

DESIGN OF A DEDICATED IFT MICROCONTROLLER

by

GRAYSON HIMUNZOWA

Student number: 214025179

Submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN ENGINEERING (MECHATRONICS)

in the

FACULTY OF ENGINEERING

at the

NELSON MANDELA UNIVERSITY

Supervisor: Professor Farouk Smith

2017

ii

SUMMARY

The design of a Dedicated IFT Microcontroller originated from the successful

implementation of the Iterative Feedback Tuning (IFT) technique into the Digital Signal

Processor microcontroller (DSP56F807C) at the University of Cape Town in 2006.

However, implementation of the IFT technique on a general-purpose microcontroller

is neither optimal, nor a cost-effective exercise, as most of the microcontroller

peripherals remain unused, and drain energy for doing nothing. In addition,

microcontrollers and DSPs are software-driven devices whose nature is sequential in

executing algorithms, and hence have a significant effect on the bandwidth of the

closed-loop control. To mitigate the said problem, the design of a Dedicated IFT

Microcontroller is proposed in this thesis. To accomplish this goal, the preliminary task

was to explore the IFT theory and its applications, followed by a review of the literature

on FPGA design methodology for industrial control systems, Microcontroller design

principles, and FPGA theory and trends. Furthermore, a survey of electronic design

automation (EDA) tools and other application software was also conducted.

After the literature review, the IFT was investigated exhaustively by applying it to three

types of plants, namely: a DC motor, an oscillatory plant, and an unstable plant. Each

of these plants were tested using three types of initial controllers, namely heavily-

damped, critically damped and under-damped initial controllers. The plants were also

tested by varying the amplitude of the reference signal, followed by using a single-step

signal of constant amplitude of one volt. The intention of exploring all of these

possibilities was meant to firmly expose the IFT boundaries of applicability, so that the

final product would not be vulnerable to unnecessary post-production discoveries.

The design methodology adopted in this research was a popular hierarchical and

modular top-down procedure, which is an array of abstraction levels that are detailed

as: system level, behavioural level, Register-Transfer Level (RTL) and Gate level. At

system level, the Dedicated IFT Microcontroller was defined. Thereafter, at

behavioural level, the design was simulated using VHDL, created by porting the

LabView IFT code to the Xilinx EDA tool. At the RTL, the synthesisable VHDL code

utilising fixed-point number representation was written. The compiled bit file was

downloaded onto National Instruments (NI) Digital Electronics FPGA Board featuring

iii

the Spartan 3 series FPGA. This was tested, using a method known as simulation in

the hardware.

The key contribution of this thesis is the experimental validation of the IFT technique

on FPGA hardware as it has never been published before, the work described in

chapter four and five. The other contribution is the analysis of 1DOF IFT technique in

terms of limitations of applicability for correct implementation, which is the main work

of chapter three.

This work could be used to explore other computational methods, like the use of

floating-point number representation for high resolution and accuracy in numerical

computations. Another avenue that could be exploited is Xilinx's recent Vivado

methodology, which has the capacity for traditional programming languages like C or

C++, as these have in-built floating-point number capability.

Finally, out of this work, two papers have already been published by Springer and

IEEE Xplore Publishers, and a journal paper has also been written for publication in

the Control Systems Technology journal.

iv

ACKNOWLEDGEMENTS

• I dedicate this thesis to the almighty God for giving me life, energy and zeal

throughout my period of study.

• Thank you to my supervisor (Professor Farouk Smith) for guidance and also

financial support in the procurement of research equipment and reviewing the

thesis.

• Thank you to Professor EI-Hossein Khaled for welcoming me to NMMU.

• Thank you to Professor Martin Braae, formerly from the University of Cape

Town, for assistance with the technical issues of the project.

• Thank you to Professor Mundia Muya and Doctor Ackim Zulu (both from the

University of Zambia) for supporting this study programme at home.

v

LIST OF FIGURES

Page

Figure 1: Block diagram of closed loop system of two-degree-of-freedom

controller ... 11

Figure 2: Closed-loop system for 1DOF controller ... 18

Figure 3(a): Reference signal and DC motor output signal 30

Figure 3(b): Rho0, Rh01 and cost function, J signals ... 31

Figure 3(c): Rho0, Rh01 and cost function, J signals ... 31

Figure 3(d) Error signal ... 31

Figure 4(a): Reference signal and DC motor output signal 33

Figure 4(b): PI controller parameter signals and cost function signal 33

Figure 4(c) : Magnified PI controller parameter signals ... 34

Figure 4(d): Magnified cost function signal ... 34

Figure 4(e) : Error signal .. 34

Figure 5(a): Reference signal and DC motor output signal 36

Figure 5(b): PI controller parameter signals and cost function signal 37

Figure 5(c): PI controller parameter signals and cost function signal 37

Figure 5(d): Error signal .. 38

Figure 6(a): Reference signal and DC motor output signal 43

Figure 6(b): PI controller parameter signals and cost function signal 44

Figure 6(c): Error signal .. 44

vi

Figure 7(a): IFT response for oscillatory plant .. 47

Figure 7(b): Parameter trajectory and cost function .. 48

Figure 7(c): Error signal .. 48

Figure 7(d): IFT response for oscillatory plant .. 51

Figure 7(e): Parameter trajectory and cost function .. 51

Figure 8(a): IFT response for oscillatory plant .. 52

Figure 8(b): Parameter trajectory and cost function .. 52

Figure 8(c): Error signal. ... 53

Figure 9(a): IFT response for oscillatory plant .. 55

Figure 9(b): Parameter trajectory and cost function .. 55

Figure 9(c): Error signal .. 56

Figure 10(a): IFT response for unstable plant .. 59

Figure 10(b): Parameter trajectory for unstable plant and cost function 59

Figure 10(c): Error behaviour ... 59

Figure 11(a): IFT response for unstable plant .. 61

Figure 11(b): Parameter trajectory for unstable plant ... 62

Figure 11(c): Error behaviour ... 62

Figure 12(a): IFT response for unstable plant .. 64

Figure 12(b): Magnified IFT response for unstable plant .. 64

Figure 12(c): Parameter trajectory for unstable plant and cost function 64

Figure 12(d): Error behaviour ... 65

vii

Figure 13: Generic FPGA architecture ... 70

Figure 14: Logic cell structure [11] ... 71

Figure 15: IFT technique architecture .. 74

Figure 16: IFT technique finite-state machine block diagram 76

Figure 17: IFT technique FSM state diagram ... 77

Figure 18: IFT technique ASM chart .. 77

Figure 19: IFT technique FSM.. 78

Figure 20: Simulation results for the IFT VHDL code ... 84

Figure 21: Experimental setup for testing of IFT microcontroller 87

Figure 22: Block diagram of experimental setup for testing a

dedicated IFT microcontroller ... 88

Figure 22: Low pass filter ... 88

Figure 23: LabView code for displaying signals on graphs 90

Figure 24(a): Experimental setup for testing of IFT microcontroller showing the initial

response of the controller ... 92

Figure 24(b): Resulting parameters from running the IFT microcontroller 93

Figure 24(a): Experimental setup for testing of IFT microcontroller 94

Figure 25(a): Experimental setup for testing of IFT microcontroller 95

Figure 25(b): Comparison of response from the hardware with the theoretical

response .. 95

Figure 25(c) : Experimental setup for testing of IFT microcontroller 96

Figure 25(b): Experimental setup for testing of IFT microcontroller 96

viii

LIST OF TABLES

Page

Table 1: IFT signals for experiment#1, experiment#2 and experiment#3 13

Table 2: Roots of the DC Motor closed-loop control system 27

Table 3: Routh-Hurwitz for the characteristic equation in (32) 28

Table 4: Roots of the DC Motor closed-loop control system 32

Table 5: Roots of the DC Motor closed-loop control system 35

Table 6: Roots of the oscillatory closed-loop control system 38

Table 7: Effect of varying amplitude reference signal – a slow-damped case 39

Table 8: Effect of varying amplitude reference signal – a fast-damped case 40

Table 9: Effect of varying amplitude reference signal – an oscillatory case 41

Table 10: Roots of the oscillatory plant closed-loop control system 50

Table 11: Roots of the fast-damped plant for closed-loop control system 53

Table 12: Roots of the oscillatory plant for closed-loop control system 57

Table 13: Roots of the oscillatory plant for closed-loop control system 60

Table 14: Roots of the fast-damped plant for closed-loop control system 62

Table 15: Roots of the oscillatory plant for closed loop control system 66

Table 16: VHDL code 81

Table 17: VHDL code structure for IFT technique ... 82

Table 18: Device utilisation summary .. 84

Table 19: Parameter pairs in the region of stability ... 91

ix

LIST OF ACRONYMS

1-DOF, 2-DOF One Degree of Freedom, Two Degrees of Freedom

BFGS Broyden - Fletcher - Goldfarb - Shanno

DSP Digital Signal Processor

PID, PI Proportional Integral Differential, Proportional Integral

DC, ISE Direct Current, Integrated System Environment

VLSI Very Large Scale Integration

EDA Electronic Design Automation

IC, NI Integrated Circuit, National Instruments

FSM, ASM Finite State Machine, Algorithmic State Machine

VHDL Very High Speed IC Hardware Description Languages

HLS High Level Synthesis

ADC Analogue-to-Digital Converter

DAC Digital-to-Analogue Converter

ZOH Holding Circuit

FPGA Field-Programmable Gate Array

RTL Register Transfer Level

IFT Iterative Feedback Tuning

PWM Pulse Width Modulation

x

TABLE OF CONTENTS

Page

DECLARATION ... I

SUMMARY ... II

ACKNOWLEDGEMENT .. IV

LIST OF FIGURES ... V

LIST OF TABLES .. VIII

LIST OF ACRONYMS ... IX

CHAPTER 1

RESEARCH PROPOSAL

1.1 INTRODUCTION ... 1

1.2 MOTIVATION OF THE RESEARCH ... 1

1.3 PROBLEM STATEMENT .. 2

1.4 HYPOTHESIS.. 2

1.5 OBJECTIVES .. 3

1.6 RESEARCH METHODOLOGY.. 3

1.7 PLAN OF DEVELOPMENT ... 4

CHAPTER 2

LITERATURE REVIEW

2.1 SEARCH OBJECTIVE ... 5

2.2 IFT TECHNIQUE APPLICATIONS SURVEY .. 5

2.3 FPGA-BASED CONTROLLERS LITERATURE REVIEW 7

2.4 SUMMARY .. 9

xi

CHAPTER THREE

STUDY AND VALIDATION OF IFT TECHNIQUE

3.1 INTRODUCTION ... 10

3.2 ITERATIVE FEEDBACK TUNING TECHNIQUE OVERVIEW 10

3.2.1 Generation of the gradients for modelling error and controller signal 16

3.2.2 IFT technique of first-degree-of-freedom (1DOF) controller 17

3.2.3 Criterion function specification .. 19

3.2.4 Algorithm formulation for 1DOF .. 20

3.3 SIMULATION OF IFT TECHNIQUE USING LABVIEW PLATFORM 24

3.3.1 Simulation of IFT applied to the DC Motor .. 29

3.3.2 The effect of varying the reference signal amplitude on IFT optimisation 39

3.3.3 The effect of single-step reference signal on IFT optimisation 43

3.3.4 Simulation of IFT using oscillatory plant .. 45

3.3.5 Simulation of the IFT using unstable plant .. 57

3.3.6 Summary ... 66

CHAPTER 4

4.1 INTRODUCTION ... 68

4.2 OVERVIEW OF AN FPGA TECHNOLOGY ... 68

4.3 DESIGN METHODOLOGY .. 73

4.3.1 System Level Abstraction .. 73

4.3.2 Behavioural Level Abstraction ... 78

4.3.3 RTL Abstraction... 82

4.3.3.1 Simulation of VHDL Code for IFT Microcontroller 83

4.3.4 Gate Level Abstraction .. 85

4.4 SUMMARY .. 85

xii

CHAPTER 5

TESTING OF A DEDICATED IFT MICROCONTROLLER

5.1 INTRODUCTION ... 86

5.2 EXPERIMENTAL SETUP .. 86

5.2.1 Procedure of the experiment ... 90

5.3 SUMMARY .. 97

CHAPTER 6

CONTRIBUTION AND FUTURE RESEARCH

6.1 INTRODUCTION ... 98

6.2 NEW CONTRIBUTIONS .. 98

6.3 FUTURE RESEARCH ... 98

6.4 PUBLICATIONS .. 99

REFERENCE ... 100

APPENDIX I ... 105

APPENDIX II .. 107

APPENDIX III ... 110

APPENDIX IV .. 118

APPENDIX V ... 122

1

CHAPTER ONE

RESEARCH PROPOSAL

1.1 INTRODUCTION

The design of a Dedicated IFT Microcontroller was conceived as the result of the

successful implementation of the Iterative Feedback Tuning (IFT) technique into the

Digital Signal Processor microcontroller (DSP56F807C) at the University of Cape Town

in 2006. However, the implementation of the IFT technique on a general-purpose

microcontroller is not optimal, nor a cost-effective exercise, as most of the microcontroller

peripherals remain unused, meaning that such extra hardware is a cost in energy.

Microcontrollers and DSPs are software-driven devices whose nature is sequential in

executing algorithms, and hence have a significant effect on the bandwidth of the closed

loop control. These problems can be mitigated by developing a dedicated or hard-wired

IFT Microcontroller that contains only necessary peripherals, and having the hardware

IFT execute in parallel. To realise this, the IFT Microcontroller was developed on a Field

Programmable Gate Array (FPGA). This concept would not only resolve the above

mentioned problems, but also improve performance (in terms of power consumption and

execution speed).

1.2 MOTIVATION OF THE RESEARCH

A vast number of IFT applications currently existing or described in [1] and other

literatures, is one of the motivating factors that triggered this research. For example:

tuning of PID controller parameters [2, 3, 4, 7], application to Zang sugar cane process

plant [5], application to non-linear systems [6], application to model-free design with

guaranteed stability [8], application to DC-servo with backlash [9], application in design

of robust controllers [9], to mention a few. The IFT technique is one of the most recent

methods that can mitigate the above-mentioned problems efficiently, but no stand-alone

hardware or commercial product exists that can implement IFT technique.

2

Finally, due to rapid progress in very large-scale integration (VLSI) technology and

electronic design automation (EDA) techniques in recent years, an opportunity for the

development of complex and high-performance controllers for industrial electronic

systems has been created. Nowadays, the design engineer is using modern EDA tools

to design, simulate, and verify a design before committing to hardware [12].

The development of a Dedicated IFT Microcontroller at the level of an integrated circuit

(IC) is important, as this can lead to commercialisation of the IFT technique or

development of industrial product with compactness, and excellent control performance

at reduced cost.

1.3 PROBLEM STATEMENT

Problems resulting from modelled and external uncertainty always deteriorate the control

performance of proportional-integral-differential (PID) controllers that are widely used in

industrial control. In the absence of self-tuning, the fixed PID parameters can hardly adapt

to uncertainty or time-varying systems [13]. In addition to this, there is a particular case

of industrial interest in which tuning of a proportional-integral (PI) or PID controller needs

to be adaptive since classical approaches contain a number of fundamental problems [1],

such as:

• the amount of offline tuning required;

• the assumption on the plant structure;

• the issue of system stability; and

• the difficulties in dealing with nonlinear, large time-delayed and time-variant plants.

Hence, the main objective of this thesis is to design a Dedicated IFT Microcontroller with

compactness and improved performance to resolve the above problems existing in

industrial control.

1.4 HYPOTHESIS

Our hypothesis statement is given as follows:

3

We believe that a dedicated IFT Microcontroller with improved performance can be

developed into an FPGA device.

1.5 OBJECTIVES

The main objective of this research is to design a Dedicated IFT Microcontroller with

improved controller performance using FPGA hardware, and is achieved through the

following specific objectives:

• Study and validate the IFT technique with a view to developing a novel hardware

(Dedicated IFT Microcontroller) for tuning proportional-integral (PI) controller

parameters. Both IFT technique of one degree of freedom (1DOF) and two

degrees of freedom (2DOF) will be studied but only 1DOF will be validated in order

to simplify the dedicated IFT Microcontroller hardware.

• Design the architecture (data path) and finite-state machine (FSM) for a Dedicated

IFT Microcontroller and develop VHDL code for it. The general purpose

architecture is avoided for reasons of high speed and power consumption as

compared with dedicated architecture.

• Testing of a Dedicated IFT Microcontroller with a simulated DC motor. A physical

DC motor is avoided due to want of keeping the research narrow but detailed.

1.6 RESEARCH METHODOLOGY

Our research method progressed as follows:

• Research proposal development through intensive review of literature in the areas

of adaptive control algorithms (with main emphasis on IFT algorithm theory and

applications), controllers based on FPGA hardware and FPGA Design

Methodology for Industrial Control System.

• A study of IFT technique and FPGA architecture was carried out. Since FPGA was

a platform on which controller hardware was developed, a thorough survey across

a wide family of FPGAs was conducted in order to select a suitable FPGA that can

accommodate a highly complex adaptive control technique (IFT).

4

• design of a Dedicated IFT Microcontroller and development of VHDL code;

simulation and experimentation; analysis and discussion of results.

• optimisation of a Dedicated IFT Microcontroller architecture; simulation and

experimentation; analysis and discussion of results.

• testing of the Dedicated IFT Microcontroller to a novel process.

• analysis and discussion of results.

• thesis report write-up.

1.7 PLAN OF DEVELOPMENT

Chapter two discusses the literature review on IFT technique theory and applications,

FPGA-based controllers, and FPGA Design Methodologies for the Industrial Control

System. Chapter three reports the study and validation of the IFT technique, with a view

to creating a Dedicated IFT Microcontroller. Chapter four describes the design of a

Dedicated IFT Microcontroller. Chapter five describes the testing of a Dedicated IFT

Microcontroller. New contributions, recommendations and Chapter Summarys are

provided in Chapter six.

