
 

 

 

A Machine Learning Based Investigation of 

Cloud Service Attacks 

 

 
 

By 

 

Intisar Salem Hamed Al-Mandhari 

  

  

 

A Doctoral Thesis 

 

Submitted in partial fulfilment 

of the requirements for the award of 

 

Doctor of Philosophy 

of 

Loughborough University 

   

 

                  

                     April 2019 

 

 

  

 

 

                  Copyright 2019 Intisar Salem Hamed Al-Mandhari 



  

II 
 

Abstract 
In this thesis, the security challenges of cloud computing are investigated in the Infrastructure 

as a Service (IaaS) layer, as security is one of the major concerns related to Cloud services. As 

IaaS consists of different security terms, the research has been further narrowed down to focus 

on Network Layer Security. Review of existing research revealed that several types of attacks 

and threats can affect cloud security. Therefore, there is a need for intrusion defence 

implementations to protect cloud services. Intrusion Detection (ID) is one of the most effective 

solutions for reacting to cloud network attacks.  

 

The application of machine learning-based techniques for the identification of network-based 

intrusion detections on the public dataset, KDD cup ’99, has become commonplace since the 

last decade. This work has demonstrated that machine learning can be used to detect network 

intrusions. This thesis reports on an empirical investigation to determine the underlying causes 

of the reported poor performance of some well-known classifiers especially in learning from 

to classify minor classes/attacks. The investigations carried out in this thesis reveals that the 

KDD Cup ’99 dataset is an imbalanced dataset due to the inherent nature of the network 

intrusion domain, where some attacks are very common and some attacks are rare. Therefore, 

there is an extreme imbalance among the number of data instances in the different attack classes 

of this dataset. Based on the number of the classes in the dataset, the imbalance dataset issue 

can be a binary-class problem or multi-class problem. In literature, most of the researchers 

focus on addressing binary-class misclassification problem as addressing the multi-class 

classification problem is a complex issue that requires detailed analysis of features of attacks 

and the performance and structure of classification algorithms used.  

 

This thesis reports the basic methods that can be deployed to learn from an imbalance dataset. 

Different experiments are conducted to avoid the bias towards the major classes and enhance 

the detection rate of the classifiers used, especially in the classification of the minor classes. 

The findings show that the issue of learning from the imbalanced dataset is not due to the 

limitation of the classifiers but rather in the way they are structured and used in classification 

imbalanced datasets 

Keywords: Cloud Computing, Intrusion Detection Systems, Network, Security, Attacks, Machine Learning, 

imbalance Dataset and Feature Selection. 
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Chapter 1 : Introduction 

1.1 Research Background 
Information technology is rapidly changing, and much of this is due to the introduction of 

Cloud Computing (CC) and the many applications supporting this technology. CC allows for 

resources to be distributed across a network, permitting users to interact with any of these 

resources as needed, with flexible access. As a result, convenience and security are increased, 

as users are not necessarily storing information independently. Companies have a greater 

ability to focus on the research and development of their own products but spend less time and 

energy designing secure data storage facilities, purchasing hardware for that purpose, or 

training staff to follow procedures if they are able to buy into cloud services offered by 

specialised cloud service providers. The many features and advantages of using cloud 

computing, including greater efficiency, lower costs, increased accessibility, reliability, and 

flexibility to manage and scale the systems make it very desirable to a variety of businesses 

and organisations in many different industries.  

Unfortunately, cloud security is a significant concern for cloud users. As cloud usage relies 

heavily on the trust of users, there is a concern that organisations may be vulnerable to new 

threats and risks. Further, there is the possibility of cloud technology being invaded by intruders 

or hackers, thus giving them access to vital data in the cloud, owned by others. An intrusion or 

attack can have very significant implications for cloud usage. Since most attackers are likely 

to target networks with the largest numbers of users with the most accessible and most 

automated resources, as well as the networks containing an aggregate of the most information, 

it must be carefully investigated and all risks should be mitigated where ever possible. 

According to The Cloud Security Alliance (CSA), there are seven major threats to cloud 

systems [1]. Using Intrusion Detection (ID) methods is the best way to prevent attacks and 

defend the systems because these systems are able to rapidly recognise and therefore in a timely 

manner protect against attackers. Thus, it is imperative that any concerns surrounding cloud 

security be addressed before any benefits can be reaped. 

1.2 Motivations 
Because the internet is the delivery method of all cloud services, security is a priority [2]. 

Typically, any attacks incurred by a cloud system are unique to that cloud system. Recognising 

and eliminating the attacks is critical to maintaining the confidentiality and integrity of the 

cloud systems and the information and resources contained in those systems.  
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Outsider attacks by intruders are not the only threat to cloud security. While firewalls can 

successfully help prevent outside intruders from attacking a cloud system, only Intrusion 

Detection Systems (IDSs) will be helpful in detecting insider attacks. According to the study 

in [3], the costs required for adopting cryptographic strategies secure data are not always 

financially viable for attack prevention. Thus, using IDSs for cloud networks is an important 

consideration. Current IDSs are embedded with limitations, such as those related to the 

accuracy, sensitivity to false alarms, costs of communication, ideal detection rates, and 

coverage for attacks. Because of these limitations, many cloud systems are vulnerable to attacks 

and breaches of confidentiality. Finding solutions to these problems is critical to the integrity 

of any cloud system. Until solid solutions are identified, it will be difficult for consumers to 

fully trust cloud systems.  

 

Research during the last decade has focused on developing different Machine Learning (ML) 

techniques for IDSs as mentioned in [4]. Strategies that are most commonly used are those that 

are able to learn from training samples illustrating typical network behaviours under different 

attacks. The IDSs strategically learn to detect intrusions, without the intervention of a human 

to identify the attack. The IDSs is able to recognise attacks after learning the typical patterns 

and variations seen during previous, known attacks.  

 

One of the most popular datasets used to assess the performance of intrusion detection systems 

during the last ten years has been the KDD Cup 99 dataset (Knowledge Discovery and Data 

Mining) as mentioned in[4]. As there are many types of attacks, researchers apply different 

machine learning techniques to learn how to recognise such attacks. However in the previous 

work of using machine learning in IDS' researchers’ have applied known classification 

algorithms for detecting various types of attacks. Majority of this work has been carried out by 

researchers who have the computer network security expertise, but not fundamental knowledge 

about machine learning algorithms. Therefore the attempts have only used the machine learning 

algorithm as a ‘tool’ to achieve detection of attacks, but many important aspects of the use and 

the essential fine-tuning needed in applying such tools have not been given the required 

importance. In particular, standard approaches to using machine learning classifiers to classify 

data within imbalanced datasets, often fail due to the fact that the number of training samples 

used to train minor attacks (i.e. attacks which are uncommon and hence not have enough 

samples to train the classifier model) is far less than the number of samples used to train to 
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detect major classes. For example attacks of type R2L (Remote to Local) and U2R (User to 

Root) are minor classes and their detection accuracies are often poor. The research presented 

in this thesis sets out to address this challenge. 

1.3 Problem Statement  
Effectiveness is the main factor considered when assessing the overall quality of an intrusion 

detection system. Effectiveness of an IDS is assessed by investigating its ability to detect 

intrusions accurately (true positive) against its rate of issuing false alarms (false positives). The 

review of literature conducted within the research context of this thesis revealed that there are 

three primary outstanding issues with regards to the machine learning-based IDS proposed in 

literature to-date.  

 

Firstly, the literature fails to show consistency in the findings reported. Review of previously 

published research indicates that inconsistencies are likely to be derived from the researchers 

choosing to use different subsets of the KDD Cup ’99 dataset in their research. Additionally, 

there are some methodological differences between how the data used for training has been 

pre-processed and the performance of the proposed machine learning systems have been 

validated.  

 

Secondly, the popular dataset used for the research works, the KDD Cup ’99 dataset, is not a 

balanced dataset. This becomes a significant issue when the number of instances in one specific 

class markedly outnumbers the number of instances in a different class, as this typically leads 

to a high number of misclassified instances for the class with fewer instances. Typically, the 

standard classification learning algorithms are often biased towards the majority class. One of 

the main problems with the KDD Cup ’99 dataset being imbalanced is the issue that certain 

algorithms designed for machine learning (such as Decision Tree (DT) and Artificial Neural 

Network (ANN)) tend to be biased toward major classes of datasets (DoS and Probe[5]), which 

means that the minor classes (U2R and R2L[6]) end up with a poor rate of classification. 

However, the major classes and minor classes are clearly defined based on their proportion on 

the dataset, as presented in Table 3-1. The issue of an imbalanced dataset could be solved 

through balancing the data distributions in the dataset. The data imbalance can be due to an 

imbalance of instances between classes or imbalance of data instances within classes, with the 

latter arising due to the presence of the so-called sub-classes within classes. The data imbalance 
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between classes deals with the distribution of the instances between the dataset classes whereas 

data imbalance within classes deals with the data imbalance between sub-classes of a class.  

 

Figure 1-1:KDD cup’99 dataset imbalanced dataset issue 

Figure 1-1 highlights the data imbalance issue within the KDD cup 99 dataset and the related 

presence of major/minor classes and sub-classes within them. 

 

Thirdly, with a poor detection rate for minor attacks, even if the between class imbalances are 

addressed, it is required that assessment of minor attacks, as well as sub-minor attacks (attacks 

that are under the category of the minor attacks which can be defined based on their 

characteristics and where the KDD Cup ’99 already classified it in their website), are carried 

out with care. Therefore this thesis will study the minor attacks and their sub-minor attacks. 

Our investigations revealed that sub-major classes do not affect the classification of major 
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classes as they have a sufficient number of instances to contribute to the training of a classifier. 

Further, each attack type has its own characteristic features and it is essential that these features 

are selectively used in a way that the classifier selection and performance can be optimised for 

the detection of both minor and sub-minor classes.  

1.4 Aim and Objectives 
This thesis aims to address outstanding research issues of present cloud security services (see 

Section 1.3) by offering an intelligent and tailored attack detection system based on machine 

learning algorithms and this will be satisfied by the following objectives: 

Obj.1: Carry out a review of existing cloud security systems, to recognise the unique 

challenges, and explore potential solutions. 

Obj.2: Investigate in detail current machine learning-based IDSs, to identify limitations in 

using standard machine learning approaches in attack detection. 

Obj.3: Investigate the impact of data imbalance between classes and within classes on the 

performance accuracy of machine learning classifiers when applied to IDS. 

Obj.4: Investigate in detail, the accuracy of detection of minor attacks and the impact of the 

presence of sub-minor classes.  

Obj.5: Propose a novel machine learning framework that will address both between-class and 

within-class data imbalance. 

Obj.6: Investigate the impact of feature-selection on classifier performance and how it can be 

used to optimise the performance of classifiers applied to an imbalanced dataset network 

detection attacks. 

1.5 Methodology  
A. First, an exhaustive review of the current cloud computing paradigm, architecture and 

research issues will be performed, leading to a deeper understanding of cloud system 

issues, challenges and shortcomings. This will lead to a deeper understanding of the 

research background required for this research. In particular, a comprehensive 

investigation about cloud security will be carried out leading to the understanding of 

security-related challenges and likely potential solutions.  

B. Secondly, an investigation into the various IDSs strategies will be conducted alongside 

exploring the use of machine learning techniques for network intrusion detection. 
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C. Based on the approach followed in B, the strategies to improve the performance of 

classifiers in-network IDS will be examined. As a result, better-tailored learning 

methods will be applied based on classifiers, resulting in an improvement of detection 

accuracy of attacks.  

D. The learning methods will be applied to the classification of attacks in a known 

imbalanced dataset, exploring the impact of both between class and within-class data 

imbalance on the classifier performance. 

E. Given that feature selection is known to improve classifier performance in general, the 

thesis will explore the possibility of feature selection, depending on the type of attack, 

in order to classify attacks more accurately.  

Figure 1-2 illustrates the scope of the research conducted with respect to the overall research 

context.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2:The scope of research investigation 
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1.6 Original Contributions 
This thesis offers four contributions to the research area of network intrusion detection. While 

the focus of this research is mainly to contribute original knowledge to the area of intrusion 

detection systems, the proposed framework could also be used to deal with the classification 

of imbalanced datasets from other application domains. Hence the thesis also contributes to the 

general area of applications of machine learning algorithms.  

   

1. Inconsistency & Poor Performance of Some Classifiers  

The first contribution is a detailed investigation for the reasons behind inconsistency of the 

classification accuracy of machine learning algorithms reported in the literature for the purpose 

of network intruder detection.  

 Regarding methods of validation, an experiment was conducted in this study which 

indicates that the result of the holdout validation differs based on the hold-out value 

that is deployed and the randomness of the training/test set selection. As a result, the 

tested instances may be different, depending upon the instances used in an alternative 

experiment, which may lead to an alternate detection rate. Based on this experiment, 

cross-validation was determined to be the ideal method, although it is computationally 

costly.  

 The second achievement is related to the performance improvements obtainable from 

classifiers when resampling methods are used to pre-process data prior to training and 

testing. Based on this experiment, bias toward the majority classes were shown to be 

due to the data imbalance in the dataset used.  After utilizing resampling techniques, all 

of the classifiers investigated perform well, improving accuracy significantly. The 

detection rate for minority classes (such as R2L and U2R) increased, and the bias 

toward the majority classes was less obvious. Balancing data between classes improved 

the accuracy of performance of all classifiers when dealing with imbalanced datasets. 

This was not reported in previous literature and is, therefore, a significant contribution 

of the research conducted within this thesis. 

 The third contribution is related to the Random Forest classifier’s behaviour in relation 

to adopting imbalance learning methods. This investigation led to the conclusion that 

resampling with ensemble methods, such as Bagging or AdaBoosM, is the best 

approach since this results in the RF classifier’s rate of detection for minor classes 

improving without indicating a bias towards majority classes and poor classification of 

minor classes. It could be argued that RF performance is similar to the ensemble 
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method, however, it is determined that using performance of RF as an ensemble offers 

better information for classification than using it as a tree-based classification 

algorithm. This is due to the fact that RF utilizes subsets of features to split each node 

in a tree classification, and bagging (ensemble) methods incorporate all features 

required for node splitting. As a result, it can be concluded that the features in the 

dataset impact RF performance. Additionally, it is noted that RF is more effectively 

implemented with resampling, and if the ensemble method is used without resampling, 

then the RF detection rates are poor for minority classes.  

 The fourth contribution is related to the Naive Bayes classifier and its ability to detect 

minor attacks. Although NB detection of the minority classes is improved by using a 

blended approach combining data-level methods with ensemble methods, the ideal 

strategy is using stacking (bagging of NB and RF).  

 

2. The cause of poor detection of the minor attacks 

The second achievement is derived from the study of reasons behind the poor performance 

of NB classifier in the classification of R2L attacks, despite using data resampling as a pre-

processing stage. Due to the sub-classes of attacks, there are misclassifications. As certain 

features of R2L attacks are uniquely related to features of boundary/marginal attack classes, 

misclassifications may occur easily. As a result, the heterogeneous system being proposed 

is based on stacking and bagging, which improves the NB based detection of R2L attacks. 

 

3. Impact of the Structure of Data Pre-processing Pipelines on the Performance of 

Classifiers  

Based on the statistical analysis, both the sampling approach and the feature selection method 

should be used when any training for ideal classification methods is required. The strategy is 

based upon the classifier used and the type of features selected. The investigations in this thesis 

reveal that typically, the feature selection after resampling method will perform better than the 

other pipeline options. 

 

4. Determine specific attributes of minor attacks and their sub-minor attacks and the 

significance of such features in the classification task  

The research conducted in this thesis shows that feature selection algorithms can be effectively 

used to select the most prominent features that will in-turn be able to detect both minor and 

sub-minor classes more accurately when compared to using all possible features in 
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classification. This is a significant contribution as this not only demonstrates how the accuracy 

of classifiers can be improved via feature selection, but the feature selection also reveals vital 

information to the network IDS research community in understanding the key attributes of 

different kinds of attacks. This work is presented in Chapter-7 

1.7 Thesis Outline 
The thesis is organised into eight chapters. Chapter 2 introduces concepts in cloud computing 

security and presents a brief literature review, centred on examining the various attacks facing 

the Cloud systems, in addition to a summary pertaining to IDSs and its various categorisations. 

In chapter 2, the concept of machine-learning will undergo appraisal, with an investigation of 

adopting it to network intrusion identification. Chapter 3 presents the various challenges and 

considerations witnessed in regards to the classification of attacks when standard machine 

learning approaches are used without considering data imbalance issues present in typical 

network IDS datasets. Chapter 4 explores the adoption of various machine-learning algorithms 

in an effort to circumvent the usual misclassification issues experienced by academics that used 

the imbalanced KDD cup 99 datasets throughout the course of their research works.  Chapter 

5 investigates the performance of the popular Navies Bayes classifier in the presence of 

imbalanced data, specifically in classifying minor attacks, namely R2L and U2R. Chapter 6 

investigates the use of data resampling to address the issue of class imbalance and how it should 

be combined with feature selection in a typical data pre-processing pipeline. The question of 

whether resampling should be performed before or after feature selection, for each classifier 

examined, is investigated. Chapter 7 carries out a rigorous investigation of the importance and 

ranking of features and their ability to positively attribute towards increased accuracy of attack 

detection is used as a reduced feature set.  Finally, Chapter 8 concludes this thesis and suggests 

future improvements and enhancements. 
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Chapter 2 : Literature Review 

2.1 Introduction 

This chapter presents a literature review of Cloud Computing in general. Furthermore, it will 

seek to establish the security offered by Cloud Computing systems. Owing to the fact that the 

key objective is centred on improving Cloud-IDS security, there will be the presentation of a 

literature review, centred on examining the various attacks facing the Cloud, in addition to a 

summary pertaining to IDS and its various categorisations. Accordingly, the concept of 

machine-learning will undergo appraisal, with the specific adoption it to intrusion identification 

in cloud computing services.  

2.2 Cloud Computing Overview 
The most fundamental aspect of the Cloud can be identified in consideration to its component-

centred nature, which is recognised as providing a number of different benefits, including 

customisability, extensibility, reusability, scalability and substitutability, the latter of which 

includes alternative adoptions, runtime component replacements and dedicated interfaces, all 

of which has been highlighted in the work of [7]. The key emphasis of Cloud Computing has 

been examined in the study of [7]which further established the key variances identifiable when 

comparing Grid Computing with the Cloud. Importantly, in the work written by [7], [8]the 

concept of Cloud Computing in the field of computer science was defined through the 

presentation of different definitions.  

Nonetheless, Cloud Computing was defined by [9]as an IT implementation framework, centred 

on virtualisation, where there is the application of various applications, data and infrastructure-

based resources through the internet, ‘as a distributed service by one or many different service 

providers’. As noted in the study by [9], such services are scalable on-demand and, 

furthermore, have their pricing structure determined in line with a pay-per-use approach. In 

this same regard, it is stated by [10]that Cloud computing utilises virtualisation technology in 

such a way so as to satisfy the objective to deliver computing resources as a valuable function. 

When comparing Autonomic Computing and Grid Computing with the Cloud, a number of 

different elements are recognised as comparable; nonetheless, there are also various aspects 

that differ between the three. 

However, when considering the way in which Cloud Computing should be defined, the US 

National Institute of Standards and Technology (NIST) has provided a definition that has 
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undergone much development to become a de-facto standard. Accordingly, this particular 

definition is the one receiving the most support and is the most commonly cited, which 

highlights Cloud Computing as being a framework facilitating convenient, on-demand, 

universal access to a shared number of resources, whether applications, networks, servers, 

services or storage, for example, all of which is delivered and released in a time-effective 

manner without the need for any significant interaction or effort at the management of service 

provider side[11]. Importantly, the definition presented by NIST recognises a number of 

fundamental Cloud characteristics, as detailed as follows: 

 Broad network access: Cloud resources can be accessed by the user through the 

network; this is facilitated by a variety of different platforms and mediums, including 

computers, mobile phones and tablets, for example.  

 Measured service: There are the measurement and establishment of resource 

consumption owing to the fact that the user pays for what they use. This is provided 

through the application of a billing system. 

 On-demand self-service: The service can be purchased and managed at the request of 

the user without the need for any human interaction. 

 Rapid elasticity: The resources and services used by the consumer are the only ones 

actually paid for as the Cloud delivers a computing resources scalability function, which 

is able to be carried out dynamically. 

 Resource pooling: The array of resources, spanning memory, network bandwidth, 

processing and storage, for example, are all brought together from the provider’s 

computing resources, with different users sharing these. Importantly, the user is not 

given access to information pertaining to the location of the resources.  

2.2.1 Cloud Computing Service Models 

In consideration to the definition of Cloud Computing provided by NIST and also in line with 

CSA, Cloud Computing services are recognised as broken down into three fundamental 

services, namely Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software 

as a Service (SaaS). In line with the service, there are a number of different control level 

variations, along with access between the providers and consumers of the Cloud.  

SaaS provides software that is remotely accessible by consumers over the internet through the 

application of a usage-centred pricing framework. Through utilising SaaS, the provider’s 

applications can be used by the consumer, which are notably run from a Cloud-based 
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infrastructure. Furthermore, the infrastructure, which is seen to encompass network, operating 

systems, servers and storage, are unable to be managed or controlled at the hands of the user. 

Nonetheless, the framework provided by SaaS is recognised as multi-tenant, meaning that a 

number of different users can make use of the architecture at the same time, but remains unique 

as far as the user’s experience is concerned. In terms of the providers of SaaS, the most 

commonly utilised include Google Docs, Microsoft Office Online Services 365 and 

Salesforce.com. 

 Through PaaS, which is recognised as Platform as a Service, application developers are 

provided with an in-depth, wide-ranging development environment, with the CSP shouldering 

the responsibility for the configuration and installation of the virtual server, meaning this is not 

a task needing to be carried out by the user. Furthermore, the PaaS provider outlines the various 

program languages to be adopted and further provides APIs, databases, developer standards, 

libraries, toolkits, and software development environments, as well as payment and distribution 

avenues. Accordingly, this positions the user as being able to implement consumer-devised or 

gathered applications, generated through the use of various tools and programming languages, 

onto the Cloud infrastructure and supported by the provider. When it comes to the Cloud 

infrastructure forming the foundation of the system, the user has no control; however, the 

applications that are utilised is at the control of the user, and potentially so is the application-

hosting environment configurations. Importantly, Google Apps, Force.com and Microsoft 

Windows Azure are all examples of widely used PaaS providers.  

To this degree, Infrastructure as a Service (IaaS), which is essentially a somewhat generalised 

overview of the foundational hardware, and which is known to comprise mass storage systems, 

network components and PCs, is delivered. The provider of the Cloud ensures the Cloud is 

both available and usable, owing to the fact that the user is not able to gain access to its actual 

infrastructure. The customer in this regard is able to manage and make use of the resources 

available and is further positioned to utilise software, which might include applications and 

operating systems. Furthermore, the installation of additional services is also possible, with the 

user responsible for this, in addition to any connection established to an external system. 

Examples of commonly utilised IaaS providers include Amazon Web Services, Hosting.com 

and Rackspace. 
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2.3 Cloud Computing Security Concerns 
In direct consideration to the environment and features offered by the Cloud, work in [12] 

presented the argument that Cloud Computing provides a significant number of additional 

security issues when compared with more conventional computing. On the other hand, others 

as in [13] consider Cloud security from the perspective of data protection, taking into account 

the fact that any organisation prioritises and highly values data as one of its key, most 

fundamental assets. Accordingly, the suggestion is presented in various works, namely those 

by [12], [13], that the Confidentiality, Integrity and Availability (CIA) of data needs to be 

guaranteed through the providers of such services; this will help to further facilitate the security 

of the Cloud. At the same time, confidentiality and availability are highlighted by[9] and 

identifying it as the Cloud’s most fundamental security factors. Moreover, the range of 

restrictions and models between the consumers and providers of Clouds services result in 

weaknesses in the Cloud [14]. As has been established through the completion of the 

IDC(International Data Corporation) survey, owing to the presence of issues at privacy and 

security levels, in the work of  [15] highlights that three-quarters of all users were found to 

have no inclination to move to Cloud Computing.   

2.3.1 Cloud Attacks Classification 

The point has been raised that an attack on the cloud has the potential to induce significant 

impact across both service and network, with media and network resources adopted by the 

attacker, which subsequently means a decline in the service performance, with the possibility 

that the network as a whole could collapse. It is acknowledged that there are three different 

types of attacks, namely interaction, penetration and mechanism, as highlighted in [16], [17] 

These are broken down as follows:  

 Interaction Type: This particular group of attack is recognised through the interaction 

between the attacker and the network environment itself, with such attacks seen to be 

either passive or active in their nature. In the case of the former, such as through idle 

scan, port scanner or wiretapping, for example, a volume of important data is collected 

through tapping into traffic streams. In the case of the latter attack (active attacks), the 

attacker is known to influence the system resources operation or might otherwise opt to 

reconfigure them, such as through the adoption of ARP positioning, Denial of Service 

(DoS) attacks, Man-in-the-middle attacks, or Spoofing, for example. Importantly, such 

attacks are commonly problematic to identify owing to the fact that very little trace is 

left by the attacker.  
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 Penetration Type: In the case of either insider or outsider attacks, penetration is 

witnessed, with insiders seen to be authorised users utilising their own services in order 

to carry out illegal or otherwise harmful activities, or alternatively using other users’ 

accounts. In the case of an outsider attack, the attack is initiated from beyond the 

borders of the network, with sensitive information garnered through scanning or 

probing attacks in an effort to subsequently implement actual attacks.   

 Mechanism Type: In line with the various approaches and mechanisms adopted during 

initiation, it is possible to categorise the attack as belonging to one of the following: 

Denial of Service (DoS), Probing, Remote to Local, User to Root (U2R), and 

virus/worm attacks. 

A. Denial of Service (DoS) attack: This particular attack has an impact on the 

availability of services through denying or otherwise restricting the access of users 

to the resources of a system, including, for example, bandwidth, buffers, memory 

and/or processing capability. When striving to make an attack successful, it is 

common for weaknesses in software to be positioned as the target, with changes 

made to the way in which a system is configured, and resources exploited to their 

limit. Such an attack might include ICMP Nukes, Land Attack, the Ping of Death, 

Teardrop, and changing a compromised router’s configuration [18]–[20] 

B. Probe/Scanning attacks: Through such attacks, networks are scoured for 

weaknesses or points of entry in order to gain access to network resources.  

C. Remote to Local (R2L) attack: In this case, programs and commands 

encompassing local machine privileges are executed on the victim host after 

successfully circumventing the usual authentication process.  

D. User to Root (U2R) attack: Higher level privilege is sought by attackers in 

achieving system access and control through achieving login access and 

accordingly circumventing the usual authentication process.  

E. Worm/virus: Such an attack seeks to induce data loss, theft and dysfunction 

through the distribution of malicious code, which is implemented across a host or 

network. 
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Nonetheless, it is possible for attacks to be categorised in line with Cloud Computing surface 

attacks. As an example, a total of six different Cloud surface attack categorisations have been 

provided in the work of [21], as can be seen in Figure 2-1 

Moreover, it is noted in the work of [22] that, in line with the attacker’s behaviour in regards 

the weakness exploited or the type of mechanism utilised, attacks are defined as either host or 

network attacks: 

 Host-based attacks: Such attacks may arise as a result of weaknesses in applications 

or operating systems. Buffer overflow, format string, and rootkit are a few examples in 

this regard.  

 Network-based attacks: In this case, communications or interconnection structure 

confidentiality and integrity are attacked, with data modification, DoS attacks, 

eavesdropping, identity spoofing, IP address spoofing, and man-in-the-middle some 

examples of attacks on the network.  

