify what task they want to

perform, and do not have to program how the task is to be performed. DBMSs

also provide facilities to reorganize database contents in order to manage space

efficiently, to optimize queries, and to balance available resources dynamically.

For example, the DBMS optimizer automatically searches among several

possible implementations and chooses the best one. Most DBMSs support the

specification of detailed authorization and privacy mechanisms.

The efficient evaluation of statements in query languages is well developed, and

includes sophisticated data organizations, such as caching, indexes,

fragmentation and optimising transformations. This optimization has been

extended to distributed-queries necessary for integrating distributed resources

(Kossmann, 2000). The development of transaction mechanisms that deliver

atomicity, consistency, isolation and durability, has greatly simplified the task

of writing applications. More complex transaction mechanisms support larger

and longer-lived operations. Distributed transactions are supported by

standard two-phase commit protocols, e.g., Web Services Transaction

(WS-Transaction) (Cabrera et al., 2005). Standard mechanisms for connecting

programs to data typically establish a session, and then submit a series of query

statements within some transaction regimes. Each submission obtains a

response, either a result-set or a status-response, indicating whether the

execution has succeeded or has failed. DBMSs provide schema evolution,

representation of complex data, data-sharing, caching, effective management of

data resources, backup, and recovery. Schema evolution is the process of

changing the description of the data and how it may be used. As it is a

common operation, DBMSs support it and deal with the implicit changes

required to make the existing data comply with the new definition. DBMSs

also support efficiently implemented triggers: assertions or integrity constraints,

paired with actions, that fire, e.g., cause a transaction to abort, compensation

operations, or notifications, when they are triggered by an update.

Using standard mechanisms, such as Open Database Connectivity (ODBC) and

Java Database Connectivity (JDBC), the application program is independent of

 27

some aspects of the database to which it connects, and remote connection is

supported. ODBC and JDBC (SUN, 2002) are the most widely used

programmatic interfaces to access SQL DBMSs. They provide support for a

variety of database operations, including SQL query specification and

execution, transaction processing, etc. The popularity of Web services as a

method for programs to communicate with one another has introduced another

interface to relational DBMSs. It is now possible for Web service clients to

issue SQL requests and to invoke database stored-procedures (e.g., Web

Services Object Runtime Framework (IBM, 2001)). ADO.NET

(http://www.microsoft.com/data/ado/default.htm) is an application-level

interface to Microsoft's OLE DB data sources. Derived from the earlier

ActiveX Data Objects (ADO), it enables applications to query databases using

SQL, access information in a file store over the Internet, access email systems,

save data from a database into an XML file, and perform transactional database

operations. ADO.NET also supports a disconnected mode of operation, where

clients can work on cached copies (datasets) of prior query results without a

connection to the data source. However, all these interfaces still have further

limitations with respect to virtualization. JDBC and ODBC provide some

heterogeneity transparency, handling SQL DBMSs and a few other simple data

types (like comma-separated-value files). They do not handle many kinds of

data sources well, especially ones without database-like query and transaction

interfaces.

2.2.1.3. Federated DBMSs

To achieve performance and dependability, and to deliver multi-site data

services, many DBMSs are able to exploit high levels of parallelism and to

operate on distributed computers. A distributed database is one that has been

deliberately distributed over a number of sites, is designed as a whole

(Stonebraker, Aoki et al., 1996), and is subject to considerable centralised

control – local DBMSs may have different physical schemas even when there is

a shared global schema (e.g., there may be explicit fragmentation schemas).

 28

The data management community has developed federated database technology,

which provides unified access to diverse and distributed data (Sheth & Larson,

1990). In a federated database, many databases contribute data and resources

to a multi-database federation, but each participant has full local autonomy. In

a loosely-coupled federated database, the schemas of the participating databases

remain distinguishable, whereas in a tightly-coupled federated database, a

global schema hides (to a greater or lesser extent) schematic and semantic

differences between resources (McBrien & Poulovassilis, 2002) – single, logical

schema mapped to multiple physical schemas. Based on these and other more

detailed database achievements, there are products that provide access to and

integration of distributed data resources, e.g., IBM DiscoveryLink (Haas et al.,

2001) and Kliesli or K2 (Davidson et al., 2001). The WebSphere Information

Integrator (Lee, Magowan, Dantressangle & Bannwart, 2005) is the IBM

information-integration middleware that provides a range of integration

technologies: enterprise-search, data-federation, replication, transformation, and

event-publishing, to meet varied integration requirements.

In a federated architecture, a federated DBMS serves as middleware, providing

transparent access to a number of heterogeneous, distributed data sources. A

federated system appears to the application developer like a regular DBMS.

Applications can use any supported interface (including ODBC, JDBC, or a

Web service client) to interact with the federated DBMS. A user can run

queries to access data from multiple sources, joining and restricting, aggregating

and analyzing it at will, with the full power of a DBMS query language like

SQL or XQuery. A user can also update the data, if they have the right

permissions at the sources. Yet, unlike with JDBC, ODBC, or ADO, the data

sources in a Grid-based federated system need not be DBMSs at all, but, in fact,

could be anything, ranging from sensors to flat files to application programs to

XML, and so on.

An ideal federated DBMS provides good heterogeneity transparency and some

distribution transparency. A key limitation is that applications have to

explicitly specify the data sources in a federated query. This means that the

addition of new data sources can involve changing the application, typically a

 29

very expensive task. Each data source must also be explicitly registered to the

federated DBMS, along with its wrapper.

2.2.1.4. Security

DBMSs currently handle security on a per-data source basis. Data security

includes authentication, authorization and auditing. Current DBMSs systems

offer various “sign-on” mechanisms to identify the user. The simplest of these

mechanisms rely on trust; the DBMS assumes that the application above the

DBMS authenticates the user. A slightly more robust authentication

mechanism allows the application to provide a user ID and password, either as

plain text or encrypted. Some DBMSs also support more sophisticated

schemes, like Kerberos, which uses encrypted authentication tickets. Once a

user is authenticated, a DBMS must determine what data they may access, and

what tasks (query, update, create table, etc.) they may perform. SQL DBMSs

use “GRANT” and “REVOKE” statements to maintain permissions internally.

Authorization can be granted at the level of a single user or a group and can also

be managed by an external security service. An advantage of external security

services is that they can easily control access to multiple DBMS systems, thus

reducing the overhead of managing them. Most DBMS systems support

auditing of data-access to verify that authorizations are being enforced correctly.

Audit records can log who accessed the data, and what they did, and allow the

detection of unauthorized access. The main limitation of security support in

current systems lies in security across multiple sources. Authentication,

authorization, and auditing are typically enforced and managed separately for

each data source, even for the same user. This results in a loss of ownership

transparency, because applications have to separately handle security with each

data source.

2.2.2. Data life-cycle classification

Data in a Grid environment can be classified in different ways. No attempt was

made in the analysis exercise to distinguish between data, information, and

knowledge when identifying requirements, on the basis that one worker’s

 30

knowledge can be another worker’s information or data. However, a distinction

can be drawn between each stage in the data life cycle that reflects how

data-access and operations vary. This classification is based on a combination

of creation, purpose, and usage. The types of data in this classification are: raw

data, reference data, processed data, results data, derived data and metadata.

� Raw data is created and put out from a data source, either as an instrument or

an application program, for example, meteorological data from remote

sensors or astrophysical data from optical surveys. The structure and

format of raw data are determined by the data source. Instrument data

sources tend to create raw data with limited value until processing has taken

place. A raw data set is characterized by being read-only, and is normally

accessed sequentially. It may be repeatedly reprocessed and is commonly

archived once processing is complete. Therefore, the Grid needs to provide

the ability to secure this type of data off-line and to restore it back on-line.

� Reference data is frequently used in processing raw data, when

transforming it, as control data in simulation modelling, and when analyzing,

annotating, and interpreting data, for example, the constants for a map

projection or a coordinate system. Common types of reference data

include: standardized and user defined coding systems, parameters and

constants, and units of measure. By definition, most types of reference data

seldom change. A feature of all types of reference data is that their values

remain static. Although classification systems and ontology are defined as

metadata, their shorthand codes are a type of reference data.

� Processed Data. Almost all raw data sets undergo processing to apply

necessary corrections, calibrations, and transformations. Producing

processed data sets may involve filtering operations to remove data that fails

to meet the required level of quality or integrity, and data that does not fall

into a required specification tolerance. Conversely, it may include merging

and aggregation operations with data from other sources. Therefore, the

Grid must maintain the integrity of data in multi-staged processing, and

should enable check-pointing and recovery to a point in time, in the event of

failure. It should also provide support to control processing through the

 31

definition of workflows and pipelines, and enable operations to be optimized

through parallelization.

� Result data is created as the output of a data retrieval or interrogation

operation, normally within an application, or when examining data content

during the discovery process. Result data sets are subsets of one or more

database that match a set of pre-defined conditions. Typically, a result

data set is extracted from a database for the purpose of subjecting it to

focused analysis and interpretation. The types of application functionality

that produce result-data output include algorithmic analysis, simulation, and

data transformation. It may be a statistical sample of a very large data

resource that cannot be feasibly analyzed in its entirety, or it may be a subset

of the data with specific characteristics, e.g., gene-expression data. A result

data set may also be used as input data for a simulation run in a modelling

application. It may also be a set reference data for a visualization

application, e.g., map projection reference data, and oceanographic data for a

regional study. Users may choose to create a copy of the result data and

retain it locally for reasons of performance or availability.

� Derived data sets are created from other existing processed, result, or other

derived data. Statistical parameters, summarizations, and aggregations are

all types of derived data that are important in describing data, and in

analyzing trends and correlations. There are two main ways to create

derived data. The first is by performing statistical analysis on other data to

create statistical parameters, summaries and aggregations. This type can

be considered to be a form of results data, and it is particularly important

when analyzing trends and correlations in data. The second way to

produce derived data is through recording observations on, or drawing

inferences from, other data, or any subject (e.g., image, scientific sample or

environment) under investigation. An observation is an annotation, or a

description, of the features, properties or behaviour of data, experiments, or

subjects. An inference is a deduction or conclusion drawn from analysis

and interpretation. Inferences add to understanding and knowledge, and

they are used to explain correlations, trends and anomalies. They may

also include evidential reasoning. An important feature of derived data

 32

created during analysis and interpretation is volatility. Data can change as

understanding evolves, and as hypotheses are refined over the course of

study. Equally, derived data may not always be definitive, particularly in

a collaborative work environment. For this reason, it is important that the

Grid provides the ability to maintain personalised and multiple versions of

inference data.

2.2.3. Structured data, sources and resources

This section clarifies several terms used in this dissertation. These terms are

“imported” from database technology and are critical to data manipulation in the

Grid environment.

The term ‘structured data’ is used to denote any data whose structure is

explicitly defined, so that operations may exploit that structure, e.g., queries

may extract subsets of data based on it. Typically, this is relationally

structured data or an XML document. However, it may be binary data, for

which there is an explicit structure definition, and software that exploits that

structure. One of the goals of data-access and integration is to treat all of this

data, whatever its origin, within a uniform framework (Abiteboul, Buneman &

Suciu, 1999).

A ‘data source’ denotes any facilities, including instruments, devices, or

application programs that create and output structured data. A data source

need not be connected to the Grid infrastructure, or defined in a Grid

environment in order to do this. The Grid must provide the ability to capture

output data directly from a data source that is connected to a Grid environment,

and it must provide the ability to import output from a data source that is not

connected. It must also have the ability to integrate output with existing data in a

Grid environment, e.g., an historical processed output, and make the combined

result data available for pseudo-real time analysis and interpretation. This type

of ability is necessary to enable dynamic monitoring and control of other types of

Grid resources.

A ‘data resource’ is a persistent data store held in either file structures or in

 33

DBMSs in a Grid environment. It has an owner and a name, and is stored at a

physical location in a file system or in a raw device. There are no constraints

over type, structure, volume, or status of the content a data resource can hold.

A data resource may conform to an agreed standard, or be totally

owner-defined. In a Grid environment, a data resource should be readable by

someone other than the owner. Users can be granted privileges to read all or

part of its contents, to create new data, and to modify and delete data content.

The Grid must support any type of data resource, such as relational database,

XML database or file system. It must also provide the ability for data owners

and custodians to manage data resources online. Data resource replication

across multiple sites must also be provided in order to satisfy the service level

requirements identified for a Grid environment.

2.2.4. Categories of structured data and its applications

Five categories of structured data illustrate diversity and prevalence. This

diversity needs to be considered in approaches to data-access and integration,

primarily because of the many different usage patterns.

� Primary structured data is usually used for recording observations by

scientists and instruments. Direct recording in databases also supports

many other forms of data-collection, from a field-worker’s personal

record-keeping to the output of highly automated laboratories.

� Ancillary data represents the structured metadata that is used to support

bulk binary or structured data. Several forms of structured metadata are

used for different purposes. Technical metadata is used to support

management technology that underpins data Grid operations, and also used

to organize the interpretation of primary data. Application metadata

guides the interpretation of the primary data. Data products, including

summaries, catalogues and indexes that are produced by successive steps in

deriving information from the primary data, may also be treated as primary

data by some scientists and as metadata by others.

� Collaboration data is that collected to enable scientific information to be

shared quickly and precisely. Scientists increasingly collaborate by

 34

recording and sharing data via databases, normally using agreed

terminologies. Groups of scientists have communicated by writing to

publicly available structured data-collections. This leads to many

collections of related data, each curated by a particular group, who impose

standards and structure. Mechanisms have emerged for others to annotate

some of the collections in independently stored databases that refer to data

in curated collections.

� Personal data is assembled by, or about, individual users. It is, typically,

private and may contain profile data, such as preferences and re-usable

working methods, digital laboratory notebooks, representations of work in

progress and personalised workflow scripts.

� Service data is used to provide a Grid, data-access and integration

infrastructure and other e-Science-enabling technology, for example, data in

registries, that describing services, defining authorization policies,

describing progresses, enacting work flows and defining the current states

of a system. Current systems include: the Grid Information Services

(Dinda & Plale, 2001) and the Spitfire (Bell et al., 2002), which use

relational storage to provide database administration, user management,

data-dictionary access and statement evaluation.

In addition to the variety of structured data, the categories of applications also

need to be considered to understand the requirements more clearly. For

example, each e-Science application needs different combinations of data from

multiple data resources. The application programs may retrieve data from data

resources held at different sites, and the result of queries may be set as part of

the workflow organizing the whole computation. Moreover, new discoveries

become possible as scientists mine correlations and anomalies from multiple

sources. This is becoming a major modus operandi for scientific collaboration

(Pearson, 2002). More and more data will be recorded and organized as

structured resources, available to large communities of scientists from many

disciplines. More and more investigations will involve accessing subsets of

these resources, extracting specific data from each, and using it in combination

to test or develop some or other scientific models.

 35

2.2.5. Integration strategies

Three integration strategies were identified based on the categories of structured

data and applications (Atkinson et al., 2004).

� The virtual database introduces the ideal approach. It allows a set of

databases to be presented as a single, integrated view with a single,

federated schema, so that users then use them directly, unaware of the

separate databases behind the view. The concept of a virtual database

introduces transparencies that should be considered when designing any

integration schema.

� Bespoke integration. Many of scientific projects combining multiple

data resources depend on the application users developing their own

integration systems, including queries, programs, data flows and

workflows, specific to a particular project. The approach, that partitions

the integration task into queries, program execution construction of

intermediate data resources, explicit data transfers and transformations, and

updates to data resources holding data products, requires much investment

in designing, implementation, tuning, maintaining and operating. The

Grid provides mechanisms for introspection of resources and services to

support tools, dynamic adaptation and operation validation. It also enables

query and result delivery, program and data transport, scheduling of the

stages of the evaluations, and progress monitoring. These Grid functions

will be used by the individual generic data-access and integration

components and explicitly by code, written by the application developers.

� Incremental integration. A virtual database is the ideal goal. It is

unlikely that the ideal will ever satisfy all requirements. Hence, scientists

often take creative steps to combine data in new ways that involve encoding

the science. In such cases, the arrangement for processing large volumes

of data, at the limits of available computational resources, will be developed

and negotiated. However, much scientific, diagnostic and analytic work

requires repetitive routines. These repetitive processes generally operate

in a relatively stable context with pre-chosen, mostly read-only data and

established workflows. Such cases are supported today by products such

 36

as IBM DiscoveryLink.

2.3. Summary

This chapter gives a comprehensive introduction of the Grid technology,

including its concept, architecture, evolution and the state-of-the-art. It can be

used with federated database systems to enable data-access and integration

across multiple distributed institutions in a virtualized, transparent manner.

The combination of database technology and Grid technology thus introduces a

suitable approach for realizing a VO, as depicted in the HIV/AIDS collaborative

research problem-context. Database concepts discussed in this chapter will be

extrapolated into the use of data warehousing, which will be discussed in the

next chapter.

 37

Chapter 3.

Grid-Enabled Distributed Data-Warehouse

Systems

As illustrated earlier, the Grid concerns coordinated resource-sharing and

problem-solving in dynamic, multi-institutional VOs. The combination of

database and the Grid technology introduces a great opportunity to provide

cross-institutional data-access and integration for multi-institutional

collaboration and problem-solving within a specific problem domain. In the

example of HIV/AIDS collaborative research described in chapter 1,

data-collection from distributed data-providers, data analysis and sharing across

multiple institutions are three key elements to realize collaborative HIV/AIDS

research. This problem domain will be used to elucidate important concepts in

this chapter.

Building data-analysis and data-mining methods (Pyle, 2003), (Groth, 1997),

(Westphal & Blaxton, 1998) over data warehouses is a traditional approach to

aggregate data and supply data-intensive analysis ability within one institution’s

boundary. In the context of HIV/AIDS collaborative research, it is imperative

to build data warehouses for storing HIV/AIDS patients’ (demographic) data

collected from medical institutions, and to develop data-mining and

data-analysis methods over established data warehouses. Data warehouses are

essentially databases. Compared to on-line operational databases, data

warehouses contain aggregated data which are not changed frequently. They

represent a most suitable data source for information-mining and analysis

operations.

This dissertation proposes a Grid-enabled, distributed data-warehouse system

designed to facilitate HIV/AIDS collaborative research. It uses the Grid

technology, combined with multiple data warehouses, to realize all required

capabilities required by this type of research. Data warehouses within different

institutions are primary data storage resources, which are used for different

 38

purpose compared to on-line operational databases. Institutions may also have

other kind of data storage resources, such as single databases and data marts.

They are all essentially databases that may allow external institutions access

conditionally. In this system, either data warehouses or data marts are all

considered as data resources, which may be available from a variety of

infrastructures and in a range of formats. These databases and data-analysis

services construct the resource fabric of the proposed system. For building a

data warehouse through data-collection, the Grid is used to operate the

workflows that populate the data warehouse. For data-sharing, the Grid

provides access to data warehouses or data marts. Other Grid capabilities

include coordinating the data-sharing and handling interoperability and security

challenges in the system. Further capabilities include resource-discovery and

management, job scheduling, metadata management, authentication,

authorization, etc.

The main concerns of this dissertation are to define a workable and feasible

framework in-the-large, and to address security issues within the pre-defined

VO environment, by using existing standards, specification and technologies.

The envisaged framework contains a rich set of components for providing

different capabilities, such as data-collection, access, integration, authentication,

and authorization etc., according to the requirements of the proposed system.

Identifying specific data-mining and data-analysis methods to be used is beyond

the scope of this dissertation. In this chapter, the background of data

warehouse and data/information-mining will be introduced, initially. The

proposed VO environment, and the requirements of the Grid-enabled,

distributed data warehouse system will be described in detail subsequently.

3.1. Overview of Data Warehousing and

Data-mining

A data warehouse is a subject-oriented, integrated, non-volatile, and

time-variant collection of data in support of management’s decision (Inmon,

1996). It contains granular corporate data (Inmon & Hackathorn, 1994). It is

a logical collection of information, gathered from many different operational

 39

databases, used to create business intelligence that supports business-analysis

activities and decision-making tasks. Primarily, it is a record of an enterprise's

past transactional and operational information, stored in a database designed to

favour efficient data analysis and reporting. Basically, a data warehouse

contains the aggregation of a company’s data that is prepared to support

data-based analysis operations.

Extract, transform, and load (ETL) is a process in data warehousing that

involves extracting data from outside sources, transforming it to fit business

needs, and ultimately loading it into a data warehouse. The first part of an

ETL process is to extract data from different source systems. Common data

source formats are relational database and flat files, but may include

non-relational database structures. Extraction converts the data into a format

for transformation processing. The transformation phase applies a series of

rules or functions to the extracted data to derive the data to be loaded. The

load phase loads the data into a data warehouse. Depending on the

requirements of an organization, this process varies widely. Some data

warehouses merely overwrite old information with new data. More complex

systems can maintain a history and audit trail of all changes to the data. While

an ETL process can be created using almost any programming language,

creating one from scratch is quite complex. Increasingly, companies are

buying ETL tools to help in the creation of ETL processes. A good ETL tool

(e.g., SQL Server Integration Services) must be able to communicate with the

many different relational databases and read the various file formats used

throughout an organization.

Data-mining is fully integrated with a data warehouse and flexible interactive

business analysis tools. Many definitions of data-mining exist. Hand,

Mannila and Smyth define it as, “The analysis of (often large) observational

data sets to find unsuspected relationships and to summarize the data in novel

ways that are both understandable and useful to the data owner” (Hand, Mannila

& Smyth, 2001); it can also be defined as: "The nontrivial extraction of implicit,

previously unknown, and potentially useful information from data" (Frawley,

Piatetsky-Shapiro & Matheus, 1992). The essence of data-mining is the

 40

finding of structure in data. It primarily provides these facilitaties:

� Automated prediction of trends and behaviours. Data-mining

automatically finds predictive information in large databases (e.g., linear

regression makes predictions for all input values).

� Automated discovery of previously unknown patterns. A pattern refers

only to the restricted regions of space spanned by the variables.

Data-mining tools search databases and identify previously hidden patterns

in one step.

Data-mining tools (e.g., SQL Server Analysis Services) can analyze massive

databases in minutes, if these tools are implemented on high-performance,

parallel-processing systems. Faster processing allows users to automatically

experiment with more models to understand complex data.

3.2. Description of Example VO

Collaborative HIV/AIDS research introduces a dynamic environment that

consists of multiple, physically distributed institutions and/or individual

researchers. The proposed Grid-enabled, distributed data warehouse system –

for this problem domain - is essentially a Grid system intended to provide

infrastructure-level capabilities to facilitate data-collection, data-sharing across

multiple boundaries, and handle issues such as interoperability or security. All

involved institutions participate in a VO that integrates all accessible

heterogeneous data resources and users. Figure 3.1 illustrates the envisaged

VO environment. The participants could be either HIV/AIDS institutions or

individual HIV/AIDS researchers. The participant institutions are considered

as resource providers, and, at the same time, as resource consumers.

Individual researchers are solely considered as resources consumers. The data

warehouses, data marts or other kind of data storage resources, hosted by

participant institutions are all considered as data resources. The data-mining or

data-analysis services are considered as computational (processing) resources.

Resources are variably physically distributed within either one institution’s

boundary or federally across multiple institutions. Data and computational

 41

resources within each participant institution form the resource fabric in this

system.

VO for HIV/AIDS

Collaborative Research

Participants in Institution

A can use service in

Institution B

Institution C

Data ServiceService

Participants in Institution C

can access data in

Institution A

Individual Researcher D

Institution B

Data Service Data

Individual Research D is

allowed to use data in

Institution B

Institution A

Data Service Data

Figure 3.1 VO Description

For example, the users in Institution C may need to retrieve data from Institution

A to complete its data-analysis tasks/services. Institution A may need to use

the data-analysis service in Institution B to perform another data-analysis task.

A sharing relationship can be created across all three institutions,

accommodating new participants dynamically; this can occur across different

platforms, different DBMSs, and different programming environments. For

example, Institution A may use an ORACLE database, which is hosted in a

Java-Linux environment, and Institution B may use a SQL Server database in

a .NET-Windows environment. Subsequent sections will describe how the

sharing is controlled and how interoperability and security is to be handled in

the proposed system.

3.3. System Functional-Capabilities

The proposed Grid-enabled, distributed data-warehouse system needs to provide

a set of capabilities to enable data collection from distributed data sources, and

 42

data-sharing across multiple and dispersed HIV/AIDS research institutions in

pre-defined VO. This section will discuss necessary functional capabilities of

the proposed system based on (Foster, Gannon, Kishimoto & Von Reich, 2004
2
)

(Von Reich et al., 2004) (Foster et al, 2006) (Atkinson et al., 2003) (Atkinson et

al., 2004) (Pearson, 2002). These capabilities include data-collection and

operation, resource-management, job-execution management, security,

activity-monitoring, metadata-management, data provenance, and data resource

publishing and discovery.

3.3.1. Virtualization

The fundamental value proposition of a Grid system is virtualization, or

transparent access to distributed computer resources. Grids need to provide the

ability to virtualize remote resources and capabilities, and make them appear as

contiguous entities to end-user applications. For a data-intensive application to

derive value from a Grid, this virtualization needs to include federated data

sources as well. For example, a virtual database integrates a set of distributed

databases presented in a single view, with a single federated schema, that could

be used directly. Generally, data-access and processing in a Grid environment

require two sets of transparencies: one that presents a unified view of data sources

to applications accessing data, the second is a transparency for data-processing

that presents a unified view of computational resources to applications processing

data. Transparent access to distributed data sources is, therefore, a fundamental

requirement for a Grid-enabled, distributed (HIV/AIDS) data-warehouse system.

3.3.1.1. Data-access Transparency

� Heterogeneity Transparency. The access mechanism should be

independent of the actual implementation of data sources (such as whether it

is a flat file system, a DB2 data base, or an Oracle database, etc.). Even

more importantly, it should be independent of the structure (schema) of the

data source. For example, a data source should be allowed to rearrange its

data across different tables without affecting applications.

� Name Transparency. An application should be able to access data

 43

without knowing its name or location. Some systems, like DNS (Domain

Name System) and distributed file systems, provide a URL (Universal

Resource Locator) or name as levels of indirection, but this still requires

knowing the exact name of the data object. Instead, data-access should be

via logical domains, qualified by predicates on attributes of the desired

object. For example, in the proposed system, an HIV/AIDS researcher

may want to calculate the total number of HIV-positive patients in a

specific age group. “Patients” is the logical domain, spanning multiple

HIV/AIDS research institutions. The researcher should not have to

specify which institution’s data warehouse or database should be used in the

query; rather a separate discovery service should be used by the query

processor to map logical domains to data sources. Name transparency

includes the traditional notions of location and replication transparency.

� Ownership and Costing Transparency. If Grids are successful in the

long term, they will almost certainly evolve to span even virtual

organizational boundaries, and will involve multiple autonomous data

sources. As far as possible, applications should be spared from separately

negotiating for access to individual sources, whether in terms of access

authorization, or in terms of access costs.

3.3.2. Data-collection

Data-collection, as discussed in Chapter 1, primarily focuses on providing

required processes to build data warehouse for the institutions which have not

yet built their own aggregated HIV/AIDS patients’ data storage. A data

warehouses is constructed through a set of processes called ETL services.

Figure 3.2 illustrates a typical approach to building a data-warehouse system.

Data-collection essentially initiates the ETL process to populate a data

warehouse.

 44

 Figure 3.2 Building a Data Warehouse

3.3.2.1. Extraction and Transport

The first part of an ETL process is to extract the data from the distributed

sources. Each data source may use different organizations or formats, such as

relational database, and flat files. The extracted data needs to be formatted for

transformation processes. In the proposed (HIV/AIDS) distributed

data-warehouse system, the extraction process comes from data-providers,

because the data sources are mostly on-line operational databases within

multiple institutional boundaries. In this system, the data-providers are

responsible for providing extract components according to the data collectors’

requirements. The extracted data can be formatted as binary files which will

be submitted to data collectors. It is necessary to define the data and data-file

schema which are stored as metadata in a data-providers’ metadata repository.

Data schema identifies which data is required by subscribers. A data file

schema is a logical structure of an extracted data file. It identifies the data

field name, format, etc., required by the subscribers. Both data and data file

schema must be predetermined for both the data provider and the data collector.

This metadata ensures that all data-providers supply data in a uniform format,

usable by subscribers (users submitting queries). When an extract process

 45

starts, it needs to reference the local metadata repository first to transform the

data at this level. The extracted binary data files, combined with a information

file in XML format, are either submitted by data-providers or retrieved by

data-subscribers periodically by, for example, using FTP (File Transfer

Protocol). The added information file contains descriptive information such as

create-time, data-source, destination-name, etc.

3.3.2.2. Transformation and Loading

The transformation phase applies a series of rules or functions to the extracted

data to derive the data to be loaded. These transformation processes depend on

the requirements of the data warehouse system. The transformation types

include:

� Selecting only certain columns to load;

� Translating coded values (e.g., if the source system stores M for male and F

for female, but the warehouse stores 1 for male and 2 for female);

� Encoding free-form values (e.g., mapping "Male" and "M" and "Mr" onto

1);

� Deriving a new calculated value (e.g., sale_amount = qty * unit_price);

� Joining together data from multiple sources (e.g., lookup, merge, etc);

� Summarizing multiple rows of data (e.g., total patients for each region);

� Generating surrogate key values;

� Transposing or pivoting (turning multiple columns into multiple rows or

vice versa).

The loading phase loads the data into the data warehouse. Depending on the

requirements of the owners of data warehouse, this process varies widely. For

example, some data warehouses merely overwrite old information with new

data. However, more complex systems can maintain a history and audit trail of

all changes to the data which is contained in a metadata (information) file

submitted with the extracted data file.

 46

3.3.3. Data operations

The ability to retrieve data is a basic requirement in the Grid-enabled,

distributed data warehouse system. Users must be able to retrieve selected

data directly into Grid applications.

3.3.3.1. Data-Access and Integration

Data-access and integration provide the capabilities to enable cross-institutional

data-sharing. Data-access generally involves the retrieval, insertion or

modification of data, which may be available on a variety of platforms and in

various formats. As pointed out previously, VOs typically contain diverse data

resources with different storage systems, data types, data models and access

mechanisms. Data-access primarily focuses on querying data from distributed

and diverse data warehouse systems in order to provide uniform support for data

analysis and data-mining. Data warehouses contain aggregated historical data

that cannot be updated frequently. However, the ability to modify and insert

still needs to be provided. The distributed data warehouses either reside in one

institution or across multiple institutions. Clients from different institutions

need to query data remotely from multiple data resources and retrieve result data

sets from the local site for processing. These clients typically establish a

session and then submit a series of query statements within some transaction

regime. Each submission gets a response: either a result data set or a status

report indicating whether the execution succeeded or failed. When linking

data resources, the system must provide the ability to use data in one resource as

the matching criteria or conditions for retrieving data from another resource,

e.g., to, perform a sub-query. The system must be also able to construct

distributed queries when the target data resources are located at different sites,

and must be able to support heterogeneous and federated queries when some

data resources are accessed through different query languages.

Data integration is the ability to combine data residing at different resources and

to provide the user with a unified view of this data (Lenzerini, 2002). It

ensures that the retrieved data from heterogeneous resources can be merged and

 47

aggregated in order to return a single, logical set of results which can be

interpreted by local data-mining or analysis tools. Data-access and integration

should of course be independent of some aspects of the database (as discussed

under “Virtualization”).

