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ABSTRACT 

Multi-label classification is an extension of conventional classification in which a 

single instance can be associated with multiple labels. Problems of this type are 

ubiquitous in everyday life. Such as, a movie can be categorized as action, crime, 

and thriller. Most algorithms on multi-label classification learning are designed for 

balanced data and don’t work well on imbalanced data. On the other hand, in real 

applications, most datasets are imbalanced. Therefore, we focused to improve multi-

label classification performance on imbalanced datasets. In this paper, a state-of-the-

art multi-label classification algorithm, which called IBLR_ML, is employed. This 

algorithm is produced from combination of k-nearest neighbor and logistic 

regression algorithms. Logistic regression part of this algorithm is combined with 

two ensemble learning algorithms, Bagging and Boosting. My approach is called IB-

ELR. In this paper, for the first time, the ensemble bagging method whit stable 

learning as the base learner and imbalanced data sets as the training data is 

examined. Finally, to evaluate the proposed methods; they are implemented in 

JAVA language. Experimental results show the effectiveness of proposed methods. 

Keywords: Multi-label classification, Imbalanced data set, Ensemble learning, 

Stable algorithm, Logistic regression, Bagging, Boosting 

 

1. INTRODUCTION 

 

Conventional classification is concerned with learning from a set of instances that 

are associated with a single label ℓ from a set of finite labels ℒ, |ℒ|   . In multi-

label classification the instances are associated with a set of labels L, | |  ℒ. The 

goal in multi-label classification is to predict a set of relevant binary labels for a 

given input. Originally, multi-label learning came from the investigation of text 

categorization problem, where each document may belong to several predefined 

topics simultaneously [1, 2]. Nowadays, multi-label classification methods are 

increasingly required by modern applications: Such as, a scene can be categorized as 

bench and urban[3]; in biology, each gene may be associated with a set of functional 

classes, such as metabolism, transcription and protein synthesis [4]. 

One important challenge of multi-label data is the class imbalance problem, 

where sampled data for the classifier training is non-uniformly distributed over the 

data space. In other words, each label has usually more negative than positive 

examples, but still some labels have much more positive examples than others [5-8]. 

Many data sets in real-world applications, such as remote-sensing [9], risk 
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management [10], pollution detection [11], especially medical diagnosis [12] and 

fraud detection [13] are imbalanced. There are only a limited number of approaches 

have been proposed to address this imbalanced problem for multi-label data, in 

contrast to single label data. In this paper, we focus on this problem of multi-label 

learning, and tackle highly imbalanced data distributions using ensemble of multi-

label classifiers. 

Ensemble techniques are becoming increasingly important as they have 

repeatedly demonstrated the generalization ability of an ensemble is usually much 

stronger than that of a single learner [14], especially with highly imbalanced data 

populations [15, 16]. It is well known that an ensemble of classifiers can provide 

higher accuracy than a single best classifier if the member classifiers are diverse and 

accurate [8, 17-19]. In this paper, we employ two data variation-based ensembles, 

which consist in the manipulation of the training examples in such a way that each 

classifier is trained with a different training set. These are AdaBoost [20, 21] and 

Bagging [22] that are the most common and successful ensemble learning 

algorithms [8]. 

The aim of this paper is to use homogeneous ensembles of learners to improve 

the performance of multi-label classifier for imbalanced data set. This is different 

from the existing work in the sense that we are proposing to apply ensemble 

technique to particular situation of a state-of-the-art multi-label learner, moreover 

this sub-algorithm as the base learner for ensemble method is stable. In this paper, a 

multi-label classification algorithm, which called IBLR_ML [23], is employed. This 

algorithm is produced from combination of k-nearest neighbor and logistic 

regression algorithms. In fact, we are applying ensemble techniques within the 

logistic regression part of IBLR-ML. while the bagging fails with stable learning 

algorithms whose output is insensitive to small changes in the input and also logistic 

regression is stable method, we employ logistic regression as the base learner. 

Additionally, this presented approach takes correlation and interdependencies 

between labels into account, because the base classifier, IBLR-ML, is inherently 

considering correlation among labels. 

The proposed ensemble multi-label learning approach (IB-ELR)1 is applied to 

seven publicly available multi-label data sets from different domains (Emotions, 

Genbase, Mediamill, Image, text, Yeast and Scene) and furthermore we create 

several imbalanced data sets from real balanced data sets. The performance 

evaluation of multi-label classifiers is evaluated by using five different important 

multi-label classification measures, to find how the learning algorithms behave 

under variety of imbalance degrees. Finally, to evaluate the proposed methods; they 

are implemented in JAVA language. Experimental results show the effectiveness of 

proposed methods. 

The paper is organized as follows: The related work of multi-label classification 

and ensemble learning are reviewed in section 2. Section 3 describes the dilates of 

purposed approach. Section 4 is devoted to experimenters with several benchmark 

data sets and evaluation metrics of multi-label classification problem. Finally, the 

paper ends with some conclusions in section 5. 

 

 

2. RELATED WORK  

 

                                                           
1
 A shorter version of this work. 
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Nowadays, multi-label data are becoming ubiquitous. They arise in an increasing 

number and diversity of applications. In the past several years, a variety of multi-

label methods have been proposed in pattern recognition, machine learning and 

statistics. The existing methods for multi-label classification can be grouped into 

two main categories: a) problem transformation methods, and b) algorithm 

adaptation methods [24, 25]. Methods of the first group transform the learning task 

into one or more single-label classification or ranking tasks. Algorithm adaptation 

extends some specific multi-class classification algorithms to handle an entire multi-

label training data set directly. The following paragraph describes a number of 

problem transformation methods from the literature. 