5

CHAPTER TWO

LITERATURE REVIEW

2.1 SEARCH OBJECTIVE

Since the main objective of the thesis was to design a Dedicated IFT Microcontroller, the

preliminary task was to explore the IFT theory and its applications, mainly its recent

advances: the improved algorithm, its extension, and the combination with other

algorithms. In addition, a great deal of literature on FPGA design methodology for

industrial control systems, Microcontroller design principles, and FPGA theory and trends

were reviewed and this formed the major part of the project. Furthermore, a survey of

electronic design tools and other application software was done. These included Quartus

II Web Edition, ModelSim-Altera Web Edition, Xilinx ISE and Vivado HLS.

2.2 IFT TECHNIQUE APPLICATIONS SURVEY

A vast number of IFT applications currently existing or described in literature are a

motivating factor in the pursuance of the thesis entitled "Design of a Dedicated IFT

Microcontroller". Some of these applications surveyed are outlined below:

• In [2], IFT was applied to optimise the Electronic Throttle Control (ETC) system of

an engine. The application showed that the IFT provides very good performance

for controller tuning. The system was implemented on a Pentium processor and

was carried out experimentally. This has clearly shown the need to develop a

dedicated hardware for its implementation, in order to reduce the cost and improve

its performance in the long run.

• In [3], IFT was applied to tune PID parameters in applications where the objective

is to achieve a fast response, to set point changes, and the performance of IFT-

tuned PID controllers was compared to the performance of the classical tuned PID-

controllers. It revealed better results (faster settling time) than the later. The work

was carried out through simulation examples. Thus, a simple and efficient PID-

tuning scheme was developed in this particular work though non-experimental

work, however, no experimental verification was conducted.

6

• In [4], a relay auto-tuning of PID controllers using IFT was applied to a process

control problem in which the PID controller was auto-tuned to give specific

bandwidth and phase margin. The algorithm was tested in the laboratory on a

coupled tank, and the theoretical results were demonstrated to be observed in

practice, confirming the viability of the IFT technique.

• In [15], the extension of IFT as a tuning algorithm was presented. informative data

was used to improve the convergence properties of the method, and reduce the

total number of required plant experiments, especially when tuning for disturbance

rejection. This was achieved through application of an external probing signal in

the tuning algorithm. The technique was further used to guarantee nominal stability

and to improve the parameter update using a line search algorithm for determining

iteration step size, through the use of Levenberg-Marquardt optimisation. The

proposed algorithm was compared to classical formulation in the simulation study

of the disturbance rejection problem. It was found that perturbed IFT is an

advantage when tuning for disturbance rejection.

• In [16], tuning of robot joint controllers using IFT was considered, different IFT

schemes were validated in simulation, and real experiments on an industrial robot

manipulator were conducted. From a practical point of view, the scheme therefore

offers several advantages: it is straightforward to apply the direct optimal tuning

algorithm, particularly to basic control loops in the process industry, which are

typically PID loops. In addition, IFT has high potential for tuning of controllers

applied to non-linear systems, which is currently a challenge in industrial control.

With favourable results having been obtained, the need has arisen to develop a

chip that implements the technique.

• In [17], IFT was applied to tune a second-degree-of-freedom (2DOF) PID-controller

to minimise the given quadratic cost function of a system output error and control

effort. The tuning effort was divided into two parts. First, the classical 1DOF PID

controller was iteratively tuned and the remaining parameters of 2DOF PID were

then tuned, independently in the next iterative procedure; and second, the

Broyden-Fletcher-Glodfard-Shanno (BFGS) method as a quasi-Newton method

was employed. From the numerical simulations and the experiments, the

7

effectiveness of the proposed method was shown. For experimental purposes, the

controller was implemented into the PC, a clear indication that IFT could be

feasible to be implemented into a custom device such as a Microcontroller or an

FPGA.

In addition to the above surveyed IFT applications, FPGA-based controllers were also

surveyed and a sample of them are listed in the next subsection. The purpose of this

survey was to ascertain the feasibility and benefits of using an FPGA as a platform for

developing the Dedicated IFT Microcontroller.

2.3 FPGA-BASED CONTROLLERS LITERATURE REVIEW

The surveyed literature on FPGA-based controllers and FPGA Design Methodology for

Industrial Control Systems is summarised as follows:

• In [12], the state of the art of FPGA based controller design was reviewed. The

design methodologies utilised three main design rules given as algorithm

refinement, modularity, and systematic search for the best compromise between

control performance and architectural constraints. Two complete case studies on

the benefits of FPGA implementation, when using the proposed system modelling

and design methodology were presented. A control algorithm, when implemented

in an FPGA, can have a short execution time due to the high degree of parallelism

of its architecture. Another perspective on FPGA design is to use FPGAs with

analogue to digital converter (ADC) and digital to analogue converter (DAC)

imbedded in them. Only Microsemi have fused an ADC into their FPGA to date.

• In [13], a motion control system, using a radial basis function neural network (RBF

NN) self-tuning PID controller for X-Y table was realised in an FPGA, to create a

motion control-integrated circuit (IC). This was done by hardware/software co-

design (a necessary concept nowadays), and as a result the final product was

made more compact, robust, flexible, and costeffective. The work was

experimental and revealed favourable results. An IC that implements self-tuning

PID was developed into the FPGA device.

8

• In [14], a novel technique for implementation of an efficient FPGA-based PID-

controller for motion control of a permanent magnet DC motor is presented. This

implementation technique circumnavigates the problem of interfacing an

analogue-to-digital converter in real time. The implementation was done on the

Xilinx Spartan 3 FPGA Board from National Instruments. The design showed

significant improvement over the present way of implementing digital controllers

into microcontrollers.

• In [18], a digital controller for a switching power converter was implemented in an

FPGA device. The digital hardware using Very Large Scale Integrated Circuit

Hardware Description Language (VHDL) with floating-point arithmetic were both

verified by simulation and experiments. The results showed that the designed

system meets its specification, and the simulations match the experimental results

closely.

• In [19], a modular design of embedded feedback controllers was studied by

utilising simulations into the FPGA hardware. To this end, a novel distributed-

arithmetic (DA)-based PID-controller algorithm was proposed and integrated into

a digital feedback control system. The DA-based PID-controller demonstrated 80%

savings in hardware utilisation and 40% savings in power consumption, which is

desirable in embedded control applications. Simulations and experiments were

tested using the system; it demonstrated good closed-loop stability and

performance.

• In [20], a methodology was presented based on the control system L1 or l1 norms

for computing the appropriate number of bits to represent each quantity when

using fixed-point number representation. The methodology was shown to be

effective for designing hardware for both shift-form and delta-form representations

of the compensator, and was applied to a magnetic bearing control system. In this

example, the delta-form realisation required less hardware than shift-form

realisation.

• In [21], a simple auto-tuning technique for digitally controlled dc-dc for synchronous

buck converters was proposed; this was an approach based on a relay feedback

method. By the use of the iterative procedure, the tuning of PID parameters as a

9

result was obtained directly by including the controller in the relay feedback.

Experimental investigations were conducted using the FPGA platform.

2.4 Chapter Summary

Considering the surveyed literature within the subject of the IFT technique applications

based on FPGA technology, only [21] is directly related to the IFT technique, but its

application is specific to Buck converters. The authors does not investigate, nor specify,

whether the technique could be used for other plants.

10

CHAPTER THREE

STUDY AND VALIDATION OF IFT TECHNIQUE

3.1 INTRODUCTION

In this chapter, the IFT technique is studied and validated. This is accomplished by

carrying out an overview of the technique's basic theory, followed by simulation on NI

LabView software, mainly for the purpose of testing and validating it before committing it

to hardware. The reason for the choice of LabView software as the platform for simulation,

is that programs running on the LabView platform can easily be ported to VHDL with

minimal modifications. To ensure an exhaustive investigation, the IFT is tested and

validated by applying it to three types of plants, namely: a DC motor, an oscillatory plant,

and an unstable plant. It is also tested by varying the amplitude of the reference signal,

and also by using the single-step signal. The intention of exploring all of these possibilities

is meant to firmly expose the IFT boundaries of applicability so that the final product is

not vulnerable to unnecessary post-production discoveries such as operational errors.

3.2 ITERATIVE FEEDBACK TUNING TECHNIQUE OVERVIEW

Since the Dedicated IFT Microcontroller is based on the IFT technique, we consider a

comprehensive overview of IFT basic theory in this section.

The IFT technique is purely a data-driven and gradient-based approach for optimising

controller parameters, without full knowledge of the plant [9, 25]. It yields an unbiased

estimate of the model (meaning that the IFT finds the correct controller for the plant in

operation) [25]. Its concept derives from the given controller structure (given in advance),

and the specification of a criterion or objective function of a Linear Quadratic Gaussian

(LQG). The LQG is formed by data that is collected from closed-loop experiments, in

which the number of experiments depend on the degree of freedom of the controller in

question. For example, a second-degree-of-freedom (2DOF) controller would require

three experiments to be performed at each stage of the iterative design, while a first-

11

degree-of-freedom (1DOF) controller would require only two batch experiments expected

to be run at each stage of the iterative design. Thereafter, either of the gradient-based

local minimisation techniques, such as steepest descent, the Hessian, Gauss-Newton, or

Quasi-Newton [22], can search a minimum of the criterion LQG.

In this section we describe the IFT technique of a second-degree-of-freedom controller

(},{ yr CCC), so that investigations of implementation issues relevant to the design of

the Dedicated IFT Microcontroller are simplified. The IFT technique is implemented on

the discrete linear time invariant system G , as shown in figure 1.

Figure 1: Block diagram of a closed loop system of a two-degree-of-freedom

controller

• {r(t)} is the reference signal; the argument t is added to denote the sampling

period,

• u(t) and y(t) are control and output signals respectively.

•),(zCr and),(zCy
 are linear time-invariant transfer functions;

• is a vector of the PI controller parameters;

•)(zm and me are the desired model for the controlled system, and the modelling

error respectively.

12

The internal closed loop signals can be described via sensitivity function S and transfer

function rT , as follows:

)(**)(**)(tdSCtrSCtu yr (1)

)(*)(*)(tdStrTty r (2)

Where
yCG

S
*1

1

 and

y

r
r

CG

CG
T

*1

*

The output of the desired model is formulated from figure 1, and given in equation (3).

)(* trTy dd (3)

Where)(zmTd

Finally, the modelling error is computed from equation (4).

dm ytyte)()((4)

Figure1 can be simplified into an IFT of a 1DOF controller if CCC yr . The 1DOF

controller runs only two experiments, and we will use it to formulate the hardware

architecture for the design of a Dedicated IFT Microcontroller later, due to its simplicity

compared to the 2DOF controller. The signals in equations (1), (2), (3), and (4) are

measured in experiment#1, however, signals like the closed-loop error ()()()(tytrte

), and the modelling error)(tem , are stored, since they are used to generate a reference

signal and the criterion function in experiment#2. The reference signal)(tr in

experiment#1 is also used as a reference signal in experiment#3 for the 2DOF controller.

The IFT procedure for the 2DOF controller experiments is as follows: At iteration i of the

controller tuning algorithm, the controller)},(),,({),(iyiri zCzCzC operates on the

actual plant. Thereafter, three experiments are run, with each experiment storing a

sequence of N-length data, as depicted in table 1.

13

Experiment#1 and experiment#3 consist only of gathering data under normal operating

conditions, with the closed loop using the same reference signal for the said experiments

[9]. Experiment#2 collects data from the closed-loop system with a reference signal(

)(yr) derived from experiment#1. From now on we denote the N-length reference

signal and the corresponding output signals by }{
j

ir and)}({ i

j

iy respectively. Where

Ni ,...,2,1,0 , a sample number or iteration number, and 3,2,1j is an experiment

number.

Table 1: IFT signals for experiment#1, experiment#2 and experiment#3

Experiment#

j

Input signal Measured signals Stored

signals

1. rr
j

i
j

ii

j

iii

j dSrTy *)(*)()(

j

iiy

j

irii

j dCrCSu)(*)(*)()(

d

j

m yye

jj

i

j yre

m

j ee , and jy

2.)(i

jjj

i yer

j

iii

jj

iii

j dSyrTy *)())()(()(

j

iiy

jj

irii

j dCyrCSu)()(*)(*)()(

)(i

jj

i

j yre

)(i

me

 and

)(i

ju

3. j

i

j

i rr
j

ii

j

iii

j dSrTy *)(*)()(

j

iiy

j

irii

j dCrCSu)(*)(*)()(

)(i

jj

i

j yre

Same as in

experiment#1

All the signals from figure 1 are tabulated in table 1 as
11111

,,,, iiiii dyuer , denoting the

reference, error, control, plant output, and disturbance signals in experiment#1

14

respectively; for experiment#2, these signals are denoted by
22222

,,,, iiiii dyuer , and by

33333
,,,, iiiii dyuer in experiment#3.

After the experiments, the processing stage commences with the gradient calculation,

followed by the selection of a positive definite matrix R, and finally, the updating of the

controller parameters. We illustrate the sequence, beginning with the formulation of the

criterion function.

The modelling error and the controller output signals that are measured from the

experiments, are assembled together with filters and constants to form a criterion

function, as given in equation (5).

]}))(*(*))(*[({
2

1
)(212

0

iui

N

i

mei uLeLE
N

J

 (5)

Where eL and uL are frequency-dependent weights or filters that penalise the modelling

error me and control input
1u , according to the designer's needs. E{…} is the expectation

taken with respect to stochastic disturbances that enter the process and thus affect the

closed loop.

Each version of the criterion function defines a specific type of IFT. Some types of IFT

criterion functions are, for example, where the cost function is obtained from the modelling

error me , as in equation (5), from the traditional error e , or from the traditional error

without the control signal u included in the cost function..

Many specific IFT criterion functions can be formulated as in equation (5), by varying the

type of desired model. The IFT criterion function, driven by the traditional error, depends

heavily on the model of the plant, since different plants would produce different traditional

errors. The use of the traditional error to formulate the cost function is achieved by making

the desired model, 1)(zm .

15

The objective of the IFT is to find an optimal set of parameters , which minimises the

criterion function J , as given in equation (6). This is the minimisation of the cost function,

also given in equation (7) later, in another form [11].

)(minarg1 ii J (6)

The major stumbling block for the solution of this optimal control problem is the

computation of the gradient of the criterion function with respect to controller parameters

[9]. The gradient of the criterion function is thus given by equation (7), with the frequency

weighting filters set to one (thus 1 ue LL) for simplicity, but they are important, since

they give extra flexibility in optimisation of the criterion function.

 N

i

iii

N

i

m
imi

u
u

e
e

N

J

0

1
1

0

)(*)(*)(*)([*
1

)(

 (7)

The necessary condition for optimality of the parameters is 0)(

J
. Hence, to be able

to compute such an equation for , the model of the plant, in totality, is required. In this

respect, the plant model is generally not known in most industrial applications, and

therefore, the required analytical form cannot be obtained. The main contribution of the

IFT was to circumvent the said problem, by offering a procedure to calculate the gradient

)(

J
 directly from closed-loop data. Hence, the IFT is entirely a data-based paradigm,

implying that it can easily be implemented into a DSP microcontroller (best for algorithms

[12]), as opposed to an FPGA device that has parallel attributes.

If the gradient)(

J
 could be computed, then the solution of equation (7) would be

obtained by stochastic approximation of Robins and Monro of 1951 [15], given as

)(*
1

1 iiiii

J
R

 (8)

16

In equation (8), (gamma) is a positive real scalar that determines the step size. It can

be fixed or established by a line search. The matrix R is some appropriate positive

definite matrix that determines the amplitude of the steps (or the step sizes), in the

direction of each parameter provided by either the steepest descent, the Gauss Newton

method, or the Quasi Newton method. The choice of R as an identity matrix renders a

steepest descent gradient that is normally negative and also slow to converge, but would

be beneficial for power consumption, because it does not require much resource of the

FPGA device. The choice of R as a Hessian matrix is not feasible – even in the literature,

the approximation of the Hessian is preferred over the Hessian matrix directly [3, 4, 5, 6,

8]. This can be generated by the Gauss Newton method (as shown in equation (9)), or

the Quasi Newton method [25, 26], however, hardware implementation into an FPGA

would be complicated and would demand high power consumption since huge FPGA

resource shall be required.

T

ii

T

i
m

N

i

i
m

i

u
E

u
E

e
E

e
E

N
R

)()(*)()((*
1 11

1

 (9)

The Quasi Newton choice of R is covered widely in [11, 17].

3.2.1 Generation of the gradients for modelling error and controller signal

The main difficulty with IFT is the problem with calculation of the gradient of the criterion

function J , with respect to controller parameters, since the model of the plant is not

known. This problem is resolved through filtering the modelling error and the controller

output signals. The output of these filters are the gradients of the respective signals, which

are measured and stored to compute the gradient of the criterion function, as shown in

equation (7).

Noting that

17

)()(ii
m ye

, since it is the plant that causes variation in the modelling error me , we

state the expressions in equations (10) and (11). These are standard IFT equations,

derived in [9, 26].

)*)(*)(()()(1

iiii

m dSrTy
e

 23)())()((*

)(

1
y

C
y

CC

C
i

y

i

y

i
r

r

 (10)

 231
1

)())()((*
)(

1
)()(u

C
u

CC

C
u

u
i

y

i

y

i
r

r

i

 (11)

The first term in equation (10) is a filter, taking the output signal from the plant 3y as input,

and the second term in equation (10), also a filter taking 2y as input. The output of the

two filters are passed via two input adders to produce the gradient of the modelling error.

Similarly, the first term of equation (11) is a filter, taking signals from the controller
3u as

input, and the second term also a filter taking an input signal
2u from the controller. The

output of the two filters are also passed via two input adders to produce the gradient of

the controller output. It is shown here that gradients of a criterion function are signals

measured from the closed loop system, and applied in equation (7) to compute the

gradient of J with respect to controller parameters.