3.3.3.2. Data Analysis and Interpretation

A principle aim of Grid systems is to make information more accessible across

trust boundaries. The proposed Grid-enabled, distributed data warehouse

system intends to provide a much greater opportunity for users to analyze and

interpret data they have not created or do not own. The purpose of analysis is

to identify features, properties, and behaviours in data, and to identify

correlations and anomalies between data. The purpose of interpretation is to

explain what has been identified and to derive inferences and conclusions. Both

activities, in turn, lead to the creation of further data, information, and

knowledge. The generalized tools for providing multi-dimensional and

multi-variate analysis capabilities are particularly important for mining

historical data to identify trends, correlations, and anomalies in a data

warehouse. The multiple analysis techniques may need to apply to the same or

related data sets concurrently. Ability is required to record inferences and

conclusions drawn by assimilating evidence from each analysis and

interpretation step in the process, and to capture the analysis workflow. It

should also allow the workflow to be replayed in order to reproduce the analysis

steps accurately and to demonstrate the provenance of any derived data. When

new data content is created, or existing data content is modified during analysis

and interpretation, it must able to capture and save all the changes. When

network performance is poor, data-access paths are slow, or data resources are

at remote sites, data availability may be limited, and users may need to carry out

analysis on locally maintained copies of data resources.

3.3.4. Data resource publishing and discovery

The ability to publish all types of data must be supported, regardless of volume,

internal structure and format. It must also allow users to describe and

 48

characterize published data in user-defined formats and terms. In addition, the

physical characteristics of the data, e.g., volume, number of logical records, and

preferred access paths, are necessary in order to access and transport the data

efficiently. The minimum information that a user must know in order to

reference a data resource is its name and location. Much of the functionality

required for defining and maintaining publications are required for defining and

maintaining metadata. The ability to register and deregister data resources

dynamically is also needed. The burdens of manual metadata entry and editing

need to be minimized.

Data resource discovery allows users to discover desired data resources from

resources registry with metadata attributes by using interactive browsing tools.

The discovery search criteria use user-defined terms and rules, and use defined

naming conversions and ontology.

3.3.5. Provenance

Provenance is a record of the origin and history of a piece of data. It is a

special form of audit trail that traces each step in sourcing, moving, and

processing data, together with “who did what and when”. It is an essential

requirement for establishing the ownership, quality, reliability and currency of

data when making use of other institutions’ data, particularly during the data

resource discovery process. Provenance also provides information that is

necessary for recreating data. Conversely, it can avoid time-consuming and

data-intensive processing expended in recreating data. For example, the

derived data is often originated from multiple sources, multi-staged processes

and multiple analysis and interpretation, which could cause the content of a

record of provenance to be complex. The capability to record data provenance

and the ability for a user to access the provenance record need to be provided in

order to establish the quality and reliability of data.

3.3.6. Resource management

The resources in the Grid-enabled, distributed data warehouse system are

mainly data resources such as a data warehouse and data marts, but also

 49

computational resources, such as data-mining and data-analysis services,

deployed within each institution. All kinds of resources need a standardized

representation model for publishing and discovery. From the Grid perspective,

resource management is categorized into three types at different levels: the

management of resources themselves, resources management in the Grid

environment and the management of Grid infrastructure to provide basic

functionalities. The system must provide resource management at all these

levels. Resource management in a Grid system is quite complex. This

section only discusses the data resources management in relation to the

proposed (HIV/AIDS) Grid system.

In this system, data warehouses are primary data resources located at distributed

sites. They should be managed directly through their native manageability

interfaces. Management at this level involves monitoring (i.e., obtaining the

state of the resource, which includes events), setup and control (i.e., setting the

state of the resource), and discovery. These resources are managed by

following the description given by a resource model, which defines their

properties, operations, events, and their relationships with each other.

Large numbers of data resources of every type and size could be made available

in a Grid environment in the future. The system must provide the capability to

manage these resources across multiple, heterogeneous environments globally.

Data management facilities must ensure that data resource catalogues, or

registries are always available and that the definitions they contain are current,

accurate, and consistent. This applies equally to the content of data resources

that are logically grouped into virtual databases.

3.3.7. Job execution management

Job execution management is concerned with the problems of instigating and

managing to completion, units of work. For example, a data-analysis task is

likely to span multiple data warehouses located in distributed sites. A high-level

analysis task may be broken down into subtasks prior to execution. Job

execution management enables applications to have coordinated access to

 50

underlying resources, regardless of their physical locations or access

mechanisms. It is the key to making resources easily accessible to end-users.

In brief, the execution of a task may need these steps: execution planning and

scheduling, task initialisation, preparation and execution. The Grid-enabled,

distributed data warehouse system requires little planning because it performs

repetitive tasks according to well-defined workflows, such as data-gathering for

populating a data warehouse and data-analysis of historical data. These

repetitive processes generally operate in a relatively stable context with

pre-chosen, mostly read-only, data and established workflows. The ability to

schedule, execute, prioritize and allocate resources to jobs based on such

information is required, as is realizing mechanisms for scheduling across

administrative domains, using multiple schedulers. Once the execution is

started, the required applications and data resources should be able to deployed

and configured automatically. Jobs must be managed and monitored during

their entire lifetime. For example, whether the job execution is successful or

not, it must be logged into a log repository or a log database. Data-access ability

can be used to access and update log storage.

3.3.8. Metadata management

There are several types of metadata which are important for Grid data

operations.

• Technical metadata defines the location of data sources and resources; the

physical data structure, organization and grouping of data items into logical

records; and those characteristics of the data that are important in deciding

how data is best accessed and transported. Technical metadata also defines

data currency and history; i.e., versions and ownership.

• Contextual metadata defines naming conventions, terminologies and

ontology through which data can be logically referenced. Contextual

metadata increases the quality and reliability of data because the definitions

conform to an agreed-upon syntax and semantics, and also record structural

associations and relationships within the data between definitions, and to

define rules for conflicts between mappings.

 51

• Derived metadata defines the context and meaning of data derived from

any other data. This type of metadata is commonly used in data

warehousing environments, where it is often more efficient to store derived

data than to recalculate the values dynamically each time they are required.

• Mapping metadata defines equivalences between discrete contextual

metadata definitions, and between contextual and technical metadata. The

ability to map relationships between contextual metadata is particularly

important because of the lack of agreed standards in scientific naming

conventions for terminologies and ontologies. It enables users to compare

classifications and ontology in terms of their naming conventions, and

structural relationships and rules. It also enables them to establish what

alternative definitions are available for referencing data content.

The ability to map contextual metadata to physical data structures and schemas

is a requirement in order to enable users to access data content using logical

references; i.e., without needing to know the definition of its underlying record

structure or data schema. Mapping, in conjunction with contextual metadata,

enables users to integrate data sets defined in different classifications and

ontologies. This provides the ability to specify a single set of search criteria

and data-matching rules when performing integrated or federated queries within

multiple data resources, and for referencing data in a virtual database. The

ability must be provided to update metadata when new data resources are

created or updated.

3.3.9. Monitoring

System monitoring depends on the information about applications, resources

and services in the Grid environment. The term ‘information’ refers to

dynamic data or events used for status monitoring, relatively static data used for

discovery; and any data that is logged. Information retrieval could make use of

data-access and distributed query processing.

The administrative tools are a set of applications that provide system

administrators with the ability to maintain monitor and control a system. The

 52

interfaces to the services and resources available should be intuitive and easy to

use, as well as being heterogeneous in nature. Typically, user and administrative

access to Grid applications and services are Webbased interfaces.

3.3.10. Security

The consequence of unauthorized access to data resources can be catastrophic,

and thus, data owners must be able to control sharing of data within the VO.

Such sharing requires user authentication, and access-control mechanisms for

enforcing local and community policies for data-access and resources usage.

For example, when performing a data transfer, users must be authenticated and

authorized to access the data being transferred. Different institutions may have

different security infrastructures, so the ability to integrate and operate within

existing security architectures and models must be provided. Resources may

have to be accessed across organizational boundaries. It is necessary to

provide standard and secure mechanisms that can be deployed to protect

institutions, while also enabling cross-domain interaction without compromising

local security mechanisms. Furthermore, the data-access may have to operate

within an environment where a variety of legal and ethical policies affect its

operation. For example, some policies may restrict the entities that can access

personal data (such as personal ID No, name, etc.) and limit the operations that

they can perform (confidentiality). Privacy concerns may limit the queries that

can be made about individuals, although, in some cases, the policies may permit

queries that return results about a group as a whole, such as average income or

total salary. The security mechanism needs to allow these restrictions to be

specified. When used with data services, these mechanisms must allow the

specification of policies that apply at the level of groups (e.g., tables) or

elements within a resource. Other requirements such as delegation and single

sign-on mechanism are all primary security challenges that need to be handled.

Security issues in proposed system are a main concern of this dissertation and

will be discussed in the security chapter.

 53

3.4. Summary

Section 3.2 primarily discussed the envisaged VO environment and

requirements of the Grid-enabled, distributed data warehouse system. This

system intends to use the Grid approach to build the foundation for realizing

data-collection and data-sharing required by HIV/AIDS collaborative research.

The proposed system introduces a number of challenges, like resource

virtualization, interoperability, security and so on. This chapter identified a set

of functional capabilities which are essential to coordinate data-sharing, access

data, handle interoperability, security, etc. in a Grid-enabled data warehouse

context.

 54

Chapter 4.

A Proposed System Framework

This chapter proposes a Grid-enabled, distributed data warehouse framework

within the context of building the infrastructure to support collaborative

HIV/AIDS research. Data warehouses, located at distributed institutions, are

the main data resources for data-mining and data analyses. The set of

functional capabilities identified in the previous chapter are implicitly

presupposed in this framework. (These capabilities include data-collection,

data-access, data integration, resource management, data resources publishing,

data resources discovery, system monitoring, metadata management, data

provenance, security, etc.).

The Open Grid Services Architecture (OGSA), a GGF specification, represents

an evolution towards a Grid system architecture based on Web service concepts

and technologies. OGSA accommodates stateful services to compensate for

plain Web services, which are usually stateless. It incorporates the Web

Services Resource Framework (WSRF), which is emerging as a promising

standard for modelling stateful resources using Web services. The latest

version of Globus Toolkit (GT), developed by the Globus Alliance

(http://www.globus.org/), is a realization of the OGSA requirements based on

WSRF. OGSA and GT are de facto standards for building a service-oriented

Grid system. The Open Grid Services Architecture Data-access and

Integration (OGSA-DAI, http://www/ogsadai.org.uk/) (Karasavvas et al., 2005)

is a middleware technology that can used easily to access and integrate data

from a variety of data sources, such as relational databases, XML databases and

file systems. OGSA-DAI itself is both specification and (open-source)

implementation.

The proposed Grid-enabled, distributed data warehouse system is essentially an

OGSA-based Grid system that provides essential capabilities to facilitate

HIV/AIDS collaborative research. OGSA, WSRF, GT and OGSA-DAI

provide the infrastructure services, standard interfaces and protocol bindings to

 55

coordinate resource-sharing, especially data resources, for developing the

proposed system.

This framework proposes the standards, specifications, and implementations

that can be used to develop such a system. Finally, two models, using the

defined services, are proposed in order to realize data-collection, data-access

and integration, which are key capabilities to HIV/AIDS collaboration.

The OGSA infrastructure and federal data warehousing have been

pre-emptively suggested as the most suitable foundation for this proposed

collaboration context. The following sections will attempt to first justify this

contention, by examining the available distributed computing paradigms, before

elaborating the proposed framework.

4.1. Evolution of Distributed Computing

Service-Oriented Architecture (SOA) is an architectural style, the goal of which

is looser coupling among interacting software systems, compared to traditional

distributed computing approaches. The technology of Web services is the

most likely connection technology of SOA. SOA and Web Services are the

basis of service-oriented Grid architecture. It is necessary to provide a brief

overview of SOA and related technologies.

4.1.1. Traditional distributing computing

The traditional client/server applications use a variety of communication

techniques, such as sockets, Remote Procedure Calls (RPC) (Srinivasan, 1995)

(Birrell & Nelson, 1984), JAVA Remote Method Invocation (RMI,

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html), Distributed

Component Object Model (DCOM) (Horstmann & Kirtland, 1997), and

Common Object Request Broker Architecture (CORBA, http://www.

omg.org/corba/).

 56

4.1.1.1. Socket Programming

Sockets provide low-level APIs for writing distributed client/server

applications. Before a client starts communicating with a server, a socket

endpoint needs to be created. The transport protocol for communication can

be either TCP or UDP in the TCP/IP protocol stack. The client also needs to

specify the hostname and port number that the server process is listening on.

The standard socket API is well-defined, but the implementation is

language-dependent, which means the socket APIs vary with each language.

Typically, the socket client and server can be implemented in the same language

and use the same socket package, but can run on different operating systems.

Socket programming has the advantage of a low latency and high-bandwidth

mechanism for transferring large amounts of data compared with other

techniques. However, the application development may be an onerous and

time-consuming task due to the complexity of interaction between multiple

components.

4.1.1.2. RPC

RPC is another mechanism that is used to build distributed client/server

applications and can use either TCP or UDP as transport protocols. RPC relies

heavily on an Interface Definition Language (IDL) interface to describe the

remote procedures executing on the server-side. From an RPC IDL interface,

an RPC compiler can automatically generate a client-side stub and server-side

skeleton. Client-side stub and server-side skeleton help RPC hide the

low-level communication abstraction and provide high-level communication

abstraction for a client to directly call a remote procedure. A client must specify

the hostname or the IP address of the server

RPC itself is a specification and implementations, such as Open Networking

Computing (ONC) RPC from Sun Microsystems and Distributed Computing

Environment (DCE) RPC, from the Open Software Foundation (OSF), can be

used directly for implementing RPC-based client/server applications. RPC is

not restricted to any specific language, but most implementations are in C

programming language. The same language and the same RPC package must

 57

be used on both client and server sides. Compared with socket programming,

RPC is easier to use for developing distributed applications because it provides

high-level communication abstraction. However, RPC only supports

synchronous communication (call/wait) between client and server and is not

object-oriented.

4.1.1.3. Java RMI

The Java RMI is an object-oriented mechanism from Sun Microsystems for

building distributed client/server applications. It is essentially an RPC

implementation in Java. Similar to RPC, Java RMI also hides the low-level

communications between client and server by using a client-side stub and

server-side skeleton. Java RMI itself is both a specification and

implementation, and it is restricted to the Java language in that an RMI client

and server have to be implemented in Java, but they can run on different

operating systems in distributed locations. Java RMI applies an

object-oriented approach. Unlike RPC, a client can pass an object as a parameter

to a remote object. RMI has good support for marshalling, which is a process

of passing parameters from client to a remote object. The main disadvantages

of Java RMI are its limitation to the Java language, its proprietary invocation

protocol, JRMP, and that it only supports synchronous communications.

4.1.1.4. DCOM

The Component Object Model (COM) is a binary standard for building

Microsoft-based component applications, which is language-independent.

DCOM is an extension of COM for distributed client/server applications.

Similar to RPC and Java, DCOM also hides the low-level communications

between client and server by using a client-side stub (called a proxy in DCOM)

and server-side skeleton (called a stub in DCOM) using Microsoft’s Interface

Definition Language (MIDL). DCOM is language-independent, which means

clients and DCOM components can be implemented in different programming

languages. Although it is available on non-Microsoft platforms, it has only

achieved broad popularity on Windows. The same as RPC and Java RMI, it

only supports synchronous communications.

 58

4.1.1.5. CORBA

CORBA is an object-oriented middleware infrastructure from the Object

Management Group (OMG, http://www.omg.org) for building distributed

client/server applications. Similar to RPC, Java and DCOM, CORBA also

hides the low-level communications between client and server by automatically

generating a client-side stub (called a proxy in DCOM) and server-side skeleton

(called a stub in DCOM) using IDL interface. Compared to Java RMI and

DCOM, CORBA is independent of location, a particular platform or

programming language. CORBA supports both synchronous and

asynchronous communications. However, CORBA itself is only an OMG

specification. There are many CORBA products available that can be used to

build CORBA applications.

In summary, Java RMI, DCOM, and CORBA represent the most popular

distributed, object-oriented middleware, which can be used to develop

distributed client/server applications rapidly. Although they all share some

similar features, they do differ in their specific implementations and features

(Gopalan, 1998). In summary, middleware, such as Java RMI, DCOM, and

CORBA, are not based on open standards, which make it difficult for them to be

ubiquitously taken up in heterogeneous environments. Web Services has

emerged as an open standards-based middleware infrastructure for building and

integrating applications in heterogeneous environments.

4.1.2. Service-Oriented Architecture

SOA is not new (Box, 2003). It was first proposed by Roy W. Schulte and

Yefim V. Natis, who are Gartner analysts. They specified SOA as “a style of

multi-tier computing that helps organizations share logic and data among

multiple applications and usage modes” (Schulte & Natis, 1996). There are

multiple definitions of SOA, but currently, only the OASIS group has created a

formal definition with depth, which can be applied to both the technology and

business domains. OASIS defines SOA as a paradigm for organizing and

utilizing distributed capabilities that may be under the control of different

 59

ownership domains (OASIS, 2006
1
). In computing, the term ‘SOA’ represents

a perspective of software architecture that defines the use of services to support

the requirements of software users. In an SOA environment, resources on a

network are made available as independent services that can be accessed

without knowledge of their underlying platform implementation

(Channabasavaiah, Holley & Tuggle, 2003).

 Figure 4.1 SOA

SOA is essentially an architectural style (He, 2003) (Burbeck, 2000). It is a

collection of services, and these services communicate with each other. The

communication can involve either simple data passing, or it could involve two

or more services coordinating some activity. Some means of connecting

services to each other is needed. SOA can also be regarded as a style of

information-system architecture that enables the creation of applications that are

built by combining loosely coupled and interoperable services. These services

inter-operate, based on a formal definition (or contract, e.g., WSDL), which is

independent of the underlying platform and programming language. The

interface definition hides the implementation of the language-specific service.

SOA-compliant systems can therefore be independent of development

technologies and platforms (such as Java, .NET etc). For example, services

written in C#, running on .Net platform, and services written in Java, running on

J2EE platform, can both be consumed by a common composite application. In

addition, applications running on either platform can consume services running

on the other as Web services, which facilitates reuse. Figure 4.1 illustrates a

basic Service-Oriented Architecture. It shows a service consumer on the right

sending a service request message to a service provider on the left. The

 60

service provider returns a response message to the service consumer. The

request and subsequent response connections are defined in some way that is

understandable to both the service consumer and service provider. A service

provider can also be a service consumer.

4.1.3. Web Services

Web services technology has emerged as a promising infrastructure for building

distributed computing. Web services are based on a SOA in which clients are

service requestors and servers are service provider. These differ from

traditional approaches, such as Java RMI, COBRA and DCOM, in their focus

on simple open standards, such as XML and HTTP (HyperText Transfer

Protocol), which have wide industry support and a chance to become truly

ubiquitous.

Web services standards are being defined within the W3C and other standards’

bodies, and form the basis for major new industry initiatives, such as Microsoft

(.NET), IBM, and Sun (Sun ONE). Web service is defined as a software

system, designed to support interoperable machine-to-machine interaction over a

network. It essentially uses XML (W3C, 2006
1
) (W3C, 2001) to create a

robust connection. It has an interface, described as a machine-processable

format (specifically WSDL). Other systems interact with the Web service in a

manner prescribed by its description using SOAP messages, typically conveyed

using HTTP with an XML serialization, in conjunction with other Web-related

standards (W3C, 2004
3
).

Web services describe a computing paradigm, based on standard techniques for

describing interfaces to software components, methods for accessing these

components via interoperable protocols, and discovery methods that enable the

identification of relevant service providers. These techniques are

programming language, programming model, and system software-neutral.

They provide a standard means of interoperating between different software

applications, running on a variety of platforms and/or frameworks.

 61

A Web service is a loosely coupled, encapsulated, platform and programming

language independent, composable server-side component that can be described,

published, discovered and invoked over an internal network or on the Internet

(Li & Baker, 2005). This description summarizes the main features of Web

services’ implementation. A Web service can be implemented in any

programming language and deployed on any platform. It has a server-side

component that uses an XML-based interface to describe its functionalities and

capabilities, and it registers with a service registry. Its implementation is free

to change without impacting on the service client, as long as the service

interface remains the same. A Web service client can discover a service by

searching a service registry via Intranet or the Internet. Web services can be

bound to by a service client by using standard transport protocols, such as HTTP

or FTP.

The core standards of Web Services, as defined by W3C, are SOAP (W3C,

2003), Web Services Description Language (WSDL) (W3C, 2006
3
), and

Universal Description, Discovery and Integration (UDDI, www.uddi.org).

Web Services Inspection (WS-Inspection) (Ballinger, Brittenham, Malhotra,

Nagy & Pharies, 2001) is another standard for service discovery.

4.1.3.1. SOAP

Web services use only messages to communicate between services. SOAP

stands for “Simple Object Access Protocol”. It is a simple and lightweight

communication protocol for clients and severs to exchange messages in a XML

format, over a transport-level protocol, which is normally HTTP.

SOAP is a simple enveloping mechanism for XML payloads that defines a RPC

convention and a messaging convention. Figure 4.2 shows the structure of a

SOAP message. A SOAP header element is optional. A SOAP header is an

extension mechanism that provides a way to pass information (such as

authentications, transactions and payments) in SOAP messages that is not

application payload. The SOAP body is the mandatory element within the

SOAP, which implies that this is where the main end-to-end information

conveyed in a SOAP message must be carried. The body is the main payload

 62

of the message. When an RPC call is used in a SOAP message, the body has a

single element that contains the method name, arguments and URI (Uniform

Resource Identifier) of the service target address.

Figure 4.2 SOAP Envelope

4.1.3.2. WSDL

WSDL is an XML-based specification that is used for describing a Web service,

e.g., the functionalities, capabilities and address of a service, and how to invoke

it. It defines services as a set of endpoints, operating on messages containing

either document-oriented (messaging) or RPC payloads. Using WSDL, a

client can locate a Web service and invoke any of its publicly available

functions. Service interfaces are defined, abstractly, in terms of message

structures and sequences of simple message exchanges or operations and then

bound to a concrete network protocol and data-encoding format to define an

endpoint.

Figure 4.3 illustrates the common elements of a WSDL document. <portType>

is the key element of a WSDL document. It defines a set of abstract operations

provided by a service. Each operation uses messages defined in the

<message> element to describe its inputs and outputs.

 63

 Figure 4.3 WSDL Document

4.1.3.3. UDDI and WS-Inspection

UDDI is an industry standard for service registration and discovery. A service

provider uses UDDI to advertise its services, and a client uses UDDI to find the

appropriate services for its purpose. Data in UDDI can be organized in white

pages, yellow pages and green pages, representing different types of

information. A client uses SOAP to access a UDDI registry. A UDDI

registry exposes a set of APIs in the form of SOAP-based Web services. The

API contains Inquiry and Publishing APIs for services discovery and

publication.

WS-Inspection comprises a simple XML language and related conventions for

locating service descriptions published by a service provider. A

WS-Inspection Language (WSIL) document can contain a collection of service

descriptions and links to other sources of service descriptions (Brittenham,

2002). A service description is usually a URL to a WSDL document;

occasionally, a service description can be a reference to an entry within a UDDI

registry. A link is usually a URL to another WS-Inspection document; and

occasionally, a link is a reference to a UDDI entry. With WS-Inspection, a

service provider creates a WSIL document and makes the document network

accessible. Service requestors use standard Web-based access mechanisms (e.g.,

 64

HTTP GET) to retrieve this document and discover what services the service

provider advertises.

UDDI and WS-Inspection address different sets of issues with service

registration and discovery (Nagy & Ballinger, 2001). UDDI provides a high

degree of functionality, but it causes the costs of increased complexity. The

WS-Inspection provides less functionality in order to maintain a low overhead.

The two specifications can be used together or separately, depending on the

situation.

4.2. Open Grid Services Architecture

The Open Grid Services Architecture (OGSA) Framework, the Globus-IBM

vision for the convergence of Web services and Grid computing, was presented

at the GGF meeting, held in Toronto in February 2002. It was initially

described in the “physiology” paper. The Open Grid Services Architecture,

version 1.0 (Foster et al., 2005) produced by the OGSA working group within

the GGF in 2005, provides a first version of this OGSA definition. In July 2006,

the Open Grid Services Architecture, version 1.5 (Foster et al., 2006) was

published by GGF.

In addition to defining a core set of standard interfaces and behaviours that

address many of the technical challenges in a VO environment, OGSA provides

a framework within which one can define a wide range of interoperable,

portable services. OGSA provides a foundation on which can be constructed a

rich Grid-technology ecosystem, comprising multiple technology providers.

This section gives an introduction of OGSA.

4.2.1. Advantages of Web Services for Grid computing

Grid computing concerns multi-institutional resources sharing and coordinating

uses of diverse resources in a dynamic, distributed VO that assembles resources

and services (and people). Since Web service has emerged as an XML-based

open standard for building distributed applications in a heterogeneous

 65

computing environment, the Grid can benefit from the Web services framework

by taking advantages of several factors.

As described in previous section, Web services are independent of platforms,

programming languages and locations. Web services can be described,

published and dynamically discovered, and bound to WSDL, a rich interface

description language. The Grid needs this support as the dynamic discovery

and composition of Grid services in heterogeneous environments necessitates

mechanisms for registering and discovering interface definitions and endpoint

implementation descriptions, and for dynamically generating proxies based on

(potentially multiple) bindings for specific interfaces. WSDL supports this

requirement by providing a standard mechanism for defining interface

definitions separately from their embodiment within a particular binding

(transport protocol and data encoding format). The widespread adoption of

Web-service mechanisms means that a framework based on Web services can

exploit numerous tools and extant services

4.2.2. Service-Oriented view

OGSA introduces a service-oriented Grid architecture. OGSA focuses on

services. A service is defined as a network-enabled entity that provides some

capability to its clients by exchanging messages. A service is defined by

identifying sequences of specific message exchanges that cause the service to

perform some operations. Defining these operations only in terms of message

exchange achieves great flexibility in how services are implemented, and where

they may be located. A SOA is one in which all entities are services, and thus,

any operation visible to the architecture is the result of message exchange. In

OGSA, computational resources, storage resources, networks, programs,

databases, and the like are all represented as services.

A critical requirement in a distributed, multi-organizational Grid environment is

for mechanisms that enable interoperability. In a service-oriented view, the

interoperability problem is divided into two sub-problems: the definition of

service interfaces and the identification of the protocol(s) that can be used to

invoke a particular interface—and, ideally, agreement on a standard set of such

 66

protocols. A service-oriented view addresses the need for standard interface

definition mechanisms, local/remote transparency, adaptation to local OS

services, and uniform service semantics. A service-oriented view also

simplifies virtualization—that is, the encapsulation behind a common interface

of diverse implementations. Virtualization is easier if service functions can be

expressed in a standard form, so that any implementation of a service is invoked

in the same manner. WSDL is adopted for this purpose. WSDL supports a

service interface definition that is distinct from the protocol bindings used for

service invocation. WSDL allows for multiple bindings for a single interface,

including distributed communication protocol(s) (e.g., HTTP), as well as locally

optimized binding(s) (e.g., local IPC) for interactions between request and

service processes on the same host. In brief, this service architecture supports

local and remote transparency with respect to service location and invocation.

4.2.3. The Grid Service

A basic premise of OGSA is that everything is represented by a service.

Computational resources, storage resources, networks, programs, databases, and

so forth are all services. More specifically, OGSA represents everything as a

Grid service.

The ability to virtualize and compose services depends on more than standard

interface definitions. OGSA defines what is called a Grid service: a Web

service that provides a set of well-defined interfaces and that follows specific

conventions. The interfaces address discovery, dynamic service creation,

lifetime management, notification, and manageability; the conventions address

naming and upgradeability. Authentication and reliable invocation are also

viewed as service protocol bindings and are thus, external to the core

Grid-service definition.

Grid services are characterized by the capabilities that they offer. A Grid

service implements one or more interfaces, where each interface defines a set of

operations that are invoked by exchanging a defined sequence of messages.

Grid service interfaces correspond to <portType> in WSDL. The set of

<portType>, supported by a Grid service, along with some additional

 67

information relating to versioning, are specified in the Grid service’s

<serviceType>, a WSDL extensibility element defined by OGSA.

Grid services are stateful and dynamic. Grid services can maintain an internal

state for the lifetime of the service. Grid service instance refers to a particular

instantiation of a Grid service. Grid services can be created and destroyed

dynamically. The existence of state distinguishes one instance of a service

from another that provides the same interface. One instance can be created

from another dynamically. The protocol binding associated with a service

interface can define a delivery semantics that addresses, for example, reliability.

Services interact with one another by the exchange of messages. Grid services

may be upgraded during their lifetime.

4.2.4. OGSA core services

OGSA version 1.0 and OGSA version 1.5 are the specifications that focus on

requirements and the scope of important capabilities required to support Grid

systems and applications in both e-science and e-business. OGSA addresses

the need for standardization by defining a set of core capabilities and behaviours

that address key concerns in Grid systems.

OGSA is intended to facilitate the seamless use and management of distributed,

heterogeneous resources. The virtualization and abstraction are directed toward

defining a wide variety of capabilities that are relevant to OGSA Grids. The

identified functional and non-functional requirements include: interoperability,

resource-sharing across organizations, quality of service (QoS) assurance, job

execution, data services, security, scalability, etc. OGSA realizes these

capabilities in terms of services, the interfaces these services expose, the

individual and collective state of resources belonging to these services, and the

interaction between these services within a service-oriented architecture. The

services are built on Web-service standards, with semantics, additions, extensions

and modifications that are relevant to Grids.

The potential range of OGSA services is vast. This definition of OGSA 1.5 is

driven by a set of functional and non-functional requirements derived from a

 68

broad set of use cases (Foster et al., 2004
2
) (Von Reich et al., 2004). OGSA

defines a set of capabilities to meet these requirements. It presents a refinement

of the required functionality into capabilities: Execution Management, Data,

Resource Management, Security, Self-Management, and Information services.

There is a core set of non-null interfaces, standards and common

knowledge/bootstraps that services must implement to be part of an OGSA

Grid. This set of common implementations and manifestations to support

OGSA is referred to as the infrastructure services. OGSA capabilities share

and build on this set of infrastructure services. The following is a brief

introduction to OGSA’s capabilities:

� Execution Management Services (OGSA-EMS) are concerned with the

problems of instantiating and managing, to completion, units of work.

There are three broad classes of EMS: resources that model processing,

storage, executables, resource management, and provisioning; job

management; and resource selection services that collectively decide where

to execute a unit of work.

� Those OGSA services are concerned with the management of, access to and

update of data resources, along with the transfer of data between resources,

are collectively called “Data Services”. OGSA Data Services can be used to

move data as required; manage replicated copies; run queries and updates;

and federate data resources. They also provide the capabilities necessary to

manage the metadata that describes this data, in particular, the provenance of

the data itself. The heterogeneous nature of the Grid means that many

different types of data must be supported. These include, but are not

limited to, flat files, streams, relational databases, XML databases,

object-oriented databases, catalogues, derived data and even data services

themselves. OGSA Data Services provide a set of functional capabilities

and properties. Different subsets of the services are needed to implement the

different capabilities. Functional capabilities include: data transfer services,

storage management services, data-access services, queries, data federation

services, location management services, update services, data transformation

services, security mapping extensions, resource and services configuration

services, data discovery services and provenance services. Properties are

 69

non-functional capabilities of services. Whereas functional capabilities are

defined by entries in the service interfaces, non-functional properties are

inherent in the design. These properties include performance, availability,

legal and ethical restriction and scalability.