Binary relevance (BR) [2, 3, 25, 26] is a popular problem transformation method 

that learns M binary classifiers, one for each different label in L. An obvious 

disadvantage of this approach is that it ignores correlations and interdependencies 

between labels. Another transformation method is LP [3, 24]. This method considers 

each possible label combination of more than one class in a multi-label training data 

set as a new single class, and then converts a multi-label problem into a standard 

multi-class one. LP typically works well if the original label set L is small but 

quickly deteriorates for larger label sets. Ranking by pairwise comparison (RPC) 

[27] transforms the multi-label data set into M binary label datasets, one for each 

pair of labels. Each dataset contains those examples of training set that are annotated 

by at least one of the two corresponding labels, but not both. Calibrated Label 

Ranking (CLR) [28] extends RPC. The key idea in this approach is to introduce an 

artificial calibration label that, in each example, separates the relevant label from the 

irrelevant labels. 

In this and next paragraphs briefly report the significant algorithm adaptation 

methods. Through modifying the formula of entropy calculation and permitting 

multiple labels at the leaves of the tree, a C4.5-like multi-label classification [29] 

algorithm is proposed, in which it is possible to generate a large number of leaves 

for all combinations of different labels, just like the original LP method. Rank-SVM 

[4] is a support vector machine algorithm for multi-label classification. This method 

employs ranking loss as its empirical loss function. For finding a natural zero to 

determine the relevant labels in this algorithm, a virtual label is simply added in [30, 

31]. Another adaptation method is MMAC [32], that follows the paradigm of 

associative classification, which deals with the construction of classification rule 

sets using association rule mining. Back-propagation for multi-label learning (BP-

MLL) [33] is an adaptation of the back-propagation algorithm to multi-label 

learning problems by introducing a new error function. Every algorithm of 

adaptation methods that described, considers all classes and all instances 

simultaneously [31, 34]. 

The other algorithm adaptation methods, which described in this paragraph, still 

deals with each class independently after using some problem transformation tricks 

[31, 34]. ML-RBF [35] is a recent approach for adapting radial basis function 

networks to multi-label data. During its clustering procedure, a q-label problem is 

divided into q sub-problems using the one-by-one method, and then each class 

instances are clustered independently. Nearest neighbor (kNN) or instance-based 

(IB) algorithm has been extended to construct slightly different multi-label methods: 

ML-kNN [36] and IBLR-ML [23]. At ML-KNN, for each unseen instance, its K 

nearest neighbors in the training set is firstly identified. After that, based on 
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statistical information gained from the label sets of these neighboring instances, 

maximum a posteriori (MAP) principle is utilized to determine the label set for the 

unseen instance. While the basic idea in IBLR-ML is to consider the information 

that derives from examples similar to a query instance as a feature of that instance, 

thereby blurring the distinction between instance-based and model-based learning to 

some extent. Therefore IBLR-ML takes more correlations between labels as possible 

in account than ML-kNN does. 

On the other hand, classifier learning with data-sets that suffer from imbalanced 

class distributions is a challenging problem in data mining community. Several well-

established classification modeling systems for conventional classification have 

been extended to the imbalanced case, including decision trees [37-42] , support 

vector machines [39, 43-46] , neural networks [39] , Bayesian network[47] , nearest 

neighbor [38, 48] and the newly reported associative classification approaches [49-

51]. There are existing reviews and categorizations on imbalanced data learning can 

also be found in [6, 38, 39, 52, 53]. In a recent work, taxonomy for ensemble-based 

methods is proposed to address the class imbalance problem [8]. In addition, it 

develops a thorough empirical comparison by the consideration of the most 

significant ensemble-based published approaches. This comparison has shown the 

good behavior of the simplest approaches which combine random under sampling 

techniques with bagging or boosting ensembles. Diversity also plays an important 

role in improving the performance of ensemble classifier. In general, two popular 

directions for diversification are the bagging and boosting methods. In bagging 

methods, diversification is maintained by creating individual classifiers on different 

subsets of the training data. While in the boosting algorithms, example distributions 

are updated iteratively by giving more weights for those previously misclassified 

examples, and thus diversity means building classifiers on training data with 

progressively updated distributions. There are several studies which explain why 

bagging improves the predictive performance by reduction of the variance of the 

mean squared error. The amount of improvement depends on the bias-variance 

decomposition for base learners, which suggests that unstable models with high 

variances such as decision trees are preferable as the base learner for bagging rather 

than stable ones logistic regression and K nearest neighbor methods. A learning 

algorithm is unstable if small changes in their training sets tend to induce significant 

differences in the models. On the other hand, it can slightly degrade the performance 

of stable procedures[18, 22]. Four main algorithms in Bagging-based Ensembles 

family, which deal with class imbalance problems, are OverBagging [54], 

UnderBagging [55], UnderOverBagging [54], and IIVotes [56]. In addition, several 

popular Boosting-based Ensembles strategies for imbalance learning include 

SMOTEBoost [57], MSMOTEBoost [58], RUSBoost [59], and DataBoost-IM [60] 

algorithms. 

Afterwards, we would also like to note that although the current efforts in the 

community are focused on multiclass imbalanced problems, multi-label imbalanced 

learning problems exist and are of equal importance. A limited number of 

approaches have also been proposed to address the multi-label and imbalanced data 

problems. In [61], a min-max modular network was proposed to decompose a multi-

label imbalanced learning problem into a series of small two-class sub problems. 

