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Abstract: In the practical control of nonlinear valve systems, PID control, as a model-free method,
continues to play a crucial role thanks to its simple structure and performance-oriented tuning pro-
cess. To improve the control performance, advanced gain-scheduling methods are used to schedule
the PID control gains based on the operating conditions and/or tracking error. However, determin-
ing the scheduled gain is a major challenge, as PID control gains need to be determined at each
operating condition. In this paper, a model-assisted online optimization method is proposed based
on the modified Non-Dominated Sorting Genetic Algorithms-II (NSGA-II) to obtain the optimal
gain-scheduled PID controller. Model-assisted offline optimization through computer-in-the-loop
simulation provides the initial scheduled gains for an online algorithm, which then uses the itera-
tive NSGA-II algorithm to automatically schedule and tune PID gains by online searching of the
parameter space. As a summary, the proposed approach presents a PID controller optimized through
both model-assisted learning based on prior model knowledge and model-free online learning. The
proposed approach is demonstrated in the case of a nonlinear valve system able to obtain optimal
PID control gains with a given scheduled gain structure. The performance improvement of the
optimized gain-scheduled PID control is demonstrated by comparing it with fixed-gain controllers
under multiple operating conditions.

Keywords: PID control; genetic algorithm; nonlinear system; gain scheduling; EGR valve

1. Introduction

For many valve actuation systems, designing a closed-loop valve position control
system is challenging due to its nonlinear frictions, especially for valves that must operate
in high temperature environments, such as exhaust gas recirculation (EGR) valves. One
approach is to apply advanced model-based control strategies (for example, sliding mode
control [1], linear parameter-varying control [2–4], etc.) to deal with valve system nonlin-
earity. However, it is difficult to obtain an accurate nonlinear friction model. Thus, the
advanced model-based control approach usually requires long development cycles and
tremendous modeling efforts by experienced engineers [5,6]. Moreover, such advanced
model-based controllers are often difficult to tune, validate, and implement. On the other
hand, classical proportional-integral-derivative (PID) control continues to dominate in
valve system control due to its advantages of simplicity and easy tuning/calibration.

System nonlinearity with varying operating conditions is one of main challenges
in PID controller tuning. For example, test results show that a well-calibrated PID EGR
valve controller can have a small steady-state error under multiple operational conditions;
however, under small valve opening conditions, the relative steady-state error of the valve
can increase significantly [5]. The main reason for this is that PID controllers are driven
by the position error. Under small opening conditions, the control signal generated by a
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fixed-gain PID might not be large enough to overcome the high static friction force. To
improve PID controller performance, gain-scheduled PID control has been developed with
different scheduling strategies [7–9], which allows the PID control law to be adapted for
systems that experience nonlinear dynamics. However, optimizing the scheduled PID gains
to obtain the best performance is challenging. The classical tuning method combines the
Ziegler–Nichols [10] method and manual tuning in a heuristic method, making it difficult
to achieve optimality, especially for nonlinear dynamic systems with gain-scheduled PID
controllers. More advanced optimal design methods for PID control have been developed,
including nonlinear PID [11–16], fuzzy PID [17–21], etc.

This paper investigates how to automatically search and tune scheduled PID gains
by utilizing system model knowledge and online data to optimize the closed-loop system
performance of a nonlinear valve.

Genetic algorithms (GA) [22,23] can be used to solve the optimization problem of con-
trol gain tuning, especially for highly nonlinear systems, based on biological principles of
natural selection and regeneration. Although GA search (optimization) does not guarantee
achieving the global optimal solution in theory, it conducts a model-free search over a large
parameter space. For the traditional single-objective genetic algorithm, there is only one
predefined objective function to be optimized. However, to evaluate closed-loop system per-
formance, performance indices such as the overshoot, settling time, and steady-state error
need to be considered simultaneously with their trade-off relationships. One method is to
combine these into a weighted sum to form a single objective optimization problem [24–26].
In this way, the obtained optimal solution is dependent on the selected weightings. With ad-
vancements in multi-objective optimization methods [27], this limitation can be overcome.
The Non-Dominated Sorting in Genetic Algorithms-II (NSGA-II) method [28] is one of the
most well-known computationally efficient multi-objective optimization algorithms. The
NSGA-II algorithm provides a Pareto-front set of solutions, allowing the decision-maker to
observe the trade-off relations among different objectives and select a solution based on the
desired performance requirements. This method improves the multi-objective optimization
process, as there is no need to select weights for multiple performance criteria (see the early
NSGA-II PID gain tuning studies [29–32] and other multi-objective optimization problems
for more details [33]).

