1,278 research outputs found

    Investigations into implementation of an iterative feedback tuning algorithm into microcontroller

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 73-75).Implementation of an Iterative Feedback Tuning (IFT) and Myopic Unfalsified Control (MUC) Algorithm into microcontroller is investigated in this dissertation. Motivation in carrying out this research emanates from successful results obtained in application of IFT algorithm to various physical systems since the method was originated in 1995 by Hjalmarsson [4]. The Motorola DSP56F807C microcontroller is selected for use in the investigations due to its matching characteristics with the requirements of IFT algorithm. Speed of program execution, large memory, in-built ADC & DAC and C compiler type are the key parameters qualifying for its usage. The Analog Devices ARM7024 microcontroller was chosen as an alternative to the DSP56F807C where it is not available. Myopic Unfalsified Control (MUC) is noted to be similar to IFT since it also employs ‘myopic’ gradient based steepest descent approach to parameter optimization. It is easier to implement in that its algorithm is not as complex as the IFT one, meaning that successful implementation of IFT algorithm in a microcontroller would obviously permit the implementation of MUC into microcontroller as well

    Design of a dedicated IFT microcontroller

    Get PDF
    The design of a Dedicated IFT Microcontroller originated from the successful implementation of the Iterative Feedback Tuning (IFT) technique into the Digital Signal Processor microcontroller (DSP56F807C) at the University of Cape Town in 2006. However, implementation of the IFT technique on a general-purpose microcontroller is neither optimal, nor a cost-effective exercise, as most of the microcontroller peripherals remain unused, and drain energy for doing nothing. In addition, microcontrollers and DSPs are software-driven devices whose nature is sequential in executing algorithms, and hence have a significant effect on the bandwidth of the closed-loop control. To mitigate the said problem, the design of a Dedicated IFT Microcontroller is proposed in this thesis. To accomplish this goal, the preliminary task was to explore the IFT theory and its applications, followed by a review of the literature on FPGA design methodology for industrial control systems, Microcontroller design principles, and FPGA theory and trends. Furthermore, a survey of electronic design automation (EDA) tools and other application software was also conducted. After the literature review, the IFT was investigated exhaustively by applying it to three types of plants, namely: a DC motor, an oscillatory plant, and an unstable plant. Each of these plants were tested using three types of initial controllers, namely heavilydamped, critically damped and under-damped initial controllers. The plants were also tested by varying the amplitude of the reference signal, followed by using a single-step signal of constant amplitude of one volt. The intention of exploring all of these possibilities was meant to firmly expose the IFT boundaries of applicability, so that the final product would not be vulnerable to unnecessary post-production discoveries. The design methodology adopted in this research was a popular hierarchical and modular top-down procedure, which is an array of abstraction levels that are detailed as: system level, behavioural level, Register-Transfer Level (RTL) and Gate level. At system level, the Dedicated IFT Microcontroller was defined. Thereafter, at behavioural level, the design was simulated using VHDL, created by porting the LabView IFT code to the Xilinx EDA tool. At the RTL, the synthesisable VHDL code utilising fixed-point number representation was written. The compiled bit file was downloaded onto National Instruments (NI) Digital Electronics FPGA Board featuring iii the Spartan 3 series FPGA. This was tested, using a method known as simulation in the hardware. The key contribution of this thesis is the experimental validation of the IFT technique on FPGA hardware as it has never been published before, the work described in chapter four and five. The other contribution is the analysis of 1DOF IFT technique in terms of limitations of applicability for correct implementation, which is the main work of chapter three. This work could be used to explore other computational methods, like the use of floating-point number representation for high resolution and accuracy in numerical computations. Another avenue that could be exploited is Xilinx's recent Vivado methodology, which has the capacity for traditional programming languages like C or C++, as these have in-built floating-point number capability. Finally, out of this work, two papers have already been published by Springer and IEEE Xplore Publishers, and a journal paper has also been written for publication in the Control Systems Technology journal

    Saturable absorption measurement of platinum as saturable absorber by using twin detector method based on mode-locked fiber laser

