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SUMMARY 

The design of a Dedicated IFT Microcontroller originated from the successful 

implementation of the Iterative Feedback Tuning (IFT) technique into the Digital Signal 

Processor microcontroller (DSP56F807C) at the University of Cape Town in 2006. 

However, implementation of the IFT technique on a general-purpose microcontroller 

is neither optimal, nor a cost-effective exercise, as most of the microcontroller 

peripherals remain unused, and drain energy for doing nothing. In addition, 

microcontrollers and DSPs are software-driven devices whose nature is sequential in 

executing algorithms, and hence have a significant effect on the bandwidth of the 

closed-loop control. To mitigate the said problem, the design of a Dedicated IFT 

Microcontroller is proposed in this thesis. To accomplish this goal, the preliminary task 

was to explore the IFT theory and its applications, followed by a review of the literature 

on FPGA design methodology for industrial control systems, Microcontroller design 

principles, and FPGA theory and trends. Furthermore, a survey of electronic design 

automation (EDA) tools and other application software was also conducted.  

After the literature review, the IFT was investigated exhaustively by applying it to three 

types of plants, namely: a DC motor, an oscillatory plant, and an unstable plant. Each 

of these plants were tested using three types of initial controllers, namely heavily-

damped, critically damped and under-damped initial controllers. The plants were also 

tested by varying the amplitude of the reference signal, followed by using a single-step 

signal of constant amplitude of one volt. The intention of exploring all of these 

possibilities was meant to firmly expose the IFT boundaries of applicability, so that the 

final product would not be vulnerable to unnecessary post-production discoveries.  

The design methodology adopted in this research was a popular hierarchical and 

modular top-down procedure, which is an array of abstraction levels that are detailed 

as: system level, behavioural level, Register-Transfer Level (RTL) and Gate level. At 

system level, the Dedicated IFT Microcontroller was defined. Thereafter, at 

behavioural level, the design was simulated using VHDL, created by porting the 

LabView IFT code to the Xilinx EDA tool. At the RTL, the synthesisable VHDL code 

utilising fixed-point number representation was written. The compiled bit file was 

downloaded onto National Instruments (NI) Digital Electronics FPGA Board featuring 
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the Spartan 3 series FPGA. This was tested, using a method known as simulation in 

the hardware. 

The key contribution of this thesis is the experimental validation of the IFT technique 

on FPGA hardware as it has never been published before, the work described in 

chapter four and five. The other contribution is the analysis of 1DOF IFT technique in 

terms of limitations of applicability for correct implementation, which is the main work 

of chapter three. 

This work could be used to explore other computational methods, like the use of 

floating-point number representation for high resolution and accuracy in numerical 

computations. Another avenue that could be exploited is Xilinx's recent Vivado 

methodology, which has the capacity for traditional programming languages like C or 

C++, as these have in-built floating-point number capability. 

Finally, out of this work, two papers have already been published by Springer and 

IEEE Xplore Publishers, and a journal paper has also been written for publication in 

the Control Systems Technology journal.  
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CHAPTER ONE 

RESEARCH PROPOSAL 

 

1.1 INTRODUCTION 

The design of a Dedicated IFT Microcontroller was conceived as the result of the 

successful implementation of the Iterative Feedback Tuning (IFT) technique into the 

Digital Signal Processor microcontroller (DSP56F807C) at the University of Cape Town 

in 2006. However, the implementation of the IFT technique on a general-purpose 

microcontroller is not optimal, nor a cost-effective exercise, as most of the microcontroller 

peripherals remain unused, meaning that such extra hardware is a cost in energy. 

Microcontrollers and DSPs are software-driven devices whose nature is sequential in 

executing algorithms, and hence have a significant effect on the bandwidth of the closed 

loop control. These problems can be mitigated by developing a dedicated or hard-wired 

IFT Microcontroller that contains only necessary peripherals, and having the hardware 

IFT execute in parallel. To realise this, the IFT Microcontroller was developed on a Field 

Programmable Gate Array (FPGA). This concept would not only resolve the above 

mentioned problems, but also improve performance (in terms of power consumption and 

execution speed).  

1.2 MOTIVATION OF THE RESEARCH 

A vast number of IFT applications currently existing or described in [1] and other 

literatures, is one of the motivating factors that triggered this research. For example: 

tuning of PID controller parameters [2, 3, 4, 7], application to Zang sugar cane process 

plant [5], application to non-linear systems [6], application to model-free design with 

guaranteed stability [8], application to DC-servo with backlash [9], application in design 

of robust controllers [9], to mention a few.  The IFT technique is one of the most recent 

methods that can mitigate the above-mentioned problems efficiently, but no stand-alone 

hardware or commercial product exists that can implement IFT technique.   
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Finally, due to rapid progress in very large-scale integration (VLSI) technology and 

electronic design automation (EDA) techniques in recent years, an opportunity for the 

development of complex and high-performance controllers for industrial electronic 

systems has been created. Nowadays, the design engineer is using modern EDA tools 

to design, simulate, and verify a design before committing to hardware [12].  

The development of a Dedicated IFT Microcontroller at the level of an integrated circuit 

(IC) is important, as this can lead to commercialisation of the IFT technique or 

development of industrial product with compactness, and excellent control performance 

at reduced cost.  

1.3 PROBLEM STATEMENT 

Problems resulting from modelled and external uncertainty always deteriorate the control 

performance of proportional-integral-differential (PID) controllers that are widely used in 

industrial control. In the absence of self-tuning, the fixed PID parameters can hardly adapt 

to uncertainty or time-varying systems [13]. In addition to this, there is a particular case 

of industrial interest in which tuning of a proportional-integral (PI) or PID controller needs 

to be adaptive since classical approaches contain a number of fundamental problems [1], 

such as: 

• the amount of offline tuning required; 

• the assumption on the plant structure; 

• the issue of system stability; and 

• the difficulties in dealing with nonlinear, large time-delayed and time-variant plants. 

Hence, the main objective of this thesis is to design a Dedicated IFT Microcontroller with 

compactness and improved performance to resolve the above problems existing in 

industrial control. 

1.4 HYPOTHESIS 

Our hypothesis statement is given as follows: 
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We believe that a dedicated IFT Microcontroller with improved performance can be 

developed into an FPGA device. 

1.5 OBJECTIVES 

The main objective of this research is to design a Dedicated IFT Microcontroller with 

improved controller performance using FPGA hardware, and is achieved through the 

following specific objectives: 

• Study and validate the IFT technique with a view to developing a novel hardware 

(Dedicated IFT Microcontroller) for tuning proportional-integral (PI) controller 

parameters. Both IFT technique of one degree of freedom (1DOF) and two 

degrees of freedom (2DOF) will be studied but only 1DOF will be validated in order 

to simplify the dedicated IFT Microcontroller hardware. 

• Design the architecture (data path) and finite-state machine (FSM) for a Dedicated 

IFT Microcontroller and develop VHDL code for it. The general purpose 

architecture is avoided for reasons of high speed and power consumption as 

compared with dedicated architecture. 

• Testing of a Dedicated IFT Microcontroller with a simulated DC motor. A physical 

DC motor is avoided due to want of keeping the research narrow but detailed. 

1.6  RESEARCH METHODOLOGY 

Our research method progressed as follows: 

• Research proposal development through intensive review of literature in the areas 

of adaptive control algorithms (with main emphasis on IFT algorithm theory and 

applications), controllers based on FPGA hardware and FPGA Design 

Methodology for Industrial Control System. 

• A study of IFT technique and FPGA architecture was carried out. Since FPGA was 

a platform on which controller hardware was developed, a thorough survey across 

a wide family of FPGAs was conducted in order to select a suitable FPGA that can 

accommodate a highly complex adaptive control technique (IFT). 
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•  design of a Dedicated IFT Microcontroller and development of VHDL code; 

simulation and experimentation; analysis and discussion of results. 

•  optimisation of a Dedicated IFT Microcontroller architecture; simulation and 

experimentation; analysis and discussion of results. 

•  testing of the Dedicated IFT Microcontroller to a novel process. 

• analysis and discussion of results. 

•  thesis report write-up. 

1.7  PLAN OF DEVELOPMENT 

Chapter two discusses the literature review on IFT technique theory and applications, 

FPGA-based controllers, and FPGA Design Methodologies for the Industrial Control 

System. Chapter three reports the study and validation of the IFT technique, with a view 

to creating a Dedicated IFT Microcontroller. Chapter four describes the design of a 

Dedicated IFT Microcontroller. Chapter five describes the testing of a Dedicated IFT 

Microcontroller. New contributions, recommendations and Chapter Summarys are 

provided in Chapter six. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1  SEARCH OBJECTIVE 

Since the main objective of the thesis was to design a Dedicated IFT Microcontroller, the 

preliminary task was to explore the IFT theory and its applications, mainly its recent 

advances: the improved algorithm, its extension, and the combination with other 

algorithms. In addition, a great deal of literature on FPGA design methodology for 

industrial control systems, Microcontroller design principles, and FPGA theory and trends 

were reviewed and this formed the major part of the project. Furthermore, a survey of 

electronic design tools and other application software was done. These included Quartus 

II Web Edition, ModelSim-Altera Web Edition, Xilinx ISE and Vivado HLS. 

2.2  IFT TECHNIQUE APPLICATIONS SURVEY 

A vast number of IFT applications currently existing or described in literature are a 

motivating factor in the pursuance of the thesis entitled "Design of a Dedicated IFT 

Microcontroller". Some of these applications surveyed are outlined below: 

• In [2], IFT was applied to optimise the Electronic Throttle Control (ETC) system of 

an engine. The application showed that the IFT provides very good performance 

for controller tuning. The system was implemented on a Pentium processor and 

was carried out experimentally. This has clearly shown the need to develop a 

dedicated hardware for its implementation, in order to reduce the cost and improve 

its performance in the long run. 

• In [3], IFT was applied to tune PID parameters in applications where the objective 

is to achieve a fast response, to set point changes, and the performance of IFT-

tuned PID controllers was compared to the performance of the classical tuned PID-

controllers. It revealed better results (faster settling time) than the later. The work 

was carried out through simulation examples. Thus, a simple and efficient PID-

tuning scheme was developed in this particular work though non-experimental 

work, however,  no experimental verification was conducted. 



 

6 
 

• In [4], a relay auto-tuning of PID controllers using IFT was applied to a process 

control problem in which the PID controller was auto-tuned to give specific 

bandwidth and phase margin. The algorithm was tested in the laboratory on a 

coupled tank, and the theoretical results were demonstrated to be observed in 

practice, confirming the viability of the IFT technique. 

• In [15], the extension of IFT as a tuning algorithm was presented. informative data 

was used to improve the convergence properties of the method, and reduce the 

total number of required plant experiments, especially when tuning for disturbance 

rejection. This was achieved through application of an external probing signal in 

the tuning algorithm. The technique was further used to guarantee nominal stability 

and to improve the parameter update using a line search algorithm for determining 

iteration step size, through the use of Levenberg-Marquardt optimisation. The 

proposed algorithm was compared to classical formulation in the simulation study 

of the disturbance rejection problem. It was found that perturbed IFT is an 

advantage when tuning for disturbance rejection.   

• In [16], tuning of robot joint controllers using IFT was considered,  different IFT 

schemes were validated in simulation, and real experiments on an industrial robot 

manipulator were conducted. From a practical point of view, the scheme therefore 

offers several advantages: it is straightforward to apply the direct optimal tuning 

algorithm, particularly to basic control loops in the process industry, which are 

typically PID loops. In addition, IFT has high potential for tuning of controllers 

applied to non-linear systems, which is currently a challenge in industrial control. 

With favourable results having been obtained, the need has arisen to develop a 

chip that implements the technique. 

• In [17], IFT was applied to tune a second-degree-of-freedom (2DOF) PID-controller 

to minimise the given quadratic cost function of a system output error and control 

effort. The tuning effort was divided into two parts. First, the classical 1DOF PID 

controller was iteratively tuned and the remaining parameters of 2DOF PID were 

then tuned, independently in the next iterative procedure; and second, the 

Broyden-Fletcher-Glodfard-Shanno (BFGS) method as a quasi-Newton method 

was employed. From the numerical simulations and the experiments, the 
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effectiveness of the proposed method was shown. For experimental purposes, the 

controller was implemented into the PC, a clear indication that IFT could be 

feasible to be implemented into a custom device such as a Microcontroller or an 

FPGA. 

In addition to the above surveyed IFT applications, FPGA-based controllers were also 

surveyed and a sample of them are listed in the next subsection. The purpose of this 

survey was to ascertain the feasibility and benefits of using an FPGA as a platform for 

developing the Dedicated IFT Microcontroller. 

2.3  FPGA-BASED CONTROLLERS LITERATURE REVIEW 

The surveyed literature on FPGA-based controllers and FPGA Design Methodology for 

Industrial Control Systems is summarised as follows:  

•  In [12], the state of the art of FPGA based controller design was reviewed. The 

design methodologies utilised three main design rules given as algorithm 

refinement, modularity, and systematic search for the best compromise between 

control performance and architectural constraints. Two complete case studies on 

the benefits of FPGA implementation, when using the proposed system modelling 

and design methodology were presented. A control algorithm, when implemented 

in an FPGA, can have a short execution time due to the high degree of parallelism 

of its architecture. Another perspective on FPGA design is to use FPGAs with 

analogue to digital converter (ADC) and digital to analogue converter (DAC) 

imbedded in them. Only Microsemi have fused an ADC into their FPGA to date.  

• In [13], a motion control system, using a radial basis function neural network (RBF 

NN) self-tuning PID controller for X-Y table was realised in an FPGA, to create a 

motion control-integrated circuit (IC). This was done by hardware/software co-

design (a necessary concept nowadays), and as a result the final product was 

made more compact, robust, flexible, and costeffective. The work was 

experimental and revealed favourable results. An IC that implements self-tuning 

PID was developed into the FPGA device. 
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• In [14], a novel technique for implementation of an efficient FPGA-based PID-

controller for motion control of a permanent magnet DC motor is presented. This 

implementation technique circumnavigates the problem of interfacing an 

analogue-to-digital  converter in real time. The implementation was done on the 

Xilinx Spartan 3 FPGA Board from National Instruments. The design showed 

significant improvement over the present way of implementing digital controllers 

into microcontrollers. 

• In [18], a digital controller for a switching power converter was implemented in an 

FPGA device. The digital hardware using Very Large Scale Integrated Circuit 

Hardware Description Language (VHDL) with floating-point arithmetic were both 

verified by simulation and experiments. The results showed that the designed 

system meets its specification, and the simulations match the experimental results 

closely. 

• In [19], a modular design of embedded feedback controllers was studied by 

utilising simulations into the FPGA hardware. To this end, a novel distributed-

arithmetic (DA)-based PID-controller algorithm was proposed and integrated into 

a digital feedback control system. The DA-based PID-controller demonstrated 80% 

savings in hardware utilisation and 40% savings in power consumption, which is 

desirable in embedded control applications. Simulations and experiments were 

tested using the system; it demonstrated good closed-loop stability and 

performance. 

• In [20], a methodology was presented based on the control system L1 or l1 norms 

for computing the appropriate number of bits to represent each quantity when 

using fixed-point number representation. The methodology was shown to be 

effective for designing hardware for both shift-form and delta-form representations 

of the compensator, and was applied to a magnetic bearing control system. In this 

example, the delta-form realisation required less hardware than shift-form 

realisation. 

• In [21], a simple auto-tuning technique for digitally controlled dc-dc for synchronous 

buck converters was proposed; this was an approach based on a relay feedback 

method. By the use of the iterative procedure, the tuning of PID parameters as a 
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result was obtained directly by including the controller in the relay feedback. 