3.2.2 IFT technique of a 1DOF controller

Having described the IFT technique for a 2DOF controller, we present here the IFT

technique for the 1DOF controller. This is aimed at implementation on the FPGA

hardware, because its algorithm is simpler than the IFT technique of the 2DOF controller.

As mentioned previously in section 3.2, it runs two experiments compared to three of IFT

technique for the 2DOF controller. The choice of degree of freedom depends mainly on

18

application needs. For example, the IFT of the 2DOF controller is good for disturbance

rejection, and the IFT for the 1DOF controller is good for reference signal tracking and

regulation [26].

In this section, we develop a deterministic version of Iterative Feedback Tuning for the

case of a simple PI controller, so that the design of the Dedicated IFT Microcontroller is

simplified. The PI controller is chosen because it is a very common control law, and hence

a reasonable starting point. It is also important to industrial applications [22].

We investigate a single input, single output control system of 1DOF control law, as shown

in figure 2.

Figure 2: Closed Loop System for 1DOF controller

The reference, error, input disturbance, controller output, output disturbance, and plant

output signals are represented by)(tr ,)(te ,)(tv ,)(tu)(td and)(ty respectively. The plant

)(zG is a step invariant transformation of the DC motor (
12

01.1

s
) used in [1]. This was

chosen to validate the IFT technique, by comparing its performance on the FPGA, with

that of [1].)(zC is the PI controller, which is a step transformation of the s-domain PI

controller (
s

1
0

). The internal closed loop signals can be described with sensitivity

and transfer functions (considering 0)(td), as follows:

)(**)(**)(tdSCtrSCtu (12)

19

)(*)(*)(tdStrTty r (13)

Where
CG

S
*1

1

 and

CG

CG
Tr

*1

*

We consider)(td as zero mean weakly stationary random noise.

Experiment#1 of the 1DOF controller measures and stores signals)(1 e ,)(1 u , and

)(1 y for N length of time. Rho is a constant for each set of two experiments (#1 to #2).

However, it is changed after every experiment#2, thus rho is used as an argument.

Experiment#2 is known as the gradient experiment, where the gradient of the modelling

error and control input signals are measured and stored. Thereafter, the criterion function

J is specified by utilising the measured signals in experiment#2, and exiperiment#1. After

summing over N-length samples, the gradient (

J
) of the criterion function, needed to

optimise or update the PI-controller parameters, is obtained.

3.2.3 Criterion function specification

Controller optimisation requires that a criterion function is defined, usually by expressing

it in terms of J , as given in equation (5). We rewrite the criterion function expression,

since it utilises the traditional error 2e , and not the modelling error me used in equation

(5). The desired model is set to unity (desired model, 1)(zm), implying that the cost

function, that optimises the controller parameters, is as a result of the summation of the

traditional error, and the controller output signals which was obtained from experiment#2,

and given in equation (14) below.

]))(*(*))(*[(
2

1 222

0

2 uLeL
N

J u

N

i

e

 (14)

2e denotes the traditional error from experiment#2, and 2u the control signal. The first

term is the closed loop tracking error, and the second term the penalty on the control

20

effort from experiment#2. eL and uL in the first and second terms are frequency

weighting filters that were initialised to one

(1 ue LL) to simplify the hardware to be implemented on the FPGA, though it does give

extra flexibility in the control action. The advantage of this criterion function is that it

presents a good balance between overshoot and settling time [24], and it simplifies the

hardware design since the desired model is reduced to unity, It also makes the

assumption for a plant structure become insignificant, since the desired model is reduced

to a scalar. However, the main drawback of this criterion function, as compared to other

minimisation criterion functions, is the difficulty of obtaining an analytical solution to the

controller design [24].

After formulating the criterion function J, we minimise it by generating its gradient through

summation, as given by equation (15).

)()(*)()([
1

)(
2

2

0

2
2

iii

N

i

ii

u
u

e
e

N

J

 (15)

2e denotes a traditional error, and 2u denotes a control signal . Once the gradient

J
 is

computed, the solution of equation (15) is found in the same way it is done in the IFT of

the 2DOF controller.

3.2.4 Algorithm formulation for 1DOF

The algorithm is formulated in two segments, namely experiment#1 and experiment#2.

Experiment#1 comprises equations (16), (17), (18) and (19). Equation (16) compares the

reference signal and plant output signal, to produce the traditional error, as shown in

figure 2.

)()()(111 tytrte i (16)

21

The PI-controller, without a holding circuit (ZOH), is required for the formulation of a filter

(

C

C
*

1
) (in z-domain), for generating gradients needed for computation of the gradient

of the cost function, as shown in equation (15). The reason for this is because the IFT

loop from the traditional error to parameter update is purely a digital process, hence does

not require usage of a DAC or ADC. The PI controller on the other hand, with a holding

circuit (ZOH), is required because its output drives a DAC for actuating the plant. For this

reason, the transformation of the PI controller transfer function into a digital equation,

without a ZOH circuit, and with a ZOH circuit, is given in appendix V, yielding difference

equations, as given in equations (17) and (18).

10101 **)(tttt eeuu [V] (17)

10101 *)*(* tttt eTeuu [V] (18)

We also transform the plant into a digital equation with a ZOH circuit, since the output of

a plant is connected to an ADC.

Transformation to the Z-domain begins by first setting the sampling time for the plant

according to the governing principles of the Nyquist sampling theorem. This theorem

states that the "sampling frequency sf for a given source signal should be at least double

the signal frequency". In our simulation, the sampling frequency adopted is 2.5 times the

signal frequency. This is to ensure that the digital system mimics the continuous system.

Thus

T
f s

1
*5.2

T is the time constant for the DC motor model or plant. In this case, the sampling

frequency = 5 Hz, yielding a sampling time of 200 ms.With this sampling time in place,

the plant digital equation is derived as shown in equation (19). Derivation details for the

plant digital equation is presented in Appendix V.

)(*09516.0)1(*904837.0)(tutyty (19)

22

The equations of (20), (21), (22), (23), (24), (25), (26), (27), and (28), as shown below,

describe the algorithm of experiment two.

 The plant output signal)(2 ty , is compared with the reference signal)(1 te (from

experiment#1), as achieved by equation (20).

)()()(212 tytete (20)

The PI-controller is reproduced in experiment#2, to generate a control signal,)(2 tu , and

is given equation (21).

1
2

01

2

01
22

)(* tttt eTeuu [V] (21)

 The plant output signal,)(2 ty in experiment#2, is given in equation (22).

)(*048057.0)1(*904837.0)(222 tutyty (22)

The difference equations for generating the gradient of the error signal,

 2e
 ,with respect

to controller parameters directly, were developed by Hjarmarsson in 1994 [5], and were

an important advance in the development of adaptive controllers. This was achieved by

passing the error signal through a filter

C

C
*

1
 and measuring the output, which yielded

the gradient of the error signal required for specification of the cost function. This was

developed in order to circumvent the difficulty in computation of the gradient of the cost

function, as some quantities involved are unknown or only partially known [5].

The difference equations for the gradient signals are derived as follows:

The PI-controller, given in equation (17), is used to derive the gradient difference

equations, as shown below:

23

2

1

2

2

0

2

010

010

010

1

0

/

/

*)(

*)(

1

1

1

*
*)(

1
*

1
*

1

e
d

de

e
d

de

z

z

z

z

z

z
z

z

C

C

C

C

C

Additionally, the difference equations are given in equations (23) and (24).

))1()((*
1

)1(*)(22

100

2

10

0

0

2

 tetet
d

de
t

d

de

 (23)

))((*
1

)1(*)(2

100

2

10

0

1

2

tet
d

de
t

d

de

 (24)

The gradient of the criterion function, which is a summation of measured signals,)(2 te ,

d

de
tu

2
2),(, and

d

du 2

, are given in equations (25) and (26).

0

2
2

00

*)()1()(
 d

de
tet

d

dJ
t

d

dJ
 (t) (25)

)(*)1()(
1

2
2

11

t
d

de
et

d

dJ
t

d

dJ

 (26)

The parameter update expressions are given in equations (27) and (28).

0

00 *)1()(

d

dJ
tt i (t) (27)

)(*)1()(
1

11 t
d

dJ
tt i

 (28)

The equations from (16) to (28) outline the flow of the IFT technique applied to a controller

of 1DOF, and can be mapped onto the Matlab or LabView platforms, for simulation

purposes.

24

In section 3.3, this is done, with LabView, mainly to take advantage of LabView’s FPGA

add-on software, which can be compiled for downloading into an FPGA device.

3.3 SIMULATION OF IFT TECHNIQUE USING THE LABVIEW PLATFORM

This section is devoted to validating and testing the IFT “to destruction”, so that the

boundaries of its applicability can be obtained. This is done to avoid unnecessary post-

production discoveries in the final product that may seriously impact on its commercial

viability. In order to carry out a wide investigation, three different plants were used in the

simulation, namely: the DC Motor that was used in [1], and is reproduced here (in equation

(29) for ease of reference), the oscillatory plant given in equation (30), and the unstable

plant given in equation (31).

12

01.1
)(

s
sg (29)

103

10
)(

2

ss
sg (30)

12

1
)(

s
sg (31)

Though IFT assumes that knowledge of the plant is not available or only partially known,

the initial focus will be on the DC motor (a known plant), controlled by the PI-controller,

for validation and testing purposes. The region of controller parameters are determined,

which yields a stable closed-loop system in the z-plane by use of the root locus method,

to provide preliminary information (especially the initial controller parameters for running

the IFT) for the test and validation of the IFT technique, before simulation (on the LabView

platform) is commenced. The PI controller and the DC motor in the z-domain with the

holding circuits are derived in appendix V, and is stated here for easy of reference: the PI

controller represented in the z-domain with a holding circuit is given as:

1

)*(*
)(010

z

Tz
zu

25

Similarly, the DC motor model is also given as
9048057.0

09516.0

z
.

The open-loop PI controller applied to the DC motor is given as

1

)*(*
)(*)(010

z

Tz
zghzk

 *

9048057.0

09516.0

z
 , yielding open-loop poles at 1z and

9048057.0z , with one moving zero (Tz
0

11

) since it is dependent on the controller

parameters which are varying due to the controller tuning, and the sampling time that is

chosen by the designer in relation to the sampling time of the plant. That is, the sampling

time for the controller should be faster than that of the plant. We determine the
0

1

 ratio,

since the zero must lie in the region 9048057.01 z to force the locus of the closed-

loop poles inside the unit circle, in order to help to pull the poles outside, into the unit

circle. To expose the stability region for the closed-loop system, the closed-loop system

is derived for the PI controller applied to the DC motor. The derivation is given in appendix

V for equation (32).

)*095.0**095.090.0(*)90.1*095.0(

))1*((**09516.0

)(

)(

010

2

0

1
0

Tzz

Tz

zr

zy
[V/V] (32)

This equation is a closed-loop PI controller applied to the DC motor. It is expressed in

such a way that the root locus can easily be applied to tracing the poles of the system.

However, to perform the procedure, the controller parameters must first be chosen,

because the zero of the open-loop system must lie within the range 9048057.01 z

on the left-hand side of the two open-loop poles in the z-plane. For each chosen zero, the

parameters are computed, followed by running the root locus and verifying the region of

stability. To determine the parameters, the zero location is chosen, and to simplify the

design, the open-loop system zero should lie on real axis from 9.0z to 9.0z .

From this point on, rho0 and rho1 will be used in the text to denote 0 and 1

respectively. For each zero location chosen, controller parameters are computed using

26

the expression T*1
0

1

 (the moving zero). rho0 is then chosen with the knowledge that,

as it varies from 0 to infinite gain, the closed-loop poles move towards open-loop and

infinite zeros. Hence, if the rho0 value is chosen for oscillatory, under-damped, fast-

damped, critically damped, slow-damped or over-damped responses, the parameters, for

examplea zero at 0.0z , are computed as follows:

10*10

1

0.0*1

01

0

1

0

1

T

T

1.0T seconds (chosen for a PI controller model) is two times faster than the sampling

time for the plant. As an example, rho0 is set equal to 1.0, and the value of rho1 calculated

depending on the zero location. The ratio of rho1 to rho0 determines how far apart the

parameters are to each other as they become optimised by the IFT.

Table 2 shows the roots of the characteristic equation for the closed-loop system as per

zero location on the z-plane. The root locus for the PI controller applied to the DC motor

for different zero locations, shown in table 2, are illustrated in appendix III. According to

the captured root locus results for the PI controller applied to the DC motor, the closed-

loop poles for the system with zeros from 2.0z to 9.0z are stable. However, for the

system with zeros from 9.0z to 4.0z , it has part of its loci in an unstable region.

Hence, it is prudent to use the system with zeros from 2.0z to 9.0z that have the

loci inside the unit circle. Amongst the zero locations stipulated in table 2, location 0.4 is

selected for investigation. It does not mean the choice 'zero location' is niche, but only

chosen as an example. This zero is in the region of stability, as can be shown by a plot

of root locus, in appendix III, figure AP.3. The rho-space is selected, from which results

are obtained and mapped. Thereafter, the rho-space where the closed loop system is

stable, is determined.

27

Table 2: Roots of the DC motor closed-loop control system

Zero location on the

z-plane

Rho0 Rho1 Roots

2.00 0.10 0.20 0.98

0.91

0.90 1.00 1.00 0.90 + 0.01i

0.90 + 0.01i

0.40 1.00 6.00 0.90 + 0.22i

0.90 + 0.22i

-0.20 1.00 12.00 0.90 + 0.32i

0.90 + 0.32i

-0.60 1.00 16.00 0.90 + 0.38i

0.90 + 0.38i

-4.2 1.00 52.00 0.90 + 0.70i

0.90 + 0.70i

Having conducted root-locus analysis for the closed-loop system at different zero

locations, the PI controller applied to the DC motor is verified for stability by use of a

Routh-Hurwitz criterion. This procedure is accomplished by transforming the system's

characteristic equation from equation (32), into the s-plane by means of bilinear

transformation as follows: the characteristic equation is given as

0*09516.0**09516.0904837.0(*)904837.1*09516.0(010

2 Tzz (33)

In the above given characteristic equation, z is substituted with
1

1

w

w
 to yield the w-plane

equation.

0*09516.0**09516.0904837.0(
1

1
*)904837.1*09516.0(

1

1
010

2

 T

w

w

w

w

28

09048.1*095.0**095.0*)*19.0**19.01904.0(***095.0 0101

2

1 TwTwT

Hence, the Routh-Hurwitz array is formed, as given in table 3.

Table 3: Routh-Hurwitz for the characteristic equation

2w

w

0w

T**095.0 1 9048.1*095.0**095.0 01 T

)*19.0**19.01904.0(01 T 0

9048.1*095.0**095.0 01 T

To find a range of controller parameters where the closed-loop system is stable, we

arrange rho1 in terms of rho0 as follows: for zero location at 0.8 and sampling time at 0.1

seconds, the relationship is computed as:

01

0

1

0

1

*2

2.0

8.0*1

T

T

Hence, rho1 in table 3 is substituted with 2*rho0, in order to find the range of controller

parameters for which the closed-loop system is stable. The range for 2w is computed as

follows:

0

0*2**095.0

0

0

T

Giving a range of 00 .

Similarly, the range for w is computed as follows:

29

2526.1
1520.0

1904.0

0)*19.0**19.01904.0(

0

01

 T

Giving a range of 2526.10 .

Finally, the range for 0w is zero, indicated by the relation:

0632.25

9048.1)019.0095.0(

09048.1*095.0**095.0

0

0

01

 T

Giving a range of 0632.250 .

Therefore, the overall range for closed-loop system stability for the PI controller applied

to the DC motor (for rho0) is given as 0632.252526.1 0 . Similarly, the range for rho1

is 1264.505052.2 1 . Hence, parameter values outside the obtained range for rho0

and rho1 would render the closed-loop system unstable. This information can help to test

the tuning action of the IFT technique, by selecting parameters outside the range and

verifying if IFT is capable of forcing the parameters within the given range.

3.3.1 Simulation of the IFT applied to the DC motor

Using the rho-space mapped in table 2, we run the PI controller (without the IFT) driving

the DC motor, and map the results of output responses in appendix IV. The PI controller

(with the IFT) is implemented next, driving the DC motor once again and recording the

results of the output responses in figure 3, figure 4 and figure 5. Thereafter, the results

are compared to ascertain the validity of the IFT technique as an optimising technique.

From this, we can safely select initial parameters which are slow-damped, fast-damped,

and oscillatory closed-loop systems. The IFT is implemented 1 000 times, optimising one

sample at a time while observing the trend of optimisation in 1000 spaces (N = 1000) or

more, where a great amount of tuning information is required. A single IFT cycle

composing of {experiment#1...}, {experiment#2...}, and {update parameters} phases

30

takes 40s and is synchronised with the step changes in the reference signal. The DC

motor output signal y , reference signal r , controller parameters 0 and 1 , error e and

cost function J , are the focus of our investigations.

(I) Slow-damped case

The results for the initial slow-damped closed-loop system is illustrated in figure 3. As

depicted, the controller is started with initial parameters of 1.00 rho and 2.01rho which

results in a slow or heavily damped closed-loop system. This is indicated in figure AP.IV.1

in appendix IV. The response of the DC motor and the reference signals are illustrated in

figure 3a, followed by the results for the controller parameters and the cost function in

figure 3b. Figure 3c illustrates the results for the controller parameters in a magnified

format. Finally, figure 3d shows results for the error signal.