This paper also presents several decomposition strategies to improve the 

performance of min-max modular networks. Another approach, that addressed 

multi-label classification which imbalanced data problems, is presented in [62]. This 

method uses an enrichment process in neural net training. The enrichment process 
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can manage the imbalanced data and train the neural net with high classification 

accuracy. Also, in [63] concept drift and class imbalanced in multi-label data in a 

data stream context is studied. Outers introduce a sophisticated parameterized 

windowing mechanism for dealing with it, which they exemplify with an efficient 

instance-incremental multi-label kNN method. Last, in a recent work, a 

heterogeneous ensemble multi-label learners is proposed [64], by combining state-

of-the-art multi-label methods. This method simultaneously tackles both the sample 

imbalance and label correlation problems.  

It is noteworthy, in machine learning, the ensemble of classifiers are known to 

increase the accuracy of single classifiers by combining several of them, but neither 

of these learning techniques alone solve the class imbalance problem, to deal with 

this issue the ensemble multi-label learning algorithms have to be designed 

specifically. The data sparseness problem of the LP approach was addressed in [65]. 

The authors propose Pruned Sets (PS) and Ensemble of Pruned Sets (EPS) methods 

to concentrate on the most important correlations. The two random k-labelsets 

(RAkEL) methods proposed in [66, 67], that construct an ensemble of LP classifiers. 

Each LP classifier is trained using a different small random subset of the set of 

labels. triple-random ensemble learning method (TREMLC) [68] is presented to 

handling multi-label classification problems. This proposed method integrates and 

develops the concepts of random subspace; bagging and random k-label sets 

ensemble learning methods to form an approach to classify multi-label data. Another 

approach in [69] calls it Multi-label Boosting by the selection of heterogeneous 

features with structural Grouping Sparsity (MtBGS). MtBGS induces a (structural) 

sparse selection model to identify subgroups of homogenous features for predicting 

a certain label. Moreover, the correlations among multiple tags are utilized in 

MtBGS to boost the performance of multi-label annotation. In classifier chain 

methods [70, 71], q sub-classifiers are linked in a cascade way and further the 

outputs of previous sub-classifier are added to the inputs of current sub-classifier. To 

relieve the effect of classifier order, an ensemble ECC framework is used to create 

different random chain ordering. 

 

 

3. PROPOSED APPROACH 

 

Most algorithms on multi-label classification learning are designed for balanced 

data and don’t work well on imbalanced data. The aim of this paper is to develop a 

state-of-the-art multi-label classification algorithm to tackle imbalance problem. 

Therefore, a state-of-the-art multi-label learning algorithm must be chosen. [72] 

presented a comparison between different methods of multi-label classification for 

different domain application. Of the algorithm adaptation methods, ML-kNN has 

provided the best results in almost all analyzed cases. On the other hand, extensive 

empirical study, [23], has clearly shown that IBLR improves upon existing methods, 

in particular the MLKNN method that can be considered as the state-of-the-art in 

instance based multi-label classification. In conclude, IBLR-ML consistently 

outperforms all other methods, regardless of the evaluation metric, indicating that it 

is the strongest method overall. This method considers label information of 

neighbored examples as features of a query instance, the idea of IBLR is to reduce 

instance-based learning formally to logistic regression. Moreover, this approach 
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allows capturing interdependencies between labels .Consequently, the chosen 

successful multi-label learning algorithm is IBLR-ML.  

After choosing the multi-label learning method with the good behavior, two 

ensemble strategies are devoted to develop it for tackling imbalance problem. 

Bagging is one of the ensemble-based meta-learning algorithms which samples 

subsets with replacement from the training set, building multiple base learners and 

aggregating their predictions to make final predictions. Another most significant 

ensemble-based published approach is boosting where the performance of weak 

classifiers is improved by focusing on hard examples which are difficult to classify. 

Boosting produces a series of classifiers and the outputs of these classifiers are 

combined using weighted voting in the final prediction of the model. In each step of 

the series, the training examples are re-weighted and selected based on the 

performance of earlier classifiers in the training series [60]. Boosting methods are 

able to significantly improve classification performance in many applications. One 

of the most popular boosting methods is the AdaBoost introduced in [73]. Adaboost 

is for binary classification problems. One version of Adaboost is Adaboost. M1 that 

is for multiple classification problems. 

In this paper, we applied ensemble techniques to particular situation of IBLR-

ML. This algorithm is produced from combination of k-nearest neighbor and logistic 

regression algorithms. In fact, we are applying ensemble techniques, Bagging and 

Adaboost.M1, within the logistic regression part of IBLR-ML.  

The pseudo-code of the EB-ELR training process is described in Fig. 1. In this 

algorithm, for each of the class labels in the training data set, builds a new binary 

data set. In each of them, per one of the class labels in the original data set, a new 

feature is added. A class label as well as the class label for new data set is added. To 

determine the values of the features, at the beginning, k nearest neighbor of each 

example in training data are selected. Then the neighbors that have a label 

corresponding to the desired feature, is determined. Divide these values by the 

number of neighbors, if the result is greater than or equal to .5, the value one and the 

number zero otherwise as the attribute value is chosen. The values of examples for 

class label are loaded with the same value of initial training data set. Finally, for 

each class label, a classifier learning algorithm is created by using the corresponding 

new data set. This classifier learning method is the ensemble method, bagging or 

boosting, with logistic regression as the based algorithm. 