    Get PDF
    This paper illustrates the absorption measurement of Pt as saturable absorber (SA) by using mode-locked fiber laser system. The SA is fabricated by depositing 10 nm of Pt on the fiber ferrules using sputtering method. The absorption measurement of Pt is characterised by employing a balanced twin detector method based on mode-locked fiber laser with central wavelength of 1532.25 nm, repetition rate of 2.833 MHz and pulse duration of 34.3 ns. The Pt-SA produce modulation depth of 21.9% and saturation intensity of 21.6 MW cm-2

    Design and Develop a Non-Invasive Pulmonary Vibration Device for Secretion Drainage in Pediatric Patients with Pneumonia

    Get PDF
    The study aimed to develop a non-invasive pulmonary vibration device, specifically tailored for pediatric patients, to address a range of pulmonary conditions. The device employs a PID control system to ensure consistent and precise vibrations. The primary contribution of this research is the successful development, testing, and implementation of this innovative device. Utilizing technical components such as an Arduino, a vibration DC motor, and an ADXL335 accelerometer, the device was engineered to deliver stable and continuous vibrations even when subjected to external pressures or interactions with the patient. Controllers, including P, PI, PD, and PID types, were rigorously compared. The Ziegler-Nichols tuning technique was applied for meticulous evaluation of vibration control specifically within the context of this non-invasive pulmonary vibration device. Our findings revealed that the PID controller displayed superior accuracy in vibration control compared to P, PI, and PD controllers. Clinical trials involving pediatric patients showed that the PID-controlled device achieved treatment outcomes comparable to conventional methods. The device's precise control of vibration strength provides an added benefit, making it a well-tolerated, non-invasive treatment option for various pulmonary conditions in pediatric patients. Future research is necessary to assess the long-term effectiveness of the device and to facilitate its integration into standard clinical practice. In summary, this study represents a significant advancement in pediatric pulmonary care, demonstrating the critical role that PID control systems adapted for non-invasive pulmonary vibration devices can play in enhancing treatment precision and outcomes

    CONTROL STRATEGY OF MULTIROTOR PLATFORM UNDER NOMINAL AND FAULT CONDITIONS USING A DUAL-LOOP CONTROL SCHEME USED FOR EARTH-BASED SPACECRAFT CONTROL TESTING

    Get PDF
    Over the last decade, autonomous Unmanned Aerial Vehicles (UAVs) have seen increased usage in industrial, defense, research, and academic applications. Specific attention is given to multirotor platforms due to their high maneuverability, utility, and accessibility. As such, multirotors are often utilized in a variety of operating conditions such as populated areas, hazardous environments, inclement weather, etc. In this study, the effectiveness of multirotor platforms, specifically quadrotors, to behave as Earth-based satellite test platforms is discussed. Additionally, due to concerns over system operations under such circumstances, it becomes critical that multirotors are capable of operation despite experiencing undesired conditions and collisions which make the platform susceptible to on-board hardware faults. Without countermeasures to account for such faults, specifically actuator faults, a multirotors will experience catastrophic failure. In this thesis, a control strategy for a quadrotor under nominal and fault conditions is proposed. The process of defining the quadrotor dynamic model is discussed in detail. A dual-loop SMC/PID control scheme is proposed to control the attitude and position states of the nominal system. Actuator faults on-board the quadrotor are interpreted as motor performance losses, specifically loss in rotor speeds. To control a faulty system, an additive control scheme is implemented in conjunction with the nominal scheme. The quadrotor platform is developed via analysis of the various subcomponents. In addition, various physical parameters of the quadrotor are determined experimentally. Simulated and experimental testing showed promising results, and provide encouragement for further refinement in the future