2.3.2 Intrusion Detection Systems (IDSs) Requirement in Cloud Computing  

A number of attacks are critical and ultimately impact Cloud resources and services in terms 

of their availability, confidentiality and integrity. These attacks or intrusions can be a backdoor 

channel, flooding, insider, user root or virtual machine attacks. There is the suggestion that the 

Cloud’s ultimate foundation is the network, meaning that any network weakness can ultimately 

impact the security of the Cloud as presented in [2], [23] Accordingly, network intrusion 

detection is recognised as amongst the most fundamental of security issues in Cloud 

Figure 2-1: An attacks categorisation in regards cloud services [21] 
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Computing, with network attacks adopting the form of DNS poisoning, DoS or DDoS attacks, 

insider attacks, IP spoofing, man-in-the-middle and port scanning as discussed in [2], [23] 

When examining the most commonly utilised attack defences, these include IDSs and firewalls. 

Nonetheless, when it comes to managing the issues highlighted above, it is common for 

firewalls to be applied by the majority of Cloud providers, with a firewall able to protect the 

front access of the system, meaning the firewall is recognised as the first point of defence. 

Irrespective of firewall use, however, it is not possible for complex attacks or insider attacks, 

such as in the case of DoS or DDoS attacks, to be identified owing to the fact that only the 

network boundary’s packets are sniffed. An organisation providing a Cybercrime Defender 

Platform referred to as Threat Metrix emphasises that ‘You Can’t Fight the Fire from Behind 

the Firewall’. With this noted, a Cloud-based platform cannot be protected by a traditional 

firewall owing to their inability to satisfy the Cloud’s network security requirements. 

Accordingly, conventional firewalls are not recognised as a solid, effective approach to 

preventing all attacks [24]. One further approach to defence is through IDSs integration within 

the Cloud; this facilitates the monitoring and identification of internal and external network 

attacks across real-time network traffic. Moreover, a research was carried out in consideration 

to the security of Cloud Computing, with a survey implemented arriving at the conclusion that 

the identification of attacks and their prevention is recognised as the most pressing security 

consideration following the security of data.  

2.4 An Overview of IDSs 

2.4.1 Definitions and Terminology  

The detection of attacks involves a process of identifying intrusion indicators in line with event 

supervision and accordingly examining what is seen to occur across ICT systems. Nonetheless, 

attacks are recognised as being a threat to or a violation of the security mechanisms or system 

components, where there is a compromise of availability, confidentiality and integrity. Attacks 

are implemented either inside or outside of the network, with inside attackers commonly 

exploiting the privileges they have been given and accordingly misusing them, whereas outside 

attackers commonly gain access to the system via the internet. Those systems that are seen to 

perform automated analysis and monitoring are referred to as Intrusion Detection Systems 

(IDSs). Moreover, IDSs is implemented by network and system administrators for a number of 

reasons, as detailed as follows in consideration to the work of  [25]: 
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 To help ensure illegal behaviour occurrence is averted via improving the levels of risk 

regarding identification and penalty. 

 To facilitate security measures through further encompassing the attacks and security 

infringements not averted by it. 

 In mind of the identification and management of attacks. 

 Advising the entity in regards to the presence of risks through documentation. 

 Providing a high level of service quality, particularly in the case of complex enterprises, 

through ensuring the security administration and design quality is controlled. 

 To enhance the identification, improvement and correction of root causes through the 

deliverance of valuable data pertaining to the attacks that have been identified. 

As has been highlighted in the studies of [26]–[28] availability, confidentiality and integrity 

are recognised as being amongst the most prominent and pressing of security metrics for 

application when it comes to system quality assessment. In order to ensure such approaches, 

there is a need for IDSs to work both accurately and efficiently in the identification of instances 

of intrusion. Nonetheless, as noted in the works of [29], [30]the overall efficiency of IDSs is 

determined through the following: 

 Accuracy and Precision: When there is inaccuracy in IDSs flags, this is recognised as 

identifying genuine actions as anomalous or intrusive. In actual fact, in regards to the 

outcomes of IDSs, there are four potential possibilities, as determined in Table 2-1. 

These are True Negatives (TNs) and True Positives (TPs) (which are seen to be aligned 

to a particular IDSs operation upon the successful labelling of events as either ‘normal’ 

or ‘attack’); or alternatively, False Positives (FPs) (in relation to false alerts provided 

by IDS, where a normal event is labelled as a potential attack) and False Negatives 

(FNs) (false alerts, which arise upon the occurrence of attacks, which are erroneously 

referred to as normal events as discussed in [31], [32] 
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Table 2-1: Possible statuses for an IDS reaction 

 

When seeking to measure the overall precision of IDSs, the rate of the reaction detailed 

above is calculated through the application of the following as mentioned in[33]: 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑇𝑁𝑅) =
TN

TN + FP
=

No. of true alerts

No. of alerts
 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑇𝑃𝑅) =
TP

TP + FN
=

No. of detected attacks

No. of observable attacks
 

𝐹𝑎𝑙𝑠𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝐹𝑃𝑅) =
FP

TN + FP
 

 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝐹𝑁𝑅) =
FN

TP + FN
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TN + TP

TN + TP + FN + FP
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 

Importantly, accuracy is seen to relate to the percentage of attacks that have been seen to arise 

and which have accurately been identified by the IDSs. 

 Performance: The performance of IDSs relates to the rate at which audit events are 

processed through IDSs. Should the identification be carried out not in real-time, the 

performance of the IDSs would then be assessed as inadequate.  

 Completeness: Those IDSs that are viewed as incomplete are unsuccessful in attacks 

identification. Nonetheless, as a result of the shortage of in-depth insight pertaining to 

attacks, such an approach is complicated when it comes to assessment.  

  Predicted 

  Normal Attack 

 

Actual 

Normal True Negative(TN) False Negative( FN) 

Attack False Positive(FP) True Positive(TP) 
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2.4.2 The Classification of IDSs 

2.4.2.1 Classification Based on Type of Data 

In line with information sources and projected objectivities, IDSs can be categorised into three 

key classifications as mentioned in the work of[34]:  

 Network-based intrusion detection systems (NIDSs) 

The key commercial type of IDS is network-based referred to as NIDSs, which gather and 

examine network packets with the aim of identifying attacks. Furthermore, this type of IDS is 

able to monitor network traffic across different hosts linked to the segment through performing 

listening on the network segment or switch. It is common for NIDSs to contain a number of 

different single-purpose hosts or sensors at a number of different locations across a network. 

Accordingly, attack reports are communicated from such units following the monitoring of 

network traffic, with the central management console receiving this data, with a local traffic 

examination then carried out. In consideration of sensor security, this is simply achieved 

through the fact that the sensors are restricted to IDSs operation. Importantly, at the present 

time, sensors are designed in such a way so as to operate in what is referred to as ‘stealth’ 

mode, which therefore requires that a number of problems are experienced by attackers in 

establishing the correct location, or even just their presence [25]. In addition, there has been 

the suggestion that breaking down a network into individual parts, notably through the 

application of switches, is recognised as the most valuable approach when seeking to achieve 

large-scale network security. Accordingly, the individual parts of the network are well secured 

through the use of security technology, including IDSs and firewalls, for example as suggested 

in the work of[35]. 

In actual fact, when examining the benefits associated with the use of NIDSs, it is important to 

highlight that they are able to be made invisible, which therefore means the attacker is unable 

to find them. In addition, owing to the fact that NIDSs are recognised as passive instruments, 

the application of such does not have any effect with regards to existing networks. A well-sized 

network is successfully observed with the use of a handful of NIDSs should they be positioned 

in beneficial spots [25]. On the other hand, however, drawbacks may still be present, including 

the fact that, when the network is busy or have a notable size, it is not always possible to 

complete packets analysis, meaning that all of the attacks arising throughout a time of high 

traffic might not be successfully identified. One further drawback to the use of NIDSs is seen 

when considering that not every advantage can be garnered in the case of modern-day switch-
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based networks: although switches implement the breaking down of networks into different 

parts, it remains that the majority of switches cannot deliver universal port monitoring. 

Accordingly, NIDSs sensors’ monitoring ranges are somewhat restricted. Furthermore, it is not 

always possible for NIDSs to complete analysis on encrypted data and, with the increased 

adoption of virtual private networks by companies, the issue is becoming greater. Moreover, 

when there is an attack attempted, the user becomes informed of this, despite not being able to 

determine whether or not the attack has been a success. As such, if administrators are to 

establish this, they then have to complete manual investigations on the attacked host. As a 

further drawback, NIDSs are recognised as lacking stability and can, therefore, crash in those 

instances where segmented packets are involved in network-based attacks.   

 Host-based intrusion detection systems 

An IDS that is seen to be host-based exists on the endpoints of a network owing to the fact that 

it is positioned on a host so as to facilitate its gathering and supervision of suspect data and 

events witnessed across it. Due to the fact that the design of HIDSs is carried out in order to 

facilitate functionality on particular hosts, such as in the case of web servers or mail, for 

example, HIDSs demonstrate a significant degree of precision and reliability. Furthermore, any 

attack and the way in which they impact processes and users can also be established, as 

highlighted in the work of [35]. 

As an additional ability offered by HIDSs, they are able to complete examination on encrypted 

packets, and therefore demonstrate sound functionality across switched networks, which 

therefore position them as a valuable complement to NIDSs. Furthermore, they have the ability 

to identify attacks that otherwise would not be identified by NIDSs, predominantly owing to 

their supervision of host-local events; HIDSs are unable to identify attacks beyond their 

borders. Nonetheless, the management of HIDSs is problematic, as can be seen when 

considering that all monitoring hosts’ information requires management and configuration as 

mentioned in the work of [36]. 

 Distributed-based intrusion detection systems 

In the case of DIDS (distributed IDS), a number of different IDSs (such as HIDS and NIDS, 

for example) are seen to be encompassed across a large network. This type of IDS 

communicates across a hierarchical architecture with a number of different servers or otherwise 

a central service, which completes monitoring of the network. As can be seen in the Figure 2-
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2, the IDSs’ hierarchical tree-like structure can be observed, where circles are representative 

of network nodes and the arrows represent the flow of data across various node types. The 

points of gathering to host- or network-based systems can be seen represented by the leaf nodes. 

Importantly, data from a number of different nodes are aggregated by the internal nodes, 

meaning the leaf node gathers the data that is communicated to the internal nodes. 

Subsequently, at the greatest node level, there is the operation of additional aggregation, 

abstraction and reduction of data until the root node is reached. Following, attack signatures 

are then assessed by the root node, with responses issued and a report communicated to an 

operator console, which is regarded as being the control and command system. Importantly, 

however, it is the administrator that carries out the role of assessing issue and status commands. 

It is posited that such a structure means direct attacks could be a weakness of IDSs. 

 

 

 

 

 

 

Figure 2-2: Distributed IDS 

In addition, in instances where IDSs are lacking communication lines or, at a minimum, the 

capacity to complete dynamic relationship configuration in the event of component failure, 

there is the potential of a number of different failure points. As has been highlighted in the 

study by[21], owing to the fact that survivability approaches, including dynamic recover, 

mobility and redundancy are not widely applied in the case of presently implemented IDSs, 

weaknesses may still be present. As has been highlighted by[29], EMERALD is one example 

of a DIDSs, whilst INBOUNDS is recognised by[37]. 

2.4.2.2 Classification Based on Detection Approaches 

As has been presented a study by[38], there are two key methods to be adopted in the 

identification of attacks, namely KID (Knowledge-based Intrusion Detection) and BID 
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(Behaviour-based Intrusion Detection). In the case of the former, attack evidence is sought in 

line with the data gathered that is seen to align with previously established attacks. It should be 

highlighted that KID is also referred to as misuse intrusion detection, rules-based intrusion 

detection, and signature-based intrusion detection. At the same time, through the latter method, 

BID, key deviations away from activities that are recognised as normal in line with the 

observations of the system throughout the phase of normal status are sought. BID is also 

commonly referred to as anomaly-based intrusion detection. 

A. Knowledge-based intrusion detection  

KID, fundamentally, relies on prior knowledge of vulnerable aspects within the system, how 

these could be exploited, and previous attacks that have taken place. These three components 

of information are held within a knowledge-based intrusion detection system (KIDS), which 

can objectively analyse incoming data, focusing on these specific components. Events that are 

not distinctly correlated to this stored information will be accepted, as the IDSs will not 

recognise it as an attack. When a behaviour that matches a previous attack is detected, it is 

flagged, ensuring quick recognition of an attack. In order for such knowledge-based systems 

to operate effectively, it is essential for the system to be updated in a timely manner with 

accurate information about previous attacks. Provided the information is accurate, there is a 

limited risk of type one, false-positive errors, and a high propensity for attack detection. 

Whilst this is a key asset, the system relies solely on attacks being replicated. If an attack takes 

on a new form, even with a relatively subtle change, the system will not detect it. The system 

is only capable of learning from the experience of previous attacks and therefore cannot protect 

against new intrusions.  There are a number of KIDSs available, with the most popular being 

Snort, which uses signature analysis, expert systems and state transition analysis to detect 

attacks as discussed in [22], [25]  

1. Expert Systems: Within these systems, any attack is explained using a specific set of 

criteria included within IDSs in general. With expert systems, any event that is reported 

is first translated into a specific list of facts that define their meaning within the expert 

system. This list of criteria and facts is translated into rules that are subsequently 

processed by the KID to draw conclusions. Systems using the expert system approach 

must systematically browse the trail of incidents to determine patterns and assign 
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meaning to the data and facts. This approach is considered to require a rule-based 

language to generate information about attacks.  

2. Signature Analysis: Similarly to expert systems, this technological approach also 

requires the gathering of knowledge. Although, the way in which the information and 

knowledge are exploited differs. The attacks are classified according to the semantic 

level, yet this approach decreases the description required to be stored on any audit trail. 

Many commercial level IDSs utilize this approach because it is considered to be highly 

effective. 

3. State transition analysis: Unix was the first system to utilize this technological 

approach. After being successfully applied in Unix, many other systems began to use 

this method. The state transition analysis method uses groups of goals and transitions 

to describe attacks. The attacks are then diagrammed according to various 

characteristics. This method is often compared to model-based reasoning methods. 

 

B. Behaviour-based intrusion detection 

This method of intrusion detection is based on ongoing observations of normal activity in a 

system. Once patterns of normal activity are established, any abnormal behaviour or deviation 

from the routine behaviours may signal an intrusion. Every IDS keeps track of the normal 

patterns of all users, including the network connections, hosting information, applications 

accessed, and more. This information is collected and developed into a user profile, or a model 

for comparison. The profile is comprised of a series of activities collected and updated over a 

certain period of time. Thus, the IDS will report an attack any time there is a significant 

deviation when current patterns and stored patterns of activity are compared. Behaviour-based 

intrusion detection, therefore, is able to detect both known and unknown attacks, and may even 

be able to detect any new attacks on a system. Attacks do not have to specifically exploit any 

security weaknesses or vulnerabilities to trigger discovery by BIDs. This means that this type 

of detection system can detect attacks in the form of abuse of privileges. 

Unfortunately, there is a high rate of false alarms in BID systems, which is a significant 

drawback. False alarms can raise issues with behavioural patterns. Additionally, there is 

required retraining over time as behaviours may not remain entirely stable by users. Without 

this retraining, more false alarms will occur. Behaviour-based intrusion detection systems, or 



  

Page 24 of 146 
 

BBIDSs, tend to use four different approaches to detect intrusion, statistics, expert systems, 

neural networks, and user intention identification. 

1. Statistics: According to the idea in[39], statistics is the most widely used approach for 

developing behaviour-based IDSs. This is because there are a wide variety of samples 

that can be measured across time, including login and logout times, number of resources 

per session, and duration of resources. Samples can be generated over time and can take 

a few minutes or more than a month to collect full samples. Averages for each variable 

are calculated and applied to the original model. Using standard deviations, thresholds 

are identified that, when exceeded, help detect attacks. 

2. Expert Systems: Although this approach is considered to be less efficient than using 

statistics because it cannot provide as much data and information to be audited, it can 

still be a useful way to collect information and evaluate usage profiles according to 

policies. 

3. Neural Networks: In KIDS, neural networks are utilized to detect attacks and locate 

them at a later date in an audit system. But, since it is very difficult to determine what 

may constitute an association or cause it, neural networks are not an efficient tool for 

explaining any attacks. However, they are useful for monitoring the behaviour of users 

within various systems. User behaviour can be predicted through experiments as 

discussed in [40] and using UNIX as an example, behaviours of root users are very easy 

to predict. When users perform automatic system actions, regular activity is monitored, 

making it easier to identify deviations. Few users demonstrate unpredictable behaviour. 

4. User Intention Identification: Debar in [35] explained user intention identification as 

a set of approaches that allow for normal behaviours to be classified based on certain 

specific high-level tasks. As a result, observing system audits can help develop a list of 

actions. While analysing the system audit, alarms will be triggered if unusual tasks or 

behaviours are noted. 

2.5 Machine Learning in IDSs 

2.5.1 The Adoption and Motivation of Machine-Learning in Line with Attack Detection 

In the modern-day world, Artificial Intelligence (AI) is recognised as centred on the key 

technology in a number of more innovative applications, including the identification of 

endeavoured credit card fraud across the area of finance, the use of a robot with the ability to 

detect and react to emotions, of even providing software systems with the most suitable advice 
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that may function as a human professional. In actual fact, there is the view that, in the event 

that there is no knowledge gathered from the completion of AI studies, such technologies would 

not exist. As discussed by[41], Machine-Learning (ML), which is viewed as a fundamental 

aspect of AI, is referred to as an algorithmic mechanism with the capacity to enable computer 

systems to learn from analogy, examples and experience. Accordingly, outputs following 

learning processes could be directed as intelligence in order to overcome a particular issue. 

Moreover, the valuable data or knowledge could be obtained from a high-volume dataset 

through the adoption of data-mining; in this regard, the study carried out by [42] delivers an 

explanation as to the definition of data-mining, highlight that it is centred on identifying 

anomalies, associations, changes, patterns, and events and structures of statistical significance 

[43], [44]. In intrusion detection, all activities and their data need to be examined in order to 

highlight trends in behaviours, whether normal or intrusive. Nonetheless, the point is argued 

that there is a need for the sample data of activities, referred to as the training set, to encompass 

a good number of samples pertaining to the environment under investigation so as to be able 

to highlight the pattern as a whole. Accordingly, new data instance could only be categorised 

through the learned framework in line with its similarity to normal behaviour (anomaly 

identification) or known attack signatures (misuse identification) [45]. 

A varying approach with the ability to improve the identification ability is that of ML, which 

is also able to achieve cost and time savings. Accordingly, as opposed to creating attack 

signatures or otherwise, manually outlining the more normalised behaviours of a sensor node, 

ML is able to perform on an automatic basis through the adoption of the most appropriate 

methodology and the use of a classifier. Accordingly, the requirement for human labour would 

not be so pronounced, and time savings could be achieved. As can be established following on 

from the literature review, academics promote the implementation of machine-learning 

alongside the mining of data so as to improve the overall performance achieved by IDSs. In 

the work of [46], reference was made to the significance of the role adopted by ML in terms of 

improving the overall capacity of IDSs in terms of placing emphasis on malicious activities 

through the identification and extraction of normal activities from the alarm data. In addition, 

it has been suggested by researchers in[46], that irrelevant alert instances are seen to decrease 

by as much as 99.9% following the adoption of the ML classifier.  
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2.5.2 Insight Identification and Standards for Data-Mining  

The most suitable dataset is recognised as being one of the key considerations that need taking 

into account in regards to attack detection systems. More specifically, a number of different 

public datasets are applied in order to act as the IDS in the case of machine-learning. As has 

been established through a review of the literature in [47]and[48], there are two key datasets, 

both of which are commonly implemented in the case of network intrusion detection system; 

these are DARPA (Defence Advanced Research Projects Agency) and KDD Cup ’99 

(Knowledge Discovery and Data). 

In regards the former, this is recognised as the preliminary standard corpora in the computer 

network attack detection systems assessment, and is gathered and accordingly distributed by 

MIT (Massachusetts Institute of Technology) Lincoln Laboratory in line with sponsorship from 

DARPA and Air Force Research Laboratory (AFRL). This particular dataset has been 

commonly implemented by the researcher owing to the fact that it is commonly adopted for 

training and testing attack identifiers where suitable modern-day results are achieved. In actual 

fact, a number of different datasets that form the DARPA Intrusion Detection Evaluation have 

been documented by the MIT Lincoln Laboratory, with 1998, 1999 and 2000 datasets utilised, 

with the first of these gathered for 9 weeks, notably 7 of training data and 2 weeks of testing 

data; the 1999 data comprised 3 weeks’ training data and 2 weeks’ testing data; the last of these 

comprise datasets across two scenarios. As has been shown throughout past works, it is not 

common for the DARPA dataset to be utilised following the introduction of the KDD Cup ’99 

dataset owing to the fact that the latter has overcome the various restrictions and drawbacks of 

the former. The most fundamental drawback of the DARPA is that establishing the overall 

accuracy of the background traffic incorporated within the assessment is not possible owing to 

the fact that the testbed traffic generation software is not available in the public domain. A 

number of other commonly cited critiques centre on the approaches applied in creating the 

dataset, as well as in the completion of assessments [49]. In those cases where the generation 

of background traffic was completed with the application of non-complex models and in the 

case that life traffic was utilised, there would be a notably higher false-positive rate. 

Furthermore, the background data did not include any factors contributing to background noise, 

such as strange packets and packet storms, for example. Other critiques are regards the 

irregularities in the data as it commented in [48].where an appreciable detection rate is shown 

by the trivial detector as the attacks TTL value is obviously different as well as the normal 
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packets. However, with all the criticisms, the DARPA dataset is slightly used by the researcher 

for IDS evaluation as highlighted in [50], [51]. 

More specifically, since 1999, the point has been made that the commonly utilised dataset 

centred on identification methods assessment is that of KDD Cup ’99 Dataset. This has been 

devised in line with the data gathered through DARPA 1998 TCP/IP. In consideration to the 

subset of KDD, a total of five million records are encompassed within the training data, 

whereas the test set is seen to comprise approximately four million records spread across a total 

of 41 different aspects; on the other hand, only 24 types of attack are included in each of the 

training data records, whilst only 14 types are added to the test data. All of the training data 

records are assigned with a label, either detailing the attack type or that it is normal. 

Importantly, the attacks are recognised as belonging to one of four different groups, including 

DoS, Probe, R2L, and U2R. There are detailed explanations defining the various attack types 

used for training purposes and these are specifically listed in[52]. Moreover, the different 

aspects of the dataset of the KDD Cup ’99 are categorised into one of three, as follows [51]: 

1. Basic Features: Each of the characteristics that are able to be derived from a TCP/IP 

connection is contained within it. Because of this, there is a delay in the detection of 

attacks. 

2. Traffic Features: These characteristics come from computations regarding window 

interval considerations, and there are two basic segments: similar host features and 

similar service features. Those connections that had the same host destination and 

occurred within the last two seconds are considered by the host, and those connections 

that have similar service and occurred within the previous two seconds are compared 

to one another. 

3. Content Features: These are the characteristics that are utilized to find suspect 

behaviour in data. This means that features can be used to determine R2L and U2R 

attacks because these types of attacks are embedded in the different data portions in the 

packets. These typically involve one connection at a time, which is different from the 

DoS and Probe attacks, which examine multiple connections to different hosts in the 

same time period.  

Nonetheless, in mind of both the cost-inducing, erroneous approach to manually classifying 

connections, combined with privacy-related factors, the point is made that securing public 
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datasets in relation to attack identification across a network is notably problematic. As such, 

the data of KDD has been extensively examined and quoted by the attack identification 

community owing to it being one of the public datasets very limitedly available.  

 2.5.3 Identification of KDD Cup’99 Dataset Sub-minor Attacks 

There is a need to recognise that the majority of machine learning algorithms provided a 

suitable degree of classification for DoS and Probe attack groups owing to the fact they present 

a number of different connections across a short duration, whilst also providing inadequate 

performance across the U2R and R2L groups, with such attacks recognised as embedded in 

their data packets and therefore not forming a sequential pattern. This is in contrast to the cases 

of Probe and DoS attacks. Importantly, this means identification through any classifier is 

problematic[53]. 

When examining the various exploit groups of security, two different categories has been 

identified [54]: 

 Remote exploit: this involves the attacking entity having the capacity to remotely 

connect to a machine through abusing the security threats of the network and 

accordingly exploiting its bugs; 

 Local attack: this involves the entity being positioned to take advantage of network 

vulnerabilities through having an account on the local machine.  

2.5.3.1 R2L Attack                                                                                                                                                         

Importantly, the R2L attacks are recognised as being amongst the most problematic when it 

comes to identification owing to the fact that they involve host-level and network-level 

features. Accordingly, both the network-level features and host-level features, notably the 

‘duration of connection’ and ‘service requested’, and the ‘number of failed login attempts’, 

respectively, are chosen when it comes to identifying such R2L attacks[55]. When examining 

R2L attacks, the following attacks have been defined as R2L sub-attacks in the KDD cup’99 

dataset.  

 FTP Attack 

Originally, Bhushan is the first presenter of FTP(File Transfer Protocol), which was then 

published in the RFC 114 [56]so as to facilitate users’ transfer of files between the hosts of a 

network. Importantly, FTP identifies two different connections, i.e. Control Connection and 
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Data Connection, between the Server and Client, with the Control connection determined 

through the application of the widely recognised Port 21, with the data connection making use 

of Port 20. Notably, whilst one of the connections is concerned with data transfer, the other 

uses such data. When the FTP protocol is attacked through the attacker utilising the PORT 

command with the objective to garner indirect access to ports, this is referred to an FTP bounce 

attack. Notably, this makes use of the machine belonging to the victim, which is essentially 

positioned as a middle-man, handling any requests. Such an approach is directed towards the 

discrete scanning of port hosts, as well as when seeking to garner access particular ports 

otherwise unable to be accessed by the attacker via a direct connection; the Nmap port scanner 

provides a valuable example in this regard. Importantly, the vast majority of current FTP server 

programs are configured in such a way so as to routinely reject PORT commands that could 

potentially create links to any host besides the original one; this, therefore, achieves success 

when it comes to preventing FTP bounce attacks[56]. 

 Password Guessing 

One of the most widely successful forms of attack is through password-guessing, which 

involves attackers successfully guessing a password from a local or remote position, with the 

use of either an automated method or otherwise manual approach. This means of gaining access 

is not nearly as difficult as might be first considered. The majority of networks are not 

configured so as to require complicated passwords; as such, network access can potentially be 

achieved through an attacker identifying just one weak password. Moreover, when it comes to 

guessing attacks, not all authentication protocols are correspondingly effective: as an example, 

owing to the fact that case insensitivity is inherent in LAN Manager authentication, password-

guessing attacks do not need to take into account whether or not passwords letters are lowercase 

or uppercase, for example. 