Compared with a fixed-gain PID controller, performance improvements can be achieved
by using scheduled gains for systems with high nonlinearity. Although tuning scheduled
gains for the best performance introduces additional challenges over fixed-gain approaches,
automatic tuning methods can be developed based on the NSGA-II search algorithm.

Two common control optimization processes are shown in Figure 1, where the path
with black arrows represents traditional offline processes and the one with blue arrows
represents online processes. Based on the identified or physical system model, offline
optimization can be conducted with efficient searching in the simulation environment.
The optimal controller obtained from simulation study is then used on the test bench or
physical system, assuming that the identified (or physical) model is accurate enough to
represent the real system. However, as the modeling error can never be avoided, especially
for systems with high nonlinear friction, a PID controller obtained from offline optimization
may not provide satisfactory performance for the physical system. Although the system
modeling accuracy can be improved with increased effort, it is impossible to eliminate the
modeling error entirely. The online optimization method applies the NSGA-II algorithm
directly during bench tests (see the red arrow in Figure 1). To proceed with an intense
search, a large population size with many generations is necessary, resulting in a massive
number of test points. However, unlike simulation design, online global search is usually
computationally infeasible due to the limitations of real-time microcontroller memory,
computational capability, actuator durability, etc. In this paper, a co-optimization strategy
is proposed using both offline and online information, as shown by the blue arrow in
Figure 1. First, based on the advantages of offline global search, an optimal gain-scheduled
PID controller is obtained based on adequate population size and deep generation using the
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offline model. The offline optimization result is then used as an initial condition for online
optimization using an iterative NSGA-II algorithm. The PID controller is automatically
tuned online with reduced computational cost based on the proposed iterative NSGA-II
algorithm. Thus, the proposed approach combines the comprehensiveness of offline search
and the authenticity of online search.

Figure 1. Controller design procedures categorized by offline optimization (black), online optimiza-
tion (red), and the proposed model-assisted online optimization method (blue).

In this paper, a highly nonlinear friction EGR valve system is modeled analytically
with nonlinear friction, and the scheduled PID gains are tuned based on the proposed
NSGA-II optimization algorithm using the offline optimized control gains as the initial
setting. The closed-loop system performance is then validated through simulations and
experimental studies. The main contribution of this paper is three-fold. First, an offline
model-assisted scheduled PID gain tuning method based on the NSGA-II algorithm is
proposed. Offline optimization through the simulation study provides a good initial ‘guess’
for online optimization. Second, the scheduled PID gains are optimized using the NSGA-II
algorithm with reduced scheduling parameters based on the test bench input and output
responses to make the online optimization feasible in terms of time and actuator durability
constraints. Lastly, the coordinated offline–online optimization process is implemented in a
microcontroller and the closed-loop system performance is validated by both simulations
and experimental studies.

The rest of this paper is organized as follows. In Section 2, the detailed system model is
depicted, experimentally validated, and used for offline optimization. Section 3 formulates
the optimization problem of control gain tuning with defined control gain functions, objec-
tive functions, and decision-making criteria. Section 4 provides a step-by-step summary of
the modified NSGA-II algorithm. In Section 5, the simulations and experimental setups
are introduced and optimization results are presented along with associated discussions.
Finally, Section 6 presents our conclusions and discusses future work.

2. Valve System Model

The nonlinear valve system architecture is shown in Figure 2, where the angular
displacement θ, driven by a DC motor, is converted to the linear valve displacement y
using a constrained slide rail–rod structure. Based on the valve structure in Figure 2, the
relationship between θ and y can be expressed by (1):

y = 53.19 · (1− cos(2θ))− 3.2 (1)

where θ and y are the radian degree and valve opening percentage (%), respectively. The
slide rod angular position θ = 0 is at the upright vertical position and the initial slide rod
position is at θ = 0.175 rad (10 degrees), corresponding to the fully closed valve position
(y = 0%), meaning that when the valve is fully open (y = 100%), the angle θ is 1.4 rad
(80 degrees); see the dashed-line in Figure 2.
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Figure 2. Valve architecture.

The system moment of inertia J is calculated in (2), where Jr is the total rotational
assembly moment of inertia, Jm is the equivalent moment of inertia of all the linear moving
components at angular position θ, m is the total mass of linear moving part, and r is the
length of the slide rod connection arm.

J(θ) = Jr + Jm = Jr + mr2sin2(θ) (2)

The valve dynamics can be described by (3) using Newton’s law.

Jθ̈ = Te − Ts − Tf − Tn (3)

where Te and Ts represent the electric motor output torque and spring load torque, stated
in (4) and (5), respectively; Km and Kb are the motor torque and back EMF (electromagnetic
fields) coefficients, respectively; Vc, R, and θpre represent the armature voltage, motor
winding resistance, and spring preload position, respectively; Tf is the nonlinear friction
torque; and Tn denotes the nonlinear torque created by the constraint of sliding rail–rod
structure based on (6).