Figure 3(a): Reference signal and DC motor output signal

31

Figure 3(b): Rho0, Rh01 and cost function, J signals

Figure 3(c): Rho0, Rh01 and cost function, J signals

Figure 3(d): Error signal

32

The DC motor output response is heavily damped from sample number zero to sample

number 800, and thereafter it becomes unstable up to sample number 860 where

controller parameters converge to rho0 = 4.2 and rho1 = 28.0, as illustrated in figure 3c.

This behaviour is readily explained by roots of the characteristic equation for the closed-

loop system for the given sample numbers in table 4. At sample number 15 the roots

indicate slow stability, which later turns out to be an integrator, and finally converges to

an oscillatory stable response. The sample numbers selected are mapped in table 4 with

their respective parameter values and roots. This optimisation has multi-minima at

samples number 15, 200, 405, and 605, as shown in figure 3b. Optimisation occurs up to

sample 860 where the cost function converges to 0.4. The cost function builds up from

sample number 1 to sample number 840. This is due to the presence of a huge error in

the region, as shown in figure 3d. Clearly, the simulation for the initial slow-damped

closed-loop system has validated the optimising capability of the IFT in optimising

controller parameters, in that the heavily-damped DC motor response turns into an

oscillatory stable response (see figure 3a).

Table 4: Roots of the DC motor closed-loop control system

Sample No. Rho0 Rho1 Roots

15 0.06 0.10 0.99

0.90

200 0.02 0.02 1.00

0.90

405 0.14 0.03 1.00

0.89

605 0.02 0.01 1.00

0.90

840 4.2 36.00 0.75 + 0.53i

0.75 - 0.53i

33

900 4.2 28.00 0.75 + 0.45i

0.75 - 0.45i

(II) Fast-damped case

The results for the initial fast-damped closed-loop system are illustrated in figure 4.

Figure 4(a): Reference and DC motor output signal

Figure 4(b): PI controller parameter and cost function signals

34

Figure 4(c): Magnified PI controller parameter signals

Figure 4(d): Magnified cost function signal

Figure 4(e): Error signal

35

The IFT is implemented with initial parameters of 0.10 rho and 0.11rho , which

represents a fast-damped or critical-damped closed-loop system, as indicated in figure

AP.IV.2 of appendix IV. The response of the DC motor and the reference signals are

illustrated in figure 4a, followed by the results for controller parameters and the cost

function segmented into figures 4b, 4c, and 4d, in order to magnify significant sections of

the graphs. The results for the error signal is shown in figure 4e. The response

demonstrates similarity to the response of the PI controller (without the IFT) applied to

the DC motor, as demonstrated from sample number 200 to sample number 1000 (see

figure 4a and figure AP.IV.2).

From sample number zero to sample number 200, the response is in its transient state,

as shown by the roots of the characteristic equation in table 5. The details are obtained

by studying figures 4b, 4c, and 4d, which displays a variation of the controller parameters

as a result of the controller tuning.

The tuning in this case is of varying multi-minims from sample number zero to sample

number 1000, and then converges to a single-minima at sample 1200, occurring at every

200 samples, with parameters converged to rho0 = 0.4 and rho1 = 0.4. The cause of

these minimum spikes is as a result of increase in the cost function after every 200

samples (see figure 4d: The increments of the cost function). The minimums are tabulated

in table 5.

The cost function builds up after every 200 samples, from sample number zero to sample

number 1000, due to the remnant error that is not minimised (see figure 4e).

Table 5: Roots of the DC motor closed-loop control system

Sample No. Rho0 Rho1 Roots

5 0.85 0.85 0.91 + 0.01i

0.91 - 0.01i

200 0.78 0.78 0.93

0.90

36

400 0.65 0.65 0.94

0.90

600 0.53 0.53 0.95

0.90

800 0.38 0.38 0.96

0.90

1000 0.23 0.23 0.98

0.90

1200 0.13 0.13 0.99

0.90

1400 0.13 0.13 0.99

0.90

1600 0.13 0.13 0.99

0.90

1800 0.13 0.13 0.99

0.90

 (III) Oscillatory case

The results for the initial oscillatory controller parameters are illustrated in figure 5.

Figure 5(a): Reference signal and DC motor output signal

37

Figure 5(b): PI controller parameter signals and cost function signal

Figure 5(c): PI controller parameter signals and cost function signal

38

Figure 5(d): Error signal

For the oscillatory case, the controller is implemented utilising initial parameters of

0.10 rho and 0.161rho . These are oscillatory controller parameters, as indicated in

figure AP.IV.2 of appendix IV. The response of the DC motor and the reference signal are

illustrated in figure 5a, followed by the results for the controller parameters and the cost

function, segmented into figures 5b and 5c, in order to magnify the minima that occurs

ahead of convergence. The result for the error signal is in figure 5d. The DC motor output

signal and the reference signal are indicated in figure 5a, and the controller parameters,

rho0, rho1 and the cost function illustrated in figure 5b and 5c. Finally, figure 5d illustrates

the error signal. The response demonstrates a great amount of tuning information, from

the oscillatory to the fast-damped closed-loop system. Selected sample numbers with

their controller parameters and roots of the characteristic equation, are tabulated in table

6.

Sample numbers from zero to 700 are oscillatory parameters, demonstrated by the roots

of the characteristic equation in table 6.

After sample number 700 to sample number 1000, the controller parameters yield real

roots inside the unit circle, indicating stability. This again has validated the optimising

action of IFT technique controlling the DC motor.

Table 6: Roots of the oscillatory closed-loop control system

Sample No. Rho0 Rho1 Roots

0 1.00 16.00 0.93 + 0.27i

0.93 - 0.27i

200 0.12 3.18 0.94 + 0.27i

0.94 - 0.27i

400 0.12 2.06 0.94 + 0.13i

0.94 - 0.13i

600 0.0 0.12 0.99

0.91

39

800 0.06 0.06 0.99

0.90

1000 0.12 0.13 0.99

0.90

3.3.2 The effect of varying the reference signal amplitude on IFT optimisation

Thus far, the test has only used a reference signal amplitude of one volt; hence it is not

yet known what the effect on the system will be if the amplitude of the reference signal

were to be varied. Here, table 7, table 8 and table 9 are presented to illustrate the effect

of varying the amplitude of the reference signal for the case of the initially slow-damped,

initially fast-damped, and oscillatory controller parameters, respectively.

The data for all the three cases shows variation in the length of the settling time for the

DC motor response, variation in convergence of parameters, and variation in the gamma

constant that is initially chosen manually, but as a result of varying the amplitude of the

reference signal, needs to be varied as well. However, the degree of variation depends

on the specific case (slow damped, fast damped, or oscillatory).

Table 7: Effect of varying amplitude reference signal – a slow-damped case

No. Amplitude

[V]

Settling time

[samples]

Overshoot

[V]

Rho0 Rho1 Gamma

1 0.10 20.00 0.00 4.00 1.90 2.20

2 0.20 25.00 0.00 1.80 2.40 1.10

3 0.30 40.00 0.00 1.10 1.20 1.20

4 0.40 10.00 0.08 20.00 105.00 1.20

40

5 0.50 50.00 0.20 10.00 5.50 1.20

6 0.60 0.00 0.00 21.50 15.00 1.20

7 0.70 100.00 0.00 1.50 0.75 1.20

8 0.80 25.00 0.00 9.00 6.50 1.20

9 0.90 10.00 0.00 4.01 3.50 1.10

10 1.00 5.00 0.30 10.00 9.00 1.10

11 1.10 2.00 0.80 18.00 17.00 1.10

12 1.20 1.00 0.00 19.00 18.00 1.10

Table 8: Effect of varying amplitude reference signal – a fast-damped case

No. Amplitude

[V]

Settling time

[samples]

Overshoot

[V]

Rho0 Rho1 Gamma

1 0.10 20.00 0.00 4.30 4.300 3.20

2 0.20 50.00 0.00 1.44 1.440 2.20

3 0.30 65.00 0.00 0.83 0.825 2.20

4 0.40 5.00 0.00 12.50 12.500 2.20

5 0.50 10.00 0.30 33.00 33.000 2.20

6 0.60 70.00 0.00 0.80 0.800 2.20

7 0.70 105.00 0.00 0.65 0.65 1.20

8 0.80 100.00 0.00 0.80 0.80 1.20

41

9 0.90 4.00 0.10 24.00 24.00 1.20

10 1.00 75.00 0.00 1.00 1.00 1.20

11 1.10 70.00 0.00 32.00 32.00 1.20

12 1.20 15.00 0.00 5.05 5.05 1.10

Table 9: Effect of varying amplitude reference signal – an oscillatory case

No. Amplitude

[V]

Settling time

[samples]

Overshoot

[V]

Rho0 Rho1 Gamma

1 0.10 15.00 0.00 2.40 2.50 90.20

2 0.20 25.00 0.00 2.55 2.40 80.20

3 0.30 55.00 0.00 15.13 7.75 80.20

4 0.40 25.00 0.01 10.20 10.20 60.20

5 0.50 25.00 0.05 20.25 20.25 60.20

6 0.60 0.01 0.00 10.40 5.10 60.20

7 0.70 5.00 0.20 20.00 85.00 60.20

8 0.80 5.00 5.00 16.00 2.00 60.20

9 0.90 15.00 0.30 15.00 55.00 20.20

10 1.00 15.00 0.01 7.00 5.50 20.20

11 1.10 15.00 0.10 11.00 13.00 1.20

42

12 1.20 10.00 1.25 40.00 200.00 1.20

That the degree of variation depends on the specific case is clearly shown by the starting

gamma constant in each instance. For example, the starting gamma constant for a slow-

damped system is 2.2, while for a fast-damped it is 3.2, and for the oscillatory system

90.2. This is facilitated by the size of error. If error is big, the cost function will rise very

fast, implying a high gradient for the cost function, which in turn will require a small gamma

constant. However, if the error is small, there is a need for a big gamma constant in order

to affect the optimisation process. This implies that for varying reference signal amplitude,

the gamma constant should be set by a line search to avoid the adaptive control blow-up

of the 1980s [40].

In the slow-damped case, the increase of the reference signal amplitude has an influence

on the sensitivity of the gamma constant. For instance, from 0.1V to 0.3V, the gamma

constant changed three times, while from 0.3V to 0.8V, there is no change, and again,

from 0.9V to 1.2V, it remains constant.

In the case of the fast-damped initial system, the gamma constant is the same (at 2.2)

from 0.1V to 0.6V, and changes to 1.2 from 0.7V to 1.1V.

In an oscillatory case, there are five regions of operation with different gamma constants.

For instance, we can see from table 8 that at 0.1V, the gamma constant is 90.2, at 0.2V

and 0.3V it is 80.2, from 0.4V to 0.8V it is at 60.2, at 0.9V and 1.0V it is at 20.2, and finally,

at 1.1V and 1.2V it is at 1.2. Clearly, the gamma constant decreased from 90.2 to 1.2 as

a result of increasing amplitude of the reference signal from 0.1V to 1.2V, implying that

increasing the amplitude of the reference signal causes an increase in the error signal

and the adaptive control blow-up of the 1980s. We can decide to work with a gamma

constant of 1.2 throughout to avoid the adaptive control blow-up, however, the only

drawback is, tuning would take a long time for lower amplitudes of the reference signal.

Higher reference signal amplitudes cause controller parameters to converge outside the

stability bound (08494.8895054.4 1), implying that such amplitudes can cause

43

instability in the system. For example, the reference signal of amplitude 1.2V makes

parameters converge to rho0 = 40 and rho1 = 200 outside the stability range. The problem

of system blow-up also exists, especially when gamma is made constant while the

reference signal amplitude is varied upwards, and this, in addition, makes the parameters

converge to infinity. This phenomenon is traced to controller parameter update variable

overflow when the gradient of the cost function tends to be infinite.

3.3.3 The effect of the single-step reference signal on IFT optimisation

As the case in the previous section, we can show that the tuning scheme of the IFT

technique by using a reference signal of a single step. We utilise the initial fast-damped

closed-loop system for this demonstration only as an example, not that there is anything

unique about it. Figure 6 indicate results for running the IFT using a reference signal of a

single step.

Figure 6(a): Reference and DC motor output signals

44

Figure 6(b): PI controller parameter and cost function signals

Figure 6(c): Error signal

The DC motor output and the reference signals are indicated in figure 6a. The controller

parameters, rho0 and rho1 and the cost function are illustrated in figure 6b. Finally, figure

6c illustrates the error signal. The variation of parameters from sample number zero to

sample number 120 is an indication that there was tuning that occurred before

convergence. The response also demonstrates convergence to a fast-damped closed-

loop system.

In this test, the parameters for both rho0 and rho1 converge to 1.45 (see figure 6b), which

is different to the convergence in the test number 10 of table 7, where the series of step

reference signals were utilised yielding rho0 and rho1 converging to 1. The result for the

45

single-step reference signal implies that the presence of the step signal triggers

optimisation only for the period of the step signal, and afterwards the system runs in the

converged mode for the rest of its operation as long as it is not disturbed. This means

that the step signal can also be modelled as a source of disturbance in the closed-loop

system, to ensure the adaption gets the information it needs. However, the IFT will only

handle a certain percentage of noise before it fails to optimise, as indicated in the test

conducted in section 3.3.2. For example, if we took a gamma constant of 1.2, the

maximum noise amplitude the IFT is capable of handling is 1.1V, and anything above

that, the IFT will not be able to handle unless the gamma constant is reduced, as shown

in table 7. Hence, lower gamma constants can enable the IFT to handle higher noise

levels though optimisation, but becomes slow for such gamma constants.

3.3.4 Simulation of the IFT using the oscillatory plant

A similar study as before is carried out using the oscillatory plant in equation (30). The

plant represented in the Laplace domain is sampled into a digital equation as follows:

A standard transfer function is used to approximate the sampling frequency, thus,

22

2

***2
)(

nn

n

ss
sg

 , which can be equated to the plant in equation (30) so that

we approximate the sampling frequency sf . Therefore, the natural frequency nf is

computed as follows:

5032.0
*2

1623.3

**21623.310

n

nn

f

f

The damping ratio for the oscillatory plant, on the other hand, is computed as follows:

4743.0
10*2

3

*2

3

n
 and the peak time

pT is

sT

n

p 1286.1
4743.01*101* 22

46

No. of oscillations = s
n

n 667.1)1
1

(*
2

**

1*2 2

settling time is st
n

s 6669.2
1623.3*4743.0

4

*

4

, hence the periodic time T is

sT 5998.1
667.1

6669.2
 The frequency of oscillation is

6251.0
5998.1

1
f Hz

and the sampling time sT is s
f

Ts 2.01600.0
6251.0*10

1

*10

1

Utilising the computed sampling time, the Matlab code given in appendix V is used to

compute equation (34) to generate a transfer function (in the z-domain with the holding

circuit).

5488.0*252.1

1308.0*1601.0
2

zz

z
gh [V] (34)

Equation (34) is then converted to a digital equation that is given in equation (35).

2121 *1308.0*1601.0*5488.0*252.1 ttttt uuyyy [V] (35)

We utilise the PI controller again to control the oscillatory plant sampled above. The open-

loop PI controller applied to the oscillatory plant is given as

1

)*(*
)(*)(010

z

Tz
zghzk

 *

5488.0*252.1

1308.0*1601.0
2

zz

z
 , yielding open-loop poles at

1z , 0.3961i + 0.6260z and 0.3961i - 0.6260z with two zeros 0.8170z and

Tz
0

11

 dependent on the controller parameters that are varying due to the controller

tuning. Similarly, as for the case of the DC motor, the sampling time for the controller was

made faster than the sampling time for the plant. The stability region for the closed-loop

system is determined in order to expose the terrain to operate the IFT. To this end, the

closed-loop system transfer function is derived for the PI controller applied to the

oscillatory plant. The derivation is given as:

u

y

zz

zz
gh

21

21

*5488.0*252.11

*1308.0*1601.0

47

55.0)*(*13.0*)*03.0**16.0(80.1(*09.2

)*(*13.0*)*03.0**16.0(**16.0

0101

23

0101

2

0

TzTzz

TzTz
[V/V] (36)

Equation (36) is a closed-loop PI controller applied to the oscillatory plant. The same initial

controller parameters utilised for the DC motor is used, to check the universality of the

IFT in tuning controllers when applied to different plants. This is important because the

IFT technique assumes that the plant is not known, or only partially known.

(I) Slow-damped case

The IFT with initial parameters 1.00 rho and 2.01rho is implemented. This was also

used in section 3.3.1 for a slow-damped case of the DC motor, in order to compare the

results of the two plants. The response of the oscillatory plant and the reference signals

are illustrated in figure 7a, followed by the results for the controller parameters as shown

in figure 7b. The results for the error signal is shown in figure 7c.

Figure 7(a): IFT response for oscillatory plant

48

Figure 7(b): Parameter trajectory and cost function

Figure 7(c): Error signal

The oscillatory plant output and the reference signals are indicated in figure 7a. The

controller parameters, rho0 and rho1 and the cost function in figure 7b. Finally, figure 7c

illustrates the error signal. From the closed-loop transfer function, the roots of the

characteristic equation at samples 0, 6, 200, 400, 600, 800, 1000 and 2000 are computed,

and tabulate them in table 10. Parameter values are extracted from figure 7b from the

tabulated sample numbers.

The time constant of the unstable oscillatory pole at sample number zero of table 10 is

checked:

s
R

f s 2143.1
1647.0

2.0

||1

49

The pole will decay in s8572.4*4 . Where sf is a sampling frequency and)1,0(R , is

the radius of the pole in the unit circle.

The real pole's 'time constant' at sample number zero is given as

s
R

f s 2621.0
237.0

2.0

||1

The pole decays in s0484.1*4 , much faster than the oscillatory pole decay. From table

10 can be observed that the gain of the controller ranges between 0.01 and 0.2

(throughout the sample space), making the already heavily damped closed-loop system

slower, hence the slow response demonstrated in figure 7a.