Experimental investigations were conducted using the FPGA platform. 

2.4 Chapter Summary 

 

Considering the surveyed literature within the subject of the IFT technique applications 

based on FPGA technology, only [21] is directly related to the IFT technique, but its 

application is specific to Buck converters. The authors does not investigate, nor specify, 

whether the technique could be used for other plants. 
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CHAPTER THREE 

STUDY AND VALIDATION OF IFT TECHNIQUE 

 

3.1 INTRODUCTION 

In this chapter, the IFT technique is studied and validated. This is accomplished by 

carrying out an overview of the technique's basic theory, followed by simulation on NI 

LabView software, mainly for the purpose of testing and validating it before committing it 

to hardware. The reason for the choice of LabView software as the platform for simulation, 

is that programs running on the LabView platform can easily be ported to VHDL with 

minimal modifications. To ensure an exhaustive investigation, the IFT is tested and 

validated by applying it to three types of plants, namely: a DC motor, an oscillatory plant, 

and an unstable plant. It is also tested by varying the amplitude of the reference signal, 

and also by using the single-step signal. The intention of exploring all of these possibilities 

is meant to firmly expose the IFT boundaries of applicability so that the final product is 

not vulnerable to unnecessary post-production discoveries such as operational errors.  

3.2 ITERATIVE FEEDBACK TUNING TECHNIQUE OVERVIEW 

Since the Dedicated IFT Microcontroller is based on the IFT technique, we consider a 

comprehensive overview of IFT basic theory in this section.  

The IFT technique is purely a data-driven and gradient-based approach for optimising 

controller parameters, without full knowledge of the plant [9, 25]. It yields an unbiased 

estimate of the model (meaning that the IFT finds the correct controller for the plant in 

operation) [25]. Its concept derives from the given controller structure (given in advance), 

and the specification of a criterion or objective function of a Linear Quadratic Gaussian 

(LQG). The LQG is formed by data that is collected from closed-loop experiments, in 

which the number of experiments depend on the degree of freedom of the controller in 

question. For example, a second-degree-of-freedom (2DOF) controller would require 

three experiments to be performed at each stage of the iterative design, while a first-
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degree-of-freedom (1DOF) controller would require only two batch experiments expected 

to be run at each stage of the iterative design. Thereafter, either of the gradient-based 

local minimisation techniques, such as steepest descent, the Hessian, Gauss-Newton, or 

Quasi-Newton [22], can search a minimum of the criterion LQG.  

In this section we describe the IFT technique of a second-degree-of-freedom controller  

( },{ yr CCC  ), so that investigations of implementation issues relevant to the design of 

the Dedicated IFT Microcontroller are simplified. The IFT technique is implemented on 

the discrete linear time invariant system G , as shown in figure 1. 

 

Figure 1: Block diagram of a closed loop system of a two-degree-of-freedom 

controller 

 

• {r(t)}  is the reference signal; the argument t is added to denote the sampling 

period,  

• u(t) and y(t) are control and output signals respectively.  

• ),( zCr  and ),( zCy
 are linear time-invariant transfer functions;  

•  is a vector of the PI controller parameters;  

• )(zm and me  are the desired model for the controlled system, and the modelling 

error respectively.  
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The internal closed loop signals can be described via sensitivity function S  and transfer 

function rT , as follows:  

)(**)(**)( tdSCtrSCtu yr          (1)

)(*)(*)( tdStrTty r           (2) 

Where 
yCG

S
*1

1


  and 

y

r
r

CG

CG
T

*1

*


     

The output of the desired model is formulated from figure 1, and given in equation (3). 

     

)(* trTy dd             (3) 

Where )(zmTd            

Finally, the modelling error is computed from equation (4). 

dm ytyte  )()(            (4) 

Figure1 can be simplified into an IFT of a 1DOF controller if CCC yr  .  The 1DOF 

controller runs only two experiments, and we will use it to formulate the hardware 

architecture for the design of a Dedicated IFT Microcontroller later, due to its simplicity 

compared to the 2DOF controller. The signals in equations (1), (2), (3), and (4) are 

measured in experiment#1, however, signals like the closed-loop error ( )()()( tytrte 

), and the modelling error )(tem , are stored, since they are used to generate a reference 

signal and the criterion function in experiment#2. The reference signal )(tr  in 

experiment#1 is also used as a reference signal in experiment#3 for the 2DOF controller. 

The IFT procedure for the 2DOF controller experiments is as follows: At iteration i of the 

controller tuning algorithm, the controller )},(),,({),( iyiri zCzCzC   operates on the 

actual plant. Thereafter, three experiments are run, with each experiment storing a 

sequence of N-length data, as depicted in table 1.  
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Experiment#1 and experiment#3 consist only of gathering data under normal operating 

conditions, with the closed loop using the same reference signal for the said experiments 

[9]. Experiment#2 collects data from the closed-loop system with a reference signal(

)(yr  ) derived from experiment#1. From now on we denote the N-length reference 

signal and the corresponding output signals by }{
j

ir  and )}({ i

j

iy   respectively. Where 

Ni ,...,2,1,0 , a sample number or iteration number, and 3,2,1j  is an experiment 

number. 

Table 1:  IFT signals for experiment#1, experiment#2 and experiment#3 

Experiment#

j  

Input signal Measured signals Stored 

signals 

1. rr
j

i   
j

ii

j

iii

j dSrTy *)(*)()(    

j

iiy

j

irii

j dCrCSu )(*)(*)()(    

d

j

m yye   

jj

i

j yre   

m

j ee ,  and jy  

2. )( i

jjj

i yer   

 

j

iii

jj

iii

j dSyrTy *)())()(()(    

j

iiy

jj

irii

j dCyrCSu )()(*)(*)()(    

)( i

jj

i

j yre   

)( i

me





 and 

)( i

ju





 

3. j

i

j

i rr   
j

ii

j

iii

j dSrTy *)(*)()(    

j

iiy

j

irii

j dCrCSu )(*)(*)()(    

)( i

jj

i

j yre   

Same as in 

experiment#1 

 

All the signals from figure 1 are tabulated in table 1 as 
11111

,,,, iiiii dyuer  , denoting the 

reference, error, control, plant output, and disturbance signals in experiment#1 
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respectively; for experiment#2, these signals are denoted by 
22222

,,,, iiiii dyuer , and by 

33333
,,,, iiiii dyuer  in experiment#3. 

After the experiments, the processing stage commences with the gradient calculation, 

followed by the selection of a positive definite matrix R, and finally, the updating of the 

controller parameters. We illustrate the sequence, beginning with the formulation of the 

criterion function. 

The modelling error and the controller output signals that are measured from the 

experiments, are assembled together with filters and constants to form a criterion 

function, as given in equation (5). 

]}))(*(*))(*[({
2

1
)( 212

0

iui

N

i

mei uLeLE
N

J   


     (5) 

Where eL  and uL  are frequency-dependent weights or filters that penalise the modelling 

error me  and control input 
1u , according to the designer's needs. E{…} is the expectation 

taken with respect to stochastic disturbances that enter the process and thus affect the 

closed loop.  

Each version of the criterion function defines a specific type of IFT. Some types of IFT 

criterion functions are, for example, where the cost function is obtained from the modelling 

error me , as in equation (5), from the traditional error e , or  from the traditional error 

without the control signal u  included in the cost function..  

Many specific IFT criterion functions can be formulated as in equation (5), by varying the 

type of desired model. The IFT criterion function, driven by the traditional error, depends 

heavily on the model of the plant, since different plants would produce different traditional 

errors. The use of the traditional error to formulate the cost function is achieved by making 

the desired model, 1)( zm .  
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The objective of the IFT is to find an optimal set of parameters  , which minimises the 

criterion function J , as given in equation (6). This is the minimisation of the cost function, 

also given in equation (7) later, in another form [11]. 

)(minarg1 ii J             (6) 

The major stumbling block for the solution of this optimal control problem is the 

computation of the gradient of the criterion function with respect to controller parameters 

[9]. The gradient of the criterion function is thus given by equation (7), with the frequency 

weighting filters set to one (thus 1 ue LL ) for simplicity, but they are important, since 

they give extra flexibility in optimisation of the criterion function. 


 











 N

i

iii

N

i

m
imi

u
u

e
e

N

J

0

1
1

0

)(*)(*)(*)([*
1

)( 








    (7) 

The necessary condition for optimality of the parameters is 0)( 







J
. Hence, to be able 

to compute such an equation for  , the model of the plant, in totality, is required. In this 

respect, the plant model is generally not known in most industrial applications, and 

therefore, the required analytical form cannot be obtained. The main contribution of the 

IFT was to circumvent the said problem, by offering a procedure to calculate the gradient 

)(


J
 directly from closed-loop data. Hence, the IFT is entirely a data-based paradigm, 

implying that it can easily be implemented into a DSP microcontroller (best for algorithms 

[12]), as opposed to an FPGA device that has parallel attributes. 

If the gradient )(


J
 could be computed, then the solution of equation (7) would be 

obtained by stochastic approximation of Robins and Monro of 1951 [15], given as 

)(*
1

1 iiiii

J
R 












         (8) 
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In equation (8),   (gamma) is a positive real scalar that determines the step size. It can 

be fixed or established by a line search. The matrix R  is some appropriate positive 

definite matrix that determines the amplitude of the steps (or the step sizes), in the 

direction of each parameter provided by either the steepest descent, the Gauss Newton 

method, or the Quasi Newton method. The choice of R  as an identity matrix renders a 

steepest descent gradient that is normally negative and also slow to converge, but would 

be beneficial for power consumption, because it does not require much resource of the 

FPGA device. The choice of R as a Hessian matrix is not feasible – even in the literature, 

the approximation of the Hessian is preferred over the Hessian matrix directly [3, 4, 5, 6, 

8]. This can be generated by the Gauss Newton method (as shown in equation (9)), or 

the Quasi Newton method [25, 26], however, hardware implementation into an FPGA 

would be complicated and would demand high power consumption since huge FPGA 

resource shall be required.  

T

ii

T

i
m

N

i

i
m

i

u
E

u
E

e
E

e
E

N
R 

















































 



)()(*)()((*
1 11

1













          (9)  

The Quasi Newton choice of R is covered widely in [11, 17].  

3.2.1  Generation of the gradients for modelling error and controller signal 

The main difficulty with IFT is the problem with calculation of the gradient of the criterion 

function J , with respect to controller parameters, since the model of the plant is not 

known. This problem is resolved through filtering the modelling error and the controller 

output signals. The output of these filters are the gradients of the respective signals, which 

are measured and stored to compute the gradient of the criterion function, as shown in 

equation (7). 

Noting that  
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)()( ii
m ye





 







, since it is the plant that causes variation in the modelling error me , we 

state the expressions in equations (10) and (11). These are standard IFT equations, 

derived in [9, 26]. 

)*)(*)(()()( 1

iiii

m dSrTy
e





















 





















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 23 )())()((*
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1
y

C
y
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C
i
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y

i
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
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
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 (10) 


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
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


   (11) 

The first term in equation (10) is a filter, taking the output signal from the plant 3y as input, 

and the second term in equation (10), also a filter taking 2y as input. The output of the 

two filters are passed via two input adders to produce the gradient of the modelling error. 

Similarly, the first term of equation (11) is a filter, taking signals from the controller
3u as 

input, and the second term also a filter taking an input signal 
2u  from the controller. The 

output of the two filters are also passed via two input adders to produce the gradient of 

the controller output. It is shown here that gradients of a criterion function are signals 

measured from the closed loop system, and applied in equation (7) to compute the 

gradient of J with respect to controller parameters. 

3.2.2  IFT technique of a 1DOF controller 

Having described the IFT technique for a 2DOF controller, we present here the IFT 

technique for the 1DOF controller. This is aimed at implementation on the FPGA 

hardware, because its algorithm is simpler than the IFT technique of the 2DOF controller. 

As mentioned previously in section 3.2, it runs two experiments compared to three of IFT 

technique for the 2DOF controller. The choice of degree of freedom depends mainly on 
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application needs. For example, the IFT of the 2DOF controller is good for disturbance 

rejection, and the IFT for the 1DOF controller is good for reference signal tracking and 

regulation [26]. 

In this section, we develop a deterministic version of Iterative Feedback Tuning for the 

case of a simple PI controller, so that the design of the Dedicated IFT Microcontroller is 

simplified. The PI controller is chosen because it is a very common control law, and hence 

a reasonable starting point. It is also important to industrial applications [22]. 

We investigate a single input, single output control system of 1DOF control law, as shown 

in figure 2. 

 

  

Figure 2: Closed Loop System for 1DOF controller 

 

The reference, error, input disturbance, controller output, output disturbance, and plant 

output signals are represented by )(tr , )(te , )(tv , )(tu )(td and )(ty  respectively. The plant 

)(zG  is a step invariant transformation of the DC motor (
12

01.1

s
) used in [1]. This was 

chosen to validate the IFT technique, by comparing its performance on the FPGA, with 

that of [1]. )(zC  is the PI controller, which is a step transformation of the s-domain PI 

controller ( 
s

1
0


  ). The internal closed loop signals can be described with sensitivity 

and transfer functions (considering 0)( td ), as follows: 

)(**)(**)( tdSCtrSCtu          (12) 
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)(*)(*)( tdStrTty r           (13) 

Where 
CG

S
*1

1


  and 

CG

CG
Tr

*1

*


         

    

We consider )(td  as zero mean weakly stationary random noise. 

Experiment#1 of the 1DOF controller measures and stores signals )(1 e , )(1 u , and 

)(1 y  for N length of time. Rho is a constant for each set of two experiments (#1 to #2). 

However, it is changed after every experiment#2, thus rho is used as an argument. 

Experiment#2 is known as the gradient experiment, where the gradient of the modelling 

error and control input signals are measured and stored. Thereafter, the criterion function 

J is specified by utilising the measured signals in experiment#2, and exiperiment#1. After 

summing over N-length samples, the gradient (


J
) of the criterion function, needed to 

optimise or update the PI-controller parameters, is obtained. 

3.2.3 Criterion function specification 

Controller optimisation requires that a criterion function is defined, usually by expressing 

it in terms of J , as given in equation (5). We rewrite the criterion function expression, 

since it utilises the traditional error 2e , and not the modelling error me  used in equation 

(5). The desired model is set to unity (desired model, 1)( zm ), implying that the cost 

function, that optimises the controller parameters, is as a result of the summation of the 

traditional error, and the controller output signals which was obtained from experiment#2, 

and  given in equation (14) below. 

]))(*(*))(*[(
2

1 222

0

2  uLeL
N

J u

N

i

e  


       (14) 

2e  denotes the traditional error from experiment#2, and 2u  the control signal. The first 

term is the closed loop tracking error, and the second term the penalty on the control 
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effort from experiment#2. eL  and uL  in the first and second terms are frequency 

weighting filters that were initialised to one  

( 1 ue LL ) to simplify the hardware to be implemented on the FPGA, though it does give 

extra flexibility in the control action. The advantage of this criterion function is that it 

presents a good balance between overshoot and settling time [24], and it simplifies the 

hardware design since the desired model is reduced to unity, It also makes the 

assumption for a plant structure become insignificant, since the desired model is reduced 

to a scalar. However, the main drawback of this criterion function, as compared to other 

minimisation criterion functions, is the difficulty of obtaining an analytical solution to the 

controller design [24]. 

After formulating the criterion function J, we minimise it by generating its gradient through 

summation, as given by equation (15). 

)()(*)()([
1

)(
2

2

0

2
2

iii

N

i

ii

u
u

e
e

N

J








 















      (15) 

2e  denotes a traditional error, and 2u  denotes a control signal . Once the gradient 


J
 is 

computed, the solution of equation (15) is found in the same way it is done in the IFT of 

the 2DOF controller. 