� OGSA Resource Management Services perform several forms of

management on resources in a Grid. In an OGSA Grid, there are three types

of management that involve resources: management of the physical and

logical resources themselves, management of the OGSA Grid resources

exposed through service interfaces and management of the OGSA Grid

infrastructure. Different types of interfaces realize the different forms of

management in an OGSA Grid. These interfaces can be categorized into

three levels: resource level, infrastructure level and OGSA functions’ level.

At the resource level, resources are managed directly through their native

manageability interfaces. The infrastructure level provides the base

management behaviour of resources, forming the basis for both

manageability and management in an OGSA environment. Management

functionality at the infrastructure level is envisioned to use the Web Services

Distributed Management (WSDM) specifications. At the OGSA functions’

level, there are two types of management interfaces: a functional interface

and a manageability interface. Functional interfaces are provided by some

common OGSA capabilities (e.g., OGSA EMS). These capabilities

themselves are a form of resource management. Each capability has a

specific manageability interface through which the capability is managed

(e.g., monitoring of a job manager). The properties provided by OGSA

resource management services include scalability, interoperability, security

and reliability.

� OGSA Security Services facilitate the enforcement of the security-related

policy within a VO. OGSA Security Services provide a set of functional

capabilities. These functional capabilities include: authentication, identity

mapping, authorization, credential conversion, audit and secure logging, and

privacy.

� OGSA Self-Management Services are used to help reduce the cost and

complexity of owning and operating an IT infrastructure. In a self-managing

 70

environment, system components—including hardware components, such as

computers, networks and storage devices, and software components, such as

operating systems and business applications—are self-configuring,

self-healing and self-optimizing. One of the main objectives of

self-management is to support service-level attainment for a set of services

(or resources, depending on the taxonomy)—with as much automation as

possible, to reduce the costs and complexity of managing the system. While

the self-management capability is a significant part of the OGSA, this work is

still at a preliminary stage and hence, only some aspects of self-management

are described in this specification (Foster et al., 2006).

� The ability to efficiently access and manipulate information about

applications, resources and services in the Grid environment is an important

OGSA capability. The term ‘information’, in defining OGSA Information

Services, refers to dynamic data or events used for status monitoring;

relatively static data used for discovery; and any data that is logged. The

scope of the OGSA Information Service covers publication through

consumption. An information service needs to support a variety of QoS

requirements for reliability, security, and performance. OGSA Information

Services define capabilities, including discovery, message delivery, logging,

and monitoring.

4.3. WSRF and WS-Notification

4.3.1. OGSA requires stateful services

OGSA introduced a service-oriented Grid architecture which tailors the

Web-services approach to meet some Grid-specific requirements (Foster et al.,

2002). Grid service is defined as stateful and dynamic as discussed in section

4.2.3. Web services were chosen as the underlying technology to support

OGSA. However, although the Web Services Architecture was certainly the

best option, it still did not meet one of OGSA's most important requirements:

that the underlying middleware has to be stateful. Unfortunately, although

Web services, in theory, are either stateless or stateful, they are usually stateless,

and there is no standard way of making them stateful.

 71

A stateless service implements message exchanges with no access or use of

information not contained in the input message. Plain Web services are

usually stateless. This means that the Web service cannot "remember"

information, or keep state, from one invocation to another. Although OGSA

requires stateful services, statelessness is generally viewed as good engineering

practice for Web-services implementations. Statelessness in the

implementation of the service itself tends to enhance reliability and scalability: a

stateless Web service can be restarted following failure, without concern for its

history of prior interactions, and new copies of a stateless Web service can be

created (and subsequently destroyed) in response to changing loads.

WS-Resource is an approach to solve this contradiction. The WS-Resource

Framework (WSRF) is a set of Web services specifications that define

WS-Resource approach. Figure 4.4 illustrates the relationship between Web

services, stateful Web services, OGSA and WSRF.

Figure 4.4 Relationships between OGSA, WSRF, and Web Services

4.3.2. WS-Resource

WS-Resource is an approach to modelling states in a Web-services context

(Foster et al., 2004). A WS-Resource is defined as the composition of a Web

service and a stateful resource. A stateful resource is defined as having a

specific set of state data expressible as an XML document; having a

 72

well-defined lifecycle; and be known to, and acted upon, by one or more Web

services. Examples of system components that may be modelled as stateful

resources are files in a file system, rows in a relational database, and

encapsulated objects, such as Entity Enterprise Java beans. A stateful resource

can also be a collection or group of other stateful resources.

A stateful resource is addressed and accessed according to the implied resource

pattern, a conventional use of WS-Addressing (W3C, 2006
2
) endpoint reference

(EPR). The term ‘implied resource pattern’ describes a specific kind of

relationship between a Web service and one or more stateful resources.

WS-Addressing standardizes the EPR construct, used to represent the address of

a Web service deployed at a given network endpoint. A WS-Addressing EPR

is an XML serialization of a network-wide pointer to a Web service. In the

implied resource pattern, a stateful resource identifier is used to identify a

WS-Resource. It is encapsulated in an EPR and used to identify the stateful

resource to be used in the execution of a Web-service message exchange.

The lifetime of a WS-Resource is defined as the period between its creation and

its destruction. A WS-Resource can be created through the use of a

WS-resource factory. A WS-Resource factory is any Web service capable of

bringing a WS-Resource into existence. Bringing a WS-Resource into

existence consists of creating a new stateful resource, assigning the new stateful

resource an identity, and creating the association between the new stateful

resource and its associated Web service. The response message of a

WS-Resource factory operation contains a WS-Resource-qualified EPR (an

EPR containing a stateful resource identifier is a WS-Resource-qualified EPR),

containing a stateful resource identifier that refers to the new stateful resource,

though a factory may convey the reference to the new WS-Resource through

other means, such as placing the WS-Resource-qualified EPR into a registry for

later retrieval. A new WS-Resource can exist for some finite period. After that

time, it should be possible to destroy the WS-Resource so that its associated

system resources can be reclaimed. A WS-Resource can be destroyed by using

the appropriate WS-Resource-qualified EPR to send a destroy request message

to the Web service identified by the EPR. The receipt of the response to the

 73

destroy request message represents a point of synchronism between the service

requestor and the Web service receiving the destroy request message.

The term ‘resource property’ refers to an individual component of a

WS-Resource’s state. The XML document, describing the type of a stateful

resource within the WS-Resource composition, is called a WS-Resource

properties document. The WS-Resource properties document is described

using XML schema (W3C, 2001). Specifically, the WS-Resource properties

document is expressed as an XML global element declaration (GED) in some

XML namespace. The WS-Resource properties document declaration is

associated with the WSDL <portType> definition via the use of a standard

attribute, resourceProperties. The state of a WS-Resource, i.e., the values of

resource properties exposed in the WS-Resource’s resource properties

document, can be read, modified, and queried by using standard Web services

messages. The base functionality is to retrieve the value of a single resource

property using a simple Web services request/response message exchange. It

is also possible to use a standard message exchange to execute an arbitrary

XPath (W3C, 2006
5
) expression against the resource properties document.

4.3.3. WSRF and WS-Notification family of

specifications

The WSRF is a set of Web services specifications that define a rendering of the

WS-Resource approach in terms of specific message exchanges and related

XML definitions. The WSRF allows WS-Resources to be declared, created,

accessed, monitored for change, and destroyed via conventional Web-service

mechanisms, but does not require that the Web-service component of the

WS-Resource that provides access to the associated stateful resources be

implemented as a stateful message processor. Three related WS-Notification

specifications define interfaces and behaviours that allow clients to subscribe to

change in state, thus providing for push-mode access to state components.

Initial work on the WS-Resource Framework has been performed by the Globus

Alliance and IBM (Czajkowski et al., 2004
2
). These documents were

 74

submitted to the OASIS standards group in March 2004. The OASIS WSRF

Technical Committee

(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf) was

formed to work on WS-ResourceProperties (OASIS, 2006
8
),

WS-ResourceLifetime (OASIS, 2006
7
), WS-ServiceGroup (OASIS, 2006

6
), and

WS-BaseFaults (OASIS, 2006
2
) specifications. The four WSRF specifications

define how to represent, access, manage, and group WS-Resources:

� WS-ResourceProperties defines how WS-Resources are described by XML

Resources Property documents that can be queried and modified.

� WS-ResourceLifetime allows a requestor to destroy a WS-Resource either

immediately or at a scheduled future point in time.

� WS-ServiceGroup describes how collections of Web services and/or

WS-Resources can be represented and managed. It creates and uses

heterogeneous by-reference collections of Web services. This specification

can be used to organize collections of WS-Resources, for example to build

registries, or to build services that can perform collective operations on a

collection of WS Resources.

� WS-BaseFault defines a base fault type for use when returning faults in a

Web services message exchange.

The WSRF specifications are compliant with the WS-Interoperability (WS-I)

Basic Profile (Ballinger et al., 2006). It means that any WS-I compliant Web

services client can interact with any service that supports WSRF specifications.

In a dynamic Grid environment, it is critical that components can request and

receive timely notification of changes in one another’s states. WS-Notification

is a family of related white papers and specifications that define a standard Web

services approach to notification, using a topic-based publish/subscribe pattern.

WS-Notification defines a general, topic-based Web service system for publish

and subscribe (pub/sub) interactions that build on the WSRF. The

Event-driven, or Notification-based, interaction pattern is a commonly used

pattern for inter-object communications. The term ‘notification pattern’ refers

to the interaction pattern that involves registration of consumers and subsequent

 75

dissemination of events. This notification pattern is increasingly being used in

a Web services context. In the notification pattern, a Web service, or other

entity, disseminates information to a set of other Web services, without having to

have prior knowledge of these other Web services. The goals of

WS-Notification are to standardize the roles, terminology, concepts, message

exchanges and the WSDL needed to express the notification pattern and to

provide a language to describe Topics. The OASIS WSN Technical Committee

(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn) was

formed to work on WS-BaseNotification (OASIS, 2006
4
), WS-Topics (OASIS,

2006
12
), and WS-BrokeredNotification (OASIS, 2006

5
) specifications.

� WS-BaseNotification. This defines the Web services interfaces for

Notification Producers and Notification Consumers. It includes standard

message exchanges to be implemented by service providers that wish to act

in these roles, along with operational requirements expected of them. This

is the base document on which the other WS-Notification specification

documents depend.

� WS-Topics. This defines a mechanism to organize and categorize items of

interest for subscription known as ‘topics’. These are used in conjunction

with the notification mechanisms defined in WS-BaseNotification

specification. WS-Topics defines three topic expression dialects that can be

used as subscription expressions in subscribe request messages and other

parts of the WS-Notification system. It further specifies an XML model for

describing metadata associated with topics. The WS-Topics specification

should be read in conjunction with the WS-BaseNotification specification

and the “Publish-Subscribe Notification for Web Services” white paper

(Graham et al., 2004).

� WS-BrokeredNotification. This defines the Web services interface for

the Notification Broker. A Notification Broker is an intermediary which,

among other things, allows publication of messages from entities that are not

themselves service providers. It includes standard message exchanges to be

implemented by Notification Broker service providers, along with

operational requirements expected of service providers and requestors that

participate in brokered notifications. This work relies upon

 76

WS-BaseNotification specification and WS-Topics specification, as well as

the “Publish-Subscribe Notification for Web Services” white paper.

4.3.4. WSRF and OGSI

The predecessor of WSRF, the Open Grid Services Infrastructure (OGSI)

specification version 1.0 (Tuecke et al., 2003), was released in July 2003, by the

OGSI Working Group of the GGF. Since development started on OGSI in

early 2002, the Web services world has evolved significantly. Specifically, a

number of new specifications and use patterns have emerged that simplify and

clarify the ideas expressed in OGSI. It is necessary to mention how the new

WSRF and WS-Notification specifications derive from and relate to the OGSI

specification.

OGSI defines a set of conventions and extensions on the use of WSDL and XML

Schema to enable stateful Web services. It introduces the idea of a stateful Web

services and defines approaches for creating, naming, and managing the lifetime

of instances of services; for declaring and inspecting service state data; for

asynchronous notification of service state change; for representing and managing

collections of service instances; and for common handling of service invocation

faults.

The WSRF was proposed as a refactoring and evolution of OGSI aimed at

exploiting new Web services standards, specifically WS-Addressing, and at

evolving OGSI based on early implementation and application experiences. The

WSRF retains essentially all of the functional capabilities present in OGSI, while

changing some of the syntax (e.g., to exploit WS-Addressing) and also adopting a

different terminology in its presentation. In addition, OGSI is considered a

heavyweight specification with too much definition in one specification; the

WSRF partitions OGSI functionality into a set of distinct, composable

specifications (plus the related WS-Notification specifications).

The “Refactoring and Evolution” document (Czajkowski et al., 2004
1
) explains

the relationship between OGSI and the WSRF and the related WS-Notification

family of specifications; explains the common requirements that both address,

 77

and compares and contrasts the approaches taken to the realization of those

requirements, and describes how OGSI constructs map to WS-Resource

Framework constructs.

4.4. System Framework

Web services family of standards, OGSA, WSRF are essential to build an

OGSA-based Grid system. Web services were chosen as the underlying

technology to meet the requirements of OGSA. WSRF introduces an approach

to model stateful resources in a Web services framework. WS-Notification

specifications use standard approaches to notification using a topic-based

publish and subscribe pattern. WS-Notification defines notification

mechanism for the components in a Grid system to request and receive timely

notification of changes in one another’s states.

Layered Framework

Grid Infrastructure

Web Services Standards

WSRF, WS-N

System-specific Services

OGSA

Applications

Middleware

OGSA-DAI

Globus Toolkit

4

Resources

Data Warehouses
Relational DB

XML

DBData Marts

Computational

Resources

Distributed

Figure 4.5 System Framework

 78

The Grid-enabled, distributed data warehouse system is designed as an

OGSA-based Grid system. It requires a set of services to provide various

capabilities based on OGSA, and its supporting standards and specifications.

OGSA introduces a service-oriented Grid architecture, based on Web services.

It represents everything as Grid services, which are stateful Web services with

standard interfaces and protocol bindings. In addition, OGSA defines a set of

services that provide key capabilities in a Grid system. Based on OGSA, the

capabilities required by the system are represented as Grid services. Figure 4.5

illustrates the layered framework for the system. In this framework, OGSA is

the core standard to develop the proposed system. In addition, it identifies all

supportive standards, specifications, and implementations tools. This

framework is divided into four main tiers: resource, Grid infrastructure,

system-specific services and applications.

� Resources. This tier couples a variety of resources that are available in the

pre-defined VO. It primarily consists of data resources and computational

resources. Data warehouses are the main data resources that are

fundamental to data-mining and data analyses. A data warehouse is

aggregated from a set of databases. These databases could be relational

databases, XML databases, object-oriented databases or even flat files.

Furthermore, additional single databases are possibly required for some

specific purposes. For example, it is necessary to build information

databases (of extraneous metadata) for logging events, monitoring data

provenance, etc. A metadata repository may be represented as an XML

database for storing resource locations and data-mapping information.

Computational resources are primarily data-analysis and data-mining

components deployed within each institution.

� Grid infrastructure. This tier provides infrastructure for building

high-level capabilities (e.g., data analysis) required by the system. It

consists of two parts: the standards and specifications provide essential

capabilities with standardized interfaces and protocol binding; the open

source middleware for realising these standards and specifications. Web

services comprise the underlying technology to the OGSA-based Grid

system. The resources in the resource tier are represented as

 79

WS-Resources. WS-Notification provides the approach for notification of

changes in one another WS-Resource’s states. OGSA offers a set of basic

capabilities, represented as Grid services, in order to fulfil the general

requirements of an OGSA-based Grid system. Globus Toolkit version 4

(GT4) and OGSA-DAI are open source middlewares to implement these

standards and specifications for developing the proposed system. GT4 is a

realization of OGSA, including a complete implementation of WSRF

specifications. The toolkit addresses issues of security, information

discovery, resource management, data management, communication, and

portability. GT mechanisms are in use at hundreds of sites and by dozens of

major Grid projects worldwide (Foster, 2002
1
). OGSA-DAI (Antonioletti

et al., 2005) allows data resources, such as relational or XML databases, to

be accessed via Web services. The WSRF version of OGSA-DAI is

compatible with the GT's implementation of WSRF. Open Grid Services

Architecture Distributed Query Processor (OGSA-DQP) (Alpdemir et al.,

2003) is an extension of OGSA-DAI that provides a service-based

distributed query processor which is an implementation of service-based

distributed query processing based on OGSA-DAI data services. It

supports the evaluation of queries over collections of potentially remote

relational data services. In practice, it is used by the system to support

queries over OGSA-DAI Data Services and over other services available on

the system, thereby combining data-access with data-analysis operations.

� System-specific services. This tier primarily defines high-level services

that are built on infrastructure-level services. This tier would mainly

contain data-analysis and data-mining services that would be used to

facilitate HIV/AIDS-specific research. The services defined in this tier

should also be compliant with OGSA specifications (capabilities).

� Applications. This tier comprises the user applications that operate within

the pre-defined VO. Through such applications, a set of data-mining and

data-analysis tools invoke the services within the second and third tier to

complete some analysis tasks and present meaningful results to users.

 80

These four layers represent the services groups within different levels of the

Grid-enabled, distributed data warehouse system. The infrastructure tier is a

critical part of the proposed system. It defines the standardized services based

on OGSA. These services, therefore, virtualize resources and handle

interoperability and security issues in the proposed system. Based on this tier,

more high-level services can be built to provide more domain-specific

capabilities for the system, according to the system requirements. Figure 4.6

shows the service framework, which contains all required services in the Grid

infrastructure tier. These services are divided into two levels: infrastructure

services and core services.

 Figure 4.6 Service Framework

4.4.1. Infrastructure services

Some common components, including naming, representing state, notification

and security, exist at a higher management level and are identified as

infrastructure services. As a brief recap: OGSA offers capabilities by defining

 81

services; the services interfaces are defined by WSDL; XML acts as the lingua

franca for description and representation, and SOAP acts as the primary

message exchange format for all defined services. The infrastructure services

are OGSA services and can be described as follows:

� Naming service. According to the OGSA naming service, OGSA-naming

uses a three-level convention. The naming service in this system complies

with OGSA-naming conventions. Every name-able entity (e.g., a service

or resource) in the system is associated with an (optional) human-oriented

name, an abstract name, and an address. The human-oriented name is

usually human-readable and may belong to a name space. Name spaces

are usually hierarchic and usually have syntactic restrictions.

Human-oriented names do not have to be unique. The abstract name is a

persistent name that does not specify a particular location. The abstract

names are globally unique in space and time. The AbstractName element

of a WS-Name (Grimshaw et al., 2006) is an example of abstract name.

The address specifies the location of an entity. WS-Addressing EPR is an

example of an address. The services or resources addressing in the system

use WS-Addressing EPRs.

� Security services. Security is one key area in a Grid environment. A

service request needs to carry appropriate tokens securely for purposes of

authentication, authorization and end-to-end message protection. In

addition, higher-level protection mechanisms, such as XML encryption and

digital signatures and point-to-point transport-level security, are required

too. The security services will be discussed in the security chapter.

� Representing state. WSRF specification addresses the key issues in the

area of state representation and manipulation: the ability to model, access

and manage state, and related, activities.

� Notification. WS-Notification specification provides the notification

mechanisms that support subscription to, and subsequent notification of

changes to state components.

 82

4.4.2. Core services

The core services provide Fabric-level capabilities to meet the requirements of

the Grid-enabled, distributed data warehouse system. These services are

compliant with OGSA Grid services. They are built upon the infrastructure

services, which use the standard interfaces and mechanisms to describe

operations, exchange messages, name and represent resources and services, and

handle security. They can be described as follows:

4.4.2.1. Publishing and Discovery Services

An OGSA Grid system is structured according to SOA principles. Since

everything (e.g., databases, computational resources, programs, etc.) in an

OGSA-based system is represented as services, a service provider needs to

publish a description of a service to a service registry, which can be consulted

by a service requestor. The services registry has persistent storage for the

latest information and is optimized for searches. It contains metadata about

the resources. The services registry may be replicated and distributed in multiple

locations for scalability, and it need to be updated frequently and simultaneously

to adapt to the dynamic Grid environment. Additionally, a discovery service

virtualizes the name and location of services on the system.

 Figure 4.7 Service Discovery

 83

A registry can use standard description models, such as UDDI and

WS-Inspection. UDDI is an industry standard for service registration and

discovery. A service provider uses UDDI to advertise the services, and a

service requestor uses UDDI to find the appropriate services by using SOAP

message. A UDDI registry exposes a set of APIs containing inquiry and

publishing APIs for services discovery and publication. In WS-Inspection,

services are described in WS-Inspection documents. A WS-Inspection

document provides a means for aggregating references to pre-existing service

description documents, which have been authored in arbitrary number of

formats such as WSDL, UDDI or plain HTML. UDDI and WS-Inspection can

work either together or separately. Figure 4.7 shows the service discovery

with UDDI and WS-Inspection. Furthermore, data discovery requires

languages or ontologies for describing the data and a query language that

operates over these descriptions. The infrastructure for data

discovery—registries, notification, etc. use the same mechanisms.

4.4.2.2. Resource Management Services

The resource management is a complex task in a Grid environment. The

resource management in the proposed system complies with the OGSA resource

management mechanism (or architecture) (Maciel, 2005). OGSA resource

management concerns three types of management that involve resources:

� Management of the physical and logical resources themselves

� Management of the OGSA Grid resources, exposed through service

interfaces (e.g., resource reservation, job submission and monitoring)

� Management of the OGSA Grid infrastructure, exposed through its

management interfaces (e.g., monitoring a registry service)

Different types of interfaces realize these forms of management. These

interfaces can be categorized into three levels, shown in the middle column of

Table 4.1 (Maciel, 2005).

Several definitions are clarified in the OGSA standard:

 84

� A manager initiates management actions; it might be either a management

console operated by a human, or a software entity that is able to monitor and

control its targets automatically.

� Manageability defines information that is useful for managing an entity.

Manageability encompasses those aspects of an entity that support

management, specifically through instrumentation that allows managers to

interact with the entity. The manageability may be provided by the entity

itself or by a separate means.

� Manageability interfaces are sets of standardized interfaces that allow a

manager to interact with an entity in order to perform common management

actions on it. Typical management actions include starting the entity,

stopping it, and gathering performance data.

� Manageable entities are entities that provide manageability interfaces and

thus, as the name implies, can be managed. Manageable entities can be:

physical (e.g., a node, a network switch, or a disk) or logical (e.g., a process,

a file system, a print job, or a service), discrete (e.g., a single host) or

composite (e.g., a cluster), and transient (e.g., a print job) or persistent (e.g., a

host)

Type of management Level of interface Interface

Resource level WBEM, SNMP, etc Management of the

resources themselves Infrastructure level WSRF, WSDM, etc.

Resource management

on the Grid
Functional interfaces

Management of OGSA

infrastructure

OGSA functions level
Specific manageability

interfaces

Table 4.1 Resource Management

At the resource level, the resources are managed directly through their native

manageability interfaces. These resources are managed by following the

description given by an information model, which defines their properties,

operations, events, and their relationships with each other. For example, the

 85

Distributed Management Task Force: Common Information Model (CIM,

http://www.dmtf.org/standards/cim/) (DMTF, 1999) infrastructure is an

approach to the management of systems and networks that applies the basic

structuring and conceptualization techniques of the object-oriented paradigm.

CIM is a model for describing overall management information in a

network/enterprise environment. Web-Based Enterprise Management

(WBEM, http://www.dmtf.org/standards/wbem/) is a set of technologies

developed to unify the management of enterprise computing environments.

WBEM is based on CIM. It is composed of CIM, which defines the resource

model semantics, and a set of encodings and protocols to access the resource

model.

The infrastructure level provides the base management behaviour of resources,

forming the basis for both manageability and management. At this level, it uses

standardized management behaviours to integrate the vast number and type of

resources. The infrastructure level provides: a base manageability model,

basic functionality, and generic manageability. The base manageability model,

which represents resources as services and allows resources in the system to be

manipulated through the standard Web services means for discovery, access,

etc. All manageable resources are either Web services or are represented by

Web services. WSRF defines the interfaces and behaviours which are the

basis for representing resources. Furthermore, WS-Notification defines

interfaces and behaviours for event notification. The Web Services Distributed

Management (WSDM) specifications define: 1) how management of any

resource can be accessed via Web services protocols – Management Using Web

Services (MUWS), and 2) management of the Web services resources via the

MUWS – Management Of Web Services (MOWS). WSDM MUWS (OASIS,

2005
6
) (OASIS, 2005

7
) provides a foundation for management using Web

services. WSDM MOWS (OASIS, 2005
5
) builds on the MUWS specification

for the management of Web services. The WSRF and WSN specifications,

together with WSDM MUWS, will provide the core functionality for the base

manageability interfaces. Basic functionality at infrastructure level includes:

the interfaces for capabilities that are common to many resources (e.g., start,

stop, etc.); representation of the state graph of a resource, including the states

 86

and transitions, and operations to change the state; describing and discovering

relationship among resources; and notification. A generic manageability

interface is common to all services implementing OGSA capabilities. This

manageability interface has functionality such as introspection, monitoring, and

creation and destruction of service instances. WSDM MOWS defines standard

manageability interfaces for Web services that should be applicable to OGSA

services.

At the functions level, there are two types of management interfaces: the

functional interface and the manageability interface. In an OGSA-based Grid,

some common OGSA capabilities (e.g., job management) are a form of resource

management. Services that provide these capabilities expose them through

functional interfaces. Each capability has a specific manageability interface

through which the capability is managed (e.g., monitoring of registries,

monitoring of a job manager, etc.). This interface could extend the generic

manageability interface, adding any manageability interfaces that are specific to

the management of this capability.

4.4.2.3. Job Execution Management Services

Job execution management services are concern with instantiating and

managing, to completion, units of work. The job execution management in the

proposed system complies with OGSA Execution Management Services

(OGSA-EMS). EMS services enable applications to have coordinated access

to underlying resources services, regardless of their physical locations or access

mechanisms. More formally, EMS addresses problems with executing units of

work, including their placement, provisioning, and lifetime management. It

primarily includes: finding execution candidate locations, selecting execution

location, preparing for execution, initiating the execution and managing the

execution. EMS defines three classes of services: service container, job

management and resource selection services.

A service container contains running entities, whether they are jobs or running

services. Containers have resources properties that describe static information,

such as what kind of executables they can take—OS version, libraries installed,

 87

policies, and security environment—as well as dynamic information. A basic

container interface may expose only a small set of operations (Grimshaw,

Newhouse, Pulsipher & Morgan, 2006). In particular, a container is expected to

implement a manageability interface which could be a WSDM managed

resource.

The OGSA-EMS definition of a ‘job’ incorporates and extends the notion of a

traditional job. The job encapsulates all there is to know about a particular unit

of work (i.e., an instance of a running application or a service). A job is the

smallest unit that is managed. It represents the manageability aspect of a unit of

work. A job implements a manageability interface, which could be a WSDM

managed resource. A job is named by an EPR. It is created at the instant that it

is requested, even though, at that point, no resources may have been committed.

The job keeps track of execution state (e.g., started, suspended, restarted,

terminated, and completed), resource commitments and agreements, job

requirements, and so on. Many of these are stored in a job document. A job

document describes the state of the job, the agreements that have been acquired,

its job status, metadata about the user (credentials, etc.), and how many times the

job has been started. The job document may be exposed as a resource property

of the job.

The Job Manager (JM) is a higher-level service that encapsulates all of the

aspects of executing a job, or a set of jobs, from start to finish. A set of jobs may

be structured or unstructured. The JM implements a manageability interface

which could be a WSDM collection—a collection of manageable entities. The

JM is responsible for orchestrating the services used to start a job or set of jobs,

by, for example, negotiating agreements, interacting with containers, and

configuring monitoring and logging services. It may also aggregate job resource

properties from the set of jobs it manages. The JM may be a portal that interacts

with users and manages jobs on their behalf.

Resource selection services contain several services: Execution Planning

Services (EPS), Candidate Set Generator (CSG), and Reservation services. An

EPS is a service that builds “schedules,” where a schedule is a mapping (relation)

between services and resources, possibly with time constraints. An EPS will

 88

typically attempt to optimize some objective function, such as execution time,

cost, reliability, etc. It first calls a CSG (see below) to get a set of resources, then

gets more current information on those resources from an information service,

then executes the optimization function to build the schedule. EPS generate a

schedule, and a schedule is enacted by JM. CSG determines the set of resources

on which a unit of work can execute. CSG generates a set of EPRs of containers

in which it is possible to run a job described by a job document. CSGs should be

primarily called by EPSs, or by other services, such as JMs, that are performing

EPS-like functions. Reservation services manage reservations of resources,

revoke reservations, etc. This may not be a separate service, rather an interface

to get and manage reservations from containers and other resources. The

reservation itself is likely to be an agreement document that is signed. A

reservation service presents a common interface to all varieties of reservable

resources on the Grid. Reservation services will generally be used by many

different services: a JM might create reservations for the groups of jobs which are

being managed, or an EPS might use reservations in order to guarantee the

execution plan for a particular job. It could also be the case that the creation of

reservations will be associated with the provisioning step for a job.

Job Execution Management

Job Manager

Execution Planning Services

(EPS)

Candidate Set Generator

(CSG)

Get a

scheduler

Service Container

Information Services

Return a

scheduler

Select

Container

Reservation Service

Log Service

Job

Description

Dynamic / Static

System Information

 Figure 4.8 Job Execution Management

 89

Figure 4.8 is an example of job execution. It illustrates the involved services and

the interaction among them. This case use EMS to control the processing of a

new job. The JM firstly creates a new job with the appropriate job description.

The JM then call an EPS to get a scheduler. The EPS, in turn, calls CSG, which

calls information services to determine where the job can be executed, based on

binary availability and policy settings. Basically, information services (see

section 4.4.2.4) are databases of attribute metadata about resources. The EPS

selects a service container, after first checking with the service container that the

information is accurate. The EPS returns the schedule to the JM. The JM then

may interact with reservation (or deployment and configuration) services to set

up the job execution environment. The service container is invoked to start the

job. Logging services are used for accounting and audit trails. When the job

terminates, the job manager is notified by the container. If the job terminates

abnormally, the whole cycle may repeat again.

4.4.2.4. Information Services

The ability to efficiently access and manipulate information about applications,

resources and services is an important capability in an OGSA Grid. In OGSA

specifications, information refers to dynamic data or events used for status

monitoring, relatively static data used for discovery and any data that is logged.

In practice, an information service needs to support a variety of QoS

requirements for reliability, security, and performance. The information

services for the proposed system comply with OGSA Information Services and

inherit most of the capabilities provided by OGSA Information Services. The

approach, defined by Grid Monitoring Architecture, will be used to provide

capabilities for information discovery and delivery.

The characterization of an information service depends greatly on factors, such

as the demand placed on the source of information (e.g., static versus dynamic,

publication rate), its purpose (e.g., discovery, logging, and monitoring) and QoS

requirements. Information is made available for consumption, either from the

originating producer, or through an intermediary (e.g., logging service or

notification broker), acting on behalf of the originating producer. Either one or

 90

more consumers wish to obtain information from one or more producers, or one

or more producers wish to send information to one or more consumers. The

data model used to implement an information services, or the language used to

query for information, are mostly based on XML and XPath/XQuery query

languages, and those that use the relational model and the SQL query language.

Metadata is associated with information (e.g., events or messages) for

describing its structure, properties and usage. For interoperability, a standard

event scheme for information services is desirable.

OGSA Information Services define discovery, message delivery, logging, and

monitoring capabilities. Discovery service is discussed in section 4.4.2.1.

Information producers and consumers interact by exchanging messages.

Producers either send messages directly to relevant consumers or make use of an

intermediary (message broker) that decouples producers from consumers.

