16 research outputs found

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357

    Learning from Imbalanced Multi-label Data Sets by Using Ensemble Strategies

    Get PDF
    Multi-label classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Problems of this type are ubiquitous in everyday life. Such as, a movie can be categorized as action, crime, and thriller. Most algorithms on multi-label classification learning are designed for balanced data and don’t work well on imbalanced data. On the other hand, in real applications, most datasets are imbalanced. Therefore, we focused to improve multi-label classification performance on imbalanced datasets. In this paper, a state-of-the-art multi-label classification algorithm, which called IBLR_ML, is employed. This algorithm is produced from combination of k-nearest neighbor and logistic regression algorithms. Logistic regression part of this algorithm is combined with two ensemble learning algorithms, Bagging and Boosting. My approach is called IB-ELR. In this paper, for the first time, the ensemble bagging method whit stable learning as the base learner and imbalanced data sets as the training data is examined. Finally, to evaluate the proposed methods; they are implemented in JAVA language. Experimental results show the effectiveness of proposed methods. Keywords: Multi-label classification, Imbalanced data set, Ensemble learning, Stable algorithm, Logistic regression, Bagging, Boostin

    Improved adaptive semi-unsupervised weighted oversampling (IA-SUWO) using sparsity factor for imbalanced datasets

    Get PDF
    The imbalanced data problem is common in data mining nowadays due to the skewed nature of data, which impact the classification process negatively in machine learning. For preprocessing, oversampling techniques significantly benefitted the imbalanced domain, in which artificial data is generated in minority class to enhance the number of samples and balance the distribution of samples in both classes. However, existing oversampling techniques encounter through overfitting and over-generalization problems which lessen the classifier performance. Although many clustering based oversampling techniques significantly overcome these problems but most of these techniques are not able to produce the appropriate number of synthetic samples in minority clusters. This study proposed an improved Adaptive Semi-unsupervised Weighted Oversampling (IA-SUWO) technique, using the sparsity factor which determine the sparse minority samples in each minority cluster. This technique consider the sparse minority samples which are far from the decision boundary. These samples also carry the important information for learning of minority class, if these samples are also considered for oversampling, imbalance ratio will be more reduce also it could enhance the learnability of the classifiers. The outcomes of the proposed approach have been compared with existing oversampling techniques such as SMOTE, Borderline-SMOTE, Safe-level SMOTE, and standard A-SUWO technique in terms of accuracy. As aforementioned, the comparative analysis revealed that the proposed oversampling approach performance increased in average by 5% from 85% to 90% than the existing comparative techniques

    Classifying Imbalanced Data Sets by a Novel RE-Sample and Cost-Sensitive Stacked Generalization Method

    Get PDF
    Learning with imbalanced data sets is considered as one of the key topics in machine learning community. Stacking ensemble is an efficient algorithm for normal balance data sets. However, stacking ensemble was seldom applied in imbalance data. In this paper, we proposed a novel RE-sample and Cost-Sensitive Stacked Generalization (RECSG) method based on 2-layer learning models. The first step is Level 0 model generalization including data preprocessing and base model training. The second step is Level 1 model generalization involving cost-sensitive classifier and logistic regression algorithm. In the learning phase, preprocessing techniques can be embedded in imbalance data learning methods. In the cost-sensitive algorithm, cost matrix is combined with both data characters and algorithms. In the RECSG method, ensemble algorithm is combined with imbalance data techniques. According to the experiment results obtained with 17 public imbalanced data sets, as indicated by various evaluation metrics (AUC, GeoMean, and AGeoMean), the proposed method showed the better classification performances than other ensemble and single algorithms. The proposed method is especially more efficient when the performance of base classifier is low. All these demonstrated that the proposed method could be applied in the class imbalance problem

    A machine learning-based investigation of cloud service attacks

    Get PDF
    In this thesis, the security challenges of cloud computing are investigated in the Infrastructure as a Service (IaaS) layer, as security is one of the major concerns related to Cloud services. As IaaS consists of different security terms, the research has been further narrowed down to focus on Network Layer Security. Review of existing research revealed that several types of attacks and threats can affect cloud security. Therefore, there is a need for intrusion defence implementations to protect cloud services. Intrusion Detection (ID) is one of the most effective solutions for reacting to cloud network attacks. [Continues.