    Doubly-fed induction generator used in wind energy

    Get PDF
    Wound-rotor induction generator has numerous advantages in wind power generation over other generators. One scheme for wound-rotor induction generator is realized when a converter cascade is used between the slip-ring terminals and the utility grid to control the rotor power. This configuration is called the doubly-fed induction generator (DFIG). In this work, a novel induction machine model is developed. This model includes the saturation in the main and leakage flux paths. It shows that the model which considers the saturation effects gives more realistic results. A new technique, which was developed for synchronous machines, was applied to experimentally measure the stator and rotor leakage inductance saturation characteristics on the induction machine. A vector control scheme is developed to control the rotor side voltage-source converter. Vector control allows decoupled or independent control of both active and reactive power of DFIG. These techniques are based on the theory of controlling the B- and q- axes components of voltage or current in different reference frames. In this work, the stator flux oriented rotor current control, with decoupled control of active and reactive power, is adopted. This scheme allows the independent control of the generated active and reactive power as well as the rotor speed to track the maximum wind power point. Conventionally, the controller type used in vector controllers is of the PI type with a fixed proportional and integral gain. In this work, different intelligent schemes by which the controller can change its behavior are proposed. The first scheme is an adaptive gain scheduler which utilizes different characteristics to generate the variation in the proportional and the integral gains. The second scheme is a fuzzy logic gain scheduler and the third is a neuro-fuzzy controller. The transient responses using the above mentioned schemes are compared analytically and experimentally. It has been found that although the fuzzy logic and neuro-fuzzy schemes are more complicated and have many parameters; this complication provides a higher degree of freedom in tuning the controller which is evident in giving much better system performance. Finally, the simulation results were experimentally verified by building the experimental setup and implementing the developed control schemes

    Model-Assisted Online Optimization of Gain-Scheduled PID Control Using NSGA-II Iterative Genetic Algorithm

    Get PDF
    In the practical control of nonlinear valve systems, PID control, as a model-free method, continues to play a crucial role thanks to its simple structure and performance-oriented tuning process. To improve the control performance, advanced gain-scheduling methods are used to schedule the PID control gains based on the operating conditions and/or tracking error. However, determining the scheduled gain is a major challenge, as PID control gains need to be determined at each operating condition. In this paper, a model-assisted online optimization method is proposed based on the modified Non-Dominated Sorting Genetic Algorithms-II (NSGA-II) to obtain the optimal gain-scheduled PID controller. Model-assisted offline optimization through computer-in-the-loop simulation provides the initial scheduled gains for an online algorithm, which then uses the iterative NSGA-II algorithm to automatically schedule and tune PID gains by online searching of the parameter space. As a summary, the proposed approach presents a PID controller optimized through both model-assisted learning based on prior model knowledge and model-free online learning. The proposed approach is demonstrated in the case of a nonlinear valve system able to obtain optimal PID control gains with a given scheduled gain structure. The performance improvement of the optimized gain-scheduled PID control is demonstrated by comparing it with fixed-gain controllers under multiple operating conditions

    Development of a serial powering scheme and a versatile characterization system for the ATLAS pixel detector upgrade

    Get PDF
    In order to increase the probability of new discoveries the LHC will be upgraded to the HL-LHC. The upgrade of the ATLAS detector is an essential part of this program. The entire ATLAS tracking system will be replaced by an all-silicon detector called Inner Tracker (ITk) which should be able to withstand the increased luminosity. The work presented in this thesis is focused on the ATLAS ITk pixel detector upgrade. Advanced silicon pixel detectors will be an essential part of the ITk pixel detector where they will be used for tracking and vertexing. Characterization of the pixel detectors is one of the required tasks for a successful ATLAS tracker upgrade. Therefore, the work presented in this thesis includes the development of a versatile and modular test system for advanced silicon pixel detectors for the HL-LHC. The performance of the system is verified. Single and quad FE-I4 modules functionalities are characterized with the developed system. The reduction of the material budget of the ATLAS ITk pixel detector is essential for a successful operation at high luminosity. Therefore, a low mass, efficient power distribution scheme to power detector modules (serial powering scheme) is investigated as well in the framework of this thesis. A serially powered pixel detector prototype is built with all the components that are needed for current distribution, data transmission, sensor biasing, bypassing and redundancy in order to prove the feasibility of implementing the serial powering scheme in the ITk. Detailed investigations of the electrical performance of the detector prototype equipped with FE-I4 quad modules are made with the help of the developed readout system

    Control of Flow Rate in Pipeline Using PID Controller

    Get PDF
    In this paper a PID controller is utilized in order to control the flow rate of the heavy-oil in pipelines by controlling the vibration in motor-pump. A torsional actuator is placed on the motor-pump in order to control the vibration on motor and consequently controlling the flow rates in pipelines. The necessary conditions for asymptotic stability of the proposed controller is validated by implementing the Lyapunov stability theorem. The theoretical concepts are validated utilizing numerical simulations and analysis, which proves the effectiveness of the PID controller in the control of flow rates in pipelines
    • …
    corecore