Logging service keeps log recorders in a persistent store for a period of time. It

acts as an intermediary between log artifact producers and consumers.

Producers write log artifacts sequentially, and consumers may read (but not

update) the log records. Information that carries a field for ordering purposes

(e.g., a time stamp and sequence number) can be used for monitoring. A

monitoring service could be equally used for applications or resources. Some

situations (e.g., real-time applications) might impose strict requirement on the

monitoring service (e.g., high update rates and high performance). In such a

case, a special purpose service might be needed.

For Grid resources in general (including services and applications), the amount

of available information about resources could be large, dispersed across the

network, and updated frequently. A direct exchange between a producer and

consumer is not appropriate or not possible, and searches in this space may have

unacceptable latencies. In order to manage such information in a controllable

way, it is important to separate information source discovery from information

delivery. Grid Monitoring Architecture (GMA) (Tierney et al., 2002)

introduces an approach for this separation, based on the

Producer-Intermediary-Consumer pattern, which is the basic pattern of

decoupling producers from consumers using an intermediary and is widely used.

 91

In the Producer-Intermediary-Consumer pattern, producers put data into an

intermediary, and consumers extract data from it. In a general sense, this is the

pattern followed by any data store, that is, producers write to and consumers read

from a file, RDBMS, ODBMS etc. In addition to supporting producer and

consumer interfaces, an intermediary may also support a management interface to

control those functions that are not directly associated with reading or writing to

the data store.

 Figure 4.9 An Example of Monitoring

Figure 4.9 shows a sample use of GMA. In GMA, a producer is any

component that uses the producer interface to send events to a consumer. A

consumer is any component that uses the consumer interface to receive event

data from a producer. The GMA defines a directory service to store

information about producers and consumers that accept requests. Producers

and consumers publish their existence in the directory service. They typically

also publish information regarding the types of events they produce or consume,

along with the meta-information about accepted protocols, security mechanisms,

and so forth. This publication information allows other producers and

consumers to discover the types of event data that are currently available, or

accept the characteristics of that data, and the ways to gain access to that data.

 92

The directory service is not responsible for the storage of event data itself as it

contains only per-publication information about which event instances can be

provided or accepted. The event schema may, optionally, be available through

the directory service.

A given component may have multiple producer interfaces, each acting

independently and sending events. The core interaction functions that may be

supported by a producer include: maintaining registration (add/update/remove

directory service entry or entries describing events that the producer will send to

a consumer), accepting a query request from a consumer, accepting a subscribe

request from a consumer, accepting unsubscribe request form the consumer,

locating consumer (search the directory service for a consumer), notifying (send

a single set of event(s) to a consumer), initiating subscribe (request to consumer

to send it events), and initiating unsubscribe (terminate a subscription with a

consumer). A given component may have multiple consumer interfaces, each

acting independently and receiving events. The core interaction functions that

may be supported by a consumer are: locating producer (search the directory

service for a producer), initiating query (request one or more events from a

producer), initiating subscribe (request establishment of a subscription with a

producer), terminating a subscription, maintaining registration

(add/update/remove directory service entry or entries describing events that the

consumer will accept from the producer), accepting notification (accept a single

set of event(s) from a producer),accepting subscribe (accept a subscribe request

from a producer), accepting subscribe (accept a subscribe request from a

producer) and locating event schema (search request to the schema repository

for a given event type). Many types of consumers are possible, such as a

real-time monitor or an archiver. Real-time monitors collect monitoring data

in real time used by online analysis tools. An archiver aggregates and stores

event data in long-term storage for later retrieval or analysis. Many Grid

services may, in fact, be both consumers and producers of monitoring events.

These advanced services is the compound producer/consumer, which is a single

component that implements both producer and consumer interfaces. Use of

these intermediate components can lessen the load on producers of event data

that is of interest to many consumers. It is effective to reduce the network

 93

traffic, as the intermediaries can be placed “near” the data consumers. The

data used to construct events can be gathered from many sources. Hardware or

software sensors that sample performance metrics in real time constitute one

type of data source. Another is a database with a query interface, which can

provide historical data.

4.4.2.5. Data Services

Data services provide the key capabilities that are specific to data-access and

operation. OGSA Data Services are concerned with the management of,

access to and update of data resources, along with the transfer and replica of

data between resources. It provides a broad set of functional and

non-functional capabilities that can be defined by entries in the service

interfaces. The data services for this system comply with the OGSA Data

Services and inherit most capabilities provided by OGSA Data Services. They

can be used to move data as required; manage replicated copies; run queries and

updates; and federate data resources. The combination of subsets of data

services can provide more high level capabilities such as data-collection and data

analysis.

A distributed system may contain a variety of data resources. These resources

may use different models to structure the data, different physical media to store

it, different software systems to manage it, different schema to describe it, and

different protocols and interfaces to access it. The data may be stored locally

or remotely; may be unique or replicated; may be materialized or derived on

demand. Virtualizations are abstract views that hide these distinctions and

allow the data resources to be manipulated without regard to them. The data

virtualization provides transparency for data-access and processing (see section

3.3.1.1).

A layer of Grid data virtualization services (Raman et al., 2003) provide such

transparency and enable ease of data-access and processing. These services

support federated access to distributed data, dynamic discovery of data sources

by content, dynamic migration of data for workload balancing, parallel data

processing, and collaboration. These services virtualize various aspects of the

 94

Grid, and make it appear as a single entity to the end-user applications. Data

virtualization services may include data discovery, federation, consistency

management service, collaboration, workflow coordination etc. They are

described as follows:

� Resources are represented as services in an OGSA Grid. Discovery

service (discussed in section 4.4.2.1) virtualizes the name and location of

data on the Grid, and forms the basic data virtualization service. Other

virtualization services build on top of this name transparency to offer other

kinds of transparency.

� A data federation service will analyze each query that it receives to

determine how to best answer the query. This may involve the generation

of sub-queries against one or more of the data resources making up the

federation, applying transformations to the results of those sub-queries,

combining those query results in (arbitrarily) complex ways, and then

transforming the result into the format requested by the client. It may also

determine where intermediate processing is done in order to minimize

network traffic. It will allow data sources to be added and removed from

the federation, provided they satisfy that service’s semantic restrictions.

The application specifies its queries in terms of logical domains and

predicates; the discovery service maps these onto relevant sources. Thus,

the combination of federation and discovery services provide applications

with heterogeneity, distribution, and location transparency.

� A data-intensive Grid applications may use Grids for scalability of

performance, rather that for integrating data sources. This type of

applications typically takes the form of complex workflows of

transformation and data-analysis operations, running over large numbers of

discrete objects. These operations are often data parallel Grids, which can

be used to scale up these applications on demand. A Workflow

Coordination Services will automatically spread these operations across

Grid nodes, taking responsibility for moving and caching data and

functions, recovering from node failures, and so on. Workflow

Coordination Services solve workflow parallelizing without changing

applications.

 95

� Grid applications often distribute their data across multiple sites. A

consistency management service is used to keeps the different data pieces

consistent with one another. The simplest form of such consistency is

referential integrity (Ramakrishnan & Gehrke, 1998), which can be

provided by DBMS. Some Grid datasets may also need more

sophisticated integrity constraints, which could also vary on an

application-specific (user community-specific) basis

� Data-intensive Grid applications involve sharing of data between users at

different sites. A collaboration service is used to propagate updates to all

users and to resolve conflicts in order to virtualize independent, distributed

data updates. The collaboration service must rely on the Grid data sources

to maintain version information.

Data services offer data transfer from one location to another. This may be to

create a copy of the original data or migrate it completely. QoS can be specified,

such as reliable transfer, the maximum bandwidth to use, the time when delivery

is required, or delivery guarantees. The base functionality transfers bytes from

one source to a single sink. Thin layers above this supports transfer to multiple

sinks, and allow the preservation of semantic information, such as file

hierarchies, byte ordering or encodings. Most services have a security policy

decision point before transferring data. An access operation may then check

whether the resulting transfer is allowed, depending on the contents of the data,

and whether any restrictions apply to that transfer (such as encryption).

Data-access generally concerns the retrieval, insertion or modification of data,

which may be available from a variety of infrastructures and in a range of

formats. Data-access services include simple access, queries, federation access

(discussed above), and update.

� Simple access services operations for reading and writing (logically)

consecutive bytes from a data resource. The virtualization interface hides

the details of the data location.

� Data-access services provide mechanisms for applying queries against data

resources. In simple cases these may run an SQL query over a relational

 96

database, an XML query over an XML database. Other services may

implement distributed queries over federated databases or text mining over

a set of documents. Synchronous queries return the data in the response to a

request, while asynchronous queries expose the derived data as new

resources. Services could be data resources. It means they may also

deliver the results of a query to a specified set of other services. Query

services may optimize a query before sending it to the resource. The

resources may further optimize the query and may also handle issues, such

as concurrent access to the data. Data services provide a range of

mechanisms for updating data resources, depending on the semantics of the

data resource, and the nature of the data to be uploaded. Examples include

updating a record in a database, or bulk loading data to such resources.

Data services may specify some form of transactional behaviour for update

operations. When a data resource has replicated versions or is the source

for derived data services, the updates may be propagated to the replicated or

derived versions. When several clients are updating the same data

resource, the various forms of consistency should be maintained by the

virtualization interface (consistency management service).

� Various components of the system may transform data. In the most general

sense, any service that consumes data of one sort and generates other data

could be viewed as a transformation. Data services may themselves

transform data from one format to another, or filter it by using built-in

functionalities, before moving it or updating it. These transformations

may be instigated explicitly by certain operations, or they may be

programmed to be triggered automatically in response to certain conditions.

Data services also provide management capabilities to manage data storage,

security mapping extension, resource and service configuration, metadata

catalogue, and provenance. They are described as follows:

� Storage management services control the provision of storage to

applications and other services. They manage quotas, lifetime, and

properties such as encryption and persistency.

� Database management systems often implement sophisticated security

 97

mechanisms. Some of these provide a large range of possible operations

and access control at the level of individual records. The data services

support the standard OGSA security infrastructure that allows effective use

of fine-grained mechanisms in the OGSA Grid.

� Data services can provide functionalities to enable clients to use

configuration options provided by data resources. In addition, the services

may provide additional operations for configuring the virtualization of the

resource provided by the service.

� Metadata catalogues are data services that store descriptions of data held in

certain other data services. On the other hand, the metadata for data

services may include information about the structure of the data, including

references to the schemas that describe the data. For some services this is

not practical, as the data resources include many schemas that are modified

frequently, and in these cases, schema information will be provided by the

services themselves.

� Users of data services may wish to see information about the provenance and

quality of the data provided by the services. Provenance is a special form of

audit trail that traces each step in sourcing, moving, and processing data.

This may be at the level of the whole resource or of its component parts,

sometimes to the level of individual elements. This, in turn, requires the

services or other processes that generate the data to also maintain the

consistency of the provenance information. Complete provenance

information can allow the data to be reconstructed by following the

workflow that originally created it. Provenance information may be provided

by the service itself, or it may be maintained in a metadata catalogue or a

logging service.

4.4.3. Grid portal

The Grid end users (e.g. health workers, HIV/AIDS scientists, researchers and

medical practitioners), use the Grid to solve domain-specific problems. A Grid

portal is a Web-based gateway that provides seamless access to a variety of

backend resources. In general, a Grid portal provides end users with a

 98

customised view of software and hardware resources specific to their particular

problem domain. It also provides a single point of access to Grid-based

resources that they have been authorized to use. For the Grid-enabled,

distributed data warehouse system, this will allow HIV/AIDS researchers to

focus on their problem area by making the Grid a transparent extension of their

desktop computing environment. So far, Grid portal development can be

broadly classified into two generations. First-generation Grid portals are

tightly coupled with Grid middleware, such as GT. The second generation of

Grid portals are those that are starting to emerge and make use of technologies,

such as portlets, to provide more customisable solutions. Most Grid portals

currently in use belong to the first-generation. This section focuses on the

architecture and services of first-generation Grid portals, which will provide a

Web-based gateway for the Grid-enabled, distributed data warehouse system.

Grid Portal Architecture

Web Browser Web Server

Application

Manager

Tier 1 Tier 2 Tier 3

Proxy

Credential

Server

Event Archiver

Grid Resources

Data Resources

Computational

Resources

Real-time

Monitoring

Services

 Figure 4.10 Grid Portal Architecture

The first generation of Grid portals primarily used a three-tier architecture

(Gannon et al., 2002) as shown in Figure 4.10. It consists of an interface tier

of a Web browser, a middle tier of Web servers and a third tier of backend

services and resources, such as databases, programs, etc. A user interacts with

Web browser through a secure connection. The Web server obtains a proxy

credential from a proxy credential server and uses that to authenticate the users.

When users complete defining parameters of the task they want to execute, the

portal Web server launches an application manager, which is a process that

 99

controls and monitors the execution of Grid tasks. The Web server delegates

the user’s proxy credential to the application manager so that it can act on the

user’s behalf. The proxy credential, proxy credential server and proxy

credential delegation will be discussed in the next chapter in detail.

The Grid portal generally accommodates the following Grid services:

� Job management: A portal provides users with the ability to manage

their tasks’ execution. For example, a user’s application is launched via

the Web browser in a reliable and secure way; the statues of tasks are

monitored; and the user can pause or cancel tasks if necessary.

� Discovery services: A portal uses a discovery service to find resources

and services that are needed and available for a task.

� Information services: Dynamic and static data or events can be collected

by using real-time monitoring services and events archivers. This data can

be retrieve from either real-time monitoring or event archives for

monitoring purpose.

� Authentication: When users access the Grid via a portal, the portal can

authenticate users with their username and password. Once authenticated,

a user can request the portal to access Grid resources on the user’s behalf.

The GridPort 2.0 (GP2, http://Gridport.npaci.edu) and Grid Portal Development

Kit (GPDK) (Novotny, 2002) are two representatives of Grid portal toolkit used

to facilitate the easy development of application-specific portals. GP2 is a

Perl-based Grid portal toolkit, which is a collection of services, scripts and

tools, where the services allow developers to connect Web-based interface to

backend Grid services. The script and tools provide consistent interfaces

between the underlying infrastructure, which is based on Grid technologies,

such as GT, and standard Web technologies, such as CGI. GPDK is another

Grid portal toolkit that uses Java Server Pages (JSPs) for portal presentation and

JavaBeans to access backend Grid resources via GT. Grid portals currently in

use include XACT Science Portal (Krishnan et al., 2001), JiPANG (Suzumura,

Matsuoka & Nakada, 2001), ASC Grid Portal (Allen et al., 2001) etc.

 100

4.4.4. Models

The previous sections defined the essential services to support the Grid-enabled,

distributed data warehouse system based on OGSA. These services provide a

rich set of fundamental capabilities. The combinations of subsets of these

services are used to provide more high-level capabilities to meet some of the

system’s requirements (see section 3.3). This section will introduce two

models in order to realize data-collection services, and cross-institutional

data-access and integration services required by the HIV/AIDS research

framework. These two models contain all the components required by these

two services, and show the interactions between them.

Data Collection

Grid Portal

Job Manager

Service

Discovery

Service

Data Transfer Services

Resources

Directory

Data Update ServiceMonitoring

Services

Data Access

Service

Transformation

Data

Metadata

Search

Events

Events

Search

Events

Events

Read

Events

Data Warehouse

Distributed Data providers

Operational DB

Data Extraction

Component

XML

Metadata

Binary

Data file

Event

Archiver

Register

Read

Discovery

Service

Operational DB

Data Extraction

Component

XML

Metadata

Binary

Data file

Operational DB

Data Extraction

Component

XML

Metadata

Binary

Data file

Operational DB

Data Extraction

Component

XML

Metadata

Binary

Data file

XML

Metadata

Binary

Data file

Binary

Data file

XML

Metadata

Event

Register

Event

Register

Event

Register

File Server

Log Storage

Events

 Figure 4.11 Data-Collection Model

 101

4.4.4.1. Data-Collection Model

As discussed in section 1.1 and 3.3, data-collection is one of the main

requirements of a Grid-enabled, distributed data warehouse system. It is

required, e.g., to build data warehouses to aggregate HIV/AIDS patients’

demographic data. Patients’ data are collected from distributed data-providers

through ETL processes. The data-collection model uses Grid services to

control data transfer, data transformation, and the loading process.

Additionally, the main processes are monitored through real-time monitoring

services and logged into log storage. Figure 4.11 shows this data-collection

model. It contains a number of defined services and illustrates the interactions

among them. It can be described as follows:

� The patients’ data is collected from physical distributed data-providers.

The data extraction components are provided by data-providers according

to a data collector’s requirements. The required data is extracted and

transformed into a specific format, depending on a data schema provided by

a data collector. This data schema mainly describes what data (for example,

patients’ gender, age, race, diagnosis, symptom, treatment, etc.) will be

extracted, and in what format (e.g., data type, sequence, etc.). Data

schema is stored in a local metadata repository on the data provider’s side.

When the data extraction process is started, it needs to search its metadata

repository to get required information. The extracted data will be exported

into a binary data file with an XML metadata file. The metadata file

contains the information, such as the data provider’s description (e.g.,

name, location, etc.), file create-date, data volume, data collector’s

description, etc.

� On the data collectors’ side, they need to transfer data and its metadata file

to a file server periodically by invoking a data transfer service deployed on

the Grid. The data update service is responsible for reading data files and

metadata files from the file server, and performing transformation before

inserting new data into the data warehouse. The transformation process at

this stage performs operations, such as selecting certain columns,

translating coded values, deriving new calculated values, summarizing

 102

multiple rows of data, etc. The loading process is essentially inserting

data into the data warehouse. The corresponding metadata will be inserted

into log storage for future audit purposes. A data-access service can be

used to read logged data from the log storage.

� A job manager is used to initiate, schedule, and execute jobs. It invokes

data transfer service, data update services, and monitoring services,

depending on the job description. Job manager services use discovery

services to find the location of these deployed services and control their

execution. Discovery services search resource directories to retrieve the

location, and other information, of resources (services) and return this

information to job manager services. The resource directory contains

metadata for describing deployed services and resources. It may have

multiple copies distributed at different locations.

� Data transfer, transformation and loading process are monitored during

their processing by using real-time monitoring services. Data transfer

services, data update services and job manager services register events in a

directory service. The directory service is the storage for keeping entries

used for searching events and their producers. The monitoring services

subscribe all available event data for real-time visualization and

performance analysis by searching the events directory. The events are

also sent to the event archiver for non-real-time audit and analysis purpose.

A data-access service can be used to read archived events.

4.4.4.2. Data-Access and Integration Model

Cross-institutional data-access and integration are key capabilities of the

Grid-enabled, distributed data warehouse system to facilitate data-mining and

data analysis over distributed data warehouses. Data services comprise a rich

set of functionalities to provide different capabilities such as federated access,

distributed queries, data management, consistency management, metadata

management, etc. Different combinations of these capabilities are used for

different purposes, according to different requirements. This model only

contains a small set of capabilities, which are essential for data-analysis tasks.

 103

Figure 4.12 shows the model used for access and integrating distributed data.

This model is described below:

� The model integrates various types of resources: the data-analysis

components deployed within each institution, data warehouses, data marts,

and single databases. Data-analysis services are treated as computational

resources that can be involved in collaborative operations. Data

warehouses and data marts are all considered as a groups of databases,

which may use different data, different software systems to manage it, and

different schema to describe it. On the other hand, a data service is also a

kind of data resource. The output data from one data service may be the

input of another data service. Whether computational resources, data

resources or services, all resources are represented as WS-Resources.

Resources publish their description information in a resources directory.

A resources directory can have multiple copies distributed at different sites,

locations or institutions.

� Data analysis needs to retrieve data from multiple distributed data resources

or other data-analysis services. The data services provide a set of

capabilities, including federation access, data transfer, data transformation,

metadata catalogue, and consistency management. Data-analysis services

invoke the subset of data services to complete specific tasks. Data

services invoke discovery services to search the resource directory in order

to look for available data resources. Discovery services respond to data

services with data resources’ description information (e.g., location, name,

etc). Data services then can use this information to establish connections

with these data resources and perform necessary operations.

� Data-analysis services can also invoke other data-analysis services from

remote sites to perform some collaborative operations. The Discovery

service is used to search available data-analysis services in the pre-defined

VO.

� The responsibilities of job manager services and discovery service are as

described in the data-collection model.

� This model uses the same monitoring mechanism as the data-collection

 104

model.

Data Access and Integration

Grid Portal

Distributed Data Resources

Publish

Data Analysis

Services

WS-Resource

Data Warehouse

Data Marts

Search

Job Manager

Service

Discovery

Service

Resources

Directory

Data Analysis

Services

Monitoring

Services

Event

Archiver

Discovery

Service

WS-Resource WS-Resource

Search

Register

Events

Events

Events

Events

Events

Event Register

Events

Event

Register

Data Access

Service
Read

Event

Register

Database

WS-Resource

Data Services

Transfer Transformati

on

Federation

Data Access

Metadata

Catalogue
Consistency

Management

 Figure 4.12 Data-Access and Integration Model

4.5. Summary

The Grid-enabled, distributed data warehouse system uses the Grid approach to

achieve cross-institutional resource-sharing and collaboration, e.g., in order to

facilitate HIV/AIDS research. The proposed system is designed as an

OGSA-based Grid system. OGSA introduces a service-oriented Grid

architecture, based on Web services technology. It represents Grid resources

as Grid services, which are Web services with standard interfaces and protocol

bindings. The stateful and dynamic nature of Grid service needs a Web service

that has the capability to maintain and exchange internal information. WSRF

introduces the WS-Resource approach to modelling states in a Web-services

context. Additionally, the WS-Notification family of specifications defines a

 105

standard Web services approach to notification, using a topic-based

publish/subscribe pattern.

This chapter defined a layered framework that consists of supportive

Grid-related standards and specifications, including Web services, OGSA,

WSRF, WS-Notification and GT. Based on these standards and specifications,

a feasible system framework is proposed. OGSA offers a set of fundamental

capabilities by defining Grid services in a general Grid context. Based on

OGSA-services, the services required by the proposed Grid system are

identified at different levels. The core services are built on infrastructure

services that provide a set of common components, including naming,

representing state, notification and security. The core-service set provides

capabilities, such as job execution, system monitoring, data-access, data

integration, resource management, etc. These services are finally integrated

into two proposed models to achieve cross-institutional data-collection,

data-access and integration.

 106

Chapter 5.

Security

A Grid system is about resource-sharing. The proposed Grid system integrates

a distributed and heterogeneous collection of locally managed users and

resources, hosted by multiple institutions, which are members of the VO. Each

institution may have a different security infrastructure to maintain the trust

relationship within a single trust domain; in other words, the institutions in the

VO are untrusted to each other. Obviously, establishing trust relationships

between VO participants is critical to ensure secure cross-domain interaction.

It is also necessary to provide standard security mechanisms that can be

deployed to protect local institutions, while simultaneously allowing

interoperable secure interaction. VO security is specifically concerned with

user authentication and access control mechanisms for enforcing local and

VO-wide policies for data-access and resource-usage.

Grid security is typically based on what is known as the Grid Security

Infrastructure (GSI), which is now a GGF standard. It consists of a set of

components for addressing different security issues (such as authentication,

delegation and authorization) in Grid systems. The main advantage of GSI is

that the general security issues are solved at infrastructure level rather than

application level; the applications need only deal with application-specific

policy. Version 4 of GSI (GSI4,

http://www.globus.org/toolkit/docs/4.0/security/), corresponding to the GT4,

integrates with the OGSA security mechanism to allow applications and users to

operate in the Grid in a seamless and automated manner.

This chapter will identify the security issues in the Grid-enabled, distributed

data warehouse system, and discusses how to use GSI4 components to provide a

security solution for the problem-context in question. The envisaged security

solution will discuss the use of Transport Level Security (TLS) protocol (Dierks

& Rescorla, 2006) with X.509 public key certificate for authentication; X.509

proxy certificate for single sign-on (SSO) and delegation; the MyProxy protocol

 107

(http://grid.ncsa.uiuc.edu/myproxy/) as an online credentials repository; and

Shibboleth (http://shibboleth.internet2.edu/) plus GridShib

(http://grid.ncsa.uiuc.edu/GridShib/), which integrate X.509 certificates with

Security Assertion Markup Language (SAML) (OASIS, 2005
1
) for

authorization.

The remainder of this chapter is organized as follows: The first two sections

give a brief overview of information security principles and existing security

technologies. Section 5.3 discusses the security challenges in the proposed

Grid system. Section 5.4 introduces a high-level Grid security architecture

which identifies the compulsory Grid security components. Section 5.5

focuses on the mechanisms implemented by GSI for addressing different

security issues. Section 5.6 discusses the solution for the proposed Grid

system.

5.1. A Brief Security Primer

Information Security is a discipline that relies on the synthesis of people, policy,

education, training, awareness, procedures and technology to improve the

protection of an organization’s information assets. The goals of security are

threefold:

� Prevention: prevent attackers from violating security policy.

� Detection: detect attackers’ violation of security policy

� Recovery: stop an attack, assess and repair damage, and continue to

function correctly, even if an attack succeeds.

Prevention is the ideal scenario. Detection occurs only after someone violates

the security policy. Recovery implies that the attack has stopped (been

stopped) and the system has been fixed.

The three classic security concerns (Whiteman & Mattord, 2003) of Information

Security deal principally with data, and are:

� The confidentiality of information is the quality or state of preventing

disclosure or exposure to authorized individuals or systems.

 108

Confidentiality ensures that only those with the right and privileges to

access a particular set of information are able to do so, and that those who

are not authorized are prevented from obtaining access.

� Integrity is the quality or state of being whole, complete and uncorrupted.

The integrity of information is threatened when the information is exposed

to corruption, damage, destruction, or other disruption of its authentic state.

The threat of corruption can occur while information is being stored or

transmitted.

� Availability enables users who need to access information to do so without

interface or obstruction, and to receive it in the required format. A user

means not only a person, but also another computer system.

Additional concerns deal more with people and their actions:

� Authentication: Ensuring that users are who they say they are.

� Authorization: Making a decision about who may access data or a service.

� Assurance: Being confident that the security system functions correctly.

� Non-repudiation: Ensuring that a user cannot deny an action.

� Auditability: Tracking what a user did to data or a service.

Other security concerns relate to:

� Trust: People can justifiably rely on computer-based systems to perform

critical functions securely and on these systems to process, store and

communicate sensitive information securely.

� Reliability: The system does what you want, when you want it to.

� Privacy: Within certain limits, no one should know who you are or what

you do.

5.2. Security Technology

Technology solutions of security, properly implemented, can maintain the

confidentiality, integrity, and availability of information in each of its three

 109

states: storage, transmission, and processing. This section will introduce some

commonly used security technologies.

5.2.1. Firewalls

A firewall, as part of an information security program, is any device that

prevents a specific type of information from moving between the outside world,

known as the un-trusted network (e.g., the Internet) and the inside world, known

as the trusted network, and vice versa. It could be a hardware or software

component added to a network to prevent communication forbidden by an

organization’s administrative policy.

Generally, there are two types of firewalls: traditional and personal. A

traditionally firewall is, typically, a dedicated network device or computer

positioned on the boundary of two or more networks. This type of firewall is

used to filter all traffic entering or leaving the connected networks. A personal

firewall is a software application used to filter traffic entering or leaving a single

computer.

All traditional firewalls have the basic task of preventing intrusion on a

connected network, but accomplish this in different ways: by working at the

network and/or transport layer of the network. A network-layer firewall

operates at the network level of the TCP/IP protocol stack. It undertakes

IP-packet filtering, not allowing packets to pass the firewall unless they meet

the rules defined by the firewall administrator. Application-layer firewalls

operate at the application level of the TCP/IP protocol stack, intercepting, for

example, all Web/HTTP, Telnet and FTP traffic. They will intercept all

packets travelling to or from an application.

5.2.2. Intrusion Detection Systems

Intrusion Detection Systems (IDSs) work like burglar alarms. When the alarm

detects a violation of its configuration, it activates the alarm. This alarm can

be audible and visual, or it can be a silent alarm that sends a message to a

monitoring company. As with firewall systems, IDSs require complex

 110

configuration to provide the level of detection and response desired. IDSs

operate as either network-based, as when the technology is focused on

protecting network information assets, or host-based, as when the technology is

focused on protecting server of host information assets. IDSs use one of two

detection methods, signature-based or statistical anomaly-based.

A host-based IDS resides on a particular computer or server, known as the host,

and monitors activity on that system. Most host-based IDSs work on the

principle of configuration or change management, in which the system records

the file sizes, locations, and other attributes of the files, and then reports when

one or more of these attributes change, when new files are created, and when

existing files are deleted. It can also monitor systems’ logs for pre-defined

events. Network-based IDSs work differently. They monitor network traffic.

When a pre-defined condition occurs, network-based IDSs respond and notify

the appropriate administrator. Network-based IDSs require a much more

complex configuration and maintenance program than do host-based IDSs. They

must match known and unknown attack strategies against their knowledge base

to determine whether or not an attack has occurred.

5.2.3. Cryptography

Cryptography is the realm of knowledge that deals with creating methods to

assure that messages are secretly sent and received. Cryptography is the most

commonly used means of providing security. It can be used to address four

goals:

� Message confidentiality: Only an authorized recipient can extract the

contents of a message from its encrypted form.

� Message integrity: The recipient should be able to determine if the

message has been altered during transmission.

� Sender authentication: The recipient can identify the sender, and verify

that the purported sender did send the message.

� Sender non-repudiation: The sender cannot deny sending the message.

 111

Obviously, not all cryptographic systems or algorithms realize, nor intend to,

achieve all of these goals. Cryptosystem are manual or computer-based

systems used to encrypt or transform data for secure transmission and storage.

The following several sections will introduce several popular cryptosystems

briefly.

5.2.3.1. Symmetric Cryptosystems

Symmetric cryptography, also known as private key cryptography, is built on

symmetric encryption and uses a single key for both encryption and decryption

of data. Each participant in the secure communication must possess his or her

own set of the identical keys. Secure communication can be accomplished

over insecure channels with a symmetric cryptosystem. Because the

symmetric encoding and decoding algorithm is public, the level of security

generated by a symmetric cipher depends on the key length and the system’s

ability to protect the key.

IBM’s Lucifer algorithm, which was originally based on a key length of

128-bits, was modified to a key length of 56-bits, renamed Data Encryption

Standard (DES), and adopted as a standard for encryption of non-classified

information. DES consists of two components: an algorithm and a key. The

DES algorithm involves a number of iterations of a simple transformation which

uses both transposition and substitution techniques applied alternatively. DES

is a so-called private-key cipher. Data is encrypted and decrypted with the

same key. The DES algorithm is publicly known; thus, learning the encryption

key would allow an encrypted message to be read by anyone.

5.2.3.2. Asymmetric Cryptosystems

Asymmetric cryptography, also known as public key cryptography, uses a key

pair consisting of a public key and private (secret) key. The public key

encrypts, but cannot decrypt. Asymmetric encryption is popular because one

of the keys can be published and widely distributed, thereby allowing anyone to

use another’s public key to encrypt data; however, only the person with the

 112

corresponding private key can decrypt the data. This makes encrypted data

secure, as long as the private key remains secure.

An example of a public-key cryptosystem is RSA, which was published by

Ronald Rivest, Adi Shamir and Leonard Adleman (RSA). The patented RSA

algorithm has become the de facto standard for public-use encryption

applications. RSA provides authentication, as well as encryption, and uses two

keys: a private key and a public key. With RSA, there is no distinction

between the function of a user’s private and public keys. The keys are

generated mathematically. The security of the RSA algorithm depends on the

use of very large numbers (RSA uses 256- or 512-bit keys).