Te = Kmi =
Km

R
(Vc − Kb θ̇) (4)

Ts = Ks(θ + θpre) (5)

Tn = mr2θ̇2cos(θ)sin(θ) (6)

For the prominent nonlinear friction, the Stribeck friction model [34,35] is used, which
calculates the friction force based on the relative speed between two contacted surfaces.
Based on the Stribeck friction model, the friction torque Tf can be represented by (7):

Tf (θ̇) = Tc +
Tr − Tc

1 + (θ̇/θ̇s)2
+ Kv θ̇ (7)

where Tc, Tr, and Kv are the Coulomb friction torque, static friction torque, and viscous
friction torque coefficients, respectively, and θs is the characteristic velocity.

To simplify the system identification process, the back EMF torque Tb = KmKb θ̇/R
is lumped into the term Kv θ̇ in Tf , resulting in motor torque Te = Kiu = Km/R, where u
is the control input. Note that the scaled PWM (Pulse Width Modulation) range of u has
been defined as u ∈ [−4000, 4000] based on the software interface used for system test
bench, presenting the full duty cycle range of the H-bridge output in the control unit. With
mr2 = ml , the system dynamic equation is shown in (8).

(Jr + mlsin(θ)2)θ̈ = Kiu− Ks(θ + θpre)

− (Tc +
Tr − Tc

1 + (θ̇/θ̇s)2
+ Kv θ̇)sign(θ̇)−ml θ̇

2cos(θ)sin(θ)
(8)

Model coefficient identification is challenging in nonlinear systems. Multiple tests
were conducted to isolate the effects of different parameters. First, the controller gain Ki
was obtained from valve specification data, then the spring stiffness Ks, spring preload



Appl. Sci. 2023, 13, 6444 5 of 18

θpre, and viscous friction were estimated by releasing the valve at different positions to
generate the estimated Stribeck friction curve. Iterative calibrations were obtained by
comparing the simulation and test responses to improve model accuracy. Based on the
carefully calibrated model, two free falling cases (52.5% and 20.3% opening to 0%) were
then compared using the experimental and model simulation results (Cases 1 and 2).
In addition, the experimental closed-loop step response (0% opening to 50% opening,
Case 3) using a PID controller (with gains P = 400, I = 0, and D = 0) was compared. The
responses were closely matched (see Figure 3), validating the modeling accuracy. Detailed
model parameters are shown in Table 1. The parameter units are omitted. as the system
identification has been processed as “control input to system output”.

Table 1. Model parameters of EGR valve.

Parameter Value Parameter Value

Jr 0.42 kg/m2 Kv 0.698 Nms/rad
Ki 205.3 Nm/duty cycle Ks 3.93 Nm/rad

θpre 0.873 rad θs 0.0087 rad/s
Tc 0.285 Nm Tr 57.01 Nm
ml 0.28 kg

Figure 3. Validation of the system model and its calibration.

3. Problem Formulation
3.1. Gain-Scheduling Strategy

Based on the knowledge from bench tests and NSGA-II optimization of the fixed-
gain PID controller (see the next section), the I (integration) and D (derivation) gains are
relatively small compared with the P (proportion) gain. A large I gain results in quick
windup, while a large D gain leads to high sensitivity to noise. Normally, the proportional,
integral, and derivative scheduled gains (functions) should be optimized simultaneously,
which increases the search space dimensions and results in an extremely high number of
iterations needing to converge. In this paper, we aim to find an optimization scheme that
is feasible for implementation; thus, we propose searching for the optimal scheduled PID
gains sequentially in the three steps shown in Figure 4, where e denotes the valve position
error between the reference and feedback signals.
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𝑺𝒕𝒆𝒑 𝟏 𝑺𝒕𝒆𝒑 𝟐 P 𝒆 , IP 𝒆 , I 𝑺𝒕𝒆𝒑 𝟑 P 𝒆 , I 𝒆
D(𝒆)D(𝒆)D

Figure 4. Steps in sequential search for optimal gain-scheduled PID controller.

In Step 1, the algorithm searches for the optimal scheduling proportional gain function
P(e), along with the optimal fixed I and D gains; in Step 2, the scheduling derivative gain
D(e) is optimized using the scheduling proportional gain P(e) obtained in Step 1 and the
fixed I gain; finally, in Step 3, the scheduling integral gain I(e) is optimized using the
proportional gain P(e) obtained from Step 1 and derivative gain D(e) obtained from Step 2.