 

 

4. EXPERIMENTAL RESULTS 

 

In this section, we compare our IB-ELR with five existing multi-label 

classification approaches experimentally. Before presenting our experimental the 

results, we briefly introduce learning algorithms, benchmark data sets included in 

the study and five evaluation measures for multi-label classification. 

 

4.1   LEARNING ALGORITHMS 
 

In this paper, we choose six successful multi-label classification methods to 

compare with my proposed approach. The first algorithm is IBLR-ML. For the 

reasons mentioned earlier, our main interest is focused on IBLR-ML, which is 

disputably the state-of-the-art in instance-based multi-label classification. Since 



 

 

Computer Engineering and Applications Vol. 4, No. 1, February 2015 

 
 

ISSN: 2252-4274 (Print)         67 

ISSN: 2252-5459 (Online) 

IBLR-ML consistently outperforms the expended version of this, we use the pure 

instance-based version of this algorithm. Another state-of-the-art machine learning 

method is MLKNN that quite will in practice. Both of IBLR-ML and MLKNN are 

parameterized by the size of the neighborhood, for which we adopted the value 

k=10. This value is nominated in [35], where it was found to yield the best 

performance. As an additional baseline we used binary relevance learning (BR) with 

three different base learners: logistic regression, C4.5 (the Weka [74] 

implementation J48 in its default setting), and KNN (again K=10). Finally, we also 

included label powerset (LP) with C4.5 as a base learner. we used their 

implementations in the MULAN package [75]. 
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FIGURE 1. Pseudo code of the EB-ELR training process. 

 

 

4.2 DATA SETS 
 

Benchmark imbalanced data for multi-label classification is not as abundant as 

for conventional classification, and indeed, experiments in this field are often 

restricted to a very few or even only a single data set. We empirically evaluated the 

proposed approach by measuring its performance on eleven benchmark multi-label 

Inputs: training multi-label data set that consists the following 

items. 

           NumInstance ← Number of instances 

           NumAttributes ← Number of attributes 

           NumLabels ← Number of labels 

Steps: % Create a training data with label info as features for every 

label. 

            T[] ← Create an array of new training data set with 

NumLabel elements. 

            For i=0 to NumInstance do 

                 k ← Number of neighbours. 

                 Knn ← Specify k neighbors by KNearestNeighbours 

method.   

                 Confidence [] ← The label confidence vector as the 

additional features. 

                 For j=0 to NumLabels do 

                       C[j] ← Compute sum of counts for jth label in 

Knn. 

                       Confidence[j] ← C[j]/k. 

                  End for 

                  NewIns ← Create new instance with “NumLabel+1” 

attributes. 

                  % The last attribute is added for class label. 

                  Copy Confidence vector as added for features to 

NewIns. 

                  For j=0 to NumLabels do 

                       Add the value of jth label of instance i in 

the training data to NewIns as the class 

                        label. 

                        Add NewIns to T[j]. 

                   End for 

             End for      

             % For every label create a corresponding classifier. 

             Classifier[] ← create an array of classifiers. 

             For i=0 to NumLabels do 

                    Classifier [i] ← train an ensemble Bagging 

(Boosting) classifier using 

Logistic 

                                               Regression as he base 

classifier and T[i] as training data 

set.  

              End for 
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datasets from different domains, variable sizes and imbalance ration. All datasets 

along with their properties are listed in Table 1 for balanced data sets and in table 2 

for imbalanced ones. We collect five of them: Emotions, Scene, Genbase, Mediamill 

and Yeast from http://mulan.sourceforge.net/datasets.html, and Image and Reuters 

from http://lambda.nju.edu.cn/data.htm.  

The first criterion to consider for imbalance data is the imbalance ratio[76]. We 

also consider the imbalance ratio, defined as the number of negative class examples 

that are divided by the number of positive class examples, to organize the different 

data-sets. Although [77] defined that for (significantly) imbalanced data, the ratio 

should be no less than 19:1, in the actual experimental settings, some non-significant 

imbalanced data should also be tested, in order to find how the learning algorithms 

behave under variety of imbalance degrees. Therefore, we created imbalanced data 

sets from the balance ones by eliminating some instances with largest relevant label 

set. Emotions(v2) And Emotions(v3) are derived from Emotions and as well as 

scene(v2) and scene(v3) are derived from scene to create imbalanced data sets with 

different imbalance ratios from balanced multi-label data sets. 

 

TABLE 1.  

Characteristic of the balanced multi-label datasets used in the experiments. 

 

Balanced Data 

set 

Domain #Instances #Attributes #Labels Cardinality #max/#min Imb. Ration 

Emotions Music 593 72 6 1.87 264/148 1.78 

Emotions(v2) Music 500 72 6 1.75 192/56 3.43 

Image Vision 2000 135 5 1.24 533/364 1.46 

Reuters Text 7119 243 7 1.24 2256/589 3.83 

Scene Vision 2407 294 6 1.07 580/409 1.42 

 

TABLE 2. 

Characteristic of the imbalanced multi-label datasets used in the experiments. 

 

Imbalanced 

Data set 

Domain #Instances #Attributes #Labels Cardinality #max/#min Imb. Ration 

Emotions(v3) Music 434 72 6 1,59 173/14 12.36 

Genbase Biology 662 1186 27 1.25 171/1 171 

Mediamill Multimedia 5000 120 6 4.27 3828/1 3828 

Scene(v2) Vision 1940 294 6 1.001 405/38 10.66 

Scene(v3) Vision 1227 294 14 1.001 405/18 22.5 

Yeast Biology 2417 103 101 4.24 1799/34 52.91 

 

The emotions data set consists of 100 songs from each of the following 7 

different genres: Classical, Reggae, Rock, Pop, Hip-Hop, Techno and Jazz. The 

collection was created from 233 albums choosing three songs from each album. 