With both symmetric and asymmetric cryptosystems, there is a need to secure

the private key. The private key must be kept private. The stored keys

should always be password protected. Another issue, with key-based systems,

is that the algorithms that are used are public. This means that the algorithms

could be coded and used to decrypt a message via a brute force method of trying

all the possible keys. However, such a program would need a significant

amount of computational power to accomplish such a process. With keys of

sufficient length, the time to decode a message would be unreasonable.

5.2.3.3. Digital Signatures

Digital signatures, based on the Digital Signature Standard (DSS), have been

widely adopted for authenticating information. The DSS approach uses a hash

function to create a message digest, which is then input into the digital signature

algorithm with a random number to generate a digital signature. Integrity is

guaranteed in public-key systems by using digital signatures. Most digital

signatures rely on public-key cryptography to work. In this case, the digital

signature function depends upon the sender’s private key. The encrypted

message containing the digital signature is then verified by the recipient by

using the sender’s public key. A strong hash function is applied to the

message, and the resulting message digest is encrypted instead of the entire

message, which makes the signature significantly shorter than the message and

saves considerable time.

 113

5.2.3.4. Digital Certificates

Digital certificates are electronic documents issued by a reputable third party

that certify the identity of a user and the proof of identification associated with

the presentation of a public key. A certificate authority (CA) issues, manages,

and authenticates signs and revokes a digital certificate containing the user’s

name, public key, and other identifying information. In contrast to a digital

signature, which helps authenticate the origin of a message, a digital certificate

authenticates the company that provides the verification of the digital

signature’s authenticity. Time and data stamps may be included, as a CA

validates the identity of a certificate requestor, issues the electronic certificate,

and certifies to recipients that the entity presenting the certificate is, in fact, who

it claims to be. The ITU-T (International Telecommunication Union

Telecommunication Standardization Sector) X.509 version 3 (Housley, Polk,

Ford & Solo, 2002) and Pretty Good Privacy (PGP,

http://www.ietf.org/html.charters/openpgp-charter.html) (Callas, Donnerhacke,

Finney & Thayer, 1998) are popular certificates used today.

5.2.3.5. Public Key Infrastructure

Public Key Infrastructure (PKI) is an integrated structure of software,

encryption methodologies, protocols, legal agreements, and third-party services

that enables users to securely communicate across the insecure Internet.

Third-party suppliers integrate public key cryptography, digital certificates, and

certification authority into an enterprise-wide solution to provide authenticated

and secure communications between participants. PKI protects information

assets in several ways, including authentication, integrity, privacy, authorization

and non-repudiation. A typical PKI solution protects the transmission and

reception of secure information by integrating the following components:

� A certificate authority (CA) that issues, manages, authenticates, signs, or

revokes a digital certificate containing the user’s name, public key, and

other identifying information.

� A registration authority (RA) that operates under the trusted

collaboration of the certificate authority and can be delegated day-to-day

 114

certification functions, such as verifying registration information about new

registrants, generating end-user keys, revoking certificates, and validating

that users possess a valid certificate.

� Certificate directories are central location for certificate storage, providing

a single access point for administration and distribution.

� Management protocols organize and manage the communications between

CAs, RAs, and end users. This includes the functions and procedures to

register and initialize new users, recover, update, and revoke keys, as well

as enable the transfer of certificates and status information among the

parties involved in a PKI trust.

� Policies and procedures assist an organization in the application and

management of certificates, formalization of the legal liabilities and

limitations, and actual business practice use.

Certificates are electronic containers for the key values needed for the use of a

cryptosystem. The CA manages the housekeeping details of tracking who has

been assigned which key, providing a directory of public key values for use

across the organization, assisting users in safeguarding their private keys, and

helping the organization manage common workplace events that could threaten

the safety of keys in use. If the trust relationship is broken, such as when a

private key has been comprised or the key holder no longer has authority to

manage the key, the certificate may be revoked. The CA periodically

distributes a certificate revocation list (CRL), which contains a singed

time-stamped listing of all revoked certificates. Key pairs provide encryption

and non-repudiation required for secure transaction. The key pair can be

generated either by the end user or by the CA.

5.3. Grid Security Problems

The Grid-enabled, distributed data warehouse system is a Grid system that

integrates distributed heterogeneous resources hosted by multiple institutions in

a VO. The dynamic nature of a Grid system makes it difficult to entirely

establish trust relationships between sites prior to application execution.

 115

As discussed in section 3.2, the user population in the pre-defined VO is large

and dynamic. Participants in VOs, such as ones for scientific collaboration,

will include members of many institutions and will change frequently. A job

may acquire, start processes on, and release resources dynamically during its

execution. While these processes form a single, fully connected, logical entity,

low-level communication connections (e.g., TCP/IP sockets) may be created and

destroyed dynamically during program execution. Resources may require

different authentication and authorization mechanisms and policies. These may

include Kerberos, plaintext passwords, TLS, and Secure Shell (SSH ，

http://www.openssh.com). An individual user will be associated with different

local name spaces, credentials, or accounts, at different sites, for the purposes of

accounting and access control. At some sites, a user may have a regular account.

At others, the user may use a dynamically assigned guest account, or simply an

account created for the collaboration. In brief, the security solution for a Grid

system is about coordinating diverse access control policies and operating

securely in a heterogeneous environment. In this section, the security

challenges will be discussed in the context of the proposed Grid system.

5.3.1. Terminology

Firstly, some Grid-based security terminology needs to be clarified:

� In Grid systems, a subject is generally a user, a process operating on behalf

of a user, a resource, or process acting on behalf of a resource.

� An object is a resource that is being protected by the security policy.

� A trust domain is a collection of both subjects and objects governed by a

single administration and a single security policy.

� A credential is a piece of information that is used to prove the identity of a

subject (such as a password and a certificate).

Generally, subjects provide data from their own data warehouse, data marts, and

near-line operational data sources as Grid resources. Typically, a Grid portal

would provide a brokered interface to Grid applications. A Grid application

 116

may be responsible for invoking specific data services for completing

user-group-specific tasks.

5.3.2. Security requirements

Based on the characteristics of pre-defined VO and the system design discussed

in previous chapters, the security requirements for the Grid-enabled, distributed

data warehouse system are summarized as follows:

� This system integrates distributed users with data resources, which are

managed locally by their owners. Each institution can be thought as a

trust domain. Operations that are confined to a single trust domain are

subject to local security policy. Operations across multiple trust domains

require multiple authentications that allow a user, the processes and the

resources used by those processes, to verify each other's identity.

� Inter-domain access requires, at a minimum, a common way of expressing

the identity of a security principal, such as an actual user or a resource.

Hence, it is imperative to employ a standard for encoding credentials for

security principals.

� As both global and local subjects exist, a remote user can have a global user

name, used to access the services portal, and also a local user name, defined

by a local trust domain. For persisting credentials, a global subject

(identity and role) can be mapped to a local subject (identity and role).

Local security policy will dictate the permission sets of virtual local

(mapped) and true local subjects.

� User credentials (such as passwords, private keys, etc.) must be protected

during interaction either across different trust domains or within a single

trust domain. A secure transmission protocol is required to ensure privacy

and integrity when these credentials are transported through the network.

� One user’s request may involve many processes on many distributed

resources. It is necessary that a user only sign-on once for a long-lived

program or process without further authentication. A program or process

should be allowed to act on behalf of a user and be delegated a subset of the

 117

user’s rights. Processes running on behalf of the same subject within the

same trust domain may share a single set of credentials.

� VO resources are located within multiple institutions. Inter-domain access

mechanism should be provided. Access to local resources will typically be

determined by local security policy that is enforced by local security

mechanisms. Each institution retains ultimate control over the (local)

policies that control access to its resources. The inter-domain security

used for the proposed Grid must be able to interoperate with, rather than

replace, the diverse intra-domain access control technologies.

To summarize, the security solution for the Grid-enabled, distributed data

warehouse system needs to allow computations to coordinate diverse access

control policies and to operate securely in a heterogeneous and dynamic

environment.

5.3.3. Security policy

Based on the system security requirements, a security policy that addresses

requirements for SSO, interoperability with local policies, and dynamically

varying resource requirements, will be discussed in this section. The policy

focuses on authentication of users, resources and processes and supports

user-to-resource, resource-to-user, process-to-resource, and process-to-process

authentication.

The security policy can be examined as follows:

� The envisaged Grid environment consists of multiple trust domains. This

policy states that the Grid security policy must integrate a heterogeneous

collection of locally administered users and resources. The Grid security

policy must focus on controlling the inter-domain interactions and the

mapping of inter-domain operations into local security policy.

� Operations that are confined to a single trust domain are subject to local

security policy only. No additional security operations or services are

imposed on local operations by the Grid security policy. The local

security policy can be implemented by a variety of methods, including

 118

firewalls, Kerberos and SSH.

� Both global and local subjects exist. For each trust domain, there exists a

partial mapping from global to local subjects. Each user of a resource will

have two names: a global name and a potentially different local name on

each resource. A site might map global user names to: a predefined local

name, a dynamically allocated local name, or a single group name.

� Operations between entities located in different trust domains require mutual

authentication (or two-way authentication) which refers to two parties

authenticating each other suitably. In technology terms, it refers to a client

or user authenticating themselves to a server and that server authenticating

itself to the user in such a way that both parties are assured of the other’s

identity.

� An authenticated global subject mapped into a local subject is assumed to be

equivalent to being locally authenticated as that local subject.

� All access-control decisions are made locally on the basis of the local

subject.

� A program or process is allowed to act on behalf of a user and be delegated a

subset of the user's rights. This policy element is necessary to support the

execution of long-lived programs that may acquire resources dynamically

without additional user interaction. It is also needed to support the

creation of processes by other processes.

� Processes running on behalf of the same subject within the same trust

domain may share a single set of credentials.

5.4. A Grid Security Architecture

In this section a high-level Grid security architecture (Foster et al., 1998) is

introduced, as illustrated in Figure 5.1. Two types of proxy are defined: a user

proxy and a resource proxy. Four related protocols are defined:

user-proxy-creation protocol, resource-allocation protocol,

resource-allocation-from-a-process protocol and mapping-registration protocol.

 119

A user proxy is a session-manager process given permission to act on behalf of

a user for a limited period of time. Once the user proxy has been created, the

user may be disconnected in order to eliminate the need to have the user’s

credentials available for every security operation. It reduces the possibility of

the credentials being compromised during operations. Additionally, the

lifetime of the user proxy credentials is under control of the user. A resource

proxy is an agent used to translate between inter-domain security operations and

intra-domain (local) mechanisms. It is allocated by the user proxy, and is

responsible for scheduling the access to a resource and for mapping a

computation onto that resource.

When a principal logs on to the Grid system, it creates a user proxy by using the

user-proxy-creation protocol. The user proxy then allocates a resource and

creates processes by using the resource-allocation-protocol. A process may

allocate additional resources by using the resource-allocation-from-a-process

protocol. The mapping-registration protocol can be used to define a mapping

from a global subject to a local subject. The following should be noted in this

regard:

� User proxy credentials should be signed by the user’s long-lived credentials

and contain all information (user-id, local host name, etc.) required for

authentication. The integrity of user proxy credentials is protected by

local security policy.

� A user proxy requiring access to a resource first determines the identity of

the resource proxy for that resource. It then issues a request to the

appropriate resource proxy. If the request is successful, the resource is

allocated, and a process created on that resource. The request can fail

because the resource is not available, or because of authentication failure or

authorization failure.

� The resource-allocation protocol is used to issue a request to a resource

proxy from a user proxy. The user proxy and resource proxy authenticate

each other. The resource proxy checks if the user who signed the proxy's

credentials is authorized by local policy to make the allocation request. At

this time, the verification may require accessing a mapping table maintained

 120

by the resource proxy (for mapping the user’s credentials onto a local

user-id). A single resource allocation request may result in the creation of

multiple processes on the remote resources. All such processes are created

with the same credentials.

� It is a common case that the resource allocation is initiated dynamically

from a process created by a previous resource-allocation request. The user

proxy decides whether to honour the request through authentication

between user proxy’s credentials and process credentials. The resulting

process handle is signed by the user proxy and returned to the requesting

process.

Grid Security Architecture

User
User Proxy

Cup

Site 1

Global to Local

Mapping Table

Local Policy

And Mechanisms

Host Computer

Process

Resource

Proxy

Site 2

Resource

Proxy
Global to Local

Mapping Table

Cu

CRP CRP

Long-lived

Credential

Temporary

Credential

User CredentialCu:

User Proxy CredentialCup:

Resource Proxy CredentialCRP:

2

3

4

User proxy creation protocol1

Resource creation protocol2

Resource-creation-from-a-process Protocol 3

Mapping registration protocol4User CredentialCp:

1

CpCp

Local Policy

And Mechanisms

Process

 Figure 5.1 Grid Security Architecture

This approach uses a user proxy to interact with the resource proxy to achieve

SSO and delegation. Authentication occurs between a user proxy and a

resource proxy. Consequently, the SSO leverages the existing trust

relationship between a user and a resource that was established when the user

was initially granted access to the resource. The user proxy and process

 121

authenticate each other when a resource allocation request is issued by a process.

The resource-allocation request is successful only when the user is authorized

by the resource on the basis of local policy.

5.5. Grid Security Infrastructure

The architecture discussed in the previous section defined protocols in abstract

terms, rather than in terms of specific security technologies. Hence, these

protocols can be implemented by using any modern security technologies and

mechanisms. Grid Security Infrastructure (GSI), as it appears in the GT, is

essentially an implementation of the architecture discussed in previous section.

It is based on a Public Key Infrastructure (PKI) with CAs and X.509

certificates. It provides: a public-key system; mutual authentication through

digital certificates; credential delegation and SSO. GSI defines a set of

protocols, libraries, and tools that allow users and applications to securely

access resources. It acts as Grid security middleware to provide

infrastructure-level security functionalities for addressing security issues in a

Grid environment. In the following sub-section, the mutual authentication,

dynamic delegation and authorization mechanisms used by GSI will be

introduced.

5.5.1. Authentication

Authentication between two entities (users and resources) on remote Grid nodes

means that each party establishes a level of trust in the identity of the other

party. An authentication protocol sets up a secure communication channel

between the authenticated parties, so that subsequent messages can be sent

without repeated authentication steps, although it is possible to authenticate

every message. The identity of an entity is, typically, some token or name that

uniquely identifies the entity.

VOs need a reliable means for identifying requestors, but participant

independence complicates authentication across multiple sites. Without an

integrated authentication, VOs have used a variety of ad hoc schemes to achieve

 122

resource-sharing, such as giving users an account at each institution with

distinct login names and passwords. This multiplicity of mechanisms and

passwords makes access difficult, discouraging information sharing and

collaboration. It also hinders the creation of software that securely spans

resources at multiple institutions or that allows secure collaboration between

users at multiple institutions.

5.5.1.1. Kerberos and SSH

Kerberos (Neuman, Yu, Hartman & Raeburn, 2005) and SSH are two widely

used approaches for multi-site authentication. However, they do not meet VO

authentication requirements.

Kerberos is used alone or under the distributed computing environment. It

authenticates users through a secure transaction with a centrally maintained key

server. Kerberos achieves inter-organizational, or cross-realm, authentication

by designating trustworthy key servers in other organizations. Kerberos meets

many of the basic requirements for VO authentication. However, Kerberos

requires that all cross-domain trust be established at the domain level, meaning

that organizations have to agree to allow cross-domain authentication, which

can often be a heavy-weight administrative process (Neuman & Ts'o, 1994).

SSH is a widely used login technology (Daniel, Silverman & Byrnes, 2005) and

meets a number of VO authentication requirements. It is based on public-key

authentication technology, uses link encryption to protect user credentials, and is

easily deployed. It provides basic remote login and file copy capabilities

without a lot of complexity. SSH provides a strong system of authentication

and message protection, but has no support for translation between different

mechanisms or for creation of dynamic entities.

5.5.1.2. Using PKI for Authentication

The GSI authentication mechanism is based on PKI (Thompson, Olson, Cowles,

Mullen & Helm, 2003). GSI provides libraries and tools for authentication

 123

and message protection that use standard X.509 public key certificates with the

TLS protocol.

 Figure 5.2 X.509 v3 Certificate Structure

GSI uses X.509 public key certificates and TLS for authentication for several

reasons. It is not only because these are well-known technologies with readily

available, well-tested open source implementations. The flexibility of trust

model for X.509 certificates was a deciding factor between X.509 certificates and

other common authentication mechanisms. It means the trust model of X.509

certificates allows an entity to trust another organization’s CA, without requiring

that the rest of its organization does so, or requiring reciprocation by the trusted

CA.

ITU-T X.509 version 3 certificate is one commonly used identity token for

authentication (ITU-T, 2005). It is the public key of a user, together with some

other information, rendered unforgeable by encipherment, with the private key

 124

of the certification authority which issued it. Figure 5.2 illustrates the structure

of the X.509 public key certificate.

TLS is a cryptographic protocol that provides communications privacy over the

Internet. The primary goal of the TLS protocol is to provide privacy and data

integrity between two communicating applications. In typical use, only the

server is authenticated (i.e., its identity is ensured), while the client remains

unauthenticated; mutual authentication requires PKI deployment to clients. It

is composed of two layers: the TLS Record Protocol and the TLS Handshake

Protocol. At the lowest level, layered on top of some reliable transport

protocol (e.g., TCP), is the TLS Record Protocol. TLS allows client/server

applications to communicate in a way that is designed to prevent eavesdropping,

tampering, or message forgery. TLS has a variety of security measures:

� The TLS protocol exchanges records: each record can be optionally

compressed, encrypted and packed with a message authentication code

(MAC). TLS numbers all the records and uses the sequence number in the

MACs.

� Using a message digest enhanced with a key (so only with the key can you

check the MAC) (Krawczyk, Bellare & Canetti, 1997).

� Protection against several known attacks (including man-in-the-middle

attacks), like those involving a downgrade of the protocol to a previous

(less secure) version or a weaker cipher suite.

� The message that ends the handshake (“Finished”) sends a hash of all the

exchanged data seen by both parties.

� The pseudorandom function splits the input data in half and processes each

one with a different hashing algorithm (MD5 and SHA), then XORs them

together. This provides protection if one of these algorithms is found to be

vulnerable.

In practice, GSI uses a X.509 public key certificate as an identity token. An

X.509 certificate contains a public key, a subject name in the form of a

multi-component distinguished name (DN), and a validity period and is signed

by a trusted third party, or CA. The associated private key is owned by the

 125

correct remote subject with whom an encryption or digital signature mechanism

will be used. The standards’ documents refer to these certificates as “public

key certificates” or “X.509 certificates”. The term “identity certificates” are

used to emphasize their use to securely identify an entity in a Grid environment.

GSI uses the X.509 certificates with the TLS protocol to ensure a secure,

authenticated connection between two parties. A GSI user generates a public

and private key pair and obtains an X.509 certificate from a trusted CA. X.509

certificates are exchanged between entities (users and resources). The

certificates are first tested by checking the expiration dates, possible revocation,

acceptable key usage, and signature, by a trusted CA. If the certificates pass

all these checks, their public keys are then used to build a challenge handshake

to prove that each entity that sent a certificate has the corresponding private key.

Passing these tests gives each party a level of confidence that it has established a

secure connection to the party represented by the certificate presented. The

X.509-TLS infrastructure supports multiple, independent CAs. In a Grid, each

site may choose which CAs it will accept for binding DNs and public keys.

Most of the current Grid tools are built on GSI or HTTP, both of which use

X.509 certificates for securely establishing a Grid identity. The veracity of an

entity’s identity is only as good as the trust placed in the CA that issued the

certificate, so the local administrator installs these certificates, which are then

used to verify the certificate chains. The assurance provided by using TLS

with mutual authentication depends on the correctness of the TLS and certificate

validation implementation at all the sites that take part in establishing a secure

connection, the diligence of the individual in protecting the private key, and the

certificate policy (CP) and certification practice statement (CPS) of the trusted

CAs

5.5.1.3. Grid Certificate Authority

A Grid CA is defined as a CA that is independent of any single organization and

is responsible for signing certificates for individuals allowed to access the Grid

resources, hosts or services running on a single host (Thompson et al., 2003).

 126

Grid CA is substantially different from a traditional organizational CA.

Organizational CA only issues certificates for members of its organization, and

these certificates are used to access resources within this organization. In

identity certificates issued by an organizational CA, the DN often contains a

number of attributes (e.g., organizational unit, location, and email) retrieved

from the organization's directory (such as X.500 and LDAP directory). Since a

Grid CA is independent of the organizations to which its subscribers belong, it

does not have a way to verify much information about a subscriber or to know

when such information changes. The prudent approach for a Grid CA is to put

as little information in the certificate as possible. According to several Grid

projects, such as CERN CA (http://globus.home.cert.ch/globus/ca/) and DOE

Science Grids CA (http://www.doegrids.org), a minimal set of information of a

DN contains:

� An organization element that identifies the Grid to which the CA belongs.

� A class designator that identifies the certificate as representing a person,

host, or service, which is intended to be used when storing and retrieving

certificates in the Grid CA’s publishing directory

� A common name that reasonably identifies the entity for which the

certificate is issued.

Since the operator of a Grid CA does not personally know the persons who are

requesting certificates and does not have access to a trusted directory of such

users, he/she must rely on registration agents (RAs). These are individuals

who are likely to know a subset of subscribers first-hand or second-hand. If

the users of a Grid can be grouped by actual or VOs, an RA may be chosen for

each such organization and given the responsibility to approve requests from

members of that organization only. The rules for establishing member

identities should be published by each RA, and the procedures for verifying the

identities and certificate requests should be consistent among all the RAs and

approved by the CA.

 127

5.5.2. SSO and delegation

The establishment of X.509 public key certificates and their issuing certification

authorities provides a sufficient authentication infrastructure for persistent

entities in Grids. However, X.509 certificates cannot cover SSO and dynamic

delegation requirements in Grids well.

It is often the case that a Grid user needs to delegate some subset of their

privileges to another entity on relatively short notice and only for a brief amount

of time. For example, a user needing to move a dataset, in order to use it in a

computation, may want to grant to a reliable file transfer service the necessary

rights to access the dataset and storage, so that it may perform a set of file

transfers on the user’s behalf. In addition to delegation to persistent services

and entities, the requirement exists to support delegation of privileges to

services that are created dynamically, often by the users themselves that do not

hold any form of identity credential. For example, a user wants to access data

or start a sub-job on other resource. The point is that the user wants to

delegate privileges specifically to the job and not to the resource as a whole. It

is common practice to protect the private keys associated with X.509 public key

certificates, for example, by encrypting them with a pass phrase. This poses a

burden on users, who need to authenticate repeatedly in a short period of time,

and occurs frequently in Grid scenarios when a user is coordinating a number of

resources. In a nutshell, Grids need authentication solutions that allow users to

create identities for new entities dynamically, in a light-weight manner, to

delegate privileges to those entities in a dynamic, light-weight manner, to

perform SSO, and that allows for the reuse of existing protocols and software

with minimal modifications. Based on these requirements, X.509 Proxy

Certificate (Tuecke, Welch, Engert & Thompson, 2004) is defined and

standardized, and used in GSI for delegation and SSO (Welch et al., 2004).

5.5.2.1. Proxy Certificates

Proxy credentials are commonly used in security systems when one entity needs

to grant to another entity some set of privileges. Proxy Certificates allow an

 128

entity holding a standard X.509 public key certificate to delegate some or all of

its privileges to another entity, which may not hold X.509 credentials at the time

of delegation.

Proxy Certificates use the format prescribed for X.509 public key certificates,

with the prescriptions described in this paragraph. The use of the same format

as X.509 public key certificates allows Proxy Certificates to be used in

protocols and libraries in many places, as if they were normal X.509 public key

certificates, which significantly eases implementation. Unlike a public key

certificate, the issuer (and signer) of a Proxy Certificate is identified by a public

key certificate or another Proxy Certificate rather than a CA certificate. This

allows Proxy Certificates to be created dynamically without requiring the

normally heavy-weight vetting process associated with obtaining public key

certificates from a CA. The subject name of a Proxy Certificate is scoped by

the subject name of its issuer to achieve uniqueness. This is accomplished by

appending a CommonName relative distinguished name (RDN) component to

the issuer’s subject name. The value of this added CommonName RDN is

statistically unique to the scope of the issuer. The value of the serial number in

the Proxy Certificate is also statistically unique to the issuer. The public key in

a Proxy Certificate is distinct from the public key of its issuer and has different

properties (e.g., its size may be different). All Proxy Certificates must bear a

newly-defined critical X.509 extension, the Proxy Certificate Information (PCI)

extension. The PCI extension use a framework for carrying policy statements

to allow the issuers to express their desire to delegate rights to the Proxy

Certificate bearer, and to limit further Proxy Certificates that can be issued by

that Proxy Certificate holder. The existing policy language (e.g., XACML

(OASIS, 2005
2
)) can be used to express delegation policies. This use of

arbitrary policy expressions is achieved through two fields in the PCI extension:

a policy method identifier and a policy field. The policy method identifier is

an object identifier (OID) that identifies the delegation policy method used in

the policy field. The policy field then contains an expression of the delegation

policy that has a format specific to the particular method. There are two policy

methods that are defined. The PCI extension also contains a field expressing

the maximum path lengths of Proxy Certificates that can be issued by the Proxy

 129

Certificate in question. A value of zero for this field prevents the Proxy

Certificate from issuing another Proxy Certificate. If this field is not present,

then the length of the path of Proxy Certificates, which can be issued by the

Proxy Certificate, is unlimited.

The validation of Proxy Certificates is described in RFC 3280 (Housley et al.,

2002) and Proxy Certificate RFC3820 (Tuecke et al., 2004). The Proxy

Certificates are created with short life spans, typically in the order of hours.

There currently exists no implemented method for revocation of Proxy

Certificates. It can use the same mechanism with public key certificate to

revoke a Proxy Certificate.

5.5.2.2. Uses for SSO

Proxy Certificates enable SSO that allows the user to manually authenticate

once in order to create a Proxy Certificate which can be used repeatedly to

authenticate for some period of time without compromising the protection on

the user’s long-term private key. This is accomplished by creating a new key

pair (composed of a public and private key). The user’s private key associated

with their long-term public key certificate is accessed to sign the certificate

request containing the public key of the newly generated key pair; hence

generating a Proxy Certificate. The Proxy Certificate binds the new public key

to a new name and delegates some or all of the user's privileges to the new

name. The Proxy Certificate and the new private key are then used by the

bearer to authenticate to other parties. Generally, the Proxy Certificate private

key is stored on a local file system and is protected by only local file system

permissions, which allows the user’s applications to access it without any

manual intervention by the user.

5.5.2.3. Uses for Delegation

Proxy Certificates can also be created so as to delegate privileges from an issuer

to another party over a network connection without the exchange of private

keys. Firstly, two involved parties perform mutual authentication, the initiator

using its existing Proxy Certificate and the target entity uses the public key

 130

certificate of its own. After authentication, an integrity protected channel is

established. These two steps can be accomplished by using the TLS protocol.

After the initiator expresses its desire to delegate by some application-specific

means, the target entity generates a new public and private key pair. With the

new public key, a signed certificate request is created and sent back over the

secured channel to the initiator. The initiator uses the private key associated

with its own Proxy Certificate to sign the certificate request, generating a new

Proxy Certificate containing the newly generated public key from the target

service. The new Proxy Certificate is sent back over the secured channel to the

target entity, which places it into a file with the newly generated private key.

This new Proxy Certificate is then available for use on the target service for

applications running on the user’s behalf.

5.5.3. Authorization

In a Grid environment, each institution in a VO typically retains ultimate control

over diverse, complex and dynamic policies that govern who can use which

resources for which purpose. Access to local resources will typically be

determined by a local security policy that is enforced by a local security

mechanism. However, the VO will often wish to apply some common policy

about how its users access the resources assigned to the VO. A key problem

associated with the formation and operation of distributed VO is that of how to

specify and enforce community policies. This section primarily introduces a

conceptual Grid authorization framework (Lorch et al., 2004), which is built on

the Authorization Framework, presented in RFC2904 (Vollbrecht et al., 2004)

and the “Generic AAA Architecture”, presented in RFC2903 (de Laat, Gross,

Gommans, Vollbrecht & Spence, 2000) of the IRTF AAA Architecture

Research Group, as well as the Access Control Framework, described in the ISO

recommendation (ITU-T, 1996). With regard to this framework, there exist

several authorization mechanisms and systems that are used by various Grid and

other applications to address the authorization concerns. For example,

Community Authorization Service (CAS) is provided by GSI to implement

access control in dynamically created overlaid trust domains.

 131

5.5.3.1. Grid Authorization Framework Concepts

The term ‘authorization’ may means the process of issuing a proof of right, the

proof of right itself, and the process of making an authorization decision by

checking a proof of right. In principle, authorization decisions are made based

on authorization information provided by authorities. These authorities must

have a direct or a delegated relationship with either the authorization subject (e.g.,

user or organization member to which the authorization is issued), or with the

resource that is the target of the request that prompted the authorization (e.g.,

owner or administrator of a resource), or with both.

The authorization may involve three basic high-level entities: subject, resource

and authority. A ‘subject’ is an entity that can request, receive, own, transfer,

present or delegate an electronic authorization so as to exercise a certain right.

The subject may be identified as an individual user or as a member of a group of

users. A subject may also be a process that acts on behalf of a user and, as such,

holds access rights that were delegated to it from the user. The subject may

define a set of policies that determine how its authorization is used. A Grid

environment consists of a large number of diverse resources. A component of

the system provides or hosts services and may enforce access to these services

based on a set of rules and policies defined by entities that are authoritative for the

particular resource. Access to resources may be enforced by a resource itself or

by some entity (a policy enforcement point, gateway) that is located between a

resource and the requestor, thus protecting the resource from being accessed in an

unauthorized fashion. ‘Authority’ is an administrative entity that is capable of

and authoritative for issuing, validating and revoking an electronic means of

proof so that the named subject (a.k.a. holder) of the issued electronic means is

authorized to exercise a certain right or assert a certain attribute. Right(s) may

be implicitly or explicitly present in the electronic proof. A set of policies may

determine how authorizations are issued, verified, etc., based on the contractual

relationships the authority has established. There are currently three general

types of authorities in common use: attribute authority, policy authority and

identity authority. Attribute authority issues attributes assertions that a given

subject has one or more attribute/value pairs. Policy authority issues

 132

authorization policies with respect to resources and services offered by these

resources. These authorization policies contain assertions that a given subject

has a certain right with respect to a given service. Identity authority (e.g., the

CAs of a PKI) issues certificates that assert a mapping of cryptographic tokens to

subject identities. Identity authority enables authentication rather than

authorization. Each of these three entities may implement a set of policies that

control authorization.

Authorization information, such as policies, attributes, identities and

environmental parameters (e.g., time), are utilized and combined when making

authorization decisions. Every entity may use policies to determine how a

request or response should be handled. Policy defines rules for resource

access. Many policies use the concepts of conditions and actions, which have

to be evaluated with respect to the actual request, the requesting subject’s

identity and the attributes this subject holds. Policies may also be expressed in

strings that are compared, and if one string (the request) is more specific than

another (the policy), then the request is granted. Authorization attributes are

statements about properties bound to an entity that implicitly or explicitly define

the entities allowed actions on some resource. Attributes can be grouped into

descriptive and privilege attributes. Descriptive attributes associate a

characteristic with an entity, while privilege attributes define directly applicable

access rights of an entity with respect to a resource. An administrative domain

is a definition of the scope of authority. In a Grid environment, there are

separate domains for identity, subject attributes, resource policy, and

community policy authorities. In a simple Grid-use case, the subject is in one

administrative domain, its home domain, and the resource is in another (the

home domain of the resource). In more advanced scenarios, a community or

VO domain is present. A VO domain can provide authorities that perform

privilege management for all the members of a VO. Contractual relationships

(often involving legal agreements) between the domains of the different

subjects, authorities and resources are frequently necessary to enable the

acceptance and issuing of authorizations.