 IMAP Attack 

IMAP (Internet Message Access Protocol) is recognised as an everyday 

email protocol providing email message storing facilities on a mail server, whilst also 

delivering the end-user with the ability to view and make changes to messages in much the 

same way as if they were stored locally, i.e. on the user’s own device. The majority of IMAP 

implementations provide the facility of multiple logins, which importantly positions the end-

user in being able to connect to the email server through different devices at one time. Although 

IMAP is known to offer an authentication facility, nonetheless, there is the potential for it to 

https://searchnetworking.techtarget.com/definition/protocol
https://searchsecurity.techtarget.com/definition/authentication
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be relatively simple overridden by any individual with the ability to steal passwords through 

the application of a protocol analyser; this is possible owing to the fact that the username and 

password of the client are communicated as clear text. In the case of an Exchange Server 

setting, it is possible for this security flaw to be managed by administrators, notably via SSL 

(Secure Sockets Layer) encryption for IMAP. [57] 

 Warezmaster Attack 

The WM (Warezmaster attack) is able to take advantage of FTP server misconfigurations, with 

the majority of FTP servers known to support the ban-anonymous  FTP approach, which 

enables users to garner access to files without ever be requested to identify themselves. When 

the server facilitates anonymous login, users are then well-positioned to log in using the 

username ‘anonymous’; it is commonplace for the password to be provided by the server. When 

this has been done successfully, the Anonymous FTP can then be directed towards 

downloading or otherwise gaining access to those files that are publicly available from the 

server. The FTP server is commonly configured in a way that anonymous users such as these 

cannot make use of write permissions. If, however, written permission is granted to a user 

through erroneous configuration, the attacker is then able to log on to the server using the 

anonymous credentials, meaning hidden directories can be created and large files uploaded to 

the service. This is what defines a WM attack. [58] 

 Warezclient Attack  

The WM attack has been further developed to become the WC (Warezclient)attack, which is 

recognised through any anonymous/legal user being able to download the malicious files 

uploaded onto the server by the attacker. Such an attack may induce a number of different 

outcomes in regards to the host machine, where outcomes notably rely on the type of Warez 

uploaded.[58] 

 Spy Attack 

A spy attack is recognised as the practice of gaining access to information without the consent 

or knowledge of the information-holder, with access gained through competitors, enemies, 

governments, groups, and individuals for economic, military, personal or political advantage, 

notably through the use of individual computer, internet or network methods, utilising cracking 

approaches, malicious software and/or proxy servers. This form of attack through spying 

commonly involves access to classified information, the control of whole networks or 
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individual computer systems in order to achieve a competitive edge and for sabotage, and 

physical, political and psychological subversion activities.  

 PHF Attack 

Common Gateway Interface (CGI) is recognised as an approach with the capacity to call 

external software through a web server with the objective of providing dynamic content. In the 

specific instance of a CGI program, ‘phf’ seeks to remove dangerous characters and 

accordingly pass such strings to shell-based library calls. As an example, URL likes ‘/cgi-

bin/phf?Qalias=%0a/bin/cat%20/etc/passwd’, for example, could achieve the user/password 

content of /etc/passwd on the target host. 

 Multi-Hop Attack 

When there is a hack into a mail server which subsequently garners access to a client where 

the email server is on the same server, this is recognised as a multiple-hop attack path. Despite 

the fact that the internet may not, at that time, be being used by the client, nonetheless, an 

attacker can follow a specific attack chain or path in order to gain access to the vulnerable 

target. 

2.5.3.2 U2R Attack  

Semantic information, which is commonly problematic to capture throughout the more 

preliminary stages, is required in the case of U2R attacks. This type of attack is commonly 

content-based, with an application targeted[55]. Accordingly, when there is a U2R attack, 

various aspects, including the number of shells prompts invoked or the number of file creations, 

are chosen, whereas there is the disregard of other features, including source bytes and protocol, 

for example. In KDD Cup’99 dataset the following attacks are defined as U2R sub-attacks; 

 Buffer Overflow Attack 

The Buffer Overflow attack is witnessed when an effort to write more data to a specific memory 

block is attempted by a process or program, which notably relies on the dst_byes feature, which 

relates to the amount of data bytes identifiable between the destination and source. When the 

latter is seen to be higher than normal, a Buffer Overflow attack is witnessed.  

 loadmodule Attack 

A loadmodule attack is seen when there is the case of a User to Root attack against SunOS 4.1 

systems, which are known to utilise the windows system referred to as xnews [29]. Owing to 

the presence of a bug in the way in which the loadmodule program completes the sanitisation 
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of its environment, it is possible for the local machine to be accessed at the root level by 

unauthorised users. In this vein, it is stated by[59], should there be dst_bytes equal to between 

186 and 1696, a loadmodule attack may then occur. 

 Perl Attack 

In the case of a Perl attack, this may arise when there is the setting of the user ID to root in a 

Perl script, with a root shell phfR2L Exploitable CGI script created, which subsequently 

facilitates the execution of arbitrary commands by a client.Notably, when such an attack is 

identified, the ‘root’ feature is seen to have a value of 1. [60] 

 Rootkit Attack 

A rootkit is explained as a hidden computer program with the aim of delivering ongoing 

privileged access to a computer whilst ensuring its presence remains hidden. The concept of 

‘rootkit’, in this regard, is seen to refer to a link between the words ‘root’ and ‘kit’. Formerly, 

a rootkit was recognised as a number of tools facilitating access to a network or computer on 

an administrator level basis. In this case, the root relates to the Unix and Linux system Admin 

accounts, whereas the kit is seen to relate to the software components making use of the tool. 

At the present time, rootkits are more commonly seen to be linked to malware, which is known 

to mask their presence and actions from system processes and users. Importantly, a rootkit 

enables someone to main control over a particular system without its presence being identified 

by the user[61]. Upon the installation of a rootkit, the rootkit controller is able to change the 

configuration of the system on the host machine, and can further execute files. When a system 

is infected, a rootkit is also able to spy on the use demonstrated by the genuine user, whilst also 

gaining access to log files.   

 

2.5.4 Machine Learning Detection Approaches   

2.5.4.1 Data Labels 

In consideration of the dataset label availability, two different functioning modes are 

recognised as identification approaches, as highlighted by [51]. First, supervised the detection, 

through which the predicted framework is created in line with the labelled training set 

comprising samples that are both anomalous and normal in nature. The point is made that, 

through this approach, the rate of identification will increase as a result of information access 

capacity. The second approach is that of unsupervised detection, where no training data is 
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necessary when there are unsupervised techniques owing to the fact that this method is centred 

on two underlying expectations: first, that normal traffic is characterised by the majority 

network connections, whereas malicious traffic is characterised by the minority of connections; 

and second, that, from a statistical standpoint, there is a difference between malicious and 

normal traffic. Therefore, the instances that appear infrequently and are significantly different 

from most the instances are considered as attacks while the normal traffic is reflected by the 

data instances that build groups of similar instances and appear very frequently are supposed.  

2.5.4.2 Output Format 

In line with the way in which anomalies are reported, more commonly, the output is seen to 

fall into one of three types, as highlighted by [51]namely scores, binary labels, and multi-labels. 

The scores method takes each tested instance and assigns a numerical score in order to establish 

the likeliness of the attack, meaning that a ranking approach is applied in order to categorise 

the most significant samples by outlining the threshold value, with Naïve Bayes providing a 

good example of such an approach. In the case of the binary label, some of the identification 

approaches are unable to detail instance scores, but instead opt to apply labelling, where the 

instances undergoing testing are either labelled anomalous or normal. Secondly, the multi-label 

approach assigned each instance undergoing testing with a particular label, with one label for 

normal traffic, whilst attacks receive their own corresponding label, such as DoS or Probe, for 

example, with such an approach utilised when the instance cannot be scored, such as in the 

case of the Decision Tree approach.  

2.5.4.3 Classification Techniques  

This thesis directs its emphasis onto multi-class classification issues, as will be highlighted 

later on in this work. Classification algorithms when applied in the attack identification are 

applied in order to complete the categorisation of network traffic as either normal or an attack. 

In essence, following the presentation of anomaly identification by Denning [62]a number of 

other approaches have been suggested. Accordingly, a number of the more commonly 

implemented techniques in dealing with the multi-class issue is mentioned by the studies of 

[51], [63]–[66] as follows; 

 Bayesian Networks are recognised as presenting a probabilistic graphical framework 

through which the concept is centred on the illustration of a number of different factors and 

their corresponding probabilistic independencies. This particular method, through acyclic 

graphs, comprises both edges and nodes: edges are seen to program conditional 
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dependencies between factors, whilst nodes represent the factors. These are adopted in 

categorisation and identification in a number of different ways. Importantly, the most 

commonly implemented methods of this type are Bayes Network and Naïve Bayes.  

 Clustering: Such an idea is based on the concept of unsupervised identification, meaning, 

should the two assumptions made, as detailed above, be found to be true, anomalies can 

then be identified in line with the cluster size, i.e. large clusters are aligned with normal 

data, whilst the remainder are aligned with attacks.  

 Neural Networks comprise a number of different computational units, where there is the 

adoption of a complicated mapping operation between such units. Primarily, the network 

is trained through the use of label datasets, meaning the instances under testing 

subsequently undergo categorised as either attacks or normal following network fading. 

SVMs (Support Vector Machines) and MLP (Multi-Layer Perception) present Neural 

Network approach examples and are commonly adopted in the case of anomaly 

identification.  

 Trees adopt a flowchart-type tree structure, which is created when nodes represent the 

features, whilst testing can be seen to be represented by the branch whilst leaves signify 

predicted classes. A number of different approaches fall within this group, with the most 

commonly implemented for the categorisation issue including Random Forest and J48, for 

example.  

2.6 Summary and Conclusion 
This chapter has presented an overview pertaining to the security of Cloud Computing systems, 

coupled with IDSs, in addition to attack categorisation. It is noted that with regards to the 

implementation of IDSs, the user in Cloud Computing is recognised as a requirement and 

accordingly discussed in this regard. In relation to IDSs and machine-learning, there has been 

a review provided in regards the datasets publicly available, with an examination into the 

widely used KDD Cup ’99 dataset.  

As can be seen upon reviewing the literature, a number of different academics and scholars in 

the field have proposed the use of data mining and machine learning in view of achieving IDSs 

performance improvement. Machine-learning is recognised as encompassing various 

identification approaches. Accordingly, in an effort to decrease the study scope, supervised 

identification will be taken into account with the adoption of the KDD Cup ’99 dataset owing 

to the fact that, as in the case of supervised dataset, it is possible to complete an analysis on 
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each of the attack labels in consideration to its various features and behaviours. In line with the 

way in which anomalies are reported, this thesis will implement labelling output, with 

consideration directed towards both multi-class and binary classification owing to the fact that 

there is a need to take into account various attacks and factors, which also warrants the 

application of different categorisation methods in order to improve identification and to further 

examine the factors underpinning low levels of accuracy in identification. This is done owing 

to the fact that all categorisations have the potential to improve or identify particular attacks in 

line with the parameters available and also in line with attack trends and mechanisms. 
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Chapter 3 : Developing an Understanding of the Classification of 

Imbalanced Datasets 

3.1 Introduction 
This chapter investigates the various challenges and considerations witnessed with regards to 

the identification and classification of network attacks. Furthermore, the classification 

approaches will be investigated in the presence of an imbalanced dataset, with the various 

methods centred on learning from the imbalanced data typically used in practice. 

3.2 KDD Cup ’99 Dataset Classification Challenges 
When utilising KDD Cup ’99 dataset, as has been previously detailed, class imbalance and 

duplicate records are amongst the most prominent challenges. There are a number of different 

duplicate instances in this particular set, notably as a result of the lack of temporal data. 

Accordingly, data quality is impacted, with the machine-learning methods’ and training 

processes negatively affected. Researchers in [67], [68] conclude that there is a need for 

diversity amongst the training samples. In a similar vein, the effects of duplicates on the 

utilisation of Naïve Bayes and a Perceptron with margins has been the focus of an empirical 

investigation carried out by [68], adopted in the identification of spam, with the researchers 

suggesting the complete removal of duplicate instances, recognising the volume of duplication 

as having a notably negative impact on classifier accuracy. As can be seen in Table 3-1, each 

class’s number of instances both prior to and following duplicate removal has been detailed. It 

highlights that most duplicates as being present in the case of Probing and DoS classes, 

predominantly owing to the nature of intrusions. Furthermore, it is apparent that this particular 

dataset experiences problems as a result of the class imbalance, as shown in the Table3.1 when 

recognising the fact that the Prob and DoS attacks enhance the most number of samples and 

also mentioned in the study of [68], [69]. 

Table 3-1: Description of class distribution in KDD Cup 99 dataset 

 DoS R2L U2R Probe Normal Total 

KDD Cup 99 dataset (with duplicates)  3883370 1126 52 41102 972780 4898430 

KDD Cup 99 dataset (no duplicates) 247267 999 52 13860 812814 1074992 

 

3.2.1 The Challenges Caused by Imbalanced Datasets 

Imbalanced datasets are, in the classification problem domain, identified on a regular basis, 

with this particular issue stemming from the significant imbalance in a number of examples 

between one class and another. Which mean a greater misclassification rate will occur in the 
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case of the minority class owing to the reason that standard classification learning algorithms 

commonly demonstrate bias in relation to the majority class. Accordingly, there is a need to 

direct attention to this particular issue owing to the position of many that minority class is 

commonly representative of the most fundamental concept for learning[70]. Nonetheless, 

owing to the fact that minor classes’ data gathering is expensive or is otherwise linked to 

notable cases, as highlighted in the work of [71], it would appear that represented samples are 

problematic to acquire. In most cases, binary classification is seen to pertain to the imbalanced 

classification issue; however, other issues arise in the case of imbalanced data called multi-

class classification. In this case, the point is laboured in the work of [4] that, when it comes to 

overcoming this issue, it proves to be more problematic owing to the need to balance a number 

of different minor classes. 

In the case of imbalanced datasets, the problem is that a number of different machine-learning 

algorithms, such as DT and ANN, for example, demonstrate bias in relation to the major 

classes—which is a point highlighted in the work of [71]. Accordingly, this can result in the 

poor classification of the minor classes, with the minor class commonly ignored by a number 

of different classifiers as mentioned in the work of [72], [73],  although a significant overall 

accuracy is still achieved [4], [69] 

During more recent times, the issue of imbalanced learning has been the focus of much 

attention and focus in terms of research effort. In actual fact, a number of different application 

domains have sought to manage the issue of class imbalance as a fundamental consideration 

warranting attention. Some examples include, predicting ozone levels, as demonstrated in the 

work of [63], face recognition[74], and also in the critical field of medical diagnosis[75], [76], 

inter alia medicine [77], [78], chemistry and biology [79], the processing of natural language 

[80], lexical acquisition [81], text recognition [82], and attacks and fraud identification [83]. 

3.3 Managing the Challenge of Attack Classification in the Presence of 

Imbalanced Dataset 
A number of different techniques have sought to present suggestions in order to manage 

imbalanced classification, with such recommendations able to be grouped into two different 

categorisations, namely algorithm level, and data level[68][69]. In the case of the former, such 

methods are also referred to as internal approaches owing to the creation of a new algorithm, 

or a present one amended so as to manage the problem of imbalanced datasets as highlighted 

in [84]–[87]. In regards to the data level, this is also commonly referred to as external 
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approaches, where data undergoes pre-processing in order to eradicate class imbalance 

problems. Within this group, the training data is provided with some sampling form. However, 

notably, a number of class imbalance methods are implemented both at the algorithm level 

(internally) and at the data level (externally) methods. As aiming to achieve minimisation in 

regards minor class misclassification samples’ costs as presented in the work of [88]–[91]  

A number of other methods are recognised as based on ensemble learning algorithms, which 

are implemented through the incorporation of a cost-sensitive model(algorithm level) within 

the learning process [91] or otherwise via data pre-processing prior to the initiation of the 

learning phase for all of the classifiers as presented in [92]–[94].In this regard, throughout this 

part of the study, the sampling methods are presented. Following, the cost-sensitive learning 

technique is then discussed. Lastly, a number of valuable and pertinent ensemble methods 

within the model of imbalanced datasets are discussed.  

3.3.1 Data Level: Resampling Techniques 

The application of a particular type of sampling is recognised as one of the most widely 

implemented approaches to managing class imbalance in the case of training data. In regards 

more specialised literature as in the work of[95]–[97], it has been confirmed that the 

implementation of a pre-processing stage with the aim of achieving class distribution balance 

is most commonly recognised as a valuable solution. Such resamples methods are broken down 

as belonging into one of three groups: the first seeks to take away instances from the major 

classes with the aim of securing the outcome of a balanced dataset, which is referred to as 

under-sampling. The second seeks to create a number of additional minor class instances so as 

to achieve dataset balancing and is referred to as over-sampling; and the third is a combination 

of the aforementioned two methods, which utilises both under- and over-sampling, which is 

recommended for imbalanced datasets in the study by [71]. 

In actual fact, it is possible for resampling to be carried out randomly, based on used approaches 

and the used dataset.  At times, there is the suggestion of random sampling owing to it being 

able to create a satisfactory outcome. However, the writers in[4], [69]have presented the view 

that random sampling could potentially induce issues owing to the lack of consideration 

towards data distribution. When implementing random under-sampling, the point is made that 

valuable data could possibly be removed, which would then have an impact on the learning 

process. Furthermore, when it comes to the biased problem undergoing random over-sampling, 

this could potentially mean a greater increase in bias owing to the fact that an exact replication 
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of the existing instance is made, meaning there will be an increase in over-fitting. Nonetheless, 

it is recognised that both sampling methods are valuable and have their uses as in the study 

carried out by [98], [99]. Nonetheless, class distribution in the case of resampling has been 

taking into account through various approaches, such as synthetic training samples generation, 

as in the work of [100], with ‘Synthetic Minority Oversampling Technique’ (SMOTE) noted 

as one of the most sophisticated approaches, which is based on the concept of incorporating a 

number of different instances of minority class that are seen to reside together so as to generate 

new minor classes for the purpose of training set over-sampling. Nonetheless, the actual 

distribution of a real issue is not always possible to determine as presented in the work of [71], 

with a number of other scholars in the field like the work in [73], [101]recognising that this is 

centred on the approach and the issue. 

Researchers in [102]presented a sampling method centred on clustering, which sought to take 

the disjunct of minor class and implement over-sampling, requiring the organisation of the data 

with significant characteristics into groups from the training data, with them over-sampling 

and/or under-sampling then implemented. In the study carried out by [103], the cluster with a 

C4.5 DT and an MLP trained with backpropagation is implemented, with the outcome 

providing support for cluster adoption. A number of other valuable examples include Cluster-

Based Oversampling (CBO as discussed in [98], as well as that of Class Purity Maximization 

[104], Sampling-Based Clustering [105] and the agglomerative Hierarchical Clustering [77], 

amongst others. Nonetheless, the majority of the works taken into account and discussed 

examine the most appropriate resampling approaches for adoption with the aim of  enhancing 

classification algorithm behaviour in the case of imbalanced datasets, and accordingly 

restricting investigation for, in the main, classification issues as discussed in the work of [69], 

[106].  

3.3.2 Algorithms Level: Cost-Sensitive Learning 

During more recent times, academics and professionals in the field have examined the factors 

underpinning inadequate learning amongst a number of different machine-learning approaches 

from imbalanced datasets; with a number making the point that assessment criterion is one of 

the key considerations. Since the overall accuracy is the most used metrics to evaluate the 

performance of the classifier in spite that the overall accuracy, mostly, not present the biased 

of classifier towards the major class. In which the minor class(es), sometimes, is ignored by 

the classifier especially in the case that the extreme imbalance dataset is used. A number of 

researchers have examined bias amongst classifiers, drawing the conclusion that DTs and 
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ANNs provide key examples of such classifiers [107]. A number of different alternative 

evaluation metrics, such as AUC1, F-measure and weighted metrics (cost-sensitive learning), 

for example, are all taken into account and reviewed in the works of [71], [72] with the most 

commonly implemented method seen to be the cost-sensitive learning approach, which 

involves the multiplication of the classification or error rate for each objective by a cost/weight. 

Otherwise stated, this approach is centred on the concept of a weight matrix, which is seen to 

be aligned with the confusion matrix garnered following classifier performance, where the most 

appropriate classification does not induce any form of penalty. There is the suggestion that 

domain knowledge should be incorporated into such a weight matrix; this is applied in the case 

of the KDD Cup ’99 dataset, as an example, as can be seen in Table 3-2. Owing to the fact that 

its application is centred on assessing the classification result, the class imbalance issue is not 

addressed. In this regard, the focus is instead directed towards penalising the misclassifications 

of U2R and R2L instances, which is suggested by the study in [4], [108]–[110] During more 

recent times, a number of approaches have been implemented in regards cost-sensitive 

learning, as shown in the work of [111], suggests its adoption for weighted rough sets.  

Table 3-2: Weight matrix for evaluating the result of the KDD cup 99 competition[109] 

 

 

 

 

3.3.3 Classifier Combination: Ensemble Learning  

Ensemble-based classifiers, which are recognised as being built on the concept of creating at 

least two classifiers from original data, aggregate predictions when there is the presentation of 

unknown instances, with such classifiers created through bringing together a number of 

different classifiers in order to generate a new classifier with the potential to exceed in terms 

of classification ability. More specifically, data or algorithm levels and ensemble learning 

methods are utilised in combination. In regards the data level, data pre-processing is carried 

out, with each classifier then undergoing training; in regards cost-sensitive ensembles, on the 

other hand, the ensemble learning algorithm is applied in such a way so as to direct the cost-

minimisation process [112], [113] 

 

 Normal Probing DoS U2R R2L 

Normal 0 1 2 2 2 

Probing 1 0 2 2 2 

DoS 2 1 0 2 2 

U2R 3 2 2 0 2 

R2L 4 2 2 2 0 
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A. Bagging  

Bagging is recognised as one of the first ensemble algorithms, and is seen to be simple and 

lacking any degree of complexity so as to ensure efficiency. Bagging, which is the abbreviation 

given for Breiman’s bootstrap aggregating method, is centred on the application of training 

data’s bootstrapped copies in the creation of a number of different results, where large data 

subsets as acquired from the training data are drawn on a random basis with replacement. Such 

subsets are then directed towards creating a framework comprising individual classifiers. In 

line with majority voting between specific classifiers, there is then the initiation of the ensemble 

decision. One method deriving from bagging centred on the adoption of various decision trees 

in order to build a model, with this particular method referred to as Random Forest; this, unlike 

bagging, utilises feature subsets that are focused on the random subspace method.   

B. Stacking 

Wolpert’s stacking generalisation is concerned with achieving classifier performance 

improvements, with the key factor underpinning misclassification recognised as the class 

decision boundary being closely located to the neighbour class. Furthermore, the classifier used 

positions it on the incorrect side of the boundary. When implementing stacking, classifiers’ 

ensemble output is utilised as the second-level meta classifier input (Wolpert, 1992). In the 

case of a number of different studies carried out in this regard[94], [114], [115] and[116] the 

ensembles of classifiers has been highlighted as one of the approaches suggested in order to 

overcome the issue of class imbalance. In the case of the work by [97],  however, the adoption 

of training single classifier and data processing is recognised as achieving sound results, 

whereas other researchers emphasise that the most simple approach to attaining sound 

performance are through RUSBoost[117] or UnderBagging [69], [118] 

3.4 Feature Selection on Imbalanced Dataset 

3.4.1 The Need of Feature Selection on Imbalanced Dataset   

When completing high-dimensional data analysis, the process is recognised as challenging and 

oftentimes problematic for workers in the field of data-mining and machine-learning. One 

valuable and effective approach to solving this issue is through feature selection, which is 

achieved through the removal of redundant and irrelevant data; this facilitates time decreases 

in computation, enhancing learning accuracy, and further encourages greater insight into the 

data or learning model.  
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In defining the concept of feature selection, it is stated that the process centres on securing a 

subset, as derived through an original feature set, with consideration to criterion outlined in 

regards feature selection. This helps to facilitate the choosing of the most valuable aspects of 

the dataset. The issue of feature selection has been recognised and widely acknowledged for 

more than four decades and is well known to play a key part in data processing scale 

compression, with the more irrelevant and redundant of features removed. The overall 

approach of feature selection has the capacity to pre-process learning algorithms, where sound 

feature selection outcomes can help to enhance overall learning accuracy whilst making 

learning results more simplistic and learning times shorter [119], [120]. One notable aspect is 

a feature space is seen to be of significance and value to the class when it provides valuable 

insight into the class and whereupon classification performance is degraded through its 

removal. The irrelevant feature is that which does not present any valuable data relating to the 

class and where its presence is seen to elicit classification performance reduction [121]. One 

of the most irrelevant aspects is a noisy or redundant feature, for example, where the latter 

would be unable to deliver valuable information in line with classification following the 

choosing of the most optimal and appropriate subset of features; this is owing to another feature 

already providing this same data. In the case of a noisy feature that is not considered redundant, 

information relating to class is not present.  

Importantly, the studies in[122]–[124] conclude the two ways via which dimensionality 

reduction can be achieved are through feature selection and feature extraction. In contrast to 

feature selection, in the case of feature extraction, there is commonly a need to implement 

original data transformation to features with a key pattern recognition capacity, where the 

original data is considered to be featured with a weak recognition aptitude. When considering 

feature selection-which has long been recognised as a study topic in methodology-its use has 

been witnessed in a number of different fields, including in the fields of image-

recognition[125]–[129],image-retrieval[130],[131],intrusion-detection[132]–[134],text 

mining[135]–[137],bioinformatics-data-analysis[138]–[143],fault-diagnosis[144]–[146]and 

so on. According to the theoretical-principle, feature selection methods can be based on 

statistic[147]–[150]information-theory[151]–[156] manifold [157]–[159] and rough set [160]–

[164], with all of these is able to be grouped in line with different standards.  
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1. In line with the training data assigned, i.e. labelled, unlabelled or partially labelled, the 

method of feature selection is broken down into supervised, unsupervised and semi-

supervised.  

2. In line with the link between feature selection method and learning method, the former 

is categorised into embedded, filter and wrapper models.  

3. In line with the evaluation criterion, the methods of feature selection may result from 

consistency, correlation, dependence, Euclidean distance, and information measure.  

4. In line with the search methods, the approaches to feature selection could be broken 

down into backward deletion, forward increase, hybrid, and random models.   

5. In line with the output type, the approach to feature selection is broken down into subset 

selection and feature rank/weighting models.  

3.4.2  Approaches to Feature Selection  

3.4.2.1 The Filter Approach 

Feature selection’s filter approach decreases the total sum of features utilising the data’s 

properties to the learning algorithm actually implemented  [121]. One key benefit identified in 

the adoption of a filter algorithm alongside a feature set can be seen when considering the 

reduced number of features implemented in the ultimate induction algorithm. Accordingly, 

classification algorithms will demonstrate improvement, alongside a reduction in computer 

processing time. In contrast to the wrapper approaches, filter methods, in their process, are not 

inclusive of the ultimate learning algorithm. Such independency has been recognised as a 

further advantage associated with the adoption of filter methods as presented in [165]. One 

further identified advantage is that the same aspects could be applied in other learning 

algorithms for the purpose of comparative analysis. In this vein, it is noted in the study by 

[166]that a number of filter algorithms, including, for example, Correlation-based Feature 

Selection (CFS), could present findings comparable to or an improvement on wrapper models 

in various aspects. In this vein, a new correlation-focused selection approach was presented in 

the work of [167], with the research highlighting the overall effectiveness and efficiency of 

these approaches in the management of highly dimensional sets of data. Nonetheless, as has 

been recognised by [168], filter-based selection techniques present the drawback of failing to 

interact with the classifier algorithm ultimately applied. One further drawback emphasised is 

that the majority of the filter approaches have a notably univariate nature; this is taken to infer 

that they do not take into account other aspects and the qualities of such. Importantly, the work 

was completed on a highly dimensional bioinformatics data set as mentioned by [168]. 
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The filter-based feature selection approach was benchmarked against 15 different sets of data, 

with this also done for one wrapper approach, through the completion of experiments by [169]. 

The conclusion drawn by the scholars stated that filter-based approaches differed from one to 

the next, with such differentiation stemming from the data set itself; overall, however, they 

were seen to be quicker, whilst also garnering improvements in terms of algorithm 

classification effectiveness.  

Three different filter algorithms, notably two multivariate algorithms, namely Correlation-

based Feature Selection (CFS) and Relief-F, and then information gain, which is a univariate 

algorithm, will be assessed here. The underpinning of the Relief-F algorithm, as presented by 

[170], is the ability to choose features on a random basis, and accordingly—in consideration to 

the closest neighbours—assign a greater degree of value to those features distinguishing 

between classes. Such aspects are subsequently graded in line with their relevance. In the study 

by[171], which was empirical in nature, the conclusion was drawn that comparable findings 

were garnered through the application of the Relief-F algorithm when compared with those of 

other filter algorithms, namely Gain Ratio and Information Gain, for example, when the Relief-

F algorithm is applied in their specific field.  