    Learning from imbalanced data in face re-identification using ensembles of classifiers

    Get PDF
    Face re-identification is a video surveillance application where systems for video-to-video face recognition are designed using faces of individuals captured from video sequences, and seek to recognize them when they appear in archived or live videos captured over a network of video cameras. Video-based face recognition applications encounter challenges due to variations in capture conditions such as pose, illumination etc. Other challenges in this application are twofold; 1) the imbalanced data distributions between the face captures of the individuals to be re-identified and those of other individuals 2) varying degree of imbalance during operations w.r.t. the design data. Learning from imbalanced data is challenging in general due in part to the bias of performance in most two-class classification systems towards correct classification of the majority (negative, or non-target) class (face images/frames captured from the individuals in not to be re-identified) better than the minority (positive, or target) class (face images/frames captured from the individual to be re-identified) because most two-class classification systems are intended to be used under balanced data condition. Several techniques have been proposed in the literature to learn from imbalanced data that either use data-level techniques to rebalance data (by under-sampling the majority class, up-sampling the minority class, or both) for training classifiers or use algorithm-level methods to guide the learning process (with or without cost sensitive approaches) such that the bias of performance towards correct classification of the majority class is neutralized. Ensemble techniques such as Bagging and Boosting algorithms have been shown to efficiently utilize these methods to address imbalance. However, there are issues faced by these techniques in the literature: (1) some informative samples may be neglected by random under-sampling and adding synthetic positive samples through upsampling adds to training complexity, (2) cost factors must be pre-known or found, (3) classification systems are often optimized and compared using performance measurements (like accuracy) that are unsuitable for imbalance problem; (4) most learning algorithms are designed and tested on a fixed imbalance level of data, which may differ from operational scenarios; The objective of this thesis is to design specialized classifier ensembles to address the issue of imbalance in the face re-identification application and as sub-goals avoiding the abovementioned issues faced in the literature. In addition achieving an efficient classifier ensemble requires a learning algorithm to design and combine component classifiers that hold suitable diversity-accuracy trade off. To reach the objective of the thesis, four major contributions are made that are presented in three chapters summarized in the following. In Chapter 3, a new application-based sampling method is proposed to group samples for under-sampling in order to improve diversity-accuracy trade-off between classifiers of the ensemble. The proposed sampling method takes the advantage of the fact that in face re-identification applications, facial regions of a same person appearing in a camera field of view may be regrouped based on their trajectories found by face tracker. A partitional Bagging ensemble method is proposed that accounts for possible variations in imbalance level of the operational data by combining classifiers that are trained on different imbalance levels. In this method, all samples are used for training classifiers and information loss is therefore avoided. In Chapter 4, a new ensemble learning algorithm called Progressive Boosting (PBoost) is proposed that progressively inserts uncorrelated groups of samples into a Boosting procedure to avoid loosing information while generating a diverse pool of classifiers. From one iteration to the next, the PBoost algorithm accumulates these uncorrelated groups of samples into a set that grows gradually in size and imbalance. This algorithm is more sophisticated than the one proposed in Chapter 3 because instead of training the base classifiers on this set, the base classifiers are trained on balanced subsets sampled from this set and validated on the whole set. Therefore, the base classifiers are more accurate while the robustness to imbalance is not jeopardized. In addition, the sample selection is based on the weights that are assigned to samples which correspond to their importance. In addition, the computation complexity of PBoost is lower than Boosting ensemble techniques in the literature for learning from imbalanced data because not all of the base classifiers are validated on all negative samples. A new loss factor is also proposed to be used in PBoost to avoid biasing performance towards the negative class. Using this loss factor, the weight update of samples and classifier contribution in final predictions are set according to the ability of classifiers to recognize both classes. In comparing the performance of the classifier systems in Chapter 3 and 4, a need is faced for an evaluation space that compares classifiers in terms of a suitable performance metric over all of their decision thresholds, different imbalance levels of test data, and different preference between classes. The F-measure is often used to evaluate two-class classifiers on imbalanced data, and no global evaluation space was available in the literature for this measure. Therefore, in Chapter 5, a new global evaluation space for the F-measure is proposed that is analogous to the cost curves for expected cost. In this space, a classifier is represented as a curve that shows its performance over all of its decision thresholds and a range of possible imbalance levels for the desired preference of true positive rate to precision. These properties are missing in ROC and precision-recall spaces. This space also allows us to empirically improve the performance of specialized ensemble learning methods for imbalance under a given operating condition. Through a validation, the base classifiers are combined using a modified version of the iterative Boolean combination algorithm such that the selection criterion in this algorithm is replaced by F-measure instead of AUC, and the combination is carried out for each operating condition. The proposed approaches in this thesis were validated and compared using synthetic data and videos from the Faces In Action, and COX datasets that emulate face re-identification applications. Results show that the proposed techniques outperforms state of the art techniques over different levels of imbalance and overlap between classes
    corecore