50

Table 10: Roots of the oscillatory plant closed-loop control system

Sample no. Rho0 Rho1 Roots

0 0.10 0.20 -1.16 + 1.00i

 -1.1647 - 1.00i

 0.24

6 0.01 0.01 -1.16 + 1.00i

 -1.16 - 1.00i

 0.23

200 0.02 0.01 -1.16 + 1.00i

 -1.16 - 1.00i

 0.23

400 0.04 0.10 -1.16 + 1.00i

 -1.16 - 1.00i

 0.24

600 0.01 0.02 -1.16 + 1.00i

 -1.16 - 1.00i

 0.23

800 0.10 0.04 -1.17 + 1.00i

 -1.17 - 1.00i

 0.24

1000 0.15 0.12 -1.17 + 1.00i

 -1.17 - 1.00i

 0.24

2000 0.16 0.16 -1.17 + 1.00i

 -1.17 - 1.00i

 0.24

From the results obtained and illustrated in figure 7a, it can be seen that the response

does not converge, due to the heavily damped closed-loop system caused by the low

51

gain controller. Hence, the settling time is almost infinite and causes the cost function to

increase continuously. To resolve the this problem, the reference signal amplitude should

be raised to shorten the settling time, as it affects in the increase of the gain of the

controller, hence improving the optimisation, as shown in figure 7d and figure 7e. In the

same vein, step length should be increased to allow the output signal to settle before the

reference signal dies away or changes polarity.

Figure 7(d): IFT response for oscillatory plant

Figure 7(e): Parameter trajectory and cost function

Figure 7d and figure 7e demonstrate some degree of optimisation, though it takes a long

time before the parameters converge (in this case convergence occurs after 4200

samples). The heavily damped controller requires higher reference signal amplitudes to

converge.

52

(II) Fast-damped case

For the fast-damped case, the initial parameters are set at 10 rho and 11rho , similar

to section 3.3.1 for a fast-damped case of the DC motor. This was carried out in order to

make comparisons to the results of the oscillatory plant and those of the DC motor. The

response of the oscillatory plant and the reference signals are illustrated in figure 8a,

followed by the results for the controller parameters, as shown in figure 8b. The results

for the error signal is shown in figure 8e.

Figure 8(a): IFT response for oscillatory plant

Figure 8(b): Parameter trajectory and cost function

53

Figure 8(c): Error signal.

Figure 8a demonstrates a stable response throughout the entire sample-space, however,

when analysing it in terms of the parameter trajectory, this IFT optimisation has multi-

minimums. In comparison to results of the DC motor, we see some similarity in output

responses, especially in the settling time. The roots of the system characteristic equation

for a given controller parameters are computed at selected sample numbers, as given in

table 11. This is to analyse the tuning of controller parameters as a result of the IFT

optimisation.

One intriguing observation is the existence of two complex poles outside the unit circle

while the response indicates some level of stability. An obvious reason could be owing to

the region of convergence (ROC) which is bounded by the complex pole, and the pole

inside the unit circle. To elaborate the argument further, sample number 1200 is selected

as an example: the range in this case is -1.1640 < z < 0.2737, and since the region cuts

the unit circle, the system becomes stable in this region.

Table 11: Roots of the fast-damped plant for closed loop control system

Sample No. Rho0 Rho1 Roots

0 1.00 1.00 -1.18 + 1.018i

 -1.18 - 1.018i

 0.27

5 0.75 0.75 -1.18 + 1.013i

54

 -1.18 - 1.013i

 0.26

600 0.30 0.30 -1.17 + 1.00i

 -1.17 - 1.00i

 0.25

800 0.10 0.10 -1.17 + 1.00i

 -1.17 - 1.00i

 0.24

1000 0.20 0.20 -1.17 + 1.00i

 -1.17 - 1.00i

 0.24

1200 0.05 0.05 -1.16 + 1.00i

 -1.16 - 1.00i

 0.24

1400 0.40 0.40 -1.17 + 1.01i

 -1.17 - 1.01i

 0.25

2000 0.65 0.65 -1.18 + 1.01i

 -1.18 - 1.01i

 0.26

(III) Oscillatory plant Case

For the oscillatory plant case, initial parameters are set at 10 rho and 101rho . This is

different to the parameters applied in section 3.3.1 for the oscillatory case of the DC

motor, since the former gave a blow-up error. The response of the oscillatory plant and

the reference signals are illustrated in figure 9a, followed by the results for the controller

parameters in figure 9b. The results for the error signal is shown in figure 9c.

55

Figure 9(a): IFT response for oscillatory plant

Figure 9(b): Parameter trajectory and cost function

56

Figure 9(c): Error signal

The IFT is implemented 2000 times, as compared to 1000 times for the oscillatory case

in the DC motor application. The reason for this is because the initial oscillatory

parameters take a long time to converge when applied to the oscillatory plant. Parameters

tune with high gradient from sample zero to sample 200, then they take a gradual

gradient, but continue optimising since the cost function gradient has not minimised.

Parameters together with their respective roots for selected samples are tabulated in table

12.

57

Table 12: Roots of the oscillatory plant for the closed-loop control system

Sample No. Rho0 Rho1 Roots

0 1.00 10.00 -1.16 + 1.05i

 -1.16 - 1.05i

 0.22

50 0.50 8.00 -1.15 + 1.04i

 -1.15 - 1.04i

 0.2121

100 0.50 4.00 -1.16 + 1.02i

 -1.16 - 1.02i

 0.23

1000 0.50 3.50 -1.16 + 1.02i

 -1.16 - 1.02i

 0.24

1600 0.50 3.20 -1.17 + 1.02i

 -1.17 - 1.02i

 0.24

2000 0.50 3.00 -1.17 + 1.02i

 -1.17 - 1.02i

 0.24

The roots of the characteristic equation for parameters of selected sample numbers

tabulated in table 11 demonstrate two complex poles outside the unit circle, with only the

real pole inside the unit circle – a similar trend to the one observed in the fast-damped

case of the oscillatory plant. Hence the same argument regarding stability is also applied

here.

3.3.5 Simulation of the IFT using the unstable plant

In this section, we test the IFT by applying it to the unstable plant given in equation (31),

58

using a similar procedure as in the IFT applied to the oscillatory plant, and the

plantsampled into a digital equation. The Matlab code for converting from s-domain

to z-domain is given in appendix V under the derivation for equation (39). The

obtained equation is given in equation (37).

)105.1

1052.0

z
gh [V] (37)

Hence equation (37) is converted to a digital equation as given in equation (38).

u

y

z

z
gh

1

1

*105.11

*1052.0

11 *1052.0*105.1 ttt uyy (38)

The closed-loop control system for the unstable plant is also derived in appendix V under

the derivation for equation (39) and the final transfer function is given in equation (39).

)*(*1052.0105.1*)105.2*1052.0(

)*1052.0**1052.0(**1052.0
)(

010

2

010

Tzz

Tz
zgh [V] (38)

 (I) Slow-damped case

The same initial controller parameters (1.00 rho and 2.00 rho) used for the oscillatory

plant and the DC motor are applied here, and the IFT is implemented for 1000 samples.

The results are illustrated in figure 10, though only 600 samples are indicated for the

response and the error signal, while for parameters and the cost function, only 100

samples are indicated. This is mainly to make the graphs readable.

59

Figure 10(a): IFT response for unstable plant

Figure 10(b): Parameter trajectory for unstable plant and cost function

Figure 10(c): Error behaviour

60

The unstable plant response and reference signal is illustrated in figure 10a, followed by

the controller parameters, rho0 and rho1. The cost function is illustrated in figure 10b, and

the error signal in figure 10c. The response is unstable from sample number zero to

sample number 100, where it converges to the oscillatory closed-loop system up to the

last sample (sample number 1000). Figure 10b illustrates how the controller parameters

vary, starting with sample number zero to sample number 100, where the gradient of the

cost function decreased to zero. and Because of this occurrence, the error signal reduced

to a minimum (see figure 10c). The roots of the characteristic equation for the unstable

plant at selected sample points are tabulated in table 13. Using the roots at sample

number 100, and also the given sampling time (200ms), the IFT is validated by computing

the settling time and the period of the response. The settling time to the %2 band is

readily computed to be 9.1s, and the period of oscillation is 7.1s. This agrees with the

response shown in figure 10a in that one cycle of the response (for example from sample

200 to sample number 237) takes 37 samples, which works out to be 7.4s. Also, the same

response settles in 45 samples, working out to be 9s.

Table 13: Roots of the oscillatory plant for the closed-loop control system

Sample No. Rho0 Rho1 Roots

0 0.10 0.20 1.06

 1.04

30 -0.08 -0.10 1.12

 1.00

36 -0.21 -0.21 1.14

 1.00

42 -0.21 -0.20 1.14

 1.00

100 2.60 2.40 0.92 + 0.13i

 0.92 - 0.13i

1000 2.60 2.40 0.92 + 0.13i

 0.92 - 0.13i

61

(II) Fast-damped case

For the fast-damped case, the controller parameters utilised are 0.10 rho and 0.10 rho

– the same as used in the DC motor plant. The results generated are given in figure 11.

Figure 11(a): IFT response for unstable plant

62

Figure 11(b): Parameter trajectory for unstable plant

Figure 11(c): Error behaviour

The output response and the reference signal are indicated in figure 11a. The parameters,

rho0, rho1 and the cost function are shown in figure 11b, and finally, the error signal is

illustrated in figure 11c. The output response is unstable from sample number zero to

sample number 130, and takes a longer time than in the case of the slow-damped case.

At sample number 130, the controller parameters converge to a very fast response with

an overshoot. The roots of the characteristic equation are computed for the selected

sample points and tabulated in table 14.

Table 14: Roots of the fast-damped plant for the closed-loop control system

Sample No. Rho0 Rho1 Roots

63

0 1.00 1.00 1.00 + 0.10i

 1.00 - 0.10i

45 0.90 0.90 1.01 + 0.10i

 1.01 - 0.10i

55 0.80 0.80 1.01 + 0.09i

 1.01 - 0.09i

87.5 -2.00 -2.00 1.37

 0.94

95 6.00 6.00 0.82

 0.66

120 7.50 7.50 0.85

 0.46

(III) Oscillatory case

Finally, the initial controller parameters utilised for the oscillatory case are 10 rho and

160 rho – the same as in the case of the DC motor. The output response and the

reference signal are indicated in figure 12a. The parameters, rho0, rho1 and the cost

function are shown in figure 12c and the error signal is illustrated in figure 12d. The IFT

is implemented for 1000 samples, however, only 600 samples are shown in figure 12.

The results obtained are illustrated in figure 12a, and demonstrate oscillations from

sample number zero to sample number 60, where the response converges to a stable

oscillatory response with an overshoot of 1.1V and a settling time (to %2 band) of 1.4s

according to the root at sample number 200. This is the same as the response at sample

number 200 (see magnified figure 12b).

64

Figure 12(a): IFT response for unstable plant

Figure 12(b): Magnified IFT response for unstable plant

Figure 12(c): Parameter trajectory for unstable plant and cost function

65

Figure 12(d): Error behaviour

Parameters vary from sample number zero to sample number 60, where the system

converges to a stable oscillatory system of rho0 = 20 and rho1 = 65. The roots of the

characteristic equation are computed at selected sample points and tabulated in table 15.

The instability occurs only for a shorter time as compared to the two former cases (slow

damped and fast damped). The observation reveals the response of high frequency

initially for the period of 43 samples.

66

Table 15: Roots of the oscillatory plant for the closed-loop control system

Sample No. Rho0 Rho1 Roots

0 1.00 16.00 1.00 + 0.41i

 1.00 - 0.41i

36 -0.50 10.00 1.08 + 0.31i

 1.08 - 0.31i

37 -0.50 5.50 1.08 + 0.23i

 1.08 - 0.23i

43 -1.00 0.50 1.18

 1.03

200 20.00 65.00 0.56

 -0.56

3.3.6 CHAPTER SUMMARY

In this chapter, the IFT technique was tested and validated, as demonstrated by the

following:

• The initial controller parameters for the IFT should not be picked randomly, but

should be determined by fixing the zero of the controller inside the unit circle, so

that it helps to pull the poles of the closed-loop system inside during optimisation.

This procedure, used for all three plants, confirmed the viability of the IFT

technique in optimising badly tuned controllers, to improved ones.

• The Gamma constant needs to be selected in relation to the size of the error. For

large error, the gradient of the cost function increases rapidly, and hence, requires

a small gamma constant, and when the error is small, the cost function increases

gradually, requiring a big gamma constant to tune the parameters quickly. Higher

gamma constants may cause system blow-up due to internal variable overflow as

a result of the identity matrix becoming asymmetric. The solution to the problem is

to choose gamma constant by a line search.

67

• Reference signal amplitude variation has an effect on the convergence of the

controller parameters, and system blow-up for constant gamma. If the amplitude

of the reference signal is varied, then gamma should be set by the line search.

• This chapter demonstrated the universality of the IFT in controlling different types

of systems – a validation that it can control a wide range of plants, as stated in the

literature.

68

CHAPTER FOUR

DESIGN OF A DEDICATED IFT MICROCONTROLLER

4.1 INTRODUCTION

Having studied and validated the IFT technique in chapter three (a necessary task before

the technique is committed to hardware the design, implementation and verification of a

Dedicated IFT Microcontroller is now presented in this chapter. To accomplish this, an

overview of FPGA technology and Electronics Design Automation (EDA) tools is

presented. This is followed by investigating the feasibility of developing the IFT technique

into an FPGA device, since it is the device earmarked for development of the

Microcontroller. The design methodology adopted in this research is a popular

hierarchical and modular top-down procedure, which is an array of abstraction levels

(system level, behavioural level, register transfer level (RTL) and physical level). At

system level, the hardware (Dedicated IFT Microcontroller) is defined or specified based

on the IFT algorithm described in chapter three. Thereafter, at behavioural level, the

design is simulated using VHDL, which is created by porting the LabView IFT code

(developed in chapter three) to the Xilinx EDA tool. The simulation is meant to verify the

feasibility of running the IFT on FPGA hardware. At register transfer level (RTL), a

synthesisable VHDL code utilising fixed-point number representation is written. This is

preferred to floating number representation for implementation into the FPGA, due to the

benefit of performance. The compiled bit file is downloaded onto the target device (NI

Digital Electronics FPGA Board featuring Spartan 3). Finally, the developed hardware is

tested using a method known as simulation in the hardware.

4.2 OVERVIEW OF FPGA TECHNOLOGY

FPGAs were first introduced in 1984 by Xilinx [27], and since then have seen tremendous

growth, and have become a popular implementation media for digital hardware. A few

examples can be cited from the literature as follows: a digital controller for a dc-dc

69

converter using Floating Point Arithmetic [18]; modular FPGA-Based PID controller [19,

20]; an auto-tuned digitally controlled buck converter based on relay feedback [21], etc.

The most recent FPGAs (Xilinx's Virtex ultra scale+ and Kintex ultra scale+) are produced

using a 16-nm copper process [30], and their density can reach more than 5540850 logic

elements per component, with internal clocking resources of up to 1 GHz [29].

As a result of the advancement in process technology, FPGA's enhanced logic capacity

made them a viable implementation platform for large and complex digital designs, which

is why it is believed in this study that the IFT technique (despite being a complex

technique) can be implemented in an FPGA. FPGAs present a compelling alternative for

digital system implementation based on economical access to scalability and

performance provided by Moore's law [28]. As Moore's law progresses, it will be difficult

to use an application-specific integrated circuit (ASIC) because of difficulties brought

about by state-of-the-art deep submicron processes in VLSI [28], a problem that can only

be mitigated by using FPGA devices.

The two fundamental technologies that distinguish FPGAs are architecture and CAD tools

that a user must employ to create FPGA designs. The goal of this survey is to investigate

the existing state of the art in FPGA architecture and CAD tools, so that context can be

provided for the design of the Dedicated IFT Microcontroller.

An FPGA is defined as a two-dimensional array of configurable logic blocks (CLBs)

embedded into a sea of programmable interconnection networks, which connects the

CLBs (according to the hardware requirement to implement) to each other. The final

customised FPGA, representing the targeted application, is connected via input/output

(I/O) blocks to the external world. A basic example of a generic FPGA architecture is

depicted in figure 13.

70

Figure 13: Generic FPGA architecture

In Xilinx terms, a CLB is a cluster of eight logic cells, or a group of four slices [31]. Based

on the complexity of a generic CLB, for example the number of logic cells it contains, the

CLB can be classified as either a fine grain (one logic cell or gate) or coarse grain (CLB

containing several logic cells or gates). Examples of fine-grain FPGAs are Crosspoint,

Plessey and Algotronix FPGAs. The main advantage of using fine grain is that CLBs are

fully utilised because it is easier to use small logic gates efficiently [38]. On the other hand,

fine-grain FPGAs have problems in that they use a large number of routing segments,

resulting in a cost in area, since it is the routing network that takes a larger percentage of

area in an FPGA (ranging from 80% to 90%), in comparison to CLBs that takes only 10%

to 20% [38]. Alternatively, a coarse-grain CLB comprises look-up tables (LUTs), which

are very common in Actel, Xilinx and Altera. The structure of a logic cell, which is a

fundamental grain of the FPGA, is illustrated in figure 14.

71

Figure 14: Logic cell structure [11]

It consists of a four-bit look-up table (LUT-4) that can be configured as ROM, RAM or a

combinatorial function. A carry-look-ahead data path is also included in the cell to build

an efficient arithmetic operator. A D-type flip-flop, with all its control inputs (synchronous

or asynchronous set/reset, enable) permits registering the output of the logic cell [12].

Finally, a coarse-grain FPGA does not require a large number of routing segments [38]

as is required in fine grain because the density of CLBs is higher. This information is

significant in that it helps in selecting a suitable FPGA for use in a desired application. In

this research, a coarse-grain FPGA is selected for the design of a Dedicated IFT

Microcontroller, because the technique is complex and its implementation requires an

FPGA of high logic capacity.