Subject to the high static friction characteristics, the tracking error e of the valve
position is selected as the scheduling parameter, where high gains are expected in the
region with a small tracking error to overcome the increased friction force and reach
the final destination. Considering the computational cost, the number of variables in the
scheduled gain function should be low, even though complex scheduling functions could
improve the closed-loop system performance further. After studying multiple candidate
scheduling functions, f (e) = a/|e|b + c is selected for the gain functions of P, I, and D for
|e| ≥ 0.1, where e is the position error and a, b, and c are the calibration parameters. Note
that a saturation function is used here to avoid the gains going to infinity as |e| goes to zero;
see (9). 

f (e) =
a
|e|b

+ c ∀|e| ∈ [0.1, 100]

f (e) =
a

0.1b + c ∀|e| ∈ [0, 0.1)
(9)

Figure 5 shows the scheduled-gain function f (e) with a = 1, c = 0, and b between
0.1 and 1. It can be seen that as b increases the scheduled gain magnitude increases
significantly with a small position error, resulting in a large gain difference between small
and large e compared to a relatively small b. With the help of the a (ramp-gain) and c
(fixed-gain) parameters, the optimized scheduled gain is able to adapt to the nonlinear
system dynamics.

0 1 2 3 4 5
Position error (%)

0
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2

3

4

5

6
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8

9

10

G
ai

n

b=0.1
b=0.3
b=0.5
b=1

Saturation

Figure 5. Sample scheduled gains as a function of |e| with a range of b.

The gain-scheduled PID controller structure is shown in Figure 6, where e and u
represent the valve position error and control, respectively, while P(e), I(e), and D(e) are
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the scheduled proportional, integral, and derivative gains in the form of f (e), respectively.
In another words, the optimization aims to search for the best shape of P(e), I(e), and D(e)
in the form of f (e).

Figure 6. Structure of gain-scheduled PID controller.

3.2. Objective Function

To obtain the optimal control performance under multiple operational conditions, four
tests were designed to evaluate the proposed algorithm, as follows:

1. Case 1: Step response from close to 2% opening
2. Case 2: Step response from close to 50% opening
3. Case 3: Step response from close to 80% opening
4. Case 4: Step response from 50% to 30% opening

The ideal performance criteria are the closed-loop system settling time, overshoot,
and steady-state error, which need to be included in the objective functions. Normally,
in the single-objective optimization algorithm, the objective function can be defined as
J =

∫ ∞
0 e2(t)dt, i.e., the Integral of the Squared Error (ISE). However, for a system with

high static friction, if the single objective function were used a large overshoot could
exist in the optimized closed-loop response with minimal steady-state error. Thus, an
additional objective function related to the percentage of overshoot (PO) is added to
the objective function to form a multiple-objective optimization problem. Based on the
preceding discussion, the two objective functions are defined below in (10):

J1 =
1
k

k

∑
i=1

POi =
1
k

k

∑
i=1

|ri
peak − si|

si

J2 =
1
k

k

∑
i=1

∫ t1

0
(

ri(t)− si

si )2dt

(10)

where i represents the case number and the total number of cases is k = 4, while r(t), rpeak,
and s are the valve position, response peak, and settling time, respectively. Note that in
this case the system percentage overshoot (PO) is associated with objective J1 and both the
settling time and steady-state error are considered in J2.

4. Non-Dominated Sorting Genetic Algorithm-II

In the traditional approach, multiple-objective optimization problems can be converted
to single-objective optimization problems by predefining the weighting for each objective
function. Thus, the optimal solution depends crucially on the selected weights. In addition,
certain profitable trade-off relationships may be ignored, as a slight sacrifice of one objective
function may lead to a significant improvement in the others. Using a different approach,
the NSGA-II algorithm selects the optimal solutions on a Pareto front, which includes
multiple non-dominated solutions. The trade-off relationship between each objective can
be clearly presented, allowing the decision-maker to pick the optimal solutions based on
specific criteria. Note that there is no unique way to select the optimal individual solution
among the nondominated solution set from NSGA-II, as the performance evaluation criteria
vary with different requirements. In this work, reference point-based multiple-criteria
decision-making (MCDM) [36] is applied by considering the origin point as the reference
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point, with equal weights for objectives J1 and J2. Thus, the point on the Pareto front with
minimum distance to the origin (J1 = J2 = 0) is selected as the ultimate solution.

The detailed NSGA-II optimization method implemented in this paper is described
below, along with the parameters predefined for calibrating the PID scheduled gains;
see [28,33] for details.

1. Initialization: Letting n = 0, the initial parent population Pn is generated with size
Np. For each individual, all decision variables xi are randomly generated among the
related search space [xi

min, xi
max] with i = 1, 2, 3, . . . , Np.

2. Nondomination sorting: The resulting individual is evaluated based on the non-
domination level with the nondomination rank (rank 1 is the best level, rank 2 is the
next-best level, etc.) assigned.