From each song a period of 30 seconds after the initial 30 second was extracted. The 

resulting sound clips were stored and converted into wave files of 22050 HZ 

sampling rate, 16-bit per sample and mono [78]. From each wave file, 72 features 

http://mulan.sourceforge.net/datasets.html
http://lambda.nju.edu.cn/data.htm
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have been extracted. Then, in the emotions labeling process, 6 main emotional 

clusters are retained. 

The Image data set consists of 2,000 natural scene images belonging to the 

classes desert, mountains, sea, sunset, and trees. Some images were from the 

COREL image collection while some were collected from the Internet. Over 22% 

images belong to multiple classes simultaneously [79]. 

The scene image dataset contains 2407 images annotated with up to 6 concepts 

such as beach, mountain and field. Each image is described with 294 visual numeric 

features and these features are represented with spatial color moments in Luv color 

space. Each instance in the train and test datasets is labeled with possible 6 object 

classes as mentioned above [3, 28]. 

From the text processing field, a text data is derived from the widely studied 

Reuters 21578 collection [80]. The seven most frequent categories are considered. 

After removing documents whose label sets or main texts are empty, 8866 

documents are retained where only 3.37% of them are associated with more than one 

class label. After randomly removing documents with only one label, a text 

categorization data set containing 2,000 documents is obtained. Thereafter, each 

instance is represented as a 243- dimensional feature vector. 

The mediamill dataset is based on the mediamill challenge data set [66, 81, 82]. It 

contains pre-computed low-level multimedia features from 85 hours of international 

broadcast news video of the TRECVID 2005/2006. This dataset contains Arabic, 

Chinese, and US news broadcasts that were recorded during November 2004, and 

the contents are annotated with multiple labels. Every instance of this data set has 

120 numeric features including visual, textual, as well as fusion information. The 

trained classifier should be able to categorize an unseen instance to some of these 

101 labels, e.g., face, car, male, soccer, and so on. 

The yeast dataset contains 2417 gene examples, and each of which is related to a 

set of 14 functional gene classes from the comprehensive Yeast Genome Database 

of the Munich Information Center for protein Sequences. Each gene is expressed 

with 103 numeric features [4, 65, 66]. 

 

4.3    EVALUATION MEASURES 
 

The performance evaluation of a multi-label classifier is different from that of a 

classical single-label classifier, which induces more than ten performance evaluation 

measures [25]. The five evaluation metrics for label ranking used in [23, 36] are 

used in this paper: Hamming loss, One-error, Ranking loss, Coverage and average 

precision. 

For a classifier , let      ℒ denote its multi-label prediction for an instance  , 

and let    denote the true set of relevant labels. Moreover, in case a related scoring 

function   is also defined, let        denote the score assigned to label   for 

instance  . The most commonly used evaluation measures are defined as follows: 

a) Hamming loss computes the percentage of labels whose relevance is predicted 

incorrectly:  

           
 

|ℒ|
 |         |    (1) 

where is the symmetric difference between two sets. 
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b) One error computes how many times the top-ranked label is not relevant: 

             {
               ℒ           
                                           

  (2) 

c) Coverage determines how far one needs to go in the list of labels to cover all the 

relevant labels of an instance. This measure is loosely related to the precision at 

the level of perfect recall: 

                                     (3) 

      Where             denotes the position of label   in the ordering induced by . 

d) Rank loss computes the average fraction of label pairs that are not correctly 

ordered: 

            
 {(    )|        (    )              }

|  | |    |
  (4) 

     Where, ℒ   ⁄      is the set of irrelevant labels. 

e) Average precision determines for each relevant label       the percentage of 

relevant labels among all labels that are ranked above it, and averages these 

percentages over all relevant labels: 

            

 

|  |
∑

|{  |     (   
 )                 }|

          
    

   (5) 

It should be noted that smaller values indicate better performance for all measures 

except average precision. Finally, except for coverage, all measures are normalized 

and assume values between 0 and 1. 

 

4.4     RESULTS AND DISCUSSION 
 

This section presents the results of the evaluation experiments that we conducted. 

The predictive performances of the examined IB-ELR algorithms are evaluated 

using the 10-fold cross-validation are summarized from Table 3 to table 12. Tables 3 

to 7 are related to the results on balanced data sets and tables 8 to 12 are related to 

the result on imbalanced data sets. Multi-label classification evaluation measures 

including the example-based Hamming-loss, ranking-based one error, Ranking Loss 

and average precision are employed to present the evaluation results of the examined 

IB-ELR algorithms. 

The average ranks of experimental results for balanced data sets shown that 

IBLR-ML outperforms all other methods. To comparing IBLR-ML with IB-ELR 

Bagging , we are looked that IBLR-ML is stronger than IB-ELR for One Error and 



Mohammad masoud Javidi and Fatemeh Shamsezat 

Learning from Imbalanced Multi-label Data Sets by Using Ensemble Strategies 

72                 ISSN: 2252-4274 (Print) 

                                                                                                                ISSN: 2252-5459 (Online) 

Coverage measures, for Ranking Loss measure IB-ELR Bagging is powerful and for 

other measures they are similar. This result is not unexpected, because logistic 

regression is stable method and clearly bagging will have little benefit when used 

with stable base learning algorithms (i.e., most ensemble members will be very 

similar). Moreover, [83] had concluded that bagging is systematically detrimental to 

performance for logistic regression. It is noteworthy that these results have been 

obtained on balanced data sets. 