Three types of programming technologies are utilised in FPGAs, and these are outlined

as follows: static RAM (SRAM), flash (EEPROM), and anti-fuse. These programming

technologies characterise the architecture of an FPG and can also be used as a criterion

to select a preferred FPGA for an application in question. In the case of the IFT technique

implementation, SRAM technology was selected. This is because SRAM is by far the

most widespread technology due to its simple integrated circuit process (it uses standard

CMOS), and it has fast re-programmability, which is good for testing applications. The

SRAM FPGAs are normally paired with external flash memory on the same printed circuit

72

board (PCB) to preserve the application program when power is off. However, the flash

FPGA is of interest for its non-volatility and area efficiency [28] and can be applied in the

final design or perfected application because it preserves the configuration of an FPGA

when the power is off without an external flash memory.. Furthermore, the flash-based

FPGAs guarantee the configuration against the single-event upset (SEU) radiations [28]

– a potential candidate for aerospace application.

More recently, a trend of heterogeneous architectures emerged, with the introduction of

some dedicated blocks such as Random Access Memory (RAM) DSP accelerator units

(hardwired multipliers with their accumulators, high-speed clock management circuitry,

and serial transceivers). The units are embedded into hard processor cores such as the

PowerPC, or advanced reduced instruction set computing (RISC) machines [31, 33], and

soft-processor cores such as Nios [32], Picoblaze [31], and Microblaze [31]. Moreover,

an interesting feature of control applications is the recent integration of an ADC in the

fusion component from Actel (now known as Microsemi) [33].

FPGAs are frequently used to implement complex functions, and the implementation of

the IFT technique (quite complex also) on an FPGA could be feasible. This claim

regarding an FPGA having the capability to accommodate complex treatment is backed

by recent advancement in VLSI, and development of design tools such as hardware

description languages (HDL) such as VHDL and Verilog [34, 35]. Other developmental

tools that are emerging nowadays (from both industry and academia) are high-level

synthesis (HLS) and electronic system level (ESL) synthesis tools. These tools have been

in the research domain for over three decades, though only recently have found their use

due to the need for quality results (in terms of performance and energy efficiency, and

strict time-to-market schedules) in embedded applications [36]. Another interesting

feature concerning HLS tools is the possession of floating-point number representation,

which is currently not easy to use in VHDL or Verilog. HLS tools are based on C/C++ or

system C high-level languages, which have floating-point number capability. The design

methodologies using the abovementioned tools are briefly described in appendix II.

73

Finally, the FPGA in use in this research is the National Instruments Digital Electronics

FPGA Board. The NI Digital Electronics FPGA Board is a circuit development platform

based on the 3S500E Xilinx Spartan- 3E FPGA. Besides the FPGA, the board comprises:

• sliding switches,

• LEDs,

• two-digit, seven-segment display,

• push buttons,

• rotary push-button knob and LEDs for the external clock,

• diligent Pmod terminals for external attachment,

• USB download interface, and

• large breadboard area for digital electronics circuitry.

4.3 DESIGN METHODOLOGY

As already mentioned, our design follows a hierarchical and modular approach and we

use the Xilinx ISE EDA tool to accomplish this goal. Going through the levels of

abstraction, the design is formulated as follows:

4.3.1 System Level Abstraction

System level is the first step in the design process. It constitutes defining or specifying

the Dedicated IFT Microcontroller. However, in our case, the specification was done in

chapter three where the IFT technique was formulated and simulated with the help of the

LabView software. However, we redefine it here again in the form of its architecture, as

illustrated in figure 15, using the equations that were derived in chapter three (to be

specific, in subsection 3.2.4). Figure 15 can also be termed as a data path (where

operations are performed) for the Microcontroller.

74

Figure 15: IFT technique architecture

The IFT is formulated using traditional error, thus only the first term of equation (14) is

used, as shown in equation (40), mainly for simplifying the hardware.

2

0

2))(*[(
2

1

N

i

e eL
N

J (40)

The inputs to the data path are the reference signal, plant output signal, gamma constant

and the parameters designated by)(ir ,)(iy j , , and inrho _0 inrh _01 respectively. The

parameters are presented in different symbols to those used in chapter three, mainly to

indicate that there are initial parameters, and only used in experiment# 1. The flow of

signals is described exactly as in chapter three. The two counters, (the counter for

experiment# 1 and the counter for experiment# 2) seemingly not connecting to anything

in the architecture, are loop counters for the two experiments. The counter for

experiment# 1 counts the number of iterations for an N-length period in experiment# 1.

75

Similarly, the counter for experiment# 2 counts the number of iterations for an N-length

period in experiment# 2. When the iteration count is reached, the counter produces a

status signal for a finite-state machine (FSM), which correspondingly sends an instruction

to the data path to change the state of the FSM. There are eight tri-state buffers,

numbered from 1 to 8, responsible for transitioning of the IFT from one experiment to the

other. The control terminal for each tri-state buffer is signified by either exp# 1 or exp# 2,

implying the signals buffered by the respective tri-state buffers can only be allowed in a

specific experiment, and the dynamics of the transition are coordinated by the FSM, also

known as the control unit. The DAC and plant blocks have their outline dashed to illustrate

that there are external devices that should not be included in the integrated circuit (IC).

However, the ADC block shown in the solid outline implies that it can be part of the IC

since some FPGA vendors have managed to fuse an ADC into the FPGA.

The data path cannot function by itself and requires a controller termed a finite-state

machine, or control unit to supervise it. The other related name for the FSM is an algorithm

state machine (ASM), similar to traditional flowcharts used for programming languages.

Hence, the FSM and ASM is also defined in relation to the data path, in order to have a

complete specification of the dedicated Microcontroller.

The FSM generates instructional signals to the data path in relation to the clock signal. A

block diagram of an FSM is shown in figure 16, with accompanying instructional and

status signals. The FSM for the IFT Microcontroller generates two signals to start

experiment# 1 and experiment # 2 sequentially, and it also receives status signals to

detect whether the cycle has ended in experiment# 1 or experiment # 2. It also takes the

clock and error signals as inputs. This FSM is termed as Mealy machine as whose output

depends both on current state and inputs. The error signal is checked to detect whether

it has gone above the tolerated margin or not, and if this is true and the cycle has also

ended, Experiment# 2 must begin. This explanation is easily illustrated by a state

diagram, which is indicated in figure 17.

76

Figure 16: IFT technique finite-state machine block diagram

The inputs are denoted as x for the condition "error e tolerated error te and counter

exp# 1 N ," and the input for the condition "counter exp#2 N " as c . Moore and mealy

outputs are also denoted for Experiment# 1 and Experiment# 2 as 1,, yyy ba and 2y

respectively.

77

Figure 17: IFT technique FSM state diagram

As shown in figure 17, when the input signal 0x , the transition arrow loops in

Experiment# 1 and mealy output 11 y to drive the tri-state buffers in Experiment# 1, but

when 1x the arrow transitions to Experiment# 2 with the mealy output 02 y . In

Experiment# 2 state, the input 1c makes mealy output 12 y to drive the tri-state

buffers for Experiment# 2, but when 0c the terminal transitions to Experiment# 1.

Finally, the controller can also be expressed in terms of an algorithm state machine

(ASM). This is a better representation because it mimics the hardware. Figure 18

illustrates the ASM chart for the IFT technique.

Figure 18: IFT technique ASM chart

78

From the ASM chart, Boolean expression is thus easily formulated:

Moore output Qya and Moore output Qyb

Mealy output xQy *1 and Mealy output cQy *2

Next state equation cQxQQ **

The derived Boolean expression is easily utilised to design the FSM for controlling the

data path given in figure 9.

Figure 19: IFT technique FSM

X is the condition for the iteration count, i = N and error, e > tolerated error; c is a condition

for iteration count, i ≠ N; 1y and 2y are signals to operate tri-state buffers for Experiment#

1 and Experiment# 2 respectively.

In the system level abstraction, the IFT dedicated Microcontroller was specified. The next

stage is the behavioural level of abstraction where the code is written to simulate the

design. The code is usually written in programming languages such as Matlab, LabView,

or C++. Since this task was done in chapter three, it will not be repeated here, but instead

the hardware will be describe using a hardware description language and will be

simulated on the VHDL platform of ISim Xilinx simulator.

4.3.2 Behavioural Level Abstraction

In this section, the behaviour of the algorithm using VHDL is described. The development

of the VHDL code for the IFT Microcontroller is described in the next subheading.

79

I. Development of VHDL Code for IFT Microcontroller

Following the simulation of the IFT technique on the LabView platform, and its

specification in the system level abstraction, the behavioural VHDL code is developed

and simulated in this section. Behavioural modelling is chosen because of its sequential

attributes, a property suitable for algorithms like the IFT technique. It uses processes to

describe behaviour of hardware, similar to programming languages, since program

statements in a process are executed sequentially. Hence, any code developed in

LabView or the C-language can be ported to a VHDL process block, and would run as

expected. With this background, the simple procedure utilised was to port the LabView

code into the Xilinx ISE EDA tool, and with minimal modification, a behavioural model

VHDL code that describes the IFT hardware was developed. This type of modelling is

also known as finite-state machine with data path (FSMD), and is preferred to finite-state

machine plus data path (FSM + D), for ease of implementation.

The IFT Microcontroller VHDL code is composed of three processes, namely: a process

for clock division, a process for generating the reference signal, and a process for the PI

controller combined with the IFT technique. The last process is ported from the LabView

IFT code.

In the development of the VHDL code, the LabView code was modified to use fixed-point

number representation in order to enhance accuracy of the controller. Floating-point

number representation is the best with regard to accuracy, but its implementation is

complicated and very demanding in terms of hardware resource.

The VHDL code, formulated for the IFT Microcontroller with fixed-point number

representation. To transform the LabView code into the VHDL code, a word length of 12

bits was chosen to match that of the ADC and the DAC, which also have 12-bit resolution.

The fixed-point number representation is denoted by Q(m, -n) format. Where Q is a fixed-

point number variable, m is an integer part of a fixed-point number, and n is a fraction part

80

of a fixed-point number. For 12-bit word length and a 2V maximum input/output signal,

the format is given as Q(1, -10), meaning that the fixed-point number has 2 bits for the

integer part and 10 bits for the fractional part. Hence, using the specified Q format, all

LabView file expressions is written in terms of fixed-point representation. The modified

instructions are then converted to VHDL expressions. An example is demonstrated for

the following expressions from the LabView code:

• the comparator, e = r - y,

• the PI controller, u[t] = u[t-1] + rho0*e[t] + (rho1*T - rho0)*e[t-1], and

• the plant, y[t] = 0.90483*y[t-1] + 0.09516*u[t].

Taking the instruction e = r – y, it is modelled in the form of fixed-point number

representation, thus e(2, -10) = r(1, -10) - y(1, -10).

The result of the subtraction register e, is higher by 1 bit than the operand registers. This

is known as an overflow, which can have an impact on the signal level. For example, in

this design the reference signal varies between 0V and 2V, meaning that, the result is

upper-bounded by 2V, and if an overflow occurs, the signal rises beyond 2V, which is a

problem. To resolve this problem, the most significant bit (msb) of the register is dropped

(without any loss of accuracy) by scaling or shifting. Hence, register e(2, -10) is shifted to

the left by 1 bit yielding e(1, -11), which can still be resized or truncated to e(1, -10) to

maintain the 12-bit format.

Taking the next instruction that implements the PI controller gives

u[t] = u[t-1] + rho0*e[t] + (rho1*T - rho0)*e[t-1]

This is modelled in the form of fixed-point number representation as

u[t](5,-21) = u[t-1](1,-10) + rho0(1,-10)*e[t](1,-11) +

 (rho1(1,-10)*T(1,-10) - rho0(1,-10))*e[t-1](1,-11)

=u[t-1](1,-10) + rho0*e[t](3,-21) + (rho1*T(3,-20) - rho0(1,-10))*e[t-1](1,-11)

=u[t-1](1,-10) + rho0*e[t](3,-21) + ({rho1*T-rho0}(4,-20))*e[t-1](1,-11)

=u[t-1](1,-10) + rho0*e[t](3,-21) + {rho1*T+rho0}*e[t-1](6,-31)

=u[t-1](1,-10) + (rho0*e[t]+{rho1*T+rho0}*e[t-1])(6,-31)

=(u[t-1]+(rho0*e[t]+{rho1*T+rho0}*e[t-1]))(7,-31)

81

The result of the control register u[t] has 7 bits for the integer part and 31 bits for the

fractional part. This is scaled by shifting 6 times to the left, yielding u[t](1, -37). Finally, the

plant expression, given as in equation (19) is reproduced here for convenience.

 y[t] = 0.90483*y[t-1] + 0.09516*u[t]

It is also modelled in the form of fixed-point number representation as follows:

y(1, -20) = C(1, -10)*y(1, -10) + D(1,-10)* u(1, -10)

= C(1,-10)*y(1, -10) + D(1,-10)*u(1, -10)

= C*y(3,-20) + D*u(3,-20)

=[C*y+D*u](4,-20)

C and D are the constants of the plant, 0.90483 and 0.09516 respectively.

The result of the output y, has 4 bits for the integer part of the fixed-point number, and 20

bits for the fractional part of the fixed-point number. This is resized or truncated to allow

it to fit on the output port, which is a 12-bit word length.

The next procedure was to code in the VHDL language all the modified expressions. The

code for the comparator, PI controller and the plant is given in table 16. Similarly,

computation for the IFT component is carried out, however, the transformation is given in

appendix I. The complete VHDL code is assembled for simulation using the Xilinx IS

simulator.

The next level of abstraction is the register transfer level, where synthesisable VHDL code

is developed.

Table 16: VHDL code

Variable e: ufixed(2 downto -10);

82

Variable r: ufixed(1 downto -10);

Variable y: ufixed(1 downto -10);

Variable e: ufixed(2 downto -14);

Variable u: ufixed(4 downto -29);

Variable rho1: ufixed(1 downto -14);

Variable rho0: ufixed(1 downto -14);

 Variable gain: ufixed(1 downto -14);

Variable y: ufixed(1 downto -14);

e[t] := r[t] – y[t];

u[t] = u[t-1] + rho0*e[t] + (rho1*T - rho0)*e[t-1] ;

y[t] := 0.9048*y[t] + 0.0962*u[t];

4.3.3 RTL abstraction

At the RTL level of abstraction, synthesisable VHDL code is developed and simulated,

that implements process blocks that make up a dedicated IFT microcontroller. The blocks

are outlined as follows: the clock division block for the PI controller and the IFT; the clock

division block for the analogue to digital converter (ADC); the block for the reference

signal; the main block for the PI controller and the IFT technique, and the block for six

channels of the pulse width modulation DACs. A summary of these blocks is given in

table 17. After this, the process blocks are instantiated (connected) into a complete

hardware. This kind of modelling is a combination of behavioural and structural modelling.

It was adopted because the IFT technique is a highly complex technique to be modelled

in the structural level entirely, as structural modelling is a low level approach. Each

process block developed is tested before connecting it into the system, a paradigm known

as modular design, permitting reuse. In summary, the process blocks are tabulated in

table 17. The VHDL codes for the process blocks are illustrated in appendix VI.

Table 17: VHDL code structure for IFT technique

Process Type Function

83

Clock Divisiontoggle Generates clocks for the main process and the

r(t) generator process

Clock DivisionADC Generates clocks for the ADC process

Reference signal process Generates set-point signal, r(t)

Analogue to Digital converter process (ADC) Interfaces analogue signals to the IFT technique

hardware

Main Process Implements the PI and IFT technique

Six Pulse Width Modulated Digital to

analogue converters (DAC) process

Converts digital signals (set-point, controller

parameters, and output signal) to analogue

signals for displaying onto the labview

oscilloscope

4.3.3.1 Simulation of VHDL code for IFT Microcontroller

The VHDL code developed at RTL level is simulated in this section. This simulation differs

from the one in chapter three since its focus is on validating the feasibility of running the

IFT technique on the FPGA hardware. A test bench is developed in HDL and perform the

RTL simulation. The RTL term is used in this instance to mean the HDL code is formulated

at the register transfer level. A test-bench (functions as a virtual lab bench) consisting of

the IFT Microcontroller module (described in VHDL language), and a code segment to

generate a stimulus, are created. The stimulus is 'reset' signal for resetting and

experiment signals for switching from one experiment to another respectively. The results

of the simulation are illustrated in figure 20.

84

Figure 20: Simulation Results for the IFT VHDL Code

Figure 20 illustrates the optimisation action of the IFT, in that the parameters (rho0 and

rho1) show some degree of variation as the tuning process progresses. Even the output

response of the plant, y_out, shows some level of change in relation to variation in

parameters. This is a demonstration that IFT technique can run on FPGA hardware.

Device utilisation is checked to ascertain the amount of hardware required to develop the

Dedicated IFT Microcontroller when modelled using the fixed-point number

representation, and the results can be compared with other models. The device utilisation

summary is tabulated in table 18.

Table 18: Device Utilisation Summary

Used Available Utilisation Comment

Number of slice

flip flops 919 9,312 9% ok

Number of 4 input

LUTs 1249 9,312 13% ok

Number of

occupied slices 940 4,656 20% ok

85

Resource usage is below 50%,indicating that the IFT can be programmed on a smaller

FPGA hardware.

4.3.4 Gate level abstraction

At the gate level of abstraction, the Xilinx EDA tool was used to synthesise and implement

the VHDL code developed at RTL level. The synthesis process converts the hardware

description of the IFT Microcontroller into generic gate level components (logic gates and

flip-flop) for implementation into the FPGA. This is where various IFT Microcontroller

design files were merged or translated into a single netlist,for technology mapping,

placing and routing. To elaborate on the three implementation processes, it can be

expanded as follows: at the translation stage, the software merges multiple design files

to a single netlist, followed by mapping generic gates to the FPGA's logic cells and input

and output pins (I/OBs). After mapping, placement and routing is commenced. At this

stage, the cells are placed in physical locations in the FPGA, and determines the routes

to connect various signals. Finally, the EDA tool generates a programming file that is

downloaded into the FPGA.