3. Offspring generation: The usual binary tournament selection is applied, with binary
crossover at PC probability and DC distribution index, polynomial mutation at PM
probability, and DM distribution index for generating an offspring population Qn
with size equal to Np.

4. Combination and sorting: An extended set is generated by combining Pn and Qn
with a size of 2Np. After nondominated sorting (as stated in Step 2), selection starts
from low ranked individuals and continues to form a new population Pn+1 of size
Np until it is filled. If the rank of multiple individuals is the same and the remaining
space in Pn+1 is limited, individuals with larger crowding distance have priority in
selection; for further details on crowding distance, see [28]. Lastly, the new population
set Pn+1 is filled with the selected individuals.

5. Iteration: After updating the generation n = n + 1, Steps 2 to 4 are repeated until the
stopping criterion is satisfied.

To demonstrate the advantages of the gain-scheduled PID controller, a fixed-gain PID
controller was optimized for the high static friction model using NSGA-II. To ensure a
fair comparison, an identical search space, population, and generation size to the gain-
scheduled case were selected.

5. Iterative NSGA-II

The structure of the iterative NSGA-II algorithm is shown in Figure 7. The initial
search space is defined as the region centered on the initial solution obtained from the
offline simulation. Within a small search area, NSGA-II can find the regional optimal
Pareto front quickly with a small population size in only a few generations. However,
when looking into the distribution of the decision variables, there may be variables that
are saturated over the Pareto front on the boundary of the search space. This indicates
that the objective function costs can be further improved if the search space can be shifted
towards the boundary direction (second search space); see the blue arrow shown in Figure 7.
Following the NSGA-II search over the second search space, the solved Pareto front from
the first and second search spaces is combined and sorted to generate a new Pareto front.
Distribution evaluation is applied again to determine whether or not another search space
shift is necessary. The search is stopped when the distribution indicates that the optimal
solution has been found or the pre-defined maximum shift limit has been reached. As
a result, this iterative NSGA-II method can improve optimization performance with a
relatively small search space, making it feasible for real-time implementation. During
online bench optimization, the decision variables (PID control gains) are saturated by
predefining the search space in each iteration of NSGA-II optimization; the details are
stated in Section 7.
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Global Search Space

Result from Simulation

Initial Search Space

Optimal Solution

Figure 7. Iterative NSGA-II procedure; the search space starts with offline simulation and evolves
within the global search space to arrive at the optimal solution.

6. Offline Optimization

In this section, the optimization structure is discussed, then the step response perfor-
mance of the solved gain-scheduled PID controller is compared with the fixed-gain one.
Finally, additional disturbance tests are applied to investigate the possibility of further
improving the gain-scheduled PID controller.

6.1. Optimization Structure

To generate the baseline simulation, MATLAB R2019b software created by MathWorks
was used in East Lansing, US (see Figure A1 in Appendix A for the MATLAB Simulink
model) for the iterative NSGA-II search. The data were connected through the MATLAB
workspace, as both MATLAB and Simulink can read and write data in the MATLAB
workspace. The detailed optimal gain-scheduled PID controller search structure using
NSGA-II is described in Figure 8, where, as implemented in MATLAB, NSGA-II generates
a next generation for each iteration and updates it to the workspace. In addition, the
MATLAB–Simulink environment described above was used to evaluate the whole gen-
eration and feed the performance results back to MATLAB to obtain the next generation.

Figure 8. Simulation structure used for iterative search.

6.2. Offline Optimized Proportional Gain-Scheduled PID Controller

First, let the scheduled gain be P(e) = f (e) with fixed I and D gains and obtain
the Pareto front of the two objectives (J1 and J2) using the NSGA-II algorithm using the
parameters summarized in Table 2, where f (e) is defined in (9).

Table 2. Genetic Algorithm parameters used in Step 1.

Parameter Value Parameter Value

Np 100 arange [0, 1500]
brange [0, 20] crange [0, 1000]
Irange [0, 100] Drange [0, 100]

PC 90% DC 10
PM 30% DM 20

Generation 100
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Figure 9 shows the non-dominated solutions of both the gain-scheduled and fixed-gain
PID controllers after 100 generations. Note that the Pareto front of the gain-scheduled
PID controller is much closer to the origin, indicating improved closed-loop performance
over the fixed-gain controller. The optimal averaged step response overshoot is restricted
to 0.01% and 0.04% for scheduled and fixed-gain PID controllers, respectively, and the
optimal ISEs are 4.68% and 4.79%. In addition, the widely distributed results from the
gain-scheduled PID controller indicate that it provides more multifarious controller options
for decision-makers based on different system performance requirements. For example, if a
fast settling time with a minimal steady-state error is much more crucial than minimizing
the overshoot, the solution at the lower right corner of the Pareto front can be selected to
satisfy these requirements.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Overshoot

0.046

0.048

0.05

0.052

0.054

0.056

0.058

IS
E

Pareto Front of P Gain Scheduling PID Controller (Step 1)
Optimal Result of P Gain scheduling PID Controller (Step 1)
Pareto Front of Fixed Gain PID Controller
Optimal Result of Fixed Gain PID Controller

Figure 9. Pareto fronts of scheduled P and fixed P gain controllers.