3.2.4  Algorithm formulation for 1DOF 

The algorithm is formulated in two segments, namely experiment#1 and experiment#2. 

Experiment#1 comprises equations (16), (17), (18) and (19). Equation (16) compares the 

reference signal and plant output signal, to produce the traditional error, as shown in 

figure 2. 

)()()( 111 tytrte i            (16)  
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The PI-controller, without a holding circuit (ZOH), is required for the formulation of a filter    

(


C

C
*

1
) (in z-domain), for generating gradients needed for computation of the gradient 

of the cost function, as shown in equation (15). The reason for this is because the IFT 

loop from the traditional error to parameter update is purely a digital process, hence does 

not require usage of a DAC or ADC. The PI controller on the other hand, with a holding 

circuit (ZOH), is required because its output drives a DAC for actuating the plant. For this 

reason, the transformation of the PI controller transfer function into a digital equation, 

without a ZOH circuit, and with a ZOH circuit, is given in appendix V, yielding difference 

equations, as given in equations (17) and (18). 

10101 **)(   tttt eeuu   [V]        (17)  

10101 *)*(*   tttt eTeuu   [V]       (18) 

We also transform the plant into a digital equation with a ZOH circuit, since the output of 

a plant is connected to an ADC.  

Transformation to the Z-domain begins by first setting the sampling time for the plant 

according to the governing principles of the Nyquist sampling theorem. This theorem 

states that the "sampling frequency sf  for a given source signal should be at least double 

the signal frequency". In our simulation, the sampling frequency adopted is 2.5 times the 

signal frequency. This is to ensure that the digital system mimics the continuous system. 

Thus  

T
f s

1
*5.2   

T  is the time constant for the DC motor model or plant. In this case, the sampling 

frequency = 5 Hz, yielding a sampling time of 200 ms.With this sampling time in place, 

the plant digital equation is derived as shown in equation (19). Derivation details for the 

plant digital equation is presented in Appendix

)(*09516.0)1(*904837.0)( tutyty          (19) 
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The equations of (20), (21), (22), (23), (24), (25), (26), (27), and (28), as shown below, 

describe the algorithm of experiment two. 

 The plant output signal )(2 ty , is compared with the reference signal )(1 te  (from 

experiment#1), as achieved by equation (20).  

)()()( 212 tytete             (20) 

The PI-controller is reproduced in experiment#2, to generate a control signal, )(2 tu , and 

is given equation (21). 

1
2

01

2

01
22

*)*(*   tttt eTeuu   [V]      (21)  

 The plant output signal, )(2 ty  in experiment#2, is given in equation (22).  

)(*048057.0)1(*904837.0)( 222 tutyty         (22) 

The difference equations for generating the gradient of the error signal, 


 2e
 ,with respect 

to controller parameters directly, were developed by Hjarmarsson in 1994 [5], and were 

an important advance in the development of adaptive controllers. This was achieved by 

passing the error signal through a filter 


C

C
*

1
 and measuring the output, which yielded 

the gradient of the error signal required for specification of the cost function. This was 

developed in order to circumvent the difficulty in computation of the gradient of the cost 

function, as some quantities involved are unknown or only partially known [5].  

The difference equations for the gradient signals are derived as follows: 

The PI-controller, given in equation (17), is used to derive the gradient difference 

equations, as shown below: 
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Additionally, the difference equations are given in equations (23) and (24). 
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The gradient of the criterion function, which is a summation of measured signals, )(2 te , 

d

de
tu

2
2 ),( , and 

d

du 2

, are given in equations (25) and (26). 
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The parameter update expressions are given in equations (27) and (28). 

0

00 *)1()(

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dJ
tt i (t)         (27) 

 )(*)1()(
1
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
           (28) 

The equations from (16) to (28) outline the flow of the IFT technique applied to a controller 

of 1DOF, and can be mapped onto the Matlab or LabView platforms, for simulation 

purposes. 
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In section 3.3, this is done, with LabView, mainly to take advantage of LabView’s FPGA 

add-on software, which can be compiled for downloading into an FPGA device. 

3.3 SIMULATION OF IFT TECHNIQUE USING THE LABVIEW PLATFORM 

This section is devoted to validating and testing the IFT “to destruction”, so that the 

boundaries of its applicability can be obtained. This is done to avoid unnecessary post-

production discoveries in the final product that may seriously impact on its commercial 

viability. In order to carry out a wide investigation, three different plants were used in the 

simulation, namely: the DC Motor that was used in [1], and is reproduced here (in equation 

(29) for ease of reference), the oscillatory plant given in equation (30), and the unstable 

plant given in equation (31). 
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Though IFT assumes that knowledge of the plant is not available or only partially known, 

the initial focus will be on the DC motor (a known plant), controlled by the PI-controller, 

for validation and testing purposes. The region of controller parameters are determined, 

which yields a stable closed-loop system in the z-plane by use of the root locus method, 

to provide preliminary information (especially the initial controller parameters for running 

the IFT) for the test and validation of the IFT technique, before simulation (on the LabView 

platform) is commenced. The PI controller and the DC motor in the z-domain with the 

holding circuits are derived in appendix V, and is stated here for easy of reference: the PI 

controller represented in the z-domain with a holding circuit is given as: 
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Similarly, the DC motor model is also given as
9048057.0

09516.0

z
.  

The open-loop PI controller applied to the DC motor is given as  

1

)*(*
)(*)( 010






z

Tz
zghzk


 *

9048057.0

09516.0

z
 , yielding open-loop poles at 1z  and 

9048057.0z  , with one moving zero ( Tz
0

11



 ) since it is dependent on the controller 

parameters which are varying due to the controller tuning, and the sampling time that is 

chosen by the designer in relation to the sampling time of the plant. That is, the  sampling 

time for the controller should be faster than that of the plant. We determine the 
0

1




 ratio, 

since the zero must lie in the region 9048057.01  z  to force the locus of the closed-

loop poles inside the unit circle, in order to help to pull the poles outside, into the unit 

circle. To expose the stability region for the closed-loop system, the closed-loop system 

is derived for the PI controller applied to the DC motor. The derivation is given in appendix 

V for equation (32). 
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Tzz
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[V/V]   (32) 

This equation is a closed-loop PI controller applied to the DC motor. It is expressed in 

such a way that the root locus can easily be applied to tracing the poles of the system. 

However, to perform the procedure, the controller parameters must first be chosen, 

because the zero of the open-loop system must lie within the range 9048057.01  z  

on the left-hand side of the two open-loop poles in the z-plane. For each chosen zero, the 

parameters are computed, followed by running the root locus and verifying the region of 

stability. To determine the parameters, the zero location is chosen, and to simplify the 

design, the open-loop system zero should lie on real axis from 9.0z  to 9.0z .  

From this point on, rho0 and rho1 will be used in the text to denote 0  and 1  

respectively. For each zero location chosen, controller parameters are computed using 
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the expression T*1
0

1




  (the moving zero). rho0 is then chosen with the knowledge that, 

as it varies from 0 to infinite gain, the closed-loop poles move towards open-loop and 

infinite zeros. Hence, if the rho0 value is chosen for oscillatory,  under-damped, fast-

damped, critically damped, slow-damped or over-damped responses, the parameters, for 

examplea zero at 0.0z , are computed as follows: 

10*10

1

0.0*1

01

0

1

0

1




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









T

T

  

1.0T seconds (chosen for a PI controller model) is two times faster than the sampling 

time for the plant. As an example, rho0 is set equal to 1.0, and the value of rho1 calculated 

depending on the zero location. The ratio of rho1 to rho0 determines how far apart the 

parameters are to each other as they become optimised by the IFT.  

Table 2 shows the roots of the characteristic equation for the closed-loop system as per 

zero location on the z-plane. The root locus for the PI controller applied to the DC motor 

for different zero locations, shown in table 2, are illustrated in appendix III. According to 

the captured root locus results for the PI controller applied to the DC motor, the closed-

loop poles for the system with zeros from 2.0z  to 9.0z  are stable. However, for the 

system with zeros from 9.0z to 4.0z , it has part of its loci in an unstable region. 

Hence, it is prudent to use the system with zeros from 2.0z  to 9.0z  that have the 

loci inside the unit circle. Amongst the zero locations stipulated in table 2, location 0.4 is 

selected for investigation. It does not mean the choice 'zero location' is niche, but only 

chosen as an example. This zero is in the region of stability, as can be shown by a plot 

of root locus, in appendix III, figure AP.3. The rho-space is selected, from which results 

are obtained and mapped. Thereafter, the rho-space where the closed loop system is 

stable, is determined. 
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Table 2: Roots of the DC motor closed-loop control system 

Zero location on the 

z-plane 

Rho0 Rho1 Roots 

2.00 0.10 0.20 0.98 

0.91 

0.90 1.00 1.00 0.90 + 0.01i 

0.90 + 0.01i 

0.40 1.00 6.00 0.90 + 0.22i 

0.90 + 0.22i 

-0.20 1.00 12.00 0.90 + 0.32i 

0.90 + 0.32i 

-0.60 1.00 16.00 0.90 + 0.38i 

0.90 + 0.38i 

-4.2 1.00 52.00 0.90 + 0.70i 

0.90 + 0.70i 

 

Having conducted root-locus analysis for the closed-loop system at different zero 

locations, the PI controller applied to the DC motor is verified for stability by use of a 

Routh-Hurwitz criterion. This procedure is accomplished by transforming the system's 

characteristic equation from equation (32), into the s-plane by means of bilinear 

transformation as follows: the characteristic equation is given as  

0*09516.0**09516.0904837.0(*)904837.1*09516.0( 010

2   Tzz  (33) 

In the above given characteristic equation, z  is substituted with 
1

1




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w
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equation. 
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09048.1*095.0**095.0*)*19.0**19.01904.0(***095.0 0101

2

1   TwTwT  

Hence, the Routh-Hurwitz array is formed, as given in table 3. 

Table 3: Routh-Hurwitz for the characteristic equation 

 

2w  

w  

0w  

T**095.0 1   9048.1*095.0**095.0 01   T  

)*19.0**19.01904.0( 01   T          0  

9048.1*095.0**095.0 01   T  

 

To find a range of controller parameters where the closed-loop system is stable, we 

arrange rho1 in terms of rho0 as follows: for zero location at 0.8 and sampling time at 0.1 

seconds, the relationship is computed as: 
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Hence, rho1 in table 3 is substituted with 2*rho0, in order to find the range of controller 

parameters for which the closed-loop system is stable. The range for 2w  is computed as 

follows: 

0

0*2**095.0

0

0







T
   

Giving a range of 00  . 

Similarly, the range for w  is computed as follows: 
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Giving a range of 2526.10  . 

Finally, the range for 0w  is zero, indicated by the relation: 
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Giving a range of 0632.250  . 

Therefore, the overall range for closed-loop system stability for the PI controller applied 

to the DC motor (for rho0) is given as 0632.252526.1 0   . Similarly, the range for rho1 

is 1264.505052.2 1   . Hence, parameter values outside the obtained range for rho0 

and rho1 would render the closed-loop system unstable. This information can help to test 

the tuning action of the IFT technique, by selecting parameters outside the range and 

verifying if IFT is capable of forcing the parameters within the given range. 

3.3.1 Simulation of the IFT applied to the DC motor  

Using the rho-space mapped in table 2, we run the PI controller (without the IFT) driving 

the DC motor, and map the results of output responses in appendix IV. The PI controller 

(with the IFT) is implemented next, driving the DC motor once again and recording the 

results of the output responses in figure 3, figure 4 and figure 5. Thereafter, the results 

are compared to ascertain the validity of the IFT technique as an optimising technique. 

From this, we can safely select initial parameters which are slow-damped, fast-damped, 

and oscillatory closed-loop systems. The IFT is implemented 1 000 times, optimising one 

sample at a time while observing the trend of optimisation in 1000 spaces (N = 1000) or 

more, where a great amount of tuning information is required. A single IFT cycle 

composing of {experiment#1...}, {experiment#2...}, and {update parameters} phases 
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takes 40s and is synchronised with the step changes in the reference signal. The DC 

motor output signal y , reference signal r , controller parameters 0 and 1 , error e  and 

cost function J , are the focus of our investigations. 

(I) Slow-damped case  

The results for the initial slow-damped closed-loop system is illustrated in figure 3. As 

depicted, the controller is started with initial parameters of 1.00 rho  and 2.01rho  which 

results in a slow or heavily damped closed-loop system. This is indicated in figure AP.IV.1 

in appendix IV. The response of the DC motor and the reference signals are illustrated in 

figure 3a, followed by the results for the controller parameters and the cost function in 

figure 3b. Figure 3c illustrates the results for the controller parameters in a magnified 

format. Finally, figure 3d shows results for the error signal. 

 

Figure 3(a): Reference signal and DC motor output signal  
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Figure 3(b): Rho0, Rh01 and cost function, J signals 

  

 

Figure 3(c): Rho0, Rh01 and cost function, J signals  

 

Figure 3(d): Error signal 

 



 

32 
 

The DC motor output response is heavily damped from sample number zero to sample 

number 800, and thereafter it becomes unstable up to sample number 860 where 

controller parameters converge to rho0 = 4.2 and rho1 = 28.0, as illustrated in figure 3c. 

This behaviour is readily explained by roots of the characteristic equation for the closed-

loop system for the given sample numbers in table 4. At sample number 15 the roots 

indicate slow stability, which later turns out to be an integrator, and finally converges to 

an oscillatory stable response. The sample numbers selected are mapped in table 4 with 

their respective parameter values and roots. This optimisation has multi-minima at 

samples number 15, 200, 405, and 605, as shown in figure 3b. Optimisation occurs up to 

sample 860 where the cost function converges to 0.4. The cost function builds up from 

sample number 1 to sample number 840. This is due to the presence of a huge error in 

the region, as shown in figure 3d. Clearly, the simulation for the initial slow-damped 

closed-loop system has validated the optimising capability of the IFT in optimising 

controller parameters, in that the heavily-damped DC motor response turns into an 

oscillatory stable response (see figure 3a). 

 

Table 4: Roots of the DC motor closed-loop control system 

Sample No. Rho0 Rho1 Roots 

15 0.06 0.10 0.99 

0.90 

200 0.02 0.02 1.00 

0.90 

405 0.14 0.03 1.00 

0.89 

605 0.02 0.01 1.00 

0.90 

840 4.2 36.00 0.75 + 0.53i 

0.75 - 0.53i 
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900 4.2 28.00 0.75 + 0.45i 

0.75 - 0.45i 

  

(II) Fast-damped case  

The results for the initial fast-damped closed-loop system are illustrated in figure 4.  

 

Figure 4(a): Reference and DC motor output signal  

 

Figure 4(b): PI controller parameter and cost function signals 
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Figure 4(c): Magnified PI controller parameter signals 

 

 

Figure 4(d): Magnified cost function signal 

 

Figure 4(e): Error signal 
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The IFT is implemented with initial parameters of 0.10 rho  and 0.11rho , which 

represents a fast-damped or critical-damped closed-loop system, as indicated in figure 

AP.IV.2 of appendix IV. The response of the DC motor and the reference signals are 

illustrated in figure 4a, followed by the results for controller parameters and the cost 

function segmented into figures 4b, 4c, and 4d, in order to magnify significant sections of 

the graphs. The results for the error signal is shown in figure 4e. The response 

demonstrates similarity to the response of the PI controller (without the IFT) applied to 

the DC motor, as demonstrated from sample number 200 to sample number 1000 (see 

figure 4a and figure AP.IV.2). 