4.4 CHAPTER SUMMARY

In this chapter, the Dedicated IFT Microcontroller was designed by formulating a data

path (for the PI controller and the optimisation unit) and the FSM for sequencing the

operations of the data path, as the IFT is a data based or sequential technique. To the

best knowledge of the author, the implementation of IFT into FPGA hardware has never

been published in literature before. The design was also simulated on ISim Xilinx

simulator to check the validity and resource usage.

86

CHAPTER FIVE

TESTING OF A DEDICATED IFT MICROCONTROLLER

5.1 INTRODUCTION

In this chapter, a Dedicated IFT Microcontroller is tested. A rig is set up utilising NI

Elvis II+, a Digital Electronics FPGA Board, Xilinx ISE Design suite version 12.2 EDA

tools, LabView 2015 and a Toshiba laptop running Windows 2007. The model used in the

design is the IFT of 1DOF.

The process of experimentation begins by downloading VHDL code, developed in chapter

four, into the Digital Electronics FPGA Board. It is conducted using a technique known as

simulation in the hardware, since all the components of the microcontroller and the plant

are imbedded into the FPGA. Six signals are monitored, namely: the output response,

reference signal, two parameters, the error signal and control signal. These signals are

analysed and compared to those of theory of chapter three, for validation.

5.2 EXPERIMENTAL SETUP

The procedure adopted utilised the VHDL code developed in the subsection 4.3.2, by

embedding it (all the components, including the plant) into the FPGA device. The code

was implemented, and monitored the plant output response signal, the reference signal,

two parameter signals, the error and control signals for analysis and comparison.

The setup in this experiment included the following: Digital Electronics FPGA Board using

Spartan 3 from National Instruments; a Xilinx EDA tools, and an NI Elvis II+ panel. The

NI Elvis II+ integrates 12 most commonly used instruments hosted on the LabView

platform, making it easy to carry out the experiment. The instruments include an

oscilloscope, digital multimeter, function generator, bode analyser and a variable power

supply. Figure 21 depicts the picture of the setup used in the research.

87

The six signals above were measured and analysed through display on the LabView

platform. By use of the data acquisition system (DAQ) hosted in the Elvis panel, signals

from the FPGA board were acquired for measurement. The setup in the form of a block

diagram is illustrated in figure 22.

The spartan 3 FPGA hosts the VHDL code describing a Dedicated IFT Microcontroller,

the DC motor indicated as G(z), six channels of PWM, and DACs, making the

microcontroller self-contained. Six signals in PWM format are extracted from the FPGA

(at run time), and are passed through a block of low pass filters for conversion (averaging)

into analogue signals, which are then acquired by the data acquisition system embedded

in the NI Elvis II+ panel, for transmission to the LabView display (see figure 21 and 22).

Figure 21: Experimental setup for testing of IFT Microcontroller

88

Figure 22: Block diagram of experimental setup for testing a dedicated IFT

Microcontroller

The rate of acquisition follows basic rules of sampling theory. The low pass filter is

basically a resistor and a capacitor connected as shown in figure 23. The six signals from

the Microcontroller modulates the duty cycle of a PWM signal of a respective DAC that

generates the signals through the filters, for conversion into analogue voltages via DAQ

channels all the way to the LabView display. Hence the DAC output voltage is related to

the duty cycle of the PWM signal as given in equation (41).

DAC voltage dutycycleamplitude* [V] (41)

Figure 23: Low pass filter

89

Duty cycle is obtained by the expression given as:

Duty cycle
offon

on

TT

T

 , and the resolution of the DAC is given as

Resolution
n2

T is the time and n the number of bits, which in the case of the IFT Microcontroller, is 12-

bit resolution. From the resolution, the PWM frequency is determined using the

expression in equation (42).

MHz
requecyFPGAclockf

PWMfreq
n

2.1
4096

10*50

2

6

 (42)

Then the cut-off frequency of the filter is given by the expression in equation (43).

CR

PWMfreq
LPf

nc
**2

1

2)1(

 (43)

This works out as follows:

0011.0
2.1*142.3

4096

*

2
*

MHzPWMfreq
CR

n

 seconds, yielding a cut-off frequency of

909.0909 Hz. Equation (42) demonstrates decreased PWM frequency at higher

resolution systems, however, the problem of high ripple at low frequencies diminishes

DAC performance. At high frequency, the generated PWM signals are free from noise,

but tend to lower the resolution of the DAC. These two constraints limit the DAC

performance, which is well suited for FPGA applications because of its compactness.

From the filters, the signals link to physical pins of the analogue ports of the data

acquisition system, via the USB cable, into the computer, to the DAQ assistant, which

acts as an interface between the hardware and LabView. The DAQ assistant then

distributes the signals to destination graphs. The block diagram of the LabView code is

illustrated in figure 24.

90

Figure 24: LabView code for displaying signals on graphs

In some cases, a software-based oscilloscope (in LabView) was used specifically to

measure minute signals, as will be shown later.

5.2.1 Procedure of the experiment

Having described the experimental setup, the procedure of the experiment is now

described. Although the IFT technique assumes no knowledge of the plant, or only partial

knowledge thereof, this experiment used a known model of the DC motor (in software

format) from chapter three for the purpose of validation and testing (the Dedicated IFT

Microcontroller) only.

The experiment was conducted as follows: first, the PI controller was tested alone without

the IFT to ensure its proper operation. Thereafter, samples of parameter points derived

in chapter three were assembled as a terrain for the IFT to operate. Table 19 shows a

record of the samples. The parameters are chosen with the premise that the zero should

be inside the unit circle to establish stable terrain for the IFT to operate. Note that the IFT

here was used for smoothening only.

91

Table 19: Parameter pairs in the region of stability

Rho0: ± 0.01, 0.02, 0.03, 0.04, 0.05,0.9

Rho1: ± 0.01, 0.02, 0.03, 0.04, 0.05,0.9

Second, having defined the stable terrain for the IFT, it is then made to work within the

specified region, and in this way the IFT optimises fast. Third, the IFT is implemented

using an external button linking to the latch in the Dedicated IFT Microcontroller, which

connects to the PI controller. There is also a reset external button for resetting the

controller when necessary. When the microcontroller is turned on, it runs the PI controller

alone with initial parameters that are randomly set by default, due to the transition period

of the microcontroller, which sometimes can exhibit bad responses like the one shown in

figure 24a. Figure 24b shows the parameters, and figure 24c shows the error and control

signals. To improve the initial response, the controller is tuned by pressing the tuning

button, while observing the response trace on the LabView oscilloscope. If the best

response was not achieved, the button is touched again. The process of searching can

continue until the parameters converge.

Looking again at the response in figure 24a in analytical manner: the output response

shown in figure 24a oscillates at a frequency of 150 Hz, and this oscillation could be as a

result of positive feedback (at higher values of rho0) caused by the plant lag in the closed-

loop system. The oscillation should have been running at the frequency 5 Hz, slightly

above the frequency of the DC motor (see chapter three). Such a poor output response

is improved by tuning, as already described. The tuning button is pressed to search the

best response, as the one shown in figure 25a.

92

Figure 24(a): Experimental setup for testing of IFT Microcontroller showing the

initial response of the controller

The badly tuned controller in this case has average parameters at 05.00 rho and

05.01rho . Checking the roots of the closed-loop system using equation (32) and the

current parameters, yields poles 9952.0z and 9001.0z close to the unit circle

boundary, this is sensitive to limit cycles. Hence, the oscillations demonstrated in figure

24a result from the oscillatory poles. Also trying maximum parameters at 2.00 rho and

15.00 rho yields poles 9861.0z and 8948.0z , and minimum parameters at

2.00 rho and 15.00 rho , yield poles 0152.1z and 9039.0z , resulting in an

unstable system, illustrating a badly tuned controller. However, the IFT was able to tune

it to a better response, as shown in figure 25a.

The error and control signals are illustrated in figure 24c. Both signals average at 0.05V,

pushing the output response up, as can be seen in figure 24a.

93

Figure 24(b): Resulting parameters from running the IFT Microcontroller

94

Figure 24(c): Experimental setup for testing of IFT Microcontroller

The results of this experimental setup after convergence are illustrated in figure 25a,

verification in figure 25b, followed by the results for controller parameters given in figure

25c and figure 25d, illustrating results for error signal and control signal.

Figure 25a illustrates the best response resulting from controller tuning by the IFT,

though, there is an exhibit of noise, which could be as a result of ripple from the PWM

DAC at low frequencies. Verification of experimental results for the selected rho-value,

from figure 25c, matches those predicted from theory, for example stepping the same

system formulated in the Laplace domain as given in equation (44), and is given in figure

25b.

10

2

10

01.1)*01.11(*2

*01.1**01.1
)(

ss

s
sy [V] (44)

Both traces indicate a settling time of 20 ms, which is a validation of the developed

hardware.

95

Figure 25(a): Experimental setup for testing of IFT Microcontroller

Figure 25(b): Comparison of response from the hardware with the

theoretical response

96

Figure 25(c): Experimental setup for testing of IFT Microcontroller

Figure 25(d): Experimental setup for testing of IFT Microcontroller

97

5.3 CHAPTER SUMMARY

In this chapter, the Dedicated IFT Microcontroller was tested through the use of the

method known as simulation in the hardware, where all the components of the

Microcontroller (including the plant), are imbedded into the FPGA. Six signals are

extracted through the DAC for measurement, and analysis on the LabView display. The

captured output response is verified for the given rho-values to match with those predicted

from theory. The validation is ascertained, proving the hardware as working.

98

CHAPTER SIX

CONCLUSION, CONTRIBUTIONS AND FUTURE RESEARCH

6.1 INTRODUCTION

In this chapter, the author gives an outline of the contribution made in the thesis,

conclusion and the direction of future research.

6.2 NEW CONTRIBUTIONS

The main contribution of the thesis is the experimental validation of IFT on FPGA

hardware given in chapter four and the successful testing of the Dedicated IFT

Microcontroller delineated in chapter five. As opposed to the main body of work with IFT

where implementations is mainly focused on theory and validated by simulations and

experiments where the main computing is run on PCs (desktops, laptops). In this work

the possibility of running IFT directly on dedicated IFT Microcontroller built on FPGA

technology is proven. This could incentivize the area of dedicated auto tuning commercial

applications.

The thesis has also made a contribution in the analysis of 1DOF IFT technique in terms

of limitations of applicability for correct implementation, which is the main work of chapter

three.

6.3 FUTURE RESEARCH

In view of the design of the Dedicated IFT Microcontroller, the author recommends the

following research direction in future:

• Use floating-point number representation to improve the resolution and accuracy

in numerical computations by trading off performance in terms of speed and

required FPGA resource;

99

• Use Vivado's High Level Synthesis (HLS) methodology, since its principle is based

on traditional programming languages like C++. It is expected that HLS can

improve the workability of the hardware as it has the properties of data-based

algorithms and has double precision floating point capacity; and

• Implementation of more advanced IFT criterion functions such as 2DOF.

6.4 CONCLUSION

In this thesis a dedicated IFT microcontroller has been developed through the following:

A. exploration of the IFT theory and its applications, followed by the review of

literature and a survey of EDA tools.

B. investigation of the IFT by applying it to three different models and each model

tested using three types of initial controllers, varlying amplitude of the reference

signal and constant amplitude, single-step reference signal.

C. designing the Dedicated IFT Microcontroller by utilisation of hierarchical and

modular top down procedure, followed by simulation and validation.

6.5 PUBLICATIONS

From the work carried out in this thesis thus far, two papers have been published to:

• Springer book series of the Automation Control Theory Perspectives in Intelligent

Systems, chapter 20, and it is entitled "FPGA Based Self Tuning PI Controller

using IFT Technique," DIO: 10.1007/978-3-319-33389-2_20,

• IEEE Xplore entitled "Study of IFT Technique in a View to Create a Novel

Hardware," DOI: 10.1109/CIACT 2017.7977346.

• A journal paper has been written, entitled "Validation of IFT Technique for

Imbedded Applications," which is in readiness for publication to IEEE Control

System Technology.

100

REFERENCES

[1] G. Himunzowa: Investigations into Implementation of IFT Technique into

 Microcontroller. Thesis for Degree of Masters Univ Cape Town., no. May, 2008.

[2] S. Jiang, M. H. Smith, J. Kitchen, "Optimisation of PID controller for Engine

 Electronic Throttle system using IFT technique" SAE International ISSN 0148-

 7191, 2009.

[3] O. Lequin, M. Gevers, M. Mossberg, E. Bosmans and L. Triest, "Iterative

 Feedback Tuning of PID parameters: comparison with classical tuning rules",

 Control Engineering Practice, v11, pp (1023 - 1033), 2003.

[4] W. K. Ho, Y. Hong, A. Hansson, H. Hjalmarson and J. W. Deng, " Relay Auto-

 tuning of PID controllers using Iterative Feedback Tuning", Automatica, v31, pp

 (149 - 157), 2003.

[5] Ari. G. Parttanen and Robert R. Bitmead, "The application of an iterative

 identification and controller design to sugar cane crushing mill", Automatica, v31,

pp (1547 - 1563), 1995.

[6] H. Hjalmarsson, “Iterative Feedback Tuning-an Overview,” Adapt. Control Signal

 Process., vol. 16(5), pp. 373–395, 2002.

[7] O. Arrieta, A. Visioli, R. Vilanova, “Improved PID Autotuning for balanced control

 operation,” IEEE, 978-1-4244-2728-4/09/2009.

[8] F. De Bruyne and L. C. Kammer, “Iterative feedback tuning with guaranteed

 stability,” Proc. Am. Control Conf. San Diego, Calif., no. June, pp. 7–11, 1999.

 [9] O. L. H. Hjalmarsson, M. Gevers, S. Gunnarsson, “Iterative Feedback Tuning :

 Theory and Applications,” IEEE Control Systems, Digital Stock1996, pp. 26–41,

 August 1998.

[10] H. Proch, M. Gevers, B. D. O. Anderson, and C. Ferrera, “Iterative Feedback

 Tuning for robust controller design and optimization,” Proceedings of the 44th IEEE

101

 Conference on Decision and Control, and the European Control Conference,

 TuC04.5 pp. 3602–3607, Dec. 12 - 15 2005.

[11] M.B. Radac, “Iterative Techniques for Controller Tuning,” PhD Thesis, Sep. 2011.

[12] E. Monmasson and M. N. Cirstea: "FPGA Design Methodology for Industrial

 Control Systems- a review," IEEE Trans. Ind. Electron., vol.54. no.4. pp.1824-

 1842. Aug. 2007.

[13] Y. S. Kung, M. S. Wang, and T. Y. Chuang.: "FPGA-Based Self-Tuning PID

 Controller using RFB Neural Network and its Application in X-Y Table, IEEE

 International Symposium on Industrial Electronics. July 5-8, 2009.

[14] S. Ghosh, R. K. Barai, S. Bhattarcharya, P. Bhattacharya, S. Rudra, A. Dutta and

 R. Pyne, "An FPGA Based Implementation of a Flexible Digital PID Controller For

 a Motion Control System," International Conference on Computer

 Communications and Informatics, Jan. 04 - 06, 2013.

[15] J. K. Huusom, P. N. Kjolstad, J. S. Bay “Improving Convergence of IFT,” Journal

 of Process Control, no. 19(4), 570-578, DOI: 10. 1016/j. jprocont,

 September, 2008.

[16] A. Bindi “Iterative Feedback Tuning with Application to Robotics,” Masters

 Thesis, December, 2003.

[17] K. Hamamoto, T. Fukuda, and T. Sugie, "Iterative Feedback Tuning of

 Controllers for two-mass-spring system with friction," Control Engineering

 Practice, vol.11, pp. 1061-1068, September 2003

[18] I. Urriza, L. A. Barrag'an, J. I. Atigas, D. Navarro and O. Lucia, "FPGA

 Implementation of a Digital Controller for a dc-dc Converter Using Floating Point

 Arithmetic," IEEE, 978-1-4244-4649-0/09/ 2009.

102

[19] Y. F. Chan, M. Moallem, and W. Wang, "Design and Implementation of Modular

 FPGA-Based PID Controllers, "IEEE Trans. on Industrial Electronics, vol. 5, no. 4,

 August 2007.

[20] Z. Fang, J. E. Carletta, and R. J. Veillette, "A Methodology for FPGA-Based

 Control Implementation," IEEE Trans. on Control Systems Technology, vol.

 13, no. 6, Nov. 2005.

[21] W. Stefanutti, P. Mattavelli, S. Saggini, and M. Ghioni, "Auto tuning of Digitally

 Controlled Buck Converters based on Relay Feedback," IEEE, 0-7803-9033-5,

 May 2005.

[22] W. Weihong, H. Zhongsheng, and J. Shangtai: Overview of the Iterative

 Feedback Tuning. 2007 Chinese Control Conf., no. 2, pp. 14–18, Jul. 2006.

[23] O. Lequin, H. Hjalmarsson, M. Gevers, S. Gunnarsson, “Iterative Feedback

 Tuning : Theory and Applications,” IEEE Control Systems, Digital Stock1996, pp.

 26–41, August 1998.

[24] R. R. Bitmeadt: Iterative Feedback Tuning via Minimization of the Absolute Error.

 Proceedings of the 38th IEEE Conference on Decision and Control no.

 December, 1999.

[25] H. Hjalmarsson, S. Gunnarsson, and M. Gevers: A Convergent Iterative

 Restricted Complexity Control Design Scheme, Proceedings of the 44th IEEE

 Conference on Decisionand Control no. Dec, pp. 1735–1740, 1994.