Optimization solutions for both the scheduled and fixed P gain PID controllers, with I
and D gains fixed in both cases, are summarized in Table 3, with both controllers selected
based on the multiple-criteria decision-making method. In this case, considering equivalent
significance of both the system overshoot J1 and ISE J2, the point (J1, J2) with minimal
distance to the origin is selected as the optimal result. With the scheduled P gain PID
controller, the objective functions J1 (overshoot) and J2 (ISE) are minimized to 0.0110
and 0.0473, compared with 0.0428 and 0.0479 for the fixed-gain case, representing an
improvement of 74% and 1.3%, respectively.

Table 3. Optimal controller parameters for Step 1.

Gain-Scheduled PID Controller

a 1466 b 0.4937 c 916.17
I 57.098 D 11.13

PID Controller

P 2494.7 I 32.0724 D 9.7691

6.3. Offline Optimized PID Gain-Scheduled Controller

In Step 2, based on the proportional gain function f (e) from Step 1, the initial scheduled
derivative gain function D is selected as D(e) = 11.13 f (e) and optimized following the
same process as Step 1 to obtain coefficients a, b, and c, with the scheduled gain P from
Step 1 and the integral gain I fixed. The optimization parameters are shown in Table 4.

In Step 3, the initial scheduled integral gain I is in the form I(e) = 57.098 f (e), and is
optimized in Step 3 using the gain-scheduled P and I from Steps 1 and 2, respectively. The
optimization parameters are shown in Table 5.
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Table 4. Genetic Algorithm parameters used in Step 2.

Parameter Value Parameter Value

Np 100 arange [0, 2]
brange [0, 3] crange [0, 2]

PC 90% DC 10
PM 30% DM 20

Generation 100

Table 5. Genetic Algorithm parameters used in Step 3.

Parameter Value Parameter Value

Np 100 arange [0, 2]
brange [0, 3] crange [0, 2]

PC 90% DC 10
PM 30% DM 20

Generation 100

The solution of the optimal gain-scheduled PID controller is shown in Equation (11),
with the associated evolution of Pareto front for each step shown in Figure 10. Note that
part of the Pareto front in Step 1 is outside the plot.

With the scheduled optimal derivative gain obtained in Step 2, both objective functions
J1 (overshoot) and J2 (ISE) have been improved to from 0.0110 and 0.0473 to 0.0039 and
0.0470, representing an improvement of 64.5% and 0.6%, respectively. Finally, after Step 3,
J1 and J2 are optimized to 0.0025 and 0.0470, a 35.9% and 0% improvement, respectively,
over Step 2. To investigate the optimality, the scheduled function of the proportional gain P
is re-optimized using the scheduled D and I gains from Steps 2 and 3, with the optimized
result showing only a negligible improvement. Because the offline optimized (initial)
gain-scheduled PID controller is intended to be further optimized online, the optimization
results from Step 3 are sufficient.

P(e) =
1466

abs(e)0.4937 + 916.17

I(e) = 57.098(
1.3763

abs(e)0.717 + 0.098)

D(e) = 11.13(
0.066

abs(e)1.00 + 0.785)

(11)

0 0.01 0.02 0.03 0.04 0.05
Overshoot

0.0464

0.0466

0.0468

0.047

0.0472

0.0474

0.0476

0.0478

0.048

IS
E

Pareto Front of Step 1
Optimal Result of Step 1
Pareto Front of Step 2
Optimal Result of Step 2
Pareto Front of Step 3
Optimal Result of Step 3

Figure 10. Pareto fronts of the gain-scheduled PID controller.
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The step responses of the initial optimal controller are shown in Figure 11, with the
associated performance improvements summarized in Table 6; the case numbers refer to
these described in Section 3.2, while the notations G-S and F-G denote the gain-scheduled
(G-S) and fixed-gain (F-G) PID controllers, respectively.

Figure 11. Step responses of optimized initial controller.

Table 6. Offline optimized controller performance summary.