Correlation-based Feature Selection (CFS) algorithms seek out features that achieve significant 

levels of correlation with the class, which are seen to have no correlation with one another—

or only a very minor correlation[172]. The most recent feature selection algorithm is that of 

information gain (IG), which is defined as an approach concerned with weighting features in 

line with a relevancy score, where such a score depends on all respective attributes. The 

correlation between attributes is neglected, which therefore positions the approach as 

univariate. There has been the completion of comparable works, considering Gain Ratio and 

CFS approaches, in line with various data domains. It was established in the work of[173] that, 

when applied, the CFS approach provides more valuable outputs than the Gain Ratio, although 

this induces significant costs in terms of computer time.  

3.4.2.2 The Wrapper Approach 

In contrast to the filter approach, wrapper algorithms take a preselected induction algorithm as 

one aspect of the feature selection approach. Along with the additions or exclusions of features, 

the ultimate results are then graded in terms of selection effectiveness. Owing to the fact that 

the induction algorithm is used throughout the assessment stage of the selection process, the 

wrapper approaches are better positioned to achieve improved results than the filter methods. 
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In this vein, the wrappers for feature subset selection were contrasted alongside filter 

approaches as in the work of[174],with the conclusion drawn that attribute relevance are 

significant contributions in line with the learning algorithms’ performance when the algorithm 

is viewed and accounted for. Nonetheless, there are a number of different restrictions to such 

approaches. The computational cost of running such an assessment is recognised as far more 

significant than that identified when applying a filter method, with such costs increasing in line 

with an increment of attributes. One further drawback of the wrapper approach can be seen 

when considering the potential of data over-fitting.  

Notably, there are also other types of wrapper approach. As opposed to applying an individual 

method wrapper, as in the case of sequential forward selection, for example, a new approach 

is presented in the work of [175], namely simulated annealing generic algorithm (SAGA), 

which is seen to combine present wrapper approaches into a single solution. The study has 

emphasised that incorporating other approaches allows the drawbacks inherent to each 

individual method to be decreased if not altogether eradicated.  

In the study of [176], a wrapper method in line with the Support Vector Machine (SVM) 

classification was provided. The conclusion of the work stated that the application of such an 

approach would ensure data over-fitting would be circumvented as a result of its ability to 

achieve data splitting. It further enabled the application of various Kernel functions in 

achieving more optimal results. One disadvantage identified showed that the suggested 

algorithm utilised the backward elimination aspect, which was found to be very costly from a 

computational perspective when utilising highly dimensional sets of data.  

3.4.2.3 Hybrid/Two-Stage Design 

An approach that brings together the above-discussed methods has also been suggested in the 

work of [177], [178], with this approach utilising a filter approach with the aim of eradicating 

irrelative aspects, and then a classifier-specific approach to further decrease the feature set. 

Through ensuring the feature set is decreased from n features to achieve a lower number k, 

there is a reduction in the computation space in relation to the number of features—notably 

from 2n to 2k. Such a combined filter-wrapper approach is able to exploit the advantages 

associated with the use of the wrapper model whilst simultaneously reducing the computational 

drawbacks associated with the use of the wrapper method in isolation.  

In order to manage and better handle the previously highlighted disadvantages and to further 

circumvent the problem of having to outline a stopping criterion, a number of different scholars 
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in the field have sought to make use of the benefits associated with the wrapper and filter 

approaches. Notably, both an independent measure G and a fitness evaluation function of the 

feature subset A, are adopted through the application of hybrid algorithms, with the knowledge 

provided by a filter algorithm and a particular machine-learning algorithm then utilised in such 

a way so as to efficiently select the most optimal subset of feature Sbest [179]. Importantly, when 

applying a hybrid algorithm approach, the search is begun from an empty subset S0, with the 

process then repeated to identify the most optimal subset. Across all iterations, when seeking 

to determine the best subset of features with cardinality k, all of the potential subsets of k+1 

are examined; this is achieved through the incremental addition of features from those that are 

remaining. The independent measure, G, is applied in such a way so as to assess each of the 

subsets that have been generated, S, which are seen to incorporate the cardinality k+1 and 

further draws a contrast with the previous most optimal subset. Should it be the case that S is 

seen to be more superior to the previous most optimal subset, it would then be viewed as the 

present most optimal subset S’
best with k+1 cardinality. When there is the conclusion of the 

iteration and the identification of the ultimate S’
best at level k+1, there is the implementation of 

the fitness assessment function, A, to the S’
best , with the evaluation outcome then contrasted 

alongside that of the most optimal subset identified at level k. Importantly, when there is no 

further improvement, meaning the very best subset is secured by the hybrid model, the process 

of searching for the most optimal subset Sbet is then ended. As has been highlighted in[180], 

approaches inherent in this particular category are not as time-efficient as the filter methods; 

nonetheless, they are far more efficient and are able to attain improved performance in terms 

of classification.[181] 

3.5 Related Works 

3.5.1 Imbalance Learning Methods 

3.5.1.1 Navies Bayes 

Navies Bayes (NB), is the more simplistic version of the Bayesian Networks (BN) approach 

and is recognised as centred on the features independence hypothesis. Accordingly, a one-

dimensional kernel density estimation is achieved following the reduction of high-

dimensionality density estimation. In this case, the NB training time is initiated in linear time. 

In contrast to that of BN, NB is recognised as being less expensive, from a computational 

standpoint, due to there being no need for a priori knowledge in regards the issue when striving 

to establish probabilities.[4]  
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In the 2004 work by [182], NB and Decision Tree (DT) performances, notably adopting the 

KDD Cup ’99 dataset, are contrasted in terms of performance, with DT achieving the greatest 

accuracy, whereas NB is seen to demonstrate improved performance in the case of minor 

attacks identification. A comparable conclusion has been achieved in the study by[183], 

recognising that ANN does not demonstrate as high a level of performance when examined in 

line with minor attacks, whereas a low error rate is scored by NB for such types of attack. In 

line with a number of the experiments carried out in the works of [107]and[98], it is stated that 

ANN and DT are biased towards major attacks, meaning that there is an overly high false-

positive rate; notably, this is not the case with NB. Nonetheless, such experiments are 

implemented across imbalanced datasets and ensemble learning approaches.  

One further work carried out by [184]presents the conclusion that, when it comes to identifying 

minor attacks, NB is the stronger method. In this case, the performance demonstrated between 

the two probabilistic methods (NB and Gaussian classifier) and two predictive techniques (DT 

and RF) undergoes comparison. The conclusion is drawn that the two probabilistic approaches 

illustrate a higher level of performance in the case of minor attacks; however, in the case of 

DoS attacks, identification by NB is seen to be low. A number of other experiments focused 

on drawing a comparison between the Adaptive Bayesian Network and NB: as a result of low 

minor attack samples, a lower identification rate was achieved by ABN in regards the minor 

classes; on the other hand, a high identification level in terms of accuracy was achieved in 

regards the major classes.  

During more recent times, possible combinations of methods have been implemented 

stemming from a number of observations made in various works, including in the cases of 

[182], [183], as highlighted earlier. Furthermore, in the study by[185], the false-negative rates 

have been the point of attention, along with a hybrid framework focused on irregularity 

identification and misuse identification. Accordingly, irregularity identification is utilised in 

order to define the normal traffic. It is recognised that NB demonstrates a much better 

performance than DT in the case of attack identification. Other works[186] emphasise that a 

hybrid model should be carried out and should incorporate two different levels, where the first 

should focus on the implementation of Self Organising Map for normal instances, whilst the 

second level should present NB. A hybrid system is recognised as achieving higher 

classification rates than that which can be garnered through NB in isolation. Nonetheless, 

through the completion of such works, the dataset is pre-processed and not balanced.  
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3.5.1.2 Ensemble Learning 

Owing to the fact that it can be difficult to arrive at the most appropriate and accurate 

hypothesis, ensemble algorithms are recognised as being the most valuable approach. Owing 

to the fact that the ensemble approach brings together various hypotheses, a more promising 

and valuable outcome will be achieved than if just one hypothesis was used in isolation.  

Outlier identification positioned at the front end of the existing system was implemented, as in 

the study by [187] in the instance that abnormal traffic is identified, the data would then 

undergo categorisation to one of the KDD cup ’99 attack groups through the application of the 

RF algorithm. In the case of this work, there is the generation of balanced data owing to the 

fact that the instance with the least occurring attacks is replicating. The conclusion is drawn 

that, when implementing the original data, the false rate is greater than if the balanced data is 

utilised. Despite the fact that this work is seen to attain sound findings through error rate 

minimisation, it remains that the approaches to data balancing are not concerned with 

resampling and similarly do not place emphasis on ensemble within classes. One further work 

in [188], which have adopted a similar method, is that of [187] however, the work also 

implemented normalisation methods throughout the pre-processing. This work has attained 

significant accuracies across major attacks, whereas minor attacks demonstrated low 

identification accuracies (5% for R2L and 35 for U2R).  

A research focused on achieving enhanced classification accuracy and a lower degree of false 

positives was carried out in the work of [189], which sought to achieve good results in the 

NSL–KDD dataset classification, utilising approaches of bagging, boosting and stacking 

ensemble. The conclusion was subsequently drawn that, when examining the false positive 

rate, the greatest reduction was achieved by the stacking approach. Importantly, however, this 

work implemented ensemble without the balancing of the dataset. 

The bagging schema was implemented in the study of [190], with a contrast drawn between six 

different binary classifiers, namely a bagged family of C4.5 classifiers, a bagged family of 

naïve Bayes classifiers, a bagged family of PART base classifiers, C4.5, naïve Bayes and 

partial decision tree classifiers (PART). This work has established that C4.5 without bagging 

demonstrates greater performance than a bagged PART ensemble. In the examination of 

training time and classification accuracy, bagged ensembles were not found to achieve greater 

performance than the individual base classifiers. The model time was reduced via the deployed 

approaches, without placing emphasis on the accuracy of attacks.  
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3.5.1.3 Feature Selection and Resampling 

As can be seen, when reviewing the literature, there are a number of different methods with the 

potential to eradicate the issue of class imbalance, with the inclusion of internal approaches 

that customises algorithms to data selection approaches imbalanced data, ensemble learning, 

and cost-sensitive learning. Although it is possible for the interested reader to identify a 

summary of approaches to class imbalance learning and feature selection in imbalance domain 

in [70], [191], it is nonetheless recognised that some attempts[192]–[194] have been concerned 

with the examination of the joint influence of resampling and feature selection when it comes 

to attempting to manage class imbalance. In the study of [193], the findings underwent an 

examination with the utilisation of under-sampling approach or feature selection, taking into 

consideration datasets associated with the prediction of software quality. The empirical data 

garnered throughout the work emphasised that, when applying feature selection on the data 

sample, there is a greater level of performance than when choosing the features on the original 

data. Nonetheless, this particular study was carried out in consideration of a specific field. 

Furthermore, the researchers only took into consideration the testing of random undersampling 

and various techniques of filter feature selection (e.g., χ2, Relief, Gain Ratio). In the research 

by [194], the performance demonstrated by a number of different feature selection metrics was 

analysed, in addition to the way in which class imbalance was overcome. In addition to the use 

of 7 filters as a feature selection approach, the researchers further completed an analysis on the 

sample methods’ performance. SVM was applied as base learning, whilst 10 publicly available 

datasets presented the sample for experiments. The findings emphasised that the correlation 

coefficient of Signal-to-Noise and Feature Assessment by Sliding Thresholds are valuable 

contenders for feature selection in the case of small sample size imbalanced data. In addition, 

a comparison was carried out by the researchers in regards feature selection and resampling 

methods for class imbalance: despite the fact that the experiments implied resampling would 

not enhance performance, they nonetheless supported the view that further work in this field 

remained necessary owing to the fact that he authors had carried out testing on only those 

combinations where feature selection was before resampling.  

Very little emphasis was placed on the examination of the relevance of the application order of 

various different pre-processing methods. One corresponding work is that of [195]which 

involved examination of the combined effect of class imbalance and overlapping on classifier 

performance. A number of other researches have centred their attention on solutions to the co-

occurrence of class imbalance and irrelevant features. An initial study [191]notably conducted 
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in relation to the Web categorisation field, made the statement that feature selection approaches 

are not always suitable in regards to imbalanced data sets. Accordingly, a feature selection 

model, which notably chooses features for both positive and negative classes on an individual 

basis, is suggested, with the subsequent features openly combined. One other study 

[192]expands on this through the adoption of feature subset selection prior to original dataset 

balancing with the aim of predicting the protein function from amino acid sequence features. 

In this case, the modified training set feeds a Support Vector Machine (SVM). In turn, this 

subsequently provides a greater degree of accuracy in the findings than those garnered when 

the same classifier underwent training through the original data. Regardless, however, a 

conflicting mix of approaches was not taken into account, meaning it is not possible to draw 

conclusions in regards to their suitability in relation to application order. 

With the odd exception, there is very little research that presents a wide-ranging and in-depth 

comparison in regards the combined influence of resampling and feature selection on multi-

class/binary learning. In an effort to fill this void, through the present work, resampling 

algorithm performance is experimentally examined when used in line with feature selection 

techniques for imbalance learning. In this case, the performance demonstrated by feature 

selection prior to resampling pipelines is compared, and vice versa, on KDD cup dataset, with 

the use of the 7 feature selection approaches, 3 widely implemented classifiers, and the 

resampling approach for class imbalance learning. The work’s findings may deliver 

fundamental reference value for those professionals in the concept of data mining and machine 

learning, particularly when devising classification pipelines, therefore making 

recommendations in regards which are the most valuable and worthwhile combination to 

attempt and which should not be taken into consideration when seeking to overcome issues of 

imbalance learning.  

3.5.1.4 Feature Selection for Sub-minor Attacks  

In addition to that which has been discussed in this work so far, a number of different IDS have 

also been presented in other works. For example, in the study by[196], an IDS’s performance, 

as based on the SVM, multivariate adaptive splines and linear genetic program, was assessed; 

this was done through the application of a novel significant feature selection algorithm, notably 

independent of the application of modelling tools. Notably, there is the removal of one input 

feature from the data; this is done one at a time. The dataset remaining after removal is then 

adopted in line with classifier training and testing. Subsequently, the performance of the 

classifier is then contrasted alongside that of the original classifier with specific consideration 
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to relevant performance criteria. Ultimately, there is the weighting of features in line with 

various rules centred on performance comparison.  

In the work of [197], there was the in-combination application of the hidden Markov model 

and fuzzy logic with the aim of identifying intrusions. Through this method, the hidden Markov 

framework was applied in consideration to dimensionality reduction. In the study by [198], a 

wrapper-based feature selection algorithm was presented in mind of creating lightweight IDS. 

The modified RMHC was adopted as the search strategy whilst the evaluation criterion was 

outlined as the modified linear SVM. The method was found to achieve time efficiency in 

regards to the process of selecting features, with a high degree of detection achieved for IDS.  

A minimal-Redundancy-Maximal-Relevance criterion  (mRMR) was presented in the research 

carried out by[153], which focused on the selection of features on an incremental basis. Such 

a criterion outlines (mRMR) in mind of the incremental selection of features. Such a criterion 

provides the potential for features to be selected without incurring significant cost. The 

suggested method was contrasted alongside the maximal relevance criterion with the adoption 

of three different classifiers. The findings garnered provided validation that an mRMR feature 

selection has the potential to achieve classification accuracy enhancement.  

A simple but nonetheless effective and time-efficient feature selection method was suggested 

by [154]in line with conditional mutual information(CMIM). The method presented was 

contrasted alongside other similar approaches, as in the case of C4.5 binary trees and fast 

correlation-based filter. When adopting this particular approach, there is a need for binary input 

features. It was determined that, alongside naïve Bayesian classifier, CMIM was seen to be 

more proficient than other approaches, as in the cases of boosting and support vector machine.  

An IDS based on Flexible Neural Tree (FNT) was introduced through the study of [199], where 

the framework utilised a pre-processing feature selection stage in mind of achieving 

identification performance improvements. Through the use of the KDD Cup99, a 99.19% 

detection accuracy was achieved by the FNT model, utilising only 4 features. During more 

recent times, a forward feature-selection algorithm was presented by [133]through the 

application of the mutual information approach so as to complete measurement pertaining to 

the correlation between features. The optimal feature set was subsequently directed for the 

purpose of training the LS-SVM classifier and accordingly building the IDS. In the research 

carried out in [200],  a SVM-based IDS—notably amalgamating a hierarchical clustering and 
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the SVM—was presented, with the hierarchical clustering algorithm applied in order to present 

the classifier with a greater degree of quality across training data with the aim of decreasing 

test time and average training so as to achieve classifier classification performance 

improvements. When measuring the SVM-based IDS, accuracy was seen to be 95.75%, with 

only a 0.7% false-positive rate, when utilising the corrected labels KDD Cup 99 dataset. 

3.6 Summary and Conclusion  
As has been established through the literature, both cost-sensitive and sampling methods have 

been commonly implemented. It was stated in the study by [98] that cost-sensitive learning 

was recognised as achieving greater levels of success; nonetheless, the point was posited that 

such approaches incorporate notable limitations owing to the fact they deal with an imbalance 

at the class level. In this regard, a greater degree of flexibility was seen to be achieved through 

sampling techniques, enabling various aspects of the dataset to be sampled and taken into 

explicit account the issue of minor disjoints. In this vein, the work of [201] concurs with the 

result of [102]; however, it remains that the literature findings show an ad-hoc approach as 

most commonly being adopted by researchers in this case. Weiss in[71] has provided several 

guidelines as to which methods can be recommended for dealing with specific problems with 

imbalanced datasets. However, current research indicates that the choice of sampling approach, 

and choice of distribution if not a random sampling, depends on the method and problem at 

hand as stated in [71], [102]. Similarly, for weighted approaches, determining optimal weights 

is also an ad-hoc process, which becomes increasingly complex the more classes there are. 

In the research carried out in the case of class imbalance, very little attention has been directed 

towards multi-class issues [201]; however, a wide-ranging, in-depth work was carried out with 

the application of cost-sensitive ANNs, with the inclusion of 21 different datasets from the UCI 

repository. Oversampling effects were taken into account, alongside the effects of SMOTE 

sampling, under-sampling, and threshold moving for both ensembles and single classifiers. 

Despite the fact that the approaches were seen to be valuable in the case of two-class problems, 

it remains that multi-class problems did not benefit, with negative effects even witnessed in 

some cases. One explanation in this regard could be that there are additional classes, which 

could induce misclassification and accordingly increase problem complexity. One possible 

solution to this could be through changing the issue to the form of a number of different binary 

classification tasks and combining classifiers in line with each pair. Nonetheless, this would 

not be successful in changing weight-setting complexities; rather, as has been emphasised in 

the work of [91], this can actually heighten levels of complexity for users. 
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It is common for Feature Selection (FS) methods to be commonly categorised in relation to the 

interaction achieved between model construction and attribute selection processes. In regards 

filter approaches, it is most common for FS to be implemented on an independent basis, away 

from classifier design, with emphasis placed only on the more central factors of the features; 

when examining the wrapper approaches, in contrast, a feature subset is evaluated in 

consideration to the possible classification performance it could illustrate in the event it is 

adopted so as to create the classifier. Importantly, the relation between the feature and the class 

label is the only aspect taken into consideration by the filter model. When compared next to 

the wrapper model, lower computational costs are recognised. It is important to recognise that 

the assessment criterion is critical in this regard.  

In line with the reviewed literature, two different methods of pre-processing are to be 

implemented in mind of solving the issue of imbalanced datasets and the misclassification of 

attacks, namely filtering feature selection and hybrid sampling. An explanation for the adoption 

of hybrid sampling is the need to circumvent useful data loss, which could potentially be 

removed through the application of the under-sampling approach; this could impact the 

learning process as a whole. Furthermore, over-sampling is not applied owing to the recognised 

possibility of the bias problem potentially increasing owing to the fact that an exact copy of the 

existing instance is made, meaning there will be an increase in over-fitting. In regards filter-

supervised feature selection adoption, this will be implemented as, dissimilar to the wrapper 

methods; filter approaches are not seen to be comprehensive in terms of the ultimate learning 

algorithm. This degree of independence is acknowledged as one additional benefit linked with 

filter approach implementation.  
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Chapter 4 : Investigating the Machine Learning Classifier Behaviour in 

the Presence of Class Imbalance 

4.1 Introduction  
Recently in the areas of data-mining and machine-learning, dealing with applications that are 

subject to challenges of class imbalance has become recognised as an issue of significant 

importance. A number of different solutions have been introduced to overcoming the issue of 

class imbalance, including cost-sensitive learning, ensemble learning, and the use of data 

resampling as reviewed in Section 3.3. To the best knowledge of the author, these studies have 

not considered providing solutions to the multi-class categorisation of data in the presence of 

class imbalance, nor have any of the proposed approaches investigated solving the challenge 

based on rigorous empirical works. Therefore focusing on attaining improved classification 

performance in the presence of class imbalance, there is a need to consider the most effective 

and secure data classification approaches via rigorous experimentation. Those approaches that 

are most stable in relation to their ability to handle class imbalance should be found and 

recommended. In line with such a need, a rigorous empirical approach is carried out in this 

thesis in order to assess various performance criteria and a method’s stability in the case of use 

within a network environment prone to intruder attack.  

This chapter provides an overview of an empirical analysis centred on establishing the 

fundamental factors underpinning inadequate performance in the case of the majority of more 

widely known machine-learning classifiers, particularly in the case of learning from less 

significant/common attacks and classes. It is noted that the dataset of KDD Cup ’99 that will 

be used in the experiments that will follow, which is also commonly used across studies in this 

field, is ultimately imbalanced in nature. This is owing to the fact that in the network intrusion 

application domain, some attacks are recognised as more recurrent/frequent, whereas some 

others are rare.  

In line with the KDD Cup ’99 dataset’s amount of classes, addressing class imbalance can be 

viewed as solving a multi-class or binary class challenge. The existing studies in 

recommending solutions to the class imbalance issue within network IDSs approach the 

problem as a binary class classification problem due to the complexity associated considering 

the problem as multi-class classification. However such approaches are restrictive and will lead 

to time-consuming approaches requiring a complex collection of different classifiers to solve 

the underlying problem. Therefore across the study outlined in this thesis, the issue is viewed 
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as a multi-class classification problem. In line with this stance, this work explores the adoption 

of various machine-learning algorithms in an effort to circumvent the usual misclassification 

issues experienced by academics making use of the imbalanced KDD cup 99 datasets 

throughout the course of work. Suggestions are presented in line with the most highly 

recommended classifier for imbalanced data categorisation.  

Section 4.2 presents the rigorous experimental setup used to gather data about the performance 

of classification frameworks to be explored. Section 4.3 analyse the results in detail leading to 

a summary and conclusions being provided in Section 4.4. 

4.2 Experimental Setup   

4.2.1 Data-Mining Tool 

The development of Weka (Waikato Environment for Knowledge Analysis) toolkit for Data 

Mining was first documented at the University of Waikato, New Zealand [202]. Weka provides 

an experimental environment for the application of a large number of different and popular 

machine-learning algorithms. The machine learning algorithms are implemented within the 

toolkit and are readily available for use. The tool also provides effective data input, data pre-

processing, post-processing, regression, visualisation, and analysis capabilities. Weka is 

defined as a Java software package presented via a GUI interface. A number of different 

benefits are garnered through the application of Weka, with the most noteworthy that of its free 

availability within the GUN public license. Furthermore, owing to the fact that its core utilises 

Java programming language and can, therefore, be executed across the majority of computing 

infrastructure, it is recognised as being convenient and manageable. Importantly, it is able to 

satisfy the main requirements in regards data-mining as a result of its approaches to data-

processing and modelling.  

4.2.2 Dataset and Pre-Processing 

For the purpose of conducting the experiments presented in this, 10% of the original KDD 

Cup ’99 dataset is used (which is publically available for researchers). This reduction of the 

dataset was required as there were constraints in the memory and processing power of the 

computers used to support the experiments. Table 4-1 provides an overview of the number of 

records encompassed within the entire dataset in comparison to that utilised in the experiments 

conducted. It is noted that the 10% was a fair sample of the original dataset and did not 

significantly vary in terms of the presence of imbalanced data when compared to the original 

dataset.  
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Table 4-1: Number of records in Full KDD Cup ’99 Dataset vs. 10% sample dataset used in experiments 

Dataset Description  Num. of instances 

Full KDD Cup ’99 dataset 4,898,431 

Selected 10% dataset of KDD Cup ’99 dataset 494,020 

 

Subsequently, the selected dataset’s recognised duplicate records were taken out of the data 

under examination in order to further decrease computational time-consumption and memory, 

whilst also facilitating the avoiding of the bias towards particular classes. As has been stated 

in the study carried out by [71], following the removal of duplicate files, an increase in the 

identification and categorisation of minor classes was witnessed through the adoption of ANN 

and DT algorithms. Table 4-2 provides an insight into the number of instances present in the 

selected 10% sample set both with and without its duplicate records.  

Table 4-2: Number of records in 10% sample dataset with and without duplicates 

Dataset Description  Num. of instances  

The sample 10% of the KDD Cup ’99 dataset with duplicates. 494,020 

The sample 10% of the KDD Cup ’99 dataset with duplicates removed. 145,584 

4.2.3 Validation Methods 

In presenting the validation results of the performance of classifiers, there are two key methods 

that can be used, namely the percentage split, and cross-validation. In line with the completion 

of the validation process, it is notable to state that there is a differentiation in the findings owing 

to the fact that choosing the split of test and training data from within a given sample dataset 

is a sensitive task. Generally, the size of the training-testing dataset split has an impact on the 

overall classifier accuracy. However different classifiers will perform differently to the 

percentage split values.  

Table 4-3 provides the classification accuracy results when different classifiers are used 

alongside holdout validations of 60%, 80%, and 90% respectively. An N% holdout validation 

refers to N% of a dataset been used for training and (100-N)% been used for testing. The 

classifiers compared in the experiments include J48, Random forest (RF), Bayes Net (BN) and 

Naïve Bayes (NB). When examining the classification accuracy of various classifiers across 

all attacks, there appear many variations, which is seen to be influenced sometimes by the test 

set containing new types of attacks that potentially have not been included in the training set. 
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One noticeable contrasting result with this observation is the J48 classifier which is able to only 

identify 36.4% of U2R attacks when there is a 90% holdout, although this notably increases to 

50% and 56.6% respectively when the % split of training data is decreased to 80% and 60%, 

respectively. It is believed that this observation is due to the rather very low test dataset used 

in testing when a 90% holdout is used and one wrong classification during testing will result 

in a very large reduction in the overall accuracy figure. The above observations show that 

despite the fact that some classifier identifications demonstrate slight shifts, accuracy as a 

whole is nonetheless influenced by the percentage split in training/testing data. In contrast in 

the case of using NB classifier, as an example, there is a drop in the accuracy as a whole, 

notably from 98.7% to 89.9 %, when there has been a reduction in the training set from 90% 

to 80%. Figure 4-1 coupled with Table 4-3, provide a more in-depth overview of these results.  

 

Figure 4-1: Classifiers’ performance with different holdout validation value 

As can be seen from the non-conclusive results detailed in Figure 4-1 about the variation of the 

accuracy of different classifiers used in attack classification, with the percentage split of 

training/testing data, a statement can be made that a greater degree of reliability of accuracy 

Figures can be achieved through the use of N-fold cross-validation. Importantly, the most 

common value of N, in the view of [203] is tenfold cross-validation; therefore this value for N 

is selected in this thesis owing to the fact that the empirical work with DTs and NB, are both 

examined and supported by [204]. 
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Table 4-3: Classifiers’ performance with different holdout validation values 

 

4.2.4 The Classifiers and Assessment Metrics 

In line with literature that focused on evaluating imbalanced datasets, with regards to the bias 

inherent in various classifiers towards to the major class/s, it is noted that the use of a number 

of popular classification methods has been investigated. These classifiers fall under the tree-

based classification approaches, e.g. in particular J48, Random Forest and Bayes Network 

classification approaches, for example, NB and BN. However such works have not been 

rigorous and have failed to make viable conclusions. 