From sample number zero to sample number 200, the response is in its transient state, 

as shown by the roots of the characteristic equation in table 5. The details are obtained 

by studying figures 4b, 4c, and 4d, which displays a variation of the controller parameters 

as a result of the controller tuning.  

The tuning in this case is of varying multi-minims from sample number zero to sample 

number 1000, and then converges to a single-minima at sample 1200, occurring at every 

200 samples, with parameters converged to rho0 = 0.4 and rho1 = 0.4. The cause of 

these minimum spikes is as a result of increase in the cost function after every 200 

samples (see figure 4d: The increments of the cost function). The minimums are tabulated 

in table 5. 

The cost function builds up after every 200 samples, from sample number zero to sample 

number 1000, due to the remnant error that is not minimised (see figure 4e). 

Table 5: Roots of the DC motor closed-loop control system 

Sample No. Rho0 Rho1 Roots 

5 0.85 0.85 0.91 + 0.01i 

0.91 - 0.01i 

200 0.78 0.78 0.93 

0.90 
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400 0.65 0.65 0.94 

0.90 

600 0.53 0.53 0.95 

0.90 

800 0.38 0.38 0.96 

0.90 

1000 0.23 0.23 0.98 

0.90 

1200 0.13 0.13 0.99 

0.90 

1400 0.13 0.13 0.99 

0.90 

1600 0.13 0.13 0.99 

0.90 

1800 0.13 0.13 0.99 

0.90 

 (III) Oscillatory case 

The results for the initial oscillatory controller parameters are illustrated in figure 5.  

 

Figure 5(a): Reference signal and DC motor output signal 
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Figure 5(b): PI controller parameter signals and cost function signal  

 

 

Figure 5(c): PI controller parameter signals and cost function signal  
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Figure 5(d): Error signal  

For the oscillatory case, the controller is implemented utilising initial parameters of 

0.10 rho  and 0.161rho . These are oscillatory controller parameters, as indicated in 

figure AP.IV.2 of appendix IV. The response of the DC motor and the reference signal are 

illustrated in figure 5a, followed by the results for the controller parameters and the cost 

function, segmented into figures 5b and 5c, in order to magnify the minima that occurs 

ahead of convergence. The result for the error signal is in figure 5d. The DC motor output 

signal and the reference signal are indicated in figure 5a, and the controller parameters, 

rho0, rho1 and the cost function illustrated in figure 5b and 5c. Finally, figure 5d illustrates 

the error signal. The response demonstrates a great amount of tuning information, from 

the oscillatory to the fast-damped closed-loop system. Selected sample numbers with 

their controller parameters and roots of the characteristic equation, are tabulated in table 

6. 

Sample numbers from zero to 700 are oscillatory parameters, demonstrated by the roots 

of the characteristic equation in table 6. 

After sample number 700 to sample number 1000, the controller parameters yield real 

roots inside the unit circle, indicating stability. This again has validated the optimising 

action of IFT technique controlling the DC motor. 

Table 6: Roots of the oscillatory closed-loop control system 

Sample No. Rho0 Rho1 Roots 

0 1.00 16.00 0.93 + 0.27i 

0.93 - 0.27i 

200 0.12 3.18 0.94 + 0.27i 

0.94 - 0.27i 

400 0.12 2.06 0.94 + 0.13i 

0.94 - 0.13i 

600 0.0 0.12 0.99 

0.91 
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800 0.06 0.06 0.99 

0.90 

1000 0.12 0.13 0.99 

0.90 

  

3.3.2 The effect of varying the reference signal amplitude on IFT optimisation 

Thus far, the test has only used a reference signal amplitude of one volt; hence it is not 

yet known what the effect on the system will be if the amplitude of the reference signal 

were to be varied. Here, table 7, table 8 and table 9 are presented to illustrate the effect 

of varying the amplitude of the reference signal for the case of the initially slow-damped, 

initially fast-damped, and oscillatory controller parameters, respectively. 

The data for all the three cases shows variation in the length of the settling time for the 

DC motor response, variation in convergence of parameters, and variation in the gamma 

constant that is initially chosen manually, but as a result of varying the amplitude of the 

reference signal, needs to be varied as well. However, the degree of variation depends 

on the specific case (slow damped, fast damped, or oscillatory). 

 

Table 7: Effect of varying amplitude reference signal – a slow-damped case 

No. Amplitude 

[V] 

Settling time 

[samples] 

Overshoot 

[V] 

Rho0  Rho1 Gamma 

1 0.10 20.00 0.00 4.00    1.90 2.20 

2 0.20 25.00 0.00 1.80    2.40 1.10 

3 0.30 40.00 0.00 1.10    1.20 1.20 

4 0.40 10.00 0.08 20.00    105.00 1.20 
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5 0.50 50.00 0.20 10.00      5.50 1.20 

6 0.60 0.00 0.00 21.50     15.00 1.20 

7 0.70 100.00 0.00 1.50      0.75 1.20 

8 0.80 25.00 0.00 9.00      6.50 1.20 

9 0.90 10.00 0.00 4.01     3.50 1.10 

10 1.00 5.00 0.30 10.00       9.00 1.10 

11 1.10 2.00 0.80 18.00        17.00 1.10 

12 1.20 1.00 0.00 19.00       18.00 1.10 

 

Table 8: Effect of varying amplitude reference signal – a fast-damped case 

No. Amplitude 

[V] 

Settling time 

[samples] 

Overshoot 

[V] 

Rho0  Rho1 Gamma 

1 0.10 20.00 0.00 4.30 4.300 3.20 

2 0.20 50.00 0.00 1.44 1.440 2.20 

3 0.30 65.00 0.00 0.83 0.825 2.20 

4 0.40 5.00 0.00 12.50 12.500 2.20 

5 0.50 10.00 0.30 33.00 33.000 2.20 

6 0.60 70.00 0.00 0.80 0.800 2.20 

7 0.70 105.00 0.00 0.65 0.65 1.20 

8 0.80 100.00 0.00 0.80 0.80 1.20 
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9 0.90 4.00 0.10 24.00 24.00 1.20 

10 1.00 75.00 0.00 1.00 1.00 1.20 

11 1.10 70.00 0.00 32.00 32.00 1.20 

12 1.20 15.00 0.00 5.05 5.05 1.10 

 

 

Table 9: Effect of varying amplitude reference signal – an oscillatory case 

No. Amplitude 

[V] 

Settling time 

[samples] 

Overshoot 

[V] 

Rho0  Rho1 Gamma 

1 0.10 15.00 0.00 2.40 2.50 90.20 

2 0.20 25.00 0.00 2.55 2.40 80.20 

3 0.30 55.00 0.00 15.13 7.75 80.20 

4 0.40 25.00 0.01 10.20 10.20 60.20 

5 0.50 25.00 0.05 20.25 20.25 60.20 

6 0.60 0.01 0.00 10.40 5.10 60.20 

7 0.70 5.00 0.20 20.00 85.00 60.20 

8 0.80 5.00 5.00 16.00 2.00 60.20 

9 0.90 15.00 0.30 15.00 55.00 20.20 

10 1.00 15.00 0.01 7.00 5.50 20.20 

11 1.10 15.00 0.10 11.00 13.00 1.20 
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12 1.20 10.00 1.25 40.00 200.00 1.20 

 

That the degree of variation depends on the specific case is clearly shown by the starting 

gamma constant in each instance. For example, the starting gamma constant for a slow-

damped system is 2.2, while for a fast-damped it is 3.2, and for the oscillatory system 

90.2. This is facilitated by the size of error. If error is big, the cost function will rise very 

fast, implying a high gradient for the cost function, which in turn will require a small gamma 

constant. However, if the error is small, there is a need for a big gamma constant in order 

to affect the optimisation process. This implies that for varying reference signal amplitude, 

the gamma constant should be set by a line search to avoid the adaptive control blow-up 

of the 1980s [40]. 

In the slow-damped case, the increase of the reference signal amplitude has an influence 

on the sensitivity of the gamma constant. For instance, from 0.1V to 0.3V, the gamma 

constant changed three times, while from 0.3V to 0.8V, there is no change, and again, 

from 0.9V to 1.2V, it remains constant. 

In the case of the fast-damped initial system, the gamma constant is the same (at 2.2) 

from 0.1V to 0.6V, and changes to 1.2 from 0.7V to 1.1V. 

In an oscillatory case, there are five regions of operation with different gamma constants. 

For instance, we can see from table 8 that at 0.1V, the gamma constant is 90.2, at 0.2V 

and 0.3V it is 80.2, from 0.4V to 0.8V it is at 60.2, at 0.9V and 1.0V it is at 20.2, and finally, 

at 1.1V and 1.2V it is at 1.2. Clearly, the gamma constant decreased from 90.2 to 1.2 as 

a result of increasing amplitude of the reference signal from 0.1V to 1.2V, implying that 

increasing the amplitude of the reference signal causes an increase in the error signal 

and the adaptive control blow-up of the 1980s. We can decide to work with a gamma 

constant of 1.2 throughout to avoid the adaptive control blow-up, however, the only 

drawback is, tuning would take a long time for lower amplitudes of the reference signal. 

Higher reference signal amplitudes cause controller parameters to converge outside the 

stability bound ( 08494.8895054.4 1   ), implying that such amplitudes can cause 
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instability in the system. For example, the reference signal of amplitude 1.2V makes 

parameters converge to rho0 = 40 and rho1 = 200 outside the stability range. The problem 

of system blow-up also exists, especially when gamma is made constant while the 

reference signal amplitude is varied upwards, and this, in addition, makes the parameters 

converge to infinity. This phenomenon is traced to controller parameter update variable 

overflow when the gradient of the cost function tends to be infinite.  

3.3.3 The effect of the single-step reference signal on IFT optimisation 

As the case in the previous section, we can show that the tuning scheme of the IFT 

technique by using a reference signal of a single step. We utilise the initial fast-damped 

closed-loop system for this demonstration only as an example, not that there is anything 

unique about it. Figure 6 indicate results for running the IFT using a reference signal of a 

single step. 

 

Figure 6(a): Reference and DC motor output signals  
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Figure 6(b): PI controller parameter and cost function signals 

 

 

Figure 6(c): Error signal  

The DC motor output and the reference signals are indicated in figure 6a. The controller 

parameters, rho0 and rho1 and the cost function are illustrated in figure 6b. Finally, figure 

6c illustrates the error signal. The variation of parameters from sample number zero to 

sample number 120 is an indication that there was tuning that occurred before 

convergence. The response also demonstrates convergence to a fast-damped closed-

loop system. 

In this test, the parameters for both rho0 and rho1 converge to 1.45 (see figure 6b), which 

is different to the convergence in the test number 10 of table 7, where the series of step 

reference signals were utilised yielding rho0 and rho1 converging to 1. The result for the 
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single-step reference signal implies that the presence of the step signal triggers 

optimisation only for the period of the step signal, and afterwards the system runs in the 

converged mode for the rest of its operation as long as it is not disturbed. This means 

that the step signal can also be modelled as a source of disturbance in the closed-loop 

system, to ensure the adaption gets the information it needs. However, the IFT will only 

handle a certain percentage of noise before it fails to optimise, as indicated in the test 

conducted in section 3.3.2. For example, if we took a gamma constant of 1.2, the 

maximum noise amplitude the IFT is capable of handling is 1.1V, and anything above 

that, the IFT will not be able to handle unless the gamma constant is reduced, as shown 

in table 7. Hence, lower gamma constants can enable the IFT to handle higher noise 

levels though optimisation, but becomes slow for such gamma constants. 

3.3.4 Simulation of the IFT using the oscillatory plant  

A similar study as before is carried out using the oscillatory plant in equation (30). The 

plant represented in the Laplace domain is sampled into a digital equation as follows: 

A standard transfer function is used to approximate the sampling frequency, thus, 
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 , which can be equated to the plant in equation (30) so that 

we approximate the sampling frequency sf . Therefore, the natural frequency nf  is 

computed as follows:  
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The damping ratio   for the oscillatory plant, on the other hand, is computed as follows: 
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No. of oscillations = s
n

n 667.1)1
1

(*
2

**

1*2 2







 

settling time is st
n

s 6669.2
1623.3*4743.0

4

*

4



, hence the periodic time T  is 

sT 5998.1
667.1

6669.2
  The frequency of oscillation is  

6251.0
5998.1

1
f  Hz 

and the sampling time sT is s
f

Ts 2.01600.0
6251.0*10

1

*10

1
  

Utilising the computed sampling time, the Matlab code given in appendix V is used  to 

compute equation (34) to generate a transfer function (in the z-domain with the holding 

circuit). 

5488.0*252.1

1308.0*1601.0
2 




zz

z
gh [V]      (34) 

Equation (34) is then converted to a digital equation that is given in equation (35). 

 

 

2121 *1308.0*1601.0*5488.0*252.1   ttttt uuyyy  [V]   (35) 

We utilise the PI controller again to control the oscillatory plant sampled above. The open-

loop PI controller applied to the oscillatory plant is given as  
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1z , 0.3961i + 0.6260z  and 0.3961i - 0.6260z  with two zeros 0.8170z  and 

Tz
0

11



  dependent on the controller parameters that are varying due to the controller 

tuning. Similarly, as for the case of the DC motor, the sampling time for the controller was 

made faster than the sampling time for the plant. The stability region for the closed-loop 

system is determined in order to expose the terrain to operate the IFT. To this end, the 

closed-loop system transfer function is derived for the PI controller applied to the 

oscillatory plant. The derivation is given as: 
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Equation (36) is a closed-loop PI controller applied to the oscillatory plant. The same initial 

controller parameters utilised for the DC motor is used, to check the universality of the 

IFT in tuning controllers when applied to different plants. This is important because the 

IFT technique assumes that the plant is not known, or only partially known. 

(I)  Slow-damped case  

The IFT with initial parameters 1.00 rho  and 2.01rho  is implemented. This was also 

used in section 3.3.1 for a slow-damped case of the DC motor, in order to compare the 

results of the two plants. The response of the oscillatory plant and the reference signals 

are illustrated in figure 7a, followed by the results for the controller parameters as shown 

in figure 7b. The results for the error signal  is shown in figure 7c.  

 

Figure 7(a): IFT response for oscillatory plant  
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Figure 7(b): Parameter trajectory and cost function  

 

Figure 7(c): Error signal  

The oscillatory plant output and the reference signals are indicated in figure 7a. The 

controller parameters, rho0 and rho1 and the cost function in figure 7b. Finally, figure 7c 

illustrates the error signal. From the closed-loop transfer function, the roots of the 

characteristic equation at samples 0, 6, 200, 400, 600, 800, 1000 and 2000 are computed, 

and tabulate them in table 10. Parameter values are extracted from figure 7b from the 

tabulated sample numbers. 

The time constant   of the unstable oscillatory pole at sample number zero of table 10 is 

checked: 
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The pole will decay in s8572.4*4  . Where sf  is a sampling frequency and )1,0(R , is 

the radius of the pole in the unit circle.  