 133

Authorization is commonly divided into three distinct processes. The first is

defining an authorization policy at a high level by a person or organization.

The second is implementing the high-level policy into a digital representation

that can be interpreted by computers. The third is evaluating the digital

representation of the policy by a process, which subsequently makes decisions

to issue a specific authorization to a subject or takes a specific action. The

component performing the evaluation of the executable policy by computing an

authorization decision on behalf of the authorities is sometimes referred to as an

‘authorization server’. Typically, an authorization server may make or do (a

combination of): an authorization decision that is, typically, the outcome of an

evaluation of a policy; an authorization lookup of some entity’s rights that are

represented in some form and returned; and delegation of an authorization

decision to another authorization server.

RFC2904 defined the authorization sequences, which can be recognized as

sequences between the three generic entities. These authorization sequences

include: push sequence, pull sequence, agent sequence. With the push

sequence, the subject first requests an authorization from an authority (e.g., via

an authorization server). The authority may or may not honour the subject’s

request. It then may issue and return some message or secured message (token

or certificate) that acts as a proof of right (authorization assertion). The

assertion may subsequently be used by the subject to request a specific service

by contacting the resource. The resource will accept or reject the authorization

assertion and will report this back to the requesting subject. With the pull

sequence, the subject will contact the resource directly with a request. The

resource then must contact its authorization authority. The authorization

authority will perform an authorization decision and return a message that

obtains the result of an authorization. The resource will subsequently grant or

deny the service to the subject by returning a result message. Using the agent

sequence, the subject will contact a higher-level agent with a request to obtain a

service authorization. This agent will make an authorization decision, based

the rules established by the authorization authority, and if successful, it will

contact the resource to provision a certain state as to enable the service. These

 134

three sequences are fundamental. They do not cover all possible authorization

situations. Sometimes, they are combined together to perform authorization.

5.5.3.2. Grid Authorization Architecture

An authorization architecture consists of a set of entities and functional

components that allow authorization decisions to be made and enforced, based

on attributes, parameters and policies that define authorization conditions.

Figure 5.3 (Lorch et al., 2004) provides an overview of an authorization system,

based on the pull authorization sequence.

Grid Authorization Architecture

Policy

Authorities

Attribute

Authorities

Subjects

Access Control Decision

Function (ADF)

Access Control Enforcement

Function (AEF)
Resources

1.Service Request

6.Service Response

2.Authorization

Request

3.Authorization

Response

4.Service Request

5.Service Response

Environment

Authorities

Resource

Authorities/

Service

Providers

Identity

Authorities

Issue certificate

Define policies for

resources and sites

Assign attributes

to subjects

Define environmental

parameters

Define resource

specific policies

 Figure 5.3 Grid Authorization Architecture

The subject, resource and authority are three basic involved entities. There are

two access control functions defined by ISO-101813 (ITU-T, 1996): Access

Control Decision Function (ADF) and Access Control Enforcement Function

(AEF). ADF is equivalent to the Policy Decision Point (PDP), defined in

RFC2904, and AEF is equivalent to the Policy Enforcement Point (PEP),

defined in RFC2904. ADF makes authorization decisions about a subject’s

access to a service. AEF mediates access to a resource or service. The ADF,

AEF, subject and resources may be embedded inside one or more administrative

domains in a variety of combinations.

 135

There are three categories of information that may need to be passed between

the subject, resource and various attribute authorities: attributes, policy and

authorization queries and responses. Attributes, parameters and policies,

issued by the corresponding authorities, are made available to the authorization

servers. The authorization servers use this information to make authorization

decisions upon request by the enforcement functions. An authorization request

must be securely bound to a subject and the subject’s service request. The

authorization response must be securely bound to a request, and when required,

also to the response originator.

There are a number of different paths for authorization attributes to get to the

ADF (Farrell & Housley, 2002). The subject may get the attributes from the

attribute authority, the authority could pass the attributes directly to the relevant

ADF, or it could put them in an attribute repository. When the ADF needs an

attribute to make an authorization decision, it may get it from the subject, either

as part of the original request, or during a negotiation phase, or it may pull it

from either a local repository or a repository associated with the attribute

authority, the subject or VO. Attributes need to be reliably bound to the

holding entities (holder/recipient) as well as the issuing authority. Attributes

must be protected to provide for integrity, issuer authoritativeness and issuer

non-repudiation. This can either be accomplished by enclosing them in a

digitally signed container (e.g., via an X.509 Attribute Certificate or a signed

SAML Attribute Assertion), or by issuing them over a secured channel between

authenticated and trusted entities, and only storing attributes in trusted and

secured repositories. Authorization requests and responses are similar to

attributes in that it is necessary to provide for a secure binding.

Policies are typically stored in a repository or provisioned directly to the

decision functions by the policy authorities. They may be distributed and

stored in the domain of the policy issuer or in a common VO domain. It is

imperative to securely establish the authority of the issuer and to protect the

integrity of a policy during the transferring of policies. Once policy is written,

it must be stored for use by an ADF. Evaluating policy is the heart of the

authorization-decision process. The components responsible for expressing,

 136

storing, retrieving and evaluating policy can be thought of as a policy

subsystem. The policy expression is usually done by a policy language, which

contains the vocabularies to express various policy artifacts. A variety of

language primitives, such as XML, can be used as the basis for a policy language.

Access policy for resources is written by policy authorities, which generally get

their authority from the owner of the resource. Some authorization decisions

may be indeterminate, because there are conditions in the policy that the ADF

cannot evaluate, involving the current state of the resource. In this case, the

conditions may be passed back to the AEF to evaluate, requiring the AEF to

understand the policy language that is used to express these conditions. During

policies’ exchange, the policies must be bound securely to the issuer either by

being contained within signed messages or by coming over a secured connection

from a secure repository. The participating end points need to agree on a

common policy expression language. Policy exchange may also include the

exchange of metadata around policy, for example, creation time, policy validity,

policy issuer and trust anchors. For policy processing, existing policy systems,

including those based on artificial intelligence and neural net paradigms, can be

effectively used so long as they understand the policy expression and exchange

mechanisms.

5.5.3.3. Grid Authorization Framework

Based on the concepts and architecture introduced above, a general Grid

authorization framework is defined. This framework consists of several

components, including trust management, privilege management, policy

management, authorization context, authorization server and enforcement

mechanism.

In general, authorization architecture, the assertions about policy and attributes

are issued by different type of authorities. Trust management defines these

authorities and specifies what they should be trusted to do. Policy and resource

authorities both issue policy about resources, but the policy authority operates at a

higher level and may issue access control policy for a whole site or VO. It is the

root of trust, and will be responsible for defining the domain's trust relationships.

 137

Attribute authorities assign attributes to subjects and may belong to the subject's

domain or to a VO. In PKI-based systems, the authority is likely to be

represented by a public/private key pair and present its assertions in signed

documents or over a secured connection. At the base of a PKI system is the

acceptance by all the participating entities of one of more CAs to verify identities.

Once a VO or resource domain knows how to represent various authorities, it

needs to define which ones are to be trusted and for what purposes. For

example, the resource may want the sole say on what authorities it will trust, or it

may accept the decisions of a VO policy authority. In some models, the user

may provide a pointer to the attribute authority that defines his attributes, and the

resource may accept it or not. The AEFs need to know which ADFs to trust for

authorization decisions. Trust management also concerns the policy about who

can create proxies, which have all or some of the rights of the delegating entity,

and who can delegate rights to other entities.

Privilege management covers the definition, assignment, storage, presentation,

delegation and revocation of both privilege and descriptive attributes. Privileges

can be considered a type of attribute, where an attribute is any characteristic

associated with a subject that either implicitly or explicitly defines the subject’s

allowed actions on some resource. Attributes that explicitly allow some access

on a resource are called privilege attributes. Descriptive attributes, such as roles

(for role-based access control), clearance level (for mandatory access control), or

group membership, may be used by an authorization server interpreting an access

policy to grant the user specific actions, and thus implicitly grant access rights.

For the management of privilege and descriptive attributes, there are three

distinct phases: granting the privilege, using the privilege, and removing the

privilege. For privilege attributes, there are two primary actors: the authority

granting/removing the privilege, and the subject requesting/using the privilege.

Policy is issued by policy authorities. The creation of policy frequently involves

a human entity and is done in advance of the use of a resource. An ADF could

query a policy authority in real time, but more typically, policy will be kept in

some sort of repository. This could take the form of an access control list

(ACL), a database or a collection of signed assertions. Policy management

 138

addresses issues like who can create, modify and delete policy for each resource,

how quickly policy can be revoked, and where does the ADF find the policy, i.e.,

who/what does it trust. For distributed policy management, an ADF needs to

know whether it has found all the relevant policy for making an access decision.

Additionally, policy management needs to address how to clearly display the

current policy to the resource owner or to anyone trying to add to the policy.

The authorization context consists of those properties of the authorization

request, which are neither provided via authorization attributes, nor included in

authorization policies (specified by or for specific resources or sites), but which

are relevant to the decisions made by the authorization server. This includes

information about the time, location, transport, and authentication of the service

request, and may include an indication of the quality and trustworthiness of this

information.

Enforcement of access rights is done by limiting the operations performed on

resources on behalf of a subject to those permitted by an authoritative entity. In

the Grid context, enforcement functions can either receive the set of authorized

operations as part of the service request (push scenario), or by querying an ADF

(pull scenario). If the ADF and AEF are remote from each other, they can use

authorization request/response protocols. If they are collocated, there are a

number of programming interfaces available. Enforcement mechanisms can be

characterized in two different groups: application-dependent mechanisms and

application-independent mechanisms. Application-dependent enforcement

mechanisms are often directly integrated in the application or service and perform

enforcement functions before the application attempts to access underlying

operating system resources. Application-independent enforcement mechanisms

are separate from the service or application and take the approach of running the

service in a very constrained execution environment. This permits the running

of un-trusted services, supports code migration and the uploading of

user-provided executables.

 139

5.5.4. GSI security model for OGSA

GSI is the portion of the GT that provides the fundamental security services,

according to the mechanisms discussed above. Globus Toolkit version 3

(GT3) and its accompanying GSI (GSI3) is the first implementation of the

OGSA. Since GSI3, GSI implements the OGSA security mechanism to allow

applications and users to operate in the Grid in a seamless and automated

manner (Welch et al., 2003). As discussed in section 4.2., OGSA is built on

Web services. It defines standard Web service interfaces and behaviours as

well as other capabilities for addressing Grid-specific requirements. The

combination of OGSA and Web services security specifications is used to

implement OGSA security architecture (Siebenlist et al., 2002).

5.5.4.1. Web Services Security

Web services security is an attempt within the Web services community to

provide a standard XML vocabulary for defining protocols, message formats

and policy languages for application to the entire range of security issues in

distributed systems. The strategy for addressing security within a Web service

environment requires a comprehensive model that supports, integrates and

unifies several popular security models, mechanisms, and technologies

(including both symmetric and public key technologies), in a way that enables a

variety of systems to securely interoperate in a platform- and language-neutral

manner.

In a Web-services environment, the following terms used for Web-services

security will be used in this document.

� A security token is a representation of security-related information (e.g.,

X.509 certificate, Kerberos tickets and authenticators, mobile device

security tokens from SIM cards, username, etc.).

� A proof-of-possession (POP) token is a security token that contains secret

data that can be used to demonstrate authorized use of an associated

security token. Typically, although not exclusively, the

proof-of-possession information is encrypted with a key known only to the

 140

recipient of the POP token.

� A claim is a statement about a subject, either by the subject or by a relying

party that associates the subject with the claim. Claims can be about keys

potentially used to sign or encrypt messages. Claims can be statements the

security token conveys. Claims may be used, for example, to assert the

senders identity or an authorized role.

� A signed security token is a security token that contains a set of related

claims (assertions) cryptographically endorsed by an issuer. Examples of

signed security tokens include X.509 certificates and Kerberos tickets.

� As SOAP messages are sent from an initial requester to a service, they may

be operated on by intermediaries that perform actions, such as routing the

message or even modifying the message.

� An actor is an intermediary or endpoint, which is identified by a URI and

which processes a SOAP message. Neither users nor client software (e.g.,

browsers) are actors.

Web services can be accessed by sending SOAP messages to service endpoints

identified by URIs, requesting specific actions, and receiving SOAP message

responses (including fault indications). Within this context, the broad goal of

securing Web services is to provide facilities for securing the integrity and

confidentiality of the messages and for ensuring that the service acts only on

requests in messages that express the claims required by policies. TLS can be

used to provide transport-level security for Web-services applications. TLS

offers several security features, including authentication, data integrity and data

confidentiality. However, TLS only enables point-to-point secure sessions.

A comprehensive Web-services security solution needs the mechanism to

provide end-to-end security.

The WS-security framework (IBM & Microsoft, 2002) illustrated in Figure 5.4

defines seven specifications of security functionality. The specifications build

upon foundational technologies, such as SOAP, WSDL, XML Digital Signatures

(W3C, 2002
2
), XML Encryption (W3C, 2002

1
), and TLS.

 141

This set includes a message security model (WS-Security) along with a Web

service endpoint policy (WS-Policy), a trust model (WS-Trust), and a privacy

model (WS-Privacy). The follow-on specifications for secure conversations

(WS-SecureConversation), federated trust (WS-Federation), and authorization

(WS-Authorization) is built on these initial specifications to establish secure

interoperable Web services across trust domains. Each of these specifications

is summarized below:

Figure 5.4 Web Services Security Specifications

� WS-Security (OASIS, 2006
10
) defines how to attach and include security

tokens within SOAP messages. It is an enhancement of SOAP messaging

to provide quality of protection through message integrity and message

confidentiality. It is designed to support multiple security-token formats.

Message integrity is provided by leveraging XML Signature in conjunction

with security tokens (which may contain or imply key data) to ensure that

messages are transmitted without modifications. The integrity

mechanisms are designed to support multiple signatures. The message

confidentiality is provided by leveraging XML Encryption in conjunction

with security tokens to keep portions of SOAP messages confidential. The

encryption mechanisms are designed to support additional encryption

technologies, processes, and operations by multiple actors. WS-Security

also describes a mechanism for encoding binary security tokens.

Specifically, the specification describes how to encode X.509 certificates

and Kerberos tickets, as well as how to include opaque encrypted keys.

� WS-Policy (W3C, 2006
4
) describes how senders and receivers can specify

 142

their requirements and capabilities. It is fully extensible, which means it

has no limits on the types of requirements and capabilities that may be

described. However, the specification identifies several basic service

attributes, including privacy attributes, encoding formats, security token

requirements, and supported algorithms. It also define a generic SOAP

policy format, which can support more than just security policies, and a

mechanism for attaching service policies to SOAP messages.

� WS-Trust (OASIS, 2006
13
) describes the model for establishing both direct

and brokered trust relationships (including third parties and intermediaries).

This specification describes how existing direct trust relationships may be

used as the basis for brokering trust through the creation of security-token

issuance services, which build on WS-Security, to transfer the requisite

security tokens in a manner that ensures the integrity and confidentiality of

those tokens. It also describe how several existing trust mechanisms may

be used in conjunction with this trust model

� WS-Privacy describes a model for how a privacy language may be

embedded into WS-Policy descriptions, and how WS-Security may be used

to associate privacy claims with a message. It also describes how

WS-Trust mechanisms can be used to evaluate these privacy claims for both

user preferences and organizational practice claims.

� WS-SecureConversation (OASIS, 2006
3
) describes how a Web service

can authenticate requester messages, how requesters can authenticate

services, and how to establish mutually authenticated security contexts. It

describes how to establish session keys, derived keys, and per-message

keys. Finally, it describes how a service can securely exchange context

(collections of claims about security attributes and related data). In order

to accomplish this, the specification describes, and builds upon, the

concepts of security-token issuance and exchange mechanisms, defined in

WS-Security and WS-Trust. WS-SecureConversation is designed to

operate at the SOAP-message layer so that the messages may traverse a

variety of transports and intermediaries.

� WS-Federation (Bajaj et al., 2003) defines how to construct federated trust

 143

scenarios using the WS-Security, WS-Policy, WS-Trust, and

WS-SecureConversation specifications. For example, it will describe how

to federate Kerberos and PKI infrastructures. A trust policy is introduced

to indicate, constrain and identify the type of trust that is being brokered.

This specification will also define mechanisms for managing the trust

relationships.

� WS-Authorization describes how access policies for a Web service are

specified and managed. In particular, it describes how claims may be

specified within security tokens, and how these claims will be interpreted at

the endpoint. It is designed to be flexible and extensible with respect to

both authorization format and authorization language.

5.5.4.2. OGSA Security Model

OGSA security services facilitate the enforcement of the security-related policy

within a VO. The nature of the Grid environment requires that the OGSA

security-architecture components must support, integrate, and unify popular

security models, mechanisms, protocols, platforms, and technologies in a way

that enables a variety of systems to interoperate securely. The components must

be able to support integrating with existing security architectures and models

across platforms and hosting environments. This means that the architecture

must be implementation-agnostic, extensible, and integratable. These

characteristics mean that the OGSA architecture can be instantiated in terms of

any existing security mechanisms (e.g., Kerberos and PKI); incorporate new

security services as they become available; and integrate with existing security

services. Also, services that traverse multiple domains and hosting

environments need to be able to interact with each other, thus introducing the

need for interoperability at multiple levels: protocol, policies and identity. In

addition, certain situations can make it impossible to establish trust relationships

among sites prior to application execution. Given that the participating domains

may have different security infrastructures (e.g., Kerberos or PKI), it is necessary

to realize the required trust relationships through some form of federation among

the security mechanisms.

 144

The security model described in OGSA (Foster et al., 2006) defines the security

services as entities with interaction patterns that facilitate the administration,

expression, publishing, discovery, communication, verification, enforcement

and reconciliation of the security policy. In other words, the security policy

enforcement is the ultimate goal, and the security services are designed and

deployed to support that goal. This model identified a number of these

entities, interaction mechanisms and contexts, and discussed some of their

attributes and common relationships.

Based on this model, the functional capabilities and corresponding security

services are identified in the OGSA specification:

� Authentication. Authentication is concerned with verifying proof of an

asserted identity. This functionality is part of the credential validation and

trust Services. One example is the evaluation of a user-id and password

combination, in which a service requestor supplies the appropriate

password for an asserted user-id.

� Identity mapping. The trust, attribute and bridge/translation services

provide the capability of transforming an identity that exists in one identity

domain into an identity within another identity domain. Identity mapping

service, via policy, maps the service requestor’s identity to an identity that

has meaning, for instance, to the hosting environment’s local platform

registry. The identity-mapping service is not concerned with the

authentication of the service requestor; rather it is strictly a policy-driven

name-mapping service

� Authorization. The authorization service is concerned with resolving a

policy-based access-control decision. The authorization service consumes

as input, a credential that embodies the identity of an authenticated service

requestor and, for the resource that the service requestor requests, resolves,

based on policy, whether or not the service requestor is authorized to access

the resource. It is expected that the hosting environment for

OGSA-compliant services will provide access-control functions, and it is

appropriate to further expose an abstract authorization service, depending

on the granularity of the access-control policy that is being enforced.

 145

� Credential conversion. The trust, attribute and bridge/translation

services provide credential conversion from one type of credential to

another type or form of credential. This may include such tasks as

reconciling group membership, privileges, attributes and assertions

associated with entities (service requestors and service providers). For

example, the credential conversion service may convert a Kerberos

credential to a form that is required by the authorization service. The

policy-driven credential-conversion service facilitates the interoperability of

differing credential types, which may be consumed by services. It is

expected that the credential-conversion service would use the identity

mapping service.

� Audit and secure logging. The audit service is responsible for producing

records that track security-relevant events. The resulting audit records

may be reduced and examined so as to determine whether the desired

security policy is being enforced. Auditing and subsequent reduction

tooling are used by the security administrators within a VO to determine the

VO’s adherence to the stated access-control and authentication policies.

� Privacy. The privacy service is primarily concerned with the policy-driven

classification of personally identifiable information (PII). Service

providers and service requestors may store personally identifiable

information using the privacy service.

5.5.4.3. GSI Security Model for OGSA

OGSA introduces both new opportunities and new challenges for Grid security.

Emerging Web-services security specifications address the expression of

Web-service security policy (WS-Policy, XACML), standard formats for

security token exchange (WS-Security, SAML), and standard methods for

authentication and establishment of security contexts and trust relationships

(WS-SecureConversation, WS-Trust). These specifications can be exploited

and extended to create standard, interoperable methods for addressing

Grid-security issues.

 146

GT3 provides the first implementation of OGSA mechanisms (Welch et al.,

2003). Since GT3, the GSI security model intends to allow applications and

users to operate on the Grid in as seamless and automated a manner as possible.

It means the security mechanisms should not have to be instantiated in an

application, but instead should be supplied by the surrounding Grid

infrastructure, allowing the infrastructure to adapt on behalf of the application to

meet the application's requirements. It allows for if the application should need

to deal with only application-specific policy. GSI uses the following powerful

features of OGSA and Web-services security to work toward this goal:

� OGSA security model casts security functions as OGSA services. As

introduced in previous section, OGSA defined numerous services, such as

authorization, credential conversion services, delegation, etc. This

mechanism allows Grid applications to avoid embedding security

mechanisms statically in order to adapt to changing requirements.

� The OGSA security model uses a sophisticated container-based hosting

environment (such as J2ME and .Net) to handle security for applications

and to allow security to adapt without having to change the application. In

order to establish trust, two entities need to be able to find a common set of

security mechanisms that both understand. The use of hosting

environments and OGSA security services enables OGSA applications and

services to adapt dynamically and use different security mechanisms.

� A Web service can publish its security policy, along with its interface

specification, as part of a WSDL document. This is defined by WS-Policy

specification and its related specifications. A published policy can express

requirements for mechanisms, acceptable trust roots, token formats, and

other security parameters. When an application wishes to interact with the

service, it can examine the published policy and gather the needed

credentials and functionality by contacting appropriate OGSA security

services.

� The WS-Security, WS-SecureConversation, and WS-Trust specifications

contain conventions and formats for the communication of various

mechanism-specific tokens (e.g., Kerberos tickets and X.509 certificates)

 147

inside SOAP envelopes. The SOAP enveloping standardizes the protocol

for security mechanisms and allows mechanisms to be independent of any

application protocol. Hosting environments can recognize security-related

messages and route them to an appropriate service for handling, and entities

in the network can recognize whether and how an interaction is secured.

5.6. Security Solutions

From version 1 in 1998 to the 2 release in 2002 and now the 4 release, GSI has

been developing rapidly. In GT1, GSI mainly provided message protection and

authentication. In GT2, GSI introduced X.509 Proxy Certificates to support

dynamic creation of computing entities and provided CAS to implement access

control in dynamically created overlaid trust domains. In GT3, the Grid

technology worked with the emerging Web services technology. Security

functionalities of GSI3 are defined as OGSA services. In GSI4, which is the

latest GSI version, additional Web-services security specifications are

implemented.

The security solution for the Grid-enabled, distributed data warehouse system is

provided by GSI4. GSI4 Web-services components can be divided into four

distinct functions (Welch, 2005): message protection, authentication, delegation

and authorization. GSI4 contains both Web-services components and

pre-Web-services components. MyProxy is a pre-Web-services component

that is used to provide an online credentials repository, and for delegating X.509

Proxy Certificates to the Grid portal. There exist several cross-domain

authorization systems for use on the Grid. Authorization in the GT4 is by

default, based on ACLs located at each resource. The ACLs specify the

identifiers of the users allowed to access the resource. Also, higher-level

services (such as CAS) that provide richer authorization policies exist as

optional configurations. For the proposed Grid system, the authorization

solution is provided by Shibboleth as well as GridShib, which integrate X.509

certificates with SAML to provide cross-domain, attributed-based authorization.

This section finally will introduce a security model combining all identified

 148

components to address basic security issues in the Grid-enabled, distributed data

warehouse system.

5.6.1. Message protection

In an OGSA-based Grid system, resources are represented as services,

specifically, as Grid services, which are Web services with well-defined

interfaces. Web services use SOAP message to communicate between

services. SOAP provides a means of messaging, using XML envelopes to

encapsulate payloads, with HTTP, the most commonly used underlying protocol.

In GSI4, message protection can be provided either by transporting SOAP

messages over TLS, known as transport-level security, or by signing and/or

encrypting portions of the SOAP message using the WS-Security standard,

known as message-level security. TLS only provides point-to-point secure to

ensure privacy and data integrity. GSI4 implements the WS-Security standard

and the WS-SecureConversation specification to provide end-to-end message

protection for SOAP messages. Figure 5.5 shows the differences between

point-to-point security and end-to-end security views.

 Figure 5.5 Point-to-Point and End-to-End Security

Transport-level security entails SOAP messages conveyed over a network

connection protected by TLS. It is normally used in conjunction with X.509

credentials for authentication. The WS-Security standard and the

 149

WS-SecureConversation specification are implemented to provide message

protection for SOAP messages. The SOAP specification allows for the

abstraction of the application-specific portion of the payload from any security

(e.g., digital signature, integrity protection, or encryption) applied to that payload.

The WS-Security standard defines a framework for applying security in

individual SOAP messages. GSI4 uses these mechanisms to provide security

on a per-message basis. WS-SecureConversation allows for an initial

exchange of messages to establish a security context, which can then be used to

protect subsequent messages in a manner that requires less computational

overhead. Both WS-Security and WS-SecureConversation are intentionally

neutral to the specific types of credentials used to implement this security.

WS-Security defines how to attach and include security tokens within SOAP

messages. It is designed to support multiple security-token formats (OASIS,

2006
9
). Specifically, for the Grid-enabled, distributed data warehouse system,

WS-Security attaching a X.509 certificate token (OASIS, 2006
11
) will be used

to provide single-message integrity and confidentiality. Figure 5.6 shows a

SOAP message structure, which is digitally signed and encrypted by using a

X.509 certificate. This example is a SOAP message signed before encryption.

Likewise, if a producer wishes to sign a message after encryption, they should

first prepend the encryption element (<xenc:EncryptedKey>) to the

<wsse:Security> header, and then prepend the signature element

(<ds:Signature>).

WS-Security provides the means to secure only a single SOAP message.

However, a client and a Web service interact by exchanging series of messages

grouped in sessions. While, in principle, WS-Security could secure each

separate message in a session, this can become inefficient with regard to

bandwidth and processing capacity if X.509 certificates are used in each

message. In addition, it is also desirable to guarantee integrity of a whole

session, and not just a single message. WS-SecureConversation describes the

protocol that allows two or more endpoints exchange long-lived credentials only

once, at the beginning of the conversation. If the credentials are accepted, the

requestor gets a Security Context Token (SCT) that acts as a lightweight

 150

credential with a reference to a shared secret (symmetric key), only known by

the participating nodes and valid for a predefined time period (e.g., duration of a

user session or message sequence). Subsequent messages in the conversation

only have to carry this token. The SCT, introduced by WS-

SecureConversation, points to a secret key, shared between the participants.

Its initial key data can be used to repeatedly derive new session keys during a

conversation using fast crypto algorithms. An SCT can be established in

different ways (OASIS, 2006
3
). For the Grid-enabled, distributed data

warehouse system, the X.509 certificates are used to establish a session key.

SOAP Message Implementing WS-Security

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..."

xmlns:ds="...">

<S11:Header>

<wsse:Security>

</wsse:Security>

</S11:Header>

<S11:Body wsu:Id="myBody">

……….

</S11:Body>

<wsse:BinarySecurityToken

ValueType="...#X509v3"

EncodingType="...#Base64Binary"

wsu:Id="X509Token">

MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...

</wsse:BinarySecurityToken>

<ds:Signature>

.

.

</ds:Signature>

<xenc:EncryptedKey>

.

.

</xenc:EncryptedKey>

<xenc:EncryptedData Id="bodyID">

.

.

</xenc:EncryptedData>

Attaching X.509 Token

Signed by X.509 Certificate

Encrypted Key

Encrypted Data

 Figure 5.6 SOAP Message Implementing WS-Security

5.6.2. Authentication, delegation and SSO

GSI4 uses X.509 end-entity certificates (EECs) to identify persistent entities,

such as users and services. X.509 EECs provide each entity with a unique

identifier (i.e., a DN) and a method to assert that identifier to another party,

through the use of an asymmetric key pair, bound to the identifier by the

certificate. Authentication with X.509 credentials can be accomplished either

via TLS, in the case of transport-level security, or via signature, as specified by

WS-Security, in the case of message-level security.

 151

GSI4 supports delegation and SSO through the use of standard X.509 Proxy

Certificates. Proxy Certificates allow bearers of X.509 EECs to delegate their

privileges temporarily to another entity. For the purposes of authentication and

authorization, GSI4 treats EECs and Proxy Certificates equivalently. GT4

supports a delegation service that provides an interface to allow clients to

delegate (and renew) X.509 Proxy Certificates to a service. The interface to

this service is based on the WS-Trust specification.

WS-Trust specification defines extension to WS-Security. It provides methods

for issuing, renewing, and validating security tokens. For example, it defines

Security Token Service (STS), which can be used to create an SCT. It also

provides ways to establish, assess the presence of, and broker trust relationships.

As defined in WS-Trust, there are a few mechanisms where existing keys are

transferred to other parties. Delegation is one of these key transfer

mechanisms (OASIS, 2006
13
). It allows one-party transfers the right to use a

key without actually transferring the key. For example, a custom token is

issued from party A to party B. The token indicates that B (specifically B's

key) has the right to submit purchase orders. The token is signed using a secret

key known to the target service T and party A (the key used to ultimately

authorize the requests that B makes to T), and a new session key that is

encrypted for T. A proof-of-possession token is included that contains the

session key encrypted for B. As a result, B is effectively using A's key, but

does not actually know the key.

5.6.3. MyProxy protocol

MyProxy is an online credentials’ repository for Grid systems (Novotny,

Tuecke & Welch, 2001) (Lorch, Basney & Kafura, 2004). It is a pre-Web

Services component in GSI4. In the Grid-enabled, distributed data warehouse

system, a Grid portal, combining a Web server and Grid-enabled software,

provides users an interface to access all applications using standard Web

browsers. Grid portal requires that the user delegates to the server the right for

that server to act on the user’s behalf, in order to initiate and monitor operations

for that user on Grid resources. GSI supports such delegation, but the standard

 152

Web-security protocols do not. MyProxy bridges this incompatibility between

Web- and Grid-security protocols, thus enabling Grid portal to use

GSI-protected resources in a secure and scalable manner. It allows long-lived

keys to be secured on the remote server, while allowing convenient access to

short-lived, proxy credentials as needed.

The MyProxy credentials repository system consists of a repository server and a

set of client tools for delegating to and retrieving credentials from the repository.

In order to meet the goals of the MyProxy approach, there are two basic steps

for using the repository: delegation of proxy credentials to the repository and

retrieving the credentials from the repository (as illustrated in Figure 5.7).