[26] H. Hjalmarsson, “Iterative Feedback Tuning-an Overview,” Adapt. Control Signal

 Process., vol. 16(5), pp. 373–395, 2002.

[27] W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja, J. E. Mahoney, L. T.

 Ngo, and S. L. Sze, "A User Programmable Reconfiguration Gate Array," in proc.

 of the IEEE Custom Integrated Circuits Conference, pp. 233 - 235, May 1986.

103

[28] U. Farooq, Z. Marrakchi, and H. Mehrez, "Tree-based Heterogeneous FPGA

 Architectures," Springer Book Series, www.springer.com/978-1-4614-3593-8,

 chap. 2, 2012.

[29] E. Monmasson, L. Idkhajine, and M. W. Naouar, "FPGA-Based Controllers,"

 IEEE Industrial Electronics Magazine, Digital Object Identifier 10.1109/ year

 2011.

[30] Xilinx, "Xilinx Multi-Node Product Portfolio ,"

 https://www.xilinx.com/products/silicon- devices/fpga.html

[31] (2009). Xilinx Data Book, [Online]. Available: www.xilinx.com

[32] (2009). Altera Data Book, [Online]. Available: www.altera.com

[33] (2009). Actel Data Book, [Online]. Available: www.actel.com

[34] P. J. Ashenden, "The design's Guide to VHDL," Sao Mateo, CA: Morgan

 Kaufmann, 1995

[35] P. P. Chu, " FPGA Prototyping By VHDL Examples-Xilinx Spartan-3 version,"

 Wiley- interscience, 2008

[36] S. Qin, M. Berekovic, "A Comparison of High-Level Design Tools for SoC-FPGA

 on Disparity Map calculation Example," 2nd International Workshop of

 FPGAs for Software Programmers, London, UK, Sep. 1 2015

[37] A. A. Jerraya, H. Ding, P. Kission and M. Rahmoumi, "Behavioural synthesis and

 Component Reuse with VHDL," Norwell, MA: Kluwer

[38] I. Kuon, R. Tessier, and J. Rose, "FPGA Architecture: Survey and Challenges,"

 Foundations and Trends in EDA, vol. 2, no. 2, pp 135-253, 2007.

[39] P. Coussy, M. Meredith, D. D. Gajski, and A. Takach, "An Introduction to High

 Level Synthesis," Copublished by the IEEE and the IEEE CASS, 0740-7475,

 sep. 2009.

104

[40] Martin Braae: Adaptive Control Engineering, University of Cape Town, South

 Africa, 2004.

105

APPENDIX I

Here we transform the IFT component from LabView code into the fixed-point number

representation as given below:

de_rho0[t-1] = de_rho0[t]

de_rho0[t-1](1,-10) = de_rho0[t](1,-10)

de_rho1[t-1] = de_rho1[t]

de_rho1[t-1](1,-10) = de_rho1[t](1,-10)

r[t] = e[t]

r[t](1,-10) = e[t](1,-10)

e2[t-1] = e2[t]

e2[t-1](1,-10) = e2[t](1,-10)

e2[t] = r[t] - y2[t]

e2[t](2,-10) = r[t](1,-10) - y2[t](1,-10)

u2[t-1] = u2[t]

u2[t] = u2[t-1] + rho0*e2[t] + (T*rho1 - rho0)*e2[t-1]

u2[t](5,-21) = u2[t-1](1,-10) + rho0(1,-10)*e2[t](1,-11) + (T(1,-10)*rho1(1,-10) - rho0(1,-

10))*e2[t-1](1,-11)

y2[t] = 0.9048*y2[t] + 0.0962*u2[t]

y2[t](1,-20) = 0.9048*y2[t](1,-10) + 0.0962*u2[t](1,-10)

de2_rho0[t] = (rho0/(rho0 + rho1))*de2_rho0[t-1] + (1/(rho0 + rho1))*(e2[t]-e2[t-1])

de2_rho0[t](14,-23) = (rho0/(rho0 + rho1))*de2_rho0[t-1] + (1/(rho0 + rho1))*(e2[t]-e2[t-

1])

de2_rho1[t] = (rho0/(rho0 + rho1))*de2_rho1[t-1] + (1/(rho0 + rho1))*(e2[t]-e2[t-1])

de2_rho1[t](14,-23) = (rho0/(rho0 + rho1))*de2_rho1[t-1] + (1/(rho0 + rho1))*(e2[t]-e2[t-

1])

dJ_rho0[t-1] = dJ_rho0[t]

dJ_rho1[t-1] = dJ_rho1[t]

dJ_rho0[t] = dJ_rho0[t-1] + e2[t]*de2_rho0[t]

dJ_rho0[t](3,-21) = dJ_rho0[t-1] + e2[t]*de2_rho0[t]

106

dJ_rho1[t] = dJ_rho1[t-1] + e2[t]*de2_rho1[t]

dJ_rho1[t](3,-21) = dJ_rho1[t-1] + e2[t]*de2_rho1[t]

dJ_rho0y[t] = dJ_rho0[t] - dJ_rho0[t-1]

dJ_rho0y[t](2,-10) = dJ_rho0[t] - dJ_rho0[t-1]

dJ_rho1y[t] = dJ_rho1[t] - dJ_rho1[t-1]

dJ_rho1y[t](2,-10) = dJ_rho1[t] - dJ_rho1[t-1]

rho0[t-1] = rho0[t]

rho1[t-1] = rho1[t]

rho0[t] = rho0[t-1] - gamma*dJ_rho0y

rho0[t](3,-21) = rho0[t-1] - gamma*dJ_rho0y

rho1[t] = rho1[t-1] - gamma*dJ_rho1y

rho1[t](3,-21) = rho1[t-1] - gamma*dJ_rho1y

end.

107

APPENDIX II

 HDL design methodology

A famous design HDL methodology is based on the hierarchical and modular approach

defined at different levels of abstraction using design "top-down methodology" [37]. This

hierarchical flow of the top-down design method is shown in figure APII.1.

Figure APII.1: Top-down design flow

and its corresponding design flow are presented as follows:

• System level: this is where specifications of the circuit are given, in other words

components of the system are delineated. For example, a computer system will

comprise the CPU, memory, input/output, and display devices.

• Behavioural level: this is algorithmic description of the system; it is described in

terms of hardware description language (HDL).

• Register transfer level (RTL): this is where the circuit is described in terms of its

components (how the components are connected); synthesisable HDL is written

at this level.

108

• Physical level: this is where the circuit is physically described by taking into

account the target hardware characteristics involved in implementing the hardware

description into an FPGA and gives an exact representation of the circuit in terms

of desired specifications as given in system level. In order to simulate and validate

the digital circuit's functionality, a test bench is written and executed.

HLS design methodology

Unlike hardware description language (HDL), HLS design methodology raises the design

abstraction level and allows rapid generation of optimised RTL hardware for performance,

area and power consumption [39]. The hierarchical flow of design methodology for HLS

is shown in figure APII.2,

and its corresponding design flow are presented as follows:

Compilation and modelling: this is where HLS begins, by transforming (compiling the

functional specifications) the input description into a formal representation.

Allocation: this is where the type and number of functional hardware (for example adders,

multipliers, multiplexers, etc.) needed to satisfy the design constraints are defined;

depending on the HLS tool, some components may be added during scheduling and

binding tasks; the components are selected from the RTL component library.

Scheduling: this is where all operations required in the specification model must be

scheduled into cycles (in other words, for each operation variables must be read from

their sources and brought to the functional unit where they are executed and the result

brought to its destination, storage or functional unit).

Binding: this is where each variable that carries values across cycles must be bound to a

storage unit.

Generation: this is where an RTL model of the synthesised design is generated.

109

Figure APII.2: HLS design flow

110

APPENDIX III

Root Locus Results for PI Controller Applied to the DC Motor

In order to test and validate the optimisation action of the IFT, root locus is utilised to

investigate the stability region of the PI controller when applied to the DC motor. The

transfer function for the closed-loop system is given in (32) and is reproduced here

(APIII.1) for convenience.

)*095.0**048.090.0(*)90.1*095.0(

))1*((**09516.0

)(

)(

010

2

0

1
0

Tzz

Tz

zr

zy
 (APIII.1)

The trajectories of characteristic equation roots for a range of zero locations are illustrated

in figure APIII.1 to figure APIII.8.

Figure APIII.1. Root locus for PI controller applied to DC motor for zero at 0.9

111

At location where the zero = 0.9, the roots are inside the unit circle, hence the system is

stable.

Figure APIII.2. Root locus for PI controller applied to DC motor for zero at 0.8

At location where the zero = 0.8 all the roots are inside the unit circle with larger loci than

the loci at zero location of 0.9. This is still a stable system.

112

Figure APIII.3. Root locus for PI controller applied to DC motor for zero at 0.4

At location where the zero = 0.4 all the roots are inside the unit circle having loci larger

than at zero location of 0.8.

113

Figure APIII.4. Root locus for PI controller applied to DC motor for zero at 0.1

At location where the zero = 0.1 all the roots are inside the unit circle having loci larger

than at zero location of 0.4.

114

Figure APIII.5. Root locus for PI controller applied to DC motor for zero at -0.2

At location where the zero = -0.2 the loci begins to encircle the unit circle meaning that

part of the loci gets into unstable region.

115

Figure APIII.6. Root locus for PI controller applied to DC motor for zero at -0.4

At location where the zero = -0.4 the part of the loci that encircles the unit circle enlarges.

116

Figure APIII.7. Root locus for PI controller applied to DC motor for zero at -0.6

At location where the zero = -0.6 the part of the loci that encircles the unit circle widens

further.

117

Figure APIII.8. Root locus for PI controller applied to DC motor for zero at -0.9

At location where the zero = -0.9 the part of the loci that encircle the unit circle widen

further.

Summary

From the results of the captured root locus traces, the closed-loop poles for the system

with zeros from 2.0z to 9.0z are stable, but for the system with zeros from 9.0z

to 4.0z have part of their loci in unstable region. Hence, it is prudent to use the system

with zeros from 2.0z to 9.0z which have the loci completely inside the unit circle.

118

APPENDIX IV

In this appendix, we demonstrate five different output responses, obtained from running

the PI controller applied to the DC motor in a closed-loop (without the IFT). The controller

utilises a range of controller parameters so that we later use them as initial parameters

for running the PI controller with the IFT 'on' in order to investigate the tuning action of the

IFT technique. The controller parameters are chosen by first assuming rho0 and then

computing rho1 by using closed-loop system zero from (32), which is reproduced here for

convenience.

Tz *1
0

1

Where T

is the sampling frequency of the PI controller.

1. Slow-damped PI controller (rho0 = 0.1 and rho1 = 0.2)

Figure APIV.1 illustrates the output response of the closed-loop system for controller

parameters rho0 = 0.1 and rho1 = 0.2. The response has not settled in the given step-

length of 200 samples or 40 seconds. This indicates that the slow-damped PI controller

requires longer step length than that of 200 samples length to enable the output response

settle.

Figure APIV.1 Output response of the DC motor

119

2. Fast-damped PI controller (rho0 = 1.0 and rho1 = 1.0)

Figure APIV.2 illustrates the output response of the closed-loop system for controller

parameters rho0 = 1.0 and rho1 = 1.0. The response settles in 90 samples or 18 seconds

of the step length. This demonstration indicates that the fast-damped PI controller does

not require longer step-length than the 200 samples length to enable the response settle.

Figure APIV.2 Output response of the DC motor

3. Fast-damped PI controller (rho0 = 1.0 and rho1 = 2.0)

Figure APIV.3 illustrates the output response of the closed-loop system for controller

parameters rho0 = 1.0 and rho1 = 2.0. The response settles in 60 samples or 12 seconds

of the step length.

Figure APIV.3 Output response for the DC motor

120

4. Oscillatory PI controller (rho0 = 1.0 and rho1 = 9.0)

Figure APIV.4 illustrates the output response of the closed-loop system for controller

parameters rho0 = 1.0 and rho1 = 9.0. The response settles in 60 samples or 12 seconds

of the step length; same as the fast-damped PI controller of rho0 = 1.0 and rho1 = 2.0.

Fig. APIV.4 Output response for the DC

5. Oscillatory PI controller (rho0 = 1.0 and rho1 = 16.0)

Figure APIV.5 illustrates the output response of the closed-loop system for controller

parameters (rho0 = 1.0 and rho1 = 16.0). The response settles in 80 samples or 16

seconds of the step length.

Figure APIV.5 Output response for the DC motor

121

Three of the above controller parameters are used as initial parameters for the study and

testing of IFT technique in section 3.3. These are the slow-damped controller (rho0 = 0.1

and rho1 = 0.1), the fast-damped controller (rho0 = 1.0 and rho1 = 1.0) and the oscillatory

controller (rho0 = 1.0 and rho1 = 16)

122

APPENDIX V

Various derivations for chapter three are done here to avoid choking the flow concept of

the thesis. These are presented respective of equation numbers in chapter three as given

in the subheadings below.

1. Derivation for (17) and (18) from section 3.2.4

The PI controller without ZOH circuit transfer function is transformed into the digital

equation as follows:

e

u

z

z

z

zz

z

z

s
ZZ

s
ZZ

s
ZzC

1

*)(

1

)1(
)

1
(*1*

)
1

(*)1(*)()()()(

01010

10

10
1

0
1

0

Giving the difference equation (AP V.17):

10101

010

**)(

)(*)(**)()()(*

tttt eeuu

zezezzuzuz

 (AP V.17)

We now derive the PI controller difference equation with a zero-hold circuit (ZOH)

circuit for driving the plant as follows:

e

u

z

Tz

z

Tz

z

T

z

zT

z

z

z

z

z

z

s
Z

z

z

s
Z

z

z

ss
Z

z

z
sC

s

e
ZzC

sT

1

)*(*

1

**

1

*

)1(

**
*

1

1

*
*

1

)
1

()
1

(*
1

))(*
1

()(

010100

1
02

10

2

10

2

10

Giving the difference equation:

10101 *)*(* tttt eTeuu (AP V.18)

2. Derivation for (19) from section 3.2.4

123

The DC motor s-domain transfer function is converted to z-domain to derive a digital

equation as given in (AP V. 19)

9048057.0

09516.0)1(*01.1

1
01.1

1

1
*01.1*1

5.0

01.101.1
*1

5.0
*1

)5.0(*

505.0
*1

5.0

505.0
*

1

11

zez

e

ez

z

z

z

z

z

ez

z

z

z
z

ss
Zz

s

B

s

A
ZeZ

ss
ZeZ

ss

e
Z

u

y

aT

aT

aTaT

sTsT
sT

)(*09516.0)1(*904837.0)(tutyty (AP V.19)

3. Derivation for (32) from section 3.3

Derivation for a closed-loop PI controller applied to the DC motor is illustrated as follows:

)(*)(1

)(*)(

)(

)(

zkzgh

zkzg

zr

zy

904837.0

09516.0
*

1

)1*(*

1

904837.0

09516.0
*

1

)1*(*

0

1
0

0

1
0

zz

Tz

zz

Tz

)*095.0**095.090.0(*)90.1*095.0(

))1*((**09516.0

)(

)(

010

2

0

1
0

Tzz

Tz

zr

zy
[V/V] (AP V.32)

4. Derivation for (34) from section 3.3.4

We use Matlab command to convert oscillatory plant of (30) from s- domain to z-domain

as given below:

>>sampling time = 0.2s;

124

>>h = tf(10, [1 3 10]);

>>gh = c2d(h, sampling time, 'zoh')

When the code is run, the transfer function (in z-domain with holding circuit) is generated

as given in (34) and presented here for ease of reference.

5488.0*252.1

1308.0*1601.0
2

zz

z
gh [V] (AP V.34)

Then (34) is converted to a digital equation that is given in (35).

2121 *1308.0*1601.0*5488.0*252.1 ttttt uuyyy [V] (AP V.35)

We utilise the PI controller again to control the oscillatory plant discretised above. The

open-loop PI controller applied to the oscillatory plant is given as

5. Derivation for (36) from section 3.

Derivation for a closed-loop PI controller applied to the oscillatory plant is done as follows:

)(*)(1

)(*)(

)(

)(

zkzgh

zkzg

zr

zy

5488.0*252.1

1308.0*1601.0
*

1

)1*(*

1

5488.0*252.1

1308.0*1601.0
*

1

)1*(*

2

0

1
0

2

0

1
0

zz

z

z

Tz

zz

z

z

Tz

55.0)*(*13.0*)*03.0**16.0(80.1(*09.2

)*(*13.0*)*03.0**16.0(**16.0

0101

23

0101

2

0

TzTzz

TzTz
[V/V] (AP

V.36)

6. Derivation for (37) from section 3.

u

y

zz

zz
gh

21

21

*5488.0*252.11

*1308.0*1601.0

125

 The Matlab code for converting from s-domain to z-domain.

%start of Matlab code

>>sampling time = 0.2s;

>>h = tf(1, [2 -1]);

>>gh = c2d(h, sampling time, 'zoh')

%end of Matlab code

And after running the code (39) is generated:

)105.1

1052.0

z
gh [V] (AP V.37)

Hence the above equation is converted to a digital equation.

u

y

z

z
gh

1

1

*105.11

*1052.0

11 *1052.0*105.1 ttt uyy (AP V.38)

7. Derivation for (39) from section 3.

The closed-loop control system for the unstable plant is derived as follows:

)(*)(1

)(*)(
)(

zkzg

zkzg
zgh

)
)105.1

1052.0
(*)

1

*
(1

)
)105.1

1052.0
(*)

1

*
(

)(
010

010

zz

Tz

zz

Tz

zgh

)*(*1052.0105.1*)105.2*1052.0(

)*1052.0**1052.0(**1052.0
)(

010

2

010

Tzz

Tz
zgh [V] (AP V.39

	scan0372
	PhD Thesis final_revised_by_smith_v5