Case Number Case 1 Case 2

Controller Type G-S F-G G-S F-G
2% Settling Time N/A N/A 58.5 ms 55.3 ms

Steady State Error 3.8% 8.2% 0.1% 0.34%
Overshoot 0% 0% 0% 1%

Case Number Case 3 Case 4

Controller Type G-S F-G G-S F-G
2% Settling Time 79 ms 75.5 ms 29.5 ms 34.7 ms

Steady State Error 0.06% 0.19% 0.45% 0.9%
Overshoot 0% 1.04% 1.3% 3.35%

Compared with the fixed-gain PID controller, the J1 (Overshoot) and J2 (ISE) are
optimized to 0.0025 and 0.0470, which represents an improvement of 94.2% and 1.9%,
respectively. In the detailed cases, regarding the steady-state error, both controllers handle
it well in Cases 2, 3, and 4, with all of them being below 1%. Note that for an EGR valve
it is desirable to have no overshoot; however, for the small opening case (Case 1), the
fixed-gain PID controller has an 8.2% overshoot, compared with 3.8% for the optimal initial
gain-scheduled PID controller. In order to find the root cause of this result, a detailed
comparison is shown in Figure 12.

The control inputs of both the gain-scheduled and fixed-gain controllers are shown in
the middle plot of Figure 12, with their associated responses shown in the upper plot. With
a large fixed proportional gain, the fixed-gain PID controller provides a fast response at the
beginning; however, when the valve closes to its setpoint, the response slows down more
quickly than that of the gain-scheduled controller, leading to a larger steady-state error for
the fixed-gain controller. Note that the gain-scheduled controller increases the control gain
significantly within the small error region to fight the static friction. Based on the control
effort, although the fixed-gain PID controller has a fairly large P gain, it is not large enough
to overcome the static friction when the valve is closed to its setpoint. On the other hand,
the gain-scheduled PID controller increases the proportional gain significantly when the
valve is close to its setpoint in order to overcome the large static friction; see the bottom
plot in Figure 12.
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Figure 12. Step responses with 2% valve opening.

7. Online Optimization and Experimental Validation
7.1. Test Bench Setup

The proposed online optimization bench setup is shown in Figure 13. An Arduino
MKR 1000 board was used as the real-time controller along with an MKR 1000 Motor
Carrier board for driving the DC motor on the EGR valve. Note that the MKR board is
mainly used to sample the position sensor signal and output the motor control signal to
the Motor Drive board. The host computer for the control strategy calculations used an
Intel Core i5-7200 CPU. The NSGA-II algorithm was implemented into MATLAB using the
same structure as the offline simulation one depicted Figure 8, with the right side of the
Matlab/Simulink model in Figure 8 replaced by real-world hardware, including the EGR
valve and Arduino MKR 1000 Motor Carrier board. The Arduino board is programmable
through the MATLAB–Simulink interface, which allowed us to process new generation
variables and test results between the host computer and test bench. The Arduino MKR
1000 board was used as the real-time controller along with the MKR 1000 Motor Carrier
board for driving the DC motor on the EGR valve; see “Control and Drive Board” in
Figure 13. For each generation, all the population members carrying the control parameter
set were compiled within the controller in sequence, with the position feedback signal
sampled from the valve position sensor to the board and saved in the host computer
for the next iteration. Unlike the simulation study, during each bench test the NSGA-II
program in MATLAB did not wait for the bench test to finish and send the result back for
evaluation. Thus, a pause was added in the NSGA-II program after the scheduled gains
were compiled in the controller, allowing the performance test to be completed before
starting the next evaluation.

H−bridge

Figure 13. Online NSGA-II optimization test bench setup.
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7.2. Problem Formulation of EGR Valve PID Controller Tuning

In the offline model-based optimization, the optimal gain-scheduled function is solved
by searching the three variables defined in (9). For the online optimization, the original
problem formulation stated in Section 3 is too complex to use, as it could lead to large
population sizes and a large number of generations due to the larger number of decision
variables. In addition, the shape variation of the gain-scheduled function could bring
additional complexity in the NSGA-II iterative strategy due to physical system noise and
nonlinearity. As a result, the optimization problem is simplified with the structure shown
in Figure 14, where ∗ denotes the multiplication sign, P(e), I(e), and D(e) are the solved
optimal initial gain-scheduled functions from the offline optimization, e and u are the
position error and control output, respectively, and the scaling parameters Gp, Gi, and Gd
represent the decision variables used for the online NSGA-II search associated with the
P(e), I(e), and D(e) terms. In other words, the shape of the gain-scheduled function is
fixed during the online optimization using only changes in magnitude.

Figure 14. Decision variables for online NSGA-II optimization bench test.