Evaluating classifiers’ performance will be centred on the IDS’s overall assessment metrics, as 

highlighted in Section 2.4.1. Importantly, the general overall accuracy of the classification of 

an imbalance dataset by a given classifier will not highlight the classifier’s ability to identify 

different classes of attacks owing to the fact that they do not differentiate between the accuracy 

of classification of different classes in an imbalanced dataset, having significantly varied 

amount of instances between classes. Accordingly, this could potentially result in inaccurate 

conclusions being drawn, such as in the case of a classifier attaining 90% overall accuracy 

across a large dataset but with a rather low accuracy of only 10% demonstrated in the 

classification of a minor attack class such as R2L. Accordingly, the general overall accuracy 

for the entire database being investigated, the accuracy of classification of each type of class, 

precision, true positive rate, and false-negative rate are all used as assessment metrics in the 

research conducted within the scope of this thesis.  

 Overall Accuracy(weighted Average) Accuracy by Classes 

Percentage %   Accuracy  TPR FPR   precision  Normal U2R   DoS  R2L Probe  

Percentage of 90%           

J48 99.9 99.9% 0.2% 99.9% 100% 36.4% 100% 93.1% 98.1% 

Random Forest 99.91 99.9% 0.1% 99.9% 100% 45.5% 100% 99.0% 98.1% 

Bayes-Net 97.14 97.1% 0.6% 98.6% 98% 100.0% 96% 99.0% 97.1% 

Naïve-Bayes 98.7 98.9% 1.9% 96.8% 86.6% 90.9% 96.2% 32.7% 80.0% 

Percentage of 80%                    

j48 99.9 99.9% 0.1% 99.9% 100.0% 50.0% 100.0% 95.1% 97.6% 

Random Forest 99.9 99.9% 0.1% 99.9% 100.0% 71.4% 1.0% 98.1% 97.4% 

Bayes-Net 97 97.0% 0.8% 98.5% 97.8% 92.9% 95.6% 98.1% 98.1% 

Naïve-Bayes 89.9 89.9% 1.9% 96.9% 86.8% 92.9% 96.1% 38.8% 80.9% 

Percentage of 60%                    

j48 99.8 99.8% 0.2% 99.8% 100.0% 56.5% 99.9% 93.3% 96.5% 

Random Forest 99.9 99.9% 0.1% 99.9% 100.0% 78.3% 100.0% 96.2% 98.0% 

Bayes-Net 96.98 97.0% 0.8% 98.5% 98.0% 82.6% 95.4% 96.2% 97.9% 

Naïve-Bayes 90.6 90.6% 1.9% 96.8% 88.1% 87.0% 96.1% 38.8% 81.8% 
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4.3 Investigating the Classification of Imbalanced Datasets 
In this section, the experiments are conducted for the classification of an imbalanced dataset 

using ensemble learning approaches, e.g. cost-sensitive, ensemble learning, and sampling 

algorithms.  

4.3.1 Classifiers’ Performance after Resampling  

As has been given due consideration in Section 3.3.1, this research takes the view that ‘re-

sampling’ is the most widely used approach to improving classifier performance, in the 

presence of a data imbalance to avoid undue bias towards major classes and erroneous 

classification of, in particular, minor classes. In the research conducted in this thesis, the 

sampling value was varied from 0-1 in steps of 0.1 (see Figure 4-2), with the increase of 

sampling value influencing a decrease of detection of instances of the major classes (reduction 

accuracy) e.g. Normal and DoS; however indicating a slight increase in the detection of minor 

classes such as U2R and R2L. Notably, Figure 4-2 and Table 4-4 provide an overview of the 

detection accuracy and distribution of a number of instances within a class, with respect to the 

sampling values used. Results tabulated in table 4.4 indicate the balancing of various kinds of 

attacks when the sampling rate is increased from 0.0 to 1.0 in steps of 0.1. As the steps below 

0.1 lead to smaller value/instances for the minor classes that let the dataset to still be 

imbalanced, see Table 4-5 presents some of them and how far the instances of each class 

changed.  

Figure 4-2: Classes distribution with different sampling value (with Percentage) 
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 Table 4-5: Classes distribution with different sampling value below 0.1 

 

 As can be seen, when reviewing Table 4-4, all classifiers taken into examination have high 

overall accuracy. With regards to the categorisation of an attack, it is seen that the rate of 

identification across major classes is high; nonetheless, identification classification remains 

low for some classes owing to imbalanced data distribution. On a global scale, the rate of 

identification with regards the examined categorisation of classes is influenced by the 

imbalanced dataset, where the major classes do receive some degree of bias. As an example, 

99% accuracy is achieved by the RF classifier performance in the categorisation of major 

classes, although the accuracy of classification is only 67.3% of for U2R attacks and 67.9% for 

R2L attacks. Furthermore, for BN the overall accuracy is recognised as 97.2%, with the 

identification rate across all classes been notably high, but with the exception of the minor class 

U2R which indicates an accuracy of only 82.7%.  

Table 4-6: Classifiers performance before resampling 

 

 

 

 

 

 

 

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Normal 87831 81959 76088 70216 64354 58473 52602 46731 40859 34988 29116 

U2R 52 2958 5864 8771 11677 14584 17490 20397 23303 26210 29116 

DoS 54572 52026 49480 46935 44389 41844 39298 36753 34207 31662 29116 

R2L 999 3810 6622 9434 12246 15057 17869 20681 32493 26305 29116 

Probe 2130 4828 7527 10226 12924 15623 18322 21020 23719 26418 29116 

 

 0.0 0.1 0.01 0.02 0.001 0.05 

Normal 87831 81959 87243 86656 84895 87772 

U2R 52 2958 342 633 1505 81 

DoS 54572 52026 54317 64062 53299 54546 

R2L 999 3810 1280 1561 2404 1027 

Probe 2130 4828 2399 2669 3479 2156 

  

Overall Accuracy(weighted average) Accuracy by Class 

Accuracy TPR FPR Precision  Normal U2R DoS R2L Probe 

NB  89.8 89.8% 1.8% 96.9% 86.6% 84.6% 96.1% 38.0% 81.3% 

BN  97.2 97.2% 0.7% 98.6% 98.1% 82.7% 95.8% 96.8% 98.1% 

J48 99.8 99.0% 0.1% 99.9% 99.9% 59.6% 100.0% 96.0% 98.2% 

RF  99.94 99.9% 0.1% 99.9% 99.9% 67.3% 100.0% 67.9% 98.8% 

MLP  99.9 99.7% 0.3% 99.7% 99.9% 50.0% 99.7% 88.9% 98.4% 

Table 4-4: Classes distribution with different sampling value (with value) 
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Table 4-7: Classifiers performance after resampling 

  

Owing to the fact that one approach to resolving the challenge of classification of multi-class 

imbalanced datasets is that of using data sampling, Table 4-6 provides an overview of the 

accuracy of classification of various classes under examination in this thesis and their detection 

accuracies following the application of data resampling to the dataset. As can be seen, the 

identification rate of the minor classes demonstrates an improvement, with the major classes 

not being recognised with any significant bias. For example, the minor class, U2R’s 

identification accuracy has increased from 59.9% to 100% when adopting the j48 classifier.  

Nevertheless, when using the NB classifier, the identification accuracy of R2L still remains 

rather low at 38%. In chapter 5 we show that this challenge can be easily overcome by 

investigating data imbalance within the R2L class.  

Figure 4-3 provides a comparison of classifiers’ performance in the presence of data imbalance 

both prior to resampling and following the application of data resampling.  

  

Overall Accuracy(weighted average) Accuracy by Class 

Accuracy TPR FPR Precision  Normal U2R DoS R2L Probe 

NB with 

resample 87.9 87.9% 1.9% 94.1% 85.0% 97.3% 96.3% 38.2% 81.3% 

BN with 

resample 97.4 97.4% 1.2% 97.8% 98.2% 98.0% 96.0% 99.4% 98.4% 

J48 with 

resample 0.999 100.0% 0.1% 99.9% 99.9% 100.0% 100.0% 99.7% 99.7% 

RF with 

resample 99.98 100.0% 0.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.0% 

MLP with 

resample 99.34 99.3% 0.4% 99.3% 99.7% 87.1% 99.9% 93.4% 98.4% 
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Figure 4-3: Classifier performance when data resampling is applied 

4.3.2 Random Forest Behaviour in the Presence of Imbalanced Data 

This particular experiment centres on the detailed investigating of the RF classifier’s 

performance in the presence of imbalanced data. It seeks to establish the most appropriate and 

valuable learning approaches that can be adopted in striving to improve the minor classes’ 

accuracy of classification when using the RF classifier. The learning techniques investigated 

in this case include cost-sensitive, ensemble, and resampling.  

The experimental results are tabulated in Table 4-7. Figure 4-4 further highlights the findings 

pertaining to the use of the different learning approaches with RF as the main/base classifier. 

The experimental results indicate that minor attacks, such as U2R and R2L are correctly 

categorised by RF without any instance of misclassification, achieving an overall accuracy 

level of 99.98, with most types of attacks classified at 100% accuracy after using data 

resampling. Particular attention is given to the investigation of performance accuracy shown 

by the use of the cost-sensitive learning approach suggested by [109]. It is recognised that this 

particular classifier has a notable impact on RF classifier’s performance behaviour with regards 

to the classification accuracy of the minor class, R2L owing to its significant 30% increase. On 

the other hand, the identification rate for the minor class U2R has only been impacted to a 

minor degree, with correct classification amounting to 69% only marginally higher than when 

compared to using a pure RF classifier. The point is argued that the RF algorithm functions in 

a manner similar to bagging as it is seen to be a form of ensemble learning. However, as can 

be seen, when reviewing the results, it is apparent that RF with bagging classifier demonstrates 
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a better degree of performance than RF as a tree base, pure classifier. However, more 

importantly, the rate of identification of minor class R2L has increased from 67.9% to 97%.   

A further intention of the experiment carried out in this section was to examine RF classifiers 

performance when the ensemble learning approaches referred to as AdaBoosM [205]and 

Bagging [206] are used. It is shown that RF classifier performance with AdaBoostM is the 

same as when using bagging; an increase in the R2L identification rate was witnessed in both 

cases, whereas a decline of accuracy was witnessed in the case of classification of the attack 

U2R when data resampling was not carried out. It is noted that this particular experiment has 

adopted two-hybrid imbalance learning methods, namely bagging with resampling and 

AdaBoostM with resampling. As shown by the findings, the ensemble methods were positively 

affected by data resampling, with all minor categorisations, in addition to major 

categorisations, correctly classified. The conclusion may, therefore, be drawn that, when 

completing multi-classification using RF, data resampling is highly recommended.   

 

Figure 4-4: Random Forest performance when using different learning methods and data resampling 
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Table 4-8: RF performance when using different learning method 

 

 

4.3.3 Classification of Minor Attacks with the Naive Bayes Classifier  

Experiments carried out in this section revealed that data resampling affects the NB classifier 

behaviour, as indicated by the increase in identification ability for U2R, whereas the R2L 

classification accuracy remains the same (see Figure 4-3). Accordingly, a number of 

experiments have been carried out in order to establish reasons for this behaviour and to 

propose alternative approaches that will enable NB classifier to identify R2L attacks accurately. 

Therefore experiments are carried out to investigate the performance of a number of methods 

that can be used to classify imbalanced datasets, i.e. learning approaches, namely bagging, cost-

sensitive and stacking.   

Results in Figure 4-5 show that in the case of R2L attacks, identification accuracy has not been 

changed through the application of the cost-sensitive approach, even when the R2L weight 

classification (see Section 3.3.2) was increased beyond 2. Furthermore, when the popular 

‘bagging’ ensemble learning approach is applied in this regard with NB as the base classifier, 

a slight increase in accuracy of detection in the case of the U2R class (increasing from 84.6% 

to 86.6%) is reported, whilst for R2L the accuracy approximately remains the same. When 

bagging is used with data resampling, there is a further increase of accuracy in U2R 

identification (98.3%), whereas R2L is not seen to demonstrate any change in detection 

accuracy (approximately no change at 38.5%).  

 
Overall Accuracy(weighted average) Accuracy by Class 

Accuracy TPR FPR Precision Normal U2R DoS R2L Probe 

RF without 

resample 99.94% 99.9% 0.1% 99.9% 99.9% 67.3% 100% 67.9% 98.8% 

RF with 

resample 99.98% 100% 0% 100 % 100% 100% 100% 100% 99% 

RF bagging 

without 

resample 99.93% 99.9% 0.1% 99.9% 100% 65.4% 100% 97% 98.7% 

RF bagging 

with resample 99.98% 100.0% 0.0% 100% 100% 100% 100% 100% 99 % 

RF AdaBoosM 

without 

resample 99.93% 99 % 0.1% 99.9% 100% 65% 100% 97% 98.6% 

RF AdaBoosM 

with resample 99.98% 100 % 0 % 100% 100% 100 % 100% 100 % 99.9% 

RF cost-

sensitive 

without 

Resample 99.95% 99.9% 0.1% 99.9% 100% 69.0% 100% 97.8% 99.2% 
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One further ensemble method is that referred to as stacking, which is recognised as bringing 

together various classifiers, with NB selected as the base classifier. When carrying out the first 

of the experiments, the use of NB alongside bagging was applied, with RF selected as the base 

classifier within bagging. The initial accuracy results were recorded without resampling, which 

demonstrated results with an indication of a clear decline in the identification rate for U2R (by 

50%), as well as a high increase in the identification rate of R2L (by 52%). Nonetheless, upon 

completing the experiment again later, this was carried out with resampling, achieving a 

positive outcome: the minor class was correctly classified, with an increased accuracy score 

achieved at 100% for U2R and 98.5% for R2L. Other methods were also examined, the MLP 

classifier being one of them, which was applied as the base classifier for bagging, with NB 

used as the base classifier of the stacking stage; the performance of NB with regards to the 

attack R2L identification did not change.  However, U2R attach detection was completely 

disregarded with 0% accuracy. In another case, NB provided the base of stacking, whilst for 

bagging the base was J48; NP performance was seen to demonstrate a decrease in both R2L 

and U2R classification.  

The conclusion is drawn that, in the case of R2L, NB classification is improved through the 

adoption of a hybrid method bringing together elements of the data-level approach and those 

of the ensemble approach, with the NB and RF bagging method seen to be the most highly 

recommended of those implemented.  
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Figure 4-5: NB based detection of U2R and R2L attacks 
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4.4 Summary and Conclusion 
The research presented in this chapter has directed its attention towards the challenge of multi-

class classification in an imbalanced network IDS dataset, i.e. the widely used KDD Cup ’99 

dataset. A detailed analysis of using different machine learning algorithms popularly used to 

classify data was carried out. Following this in-depth exploration, a number of classifiers were 

found to be biased towards the major classes; subsequently, resulting in the minor classes being 

incorrectly classified.  

The conclusions of the research conducted in this chapter are summarised as follows:  

 There is a strong recommendation for the use of cross-validation as against the use of 

hold-out validation in the performance analysis of a classifier. 

 The bias towards major classes, coupled with the poor performance of some classifiers, 

is a result of data imbalance between classes. It was shown that this can be overcome 

via the application of data resampling prior to classification.   

 The Random Forest classifier’s performance as an ensemble learning approach 

demonstrates its improved outcomes when compared with the use of traditional tree-

based classification algorithms. This is due to the fact that RF utilises a subset of features 

in order for dividing tree nodes throughout the course of application of bagging, taking 

into account all aspects for splitting a node. Accordingly, the conclusion is drawn that 

the distribution of dataset elements between classes and the imbalance that exists 

influences RF performance. Accordingly, when using RF classifiers, it is recommended 

that data-resampling is applied within ensemble methods, namely AdaBoosM or 

bagging.  

 For classification of the minor attack R2L, NB classification demonstrates improved 

outcomes via a hybrid method that takes and brings together the data-level approach and 

combines this with an ensemble approach. In this particular work, the recommendation 

is to apply the NB method alongside RF bagging.  

 

In line with the above observations and conclusions, there is a recognised need to conduct 

further R&D work examining the factors that underpin the R2L attack’s misclassification, even 

when using cost-sensitive learning and resampling. Chapter 5 will seek to explore this research 

challenge in more detail.   
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Chapter 5 : Class Imbalance within Class for the Minor Attacks 

5.1 Introduction  

In the field of machine learning, one of the most widely recognised fundamental challenges is 

the presence of imbalanced data, where such datasets are seen to relate to those data with a 

skewed class distribution.  In such instances, at least one of the classes is seen to have a much 

larger number of samples (an example of a major class) when compared with the others (i.e. 

especially w.r.t minor classes). The issue with imbalanced datasets is that the classical machine 

learning algorithms (e.g. ANN and DT) are biased towards the major class (es), as highlighted 

in the study of [107]. Therefore, a poor classification rate is witnessed amongst the minor 

classes. In this case, at times, some classifiers opt to disregard the minor classes, as has been 

investigated in various works[73], [84], whereas a significant overall accuracy is still achieved 

as proven by the work of [71]. Due to this latter reason in many research work presented in 

literature the classifiers are operated with the assumption that there is a balance in the dataset’s 

class distribution. However, such an approach will not lead to an optimal classification of data 

in the presence of class imbalance.  

In Chapter 4 the issue of class imbalance was investigated with respect to network attacks. 

Conclusions were made as to how one could deal with optimising the accuracy of detecting 

both major and minor network attacks within an IDS. However, this work also concluded that 

some of the attacks do demonstrate class imbalance, within-class, due to the presence data 

skewness as a result of attacks that can be classified as sub-minor attacks within minor attacks 

or sub-major attacks within major classes. As in major classes, the number of data instances is 

high, our detailed analyses revealed that sub-major classes do not have a negative impact of 

the classification of major attacks [71], [207]. On the contrary, sub-minor attacks have a 

significant impact on the classification accuracy of minor classes as will be investigated in this 

chapter. Hence this chapter is dedicated to the study of optimising sub-minor attack 

classification in network IDS. 

For clarity of presentation, this chapter is divided into several subsections. Apart from this 

section which provides an introduction to the research problem to be investigated in this 

chapter, Section 5.2 defines within-class data imbalance within the context of imbalanced 

datasets. Section 5.3 the well-structured research methodology adopted in this chapter to 

investigate within-class data imbalance. Section 5.4 provides an experimental system design 

flowchart for clarity of presentation. Section 5.5 provides experiment setup, and in Section 5.6, 
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NB detection accuracy across minor attacks are discussed. Section 5.7 anlayse the Factors 

Underpinning Inadequate Identification of R2L by NB. Section 5.8 presents summary and 

discussion.  

5.2 Class Imbalance within a Class 
The class imbalance within a class relates to the small disjuncts in data, which are recognised 

as been the data sub-groups, within a class. In this vein, the investigations carried out in [208] 

concluded that these small disjuncts resulted in producing classification errors. The authors in 

[207].presented that in some occasions the classifiers ignore the minor disjuncts, as the larger 

disjuncts are used to build the model. Accordingly, conclusions were made that class imbalance 

between classes might not be able to achieve optimal classification performance when data 

imbalance exists within some classes. A number of attempts have been made since to address 

the issue of both between class and within-class imbalance. Furthermore, it was established in 

[71] that specifically within-class imbalance within minor subclasses (i.e. due to the presence 

of sub-minor classes) can subsequently result in poor classification accuracy between classes 

(major vs minor). 

5.3 Research Methodology 

5.3.1 The Proposed ML Framework to Address within Class Imbalance 

The proposed framework has been developed in line with the internationally accepted 

framework for data mining, CRISP-DM (Cross-Industry Process for Data Mining )[209]. This 

framework is widely adopted in order to overcome challenges with the adoption of DM [210] 

in practical application domains. It consists of progressive stages of design considerations and 

models, as illustrated in Figure 5-1 and summarised below:  

1. Business insight: In the event of classification of minor attacks, poor accuracy of 

detection and hence performance was witnessed during investigations carried out in this 

thesis, when using the Naïves Bayes classifier, used widely for the purpose of attack 

classification in existing IDS.  

2. Data insight: Through the use of the KDD ’99 dataset for experiments, the presences 

of a number of duplicate records were established, within and between minor classes. 

The dataset was also found to be imbalanced (see Chapter 3).  

3. Data preparation: Data pre-processing is carried out, ensuring that major class bias 

and skewed class distribution are both circumvented through dataset resampling and 

duplicate records removal. [See Section 5.5 ‘experimental setup’ for more details].  
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4. Modelling: In this chapter, we apply different ensemble learning techniques and 

algorithms to determine the best model that enhances the detection accuracy of minor 

attacks when the most frequently used classifier in-network IDS, i.e., NB is used. [See 

section 5.5 for more details].   

5. Evaluation: Evaluating each technique investigated with the use of attack/class 

detection accuracy metric to verify that business/application goals are met and to 

confirm the best model for the given application. [See Section 5.6].  

6. Application: Information related to data collection, modelling, and implementation of 

the proposed framework is included in this thesis, enabling knowledge exchange with 

the R&D community in network IDS enabling the framework’s practical application. 

 

5.3.1.1 Business Insight 

The majority of investigations carried out in the network IDS domain have sought to establish 

the most effective framework for attack classification with the aim of improving and enhancing 

the overall attack classification accuracy. In such attempts, it has been assumed that the classes 

are balanced. Appreciating the possibility of class imbalance, some authors have investigated 

the use of ensemble learning algorithms with various base classifiers; however, the detection 

accuracies of all type of attacks have not been documented in detail. In such work, the attention 

was only directed towards various classifiers’ overall performance. In the presence of class 

imbalance, the proposed algorithms were therefore noted to encompass bias in relation to the 

major classes, which therefore results in a significant false error rate particularly in the case of 

the detection of minor classes. 

However, a smaller number of different studies have focused on examining attack detection in 

imbalanced datasets, with such techniques only investigating class imbalance, between classes 

(i.e. major vs minor). To the best of the author's knowledge, no work has been carried out in 

studying the challenges faced by the presence of sub-minor attacks, i.e. the presence of within-

class data imbalance in minor classes. For example in the case of the KDD ’99 dataset, the sub-

minor classes R2L and U2R (sub-minor attacks) are present but no study has investigated in 

detail whether the presence of sub-minor attacks is the reason for the reduced accuracy often 

demonstrated in detecting minor classes. This is the key focus of the research presented in this 

chapter.  
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Figure 5-1: Proposed imbalanced dataset classification methodology 

5.3.1.2 Data Insight 

When utilising the KDD Cup ’99 dataset, a critical analysis was carried out as presented in 

Section 3.2. The most pressing of considerations warranting research attention was shown to 

be the imbalanced nature of the dataset and the presence of duplicate records. In specific 

regards to the classes of this dataset, there is a total of five classes, each of which was shown 

to have sub-classes. The dataset classes, in addition to sub-classes, are shown in Table 5.1. 

5.3.1.3 Modelling 

Across the course of this research work, the application of a number of different ensemble 

methods and approaches will be examined, and the results will be analysed in detail. The 

proposed investigation framework is illustrated in detail in the Figure 5-2. In this case, Meta-

learning (here stacking is used as described in section 3.3.3) provides the basis of the proposed 

heterogeneous system. The suggested framework comprises of two different phases: in the case 

of the first, there is the transfer of the pre-processed/balanced training dataset to the Navies 

Bayes algorithm, and the decision boundary of the class is studied for correct classification. 

Accordingly, NB output is adopted as the input to a Random Forest algorithm, which is viewed 

as being a second-level meta classifier. Importantly, the classes’ decision boundary which is 

identified as being close to the neighbour class is entirely circumvented. More details of this 

model will be provided in section 5.4. 
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5.3.1.4 Evaluation 

Throughout the evaluation phase, the suggested framework undergoes an assessment and a 

detailed analysis will be carried out. The metric applied for assessment is the attack accuracy. 

Owing to the fact that the emphasis of this work is centred on minor attacks, the accuracies of 

the detection of these attacks are detailed. Accordingly, when examining the overall accuracy 

of minor attacks, it is seen to be affected by the accuracy of their sub-minor attacks (R2L and 

U2R).  

5.4 The Heterogeneous Model 
In this chapter, the proposed classification approaches are structured as heterogeneous systems, 

which are predominantly based on stacking, as discussed earlier in the work. Figure 5-2 details 

the framework’s adopted workflow, with the preliminary stage concerned with pre-processing, 

meaning there is the creation of the balanced dataset through the adoption of imbalance 

learning within classes. Following, there is the building of a heterogeneous system, which is 

focused on improving NB detection for minor attacks. The system is seen to comprise two 

different stages: the first stage considers the passing of the training dataset through to the NB 

classifier, with the sub-minor classes providing the basis for the NB to build classification. 

Accordingly, following this stage, NB related performances and results will be utilised as an 

input for bagging with RF as the base classifier. Therefore, based on the decision that is agreed 

on the heterogeneous system the classification result will be produced. Accordingly, there is 

the adoption of the evaluation metric so as to assess the generated decision. In this case, the 

detection accuracy for all minor attacks is considered as the evaluation metric.  
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Figure 5-2: Flowchart for the study methodology 

5.5 Experimental Setup 
In an effort to achieve dataset balance and to further circumvent skewed class distributions; 

two dataset pre-processing stages are implemented: the removal of duplicate records and 

resampling. Notably, in this work, the sampling value taken is 0.1, as the other values (over 

0.1) were experimentally determined to have an on the various instances of the major class. 

With this value, however, there is a minor increase in the minor class, whilst a slight decrease 

is seen in a major class. Neither of these changes was found to have an impact on the dataset’s 

original distribution. Table 5-1 provides the count of sample values, of each class before and 

after each of the two pre-processing stages. It shows that classes with U2R, R2L categorisation 

has a relatively lower amount of samples, before sampling when compared to classes with 

categorisation as DOS, Probe, etc. 

Stacking 
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Table 5-1: KDD cup dataset class distribution before/after pre-processing and resampling 

5.6 NB Imbalance Learning within Classes  
In line with the findings detailed in Section 4.2.3, NB detection accuracy across minor attacks 

is recognised as low. Throughout this chapter, the experiments carried out investigate 

imbalance learning within classes, as opposed to between classes. As detailed in Table 5-2 and 

Table 5-3, each sub attacks accuracy is provided both prior to and after data resampling when 

using NB and three different heterogeneous learning algorithms that use NB. It is obvious that 

the detection accuracy of some sub-minor attacks is behind the poor performance in the 

models’ ability to detect the minor attacks. The overall accuracy concerning the detection of 

U2R attacks, as seen detailed in Section 4.2.3, are improved owing to the fact that all of U2R 

sub-attacks’ identification accuracy has increased after resampling. However the same cannot 

be said about R2L sub-attacks when using NB and its variants. 