This is surprising in attention to experimental results of imbalanced data sets that 

IB-ELRBagging consistently outperforms all other methods, especially IBLR-ML, for 

all measures. Our experimental results show that the performance of IBLR-ML in 

the imbalanced data sets is undesirable.  

Diversity also plays an important role in improving the performance of ensemble 

classifier. In bagging methods, diversification is maintained by creating individual 

classifiers on different subsets of the training data. Here though logistic regression 

does not suffered from variance in balanced data sets, the diversity of the base 

learner produced from imbalanced data set. Actually imbalanced data set can 

convert a stable learning algorithm into unstable one for ensemble bagging strategy. 

According to IB-ELRBoosting results, it is perceived that IB-ElLRBoosting had 

disappointing experimental results on the both of balanced and imbalanced data sets. 

These results have two causes. One of them is that the base classifiers should be 

weak learners; a classifier learning algorithm is said to be weak when low changes 

in data produce big changes in the induced model; this is why the most commonly 

used base classifiers are tree induction algorithms. Another one is that Adaboost 

algorithm by itself can’t deal with the imbalance problem directly; it has to be 

changed or combined with another technique, since it focus their attention on 

difficult examples without differentiating their class. In an imbalanced dataset, 

majority class examples contribute more to the accuracy (they are more probably 

difficult examples); hence, rather than trying to improve the true positives, it is 

easier to improve the true negatives, also increasing the false negatives, which is not 

a desired characteristic [8]. 

TABLE 3. 

Experimental results based on the Hamming Loss for the balanced data sets. 

 

Hamming 

Loss ↓ 

IB-ELR 

Bagging 

IB-ELR 

Boosting 

IBLR-ML MLKNN BR-LR BR-C4.5 BR-KNN LP 

Emotions .1886 (2) .1887 (3) .1883 (1) .1951 (5) .2190 (6) .2474 (7) .1934 (4) .2777 (8) 

Emotions(v2) .1923 (2) .1914 (1) .1943 (3) .2040 (5) .2333 (6) .2553 (7) .2020 (4) .2810 (8) 

Image .1874 (3) .1864 (1.5) .1864(1.5) .1913 (4) .2013 (6) .2406 (7) .1914 (5) .2571(8) 

Reuters .0820 (4) .0821 (5.5) .0821(1.5) .0826 (7) .0489 (1) .0583 (2) .0903 (8) .0669 (3) 

Scene .0833 (1) .0845 (3) .0834 (2) .0862 (4) .1393 (7) .1368 (6) .0920 (5) .1437 (8) 

Ave. rank (2.4) (2.8) (2.4) (5) (5.2) (5.8) (5.2) (7) 

 

TABLE 4.  

Experimental results based on the One Error for the balanced data sets. 

 

One Error ↓ IB-ELR 

Bagging 

IB-ELR 

Boosting 

IBLR-ML MLKNN BR-LR BR-C4.5 BR-KNN LP 

Emotions .1886 (2) .1887 (3) .1883 (1) .1835 (5) .2869 (6) .3913 (7) .2565 (4) .4672 (8) 



 

 

Computer Engineering and Applications Vol. 4, No. 1, February 2015 

 
 

ISSN: 2252-4274 (Print)         73 

ISSN: 2252-5459 (Online) 

Emotions(v2) .1923 (2) .1914 (1) .1943 (3) .2980 (5) .3440 (6) .4260 (7) .2840 (4) .4880 (8) 

Image .3700 (3) .4030 (6) .3665 (2) .3715(4) .3660 (1) .5000 (7) .3830 (5) .5100 (8) 

Reuters .2181 (5) .2408 (8) .2187 (6) .2163 (4) .0871 (1) .1458 (2) .2278 (7) .1724 (3) 

Scene .2243(3.5) .2418 (5) .2235 (2) .2243(3.5) .3665 (6) .4138 (8) .0889 (1) .3984 (7) 

Ave. rank (3.1) (4.6) (2.8) (4.3) (4) (6.2) (4.2) (6.8) 

 

TABLE 5.  

Experimental results based on the Coverage for the balanced data sets. 

 

Coverage ↓ IB-ELR 

Bagging 

IB-ELR 

Boosting 

IBLR-ML MLKNN BR-LR BR-C4.5 BR-

KNN 

LP 

Emotions 1.7137(2) 1.8590(6) 1.7087(1) 1.7884(3) 1.8493(5) 2.5507(7) 1.8018

(4) 

2.6854(8) 

Emotions(v2) 1.6360(2) 1.7885(5) 1.6340(1) 1.6960(4) 1.8540(6) 2.5840(7) 1.6860

(3) 

2.6520(8) 

Image 1.0720(4) 1.2200(6) 1.0665(3) 1.0600(2) 1.0560(1) 1.599(7.5) 1.0975

(5) 

1.599(7.5

) 

Reuters .7543 (2) .9614 (7) .7561 (3) .7644 (4) .4443 (1) .8829 (6) .8130 

(5) 

1.0393(8) 

Scene .4607 (1) .6223 (5) .4642 (2) .4744 (3) .8855 (6) 1.3345(8) .5314 

(4) 

1.1570(7) 

Ave. rank (2.2) (5.8) (2) (3.2) (3.8) (7.1) (4.2) (7.7) 

 

TABLE 6. 