 

The real pole's 'time constant' at sample number zero is given as 

s
R

f s 2621.0
237.0

2.0

||1



  

The pole decays in s0484.1*4  , much faster than the oscillatory pole decay. From table 

10 can be observed that the gain of the controller ranges between 0.01 and 0.2 

(throughout the sample space), making the already heavily damped closed-loop system 

slower, hence the slow response demonstrated in figure 7a. 
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Table 10:  Roots of the oscillatory plant closed-loop control system 

Sample no. Rho0 Rho1 Roots 

0 0.10 0.20  -1.16 + 1.00i 

 -1.1647 - 1.00i 

 0.24 

6 0.01 0.01  -1.16 + 1.00i 

 -1.16 - 1.00i 

 0.23 

200 0.02 0.01  -1.16 + 1.00i 

 -1.16 - 1.00i 

 0.23 

400 0.04 0.10  -1.16 + 1.00i 

 -1.16 - 1.00i 

 0.24 

600 0.01 0.02  -1.16 + 1.00i 

 -1.16 - 1.00i 

 0.23 

800 0.10 0.04  -1.17 + 1.00i 

 -1.17 - 1.00i 

 0.24 

1000 0.15 0.12  -1.17 + 1.00i 

 -1.17 - 1.00i 

 0.24 

2000 0.16 0.16  -1.17 + 1.00i 

 -1.17 - 1.00i 

 0.24 

 

From the results obtained and illustrated in figure 7a, it can be seen that the response 

does not converge, due to the heavily damped closed-loop system caused by the low 
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gain controller. Hence, the settling time is almost infinite and causes the cost function to 

increase continuously. To resolve the this problem, the reference signal amplitude should 

be raised to shorten the settling time, as it affects in the  increase of the gain of the 

controller, hence improving the optimisation, as shown in figure 7d and figure 7e. In the 

same vein, step length should be increased to allow the output signal to settle before the 

reference signal dies away or changes polarity. 

 

Figure 7(d): IFT response for oscillatory plant 

 

Figure 7(e): Parameter trajectory and cost function  

 

Figure 7d and figure 7e demonstrate some degree of optimisation, though it takes a long 

time before the parameters converge (in this case convergence occurs after 4200 

samples). The heavily damped controller requires higher reference signal amplitudes to 

converge. 
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(II) Fast-damped case  

For the fast-damped case, the initial parameters are set at 10 rho  and 11rho , similar 

to section 3.3.1 for a fast-damped case of the DC motor. This was carried out in order to 

make comparisons to the results of the oscillatory plant and those of the DC motor. The 

response of the oscillatory plant and the reference signals are illustrated in figure 8a, 

followed by the results for the controller parameters, as shown in figure 8b. The results 

for the error signal is shown in figure 8e.  

 

Figure 8(a): IFT response for oscillatory plant  

 

Figure 8(b): Parameter trajectory and cost function  
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Figure 8(c): Error signal. 

Figure 8a demonstrates a stable response throughout the entire sample-space, however, 

when analysing it in terms of the parameter trajectory, this IFT optimisation has multi-

minimums. In comparison to results of the DC motor, we see some similarity in output 

responses, especially in the settling time. The roots of the system characteristic equation 

for a given controller parameters are computed at selected sample numbers, as given in 

table 11. This is to analyse the tuning of controller parameters as a result of the IFT 

optimisation. 

One intriguing observation is the existence of two complex poles outside the unit circle 

while the response indicates some level of stability. An obvious reason could be owing to 

the region of convergence (ROC) which is bounded by the complex pole, and the pole 

inside the unit circle. To elaborate the argument further, sample number 1200 is selected 

as an example: the range in this case is -1.1640 < z < 0.2737, and since the region cuts 

the unit circle, the system becomes stable in this region. 

Table 11: Roots of the fast-damped plant for closed loop control system 

Sample No. Rho0 Rho1 Roots 

0 1.00 1.00  -1.18 + 1.018i 

 -1.18 - 1.018i 

 0.27 

5 0.75 0.75  -1.18 + 1.013i 
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 -1.18 - 1.013i 

 0.26 

600 0.30 0.30  -1.17 + 1.00i 

 -1.17 - 1.00i 

 0.25 

800 0.10 0.10  -1.17 + 1.00i 

 -1.17 - 1.00i 

 0.24 

1000 0.20 0.20  -1.17 + 1.00i 

 -1.17 - 1.00i 

 0.24 

1200 0.05 0.05  -1.16 + 1.00i 

 -1.16 - 1.00i 

 0.24 

1400 0.40 0.40  -1.17 + 1.01i 

 -1.17 - 1.01i 

 0.25 

2000 0.65 0.65  -1.18 + 1.01i 

 -1.18 - 1.01i 

 0.26 

 

(III) Oscillatory plant Case 

For the oscillatory plant case, initial parameters are set at 10 rho  and 101rho . This is 

different to the parameters applied in section 3.3.1 for the oscillatory case of the DC 

motor, since the former gave a blow-up error. The response of the oscillatory plant and 

the reference signals are illustrated in figure 9a, followed by the results for the controller 

parameters in figure 9b. The results for the error signal is shown in figure 9c.  
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Figure 9(a): IFT response for oscillatory plant  

 

 

Figure 9(b): Parameter trajectory and cost function 
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Figure 9(c): Error signal 

The IFT is implemented 2000 times, as compared to 1000 times  for the oscillatory case 

in the DC motor application. The reason for this is because the initial oscillatory 

parameters take a long time to converge when applied to the oscillatory plant. Parameters 

tune with high gradient from sample zero to sample 200, then they take a gradual 

gradient, but continue optimising since the cost function gradient has not minimised. 

Parameters together with their respective roots for selected samples are tabulated in table 

12. 
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Table 12: Roots of the oscillatory plant for the closed-loop control system 

Sample No. Rho0 Rho1 Roots 

0 1.00 10.00  -1.16 + 1.05i 

 -1.16 - 1.05i 

 0.22 

50 0.50 8.00  -1.15 + 1.04i 

 -1.15 - 1.04i 

 0.2121 

100 0.50 4.00  -1.16 + 1.02i 

 -1.16 - 1.02i 

 0.23 

1000 0.50 3.50  -1.16 + 1.02i 

 -1.16 - 1.02i 

 0.24 

1600 0.50 3.20  -1.17 + 1.02i 

 -1.17 - 1.02i 

 0.24 

2000 0.50 3.00  -1.17 + 1.02i 

 -1.17 - 1.02i 

 0.24 

 

The roots of the characteristic equation for parameters of selected sample numbers 

tabulated in table 11 demonstrate two complex poles outside the unit circle, with only the 

real pole inside the unit circle – a similar trend to the one observed in the fast-damped 

case of the oscillatory plant. Hence the same argument regarding stability is also applied 

here. 

 

3.3.5 Simulation of the IFT using the unstable plant  

In this section, we test the IFT by applying it to the unstable plant given in equation (31),  
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using a similar procedure as in the IFT applied to the oscillatory plant, and the 

plantsampled into a digital equation. The Matlab code for converting from s-domain 

to z-domain is given in appendix V under the derivation for equation (39). The 

obtained equation is given in equation (37). 
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1052.0




z
gh  [V]         (37) 

Hence equation (37) is converted to a digital equation as given in equation (38). 
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The closed-loop control system for the unstable plant is also derived in appendix V under 

the derivation for equation (39) and the final transfer function is given in equation (39). 
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 (I) Slow-damped case  

The same initial controller parameters ( 1.00 rho  and 2.00 rho ) used for the oscillatory 

plant and the DC motor are applied here, and the IFT is implemented for 1000 samples. 

The results are illustrated in figure 10, though only 600 samples are indicated for the 

response and the error signal, while for parameters and the cost function, only 100 

samples are indicated. This is mainly to make the graphs readable. 
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Figure 10(a): IFT response for unstable plant 

 

 

Figure 10(b): Parameter trajectory for unstable plant and cost function 

 

 

Figure 10(c): Error behaviour 



 

60 
 

The unstable plant response and reference signal is illustrated in figure 10a, followed by 

the controller parameters, rho0 and rho1. The cost function is illustrated in figure 10b, and 

the error signal in figure 10c. The response is unstable from sample number zero to 

sample number 100, where it converges to the oscillatory closed-loop system up to the 

last sample (sample number 1000). Figure 10b illustrates how the controller parameters 

vary, starting with sample number zero to sample number 100, where the gradient of the 

cost function decreased to zero. and Because  of this occurrence, the error signal reduced 

to a minimum (see figure 10c). The roots of the characteristic equation for the unstable 

plant at selected sample points are tabulated in table 13. Using the roots at sample 

number 100, and also the given sampling time (200ms), the IFT is validated by computing 

the settling time and the period of the response. The settling time to the %2  band is 

readily computed to be 9.1s, and the period of oscillation is 7.1s. This agrees with the 

response shown in figure 10a in that one cycle of the response (for example from sample 

200 to sample number 237) takes 37 samples, which works out to be 7.4s. Also, the same 

response settles in 45 samples, working out to be 9s. 

Table 13:  Roots of the oscillatory plant for the closed-loop control system 

Sample No. Rho0 Rho1 Roots 

0 0.10 0.20   1.06 

  1.04 

30 -0.08 -0.10   1.12 

  1.00 

36 -0.21 -0.21   1.14 

  1.00 

42 -0.21 -0.20   1.14 

  1.00 

100 2.60 2.40  0.92 + 0.13i 

 0.92 - 0.13i 

1000 2.60 2.40  0.92 + 0.13i 

 0.92 - 0.13i 
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(II) Fast-damped case 

For the fast-damped case, the controller parameters utilised are 0.10 rho  and 0.10 rho

– the same as used in the DC motor plant. The results generated are given in figure 11. 

 

 

Figure 11(a): IFT response for unstable plant  
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Figure 11(b): Parameter trajectory for unstable plant 

 

Figure 11(c): Error behaviour 

The output response and the reference signal are indicated in figure 11a. The parameters, 

rho0, rho1 and the cost function are shown in figure 11b, and finally, the error signal is 

illustrated in figure 11c. The output response is unstable from sample number zero to 

sample number 130, and takes a longer time than in the case of the slow-damped case. 

At sample number 130, the controller parameters converge to a very fast response with 

an overshoot. The roots of the characteristic equation are computed for the selected 

sample points and tabulated in table 14. 

Table 14: Roots of the fast-damped plant for the closed-loop control system 

Sample No. Rho0 Rho1 Roots 
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0 1.00 1.00  1.00 + 0.10i 

 1.00 - 0.10i 

45 0.90 0.90  1.01 + 0.10i 

 1.01 - 0.10i 

55 0.80 0.80  1.01 + 0.09i 

 1.01 - 0.09i 

87.5 -2.00 -2.00   1.37 

  0.94 

95 6.00 6.00   0.82 

  0.66 

120 7.50 7.50   0.85 

  0.46 

 

(III) Oscillatory case 

Finally, the initial controller parameters utilised for the oscillatory case are 10 rho  and 

160 rho  – the same as in the case of the DC motor. The output response and the 

reference signal are indicated in figure 12a. The parameters, rho0, rho1 and the cost 

function are shown in figure 12c and the error signal is illustrated in figure 12d. The IFT 

is implemented for 1000 samples, however, only 600 samples are shown in figure 12. 

The results obtained are illustrated in figure 12a, and demonstrate oscillations from 

sample number zero to sample number 60, where the response converges to a stable 

oscillatory response with an overshoot of 1.1V and a settling time (to %2  band) of 1.4s 

according to the root at sample number 200. This is the same as the response at sample 

number 200 (see magnified figure 12b). 
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Figure 12(a): IFT response for unstable plant  

 

 

Figure 12(b): Magnified IFT response for unstable plant  

 

Figure 12(c): Parameter trajectory for unstable plant and cost function 
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Figure 12(d): Error behaviour 

Parameters vary from sample number zero to sample number 60, where the system 

converges to a stable oscillatory system of rho0 = 20 and rho1 = 65. The roots of the 

characteristic equation are computed at selected sample points and tabulated in table 15. 

The instability occurs only for a shorter time as compared to the two former cases (slow 

damped and fast damped). The observation reveals the response of high frequency 

initially for the period of 43 samples. 
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Table 15: Roots of the oscillatory plant for the closed-loop control system 

Sample No. Rho0 Rho1 Roots 

0 1.00 16.00  1.00 + 0.41i 

 1.00 - 0.41i 

36 -0.50 10.00  1.08 + 0.31i 

 1.08 - 0.31i 

37 -0.50 5.50  1.08 + 0.23i 

 1.08 - 0.23i 

43 -1.00 0.50   1.18 

  1.03 

200 20.00 65.00   0.56 

 -0.56 

 

3.3.6 CHAPTER SUMMARY 

In this chapter, the IFT technique was tested and validated, as demonstrated by the 

following:  

• The initial controller parameters for the IFT should not be picked randomly, but 

should be determined by fixing the zero of the controller inside the unit circle, so 

that it helps to pull the poles of the closed-loop system inside during optimisation. 

This procedure, used for all three plants, confirmed the viability of the IFT 

technique in optimising badly tuned controllers, to improved ones. 

• The Gamma constant needs to be selected in relation to the size of the error. For 

large error, the gradient of the cost function increases rapidly, and hence, requires 

a small gamma constant, and when the error is small, the cost function increases 

gradually, requiring  a big gamma constant to tune the parameters quickly. Higher 

gamma constants may cause system blow-up due to internal variable overflow as 

a result of the identity matrix becoming asymmetric. The solution to the problem is 

to choose gamma constant by a line search. 
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• Reference signal amplitude variation has an effect on the convergence of the 

controller parameters, and system blow-up for constant gamma. If the amplitude 

of the reference signal is varied, then gamma should be set by the line search. 

• This chapter demonstrated the universality of the IFT in controlling different types 

of systems – a validation that it can control a wide range of plants, as stated in the 

literature. 
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CHAPTER FOUR 

DESIGN OF A DEDICATED IFT MICROCONTROLLER 

 

4.1 INTRODUCTION 

Having studied and validated the IFT technique in chapter three (a necessary task before 

the technique is committed to hardware the design, implementation and verification of a 

Dedicated IFT Microcontroller is now presented in this chapter. To accomplish this, an 

overview of FPGA technology and Electronics Design Automation (EDA) tools is 

presented. This is followed by investigating the feasibility of developing the IFT technique 

into an FPGA device, since it is the device earmarked for development of the 

Microcontroller. The design methodology adopted in this research is a popular 

hierarchical and modular top-down procedure, which is an array of abstraction levels 

(system level, behavioural level, register transfer level (RTL) and physical level). At 

system level, the hardware (Dedicated IFT Microcontroller) is defined or specified based 

on the IFT algorithm described in chapter three. Thereafter, at behavioural level, the 

design is simulated using VHDL, which is created by porting the LabView IFT code 

(developed in chapter three) to the Xilinx EDA tool. The simulation is meant to verify the 

feasibility of running the IFT on FPGA hardware. At register transfer level (RTL), a 

synthesisable VHDL code utilising fixed-point number representation is written. This is 

preferred to floating number representation for implementation into the FPGA, due to the 

benefit of performance. The compiled bit file is downloaded onto the target device (NI 

Digital Electronics FPGA Board featuring Spartan 3). Finally, the developed hardware is 

tested using a method known as simulation in the hardware.  

4.2 OVERVIEW OF FPGA TECHNOLOGY 

FPGAs were first introduced in 1984 by Xilinx [27], and since then have seen tremendous 

growth, and have become a popular implementation media for digital hardware. A few 

examples can be cited from the literature as follows: a digital controller for a dc-dc 
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converter using Floating Point Arithmetic [18]; modular FPGA-Based PID controller [19, 

20]; an auto-tuned digitally controlled buck converter based on relay feedback [21], etc. 

The most recent FPGAs (Xilinx's Virtex ultra scale+ and Kintex ultra scale+) are produced 

using a 16-nm copper process [30], and their density can reach more than 5540850 logic 

elements per component, with internal clocking resources of up to 1 GHz [29].  

As a result of the advancement in process technology, FPGA's enhanced logic capacity 

made them a viable implementation platform for large and complex digital designs, which 

is why it is believed in this study that the IFT technique (despite being a complex 

technique) can be implemented in an FPGA. FPGAs present a compelling alternative for 

digital system implementation based on economical access to scalability and 

performance provided by Moore's law [28]. As Moore's law progresses, it will be difficult 

to use an application-specific integrated circuit (ASIC) because of difficulties brought 

about by state-of-the-art deep submicron processes in VLSI [28], a problem that can only 

be mitigated by using FPGA devices. 