 

No Attack Class 

Label 

Count with 

Duplicates 

Count without 

Duplicates 

Count without 

Duplicates and with 

resampling 

Attack 

Category 

1.  back 2203 968 1504 DoS 

2.  Teardrop 979 918 1459 DoS 

3.  Loadmodule 9 9 641 U2R 

4.  Neptune 107201 51820 47270 DoS 

5.  Rootkit 10 10 641 U2R 

6.  Phf 4 4 636 R2L 

7.  Satan 1589 906 1448 Probe 

8.  Buffer_overflow 30 30 659 U2R 

9.  ftp_write 8 8 640 R2L 

10.  Land 21 19 650 Dos 

11.  Spy 2 2 634 R2L 

12.  Ipsweep 1247 651 1218 Probe 

13.  Multihop 7 7 639 R2L 

14.  Smurf 280790 641 1209 DoS 

15.  Pod 264 206 818 DoS 

16.  Perl 3 3 635 U2R 

17.  Warezclient 1020 893 1436 R2L 

18.  Nmap 231 158 775 Probe 

19.  Imap 12 12 643 R2L 

20.  Warezmaster 20 20 650 R2L 

21.  Portsweep 1040 416 1007 Probe 

22.  Normal 97277 87831 79680 Normal 

23.  Guess_passwd 53 53 680 R2L 

 Total: 494020 145585 145572  
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 Table 5-2: NB detection accuracy for each sub-minor attack before resample 

 

 

 

 

  

 NB Bagging (NB) Stacking (NB) + RF Stacking (NB) +Bagging(RF) 

Overall Accuracy 78.0% 79.0% 99.77% 99.70% 

TP Rate 78.1% 79.0% 99.8% 99.8% 

FP Rate 0.1% 0.1% 0.3% 0.3% 

Precision 97.2% 97.3% 99.7% 99.7% 

back 97.3% 97.2% 97.7% 97.5% 

teardrop 99.6% 99.7% 99.6% 99.6% 

loadmoudle 55.6% 55.6% 0.0% 0.0% 

neptune 99.4% 99.6% 100.0% 100.0% 

rootkit 50.0% 50.0% 0.0% 0.0% 

phf 75.0% 75.0% 25.0% 25.0% 

satan 94.2% 94.2% 95.7% 95.4% 

buffer_overflow 20.0% 56.7% 50.0% 50.0% 

ftp_write 62.5% 62.5% 0.0% 0.0% 

land 94.7% 94.7% 78.9% 84.2% 

spy 100.0% 50.0% 0.0% 0.0% 

ipsweep 92.8% 95.4% 97.4% 96.8% 

multihop 28.6% 14.3% 0.0% 0.0% 

smurf 99.7% 99.7% 98.4% 98.4% 

pod 98.5% 98.5% 97.6% 96.6% 

perl 33.3% 33.3% 0.0% 0.0% 

warezclient 48.0% 52.9% 93.2% 92.3% 

nmap 18.4% 18.4% 81.0% 79.1% 

imap 91.7% 91.7% 75.0% 75.0% 

waremaster 85.0% 85.0% 75.0% 75.0% 

portsweep 72.6% 76.2% 96.4% 95.7% 

guess_passwd 94.3% 94.3% 94.3% 94.3% 

normal 65.0% 79.0% 99.9% 99.9% 
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Table 5-3: NB detection accuracy of each sub-minor attack after resampling 

 

 

 NB  Bagging NB Stacking (NB) + RF Stacking (NB) +Bagging(RF) 

accuracy 79.20% 77.52% 99.89% 99.80% 

TP Rate 79.2% 77.5% 99.9% 99.9% 

FP Rate 0.2% 0.2% 0.1% 0.1% 

Precision 93.6% 93.6% 99.9% 99.9% 

back 97.7% 97.8% 99.1% 98.8% 

teardrop 99.5% 99.5% 99.8% 99.7% 

loadmoudle 77.8% 77.8% 100.0% 100.0% 

neptune 99.4% 99.4% 100.0% 100.0% 

rootkit 90.0% 90.0% 100.0% 100.0% 

phf 100.0% 100.0% 100.0% 100.0% 

satan 93.9% 93.8% 98.1% 97.4% 

buffer_overflow 20.9% 20.9% 100.0% 100.0% 

ftp_write 100.0% 100.0% 100.0% 100.0% 

land 100.0% 100.0% 100.0% 100.0% 

spy 100.0% 100.0% 100.0% 100.0% 

ipsweep 94.3% 94.2% 98.5% 98.4% 

multihop 51.8% 52.4% 100.0% 100.0% 

smurf 99.7% 99.7% 99.8% 96.6% 

pod 99.1% 99.1% 100.0% 100.0% 

perl 100.0% 100.0% 100.0% 100.0% 

warezclient 53.2% 54.7% 97.6% 96.6% 

nmap 20.0% 20.0% 99.0% 98.3% 

imap 90.8% 90.8% 100.0% 100.0% 

waremaster 95.4% 95.4% 100.0% 100.0% 

portsweep 74.1% 75.7% 99.7% 99.7% 

guess_passwd 99.4% 99.4% 100.0% 100.0% 

normal 66.0% 62.9% 100.0% 99.9% 
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5.7 The Factors Underpinning Inadequate Identification of R2L by NB 
Across the completion of this experiment, the factors seen to underpin the inadequate 

identification of R2L attacks through NB has been examined. It is apparent that NB detection 

for U2R attacks is improved after resampling; however, in the case of R2L, there is no 

difference. Accordingly, exploration is carried out in relation to the sub-minor attack of KDD 

cup 99 datasets; this is done in order to establish the factors behind this situation. As has been 

documented in Table 5-1, eight different sub-minor attacks are incorporated within R2L, 

namely ftp_write, guess_passwd, imap, multihop, phf, spy, waremaster, and warezclient. 

 5.7.1 The Accuracy of NB Based Detection Architectures for R2L Sub-Attacks 

In the experiments of this section, the emphasis is placed only on the eight sub-minor attacks 

encompassed within the R2L. The identification accuracy of the NB and its variant on such 

attacks is explored through eight experiments, as detailed in Table 5-4. Such experiments are 

centred on using NB, ensemble learning approached (stacking, RF and bagging) and 

resampling.  

As is apparent from the results tabulated in Table 5-4, the identification accuracy of using NB 

as a stand-alone classifier is significantly improved after resampling across all of the minor 

attacks, with the exception of the multi-hop and warezclient. This is observed by the fact that 

the identification accuracy of these two attacks is 51.8% and 53.2% with resampling and 52.4% 

and 54.7% when using resampling and bagging with NB as the base classifier. This is despite 

the fact that for the other sub-minor attacks’ detection accuracy is over 85% for the same two 

classification approaches, after using resampling.  

A further observation is that without resampling, Stacking (NB) and Bagging (RF) / RF results 

in poor classification accuracies for all of the sub-minor attacks. The within-class data 

imbalance is thus having a significant impact on the performance of these classification 

approaches. It also suggests that there is no point in carrying out Bagging with RF as the base 

classifier. RF as a standalone learning algorithm performs as an ensemble learner. 
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Table 5-4: NB detection accuracy for R2L sub-attacks, before and after resampling 

 

 

5.7.2 Using Stacking for Improving the Accuracy of Detection of Multihop and Warezclient 

Attacks 

 Owing to the poor level of NB based detection accuracy in the case of multihop and 

warezclient attacks even after bagging and resampling is used, in an effort to improve detection 

further, an ensemble algorithm —notably stacking—is proposed. The stacking structure that 

functions effectively involves NB being selected as the base classifier followed by RF as the 

base classifier of bagging. As shown in Figure 5-3, the detection accuracy of the two sub-minor 

attacks demonstrates significant improvement through stacking, with the increase seen to be 

around 50%. The accuracy is 100% for multihop and 96% for warezclient attack detections 

  

 

 

 

 phf ftp_write spy multihop warezclient imap Waremaster 

Guess- 

passwd 

NB without 

resample 75 % 62.5% 100% 28.6% 48.0% 91.7% 85.0% 94.3% 

NB with 

resample 100% 100% 100% 51.8% 53.2% 90.8% 95.4% 99.4% 

Bagging NB 75 % 62.5% 50% 14.3% 52.9% 91.7% 85.0% 94.3% 

Bagging NB 

with 

resample 100% 100% 100% 52.4% 54.7% 90.8% 95.4% 99.4% 

Stacking 

(NB)+ RF 25% 0% 0% 0% 93.2% 75.0% 75.0% 94.3% 

Stacking 

(NB) + RF 

with 

resample 100% 100% 100% 100% 97.6% 100% 100% 100% 

Stacking 

(NB) + 

Bagging(RF) 25% 0% 0 %    0% 92.3% 75.0% 75.0% 94.3% 

Stacking 

(NB) + 

Bagging(RF) 

with 

resample 100% 100% 100% 100% 96.6% 100% 100% 100% 
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5.7.3 The Factors Underpinning the Misclassification of Multihop and Wazerclient  

5.7.3.1 Multihop Misclassification 

Following examination of the NB classifier performance in the identification of multihop 

attacks, it has been established that, as a result of a number of potential misclassifications with 

other types of attacks, NB performance in the case of multihop classification does not 

demonstrate significant increase after resampling. Such misclassifications are detailed in Table 

5-5, which provides details of the experiments’ misclassification after resampling, with only 

other sub-minor attacks causing misclassification. It is apparent that, across the various 

experiments, the multihop is misclassified as Rootkit, Phf, ftp_write, Imap and Warezmaster. 

Without the adoption of resampling in the instance of NB, identification accuracy is seen to be 

28.6%. Where, 5 samples of 7 multihop attacks are misclassified; notably, 2 were incorrectly 

classified as Rootkit. In consideration to resampling across NB, a total of 331 out of 639 

samples (note: the number of samples has increased from 7 to 639 as a result of resampling) 

were classified in the correct way, with 308 demonstrating misclassification. Accordingly, in 

line with this, NB identification accuracy after resampling was found to be 51.8%. Nonetheless, 

NB based identification as the base classifier of the ensemble learning approach bagging 

demonstrates some degree of increase of accuracy through the correct classification of 335 out 

of 639 samples. The most promising outcomes are achieved through stacking, where no 

misclassification was identified, with the correct classification seen across all 639 samples. 

Accordingly, when utilised alongside stacking, NB identification accuracy was found to be 

100%. 

: NB detection for multihop and warezclient  Figure 5-3: NB based detection accuracy for multihop and warezclient sub-minor attacks with 
resampling. 
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Table 5-5: Multihop - correct classifications 

 

5.7.3.2 Warezclient Misclassification 

In line with the findings garnered through the completion of the experiments, it is apparent that, 

as a result of various misclassifications, resampling did not achieve significant results in 

regards the detection of warezclient by NB. Table 5-6 presents an overview of such erroneous 

classifications, in addition to the sub-minor attacks resulting in such misclassifications. As it is 

demonstrated in the first experiment, NB prior to the application of resampling, 464 out of 893 

samples of warezclient were misclassified. Therefore, warezclient identification accuracy is 

seen to be 48%. Nonetheless, after resampling, NB detection for the warezclient is enhanced 

with resampling as 764 out of 1436 warezclient samples are correctly classified meaning an 

improved detection accuracy of 53.2%. Where the warezclient detection accuracy is slightly 

increased, 54.7%, with bagging after resample as 785 out of 1436 are correctly detected. 

Following the application of stacking, where NB provides the foundation and RF is the second 

classifier, there was a significant improvement in NB performance, with the score achieved 

97.6%, with 1401 out of 1436 correctly classified. Nonetheless, in the case of stacking NB and 

RF rather than stacking NB and bagging, with RF as the base of bagging, NB identification of 

warezclient was found to be more proficient.  

 

 

 

 

 

  
NB Before 

Resample 

NB after 

resample 

NB 

bagging  

 stacking NB + 

RF   

 stacking NB + bagging 

RF   

Rootkit 2 - 122 - - 

Phf - 126 - - - 

ftp_write 1 91 91 - - 

Multihop 2/7 331/639 335/639 639/639 639/639 

Imap 1 - - - - 

Warezmaster 1 91 91 - - 
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Table 5-6: Warezclient-correct classifications 

5.8 Summary and Conclusion 
NB classifier is the most widely used classifier in state-of-the-art intruder detection systems. 

The review of literature carried out as a part of this thesis revealed that existing work fails to 

explain why the NB classifier underperforms in the classification of imbalanced datasets.  

The research presented in this chapter has rigorously explored NB classifier behaviour in the 

presence of imbalanced data, with the conclusion drawn that, for minor attacks, namely R2L 

and U2R, NB identification requires improvement via the adoption of resampling and ensemble 

learning methods. Nonetheless, following the adoption of resampling, U2R identification is 

notably enhanced but a similar improvement is not demonstrated in the detection of R2L 

attacks.  

Following an in-depth examination, this chapter revealed that as a result of various 

misclassifications with other sub-minor attacks, R2L identification is not enhanced following 

the application of both bagging and resampling. Accordingly, learning in the presence of 

imbalanced data within class presents the main focus of this work, as opposed investigating 

between classes data imbalance. Specifically, the detection accuracy of the R2L sub-minor 

class was highlighted in this regard. It has been shown that NB classifiers lowest identification 

accuracies relate to the recognition of multihop and warezclient attacks. These are erroneously 

  
NB Before 

Resample 

NB after 

resample NB bagging   

 stacking 

NB + RF   

 stacking NB + 

bagging RF   

  Warezclient Warezclient Warezclient Warezclient Warezclient 

Loadmodule 25 55 55 - - 

Neptune - 82 - - - 

Rootkit 54 - 76 - - 

Phf - 3 - - - 

Satan 2 145 3 - - 

Buffer_overflo

w 137 328 151 - - 

ftp_write 181 - 315 - - 

Spy - 11 - - - 

Ipsweep 8 - 8 - - 

Smurf 4 9 - - - 

Pod 23 - 4 - - 

Warezclient 429/893 764/1436 785/1436 1401/1436 1387/1436 

Nmap 5 4 7 - - 

Warezmaster 19 29 26 - - 

Portsweep 2 2 2 - - 

Normal 4 4 4 35 49 
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classified as a result of the need to select specific features in the classification. As such, Naïve 

Bayes should be used in combination with other statistical methods so as to facilitate 

establishing the most appropriate and valuable aspects for classification. In this regard, stacking 

is applied in order to bring together NB and bagging.  

As the NB classifiers, poor performance in classifying R2L attacks are as a result of erroneous 

misclassifications between sub-minor attacks, feature selection could be applied in an effort to 

establish the more individualistic features of the minor attacks and their sub-minor classes. The 

combined use of pre-processing approaches, feature selection, and resampling should be 

investigated. In this vein, Chapter 6 provides insight into whether feature selection should be 

adopted first or whether this should follow resampling. Accordingly, Chapter 7 presents a 

discussion as to the unique aspects of the attacks, as well as their sub-minor attacks, with 

experiments carried out in this regard. 
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Chapter 6 : Impact of the Structure of Data Pre-processing Pipelines 

on the Performance of Classifiers When Applied to Imbalanced 

Datasets  

6.1 Introduction 
Class imbalance is seen to signify a challenge inherent in training datasets that arises due to the 

lack of proportion of the number of instances present between various classes.  Such a challenge 

can arise in the case of both multi-class and binary-class datasets.  In the case of the former, all 

classes are seen to comprise a particular proportion of samples, with more conventional 

learning algorithms devised in such a so as to minimise errors across major classes, but with 

little attention directed towards minority classes, which ultimately results in inadequate 

accuracy across such classes. In relation to binary-class datasets, it is assumed that the positive 

samples belong to the minority classes whilst the negative samples belong to the majority 

classes.  

In either of the above cases however, when striving to achieve a greater degree of efficiency or 

accuracy in prediction of classes, it is common for feature selection to be employed across a 

dataset. More specifically, the building of feature representations and classification models are 

enabled through the very likely presence of a limited but nonetheless prominent feature set able 

to represent instances of a class. Nonetheless, any inadequate feature selection could ultimately 

result in a lesser degree of discrimination power between classes, meaning that the generated 

recognition system may have a lower degree of accuracy. Thus, feature selection is recognised 

as a valuable direction of investigation in the field of machine learning and has accordingly 

generated significant research interests.  

In the application of a supervised classification method, the classifications are dependent on a 

decision boundary derived from a number of different training samples. Classifier performance 

quality is usually influenced by the inherent drawbacks of the classification algorithm as well 

as by the inherent complexity of learning from such samples. The typical reasons for 

misclassifications to occur are, class overlap, class imbalance, noisy features, low ratios of a 

sample size to dimensionality, and irrelevant or redundant features been used in the 

classification. Such hurdles are commonly overcome prior to learning, notably through the 

application of a pre-processing approach geared towards enhancing the power of the training 

data. Upon the dual presence of such issues, original training dataset needs to be pre-processed.   

However, the question remains as to which method should be adopted for pre-processing.  
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Given the above observations, the research presented within this chapter sets out to investigate 

the importance of feature selection on the classification accuracy of a classifier, in the presence 

of class imbalance. The results of this study can provide important recommendations for 

machine learning and data mining practitioners when designing their classification pipelines, 

suggesting which combination of pre-processing algorithms would be worthwhile to adopt in 

applications that need to solve the challenges that arise from imbalance learning problems and 

more specifically attack classification problem. This chapter centres on the dual utilisation of 

resampling techniques and feature selection approach within a data preprocessing pipeline of 

a network IDS, and explores which one, when implemented in what order, would achieve the 

superior classification results for a given classifier.  The two combinations of approaches to be 

considered will be referred to as RS+FS versus FS+RS; RS+FS may be taken to infer that the 

training dataset is resampled first, with the features then selected, whereas FS+RS represents 

the feature selection to proceed to resample. 

For clarity of presentation, this chapter is divided into a number of sub-sections. Apart from 

this section which refers the reader to the research problem that is to be investigated, Section 

6.2 presents the experimental methodology and Section 6.3 critically analyse the results 

obtained. Finally, Section 6.4 summarises the findings and concludes. 

6.2 The experimental Setup  
The key objectives underpinning the design and implementation of the experiments are the 

combined application of resampling and feature selection methods, and to determine which 

order of adoption leads to the most optimal performance of a classifier. Given that there are 

many different feature selection approaches and many different resampling techniques to be 

considered, the following two experimental scenarios are adopted in the proposed 

investigations:  

 Scenario 1: All of the feature selection methods are applied in isolation first, using the 

original dataset. Subsequently, the selected features are appropriately sampled to create 

the training data set. (FS+RS) 

 Scenario 2: A feature selection method is applied to an appropriately sampled dataset. 

That is, feature selection is carried out on an already sampled dataset. (RS+FS)  

The performance of three popular classification algorithms is investigated, with different 

combinations of feature selection and resampling algorithms, applied under the two scenarios 

above. The use of NB algorithm is investigated as a Bayesian network, whereas the use of 
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Random Forest is investigated when used as a decision tree, with stacking as the ensemble 

learning approach to be adopted. Furthermore, the default values are set as the classifier 

parameters as implemented by the Weka library for the RF and NB, whilst NB classifier is used 

in stacking and bagging (RF) implementations.  

Irrespective of the fact that improved outcomes could potentially arise as a result of the tuning 

of the most appropriate and correct parameters, in the case of all experiments, default 

parameters are adopted across all of the classification algorithms. This, in some way, can lead 

to baseline performance being maintained as the key base for comparison. In essence, the 

current work’s focus is centred not only on the analysis of the benefits and disadvantages 

associated with the use of the categorisation algorithm but also the combined effect associated 

with the resampling and feature selection in relation to imbalance learning. As such, in the case 

of all of the experiments, for all of the classification algorithms, the default parameters are 

adopted, as well as for feature selection. With a direct link to the aforementioned, so as to 

determine the most prevalent and noteworthy differences with regards to the findings to be 

concluded through the methods to be implemented; there is a need for statistical analysis to be 

carried out. Importantly, there is also a need for an experimental stage to be included, which is 

both detailed and wide-ranging, making use of a 10-fold stratified cross-validation test to 

analyse the performance of a number of different classification algorithms, 7 feature selection 

methods (6 of which are acknowledged as being ranking approaches, whereas one is seen to be 

the best first method—cfs), and  the random under-resampling approach (widely recognised as 

achieving a high level of balance across specific data sets, notably via the random negation of 

instances from the majority class) as the only sampling method. Eventually, a number of 

different approaches are taken into account, resulting in the completion of 42 experiments in 

total.  

6.3 Experimental Result and Analysis  

6.3.1 The Selected Features  

The features selected under the two experimental scenarios, when different feature selection 

algorithms are used, are presented in this section. As detailed in Table 6-1 and 6-2, the feature 

ranking of each algorithm differs from one algorithm to the next (Note: the selected features 

are presented in rank order in both tables, with the first listed feature having the highest rank). 

Furthermore, when examining each algorithm, there is a different selection of features and 
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rankings when the two scenarios are used, i.e. depending on whether the feature selection 

method is implemented on the resampled dataset or on the original dataset before resampling.  

It is noted that all of the different feature selection algorithms decide on a different number of 

selected features. This number is based on the parameter selections associated with each feature 

selection algorithm. In our experiments, we used default parameters for all feature selectors. 

However, it is possible to keep the subsequent computational cost of using the selected features 

in classification fixed by selecting the best-N features for all classifiers. For example when 

N=5, CFs selects features f1, f3, f4, f5, and f6 when using scenario-1 but uses features f3, f4, 

f5, f6, and f7. When using scenario-2. Feature f1 has been replaced by f7 but at a different rank 

order. In other words, the highest-ranked feature under scenario-1 is no longer a discriminant 

feature under scenario-2. This is an interesting and powerful observation. Further, the best five 

features that are selected by the ‘correlation’ feature selection approach are f29, f33, f34, f38, 

f39 when using scenario-1 and f29, f34, f38, f25, f39 when using scenario-2. The comparison 

of CFs and ‘correlation’ feature selection approaches reveal that they have resulted in a 

completely different set of features. This indicates that it will also be important to determine 

the accuracy of classification that will result from these selections, prior to one deciding on the 

final set of features.  

Which selection of features should be selected can only be concluded based also on the 

classification accuracy a particular feature selection achieves. Therefore section 6.3.2 carries 

out experiments to determine classification accuracies obtainable when using different 

classifiers, when a particular feature selection is used, before or after resampling.  
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Table 6-1: The selected Feature in case of RS+FS 

 

Table 6-2: The selected feature in case of FS+RS 

 

6.3.2 Impact of Resampling and Feature Selection on Classification Accuracy 

In this section, we investigate the performance of classifiers, NB, Random Forest and Stacking 

under the two scenarios mentioned in Section 6.2. Upon examination, it would become 

apparent which order of application could achieve the most promising results (scenario-1 or 2) 

and through the adoption of which feature selection method/s.  

With the application of NB in the role of learner, it is seen through the results in Table 6-3 that, 

in examining incorrectly classified instances (ICI), Fs+Rs is seen to perform better than Rs+FS 

Resampling +Feature Selection 

NO. Feature Selection Method Feature Ranking 

1. CFs f1,f3,f4,f5,f6,f7,f8,f10,f12,f23,f25,f26,f29,f30,f32,f33,f34,f35,f36,f37, 

f38,f39 

2. Correlation f29,f33,f34,f38,f39,f25,f26,f4,f23, 

f12,f32,f31 

3. GainRatio f7,f8,f11,f14,f18,f15,f13,f10,f17,f4,f26,f25,f9,f19,f39,f16,f12,f38,f30 

4. InfoGain f5,f3,f6,f23,f33,f35,f30,f29,f4,f34, 

f38,f39 

5. OneR f5,f3,f30,f29,f23,f6,f4,f35,f34,f33, 

f38,f39,f25,f26,f12 

6. ReflieF f3,f4,f38,f12,f26,f25,f39,f34,f33,f29,f32,f36,f2,f23 

7. SymmetricalUncert f3,f4,f30,f38,f29,f39,f5,f25,f26,f12,f35,f6,f23,ff34,f33,f36,f37,f32,f1 

Feature Selection + Resampling 

NO. Feature Selection 

Method 

Feature Ranking 

1. CFs f3,f4,f5,f6,f7,f8,f10,f12,f23,f25,f26,f29,f30,f32,f33,f34,f35,f36,f37,f38,f39  

2. Correlation f29,f34,f38,f25,f39,f26,f23,f4,f33, 

f12,f3,f32 

3. GainRatio f8,f7,f13,f11,f26,f25,f4,f10,f30,f12,f39,f38 

4. InfoGain f5,f3,f30,f29,f23,f4,f35,f34,f33,f6,f38,f25,f39,f26,f12 

5. OneR f30,f29,f5,f3,f23,f35,f4,f34,f33,f38,f25,f39,f26,f6,f12,f36,f32 

6. ReflieF f4,f3,338,f12,f26,f25,f39,f33,f34,f29 

7. SymmetricalUncert f30,f4,f25,f29,f38,f3,f39f12,f5,f35,f34,f6,f23,f33 
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in the majority of the cases; this is seen to be the case with the exception of the application of 

the feature selection methods of GainRatio, oneR, and ReliefF. In the instance of using Random 

Forest classifier, on the other hand, in the majority of instances, the most optimal results are 

garnered by Rs+FS as opposed to FS+RS. Such a finding is rationalised with consideration of 

the inherent capacity of a decision tree to choose the most appropriate features throughout the 

training. Stacking performance, in the majority of instances, is seen to achieve greater 

outcomes in the scenario of RS +FS than in Fs+Rs.  

When considering feature selection from the algorithm perspective, the majority are seen to 

result in the most optimal classification in the sequence in which resampling is adopted prior 

to feature reduction, Rs+Fs. Nonetheless, the most optimal performance of Naives byase is 

recognised as garnered through the application of the symmetricalUncert method, where 

feature reduction is carried out prior to resampling, achieving an overall accuracy of 80.6%, 

with 19.4% ICI. Moreover, in specific regards RF, the most optimal performance is seen to be 

achieved through the application of SymmetricalUncert, achieving 99.98% accuracy with only 

36 points of misclassification across the Rs+FS order.  

The final row provides insight into the degree to which average features are mainly ranked in 

line with the running feature selection approaches influencing the used classifier performance. 

The most optimal performance is when resampling is adopted after feature selection (FS+RS) 

and is achieved through NB and RF, whereas the most optimal identification is achieved by 

Stacking in regards Rs+Fs. Owing to the fact that stacking in RS+FS case, to some degree, 

outperforms Fs+Rs, with only 18 more instances being correctly classified. Whilst, 388 were 

incorrect through the adoption of Fs+Rs; this was seen to be 370 instances under consideration 

of Rs+Fs. 
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Table 6-3: Classifiers’ Performance on the Application of Resampling and Feature Selection Approaches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 Summary and Conclusion 
When examining the KDD cup’ 99 dataset, there is a lack of balance across class distribution, 

with a requirement to decrease feature space dimensionality. The current study explored 

whether or not feature selection in line with a particular approach could overcome dataset 

skewness or whether, in fact, the contrasting pipeline would demonstrate greater performance. 

The results that underwent statistical analysis revealed that both pipelines are recognised as 

worthy of consideration, when there is a need of it, to get an optimal classification model. This 

is concerned with the classifier adopted and the feature selection methods applied. In a greater 

 NaivesBayes RandomForest Stacking  

 Acc ICI Acc ICI Acc ICI 

Cfs Fs+Rs  72.4% 

(105324) 
27.6% 

(40248) 

99.8% 

(145258) 

.2% 

(314) 

98.3% 

(143074) 

1.7% 

(2498) 

Rs+fs 69.9% 

(101893) 

30% 

(43679) 

99.98 

(145535) 
(.03) 

37 

99.7% 

(145109) 
.3% 

(463) 

Correlation FS+Rs 58.1% 

(84507) 
41.9 

(61065) 

98.9% 

(144033) 

1% 

(1539) 

98.5% 

(143346) 

1.5% 

(2226) 

Rs+fs 57.7% 

(83992) 

42.3% 

(61580) 

99% 

(144175) 
.96% 

(1397) 

98.6% 

(143587) 
1.4% 

(1985) 

GainRatio Fs+Rs 34% 

(49526) 

65.98 

(96046) 

 

95.6% 

(139188) 

4.4% 

(6384) 

95.1% 

(138400) 

4.9% 

(7172) 

Rs+Fs 36% 

(52369) 
64% 

(93176) 

95.8% 

(139441) 
4.2% 

(6131) 

95.6% 

(139136) 
4.4% 

(6436) 

Infogain Fs+Rs 77.3% 

(112605) 
22.6% 

(32967) 

99.9% 

(145431) 

.1% 

(141) 

99.4% 

(144703) 
.5% 

(869) 

Rs+Fs 71.4% 

(103917) 

28.6% 

(41655) 

99.8% 

(145311) 

.18% 

(261) 

98.97% 

(144069) 

1% 

(1503) 

OneR Fs+Rs 65.9% 

(95914) 

34.1% 

(49658) 

99.1% 

(144314) 

.9% 

(1258) 

98.98% 

(144090) 

1% 

(1482) 

Rs+Fs 77.4% 

(112605) 
22.6% 

(32967) 

99.9% 

(145431) 

.1% 

(141) 

99.4% 

(144703) 
.5% 

(869) 

RefliefF Fs+Rs 65.9% 

(95914) 

34.1% 

(49658) 

99.1% 

(144314) 
.9% 

(1258) 

98.7% 

(143669) 
1.3% 

(1903) 

Rs+Fs 66% 

(96026) 
34% 

(49546) 

99% 

(144166) 

.97% 

(1406) 

98.6% 

(143486( 

1.4% 

(2086) 

SymmetricalUncert Fs+Rs 80.6% 

(117333) 
19.4% 

(28239) 

99.98% 

(145535) 

.03 

(37) 

99.5% 

(144865) 

.5% 

(707) 

Rs+fs 78.5% 

(114289) 

21.5% 

(31283) 

99.98% 

(145536) 
.02% 

(36) 

99.6% 

(145020) 
.4% 

(552) 

Average Fs+Rs 82.2% 

 

(120563) 

17.2% 

 

(25009) 

99.98 

 

(145536) 

.02% 

 

(36) 

99.7% 

 

(145184) 

.3 

 

(388) 

Rs+Fs 80.34% 

(1169530 

19.7% 

(28169) 

99.98% 

(145537) 

.02% 

(35) 

99.7% 

(145202) 
.3% 

(370) 
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number of cases, feature selection after resampling approach demonstrates greater performance 

in comparison to the opposing pipeline.  