Experimental results based on the Rank Loss for the balanced data sets. 

 

Rank Loss ↓ IB-ELR 

Bagging 

IB-ELR 

Boosting 

IBLR-ML MLKNN BR-LR BR-C4.5 BR-KNN LP 

Emotions .1512 (2) .1766 (6) .1496 (1) .1633 (4) .1731 (5) .2915 (6) .1610 (3) .3442 (7) 

Emotions(v2) .1583 (1) .1846 (5) .1587 (2) .1660 (4) .1951 (6) .3170 (7) .1652 (3) .3584 (8) 

Image .2007 (4) .2380 (6) .1991 (3) .1983 (2) .1969 (1) .3303 (7) .2090 (5) .3365 (8) 

Reuters .0818 (2) .1134 (7) .0821 (3) .0828 (4) .0305 (1) .0918 (6) .0905 (5) .1203 (8) 

Scene .0753 (1) .1069 (5) .0760 (2) .0774 (3) .1585 (6) .2465 (8) .0889 (4) .2125 (7) 

Ave. rank (2) (5.8) (2.2) (3.4) (3.8) (6.8) (4) (7.6) 

 

TABLE 7. 

Experimental results based on the Average Precision for the balanced data sets. 

 

Ave. Prec. ↑ IB-ELR 

Bagging 

IB-ELR 

Boosting 

IBLR-ML MLKNN BR-LR BR-C4.5 BR-KNN LP 

Emotions .8103 (2) .7899 (6) .1826 (1) .7965 (4) .7903 (5) .7014 (7) .8037 (3) .6608 (8) 

Emotions(v2) .8016 (1) .7773 (5) .8013 (2) .7842 (4) .7545 (6) .6726 (7) .7928 (3) .6410 (8) 

Image .7602 (4) .7310 (6) .7619 (2) .7609 (3) .7638 (1) .6577 (7) .7531 (5) .6494 (8) 

Reuters .8606 (4) .8351 (8) .8601 (5) .8600 (6) .9439 (1) .8866 (2) .8504 (7) .8624 (3) 

Scene .8674 (1) .8449 (5) .8673 (2) .8662 (5) .7672 (6) .7109 (8) .8496(4) .7306 (7) 

Ave. rank (2.4) (6) (2.4) (4) (3.8) (6.2) (4.4) (6.8) 
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TABLE 8. 

Experimental results based on the Hamming Loss for the imbalanced data sets. 

 

Hamming 

Loss ↓ 

IB-ELR 

Bagging 

IB-ELR 

Boosting 

IBLR-ML MLKNN BR-LR BR-C4.5 BR-KNN LP 

Emotions(v3

) 

.1863 (1) .1869 (2) .1894 (3) .1913 (5) .2217 (6) .2438 (8) .1897 (4) .2612 (7) 

Genbase .0022 (5) .0018 (5) .0029 (6) .0048 (8) .0019(3.5

) 

.0011 (1) .0038 (7) .0019 

(3.5) 

Mediamill .0314 (3) .0325 (6) .0320 (4) .0305 (2) .0322 (5) .0357 (7) .0304 (1) .0445 (8) 

Scene(v2) .0796(1.5) .0780 (3) .0796(1.5) .0810 (4) .1365 (8) .1216 (6) .0888 (5) .1332 (7) 

Scene(v3) .0819(2.5) .0796 (1) .0819(2.5) .0853 (4) .1469 (8) .1193 (6) .0907 (5) .1262 (7) 

yeast .1928 (1) .1933 (2.5) .1934 (4) .1933(2.5

) 

.2050 (6) .2454 (7) .1952 (5) .2779 (8) 

Ave. rank (2.4) (2.75) (3.5) (4.25) (6.08) (5.83) (4.5) (6.75) 

 

TABLE 9.  

Experimental results based on the One Error for the imbalanced data sets. 

 

One Error ↓ IB-ELR 

Bagging 

IB-ELR 

Boosting 

IBLR-ML MLKNN BR-LR BR-C4.5 BR-KNN LP 

Emotions(v3

) 

.3226 (4) .3041 (1) .3273 (5) .3089 (2) .3712 (6) .4424 (7) .3225 (3) .4798 (8) 

Genbase .0030(2.3) .0030(2.3) .0135 (6) .0136 (7) .0121 (5) .0030(2.3

) 

.0166 (8) .0106 (4) 

Mediamill .1968 (3) .3720 (6) .2532 (4) .1924 (2) .3326 (5) .4440(7) .1880 (1) .6936 (8) 

Scene(v2) .2407 (1) .2567 (4) .2423 (2) .2459 (3) .4052 (7) .4211 (8) .2866 (5) .4000 (6) 

Scene(v3) .2428 (1) .2576 (4) .2461 (2) .2534(3) .4237 (8) .4010 (7) .2966 (5) .3790 (6) 

yeast .2242 (1) .0327 (6) .2263 (2) .2292 (3) .2400 (5) .3993 (7) .2309 (4) .5139(8) 

Ave. rank (2.05) (3.88) (3.5) (4) (3.33) (6.38) (4.33) (6.67) 

 

TABLE 10. 

Experimental results based on the Coverage for the imbalanced data sets. 