The two fundamental technologies that distinguish FPGAs are architecture and CAD tools 

that a user must employ to create FPGA designs. The goal of this survey is to investigate 

the existing state of the art in FPGA architecture and CAD tools, so that context can be 

provided for the design of the Dedicated IFT Microcontroller. 

An FPGA is defined as a two-dimensional array of configurable logic blocks (CLBs) 

embedded into a sea of programmable interconnection networks, which connects the 

CLBs  (according to the hardware requirement to implement) to each other. The final 

customised FPGA, representing the targeted application, is connected via input/output 

(I/O) blocks to the external world. A basic example of a generic FPGA architecture is 

depicted in figure 13. 
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Figure 13: Generic FPGA architecture 

 

In Xilinx terms, a CLB is a cluster of eight logic cells, or a group of four slices [31]. Based 

on the complexity of a generic CLB, for example the number of logic cells it contains, the 

CLB can be classified as either a fine grain (one logic cell or gate) or coarse grain (CLB 

containing several logic cells or gates). Examples of fine-grain FPGAs are Crosspoint, 

Plessey and Algotronix FPGAs. The main advantage of using fine grain is that CLBs are 

fully utilised because it is easier to use small logic gates efficiently [38]. On the other hand, 

fine-grain FPGAs have problems in that they use a large number of routing segments, 

resulting in a cost in area, since it is the routing network that takes a larger percentage of 

area in an FPGA (ranging from 80% to 90%), in comparison to CLBs that takes only 10% 

to 20% [38]. Alternatively, a coarse-grain CLB comprises look-up tables (LUTs), which 

are very common in Actel, Xilinx and Altera. The structure of a logic cell, which is a 

fundamental grain of the FPGA, is illustrated in figure 14. 
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Figure 14: Logic cell structure [11] 

 

It consists of a four-bit look-up table (LUT-4) that can be configured as ROM, RAM or a 

combinatorial function. A carry-look-ahead data path is also included in the cell to build 

an efficient arithmetic operator. A D-type flip-flop, with all its control inputs (synchronous 

or asynchronous set/reset, enable) permits registering the output of the logic cell [12]. 

Finally, a coarse-grain FPGA does not require a large number of routing segments [38] 

as is required in fine grain because the density of CLBs is higher. This information is 

significant in that it helps in selecting a suitable FPGA for use in a desired application. In 

this research, a coarse-grain FPGA is selected for the design of a Dedicated IFT 

Microcontroller, because the technique is complex and its implementation requires an 

FPGA of high logic capacity. 

Three types of programming technologies are utilised in FPGAs, and these are outlined 

as follows: static RAM (SRAM), flash (EEPROM), and anti-fuse. These programming 

technologies characterise the architecture of an FPG and can also be used as a criterion 

to select a preferred FPGA for an application in question. In the case of the IFT technique 

implementation, SRAM technology was selected. This is because SRAM is by far the 

most widespread technology due to its simple integrated circuit process (it uses standard 

CMOS), and it has fast re-programmability, which is good for testing applications. The 

SRAM FPGAs are normally paired  with external flash memory on the same printed circuit 
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board (PCB) to preserve the application program when power is off. However, the flash 

FPGA is of interest for its non-volatility and area efficiency [28] and can be applied in the 

final design or perfected application because it preserves the configuration of an FPGA 

when the power is off without an external flash memory.. Furthermore, the flash-based 

FPGAs guarantee the configuration against the single-event upset (SEU) radiations [28] 

– a potential candidate for aerospace application.  

More recently, a trend of heterogeneous architectures emerged, with the introduction of 

some dedicated blocks such as Random Access Memory (RAM) DSP accelerator units 

(hardwired multipliers with their accumulators, high-speed clock management circuitry, 

and serial transceivers). The units are embedded into hard processor cores such as the 

PowerPC, or advanced reduced instruction set computing (RISC) machines [31, 33], and 

soft-processor cores such as Nios [32], Picoblaze [31], and Microblaze [31]. Moreover, 

an interesting feature of control applications is the recent integration of an ADC in the 

fusion component from Actel (now known as Microsemi) [33]. 

FPGAs are frequently used to implement complex functions, and the implementation of 

the IFT technique (quite complex also) on an FPGA could be feasible. This claim 

regarding an FPGA having the capability to accommodate complex treatment is backed 

by recent advancement in VLSI, and development of design tools such as hardware 

description languages (HDL) such as VHDL and Verilog [34, 35]. Other developmental 

tools that are emerging nowadays (from both industry and academia) are high-level 

synthesis (HLS) and electronic system level (ESL) synthesis tools. These tools have been 

in the research domain for over three decades, though only recently have found their use 

due to the need for quality results (in terms of performance and energy efficiency, and 

strict time-to-market schedules) in embedded applications [36]. Another interesting 

feature concerning HLS tools is the possession of floating-point number representation, 

which is currently not easy to use in VHDL or Verilog. HLS tools are based on C/C++ or 

system C high-level languages, which have floating-point number capability. The design 

methodologies using the abovementioned tools are briefly described in appendix II. 



 

73 
 

Finally, the FPGA in use in this research is the National Instruments Digital Electronics 

FPGA Board. The NI Digital Electronics FPGA Board is a circuit development platform 

based on the 3S500E Xilinx Spartan- 3E FPGA. Besides the FPGA, the board comprises: 

• sliding switches, 

• LEDs, 

• two-digit, seven-segment display, 

• push buttons, 

• rotary push-button knob and LEDs for the external clock, 

• diligent Pmod terminals for external attachment, 

• USB download interface, and 

• large breadboard area for digital electronics circuitry. 

4.3 DESIGN METHODOLOGY 

As already mentioned, our design follows a hierarchical and modular approach and we 

use the Xilinx ISE EDA tool to accomplish this goal. Going through the levels of 

abstraction, the design is formulated as follows: 

4.3.1 System Level Abstraction 

System level is the first step in the design process. It constitutes defining or specifying 

the Dedicated IFT Microcontroller. However, in our case, the specification was done in 

chapter three where the IFT technique was formulated and simulated with the help of the 

LabView software. However, we redefine it here again in the form of its architecture, as 

illustrated in figure 15, using the equations that were derived in chapter three (to be 

specific, in subsection 3.2.4). Figure 15 can also be termed as a data path (where 

operations are performed) for the Microcontroller.  
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Figure 15: IFT technique architecture 

 

The IFT is formulated using traditional error, thus only the first term of equation (14) is 

used, as shown in equation (40), mainly for simplifying the hardware.  
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The inputs to the data path are the reference signal, plant output signal, gamma constant 

and the parameters designated by )(ir , )(iy j ,  , and inrho _0  inrh _01  respectively. The 

parameters are presented in different symbols to those used in chapter three, mainly to 

indicate that there are initial parameters, and only used in experiment# 1. The flow of 

signals is described exactly as in chapter three. The two counters, (the counter for 

experiment# 1 and the counter for experiment# 2) seemingly not connecting to anything 

in the architecture, are loop counters for the two experiments. The counter for 

experiment# 1 counts the number of iterations for an N-length period in experiment# 1. 
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Similarly, the counter for experiment# 2 counts the number of iterations for an N-length 

period in experiment# 2. When the iteration count is reached, the counter produces a 

status signal for a finite-state machine (FSM), which correspondingly sends an instruction 

to the data path to change the state of the FSM. There are eight tri-state buffers, 

numbered from 1 to 8, responsible for transitioning of the IFT from one experiment to the 

other. The control terminal for each tri-state buffer is signified by either exp# 1 or exp# 2, 

implying the signals buffered by the respective tri-state buffers can only be allowed in a 

specific experiment, and the dynamics of the transition are coordinated by the FSM, also 

known as the control unit. The DAC and plant blocks have their outline dashed to illustrate 

that there are external devices that should not be included in the integrated circuit (IC). 

However, the ADC block shown in the solid outline implies that it can be part of the IC 

since some FPGA vendors have managed to fuse an ADC into the FPGA. 

The data path cannot function by itself and requires a controller termed a finite-state 

machine, or control unit to supervise it. The other related name for the FSM is an algorithm 

state machine (ASM), similar to traditional flowcharts used for programming languages. 

Hence, the FSM and ASM is also defined in relation to the data path, in order to have a 

complete specification of the dedicated Microcontroller.  

The FSM generates instructional signals to the data path in relation to the clock signal. A 

block diagram of an FSM is shown in figure 16, with accompanying instructional and 

status signals. The FSM for the IFT Microcontroller generates two signals to start 

experiment# 1 and experiment # 2 sequentially, and it also receives status signals to 

detect whether the cycle has ended in experiment# 1 or experiment # 2. It also takes the 

clock and error signals as inputs. This FSM is termed as Mealy  machine as whose output 

depends both on current state and inputs. The error signal is checked to detect whether 

it has gone above the tolerated margin or not, and if this is true and the cycle has also 

ended, Experiment# 2 must begin. This explanation is easily illustrated by a state 

diagram, which is indicated in figure 17. 
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Figure 16: IFT technique finite-state machine block diagram 

 

The inputs are denoted as x  for the condition "error e    tolerated error te  and  counter 

exp# 1 N ," and the input for the condition "counter exp#2 N " as c . Moore and mealy 

outputs are also denoted for Experiment# 1 and Experiment# 2 as 1,, yyy ba  and 2y  

respectively. 
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Figure 17: IFT technique FSM state diagram 

 

As shown in figure 17, when the input signal 0x , the transition arrow loops in 

Experiment# 1 and mealy output 11 y  to drive the tri-state buffers in Experiment# 1, but 

when 1x  the arrow transitions to Experiment# 2 with the mealy output 02 y . In 

Experiment# 2 state, the input 1c  makes mealy output 12 y  to drive the tri-state 

buffers for Experiment# 2, but when 0c  the terminal transitions to Experiment# 1. 

Finally, the controller can also be expressed in terms of an algorithm state machine 

(ASM). This is a better representation because it mimics the hardware. Figure 18 

illustrates the ASM chart for the IFT technique. 

 

Figure 18: IFT technique ASM chart 
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From the ASM chart, Boolean expression is thus easily formulated: 

Moore output Qya   and Moore output Qyb   

Mealy output xQy *1   and Mealy output cQy *2   

Next state equation cQxQQ **   

The derived Boolean expression is easily utilised to design the FSM for controlling the 

data path given in figure 9. 

 

Figure 19: IFT technique FSM 

X is the condition for the iteration count, i = N and error, e > tolerated error; c is a condition 

for iteration count, i ≠ N; 1y  and 2y  are signals to operate tri-state buffers for Experiment# 

1 and Experiment# 2 respectively. 

In the system level abstraction, the IFT dedicated Microcontroller was specified. The next 

stage is the behavioural level of abstraction where the code is written to simulate the 

design. The code is usually written in programming languages such as Matlab, LabView, 

or C++. Since this task was done in chapter three, it will not be repeated here, but instead 

the hardware will be describe using a hardware description language and will be 

simulated on the VHDL platform of ISim Xilinx simulator. 

4.3.2 Behavioural Level Abstraction 

In this section, the behaviour of the algorithm using VHDL is described. The development 

of the VHDL code for the IFT Microcontroller is described in the next subheading. 
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I. Development of VHDL Code for IFT Microcontroller 

Following the simulation of the IFT technique on the LabView platform, and its 

specification in the system level abstraction, the behavioural VHDL code is developed 

and simulated in this section. Behavioural modelling is chosen because of its sequential 

attributes, a property suitable for algorithms like the IFT technique. It uses processes to 

describe behaviour of hardware, similar to programming languages, since program 

statements in a process are executed sequentially. Hence, any code developed in  

LabView or the C-language can be ported to a VHDL process block, and would run as 

expected. With this background, the simple procedure utilised was to port the LabView 

code into the Xilinx ISE EDA tool, and with minimal modification, a behavioural model 

VHDL code that describes the IFT hardware was developed. This type of modelling is 

also known as finite-state machine with data path (FSMD), and is preferred to finite-state 

machine plus data path (FSM + D), for ease of implementation.  

 

The IFT Microcontroller VHDL code is composed of three processes, namely: a process 

for clock division, a process for generating the reference signal, and a process for the PI 

controller combined with the IFT technique. The last process is ported from the LabView 

IFT code.  

In the development of the VHDL code, the LabView code was modified to use fixed-point 

number representation in order to enhance accuracy of the controller. Floating-point 

number representation is the best with regard to accuracy, but its implementation is 

complicated and very demanding in terms of hardware resource.  

The VHDL code,  formulated for the IFT Microcontroller with fixed-point number 

representation. To transform the LabView code into the VHDL code, a word length of 12 

bits was chosen to match that of the ADC and the DAC, which also have 12-bit resolution.  

The fixed-point number representation is denoted by Q(m, -n) format. Where Q is a fixed-

point number variable, m is an integer part of a fixed-point number, and n is a fraction part 
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of a fixed-point number. For 12-bit word length and a 2V maximum input/output signal, 

the format is given as Q(1, -10), meaning that the fixed-point number has 2 bits for the 

integer part and 10 bits for the fractional part. Hence, using the specified Q format, all  

LabView file expressions is written in terms of fixed-point representation. The modified 

instructions are then converted to VHDL expressions. An example is demonstrated for 

the following expressions from the LabView code:  

• the comparator, e = r - y,  

• the PI controller, u[t] = u[t-1] + rho0*e[t] + (rho1*T - rho0)*e[t-1], and 

• the plant, y[t] = 0.90483*y[t-1] + 0.09516*u[t]. 

Taking the instruction e = r – y, it is modelled in the form of fixed-point number 

representation, thus e(2, -10) = r(1, -10) - y(1, -10).  

The result of the subtraction register e, is higher by 1 bit than the operand registers. This 

is known as an overflow, which can have an impact on the signal level. For example, in 

this design the reference signal varies between 0V and 2V, meaning that, the result is 

upper-bounded by 2V, and if an overflow occurs, the signal rises beyond 2V, which is a 

problem. To resolve this problem, the most significant bit (msb) of the register is dropped 

(without any loss of accuracy) by scaling or shifting. Hence, register e(2, -10) is shifted to 

the left by 1 bit yielding e(1, -11), which can still be resized or truncated to e(1, -10) to 

maintain the 12-bit format.  

Taking the next instruction that implements the PI controller gives 

u[t] = u[t-1] + rho0*e[t] + (rho1*T - rho0)*e[t-1]  

This is modelled in the form of fixed-point number representation as  

u[t](5,-21) = u[t-1](1,-10) + rho0(1,-10)*e[t](1,-11) +  

 (rho1(1,-10)*T(1,-10) - rho0(1,-10))*e[t-1](1,-11)  

=u[t-1](1,-10) + rho0*e[t](3,-21) + (rho1*T(3,-20) - rho0(1,-10))*e[t-1](1,-11) 

=u[t-1](1,-10) + rho0*e[t](3,-21) + ({rho1*T-rho0}(4,-20))*e[t-1](1,-11) 

=u[t-1](1,-10) + rho0*e[t](3,-21) + {rho1*T+rho0}*e[t-1](6,-31) 

=u[t-1](1,-10) + (rho0*e[t]+{rho1*T+rho0}*e[t-1])(6,-31) 

=(u[t-1]+(rho0*e[t]+{rho1*T+rho0}*e[t-1]))(7,-31) 
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The result of the control register u[t] has 7 bits for the integer part and 31 bits for the 

fractional part. This is scaled by shifting 6 times to the left, yielding u[t](1, -37). Finally, the 

plant expression, given as in equation (19) is reproduced here for convenience. 

 y[t] = 0.90483*y[t-1] + 0.09516*u[t]  

 

It is also modelled in the form of fixed-point number representation as follows: 

 

y(1, -20) = C(1, -10)*y(1, -10) + D(1,-10)* u(1, -10)  

= C(1,-10)*y(1, -10) + D(1,-10)*u(1, -10) 

= C*y(3,-20) + D*u(3,-20) 

=[C*y+D*u](4,-20) 

 

C and D are the constants of the plant, 0.90483 and 0.09516 respectively. 