Figure 5.7 MyProxy Protocol

a) A user starts by using the myproxy-init client program along with its

permanent credentials to contact the repository and delegate a set of proxy

credentials to the server, along with authentication information and retrieval

restrictions. Authentication information in this process consists of a user

identity (ID) and a pass phrase. It is used to authenticate any retrieval

operations. This user ID is different from the user’s DN; it is actually

hand-typed by the user at later times. The user ID identifies the account

storing the proxy credentials in repository server. Both can be tested by

the repository to ensure they comply with any local policy (for example, the

pass phrase must meet a certain length). The only available retrieval

restriction that can be placed on delegations by the repository is the

maximum lifetime of the proxy credentials. These restrictions are intended

to be expanded in future versions.

 153

b) A user, or service acting on behalf of the user, uses the

myproxy-get-delegation client program to contact the repository server and

request a delegation of the user’s credentials. During this process, the user

must provide the ID and pass phrase for verification. After verifying this

authentication information and checking the restrictions that the user

presented with the delegation, the repository will delegate proxy credentials

back to the user or service.

c) The credentials delegated to the repository normally have a lifetime of a

week. This lifetime can be changed to any length of time desired. The

credentials delegated to the repository can be destroyed at any time by

using the myproxy-destroy client program.

The first step to using MyProxy in a Grid portal is to delegate proxy credentials

to the repository by using the myproxy-init client program. Then the user may

connect to the Grid portal by using a Web browser and provide the

authentication information (user ID and pass phrase) through a Web form at a

different time and place. The Grid portal then uses myproxy-get-delegation

program to connect to the MyProxy repository and authenticates itself using its

own Grid credentials. The user’s authentication information (user ID and

pass phrase) is also transferred to repository server at the same time for

requesting a proxy credential for the user. The repository would delegate a

proxy credential for the user back to the portal after all necessary verification

(portal’s Grid credentials, user’s authentication information). The Grid portal

then can securely access the Grid resources by using standard Grid applications.

The operation of logging out of the Grid portal deletes the user’s delegated

credentials on the portal; otherwise, the credentials will expire when the lifetime

lapses.

MyProxy has been extended to better integrate with existing site infrastructure,

and to make it easier for users to bootstrap their X.509 security context. It

introduces new developments, including management of trust roots,

standards-based integration with site authentication and the ability to act as a

CA. These new features enhance the MyProxy usage in the proposed Grid

system. They are introduced as follows:

 154

� A user’s X.509 security context includes an end entity or proxy credential,

one or more trusted CA certificates, and certificate revocation information

in the form of CRLs or online certificate status protocol (OCSP) (Myers,

Ankney, Malpani, Galperin & Adams, 1999) responses. MyProxy Logon

application is used to obtain a user’s complete security context from the

MyProxy service. The MyProxy administrator maintains a set of trusted

CA certificates and configures the server to periodically fetch fresh CRLs.

MyProxy Logon fetches the configured CA certificates and CRLs in

addition to the user’s end entity or proxy certificate and installs them in the

local user’s environment.

� The MyProxy service can be configured to allow users to logon with

existing site credentials, using Pluggable Authentication Modules (PAMs)

and/or the Simple Authentication and Security Layer (SASL). Through

these mechanisms, users are not required to remember another username

and password for the MyProxy service.

� For users that do not already have X.509 credentials to store in the

MyProxy repository, the administrator can configure MyProxy to act as an

online CA to issue certificates in realtime-based on-site authentication.

The administrator must provide a mapping of authenticated usernames to

certificate subjects, either in a configuration file or through LDAP

(Lightweight Directory Access Protocol). The user authenticates via

MyProxy Logon to the MyProxy service, and MyProxy issues a certificate

to the user with the subject provided in the mapping file. MyProxy CA

provides a lightweight mechanism for sites to distribute X.509 credentials.

5.6.4. Authorization

Authentication addresses the question, “Is the user who he claims to be?”, which

is typically a permanent attribute. Authorization addresses the question, “What is

the user allowed to do?”, which can vary over time. GSI is based on a PKI with

CAs and X.509 certificates. PKI provides credentials that can help to solve the

first question. Authorization, which is commonly based on a set of user

attributes, identities, policies and environmental parameters to make

 155

authorization decisions, however, is not usually solved by PKI: naturally, a

X.509 certificate can contain a set of user attributes that are used by the

application for determining the user’s authorization.

There are a number of authorization systems currently available for use on the

Grid as well as in other areas of computing, such as Akenti (Thompson et al.,

1999), CAS (Pearlman, Welch, Foster, Kesselman & Tuecke, 2002) (Pearlman,

Welch, Foster, Kesselman & Tuecke, 2003), PERMIS (Chadwick & Otenko,

2002), VOMS (“VOMS Architecture v1.1”, 2002), Cardea (Lepro, 2003),

PRIMA (Lorch & Kafura, 2002) (Lorch et al., 2003), and Shibboleth

(http://shibboleth.internet2.edu/). Some of these systems are normally used in a

push model - they act as services and issue these authorization decisions in the

form of authorization assertions that are conveyed to the target resource by the

requestor. Others are used in a pull model - they are normally linked with an

application or service and act as a policy decision-maker for that application.

Akenti, PERMIS and Shibboleth use user attributes to make authorization

decisions; VOMS provides user attributes that can be used for authorization.

For the Grid-enabled, distributed data warehouse system, GSI4 provides the

X.509 certificates to identify the Grid clients. An X.509 certificate is treated as

input of authorization system, provided by Shibboleth, as well as GridShib

plug-ins. This approach can integrate X.509 certificates with SAML to

provide cross-domain attributed-based authorization. GT4 introduces an

SAML/XACML authorization framework that supports multiple security

policies (Lang, Foster, Siebenlist, Ananthakrishnan & Freeman, 2006). A Grid

system consists of multiple administrative domains, which have their own

security policies, such as grid-mapfile, ACL, CAS, SAML authorization

decision assertions, and XACML policy statements. This framework tends to

be flexible, so that it can be changed easily for different application

environments. This framework allows the authorization system for the

proposed system to integrate into GT4 authorization framework as an

authorization service, so it enables the proposed Grid system to seamlessly

accommodate new participants, which use different authorization systems.

 156

5.6.4.1. SAML

According to OASIS (OASIS, 2005
1
), the SAML standard defines an

XML-based framework for describing and exchanging security information

between on-line business partners. This security information is expressed in the

form of portable SAML assertions that applications, working across security

domain boundaries can trust. The OASIS SAML standard defines precise

syntax and rules for requesting, creating, communicating, and using these SAML

assertions. It provides support for full federation and mapping of identifiers,

session management, greater interoperability for attribute exchange and other

features.

SAML is defined in terms of assertions, protocols, bindings and profiles. An

assertion is a package of information that supplies one or more statements made

by a SAML authority. There are three different kinds of assertions:

authentication statements, attributes statements, and authorization-decision

statements. Authentication statement is typically generated by a SAML

authority, called an identity provider, which is in charge of authenticating users

and keeping track of other information about them. Attributes statements

contain specific identifying attributes about the subject (for example, that user

“John Doe” has “Gold” card status). Authorization-decision statements define

something that the subject is entitled to do (for example, whether “John Doe” is

permitted to buy a specified item). SAML defines a number of generalized

request/response protocols, including Authentication Request, Single Logout

Assertion Query and Request, Artifact Resolution, Name Identifier

Management, and Name Identifier Mapping Protocols. Assertion Query and

Request Protocol defines a set of queries by which SAML assertions may be

obtained. Name Identifier Mapping Protocol provides a mechanism to

programmatically map one SAML name identifier into another, subject to

appropriate policy controls. It permits, for example, one service provider to

request from an identity provider an identifier for a user that the service

provider can use at another service provider in an application integration

scenario. SAML bindings detail exactly how the various SAML protocol

messages can be carried over underlying transport protocols. For instance, the

 157

SAML SOAP binding defines how SAML protocol messages can be

communicated within SOAP messages, whilst the HTTP redirect binding

defines how to pass protocol messages through HTTP redirection. A profile of

SAML defines constraints and/or extensions in support of the usage of SAML

for a particular application.

5.6.4.2. Shibboleth

Shibboleth is an attribute-based authorization system that asserts attributes

about a user between organizations (Erdos & Cantor, 2001). The current

implementation of the specification is Shibboleth 1.3 (released July 2005).

More precisely, Shibboleth asserts attributes between the user's home

organization and organization’s hosting resources that may be accessible to the

user. Shibboleth can be conceptually regarded as comprising three

components: Handle Service, Attribute Authority (AA) and Target Resource.

The Handle Service authenticates users in conjunction with a local

organizational authentication service and issues to the user a handle token.

When a user requests access to a target resource, he presents his handle token.

The resource then presents the user’s handle token to the attribute authority and

requests attributes regarding the user. The Shibboleth AA retrieves attributes

from an organizational authority and provides them in the form of SAML

assertions. The target resource includes Shibboleth-specific code to determine

the user’s home organization and hence, which Shibboleth attribute authority

should be contacted for the user to retrieve attributes regarding the user, and to

make authorization decisions, based on those attributes. Shibboleth is based in

large part on SAML. SAML defines two functional components: an Identity

Provider (IdP) and a Service Provider (SP). The IdP creates, maintains, and

manages user identity, while the SP controls access to services and resources.

An IdP produces and issues SAML assertions to SPs upon request. An SP

consumes SAML assertions obtained from IdPs for the purpose of making

access-control decisions. Based on Shibboleth Attribute Exchange Profile

(Cantor et al., 2005), on the IdP side, a Shibboleth AA produces and issues

attribute assertions, while a subcomponent of the SP, called an Attribute

Requester, consumes these assertions.

 158

5.6.4.3. GridShib

The GSI4 uses X.509 certificates and X.509 Proxy Certificates for

authentication. In brief, these certificates allow a user to assert a globally

unique identifier (i.e., a DN from the X.509 certificate). SAML can use its

attribute queries and assertions to support distributed authorization in support of

X.509-based authentication (OASIS, 2005
4
). GridShib is a software product

that allows for interoperability between the GT and Shibboleth (Welch, Barton,

Keahey & Siebenlist, 2005) (Barton et al., 2006). The complete software

package consists of two plug-ins: one for the GT4 and another for Shibboleth.

The main purpose of GT4 plug-in is to obtain attributes about a requesting user

from a Shibboleth AA and make an access control decision, based on those

attributes. GridShib for Shibboleth is a name mapping plug-in for a Shibboleth

1.3 identity provider. Its main purpose is to allow the servicing of attribute

queries from Grid SPs, based on the user’s X.509 subject DN. With both

plug-ins installed and configured, a GT Grid service provider may securely

request user attributes from a Shibboleth IdP.

GridShib focuses on using Shibboleth as the AA. It assumes the users have a

valid X.509 certificate, containing at least the name of users’ institution (IdP).

The X.509 certificate is offered to the application, verified, and the IdP

information is extracted. Next, the application contacts the IdP, supplies the

certificate’s ID, and receives in return a SAML assertion containing the user’s

attributes. The GridShib Profile is an extension of the Shibboleth Attribute

Exchange Profile. The primary difference is the use of X.500 DNs to identify

principals. The detailed GridShib protocol flow will be discussed with all

identified security components in section 5.6.5.

5.6.4.4. XACML Authorization Framework

The GT4 authorization framework uses the XACML model. This section

gives a brief overview of XACML authorization model.

According to OASIS (OASIS, 2005
2
), XACML defines a core schema and

corresponding namespace for the expression of authorization policies in XML

 159

against objects that are themselves identified in XML, and enables the use of

arbitrary attributes in policies, role-based access control, security labels,

time/date-based policies, indexable policies, “deny” policies, and dynamic

policies — all without requiring changes to the applications that use XACML.

Figure 5.8 gives an overview of the XACML authorization model. It mainly

contains PEP (Policy Enforcement Point), PDP (Policy Decision Point), PIP

(Policy Information Point), and PAP (Policy Administration Point). The PEP

intercepts the access requests from users and sends the requests to the PDP.

The PDP makes access decisions according to the security policy or policy set

written by PAP and, using attributes of the subjects, the resource, and the

environment obtained by querying the PIP. The access decision given by the

PDP is sent to the PEP. The PEP fulfills the obligations and either permits or

denies the access request, according to the decision of PDP.

 Figure 5.8 XACML Authorization Model

5.6.4.5. GT4 SAML/XACML Authorization Framework

The GT4 authorization framework implements SAML and uses the XACML

model. As shown in Figure 5.9, it is composed of a PEP, PDPs, and PIPs.

 160

For each existing authorization policy, the framework constructs a PDP for

evaluating that kind of policy. The Master PDP is responsible for coordinating

the PDPs to render a final decision. The Master PDP and the PEP are

collectively called the authorization engine. The framework provides different

kind of PIPs. A subset of PIP, referred to as Bootstrap PIPs, collect information

only about the request, such as the peer subject, the requested action, and the

resource. An example of one such PIP is the X509BootstrapPIP, which extracts

the subject DN of the peer from the X509 certificate.

When a request of the Grid resource comes, the PEP intercepts it and sends a

decision request to the Master PDP. The Master PDP collects information

needed by calling the Bootstrap PIPs and other PIPs and then invokes the

corresponding PDPs with the request and the information collected. The PIPs

and the PDPs used are all specified in the security configuration file. When the

Master PDP receives the decisions returned by each PDP, it combines the

decisions, using a policy combination algorithm, such as deny override or permit

override, to render a final decision and returns the decision to the PEP. The PEP

then executes the decision, either denying or permitting the request.

GT4 Authorization Model

Authorization Engine

Master PDP

PEP

Decision

Request

Decision

Result

PIPs
X.509BootstrapPIP

SAMLAuthzAssertionPIP

……..

PDPs

GridMapAuthorization

PDP

AccessControlList

PDP

SAMLAuthorization

Callout PDP

……..
Client

Request

Grid Service

Request

 Figure 5.9 GT4 Authorization Framework

 161

The PDP is the core of the authorization framework. In order to make the

framework support different kind of policies and be scalable, it is necessary to

encapsulate the policy into an independent PDP. In Grid systems, there are

several frequently used simple authorization policies or mechanisms such as the

provided PDPs that implement these existing policies, such as the

AccessControlList PDP and the GridMapAuthorizaion PDP. There are also

some authorization systems developed by others that can be used in a Grid

system, such as Shibboleth, VOMS and PERMIS. Therefore, a

SAMLAuthorizationCallout PDP for integrating those authorization systems

through the SAML assertions is established.

5.6.5. Putting it all together

The Grid-enabled, distributed data warehouse system requires security

functions, including authentication, SSO, delegation and authorization. SOAP

messages are conveyed over a network connection protected by TLS in order to

ensure transport-level security. Web services security standards and

specifications are used to provide end-to-end SOAP message protection.

Authentication with X.509 credentials can be accomplished either via TLS, in

the case of transport-level security, or via signature, as specified by

WS-Security, in the case of message-level security. Delegation and SSO can

be achieved through the use of standard X.509 Proxy Certificates. X.509 EEC

and X.509 Proxy Certificates represent long-term and short-term credentials

respectively; they are treated equivalently for the purpose of authentication.

MyProxy provides an online credential repository for X.509 proxy credentials

encrypted by user-chosen pass phrases. Shibboleth and GridShib provide

authorization. More specifically, a Shibboleth AA of IdP is responsible for

name mapping, and GridShib plug-ins are responsible for formulating the

attribute assertions.

 162

Security Model

Grid

Portal

Client
MyProxy

Repository

Web Browser

X.509

EEC

0. Delegate

1. Log on

2a. Request

X.509

PC

2b. Return

X.509

PC

Shibboleth. AA

Grid SP

3. Request

5c. SAML

Attribute

Assertion

PC: Proxy Certificate

AA: Attribute Authority

X.509

PC

5a. Map DN to Local

Name

5b. Formulate Attribute

Assertion

4. SAML

Attribute

Query

6. Response

Grid Service 1

Grid Service n

6. Response

 Figure 5.10 Security Model

Figure 5.10 shows the security model that combines all the necessary

components. Before explaining the processes defined in this model, the

following assumptions are made:

� The Grid client and the Grid SP each possess an X.509 credential.

� The Grid client has an account with a Shibboleth IdP.

� The IdP and the Grid SP each have been assigned a globally unique

identifier, called a provider-ID.

� The Grid SP and the IdP rely on the same metadata format and exchange

this metadata out-of-band. Specifically, both the IdP and the Grid SP rely

on SAML 2.0 metadata (OASIS, 2005
3
) for their trust configuration (i.e.,

the certificates and public keys of the other entity).

The work flows depicted in Figure 5.10 are described as follows:

Step 0). Delegate a X.509 Proxy Certificate to the MyProxy credentials

repository server. The client that stores the user’s X.509 EEC (long term

user’s credentials) sends a “Put” request (Basney, 2005) to the repository server,

along with a user ID, pass phrase and lifetime through the use of myproxy-init

 163

client program. The repository server accepts the request and generates a new

public/private key pair and then sends a certificate request, containing the

repository’s public key, to the client. The client then sends a X.509 Proxy

Certificate containing the public key from the certificate request, signed by its

X.509 EEC’s private key, followed by the corresponding certificate chain, back

to the repository server. The repository then stores this X.509 Proxy

Certificate for later retrieval from the Grid portal. The user ID and pass phrase

specify the account for storing the proxy certificate and are used to authenticate

its retrieval operation. The stored X.509 expires at the lifetime. This process

is authenticated via TLS. This is the initialization step.

Step 1). Users can log on the Grid portal at a different time and place by using a

standard Web browser.

Step 2). The Grid portal sends a “Get” request (Basney, 2005), along with the

user ID and pass phrase generated in the initialization step, to the MyProxy

repository server to retrieve the stored user’s X.509 Proxy Certificate through

the use of the “myproxy-get-delegation” client program. If the repository’s

response indicates success, the Grid portal generates a new public/private key

pair and then sends a certificate request, containing the Grid portal’s public key,

to the repository server. The repository server then sends a X.509 Proxy

Certificate, containing the public key from the certificate request, signed by the

private key of the stored user’s X.509 Proxy Certificate, followed by the

corresponding certificate chain, back to the Grid portal. This process is

authenticated via TLS and also the user ID and pass phrase. It enables the

repository to delegate proxy credentials for the user back to the Grid portal, and

then the Grid portal can act on the user’s behalf to securely access the Grid

resources by using standard Grid applications.

Step 3). The Grid portal holding the user’s X.509 Proxy Certificate can request

the Grid service (or resources) on the user’s behalf. It authenticates, using the

retrieved X.509 Proxy Certificate to the Grid SP. The Grid SP authenticates

the request and extracts the client’s DN from the credentials.

 164

Step 4). The Grid SP formulates a SAML attribute query, whose NameIdentifier

element is the DN extracted from the X.509 Proxy Certificate. The Grid SP

uses its own X.509 EEC to authenticate to the AA.

Step 5). The AA of the IdP authenticates the attribute request, maps the DN to a

local principal name, using the GridShib plug-in, retrieves the requested

attributes for the user (suitably filtered by normal Shibboleth-attribute release

policies), formulates an SAML-attribute assertion, and sends the assertion to the

Grid SP.

Step 6). The Grid SP parses the SAML attribute assertion, caches the attributes,

makes an access control decision, processes the client request (assuming access

is granted) and returns a response to the Grid portal. The Grid portal formats

the result into standard Web pages and sends it to the Web browser.

5.7. Summary

This chapter focuses on the security issues and corresponding solution for the

Grid-enabled, distributed data warehouse system. The proposed system is an

OGSA-based Grid system, which consists of multiple, untrusted participants.

The nature of VO introduces a number of security challenges that are far more

complex compared to the traditional distributed diagram. The primary security

requirements include cross-domain authentication, global subject mapping to

local subject, credential protection, dynamical delegation, SSO, and

cross-domain access control. The security policy within each institution might

be changed frequently, so the security issues should be addressed at

infrastructure-level in order to release the burden of changing applications.

Additionally, the proposed Grid system uses a Grid portal, which provides a

Web-based interface, allowing users to access Grid resources by using standard

Web browsers at any time and place. Therefore, it is necessary to find a way

to bridge the incompatibility between Web and Grid-security protocols.

The security solution is based on the GSI, which is a portion of GT. GSI

consists of a number of components focused on different issues. It is based on

a PKI with certificate authorities and X.509 certificates. It provides a

 165

public-key system; mutual authentication through digital certificates; credential

delegation and SSO. It acts as Grid security middleware to provide

infrastructure-level security functionalities for addressing security issues in a

Grid environment. The GSI4, which is the latest version of GSI, implements the

OGSA security architecture, by combining OGSA and existing or emerging

Web-services security standards and specifications. This approach allows the

basic security issues to be addressed by Grid infrastructure. Therefore, the

Grid applications only need to deal with application-specific security policy

without considering the frequent changes of institutions’ policies.

The solution is provided by GSI4. The X.509 certificate is used with TLS to

provide transport-level message protection. The Web-services security

standards and specifications are used to provide end-to-end message-level

protection. The X.509 Proxy Certificate is used to achieve dynamic delegation

and SSO. The MyProxy protocol acts as an online credentials repository that

solves the incompatibility between Web- and Grid-security protocols.

Authorization is provided by Shibboleth, as well as GridShib plug-ins, which

integrate X.509 credentials with SAML. These components are integrated

into a security model, which can be implemented to ensure the proposed Grid

system works in a secure way.

 166

Chapter 6.

Conclusion

Grid computing, which has emerged as a state-of-the-art cross-domain

approach, is concerned with heterogeneous, distributed resource-sharing for

cross-institutional collaboration. It uses standard, open, general-purpose

protocols and interfaces to coordinate resource-sharing within a virtual

organization (VO) for delivering various services. Combining Grid

technologies with appropriate database access and integration technology is

essential in the Grid computing paradigm.

Chapter 2 provides a comprehensive introduction to current Grid technologies

and database technologies. Grid technology has evolved at a rapid rate. The

emphasis of the Grid system has shifted from early meta-computing to

distributed global collaboration, a service-oriented approach and

information-layer issues. Currently, Grid computing is closely related to the

evolution of Web technologies and standards. Current database management

technology has already addressed new challenges, like scale, heterogeneity and

distribution. However, the major limitations, such as cross-domain federated

query and security, do exist. The combination of Grid and database access and

integration enables the transparent access of distributed data resources, made

possible by using resource virtualization methods.

This project proposes a Grid-enabled, distributed data warehouse system, which

provides infrastructure-level services, such as is required to support HIV/AIDS

collaborative research. In this case, the Grid is primarily used to: control

workflow of data-collection; to coordinate data-access and authorisation across

multiple institutions; to integrate various types of data into a single format; and

to manage the collaborative data-analysis operations. In the HIV/AIDS

example problem-context, patients’ data is collected and populated into the

collector’s data warehouse, which provides the primary type of resource - data.

A number of HIV/AIDS-related data-analysis services can be built over the

established data warehouse for the purpose of research. The data-analysis

 167

services are considered as computing resources. Data and computing resources,

resource providers, and resources consumers comprise a VO that consists of

multiple, physically distributed institutions. The proposed system is

responsible for providing essential capabilities by defining a rich set of services

with standard interfaces and protocols.

This dissertation focuses on two main objectives.

� The first objective involved defining a feasible framework for the

Grid-enabled, distributed data warehouse system, according to existing

standards, specification, and implementation. The proposed system is

designed as an OGSA-based Grid system. There exists a number of

standards and specifications (e.g., Web services family, WSRF, and

WS-Notification) to support the realization of OGSA. A system

framework is proposed through a thorough study of all these standards,

specifications and corresponding implementations. Based on this

framework, two sub-objectives were identified. The first was to identify

core services, providing fundamental capabilities required by the proposed

system. The second was to define two component models for (a)

data-collection for data warehousing among disparate data providers in a

VO and for (b) data-access and data-integration in a VO.

� The second objective involved addressing particular security issues,

including authentication, SSO, dynamic delegation and authorization for the

proposed system. The security solution was derived based on a literature

survey of GSI (Grid Security Infrastrucuture) and related standards and

specifications. GSI concerns general security aspect in Grid

environments. Based on the study of the security mechanisms of GSI, and

supporting standards and specifications (such as PKI, Web service security,

SAML, Shibboleth, etc.), the required components were selected to fulfil

the security requirements of the proposed system. One sub-objective in

the security area was to define a model that integrates the relevant security

components to illustrate how to establish cross-domain trust relationships

and to provide secure conversation between VO entities.

 168

Chapter 3 firstly describes the characteristics of a VO environment for the

envisaged Grid system and then discusses the essential OGSA (Open Grid

Services Architecture) functional capabilities, based on a pre-defined VO. A

set of capabilities, including resource virtualization, resource publication and

discovery, data-collection, data operation, provenance, resource management,

job-execution management, metadata, monitoring and security, are identified for

the proposed system. The combination of these capabilities can provide

advanced capabilities, such as data-collection, data-sharing coordination and

collaborative operations.

Based on the discussion in chapter 3, chapter 4 focuses on the first main

objective and its sub-objectives. A layered system framework is defined in

order to identify all supportive standards and specifications used to design and

implement the proposed system. OGSA is a de facto standard for building a

Grid system. It is the core standard in this framework. WSRF, WS-Notification

and Web service family are supportive standards and specification to realize

OGSA. OGSA introduces a service-oriented Grid architecture, which tailors a

Web services approach to meet some Grid-specific requirements. It defines

what is called Grid service to represent resources (either data or computational

resources) in a VO by using stateful Web services with standard interfaces and

protocol binding. A Grid service is essentially a stateful Web service. Giving

Web services the ability to keep state information, while still keeping them

stateless, seems like a complex problem. WS-Resource is an approach defined

by WSRF to model stateful resources in a Web-services context. The state

information is kept in a stateful resource instead of Web service.

WS-Notification specifications use standard approaches to notification, using a

topic-based publish-and-subscribe pattern. Based on the OGSA, WSRF, Web

services-standard, the infrastructure services and core services were defined to

offer capabilities to the Grid-enabled, distributed data warehouse system.

Infrastructure services provide the foundation for building core services. They

consist of a number of common components for naming, representing state,

notification and security. The core services were defined to meet the primary

requirements of the proposed Grid system. Core services contain a large set of

services to provide a variety of capabilities, such as data-access, data integration,

 169

resources management, system monitoring, job execution, etc. These services

are compliant with OGSA Grid services. It means they can be implemented by

using OGSA-based development toolkits, such as GT and OGSA-DAI. Based

on all identified services, two models were created to demonstrate how to

integrate these services to achieve data collecting from distributed providers and

data-sharing across multiple, distributed institutions. The models use a Grid

portal as a Web-based brokerage point that allows authorized users to access

Grid resources via Web browsers.

Web services’ standards have evolved at a fast rate. Today there are many

specifications that provide Web-service capabilities for resources, events, and

management. Some examples are: WS-Transfer, WSRF, WS-Notification,

WS-Eventing, WS-Management, WSDM specifications, etc. In 2006, IBM, HP,

Intel and Microsoft plan to develop a common set of specifications for resources,

events and management that can be broadly supported across heterogeneous

systems (Cline et al., 2006). For example, the new WS-EventNotification

specification composes with WS-ResourceTransfer to support a state/resource

model for managing subscriptions. The existing functionality of

WS-Notification, not explicitly defined in WS-EventNotification, can still be

layered over its message model and functionality as an extension. The new Web

services management specification comprises new WS-ResourceTransfer and

new WS-EventNotification. The differences between WS-Management and

WSDM specifications are directly due to the differences between WS-Transfer

and WSRF, and between WS-Notification and WS-Eventing. The

reconciliation of the resource management and event/notification specifications

enable reconciliation of many of the functions of the management

specifications. This plan outlined the approach to build on existing

specifications and defined a set of enhancements that enable this convergence.

Future work is based on this convergence in order to allow the proposed system

migrate smoothly to the new specifications as they emerge and move through to

standardization.

Chapter 5 focused on the second objective: a security solution for particular

security issues in the Grid-enabled, distributed data warehouse system. The

 170

Grid-enabled, distributed data warehouse system consists of multiple untrusted

institutions. Each institution may have various security policies and use

different mechanism to handle intra-domain security issues. The main goals of

the envisaged security solution are providing cross-domain mutual

authentication, global subject mapping to local subject, credential protection,

dynamical delegation, SSO, and cross-domain access control. The security

solution is based on GSI, which is a PKI-based infrastructure for addressing

general security issues in a Grid environment. For authentication, the X.509

credentials are used either via TLS, in the case of transport-level security, or via

digital signatures, as specified by WS-Security, in the case of message-level

security. The X.509 Proxy Certificate is used to achieve dynamic delegation and

SSO. The MyProxy protocol acts as an online credentials repository that

solves the incompatibility between Web- and Grid-security protocols.

Shibboleth, as well as GridShib, are used to provide access control. The

authorization decision is dependent on users’ X.509 credentials and attributes

retrieved from an AA by using SAML attribute query and assertion. All these

components are finally integrated into a security model, which can be

implemented to establish trust relationships and provide secure interaction

between untrusted institutions.

A major criticism against the authorization approach discussed in this

dissertation is that the user still needs to obtain a valid certificate from a CA.

SAML and XACML are two important authorization-related standards. The

authorization discussed in this dissertation does not use the full potential of

SAML and XACML. The combination of SAML and XACML can enable

federated identity management, and federated access management. This

approach does not depend on the user have a PKI certificate and provide

seamless access control. In chapter 5, GT4 SAML/XACML authorization

framework was such an example. Future work in this security area will focus

on the study on SAML/XACML framework, related standards and

implementation toolkits in order to provide more seamless and scalable access

control in the Grid-enabled, distributed data warehouse system.

 171

In summary, this dissertation discussed a flexible framework and security

solution for a Grid-enabled, distributed data warehouse system (exemplified in

the context of HIV/AIDS collaborative research). The main contribution of

this work was exploring a feasible approach, which uses Grid technology to

support data-sharing and collaboration over distributed data warehouses (or

databases) for the purpose of data analysis (or data-mining) in a VO context.

 172

References

Abiteboul, S., Buneman, P., & Suciu, D. (1999). Data on the web: from

relations to semistructured data and XML. Los Altos: Morgan Kaufmann.

Allen, G., Daues, G., Foster, I., Laszewski, G., Novotny, J., Russell, M. (Eds.).

(2001). The Astrophysics Simulation Collaboratory Portal: A Science

Portal Enabling Community Software Development. Proceeding of the

10
th
 IEEE International Symposium On High Performance Distributed

Computing 2001 (HPDC ’01), San Francisco, California, USA. CS Press.

Almond, J., & Snelling, D. (1999). UNICORE: uniform access to

supercomputing as an element of electronic commerce. Future Generation

Computer Systems, 15, 539-548, NH-Elsevier.

Alpdemir, M. N., Mukherjee, A., Gounaris, A., Paton, N. W., Watson, P.,

Fernandes, A. A. A. (2003). OGSA-DQP: A Service-Based Distributed

Query Processor for the Grid. Proceedings of the UK e-Science All

Hands Meeting 2003, September 2003.

Antonioletti, M., Atkinson, M. P., Baxter, R., Borley, A., Chue Hong, N. P.,

Collins, B. (Eds.). (2005). The Design and Implementation of Grid

Database Services in OGSA-DAI. Concurrency and Computation:

Practice and Experience, 17 (2-4), 357-376, February 2005.

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L. (Eds.).

(1999). Toward a common component architecture for high performance

scientific computing. In Proceedings of the 8th High Performance

Distributed Computing (HPDC99).

Atkinson, M., L.Chervenak, A., Kunszt, P., Narang, I., W. Paton, N., Pearson,

D. (Eds.). (2004). Data Access, Integration, and Management. In Foster, I

& Kesselman, C., The Grid 2: Blueprint for a New Computing

Infrastructure (pp 391-429). San Francisco: Morgan Kaufmann.

Atkinson, M., Dialani, V., Guy, L., Narang, I., Paton, N. W., Pearson, D. (Eds.).