 

Coverage ↓ IB-ELR 

Bagging 

IB-ELR 

Boosting 

IBLR-ML MLKNN BR-LR BR-C4.5 BR-KNN LP 

Emotions(v3

) 

1.5236(1) 1.6241 (5) 1.5261 (2) 1.5627(3) 1.6892(6

) 

2.2896(7

) 

1.6126(4

) 

2.5250(8) 

Genbase .3926 (2) .4281 (4) .4936 (6) .5559 (8) .3986 (3) .3564 (1) .4367 (5) .4997 (7) 

Mediamill 17.6362(5

) 

17.5282(4

) 

17.4482(3

) 

14.7694(1

) 

15.6048(

2) 

48.8870(

7) 

22.8582(

6) 

60.1690(

8) 

Scene(v2) .3742 (1) .4949 (5) .3794 (2) .3822 (3) .9789 (6) 1.2015(8

) 

.4789 (4) 1.0309(7) 

Scene(v3) .3715 (1) .4507 (4) .3755(2) .3826 (3) .9419(7) 1.1940(8

) 

.4710 (5) .9292(6) 

yeast 6.1906 (1) 6.3419 (4) 6.1927 (2) 6.2324 (3) 6.4857(5

) 

9.2398(7

) 

6.5245(6

) 

9.3647(8) 

Ave. rank (1.83) (4.33) (2.83) (3.5) (4.83) (6.33) (5) (7.33) 

 

TABLE 11. 
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Experimental results based on the Ranking Loss for the imbalanced data sets. 

 

Rank Loss ↓ IB-ELR 

Bagging 

IB-ELR 

Boosting 

IBLR-ML MLKNN BR-LR BR-C4.5 BR-KNN LP 

Emotions(v3

) 

.1682 (1) .1814 (5) .1694 (2) .1702 (3) .1982 (9) .3068 (7) .1796 (4) .3640 (8) 

Genbase .0029 (2) .0031 (3) .0053 (6) .0062 (7) .0046 (4) .0028 (1) .0052 (5) .0076 (8) 

Mediamill .0506 (4) .0533 (5) .0497 (3) .0415 (1) .0421 (2) .1706 (7) .0667 (6) .3459 (8) 

Scene(v2) .0746 (1) .0987 (5) .0757 (2) .0776 (3) .1956 (6) .2401 (8) .0955 (4) .2060 (7) 

Scene(v3) .0739 (1) .0896 (4) .0747 (2) .0761 (3) .1882 (7) .2384 (8) .0937 (5) .1857 (6) 

yeast .1632 (1) .1782 (6) .1635 (2) .1652 (3) .1763 (4) .3097 (7) .1778 (5) .3993 (8) 

Ave. rank (1.67) (4.67) (2.83) (3.33) (5.33) (6.33) (4.83) (7.5) 

 

TABLE 12. 

Experimental results based on the Average precision for the imbalanced data sets. 

 

Ave. Prec. ↑ IB-ELR 

Bagging 

IB-ELR 

Boosting 

IBLR-ML MLKNN BR-LR BR-C4.5 BR-KNN LP 

Emotions(v3

) 

.7723 (2) .7702 (4) .7712 (3) .7736 (1) .7421 (6) .6702 (7) .7645 (5) .6382 (8) 

Genbase .9917 (3) .9921 (2) .9860 (7) .9864 (6) .9891 (4) .9927 (1) .9820 (8) .9871 (5) 

Mediamill .7105 (3) .6421 (6) .7001 (5) .7262 (1) .7010 (4) .5549 (7) .7152 (2) .3055 (8) 

Scene(v2) .8620 (1) .8423 (4) .8606 (2) .8582 (3) .7372 (7) .7118 (8) .8336(5) .7374 (6) 

Scene(v3) .8619 (1) .8464 (4) .8602 (2) .8559 (3) .7351 (7) .7227 (8) .8295 (5) .7559 (6) 

yeast .7698 (1) .7470 (6) .7687 (2) .7658 (3) .7549 (5) .6216 (7) .7599 (4) .5723 (8) 

Ave. rank (1.83) (4.33) (3.5) (2.83) (5.5) (6.33) (4.83) (6.83) 

 

5. CONCLUSION 

 

In this paper, a multi-label classification algorithm, which called IBLR_ML [23], 

is employed. This algorithm is produced from combination of k-nearest neighbor 

and logistic regression algorithms. We use ensemble techniques within the logistic 

regression part of IBLR-ML. while the bagging fails with stable learning algorithms 

whose output is insensitive to small changes in the input and also logistic regression 

is stable method, we employ logistic regression as the base learner. 

We empirically evaluated the proposed approach by measuring its performance 

on eleven benchmark multi-label datasets from different domains, variable sizes and 

imbalance ration. In addition to, six successful multi-label classification methods are 

chosen to compare with my proposed approach.  

The average ranks of experimental results for balanced data sets shown that 

IBLR-ML outperforms all other methods. This is because of the base classifiers 

should be unstable learner; a classifier learning algorithm is said to be unstable when 

low changes in data produce big changes in the induced model. This is surprising in 

attention to experimental results of imbalanced data sets that IB-ELRBagging 

consistently outperforms all other methods, especially IBLR-ML, for all measures.  

Its cause is that, actually imbalanced data set can convert a stable learning algorithm 
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into unstable one for ensemble bagging strategy. According to IB-ELRBoosting results 

in imbalanced data sets, it is perceived that IB-ElLRBoosting had disappointing 

experimental results since Adaboost algorithm by itself can’t deal with the 

imbalance problem directly. In an imbalanced dataset, majority class examples 

contribute more to the accuracy (they are more probably difficult examples); hence, 

rather than trying to improve the true positives, it is easier to improve the true 

negatives, also increasing the false negatives, which is not a desired characteristic. 
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