7.3. Online Optimization

First, the step responses of the simulation and experimental studies are shown in
Figure 15; it can be seen that the initial and intermediate responses of the experimental
result closely match the simulated ones, as the system model is relatively accurate. However,
the simulated and experimental responses deviate when the valve approaches the setpoint.
Although a well-calibrated Stribeck friction curve can be used to describe the nonlinearity
of friction at low valve velocity, a modeling error remains, leading to the degradation
of control performance. Therefore, it was necessary to conduct an online optimization
study based on the offline optimized controller to further improve the closed-loop system
performance. By analyzing the offline simulation results, it was found that as long as the
optimal scheduled gain function is obtained, the optimal gain-scheduled PID controller
can be used under different operational conditions. Therefore, to reduce computational
cost and the required number of experiments, the 0 to 50 percent opening case was selected
for online optimization.

Using the binary crossover probability and distribution index at Pc and Dc with the
polynomial mutation probability and distribution index at Pm and Dm from the simulation
study, the parameters for the online optimization study are listed in Table 7. Benefiting
from the iterative search structure, the initial search space of Gp, Gi, and Gd can be defined
in a relatively small range ([0.99, 1.01] here). By evaluating the results of the first search,
certain saturations can be observed for Gp, Gi, and Gd near the Pareto front, which leads
to search space migration in the second iteration. As can be seen from Figure 16, after
migrating the search space, the overall performance of both the whole population and
Pareto-front population in the second iteration (the orange dots) are improved over the first
iteration (the blue dots). Finally, the yellow circled point is selected as the optimal solution,
as it has a minimal distance to the origin and results in improved online optimization of
the control performance (see Figure 17). In summary, a comparison of the offline fixed gain
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(F-G), offline gain scheduling (G-S), and online optimized (O-G-S) PID controller is shown
in Table 8.

Figure 15. Step responses using offline optimized controller.

Table 7. Details of online optimization using iterative NSGA-II.

Parameter Value Parameter Value

First Iteration

Np 60 Generation 20
Range of Gp [0.99, 1.01] sat observed? upper bound
Range of Gi [0.99, 1.01] sat observed? upper bound
Range of Gd [0.99, 1.01] sat observed? lower bound

Second Iteration

Np 60 Generation 20
Range of Gp [1, 1.02] sat observed? not obvious
Range of Gi [1, 1.02] sat observed? not obvious
Range of Gd [0.98, 1] sat observed? not obvious

Table 8. Summary of controller performance with 50% valve opening step response.

Controller Type F-G G-S O-G-S

2% Settling Time 70.1 ms 68.7 ms 62.7 ms
Steady State Error 0.3% 0.2 % 0.2%

Overshoot 0.007% 0.007% 0.007%

0 0.01 0.02 0.03 0.04 0.05 0.06
Overshoot

0.395

0.4

0.405

0.41

0.415

0.42

0.425

IS
E

Solution of First Iteration
Solution of Second Iteration
Optimal Solution

Figure 16. Result points of online NSGA-II optimization.
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Figure 17. Step responses of offline−online co−optimized controller.

8. Conclusions and Future Work

In this paper, we have presented an offline model-assisted online optimization method
to automatically tune the gain-scheduled PID gains for an exhaust gas recirculation (EGR)
valve with large nonlinear friction. The optimized gain-scheduled PID controller can
adaptively compensate for the increased friction force in low-velocity regions. In the
optimization problem, two objective functions are proposed to consider commonly used
performance indices such as the settling time, overshoot, and steady-state error. The
NSGA-II optimization results can provide decision-makers with a Pareto front that clearly
shows the trade-offs. The optimal initial gain-scheduled functions are obtained using the
multi-objective NSGA-II algorithm, eliminating the process of manually tuning control
gains. Next, the proposed online iterative NSGA-II optimization approach is used to further
optimize the closed-loop system performance, significantly reducing the need for bench
tests. Our experimental results show that the proposed automatically tuned optimal
gain-scheduled PID controller has better overall performance than a fixed-gain controller.

In future work, the proposed algorithm based on offline and online co-optimization
can be extended to optimize advanced controllers, such as model predictive control and
learning-based control. Although this paper provides a meaningful attempt to combine
prior model knowledge with black-box online learning, it is interesting and worthwhile to
develop analytical tools to study the resulting system’s robustness and optimality. Earlier
work on model-based control can provide useful insights in this direction [37]. Of particular
interest, constraints on states and control inputs as well as learning-based control can be
further included in the proposed algorithm to enable computationally efficient tuning
of online-learning control. In addition, comparison studies with other data-driven PID
automatic tuning algorithms, such as the Monte Carlo method, are meaningful and will be
part of our future work.
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Appendix A. Simulink Model

See Figure A1 for the Simulink offline NSGA-II model.

Figure A1. MATLAB−Simulink Program used for offline NSGA-II optimization.
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