(2003). Grid Database Access and Integration: Requirements and

Functionalities. Global Grid Forum, DAIS Working Group, GFD-I.13,

March 13, 2003.

Bajaj, S., Della-Libera, G., Dixon, B., Dusche, M., Hondo, M., Hur, M. (Eds.).

(2003). Web Services Federation Language (WS-Federation) Version 1.0.

IBM, Microsoft, RSA, Verisign, July 8 2003.

 173

Baker, F. (1995). Requirements for IP Version 4 Routers. IETF, RFC 1812.

Retrieved November 2005, from http://www.ietf.org/rfc/rfc1812.txt.

Ballinger, K., Ehnebuske, D., Ferris, C., Gudgin, M., Karmarkar, A., Liu, C. K.

(Eds.). (2006). Web Services Interoperability Organization (WS-I) Basic

Profile Version 1.2. Working Group Draft 2006-10-03. Retrieved

November 2006 from

http://members.ws-i.org/dman/Docs.phx?Working+Groups/WSBasic+Pro

file/Profile/BP1.2/BasicProfile-1.2-WGD.html?versionID=1.

Ballinger, K., Brittenham, P., Malhotra, A., Nagy, W. A., & Pharies, S. (2001).

Web Services Inspection Language (WS-Inspection) 1.0. IBM

DeveloperWorks, November 2001. Retrieved March 2006 from

http://www-128.ibm.com/developerworks/library/specification/ws-wsilsp

ec/.

Barton, T., Basney, J., Freeman, T., Scavo, T., Siebenlist, F., Welch, V. (Eds.).

(2006). Identity Federation and Attribute-based Authorization through

the Globus Toolkit, Shibboleth, GridShib, and MyProxy. In 5th Annual

PKI R&D Workshop, April 2006.

Basney, J. (2005). MyProxy Protocol. Global Grid Forum, GFD-E.054,

November 26, 2005.

Bell, W. H., Bosio, D., Hoschek, W., Kunszt, P., McCance, G., & Silander, M.

(2002). Project Spitfire – Towards Grid Web Service Databases. Global

Grid Forum, DAIS Working Group Informational Document.

Birrell, A.D., & Nelson, B.J. (1984). Implementing Remote Procedure Calls.

ACM Transactions on Computer Systems, 2(1), 39-59.

Box, D. (2003). Service-Oriented Architecture and Programming (SOAP) - Part

1 & Part 2. MSDN TV archive, 2003.

Brittenham, P. (2002). An Overview of the Web Services Inspection Language.

IBM DeveloperWorks, 01 January 2002. Retrieved June 2006 from

www.ibm.com/developerworks/webservices/library/ws-wsilover.

Burbeck, S. (2000). The Tao of e-business Services. IBM DeveloperWorks, 01

October 2000. Retrieved July 2006 from

http://www.ibm.com/developerworks/webservices/library/ws-tao/.

 174

Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke, S., Volmer, J. &

Welch, V. (2000). Design and Deployment of a National-Scale

Authentication Infrastructure. IEEE Computer, 33(12), 60-66.

Buyya, R., Abramson, D., & Giddy, J. (2000). Nimrod/G: An Architecture for a

Resource Management and Scheduling System in a Global Computational

Grid. In Proceeding of the 4th International Conference on High

Performance Computing in Asia-Pacific Region (HPC Asia2000), Beijing,

China.

Cabrera, F. L., Copeland, G., Feingold, M., Freund, R. W., Freund, T., Johnson,

J. (Eds.). (2005). Web Services Coordination (WS-Coordination) Version

1.0. IBM, DeveloperWork, August 2005, Retrieved May 2006 from

http://www-128.ibm.com/developerworks/library/specification/ws-tx/.

Callas, J., Donnerhacke, L.,Finney, H., Thayer, R. (1998). OpenPGP Message

Format. IETF, Network Working Group, RFC 2440, November 1998.

Retrieved August 2006 from http://www.ietf.org/rfc/rfc2440.txt.

Cantor, S. et al. (2005). Shibboleth Architecture: Protocols and Profiles.

Internet2-MACE, 10 September 2005.

Chadwick, D.W., & Otenko, O. (2002). The PERMIS X.509 Role Based Privilege

Management Infrastructure. Proceedings of 7th ACM Symoisium on

Access Control Models and Technologies (SACMAT 2002).

Channabasavaiah, K., Holley, K., & Tuggle, E. (2003). Migrating to a

service-oriented architecture, Part 1. IBM DeveloperWorks, 16

December 2003. Retrieved July 2006 from

http://www-128.ibm.com/developerworks/library/ws-migratesoa/.

Clark, D. (2001). Face-to-Face with Peer-to-Peer Networking. Computer, 34(1),

18-21.

Cline, K., Cohen, I., Davis, D., Ferguson, D. F., Kreger, D., & McCollum, R.

(2006). Toward Converging Web Service Standards for Resources,

Events, and Management. HP, IBM, Inter and Microsoft, Joint White

Paper V1.0, March 15, 2006.

Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Maguire, T.

(Eds.). (2004)
1
. From Open Grid Services Infrastructure to WS-Resource

Framework: Refactoring & Evolution Version 1.1 (3/05/2004). Globus

Alliance.

 175

Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I.

(Eds.). (2004)
2
. The WS-Resource Framework Version 1.0. Globus

Alliance.

Daniel, J. B., Silverman, R. E., & Byrnes, R. G. (2005). SSH: The Secure Shell,

The Definitive Guide (2
nd
 edition). O'Reilly.

Davidson, S. B., Crabtree, J., Brunk, B. P., Schug, J., Tannen, V., Overton, G.

C. (Eds.). (2001). K2/Kleisli and GUS: Experiments in integrated access

to genomic data sources. IBM Systems Journal, 40(2), 512-531.

de Laat, C., Gross, G., Gommans, L., Vollbrecht, J., & Spence, D. (2000).

Generic AAA Architecture. IETF, Network Working Group, RFC 2903,

August 2000. Retrieved February 2006 from

http://www.ietf.org/rfc/rfc2903.txt.

DeFanti, T., Foster, I., Papka, M., Stevens, R., & Kuhfuss, T. (1996). Overview

of the I-WAY: Wide area visual supercomputing. International Journal of

Supercomputer Applications, 10, 123-130.

De Roure, D., A. Baker, M., R. Jennings, N & R. Shadbolt, N. (2003). The

Evolution of The Grid. In Berman, F., Fox, G., & J. G. Hey, A., Grid

Computing: Making The Global Infrastructure a Reality (pp. 65–100).

John Wiley & Sons.

Dierks, T., & Rescorla, E. (2006). The Transport Layer Security (TLS) Protocol

Version 1.1. IETF, Network Working Group, RFC 4346, April 2006.

Retrieved December 2006 from http://tools.ietf.org/html/rfc4346.

Dinda, P., & Plale, B. (2001). A unified relational approach to Grid information

services. Global Grid Forum, Technical Report GWD-GIS-012-1.

DMTF. (1999). Common Information Model (CIM) Specification, Version 2.2.

Distributed Management Task Force (DMTF) specification. Retrieved

August 2006 from

http://www.dmtf.org/standards/documents/CIM/DSP0004.pdf

Elmasri, R., & Navathe, S. B. (2000). Fundamentals of Database Systems (3
rd

ed.). Addison-Wesley.

Erdos, M & Cantor, S. (2001). Shibboleth-Architecture DRAFT v04. Shibboleth

Project Specification, Internet2/MACE.

 176

Farrell, S., & Housley, R. (2002). An Internet Attribute Certificate Profile for

Authorization. IETF, Network Working Group, RFC 3281, April 2002.

Retrieved February 2006 from http://www.ietf.org/rfc/rfc3281.txt.

FIPA. (2002). FIPA Communicative Act Library Specification. Foundation for

Intelligent Physical Agents (FIPA) Technical Report XC00037I, October

2002.

Foster, I. (2002)
1
. The Grid: A New Infrastructure for 21st Century Science.

Physics Today, 55 (2), 42-47.

Foster, I. (2002)
2
. What is the Grid? A Three Point Checklist. Retrieved

November 2005 from

http://wwwfp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf.

Foster, I. (2004). Brain Meets Brawn: Why Grid and Agents Need Each Other.

In Proceeding of 3rd International Conference on Autonomous Agents and

Multi Agent Systems, New York.

Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D. (Eds.).

(2004)
1
. Modeling Stateful Resources with Web Services Version 1.1.

Globus Alliance.

Foster, I., Gannon, D., Kishimoto, H & Von Reich, Jeffrin. J. (2004)
2
. Open

Grid Services Architecture Use Cases. Global Grid Forum OGSA-WG,

GFD-I.029, October 2004.

Foster, I., Geisler, J., Nickless, W., Smith, W., & Tuecke, S. (1997). Software

Infrastructure for the I-WAY High Performance Distributed Computing

Experiment. In Proceeding of the 5th IEEE Symposium on High

Performance Distributed Computing, 562-571

Foster, I., & Kesselman, C. (1997). Globus: A Metacomputing Infrastructure

Toolkit. International Journal of Supercomputer Applications, 11(2),

115-128.

Foster, I., & Kesselman, C. (1998). The Globus Project: A Status Report. In Proc.

Heterogeneous Computing Workshop, IEEE Press, 1998, 4-18.

Foster, I., & Kesselman. C. (1999). Globus: A Toolkit-Based Grid Architecture.

In Foster, I & Kesselman, C., The Grid: Blueprint for a New Computing

Infrastructure (pp. 259-278). San Francisco: Morgan Kaufmann.

 177

Foster, I., & Kesselman, C. (1998). The Grid: Blueprint for a new Computing

Infrastructure. San Francisco: Morgan Kaufmann.

Foster, I., Kesselman, C., Nick, J., & Tuecke, S. (2002). The Physiology of the

Grid: Open Grid Services Architecture for Distributed Systems

Integration. Global Grid Forum, Open Grid Service Infrastructure WG.

Presented at GGF4, February 2002.

Foster, I., Kesselman, C., Tsudik, G. & Tuecke, S. (1998). A Security

Architecture for Computational Grids. 5th ACM Conference on

Computer and Communications Security, 83-91.

Foster, I., Kesselman, C., & Tuecke, S. (2001). The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. International Journal of High

Performance Computing Applications, 15 (3), 200-222.

Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A. (Eds.).

(2005). The Open Grid Services Architecture, Version 1.0. Global Grid

Forum OGSA-WG. GFD-I.030, 29 January 2005.

Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A. (Eds.).

(2006). The Open Grid Services Architecture, Version 1.5. Global Grid

Forum OGSA-WG. GFD-I.080, 24 July 2006.

Frawley, W., Piatetsky-Shapiro, G., & Matheus, C. (1992). Knowledge

Discovery in Databases: An Overview. AI Magazine, Fall 1992, 213-228.

Funderburk, J. E., Kiernan, G., Shanmugasundaram, J., Shekita, E., & Wei, C.

(2002). XTABLES: Bridging relational technology and XML, IBM

Systems Journal, 41(4), 616–641.

Gannon, D. (Eds.). (2002). Programming the Grid: Distributed Software

Components, P2P and Grid Web Services for Scientific Applications.

Cluster Computing, 5(3), 325-336.

Gopalan, S.R. (1998). A Detailed Comparison of CORBA, DCOM and

Java/RMI, Object Management Group (OMG). Object Management

Group (OMG) White Paper.

Graham, S., Niblett, P., Chappell, D., Lewis, A., Nagaratnam, N., Parikh, J.

(Eds.). (2004). Publish-Subscribe Notification for Web services Version

1.0 03/05/2004. Globus Alliance.

 178

Grimshaw, A., Wulf, W. (Eds.). (1997). The Legion Vision of a Worldwide

Virtual Computer. Communications of the ACM, 40(1).

Grimshaw, A. (Eds.). (2006). WS-Naming Specification. Draft, March 2006.

Open Grid Forum, OGSA-NAMING-WG. Retrieved August 2006 from

http://forge.gridforum.org/projects/ogsa-naming-wg/.

Grimshaw, A., Newhouse, S., Pulsipher, D., & Morgan, M. (2006). OGSA Basic

Execution Services Version 1.0. Global Grid Forum OGSA-BES-WG,

Draft 16, February 2006. Retrieved August 2006 from

https://forge.gridforum.org/projects/ogsa-bes-wg/document/ogsa-bes-draf

t-v16/en/1

Groth, R. (1997). Data Mining: A Hands-On Approach for Business

Professionals. Prentice Hall.

Haas, L. M., Schwarz, P. M., Kodali, P. Kotlar, E., Rice, J. E., & Swope, W. C.

(2001). DiscoveryLink: A system for integrated access to life sciences

data sources. IBM Systems Journal 40(2), 489-511.

Hand, D., Mannila, H., & Smyth, P. (2001). Principles of Data Mining.

Cambridge, MA: MIT Press.

He, H. (2003). What is Service-Oriented Architecture?. O’REILLY XML.COM

Article Archive. Retrieved 21 July 2006 from

http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html.

Horstmann, M., & Kirtland, M. (1997). DCOM Architecture. Microsoft, MSDN

Library, DCOM Technical Article, 23 June 19997.

Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H., & Stockinger, K.

(2000). Data Management in an International Data Grid Project. In

Proceedings of the 1st IEEE/ACM International Workshop on Grid

Computing (Grid 2000), Bangalore, India, 17-20. Springer-Verlag Press,

Germany.

Housley, R., Polk, W., Ford, W., & Solo, D. (2002). Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

IETF, Network Working Group, RFC 3280, April 2002. Retrieved May

2006 from http://www.faqs.org/rfcs/rfc3280.html.

IBM. (2001). Web services Object Runtime Framework: implementing Web

services with XML Extender, Version 7.2 (beta). Retrieved June 2006

 179

from

http://www-306.ibm.com/software/data/db2/extenders/xmlext/docs/v72w

rk/dxxservl.htm.

IBM & Microsoft. (2002). Security in a Web Services World: A Proposed

Architecture and Roadmap. IBM Corporation and Microsoft Corporation,

A joint security whitepaper, April 7, 2002, Version 1.0.

ITU-T. (1996). Information technology – Open Systems Interconection–Security

Frameworks for Open Systems: Access Control Framework. ITU-T

Recommendation X.812, ISO Published Standard:ISO/IEC 10181-3.

ITU-T. (2005). Information Technology - Open Systems Interconnection - The

Directory: Authentication Framework. ITU-T Recommendation X.509.

Inmon, W. H. (1996). Building Data Warehouse (2
nd
 ed.). John Wiley & Sons.

Inmon, W. H., & Hackathorn, Richard. D. (1994). Using the Data Warehouse

(1st ed.). John Wiley & Sons.

Jennings, N. R. (2001). An agent-based approach for building complex software

systems. Comms. of the ACM, 44 (4), 35-41.

Karasavvas, K., Antonioletti, M., Atkinson, M. P., Chue Hong, N. P., Sugden,

T., Hume, A.C. (Eds.). (2005). Introduction to OGSA-DAI Services.

Lecture Notes in Computer Science, Volume 3458, Pages 1-12, May 2005.

Kossmann, D. (2000). The state of the art in distributed query processing. ACM

Computing Surveys, 32 (4), 422-469.

Krawczyk, H., Bellare, M., & Canetti, R. (1997). HMAC: Keyed-Hashing for

Message Authentication. IETF, Network Working Group, RFC 2104,

February 1997. Retrieved December 2006 from

http://www.ietf.org/rfc/rfc2104.txt.

Krishnan, S., Bramlay, R., Gannon, D., Govindaraju, M., Indurkar, R.,

Solminski, A. (Eds.). (2001). The XCAT Science Portal. Proceeding of

Super Computing 2001 (SC ’01), Denvor, Colorado, USA. CS Press.

Lang, B., Foster, I., Siebenlist, F., Ananthakrishnan, R., & Freeman, T. (2006).

A Multipolicy Authorization Framework for Grid Security. Proceedings

 180

of the Fifth IEEE International Symposium on Network Computing and

Application, 2006.

Lee, A., Magowan, J., Dantressangle, P., & Bannwart, F. (2005). Bridging the

integration gap. IBM Developer Works. 16 Aug 2005.

Lenzerini, M. (2002). Data Integration: A Theoretical Perspective. PODS 2002,

243-246.

Lepro, R. (2003). Cardea: Dynamic Access Control in Distributed Systems.

NASA Technical Report NAS-03-020, November 2003.

Li, M., & Baker, M. (2005). The Grid Core Technologies. John Wiley & Sons.

Lorch, M., Adams, D., Kafura, D., Koneni, M., Rathi, A., & Shah, S. (2003).

The PRIMA System for Privilege Management, Authorization and

Enforcement in Grid Environments. 4th Int. Workshop on Grid

Computing - Grid 2003, 17 November 2003, Phoenix, AR, USA.

Lorch, M., Basney, J., & Kafura, D. (2004). A Hardware-secured Credential

Repository for Grid PKIs. 4th IEEE/ACM International Symposium on

Cluster Computing and the Grid, Chicago, Illilnois, April 19-22, 2004.

Lorch, M., Cowles, B., Baker, R., Gommans, L., Madsen, P., McNab, A. (Eds.).

(2004). Conceptual Grid Authorization Framework and Classification.

Global Grid Forum, Authorization Frameworks and Mechanisms–WG,

GFD-I.038, Revised November 23 2004.

Lorch, M., & Kafura, D. (2002). Supporting Secure Ad-hoc User Collaboration

in Grid Environments. 3rd Int. Workshop on Grid Computing, Baltimore,

November, 18, 2002.

Maciel, F. B. (2005). Resource Management in OGSA. Global Grid Forum,

CMM-WG. GFD-I.045, March 1, 2005.

McBrien, P., & Poulovassilis, A. (2002). Schema Evolution in Heterogeneous

Database Architectures, A Schema Transformation Approach. CAiSE,

484-499.

Myers, M., Ankney, R., Malpani, A., Galperin, S., & Adams, C. (1999). X.509

Internet Public Key Infrastructure Online Certificate Status Protocol –

 181

OCSP. IETF, Network Working Group, RFC 2560, June 1999. Retrieved

May 2006 from http://www.ietf.org/rfc/rfc2560.txt.

Nagy, W. A., & Ballinger, K. (2001). The WS-Inspection and UDDI

relationship. IBM DeveloperWorks, 01 November 2001. Retrieved July

2006 from

http://www-128.ibm.com/developerworks/webservices/library/ws-wsilud

di.html

Neuman, B. C., & Ts'o, T. (1994). Kerberos: An Authentication Service for

Computer Networks. IEEE Communications Magazine, 32 (9), 33-88.

Neuman, C., Yu, T., Hartman, S., & Raeburn, K. (2005). The Kerberos Network

Authentication Service (V5). IETF, Network Working Group, RFC 4120,

July 2005. Retrieved September 2006 from

http://tools.ietf.org/html/rfc4120.

Novotny, J. (2002). The Grid Portal Development Kit. Concurrency and

Computation: Practice and experience, 14(13-15), 1129-1144.

Novotny, J., Tuecke, S., & Welch, V. (2001). An Online Credential Repository

for the Grid: MyProxy. Proceedings of the Tenth International

Symposium on High Performance Distributed Computing (HPDC-10),

IEEE Press, August 2001.

OASIS. (2005)
1
. Assertions and Protocols for the OASIS Security Assertion

Markup Language (SAML) V2.0. OASIS Standard, 15 March 2005.

Retrieved September 2006 from

http://docs.oasis-open.org/security/saml/v2.0/.

OASIS. (2005)
2
. eXtensible Access Control Markup Language 2 (XACML)

Version 2.0. OASIS Standard, 1 Feb 2005. Retrieved September 2006

from

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-

os.pdf

OASIS. (2005)
3
. Metadata for the OASIS Security Assertion Markup Language

(SAML) V2.0. OASIS Standard, 15 March 2005. Retrieved September

2006 from http://docs.oasis-open.org/security/saml/v2.0/.

OASIS. (2005)
4
. SAML Attribute Sharing Profile for X.509

Authentication-Based Systems. Committee Draft, 1 June 2005.

Retrieved September 2006 from

 182

http://www.oasis-open.org/committees/documents.php?wg_abbrev=secur

ity.

OASIS. (2005)
5
. Web Services Distributed Management: Management of Web

Services (WSDM-MOWS) 1.0. OASIS-Standard, 9 March 2005. Retrieved

February 2006 from

http://docs.oasis-open.org/wsdm/2004/12/wsdm-mows-1.0.pdf

OASIS. (2005)
6
. Web Services Distributed Management: Management using

Web Services (MUWS 1.0) Part 1. OASIS Standard, 9 March 2005.

Retrieved February 2006 from

http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-part1-1.0.pdf.

OASIS. (2005)
7
. Web Services Distributed Management: Management using

Web Services (MUWS 1.0) Part 2. OASIS Standard, 9 March 2005.

Retrieved February 2006 from

http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-part2-1.0.pdf.

OASIS. (2006)
1
. Reference Model for Service Oriented Architecture 1.0. OASIS

Committee Specification 1, 19 July 2006. Retrieved December 2006 from

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm.

OASIS. (2006)
2
. Web Services Base Faults 1.2 (WS-BaseFaults). Committee

Specification, 9 January 2006. Retrieved May 2006 from

http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-1.2-spec-cs-01.pdf

OASIS. (2006)
3
. WS-SecureConversation 1.3. Committee Draft 01, 06

September 2006. Retrieved October 2006 from

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512.

OASIS. (2006)
4
. Web Services Base Notification 1.3 (WS-BaseNotification).

OASIS Standard, 1 October 2006. Retrieved November 2006 from

http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

.

OASIS. (2006)
5
. Web Services Brokered Notification 1.3

(WS-BrokeredNotification). OASIS Standard, 1 October 2006. Retrieved

November 2006 from

http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os

.pdf.

OASIS. (2006)
6
. Web Services Service Group 1.2 (WS-ServiceGroup).

Committee Specification, 9 January 2006. Retrieved May 2006 from

 183

http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-cs-01.pd

f.

OASIS. (2006)
7
. Web Services Resource Lifetime 1.2 (WS-ResourceLifetime).

Committee Specification, 9 January 2006. Retrieved May 2006 from

http://docs.oasis-open.org/wsrf/

wsrf-ws_resource_lifetime-1.2-spec-cs-01.pdf

OASIS. (2006)
8
. Web Services Resource Properties 1.2

(WS-ResourceProperties). Committee Specification, 20 January 2006.

Retrieved May 2006 from

http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-cs-

01.pdf

OASIS, (2006)
9
. Web Services Security Rights Expression Language (REL)

Token Profile 1.1. OASIS Standard, 1 February 2006. Retrieved May

2006 from

http://docs.oasis-open.org/wss/oasis-wss-rel-token-profile-1.1.pdf.

OASIS. (2006)
10
. Web Services Security: SOAP Message Security 1.1

(WS-Security 2004). OASIS Standard Specification, 1 February 2006.

Retrieved May 2006 from http://docs.oasis-open.org/wss/v1.1/.

OASIS. (2006)
11
. Web Services Security X.509 Certificate Token Profile

1.1.OASIS Standard Specification, 1 February 2006. Retrieved May 2006

from http://docs.oasis-open.org/wss/v1.1/.

OASIS. (2006)
12
. Web Services Topics 1.3 (WS-Topics). OASIS Standard, 1

October 2006. Retrieved November 2006 from

http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf.

OASIS. (2006)
13
. WS-Trust 1.3. Committee Draft 01, 06 September 2006.

Committee Draft01, September 06, 2006. Retrieved October 2006 from

http://docs.oasis-open.org/ws-sx/ws-trust/200512.

Pearlman, L., Welch, V., Foster, I., Kesselman, C., & Tuecke, S. (2002). A

Community Authorization Service for Group Collaboration. Proceedings

of the IEEE 3rd International Workshop on Policies for Distributed

Systems and Networks, 2002.

Pearlman, L., Welch, V., Foster, I., Kesselman, C. & Tuecke, S. (2003). The

Community Authorization Service: Status and Futures. Computing in High

Energy Physics (CHEP03), 2003.

 184

Pearson, D. (2002). Data Requirements for The Grid: Scoping Study Report.

UK DBTF working paper, presented at GGF4. Retrieved July 2006 from

http://www.cs.man.ac.uk/grid-db/.

Pyle, D. (2003). Business Modeling and Data Mining (1
st
 edition.). San

Francisco: Morgan Kaufmann.

Rajasekar, A.K., & Moore, R. W. (2001). Data and Metadata Collections for

Scientific Applications. European High Performance Computing

conference, Amsterdam, Holland.

Ramakrishnan, R., & Gehrke, J. (1998). Database Management Systems.

McGraw Hill.

Raman, V., Narang, I., Crone, C., Haas, L.,Malaika, S.,Mukai, T. (Eds.). (2003).

Services for Data Access and Data Processing on Grids. Global Grid

Forum, DAIS Working Group, GFD-I.14, February 9, 2003.

Schulte, R.W., & Natis, Y. V. (1996). Service Oriented Architecture. Gartner 12

April 1996.

Sheth, A. P., & Larson, J. A. (1990). Federated database systems for managing

distributed, heterogeneous, and autonomous databases. ACM Computing

Surveys, 22 (3).

Siebenlist, F., Welch, V., Tuecke, S., Foster, I., Nagaratnam, N., Janson, P.

(Eds.). (2002). Global Grid Forum Specification Roadmap towards a

Secure OGSA. Global Grid Forum, Draft 1.3, Revised July 19, 2002.

Smarr, L., & Catlett, C. (1992). Metacomputing. Communication of ACM, 35,

44-52.

Srinivasan, R. (1995). RPC: Remote Procedure Call Protocol Specification

Version 2. IETF, Network Working Group, RFC 1831, August 1995.

Retrieved July 2006 from http://www.ietf.org/rfc/rfc1831.txt.

Stonebraker, M., Aoki, P.M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J. (Eds.).

(1996). Mariposa: A Wide-Area Distributed Database System. VLDB

Journal 5(1), 48-63

Stonebraker, M., & Moore, D. (1996). Object-Relational DBMSs: The Next

Great Wave. Morgan Kaufmann.

 185

SUN. (2002). JDBC 3.0 Specification (Final Release). Retrieved from 20 March

2006 from http://java.sun.com/products/jdbc/.

Suzumura, T., Matsuoka, S. & Nakada, H. (2001). A Jini-based Computing

Portal System. Proceeding of Super Computing 2001 (SC ’01), Denvor,

Colorado, USA. CS Press.

Thompson, M. (Eds.). (1999). Certificate-based Access Control for Widely

Distributed Resources. Proceedings of 8th Usenix Security Symposium,

1999.

Thompson, M. R., Olson, D., Cowles, R., Mullen, S., & Helm, M. (2003).

CA-based Trust Issues for Grid Authentication and Identity Delegation.

Global Grid Forum, Grid Certificate Policy Working Group, GFD-I.17,

June 2003.

Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M., Taylor, V. (Eds.).

(2002). A Grid Monitoring Architecture. Global Grid Forum, Performance

Working Group, GFD.I.7, Revised 16-January-2002.

Tuecke, S., Czajkowski, K., Foster, I., Frey, I., Graham, S., Kesselman, C.

(Eds.). (2003). Open Grid Services Infrastructure (OGSI) Version 1.0.

Global Grid Forum, OGSI-WG. GFD-R-P.15 (Proposed

Recommendation), June 27, 2003.

Tuecke, S., Welch, V., Engert, D. & Thompson, M. (2004). Internet X.509

Public Key Infrastructure (PKI) Proxy Certificate Profile. IETF, Network

Working Group, RFC3820, June 2004. Retrieved February, 2006 from

http://www.rfc-archive.org/getrfc.php?rfc=3820.

Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L., Gross, G., de Bruijn, D.

(Eds.). (2000). AAA Authorization Framework. IETF, Network Working

Group, RFC 2904, August 2000. Retrieved February 2006 from

http://www.ietf.org/rfc/rfc2904.txt?number=2904.

VOMS Architecture v1.1. (2002). Europe Union, Data Grid Project,

Authorization Working Group, Draft May 09, 2002.

Von Reich, Jeffrin. J. (Eds.). (2004). Open Grid Services Architecture: Second

Tier Use Cases. Global Grid Forum OGSA-WG, Draft, March 2004.

W3C. (2001). XML Schema Part 0: Primer. W3C, Recommendation, 2001,

Retrieved June 2006 from http://www.w3.org/TR/xmlschema-0/.

 186

W3C. (2002)
1
. XML Encryption Syntax and Processing. W3C Recommendation

10 December 2002. Retrieved September 2006 from

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/.

W3C. (2002)
2
. XML-Signature Syntax and Processing. W3C Recommendation

12 February 2002. Retrieved September 2006 from

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

W3C. (2003). Simple Object Access Protocol (SOAP) version 1.2. W3C

Recommendation 24 June 2003. Retrieved July 2006 from

http://www.w3.org/TR/soap12.

W3C. (2004)
1
. RDF Primer. W3C Recommendation 10 February 2004.

Retrieved May 2006 from

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

W3C. (2004)
2
. Resource Description Framework (RDF) Concepts and Abstract

Syntax. W3C Recommendation 10 February 2004, Retrieved May 2006

from http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

W3C. (2004)
3
. Web Services Architecture. W3C Working Group Note 11

February 2004. Retrieved 20 January 2006 from

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

W3C. (2006)
1
. Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C

Recommendation 16 August 2006. Retrieved December 2006 from

http://www.w3.org/TR/2006/REC-xml-20060816.

W3C. (2006)
2
. Web Services Addressing 1.0 – Core. W3C Recommendation 9

May 2006. Retrieved July 2006 from

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509.

W3C. (2006)
3
. Web Services Description Language (WSDL) Version 2.0. W3C

Candidate Recommendation 27 March 2006. Retrieved July 2006 from

http://www.w3.org/TR/wsdl20/.

W3C. (2006)
4
. Web Services Policy 1.2 - Framework (WS-Policy). W3C

Member Submission 25 April 2006. Retrieved September 2006 from

http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/.

W3C. (2006)
5
. XML Path Language (XPath) 2.0. W3C Candidate

Recommendation 8 June 2006. Retrieved July 2006 from

http://www.w3.org/TR/2006/CR-xpath20-20060608/.

 187

W3C. (2006)
6
. XQuery 1.0: An XML Query Language，W3C Candidate

Recommendation 8 June 2006. Retrieved December 2006 from

http://www.w3.org/TR/2006/CR-xquery-20060608/.

Welch, V. (2005). Globus Toolkit Version 4 Grid Security Infrastructure: A

Standards Perspective. Globus Alliance, Globus Security Team, Version

4 updated September 12, 2005.

Welch, V., Barton, T., Keahey, K., & Siebenlist, F. (2005). Attributes,

Anonymity, and Access: Shibboleth and Globus Integration to Facilitate

Grid Collaboration. In 4th Annual PKI R&D Workshop, April 2005.

Welch, V., Foster, I., Kesselman, C., Mulmo, O., Pearlman, L., Tuecke, S.

(Eds.). (2004). X.509 Proxy Certificates for Dynamic Delegation. 3rd

Annual PKI R&D Workshop, 2004.

Welch, V., Siebenlist, F., Foster, I., Brresnahan, J., Czajkowski, K., Gawor, J.

(Eds.). (2003). Security for Grid Services. Twelfth International

Symposium on High Performance Distributed Computing (HPDC-12),

June 2003.

Westphal, C., & Blaxton, T. (1998). Data Mining Solutions: Methods and Tools

for Solving Real-World Problems. Wiley.

Whiteman, M. E., & Mattord, H. J. (2003). Principles of Information Security.

Thomson.

Wooldridge, M. (1997). Agent-based software engineering. IEE Proc. Software

Engineering, 144, 26-37.