When considering feature reduction, the conclusion drawn is that in line with the methods of 

feature selection applied, in addition to whether or not the dataset is resampled, the features 

ultimately chosen differ from one method to the next. In the majority of instances, there is 

greater performance demonstrated by the random forest algorithm when there is the adoption 

of features reduction following resampling. This is explained in consideration to the random 

forest being recognised as comprising various decision trees. All decision tree nodes present a 

condition on an individual feature, which has been devised in such a way so as to divide the 

dataset in half to achieve comparable response values across the set. Owing to the fact that the 

dimensionality of the feature space is reduced as a result of feature selection, it is that the 

random forest performance could be hindered. Owing to the fact that, following feature 

reduction, the random forest will build the decision trees across a small number of imbalance 

dataset features, where the samples across some of the categories are notably lacking. The 

random forest needs to ensure there is an adequate number of samples when training so as to 

ensure the amount by which each feature decreases the tree’s weighted impurity can be 

calculated.  

Otherwise stated, there are a number of different aspects to consider when applying a ranking 

focused on impurity: primarily, when applying feature selection that is essentially focused on 

reducing impurity, there is the presence of bias in relation to variables with additional 

categories. Secondarily, when the dataset has two (or more) correlated features, from the 

framework’s perspective, any such correlated features are applied as a predictor, without any 

degree of preference for one over another. However, upon the adoption of one, there is a notable 

decrease in the importance of others owing to the fact that the impurity removed has previously 

been removed through the preliminary feature, which then leads to lower reported importance. 

When seeking to apply the feature selection approach in order to decrease overfitting, this does 

not pose a problem owing to the fact that the removal of features that are, in the main, 

duplication by other features is a rational and logical step. However, when it comes to data 

interpretation, on the other hand, inaccurate conclusions are drawn; suggesting that one of the 

variables is positioned as a strong predictor whereas the other in the group lacks value and 

importance. In actuality, it could be that they are similar in regards to their link to the response 
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variable. This same observation is witnessed in regards the stacking approach when considering 

that stacking is essentially centred on the random forest as the underpinning of bagging.  

In the case of Naïve Bayes, put simply, a specific feature of a class being absent or presence is 

not related to the absence or presence of another feature. Where each attribute’s probabilities 

notably computed and evaluated on an individual basis away from the training dataset. Naïve 

Bayes’ performance is seen to decline when the features within the data are significantly 

correlated. This is owing to the fact that such highly correlated features receive two votes in 

the model, which therefore means their value is seen to be exaggerated. Accordingly, it is 

necessary that the link between pairwise attributes is assessed through the application of a 

correlation matrix, ensuring that any features that are highly correlated are removed. Owing to 

the presence of correlated features in the KDD cup dataset, Naïve Bayes performance across 

FS+RS is seen to be better in comparison to the contrasting pipeline. Importantly, redundant 

features are first reduced then the dataset distribution is balanced. As by resampling the Naive 

Bayes achieves a suitable volume of data in order to facilitate the development of insight into 

the probabilistic relationship across features in isolation with the output variable. 

Following an examination into the appropriate sequence of methods in this chapter, i.e. 

scenario-1 vs scenario-2, Chapter 7 will focus on the particular aspect of the accuracy of 

detection of each attack and their sub-minors. Chapter 7 will, therefore, implement resampling 

first, followed by feature. 
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Chapter 7 : Feature Selection for the Minor Attacks and Its Sub-minor 

Attacks 

7.1 Introduction 
IDSs are recognised as concerned with a large volume of data that comprises different network 

traffic trends, where dataset patterns could be acknowledged by a number of different feature 

sets, i.e. attributes that are characterised as one factor fundamental to multi-dimensional feature 

space. A trend is seen to involve a number of different factors that are irrelevant, and which 

are therefore recognised as causing the efficiency of training and testing operations to decline, 

with classification sometimes impacted as a result of the presence of higher mathematical 

complexity. When adopting a practical standpoint, on the other hand, it might be advantageous 

for various features to be kept to a minimum; this could help to ensure computational costs and 

the building complex of the classifier is decreased. As such, the performance of the systems 

discussed thus far could be improved through the addition of a number of different phases, 

notably alongside dimensionality reduction as one key element inherent in the phase of pre-

processing; this is applied in an effort to remove from the dataset any insignificant aspects. 

When considering the reduction of dimensionality, as shown through feature extraction and 

feature selection, success has been achieved by the following implementation in learning with 

data-mining and machine-learning in order to solve the issue. Moreover, Feature Extraction 

(FE) methods are focused on transferring input features, which are then incorporated within a 

new feature set; on the other hand, in the case of the original input data, the most valuable 

aspects are established via FS algorithm applied. This study directs its attention towards feature 

selection.   

Upon examining the KDD Cup 99 dataset, with consideration also centred on feature 

categorisation, it is seen that there are a total of four different groups of features as listed in 

Table 7-1; the first group is seen to include those features/aspects referred to as labels 1–9, 

which signify the pivotal underlying elements of different TCP connections; the second group, 

which notably spans features 10–22, is seen to be linked with content features, whilst the third 

group, ranging features 23–31, includes traffic features, which are calculated with the adoption 

of a two-second timeframe; finally, those labelled 32-41 make up the fourth group and include 

traffic features determined through the adoption of the two-second time window spanning 

destination to host. 
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Table 7-1: KDD cup 99 dataset features category 

 

Owing to the apparent lack of balance in the Kdd cup’99 dataset, it is required that the accuracy 

of the classification and various characteristics of the minority classes be examined, which is 

viewed as important. Not dissimilar to other imbalanced datasets, there is a high degree of 

Category Features Name Description 

 

 

 

 

 

C1 

   

1. Duration 

2. Protocol-type 

3. Service 

4. Flag 

5. Src-bytes 

6. Dst-bytes 

7. Land 

8. wrong-fragment 

9. Urgent 

Length (number of seconds) of the connection 

Type of the protocol, e.g. tcp, udp, etc. 

Network service on the destination, e.g., http, telnet, etc. 

Normal or error status of the connection 

Number of data bytes from source to destination Number of data 

bytes from destination to source  

1 if connection is from/to the same host/port; 0 oth- erwise 

Number of “wrong” fragments 

Number of urgent packets 

 10. Hot Number of “hot” indicators 

 11.  Num-failed- logins Number of failed login attempts 

 12. Logged-in 1 if successfully logged in; 0 otherwise 

 13. Num- compromised Number of “compromised” conditions 

 14. Root-shell 1 if root shell is obtained; 0 otherwise 

 15. Su-attempted 1 if “su root” command attempted; 0 otherwise 

C2   16. Num-root Number of “root” accesses 

 17. Num-file- creations Number of file creation operations 

 18. Num-shells Number of shell prompts 

 19. Num-access- files Number of operations on access control files 

 20. Num- outbound-cmds Number of outbound commands in an ftp session 

 21. Is-hot-login 1 if the login belongs to the “hot” list; 0 otherwise 

 22. Is-guest-login 1 if the login is a “guest” login; 0 otherwise 

 23. Count Number of connections to the same host as the current connection in the 

past 2 s 

 24. Srv-count Number of connections to the same service as the current connection in 

the past 2s  

C3 25. Serror-rate 

26.  Srv-serror-rate 

27.  Rerror-rate 

%  of  connections  that  have“SYN”errors(same-host connections) 

%of connections that have “SYN”errors(same-service connections) 

% of connections that have “REJ” errors(same-host connections) 

 

 

 

 

28. Srv-rerror-rate 

29. Same-srv-rate 

30.  Diff-srv-rate 

31.  Srv-diff-host-rate 

%of connections that have “REJ” errors (same-service connections) 

% of connections to the same service (same-host connections) 

% of connections to different services (same-host connections) 

% of connections to different hosts (same-service connections) 

 32. Dst-host-count Count for destination host 

 33. Dst-host-srv-count Srv-count for destination host 

 34. Dst-host-same-srv-

rate 

Same-srv-rate for destination host 

 35. Dst-host-diff-srv-rate Diff-srv-rate for destination host 

C4   36. Dst-host-same-src-

port-rate 

Same-src-port-rate for destination host 

 37. Dst-host-srv-diff-

host-rate 

Diff-host-rate for destination host 

 38. Dst-host-serror-rate Serror-rate for destination host 

 39. Dst-host-srv-serror-

rate 

Srv-serror-rate for destination host 

 40. Dst-host-rerror-rate Rerror-rate for destination host 

 41. Dst-host-srv-rerror-

rate 

Srv-serror-rate for destination host 
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overall classier accuracy, whereas, on the other hand, in the case of the minor classes, along 

with its corresponding sub-minor classes, there is a low level of true positive rate.  

As has been highlighted in the previous chapter, one of the key factors underpinning the 

inadequate identification of the R2L minor attack is sub-minor attacks’ misclassification. 

Accordingly, throughout this chapter, an analysis will be carried out with regards to the minor 

attacks’ relevance of features and the corresponding sub-attacks. During the completion of the 

experiments, the relevance between binary class and multi-class issues and their features will 

provide a point of focus.  

For clarity of presentation, this chapter is divided into four subsections. Apart from this section 

that introduced the research problem addressed in this chapter, Section 7.2 presents details of 

the experimental setup used for the investigation. Section 7.3 presents the results and a detailed 

analysis of the results. Finally, section 7.4 summarises the outcomes of the investigation and 

concludes the findings.  

7.2 Experimental Setup 
When seeking to establish the overall level of relevance of the sub-minor attack (U2R and R2L) 

features on the classification accuracy and to further identify the extent to which the classifier 

accuracy will depend on the selected features when the dataset is binary-class or a multi-class 

dataset it is proposed to adopt two different experimental approaches as below for the two types 

of minor attacks: 

A. Establish the Attack Features of U2R  

1. The dataset is a binary class dataset, containing only U2R attacks and normal data. 

2. The dataset is multi-class, encompasses all U2R sub-minor attacks, as well as normal 

data. 

3. The dataset is a binary class dataset, containing only Buffer Overflow attack and 

normal data. 

4. The dataset is a binary class dataset, containing only loadmodule attacks and normal 

data. 

5. The dataset is a binary class dataset, containing only Perl attacks and normal data.  

6. The dataset is a binary class dataset, containing only Rootkit attacks and normal data. 
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B. Establish the Attack Features of R2L  

1. The dataset is a binary class dataset, containing only R2L attacks and normal data. 

2. The dataset encompasses all R2L attacks, sub-minor attacks, as well as normal data.  

3. The dataset is a binary class dataset, containing only FTP attacks and normal data. 

4. The dataset is a binary class dataset, containing only Password Guessing Attacks and 

normal data. 

5. The dataset is a binary class dataset, containing only IMAP attack and normal data. 

6. The dataset is a binary class dataset, containing only Warezmaster attack and normal 

data. 

7. The dataset is a binary class dataset, containing only Warezclient attack and normal 

data. 

8. The dataset is a binary class dataset, containing only Spy attacks and normal data. 

9. The dataset is a binary class dataset, containing only Multi-Hop attacks and normal 

data. 

10. The dataset is a binary class dataset, containing only PHF attacks and normal data. 

Importantly, those feature selection algorithms applied across the scenarios listed above are the 

various feature selection approaches investigated in the previous chapter without reference to 

their ability to classify attacks in imbalanced datasets. In this chapter, the use of the selected 

by using the various feature selection algorithms in classifying attacks using the NB classifier 

will be investigated in detail. It was decided to use NB as the choice of the classifier as this is 

the most frequently used classifier by the research community involved in research into 

network intruder/attack detection.     

7.3 Experimental Results and Analysis 

7.3.1 Characteristics of U2R Attacks 

7.3.1.1 U2R Attack vs. Normal Data Experiment  

Table 7-2 provides an overview of the U2R attack feature ranking, through which it is seen that 

the most critical aspect in identifying U2R attacks requires consideration of the aspects relating 

to content characteristics. Importantly, the most commonly featured characteristic through the 

applied algorithm is recognised in the content feature group—notably f10, f13, f14, f16, f17 

and f18; referred to as Hot, Num-compromised, Root-shell, Num-root, Num-file-creations, and 

Num-shells, respectively. As can be seen when reviewing the results, individual TCP 

connection characteristics adopt a key part in identifying U2R attacks, as in the cases of f1, f3, 
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f5, and f6, referred to as Duration, Service, Src-bytes and dst-bytes, respectively, where all of 

these are commonly ranked in line with the approaches relating to the feature selection 

approach used. As a summary, when seeking to identify U2R attacks, there is no need to take 

into account the aspects of the traffic, calculated through the application of a two-second time 

window. Owing to the fact that the ranked features are not viewed as belonging to its category, 

nonetheless, traffic features calculated through the application of a two-second time window, 

notably travelling from destination to host, need to be taken into account.  

Table 7-2: Ranked features of U2R attack 

 

7.3.1.2 U2R Sub-Minor Attacks vs. Normal Data Experiment 

Through this particular investigation, there will be a summary pertaining to the characteristics 

recognised as needing to be taken into account when identifying sub-minor attacks (see Table 

7-3). It suggested that the outcomes arrived through the application of the multi-class U2R 

dataset differs to that of the binary-class U2R dataset. This is predominantly as a result of 

various new aspects being ranked frequently, whereas some features have been completely 

ignored. Across U2R sub-minor attacks, it is maintained that the destination–host traffic 

characteristics category is insignificant in the identification of U2R sub-minor attacks. The 

only characteristic ranked through the applied technique is that of a dst_host_srv_count feature, 

f33, whereas various other characteristics need to be taken into account in comparison to the 

binary-class case, such as Num-failed-logins, f11, which is an ongoing aspect viewed as 

significant when establishing the sub-minor occurrence of U2R attacks.  

 

Features of U2R attack 

No Feature Algorithms  Ranked Features NB 

1. Cfs (BestFirst) fF10, f11,f13,f14,f17,f27,f33,f38 90.1%(79218) 

2. Correlation f14,f33,f17,f36,f10,f18,f3 94.7%(83196) 

3. GainRatio f14,f13,f17,f10,f9,f18,f11,f16 97.4%(85574) 

4. InfoGain f6,f3,f5,f33,f1,f10,f14,f32 93.5%(81754) 

5. OneRAttribute f6,f1,f3,f5,f14,f6,f7,f8 95.3%(83775) 

6. ReliefFAttribut f3,f33,f34,f36,f31,f32 90.4%(79443) 

7. SymmetricalUncert f14,f13,f10,f17,f1,f33,f3,f16 96.5(84834) 

8. Average  f1,f3,f5,f6,f10,f13,f14,f16,f17,f18,f32,f33,f36 93.4(82368) 

9 All features f1-f41 92.7%(81447) 
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Table 7-3: Ranked features of U2R sub-minor attacks 

 7.3.1.3 Buffer Overflow Attack vs. Normal Data Experiment 

The results of this experiment are tabulated in Table 7-4. It shows that with regards to the buffer 

overflow attack, the categorisation of TCP connection feature plays a fundamental part in the 

identification. Owing to the fact that the majority of the common features ranked through the 

applied methods belong to this particular category—which is notably f1, f3, f5 and f6, referred 

to as duration, Services, Src-bytes and Dst-bytes, respectively—the unique characteristic 

ranked by at least one approach and is recognisable only in the case of this attack is that of 

Serror_rate, f25, which is seen to belong to the category feature of Traffic. This confirms that 

through establishing the overall percentage of links with some degree of SYN error identifiable 

in the same-host connection, identifying the frequency and presence of buffer overflow is 

possible. It can be seen that the characteristics hot (f10) and Iroot_shell (f14) are the most 

commonly identified aspect, which is a view supported through the application of six of the 

adopted approaches. 

Table 7-4: Ranked features of Buffer Overflow attack 

 

Features of U2R Sub-minor attacks 

No Feature Algorithms Ranked Features NB 

1. Cfs (BestFirst) f1,F10,f11,f14,f16,f17,f18,f29,f40 15.1%(12387) 

2. Correlation f14,f18,f17,f33,f3 91.5%(75268) 

3. GainRatio f18,f14,f17,f9,f13,f16,f11,f10 94.85(78012) 

4. InfoGain f6,f5,f1,f3,f33,f17,f14 90.8%(74705) 

5. OneRAttribute f6,f1,f5,f17,f16,f18,f14,f13,f10 14.9%(12261) 

6. ReliefFAttribut f3,f33,f34,f32,f36,f14 89.3%(73534) 

7. SymmetricalUncert f17,f14,f18,f16,f10,f13,f1 94.7%(77865) 

8. Average f1,f3,f5,f6,f10,,f11,f13,f14,f16,f17,f18,f33 91.8%(75480) 

9. All features f1-f41 95.5%(78579) 

Features of Buffer overflow attack 

No Feature Algorithms Ranked Features NB 

1. Cfs (BestFirst) f10,f13,f14,f17,f32,f33 99.7%(80131) 

2. Correlation f14,f17,f10,f33,f36,f25,f32,f3 99.8%(80183) 

3. GainRatio f14,f13,f17,f10,f25 99.2%(79690) 

4. InfoGain f6,f5,,f3,f10,f1,f14,f13,f33 95.6%(76776) 

5. OneRAttribute f6,f5,f14,f1,f13,f10,f3,f17 97.8%(78579) 

6. ReliefFAttribut f3,f33,f32,f36,f12 99.8%(80156) 

7. SymmetricalUncert f14,f13,f10,f17,f1 99.3%(79763) 

8. Average f1,f3,f5,f6,f10,f13,f14,f17,f25,f32,f33,f36 99.5%(79967) 

9. All features  f1-F41 99.5%(79946) 
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7.3.1.4 Loadmodule Attack vs. Normal Data Experiment 

As detailed in the table 7-5, when seeking to identify attacks of the type Loadnodule, the most 

basic aspect of the individual content group needs to be determined, with the majority of the 

most commonly ranked aspects within this group recognised as f10, f13, f14, f16, f17 and f18, 

namely Hot, Num-compromised, Root-shell, Num-root, Num-file-creations and Num-shells, 

respectively.  One of the continuous aspects, referred to as Dst-host-srv-diff-host-rate, f37, is 

recognised as a characteristic individual to the identification of the loadmodule attack. This 

particular aspect has been graded by at least two of the different approaches applied and is 

concerned with the different host rate for the host destination. Nonetheless, as has been 

demonstrated by six of the methods, the most commonly identified characteristic is that of 

lnum_file_creations (f17).  

 Table 7-5: Ranked features of Loadmodule Attack 

 

7.3.1.5 Perl Attack vs. Normal Data Experiment 

As shown when reviewing the results of Table 7-6, it is apparent that, in the identification of 

the Perl attack, it would not be relevant to take into account the category of traffic features 

(f23-f31) owing to the observation that none of the approaches are seen to rank any features 

within this particular group. When examining the most valuable of characteristics—as 

determined through the various techniques applied—which, when positioned in the first 

ranking warrants consideration in relation to connection length (Duration), number of data 

bytes from destination to source (Dst-bytes) and whether or not the root-shell is obtained (Root-

shell). The ranking of all of these features is carried out in the first instance and on more than 

one occasion. Owing to the fact that Duration, f1, is ranked through Correlation and 

SymmetricalUncert methods throughout the first instance of their rank, f6, Dst-bytes, was 

found to secure the highest rank through the application of both InfoGain and OneRAttribute 

Features of Loadmodule Attack 

 

No Feature Algorithms Ranked Features NB 

1. Cfs (BestFirst) f14,f17,f32,f33 99.6% (80015) 

2. Correlation f14,f18,f17,f37,f36,f33 95.1%/ 

3. GainRatio f18,f14,f13,f17,f10,f16 99.3%(79772 

4. InfoGain fF6,f3,f33,f5,f1,f32,f36,f37,f17,f10 99.4%(79870) 

5. OneRAttribute f6,f1,f17,f14,f18,f37,f3,f13,f10,f5 95.55(76699) 

6. ReliefFAttribut f3,f33,f32,f35,f34,f36 99.7%(80093) 

7. SymmetricalUncert f14,f17,f18,f10,f13,f33,f16,f32 99.7%(80067) 

8. Average f1,f3,f5,f6,f10,f13,f14,f16,f17,f18,f32,f33,f36,f37 99.5%(79907) 

9. All Features f1-f41 99.3%(79762) 
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algorithms. Importantly, nonetheless, the most dominant feature amongst the ranking features 

is determined as being Correlation and GainRatio rank, the Root-shell, f14. However, when 

examining the U2R attacks and their sub-minor categories, the Perl attack is viewed as being 

the only one not ranking the hot feature, f10, as important in line with identification. With Perl 

attacks unable to be identified through establishing the instances of directory access,  It is 

imperative that that lroot_shell (f14) and lnum_shells (f18) features are taken into consideration 

as these are considered valuable across all methods applied.  

Table 7-6: Ranked features of Perl attack 

 

7.3.1.6 Rootkit Attack vs. Normal Data Experiment 

As shown in Table 7-7, when seeking to establish the rootkit attack, the calculated traffic 

characteristics through the utilisation of a two-second time window is not viewed as relevant 

for consideration, with none of the algorithms providing it a ranking. Nonetheless, there is a 

need for there to be the determination of rootkit occurrence, which is achievable through the 

characters within the TCP connection and content group. Such aspects are seen to span f1–f9 

in the group of TCP connection, whilst range f10–f22 is in relation to content. As can be seen, 

the individual features ranked for rootkit attack—notably by at least four of the commonly 

implemented methods—are an urgent feature, F9 which makes up the urgent packets, and 

Num-failed-logins feature, f9, which is seen to represent the number of failed login attempts. 

Nonetheless, six of the methods applied showed agreement in regards to the importance of the 

rootkit attack detection, lnum_root (f16). 

 

Features of Perl attack 

No Feature Algorithms Ranked Features NB 

1. Cfs (BestFirst) f1,f14,f16,f17,f18 100% 

2. Correlation f14,f18,f17,f34,f33,f3 99.99 (80313) 

3. GainRatio f14,f18,f17,f16,f1,f33,f34 99.99%(80312) 

4. InfoGain f6,f16,f14,f17,f18,f1,f3,f5,f34,f33 99.99%(80314) 

5. OneRAttribute f6,f16,f14,f17,f18,f1,f3,f5,f40 99.99%(80313) 

6. ReliefFAttribut f18,f14,f3,f34,f33,f12 99.98%(80297) 

7. SymmetricalUncert f1,f14,f16,f17,f18 100% 

8. Average f1,f3,f5,f6,f14,f16,f17,f18,f33,34 99.99%(80314) 

9. All Features f1-f41 99.99%(80304) 
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Table 7-7: Ranked features of Rootkit attack 

 

7.3.2 Characteristics of R2L Attacks  

7.3.2.1 R2L Attack Vs. Normal Data Experiment 

In line with the results obtained (see Table 7-8), it is possible to identify an R2L attack by 

examining those characteristics that are categorised into the content, TCP connection, and 

traffic feature (destination to host) group. Through the support of the applied methods in with 

regards to these features, which are acknowledged as being significant, the ranked features 

across the TCP connection include Duration, Service, Src-bytes, Dst-bytes and urgent, which 

are represented through f1, f3, f5, f6, and f9, respectively.  

Importantly, however, in the content group, the ranked characteristics include f10, f1 and f22, 

recognised as Hot, Num-failed-logins and is- guest-login, respectively. In consideration to the 

ranked aspects of the traffic features group, this takes into account the destination–host two-

second time window, this notably progresses F33, f36 and f37, recognised as Dst-host-srv-

count, Dst-host-same-src-port-rate, and Dst-host-srv-diff-host-rate, respectively. Nonetheless, 

it is observed via the experimental results that the various features across the traffic feature 

group, with specific association to services and host, were not seen to play a valuable part in 

the identification of R2L, with the exception of the ongoing characteristics that measure and 

calculate the instances of connection to the same service, with the present connection in the 

past 2s labelled as valuable through the approach of SymmetricalUncert. This particular aspect 

is referred to as Srv- count, f24. Nonetheless, the most commonly ranked characteristic, as 

determined through all of the techniques applied, is that of service (f3) with hot (f10) following 

as a result of six of the methods applied.  

 

Features of Rootkit attack 

 

No Feature Algorithms Features Rank NB 

1. Cfs (BestFirst) fF11,f13,f16,f17,f33 99.5%(79917) 

2. Correlation fF14,f9,f11,f33,f34,f16,f17,f39,f3 93.1%(74744) 

3. GainRatio f9,f14,f11,f13,f16,f17,f10 99.2%(79679) 

4. InfoGain f5,f6,f3,f1,f33,f16,f35,f34 96.6%(77571) 

5. OneRAttribute f5,f6,f1,f16,f13,f14,f3,f9,f11 93.3%(74958) 

6. ReliefFAttribut f3,f33,f34,f36,f31,f32 92.1%(73959) 

7. SymmetricalUncert f13,f16,f14,f17,f9,f11,f10,f33,f1 99.5%(79910) 

8. Average f1,f3,f5,f6,f9,f10,f11,f13,f14,f16,f17,f33,f34 94.2%(75637) 

9. All Features f1-f41 96.4%(77417) 



  

Page 100 of 146 
 

Table 7-8: Ranked features of R2L attack 

 

 7.3.2.2 R2L Sub-Minor Attacks vs. Normal Data Experiment 

As illustrated in Table 7-9, hot feature, referred to as f10, plays a prominent role in the case of 

the ranked lists of six of the seven individual feature selection approaches adopted, where such 

a characteristic is seen to manage the number of urgent packets. The only method to fail to rank 

it highly is that of ReliefFAttribute. As has been clearly demonstrated, those aspects that are 

seen to belong to the traffic feature group (f23–f31), and which show support for the services 

and host connection, are not viewed as being significant in line with the identification of R2l 

sub-minor attacks. In terms of the ranking given by those methods adopted, the most common 

features are identified as included in the content, traffic feature, and TCP connection groups. 

 In the features of the content group, these are established as f1,f3,f5,f6, whereas those of the 

feature content group these are identified as f10, f11, f14 and f19, whilst the traffic feature 

group incorporates f33, f36, f38 and f39, which are calculated with the application of the 

destination–host two-second time window. Converse to those aspects supported in relation to 

the identification of R2L, the identification of the sub-minor attacks requires various individual 

features. Such features, which are notably not highlighted in R2L identification, include f14, 

f19, f38 and f39, which are referred to as Root-shell, Num-access-files, Dst-host-serror-rate, 

and Dst-host-srv-serror-rate. A number of the aspects which have not been ranked in terms of 

R2L identification of sub-minor attacks but are ranked for the R2l attack include Urgent, Is-

guest-login and  Dst-host-srv-diff-host-rate, which are otherwise referred to as f9, f22, and f37, 

respectively.  In addition, as shown through the prior case, f10 (hot) is acknowledged as being 

the most commonly ranked feature by the various feature selection approaches applied.  