The result of the output y, has 4 bits for the integer part of the fixed-point number, and 20 

bits for the fractional part of the fixed-point number. This is resized or truncated to allow 

it to fit on the output port, which is a 12-bit word length.  

 

The next procedure was to code in the VHDL language all the modified expressions. The 

code for the comparator, PI controller and the plant is given in table 16. Similarly, 

computation for the IFT component is carried out, however, the transformation is given in 

appendix I. The complete VHDL code is assembled for simulation using the Xilinx IS 

simulator.  

 

The next level of abstraction is the register transfer level, where synthesisable VHDL code 

is developed. 

  

Table 16: VHDL code 

Variable e: ufixed(2 downto -10);  
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Variable r: ufixed(1 downto -10);  

Variable y: ufixed(1 downto -10); 

Variable e: ufixed(2 downto -14);  

Variable u: ufixed(4 downto -29);  

Variable rho1: ufixed(1 downto -14); 

Variable rho0: ufixed(1 downto -14); 

 Variable gain: ufixed(1 downto -14);  

Variable y: ufixed(1 downto -14); 

e[t] := r[t] – y[t]; 

u[t] = u[t-1] + rho0*e[t] + (rho1*T - rho0)*e[t-1] ;  

y[t] := 0.9048*y[t] + 0.0962*u[t]; 

4.3.3 RTL abstraction 

At the RTL level of abstraction, synthesisable VHDL code is developed and simulated, 

that implements process blocks that make up a dedicated IFT microcontroller. The blocks 

are outlined as follows: the clock division block for the PI controller and the IFT; the clock 

division block for the analogue to digital converter (ADC); the block for the reference 

signal; the main block for the PI controller and the IFT technique, and the block for six 

channels of the pulse width modulation DACs. A summary of these blocks is given in 

table 17. After this, the process blocks are instantiated (connected) into a complete 

hardware. This kind of modelling is a combination of behavioural and structural modelling. 

It was adopted because the IFT technique is a highly complex technique to be modelled 

in the structural level entirely, as structural modelling is a low level approach. Each 

process block developed is tested before connecting it into the system, a paradigm known 

as modular design, permitting reuse. In summary, the process blocks are tabulated in 

table 17. The VHDL codes for the process blocks are illustrated in appendix VI. 

Table 17: VHDL code structure for IFT technique 

Process Type Function 



 

83 
 

Clock Divisiontoggle Generates clocks for the main process and the 

r(t) generator process 

Clock DivisionADC Generates clocks for the ADC process 

Reference signal process Generates set-point signal, r(t) 

Analogue to Digital converter process (ADC) Interfaces analogue signals to the IFT technique 

hardware 

Main Process Implements the PI and IFT technique 

Six Pulse Width Modulated Digital to 

analogue converters (DAC) process 

Converts digital signals (set-point, controller 

parameters, and output signal) to analogue 

signals for displaying onto the labview 

oscilloscope 

4.3.3.1 Simulation of VHDL code for IFT Microcontroller 

The VHDL code developed at RTL level is simulated in this section. This simulation differs 

from the one in chapter three since its focus is on validating the feasibility of running the 

IFT technique on the FPGA hardware. A test bench is developed in HDL and perform the 

RTL simulation. The RTL term is used in this instance to mean the HDL code is formulated 

at the register transfer level. A test-bench (functions as a virtual lab bench) consisting of 

the IFT Microcontroller module (described in VHDL language), and a code segment to 

generate a stimulus, are created. The stimulus is 'reset' signal for resetting and 

experiment signals for switching from one experiment to another respectively. The results 

of the simulation are illustrated in figure 20. 
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Figure 20: Simulation Results for the IFT VHDL Code 

 

Figure 20 illustrates the optimisation action of the IFT, in that the parameters (rho0 and 

rho1) show some degree of variation as the tuning process progresses. Even the output 

response of the plant, y_out, shows some level of change in relation to variation in 

parameters. This is a demonstration that IFT technique can run on FPGA hardware. 

 

Device utilisation is checked to ascertain the amount of hardware required to develop the 

Dedicated IFT Microcontroller when modelled using the fixed-point number 

representation, and the results can be compared with other models. The device utilisation 

summary is tabulated in table 18. 

Table 18: Device Utilisation Summary 

 
Used Available Utilisation Comment 

Number of slice 

flip flops 919 9,312 9% ok 

Number of 4 input 

LUTs 1249 9,312 13% ok 

Number of 

occupied slices 940 4,656 20% ok 
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Resource usage is below 50%,indicating that the IFT can be programmed on a smaller 

FPGA hardware. 

4.3.4 Gate level abstraction 

At the gate level of abstraction, the Xilinx EDA tool was used to synthesise and implement 

the VHDL code developed at RTL level. The synthesis process converts the hardware 

description of the IFT Microcontroller into generic gate level components (logic gates and 

flip-flop) for implementation into the FPGA. This is where various IFT Microcontroller 

design files were merged or translated into a single netlist,for technology mapping, 

placing and routing. To elaborate on the three implementation processes, it can be 

expanded as follows: at the translation stage, the software merges multiple design files 

to a single netlist, followed by mapping generic gates to the FPGA's logic cells and input 

and output pins (I/OBs). After mapping, placement and routing is commenced. At this 

stage, the cells are placed in physical locations in the FPGA, and determines the routes 

to connect various signals. Finally, the EDA tool generates a programming file that is 

downloaded into the FPGA. 

4.4 CHAPTER SUMMARY 

In this chapter, the Dedicated IFT Microcontroller was designed by formulating a data 

path (for the PI controller and the optimisation unit) and the FSM for sequencing the 

operations of the data path, as the IFT is a data based or sequential technique. To the 

best knowledge of the author, the implementation of IFT into FPGA hardware has never 

been published in literature before. The design was also simulated on ISim Xilinx 

simulator to check the validity and resource usage. 
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CHAPTER FIVE 

TESTING OF A DEDICATED IFT MICROCONTROLLER 

 

5.1 INTRODUCTION 

In this chapter, a Dedicated IFT Microcontroller is tested. A rig is set up utilising        NI 

Elvis II+, a Digital Electronics FPGA Board, Xilinx ISE Design suite version 12.2 EDA 

tools, LabView 2015 and a Toshiba laptop running Windows 2007. The model used in the 

design is the IFT of 1DOF.  

The process of experimentation begins by downloading VHDL code, developed in chapter 

four, into the Digital Electronics FPGA Board. It is conducted using a technique known as 

simulation in the hardware, since all the components of the microcontroller and the plant 

are imbedded into the FPGA. Six signals are monitored, namely: the output response, 

reference signal, two parameters, the error signal and control signal. These signals are 

analysed and compared to those of theory of chapter three, for validation.  

5.2 EXPERIMENTAL SETUP 

The procedure adopted utilised the VHDL code developed in the subsection 4.3.2, by 

embedding it (all the components, including the plant) into the FPGA device. The code 

was implemented, and monitored the plant output response signal, the reference signal, 

two parameter signals, the error and control signals for analysis and comparison.  

The setup in this experiment included the following: Digital Electronics FPGA Board using 

Spartan 3 from National Instruments; a Xilinx EDA tools, and an NI Elvis II+ panel. The 

NI Elvis II+ integrates 12 most commonly used instruments hosted on the LabView 

platform, making it easy to carry out the experiment. The instruments include an 

oscilloscope, digital multimeter, function generator, bode analyser and a variable power 

supply. Figure 21 depicts the picture of the setup used in the research.  
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The six signals above were measured and analysed through display on the LabView 

platform. By use of the data acquisition system (DAQ) hosted in the Elvis panel, signals 

from the FPGA board were acquired for measurement. The setup in the form of a block 

diagram is illustrated in figure 22. 

The spartan 3 FPGA hosts the VHDL code describing a Dedicated IFT Microcontroller, 

the DC motor indicated as G(z), six channels of PWM,   and DACs, making the 

microcontroller self-contained. Six signals in PWM format are extracted from the FPGA 

(at run time), and are passed through a block of low pass filters for conversion (averaging) 

into analogue signals, which are then acquired by the data acquisition system embedded 

in the NI Elvis II+ panel, for transmission to the LabView display (see figure 21 and 22). 

 

Figure 21: Experimental setup for testing of IFT Microcontroller 
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Figure 22: Block diagram of experimental setup for testing a dedicated IFT 

Microcontroller 

 

The rate of acquisition follows basic rules of sampling theory. The low pass filter is 

basically a resistor and a capacitor connected as shown in figure 23. The six signals from 

the Microcontroller modulates the duty cycle of a PWM signal of a respective DAC that 

generates the signals through the filters, for conversion into analogue voltages via DAQ 

channels all the way to the LabView display. Hence the DAC output voltage is related to 

the duty cycle of the PWM signal as given in equation (41).  

DAC voltage dutycycleamplitude*  [V]   (41)  

 

Figure 23: Low pass filter 



 

89 
 

Duty cycle is obtained by the expression given as: 

Duty cycle 
offon

on

TT

T


  , and the resolution of the DAC is given as 

Resolution 
n2  

T is the time and n  the number of bits, which in the case of the IFT Microcontroller, is 12-

bit resolution. From the resolution, the PWM frequency is determined using the 

expression in equation (42). 

MHz
requecyFPGAclockf

PWMfreq
n

2.1
4096

10*50

2

6

       (42)  

Then the cut-off frequency of the filter is given by the expression in equation (43). 
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This works out as follows: 

0011.0
2.1*142.3

4096

*

2
* 

MHzPWMfreq
CR

n


 seconds, yielding a cut-off frequency of 

909.0909 Hz.  Equation (42) demonstrates decreased PWM frequency at higher 

resolution systems, however, the problem of high ripple at low frequencies diminishes 

DAC performance. At high frequency, the generated PWM signals are free from noise, 

but tend to lower the resolution of the DAC. These two constraints limit the DAC 

performance, which is well suited for FPGA applications because of its compactness. 

From the filters, the signals link to physical pins of the analogue ports of the data 

acquisition system, via the USB cable, into the computer, to the DAQ assistant, which 

acts as an interface between the hardware and LabView. The DAQ assistant then 

distributes the signals to destination graphs. The block diagram of the LabView code is 

illustrated in figure 24. 
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Figure 24: LabView code for displaying signals on graphs 

 

In some cases, a software-based oscilloscope (in LabView) was used specifically to 

measure minute signals, as will be shown later. 

5.2.1 Procedure of the experiment 

Having described the experimental setup, the procedure of the experiment is now 

described. Although the IFT technique assumes no knowledge of the plant, or only partial 

knowledge thereof, this experiment used a known model of the DC motor (in software 

format) from chapter three for the purpose of validation and testing (the Dedicated IFT 

Microcontroller) only.  

The experiment was conducted as follows: first, the PI controller was tested alone without 

the IFT to ensure its proper operation. Thereafter, samples of parameter points derived 

in chapter three were assembled as a terrain for the IFT to operate. Table 19 shows a 

record of the samples. The parameters are chosen with the premise that the zero should 

be inside the unit circle to establish stable terrain for the IFT to operate. Note that the IFT 

here was used for smoothening only. 
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Table 19: Parameter pairs in the region of stability 

Rho0: ± 0.01, 0.02, 0.03, 0.04, 0.05, .............0.9 

Rho1: ± 0.01, 0.02, 0.03, 0.04, 0.05, .............0.9 

 

Second, having defined the stable terrain for the IFT, it is then made to work within the 

specified region, and in this way the IFT optimises fast. Third, the IFT is implemented 

using an external button linking to the latch in the Dedicated IFT Microcontroller, which 

connects to the PI controller. There is also a reset external button for resetting the 

controller when necessary. When the microcontroller is turned on, it runs the PI controller 

alone with initial parameters that are randomly set by default, due to the transition period 

of the microcontroller, which sometimes can exhibit bad responses like the one shown in 

figure 24a. Figure 24b shows the parameters, and figure 24c shows the error and control 

signals. To improve the initial response, the controller is tuned by pressing the tuning 

button, while observing the response trace on the LabView oscilloscope. If the best 

response was not achieved, the button is touched again. The process of searching can 

continue until the parameters converge. 

Looking again at the response in figure 24a in analytical manner: the output response 

shown in figure 24a oscillates at a frequency of 150 Hz, and this oscillation could be as a 

result of positive feedback (at higher values of rho0) caused by the plant lag in the closed-

loop system. The oscillation should have been running at the frequency 5 Hz, slightly 

above the frequency of the DC motor (see chapter three). Such a poor output response 

is improved by tuning, as already described. The tuning button is pressed to search the 

best response, as the one shown in figure 25a. 
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Figure 24(a): Experimental setup for testing of IFT Microcontroller showing the    

initial response of the controller 

The badly tuned controller in this case has average parameters at 05.00 rho  and

05.01rho . Checking the roots of the closed-loop system using equation (32) and the 

current parameters, yields poles 9952.0z  and 9001.0z  close to the unit circle 

boundary, this is sensitive to limit cycles. Hence, the oscillations demonstrated in figure 

24a result from the oscillatory poles. Also trying maximum parameters at 2.00 rho and 

15.00 rho yields poles 9861.0z  and 8948.0z , and minimum parameters at 

2.00 rho and 15.00 rho , yield poles 0152.1z  and 9039.0z , resulting in an 

unstable system, illustrating a badly tuned controller. However, the IFT was able to tune 

it to a better response, as shown in figure 25a. 

The error and control signals are illustrated in figure 24c. Both signals average at 0.05V, 

pushing the output response up, as can be seen in figure 24a. 
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Figure 24(b): Resulting parameters from running the IFT Microcontroller 
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Figure 24(c): Experimental setup for testing of IFT Microcontroller 

 

The results of this experimental setup after convergence are illustrated in figure 25a, 

verification in figure 25b, followed by the results for controller parameters given in figure 

25c and figure 25d, illustrating results for error signal and control signal.  

Figure 25a illustrates the best response resulting from controller tuning by the IFT, 

though, there is an exhibit of noise, which could be as a result of ripple from the PWM 

DAC at low frequencies. Verification of experimental results for the selected  rho-value, 

from figure 25c, matches those predicted from theory, for example stepping the same 

system formulated in the Laplace domain as given in equation (44), and is given in figure 

25b. 

10

2

10

*01.1*)*01.11(*2

*01.1**01.1
)(










ss

s
sy [V]   (44) 

Both traces indicate a settling time of 20 ms, which is a validation of the developed 

hardware.  
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Figure 25(a): Experimental setup for testing of IFT Microcontroller 

 

 

Figure 25(b): Comparison of response from the hardware with the 

theoretical response 
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Figure 25(c): Experimental setup for testing of IFT Microcontroller 

 

Figure 25(d): Experimental setup for testing of IFT Microcontroller 

 



 

97 
 

5.3 CHAPTER SUMMARY 

In this chapter, the Dedicated IFT Microcontroller was tested through the use of the 

method known as simulation in the hardware, where all the components of the 

Microcontroller (including the plant), are imbedded into the FPGA. Six signals are 

extracted through the DAC for measurement, and analysis on the LabView display. The 

captured output response is verified for the given rho-values to match with those predicted 

from theory. The validation is ascertained, proving the hardware as working. 
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CHAPTER SIX 

CONCLUSION, CONTRIBUTIONS AND FUTURE RESEARCH 

 

6.1 INTRODUCTION 

In this chapter, the author gives an outline of the contribution made in the thesis, 

conclusion and the direction of future research. 

6.2 NEW CONTRIBUTIONS 

The main contribution of the thesis is the experimental validation of IFT on FPGA 

hardware given in chapter four and the successful testing of the Dedicated IFT 

Microcontroller delineated in chapter five. As opposed to the main body of work with IFT 

where implementations is mainly focused on theory and validated by simulations and 

experiments where the main computing is run on PCs (desktops, laptops). In this work 

the possibility of running IFT directly on dedicated IFT Microcontroller built on FPGA 

technology is proven. This could incentivize the area of dedicated auto tuning commercial 

applications.  

The thesis has also made a contribution in the analysis of 1DOF IFT technique in terms 

of limitations of applicability for correct implementation, which is the main work of chapter 

three. 

6.3 FUTURE RESEARCH 

In view of the design of the Dedicated IFT Microcontroller, the author recommends the 

following research direction in future: 

• Use floating-point number representation to improve the resolution and accuracy 

in numerical computations by trading off performance in terms of speed and 

required FPGA resource; 
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• Use Vivado's High Level Synthesis (HLS) methodology, since its principle is based 

on traditional programming languages like C++. It is expected that HLS can 

improve the workability of the hardware as it has the properties of data-based 

algorithms and has double precision floating point capacity; and 

• Implementation of more advanced IFT criterion functions such as 2DOF. 

6.4 CONCLUSION 

In this thesis a dedicated IFT microcontroller has been developed through the following: 

A. exploration of the IFT theory and its applications, followed by the review of 

literature and a survey of EDA tools. 

B. investigation of the IFT by applying it to three different models and each model 

tested using three types of initial controllers, varlying amplitude of the reference 

signal and constant amplitude, single-step reference signal. 

C. designing the Dedicated IFT Microcontroller by utilisation of hierarchical and 

modular top down procedure, followed by simulation and validation. 

6.5 PUBLICATIONS 

From the work carried out in this thesis thus far, two papers have been published to: 

• Springer book series of the Automation Control Theory Perspectives in Intelligent 

Systems, chapter 20, and it is entitled "FPGA Based Self Tuning PI Controller 

using IFT Technique," DIO: 10.1007/978-3-319-33389-2_20, 

• IEEE Xplore entitled "Study of IFT Technique in a View to Create a Novel 

Hardware," DOI: 10.1109/CIACT 2017.7977346. 

• A journal paper has been written, entitled "Validation of IFT Technique for 

Imbedded Applications," which is in readiness for publication to IEEE Control 

System Technology. 
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APPENDIX I 

Here we transform the IFT component from LabView code into the fixed-point number 

representation as given below: 

de_rho0[t-1] = de_rho0[t] 

de_rho0[t-1](1,-10) = de_rho0[t](1,-10) 

de_rho1[t-1] = de_rho1[t] 

de_rho1[t-1](1,-10) = de_rho1[t](1,-10) 

r[t] = e[t] 

r[t](1,-10) = e[t](1,-10) 

e2[t-1] = e2[t] 

e2[t-1](1,-10) = e2[t](1,-10) 

e2[t] = r[t] - y2[t] 

e2[t](2,-10) = r[t](1,-10) - y2[t](1,-10) 

u2[t-1] = u2[t] 

u2[t] = u2[t-1] + rho0*e2[t] + (T*rho1 - rho0)*e2[t-1] 

u2[t](5,-21) = u2[t-1](1,-10) + rho0(1,-10)*e2[t](1,-11) + (T(1,-10)*rho1(1,-10) - rho0(1,-

10))*e2[t-1](1,-11) 

y2[t] = 0.9048*y2[t] + 0.0962*u2[t] 

y2[t](1,-20) = 0.9048*y2[t](1,-10) + 0.0962*u2[t](1,-10) 

de2_rho0[t] = (rho0/(rho0 + rho1))*de2_rho0[t-1] + (1/(rho0 + rho1))*(e2[t]-e2[t-1]) 

de2_rho0[t](14,-23) = (rho0/(rho0 + rho1))*de2_rho0[t-1] + (1/(rho0 + rho1))*(e2[t]-e2[t-

1]) 

de2_rho1[t] = (rho0/(rho0 + rho1))*de2_rho1[t-1] + (1/(rho0 + rho1))*(e2[t]-e2[t-1]) 

de2_rho1[t](14,-23) = (rho0/(rho0 + rho1))*de2_rho1[t-1] + (1/(rho0 + rho1))*(e2[t]-e2[t-

1]) 

 

dJ_rho0[t-1] = dJ_rho0[t] 

dJ_rho1[t-1] = dJ_rho1[t] 

dJ_rho0[t] = dJ_rho0[t-1] + e2[t]*de2_rho0[t] 

dJ_rho0[t](3,-21) = dJ_rho0[t-1] + e2[t]*de2_rho0[t] 
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dJ_rho1[t] = dJ_rho1[t-1] + e2[t]*de2_rho1[t] 

dJ_rho1[t](3,-21) = dJ_rho1[t-1] + e2[t]*de2_rho1[t] 

dJ_rho0y[t] = dJ_rho0[t] - dJ_rho0[t-1] 

dJ_rho0y[t](2,-10) = dJ_rho0[t] - dJ_rho0[t-1] 

dJ_rho1y[t] = dJ_rho1[t] - dJ_rho1[t-1] 

dJ_rho1y[t](2,-10) = dJ_rho1[t] - dJ_rho1[t-1] 

rho0[t-1] = rho0[t] 

rho1[t-1] = rho1[t] 

rho0[t] = rho0[t-1] - gamma*dJ_rho0y 

rho0[t](3,-21) = rho0[t-1] - gamma*dJ_rho0y 

rho1[t] = rho1[t-1] - gamma*dJ_rho1y 

rho1[t](3,-21) = rho1[t-1] - gamma*dJ_rho1y 

end. 
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APPENDIX II 

 HDL design methodology 

A famous design HDL methodology is based on the hierarchical and modular approach 

defined at different levels of abstraction using design "top-down methodology" [37]. This 

hierarchical flow of the top-down design method is shown in figure APII.1.  

 

Figure APII.1:  Top-down design flow 

and its corresponding design flow are presented as follows: 

• System level: this is where specifications of the circuit are given, in other words 

components of the system are delineated. For example, a computer system will 

comprise the CPU, memory, input/output, and display devices. 

• Behavioural level: this is algorithmic description of the system; it is described in 

terms of hardware description language (HDL). 

• Register transfer level (RTL): this is where the circuit is described in terms of its 

components (how the components are connected); synthesisable HDL is written 

at this level. 
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• Physical level: this is where the circuit is physically described by taking into 

account the target hardware characteristics involved in implementing the hardware 

description into an FPGA and gives an exact representation of the circuit in terms 

of desired specifications as given in system level. In order to simulate and validate 

the digital circuit's functionality, a test bench is written and executed. 

HLS design methodology 

Unlike hardware description language (HDL), HLS design methodology raises the design 

abstraction level and allows rapid generation of optimised RTL hardware for performance, 

area and power consumption [39]. The hierarchical flow of design methodology for HLS 

is shown in figure APII.2,  

and its corresponding design flow are presented as follows: 

Compilation and modelling: this is where HLS begins, by transforming (compiling the 

functional specifications) the input description into a formal representation. 

Allocation: this is where the type and number of functional hardware (for example adders, 

multipliers, multiplexers, etc.) needed to satisfy the design constraints are defined; 

depending on the HLS tool, some components may be added during scheduling and 

binding tasks; the components are selected from the RTL component library.  

Scheduling: this is where all operations required in the specification model must be 

scheduled into cycles ( in other words, for each operation variables must be read from 

their sources and brought to the functional unit where they are executed and the result 

brought to its destination, storage or functional unit). 

Binding: this is where each variable that carries values across cycles must be bound to a 

storage unit. 

Generation: this is where an RTL model of the synthesised design is generated. 
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Figure APII.2: HLS design flow 
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APPENDIX III 

Root Locus Results for PI Controller Applied to the DC Motor 

In order to test and validate the optimisation action of the IFT, root locus is utilised to 

investigate the stability region of the PI controller when applied to the DC motor. The 

transfer function for the closed-loop system is given in (32) and is reproduced here 

(APIII.1) for convenience. 
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The trajectories of characteristic equation roots for a range of zero locations are illustrated 

in figure APIII.1 to figure APIII.8. 

 

Figure APIII.1. Root locus for PI controller applied to DC motor for zero at 0.9 
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At location where the zero = 0.9, the roots are inside the unit circle, hence the system is 

stable. 

 

Figure APIII.2. Root locus for PI controller applied to DC motor for zero at 0.8 

At location where the zero = 0.8 all the roots are inside the unit circle with larger loci than 

the loci at zero location of 0.9. This is still a stable system. 
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Figure APIII.3. Root locus for PI controller applied to DC motor for zero at 0.4 

At location where the zero = 0.4 all the roots are inside the unit circle having loci larger 

than at zero location of 0.8. 
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Figure APIII.4. Root locus for PI controller applied to DC motor for zero at 0.1 

At location where the zero = 0.1 all the roots are inside the unit circle having loci larger 

than at zero location of 0.4. 
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Figure APIII.5. Root locus for PI controller applied to DC motor for zero at -0.2 

At location where the zero = -0.2 the loci begins to encircle the unit circle meaning that 

part of the loci gets into unstable region. 

 

 



 

115 
 

 

Figure APIII.6. Root locus for PI controller applied to DC motor for zero at -0.4 

At location where the zero = -0.4 the part of the loci that encircles the unit circle enlarges. 
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Figure APIII.7. Root locus for PI controller applied to DC motor for zero at -0.6 

At location where the zero = -0.6 the part of the loci that encircles the unit circle widens 

further. 
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Figure APIII.8. Root locus for PI controller applied to DC motor for zero at -0.9 

At location where the zero = -0.9 the part of the loci that encircle the unit circle widen 

further. 

Summary 

From the results of the captured root locus traces, the closed-loop poles for the system 

with zeros from 2.0z  to 9.0z  are stable, but for the system with zeros from 9.0z

to 4.0z have part of their loci in unstable region. Hence, it is prudent to use the system 

with zeros from 2.0z  to 9.0z  which have the loci completely inside the unit circle. 
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APPENDIX IV 

In this appendix, we demonstrate five different output responses, obtained from running 

the PI controller applied to the DC motor in a closed-loop (without the IFT). The controller 

utilises a range of controller parameters so that we later use them as initial parameters 

for running the PI controller with the IFT 'on' in order to investigate the tuning action of the 

IFT technique. The controller parameters are chosen by first assuming rho0 and then 

computing rho1 by using closed-loop system zero from (32), which is reproduced here for 

convenience. 

Tz *1
0

1




  

Where T   

is the sampling frequency of the PI controller. 

1. Slow-damped PI controller (rho0 = 0.1 and rho1 = 0.2)  

Figure APIV.1 illustrates the output response of the closed-loop system for controller 

parameters rho0 = 0.1 and rho1 = 0.2. The response has not settled in the given step-

length of 200 samples or 40 seconds. This indicates that the slow-damped PI controller 

requires longer step length than that of 200 samples length to enable the output response 

settle. 

 

Figure APIV.1 Output response of the DC motor  
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2. Fast-damped PI controller (rho0 = 1.0 and rho1 = 1.0) 

Figure APIV.2 illustrates the output response of the closed-loop system for controller 

parameters rho0 = 1.0 and rho1 = 1.0. The response settles in 90 samples or 18 seconds 

of the step length. This demonstration indicates that the fast-damped PI controller does 

not require longer step-length than the 200 samples length to enable the response settle. 

 

Figure APIV.2 Output response of the DC motor 

3. Fast-damped PI controller (rho0 = 1.0 and rho1 = 2.0)  

Figure APIV.3 illustrates the output response of the closed-loop system for controller 

parameters rho0 = 1.0 and rho1 = 2.0. The response settles in 60 samples or 12 seconds 

of the step length. 

Figure APIV.3 Output response for the DC motor 
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4. Oscillatory PI controller (rho0 = 1.0 and rho1 = 9.0) 

Figure APIV.4 illustrates the output response of the closed-loop system for controller 

parameters rho0 = 1.0 and rho1 = 9.0. The response settles in 60 samples or 12 seconds 

of the step length; same as the fast-damped PI controller of rho0 = 1.0 and rho1 = 2.0.  

 

Fig. APIV.4 Output response for the DC 

5. Oscillatory PI controller (rho0 = 1.0 and rho1 = 16.0)  

Figure APIV.5 illustrates the output response of the closed-loop system for controller 

parameters (rho0 = 1.0 and rho1 = 16.0). The response settles in 80 samples or 16 

seconds of the step length.  

 

Figure APIV.5 Output response for the DC motor 
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Three of the above controller parameters are used as initial parameters for the study and 

testing of IFT technique in section 3.3. These are the slow-damped controller (rho0 = 0.1 

and rho1 = 0.1), the fast-damped controller (rho0 = 1.0 and rho1 = 1.0) and the oscillatory 

controller (rho0 = 1.0 and rho1 = 16) 
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APPENDIX V 

Various derivations for chapter three are done here to avoid choking the flow concept of 

the thesis. These are presented respective of equation numbers in chapter three as given 

in the subheadings below.  

1. Derivation for (17) and (18) from section 3.2.4 

The PI controller without ZOH circuit transfer function is transformed into the digital 

equation as follows: 
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Giving the difference equation (AP V.17): 

10101

010

**)(

)(*)(**)()()(*

 



tttt eeuu

zezezzuzuz




      (AP V.17) 

We now derive the PI controller difference equation with a zero-hold circuit (ZOH) 

circuit for driving the plant as follows: 
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Giving the difference equation: 

10101 *)*(*   tttt eTeuu         (AP V.18) 

2. Derivation for (19) from section 3.2.4 
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The DC motor s-domain transfer function is converted to z-domain to derive a digital 

equation as given in (AP V. 19) 
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)(*09516.0)1(*904837.0)( tutyty         (AP V.19) 

3. Derivation for (32) from section 3.3 

Derivation for a closed-loop PI controller applied to the DC motor is illustrated as follows: 
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4. Derivation for (34) from section 3.3.4 

We use Matlab command to convert oscillatory plant of (30) from s- domain to z-domain 

as given below: 

>>sampling time = 0.2s; 
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>>h = tf(10, [ 1 3 10]); 

>>gh = c2d(h, sampling time, 'zoh') 

When the code is run, the transfer function (in z-domain with holding circuit) is generated 

as given in (34) and presented here for ease of reference. 
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z
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Then (34) is converted to a digital equation that is given in (35). 

 

 

2121 *1308.0*1601.0*5488.0*252.1   ttttt uuyyy  [V]   (AP V.35) 

We utilise the PI controller again to control the oscillatory plant discretised above. The 

open-loop PI controller applied to the oscillatory plant is given as  

5. Derivation for (36) from section 3. 

Derivation for a closed-loop PI controller applied to the oscillatory plant is done as follows: 
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6. Derivation for (37) from section 3. 
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 The Matlab code for converting from s-domain to z-domain. 

%start of Matlab code 

>>sampling time = 0.2s; 

>>h = tf(1, [ 2 -1]); 

>>gh = c2d(h, sampling time, 'zoh') 

%end of Matlab code 

And after running the code (39) is generated: 
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Hence the above equation is converted to a digital equation. 
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7. Derivation for (39) from section 3. 

 

The closed-loop control system for the unstable plant is derived as follows: 
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