 

 

Features of R2L attack 

No Feature Algorithms Ranked Features NB 

1. CFs(BestFirst) f3,f9,f10,f22 98.8%(87795) 

2. Correlation f10,f22,f33,f36,f3,f37,f5 98.85(87749) 

3. GainRatio f22,f10,f11,f9,f13,f3 98.9%(87842) 

4. InfoGain f5,f3,f6,f33,f10,f36,f24,f37 98.65(87579) 

5. OneRAttribute f5,f10,f6,f3,f22,f1,f11,f39,f4 98.7%(87695) 

6. ReliefFAttribut f14,f3,f32,f33,f2,f36 96.1%(85357) 

7. SymmetricalUncert f10,f22,f3,f33,f5,f6,f1,f24,f36 98.7%(87706) 

8. Average f1,f3,f5,f6,f9,f10,f11,f22,24,f33,f36,f37 97.8%(86920) 

9. All Features f1-F41 98.4%(87439) 
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Table 7-9: Ranked Features of R2L sub-minor attack 

 

7.3.2.3 Ftp Attack vs. Normal Data Experiment 

Table 7-10 provides clarification that the various features inherent across the content feature 

group are supported in terms of managing Ftp attack identification. With the majority of the 

ranked features identified in this particular group, these elements include f10, f13, f16, f17, f19 

and f22, and are referred to as Hot, Num-compromised, Num-root, Num-file-creations, Num-

access-files and Is-guest-login, respectively. In line with those feature selection approaches 

tested, the most commonly ranked features include f9 and f32, which are referred to as Urgent 

and Dst_host_count, as supported through five of the individual techniques. Nonetheless, such 

aspects are unique as they have been ranked in consideration to Ftp and Multihop (which will 

notably undergo examination later on) attack identification. The various traffic features are 

seen to adopt a key part in the identification of Ftp, with such supported characteristics 

including f32 (Dst_host_count), f33 (dst_host_srv_count) and f36 

(dst_host_same_src_port_rate). Nonetheless, the remaining agreed ranked features fall into the 

TCP connection feature group, namely F1, f3, f5, f6, and f9.  

Table 7-10: Ranked features of Ftp attack 

 

Features of R2L Sub-Minor attack 

No Feature algorithms Ranked Features NB 

1. CFs(BestFirst) f1,f3,f10,f11,f14,f19,f26,f28,f38,f39 74.25%(63561) 

2. Correlation f33,f39,f19,f38,f14,f10,f22,f36 91.8%(78608) 

3. GainRatio f11,f14,f15,f9,f18,f10,f19,f13,f17 95.8(81945) 

4. InfoGain f6,f5,f3,f33,f1,f10,f39,f38,f36 89.5%(76610) 

5. OneRAttribute f6,f5,f1,f10,f39,f3,38 45.2%(38627) 

6. ReliefFAttribut f3,f33,f36,f34,f32,f12 66.35(56736) 

7. SymmetricalUncert f10,f39,f38,f3,f1,f19,f14,f11 92.1%(78889) 

8. Average f1,f3,f5,f6,f10,f11,f14,f19,f33,f36,f38,f39 91.1%(78000) 

9. All Features f1-f41 89.1 (76280) 

Features of Ftp attack 

No Feature Algorithms Ranked Features NB 

1. CFs(BestFirst) f9,f10,f16,f17,f19,f25,f32,33 99.5%(79953) 

2. Correlation f9,f19,f22,f36,f33,f37 95.1%(76393) 

3. GainRatio f9,f13,f17,f10,f19,f22,f32 99.6%(79980) 

4. InfoGain f5,f6,f3,f33,f32,f36,f1 99.4%(79805) 

5. OneRAttribute f6,f5,f1,f9,f3,f10,f35 93.3%(74940) 

6. ReliefFAttribut f3,f36,f33,f32,f2,f34 99.7%(80111) 

7. SymmetricalUncert f9,f32,f19,f17,f22,f16,f13 99.6%(79984) 

8. Average f1,f3,f5,f6,f9,f10,f13,f16,f17,f19,f22,f32,f33,f36 99.5%(79890) 

9. All features f1-f41 97.8%(78558) 
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7.3.2.4 Password Guessing Attack vs. Normal Data Experiment 

Those features considered important in the case of password-guessing attacks identification are 

detailed in the Table 7-11, which shows that the features most commonly supported through 

the algorithms include f11(num_failed_logins), f39 (dst_host_srv_serror_rate) and f40 

(dst_host_rerror_rate), as demonstrated by six of the feature selection methods tested. When 

identifying such an attack, it is recognised that there are two key aspects, which are concerned 

with Rerror_rate and Srv_serror_rate, referred to as f40 and f41, respectively.  

Table 7-11: Ranked Features of Password Guessing attack 

  

7.3.2.5 Imap Attack vs. and Normal Data Experiment 

As shown, Table 7-12,  through the results garnered, there are a number of individual aspects 

that may prove useful in identifying Imap occurrence as not ranked in any other R2l instance 

under examination. These are recognised as f24 (Srv-count), f25(Serror-rate), f26(Srv-serror-

rate), f28 (Srv-rerror-rate) and f31 (Srv_diff_host_rate), with all of these seen to belong to the 

traffic feature group for the connection between the host and services. Nonetheless, two of the 

ranked featured aspects are seen to be individual in regards the identification of the Imap and 

some different R2L sub-minor attack: first, logged_in (f12), which is viewed as being unique 

in regards the identification of Imap and Warezmaster attacks; and second, lnum_root (f16), 

which is considered in relation to the identification of Imap, Ftp and Multihop attacks.   The 

remaining ranked characteristics relevant in line with the Imap identification include the 

following: f3, f5, f33, f36, f38 and f39. 

 

 

Features of Password Guessing attack 

No Feature Algorithms Ranked Features NB 

1. CFs(BestFirst) f10,f11,39 99.9%(80272) 

2. Correlation f11,f39,f28,f27,f41,f40,f4 94.7%(76120) 

3. GainRatio fF11,f39,f10,f38,f4,f40,f41 99.8%(80203) 

4. InfoGain f5,f11,f6,f4,f3,f10,f39,f38 99.9%(80316) 

5. OneRAttribute f5,f11,f6,f4,f10,f39,f3,f40 99.9%(80316) 

6. ReliefFAttribut f3,f22,f40,f41,f33,f32 99.2%(79696) 

7. SymmetricalUncert f11,f39,f10,f38,f4,f40 99.8%(80205) 

8. Average f3,f4,f5,f6,f10,f11,f38,f39,f40,f41 95.8%(77017) 

9. All features f1-f41 99.16%(79685) 
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Table 7-12: Ranked features of Imap attack 

 

7.3.2.6 Warezmaster Attack vs. Normal Data Experiment 

As detailed in the Table 7-13, in the feature ranking carried out by the feature selection 

algorithms applied, the most common feature is that of dst_host_srv_count, f33, which is 

known to deal with srv_count across the destination–host link, as supported by the observations 

of results of six of the different feature selection methods. As has been discussed when 

examining the Imap attack, imap and warzeclient have the unique common feature of f12, 

which is concerned with a successful login. The remaining ranked features that play a role in 

regards to the identification of the warezmaster attack include f1, f3, f5, f6, f10, f17, f22 and 

f36.  

Table 7-13: Ranked features of Warezmaster attack 

 

7.2.3.7 Multihop Attack vs. Normal Data Experiment 

The most commonly supported feature in the identification of a multi-hop attack is  

lnum_file_creations, f17, which is observed as ranked by six of the different feature selection 

methods and is related to file-creation functionality (see Table 7.14). In regards the most 

common individual features, the unique feature supported in line with the identification of 

Features of Imap attack 

No Feature Algorithms Ranked Features NB 

1. CFs(BestFirst) f5,f16,f26,f39 99.4%(79846) 

2. Correlation f39,f26,f25,f38,f24,f33,f36,f4,f12 99.9%(80236) 

3. GainRatio f26,f39,f38,f25,f16,f13 99.3%(79766) 

4. InfoGain f3,f39,f38,f26,f25,f24,f5,f31,f28,f33,f6,f36 99.6%(79984) 

5. OneRAttribute f3,f39,f38,f26,f25,f24,f28,f31 98.5(79473) 

6. ReliefFAttribut f3,f33,f34,f32,f12,f31 99.8%(80140) 

7. SymmetricalUncert fF39,f26,f38,f25,f28 99.3%(79767) 

8. Average f3,f5,f12,f16,f24,f25,f26,f28,f31,f33,f36,f38,f39 99.6%(80014) 

9. All Features f1-f41 99.5%(79907) 

Features of  Warezmaster  attack 

No Feature Algorithms Ranked Features NB 

1. CFs(BestFirst) fF1,f5,f6,f10,f17,f33,f36 98.3%(78976) 

2. Correlation f6,f36,f17,33,f12,f22,f3 99.9%(80235) 

3. GainRatio f10,f17,f22,f33,f1,f5 95.1%(76374) 

4. InfoGain f6,f1,f3,f5,f33,f36 98.1%(78839) 

5. OneRAttribute f6,f1,f17,f10,f5,f38 98.3%(78976) 

6. ReliefFAttribut f3,f33,f36,f12,f34,f22 99.3%(79801) 

7. SymmetricalUncert f33,f1,f17,f10,f5,f6,f36 98.3%(78976) 

8. Average f1,f3,f5,f6,f10,f12,f17,f22,f33,f36 98.7%(79307) 

9 All Features f1-f41 98.3%(78949) 
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multi-hop and Ftp is that of lnum_compromised, f13. As has been documented in regards Imap 

attack analysis, lnum_root (f16) is viewed as being the unique common feature when 

establishing attacks of a Multihop, Ftp and Imap nature. Furthermore, dst_host_count, f32, 

which is recognised as managing node calculations across the destination–host journey, is 

viewed as being a unique characteristic supported in line with the identification of the Multihop 

and Phf attacks. Furthermore, lnum_shells (f18) is seen to be unique in regards the 

identification of Multihop and Spy attacks, with the remaining elements warranting attention 

for multi-hop identification including f1(duration), f3(service), f5 (src_bytes), f6 (dst_bytes), 

f10 (hot), f14 (lroot_shell), f17 (lnum_file_creations), f22 (is_guest_login), f33 

(dst_host_srv_count) and f36(dst_host_same_src_port_rate). 

Table 7-14: Ranked features of Multihop attack 

 

7.3.2.8 Phf Attack vs. Normal Data Experiment 

When seeking to identify attacks of a Phf nature, it is apparent (See Table 7-15) that the 

implemented feature selection approaches show support for lroot_shell (f14) and 

lnum_access_files (f19) features. Furthermore, f10, which is commonly referred to as Hot, is 

commonly supported by all of the six different feature selection algorithms experimented with. 

Importantly, however, in identifying a PhF, Ftp attack, the f19 feature, known as lnum_access, 

is observed as a unique common feature. Moreover, in the identification of the Phf, Multihop 

attacks, lroot_shell (f14) and dst_host_count (f32) are unique. Those ranked features are seen 

to be common and significant, i.e. f5, f6 and f10, are notably src_bytes, dst_bytes and hot, 

respectively. Based on the NB detection accuracy of a Phf attack, all of the used feature 

selection approaches generate a set of features and those features lead to efficient detection of 

Phf attack. The best set among them is the set that is generated by GainRatio approaches as 

well as the features in the average set. 

Features of  Multihop attack 

No Feature Algorithms Ranked Features NB 

1. CFs(BestFirst) f5,f10,f13,f17,f33 95.2%(76434) 

2. Correlation f14,f18,f16,f17,f13,f6,f22 99.8%(80121) 

3. GainRatio fF16,f13,f14,f18,f17,f10 99.1%(79631) 

4. InfoGain f6,f5,f1,f33,f10,f17,f36,f32 98.5 (79071) 

5. OneRAttribute f6,f5,f1,f10,f16,f13,f17,f14,f18 99.5%(79896) 

6. ReliefFAttribut f3,f33,f36,f12,f34,f22,f32 95.3%(76512) 

7. SymmetricalUncert fF17,f16,f13,f10,f14,f18 99.1 (79631) 

8. Average f1,f3,f5,f6,f10,f13,f14,f16,f17,f18,f22,f32,f33,f36 99.5%(79923) 

9. All Features f1-f41 99.5%(79923) 
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Table 7-15: Ranked features of Phf attack 

 

7.3.2.9 Spy Attack vs. Normal Data Experiment 

It is observed from the data listed in Table 7-16 that the most commonly ranked feature, as 

supported by all of the feature selection methods investigated, is dst_host_srv_serror_rate (f39) 

whereas st_host_serror_rate (f38) was seen to be supported by six of the algorithms. In line 

with particular features pertaining to the identification of Spy attacks, lsu_attempted (f15) and 

dst_host_same_srv_rate (f34) are seen to be supported as unique features. As has been 

discussed previously, in establishing Multi-hop and Spy attacks, a unique feature is that of 

lnum_shells (f18), which is observed to be unique for the determination of Multihop and Spy 

attacks. On the other hand, the remaining most commonly ranked features are those of f1, f3, 

f5, f6, f17, f33 and f34.  

Table 7-16: Ranked features of Spy attack 

 

7.3.2.10 Warezclient Attack vs. Normal Data Experiment 

It is found that the most commonly ranked feature, as demonstrated by the various methods, 

include f3 (Service), f5 (src_bytes), f10 (hot) and f22 (is_guest_login), Table 7-17. Moreover, 

it can be seen that there is a lack of significance in relation to the traffic features group in 

Features of  Phf attack 

No Feature algorithms Ranked Features NB 

1. CFs(BestFirst) f5,f6,f10,f14,19,f36 99.998%(80314) 

2. Correlation f14,f19,f10 99.99%(80310) 

3. GainRatio f14,f10,f19,f6 100%(80316) 

4. InfoGain f6,f5,f14,f10,f19,f33 99.998%(80314) 

5. OneRAttribute f5,f6,f14,f10,f19,f1,f28 99.998%(80314) 

6. ReliefFAttribut f14,f32,f19,f3,f12 99.7%(80071) 

7. SymmetricalUncert f14,f10,f19,f6,f5 99.998%(80314) 

8. Average f5,f6,f10,f14,f19,f32 100% 

9. All features f1-f41 99.85%(80192) 

Features of  Spy attack 

No Feature Algorithms Ranked Features  NB 

1. CFs(BestFirst) f1,f15,f38,f39 99.998%(80312) 

2. Correlation f39,f15,f18,f38,f19 99.995%(80310) 

3. GainRatio f39,f38,f15,f18,f17 99.99%(80309) 

4. InfoGain f39,f38,f1,f6,f33,f34,f3,f5 100%(80314) 

5. OneRAttribute f39,f38,f1,f6,f33,f34,f3,f15,f5,f18 100%(80314) 

6. ReliefFAttribut f3,f12,f34,f33,f32,f39 100%(80314) 

7. SymmetricalUncert f39,f38,f15,f18,f17,f1 99.99%(80209) 

8. Average f1,f3,f5,f6,f15,f17,f18,f33,f34,f38,f39 100%(80314) 

9. All Features f1-f41 100%(80314) 
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regards to the link between host and services for the identification of warezclient attacks, with 

none of the common ranked features observed to belong to this particular group. Notably, the 

remaining commonly suggested features for the identification of warezclient occurrence 

include f1, f6, f10, f33 and f36. However, the outcome of the CFs feature selection algorithm 

leads to best NB classification accuracy in the classifcation of warezclient attack, where also 

correlation approach led to closest result to that of the Cfs approach. The features f5, f10, f22 

can be observed to be the key features of the warezclient attack classification.  

Table 7-17: Ranked Features of the Warezclient attack 

 

7.4 Analysis of the High and Low feature ranking results for the minor 

attacks and their sub-minors attacks based on NB performance 
After the specific features set of each minor attacks and their sub-minor is demined in previous 

Section7.3, the best feature set for each attack is presented in Table 7-18 based on the NB 

detection accuracy. It can be concluded that the features that are generated by GainRatio 

algorithm (mostly content features) lead to low false error rate (FR) and best true positive rate 

(TPR) as the NB based accuracy achieved 97.45%. However, Based on the NB classification 

accuracies obtained it can be concluded that the Gainratio features lead to the best performance 

accuracy, approximately 94.9% as 78012 instances are correctly classified. Where It is clearly 

seen that NB classification for buffer overflow score high accuracy (mostly 99% and above) in 

all of the used feature selection approaches. The best classifications are reached by correlation 

approaches as 80183 instances are correctly classified. Based on NB based detection accuracy 

for the loadmodule attack, the feature sets that are selected by correlation and OneRAttribute 

approaches leads to the lowest accuracy among the applied approaches. While it is 

recommended to focus on the features that are selected by ReliefFAttribute algorithm enhance 

the louadmodule detection as with it, NB scores the highest true classification accuracy of 

99.75%. Moreover, it is observed that the features that are agreed by the CFs and 

Features of warezclient attack 

No Feature Algorithms Ranked Features NB 

1. CFs(BestFirst) f5,f10,f22 98.7%(79972) 

2. Correlation f10,f22,f5,f33,f36,f3,f37 98.7%(79964) 

3. GainRatio f22,f10,f3,f5,f33,f6 98.6%(79958) 

4. InfoGain f5,f3,f6,f33,f10,f36,f22 98.6%(79958) 

5. OneRAttribute fF5,f10,f6,f22,f3,f1 97.9%(79406) 

6. ReliefFAttribut f3,f33,f36,f34,f12 96.7%(78434) 

7. SymmetricalUncert f10,f22,f3,f5,f33,f6,f1 97.7%(79274) 

8. Average f1,f3,f5,f6,f10,f:22,f33,f36 97.9%(79441) 

9. All features f1-f41 92.6%(75128) 
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SymmetricalUncert approaches are the best features for the detection of Perl attack, as within 

it the NB based detection accuracy score is 100%. It is noted also that these features are in the 

content feature category. However, Rootkit attack detection can be enhanced based on NB, 

through the focus of the features that are selected by Cfs algorithm since the lowest false 

detection is scored by the NB through the deployment of those features. In other words, rootkit 

detection accuracy is the highest when the Cfs feature set is deployed. 

In terms of the NB detection for the R2L attack, binary-class classification, the GainRatio 

generated the best features as it leads to the accuracy of the heights; 98.9%. However, it can be 

concluded that the Gainratio approach generates the best features that lead to the best detection 

accuracy of the R2L sub-minor attacks, multi-class classification. Where, among the used 

feature selection algorithm for FTP, ReleifFattribute leads to best NB detection accuracy. 

Moreover, InfoGian and OneRAttribute algorithms lead to best detection accuracy for 

Password Guessing attack among the approaches tested. For the Imap attack, it can be seen that 

the feature set that is generated by the correlation approach is the best set for Imap 

classification. Also, the feature set that is selected by the correlation approach contains the best 

features that allow the NB classifier to classify the warezmaster attack efficiently. From the 

observed results of multihop attack features, it is concluded that correlation approaches 

generate the best features for multihop attack classification. In terms of Phf, the best set among 

them is the set that is generated by GainRatio approaches. For the detection of spy attacks, it is 

observed that the NB classification accuracy reaches 100% when using most of the feature 

selection algorithms when all features are applied. It is noted that the feature set that is 

generated by SymmetricalUncert approaches lead to some misclassifications. For best 

detection accuracy, the features f5, f10, f22 can be observed to be the key features of the 

warezclient attack classification. 
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Table 7-18: High and Low feature ranking results for the minor attacks and their sub-minors attacks based on NB 
performance 

No. Attack Name NB Detection 

Accuracy 

FS Algorithms Ranked Features 

1. U2R High 97.4% GainRatio f14,f13,f17,f10,f9,f18,f11,f16 

Low 90.1% Cfs (BestFirst) fF10, f11,f13,f14,f17,f27,f33,f38 

2. U2R Sub-

minor 

High 94.85% GainRatio f18,f14,f17,f9,f13,f16,f11,f10 

Low 14.9% OneRAttribute f6,f1,f5,f17,f16,f18,f14,f13,f10 

3. Buffer 

Overflow 

High 99.8% Correlation f14,f17,f10,f33,f36,f25,f32,f3 

Low 95.6% InfoGain f6,f5,,f3,f10,f1,f14,f13,f33 

4. Loadmodule High 99.7% ReliefFAttribut f3,f33,f32,f35,f34,f36 

Low 95.1% Correlation f14,f18,f17,f37,f36,f33 

5. Perl High 100% SymmetricalUncert and 

Cfs (BestFirst) 

f1,f14,f16,f17,f18 

Low 99.98% ReliefFAttribut f18,f14,f3,f34,f33,f12 

6. Rootkit High 99.5% Cfs (BestFirst) fF11,f13,f16,f17,f33 

Low 92.1% ReliefFAttribut f3,f33,f34,f36,f31,f32 

7. R2L attack High 98.9% GainRatio f22,f10,f11,f9,f13,f3 

Low 96.1% ReliefFAttribut f14,f3,f32,f33,f2,f36 

8. R2L Sub-

minor 

High 95.8% GainRatio f11,f14,f15,f9,f18,f10,f19,f13,f17 

Low 45.2% OneRAttribute f6,f5,f1,f10,f39,f3,38 

9. FTP High 99.7% ReliefFAttribut f3,f36,f33,f32,f2,f34 

Low 93.3% OneRAttribute f6,f5,f1,f9,f3,f10,f35 

10. Password 

Guessing 

High 99.9% InfoGain and 

OneRAttribute 

f5,f11,f6,f4,f10,f39,f3,f40,f38 

Low 94.7% Correlation f11,f39,f28,f27,f41,f40,f4 

11. Imap High 99.9% Correlation f39,f26,f25,f38,f24,f33,f36,f4,f12 

Low 98.5% OneRAttribute f3,f39,f38,f26,f25,f24,f28,f31 

12. Warezmaster High 99.9% Correlation f6,f36,f17,33,f12,f22,f3 

Low 95.1% GainRatio f10,f17,f22,f33,f1,f5 

13. Multihop High 99.8% Correlation f14,f18,f16,f17,f13,f6,f22 

Low 95.2% CFs(BestFirst) f5,f10,f13,f17,f33 

14. Phf High 100% GainRatio f14,f10,f19,f6 

Low 99.7% ReliefFAttribut f14,f32,f19,f3,f12 

15. Spy High 100% InfoGain, OneRAttribute 

and ReliefFAttribut 

f39,f38,f1,f6,f33,f34,f3,f15,f5,f18 

,f12,f32 

Low 99.99% SymmetricalUncert f39,f38,f15,f18,f17,f1 

16. Warezclient High 98.7% CFs(BestFirst) f5,f10,f22 

Low 96.7% ReliefFAttribut f3,f33,f36,f34,f12 

 

7.5 Summary and Conclusion 
Throughout the course of this chapter, a rigorous investigation has been carried out as to the 

classification of two minor attacks and their corresponding sub-minor attacks, utilising seven 

feature ranking, feature selection algorithms. The experiments have been separated into two 

groups: in the preliminary instance, the U2R attack feature and its corresponding sub-minor 

attacks were analysed; in the second instance, the emphasis was placed on R2L attacks and 

their sub-minor attacks. Across both of these stages, two different datasets are created and 

applied on a binary-class dataset or a multi-class dataset.  
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Examining the U2R attacks and their sub-minor attacks emphasised that those features in the 

first, second and third feature groups within the KDD cup dataset are recognised as the most 

significant when it comes to identifying the U2R attacks, owing to the fact that the majority of 

the ranked features supported by the observations of the ranked feature list that belongs to such 

groups. Importantly, semantic data, which is seen to be difficult to capture across the initial 

phases, is necessary when examining attacks that are U2R in nature. Such an attack is most 

predominantly content-based. Owing to the fact that U2R attacks present an outcome that is 

‘root-shell’ obtained without legitimate means and root-relevant characteristics appear to be 

valuable in the identification, the feature selection methods experimented with have opted to 

incorporate various root-relevant features. As such, upon there being an attack of a U2R nature, 

a number of different features, including the number of instances of shell prompts or the 

number of file creations, are selected; on the other hand, other features are neglected, as in the 

cases of protocol and source bytes, for example.  

When seeking to establish identification, R2l attacks are viewed as being the most troublesome, 

predominantly considering their involvement of network- and host-level characteristics. As 

such, both host- and network-level components-namely ‘duration of connection’ and ‘service 

requested’, and the ‘number of failed login attempts’, respectively-are selected in the 

establishment of R2L attacks. In considering the form of operation manipulated by the R2L 

attacks and corresponding sub-minors, the significant features when it comes to recognising 

such forms are seen to belong to the majority of the feature groups in the KDD cup dataset. 

Importantly, most IMAP applications present the potential of various logins, which 

fundamentally positions the end user in such a way that they are able to link to the email server 

through various instruments simultaneously. As such, traffic features need to be determined 

through the presence of a host–services connection incorporating a two-second time window.  

In line with the Ftp exploitation tool, which is generalised as an attack on the FTP protocol 

through the attacker making use of the PORT command with the aim of achieving access to 

ports, this is commonly recognised as an Ftp bounce attack. Accordingly, in Ftp identification, 

the aspects of urgent, Num-compromised, Num-access-files and Dst-host-count are essential, 

as determined through the methods as being unique features for Ftp. In regards to the password-

guessing form of attack, there are also a number of different features chosen by the algorithms 

tested, including Num-failed-logins, Dst-host-srv-serror-rate, and Dst-host-error-rate. Owing 

to the fact that such an attack arises following various efforts being made to log in, it is possible 
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to establish the number of failed login attempts, in addition to other features. Through a multi-

hop attack, it is possible for a particular attack path or chin to be followed by an attacker, 

notably with the objective to achieve access to the target. As such, the most significant features 

recognised as unique features in the number of compromised (number of file/path not found 

errors and jumping commands) conditions, the number of shells prompts, and those that 

establish the Count traffic in the destination–host link, is critical.  

Nonetheless, there is the uploading and downloading of data from various hidden directions 

when there is an FTP connection, which subsequently constitutes warezmaster and warezclient 

R2l attacks. With this in mind, the number of significant features deemed pertinent to achieving 

the most optimal attack outcomes is determined; it may also be seen that there are a number of 

different characteristics that are specific to warezmaster, which are logged_in and 

lnum_file_creations. Owing to the fact that the warezmaster mechanism is highlighted in such 

a way through the granting of write permission to a user, it is then possible that the attacker 

can gain access to the server by logging in using anonymous credentials; this, in turn, highlights 

the potential for directories and files to be uploaded. In this case, it is possible for warezclient 

to download malicious files uploaded to the server by the attacker, with any anonymous/legal 

user able to do so.  

In general the rigorous analysis that was carried out in this chapter with regards to the 

determination of a reduced set of most significant features that will enable the optimisation of 

the NB classifier performance provides us with additional knowledge as to the best set of 

features, in their rank order, can be used to most accurately classify a given attack.  
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Chapter 8 : Summary, Conclusion and Future Work 

8.1 Summary and Conclusion 

The research conducted in this thesis initially provided an explanation pertaining to the key 

concepts of Cloud Computing and further provided a literature review with the aim of 

examining the cloud’s security gaps. There are a number of different gaps in the security of 

Cloud Computing, which notably impacts all of its layers. In order to narrow down the scope 

of this research study, a decision was made to focus on the IaaS layer; a part of the network 

security layer. The choice of IaaS can be explained owing to the fact that all layers beside are 

built on top of it. Importantly, the decision to focus on network security was based on its 

practical importance as a fundamental aspect of the Cloud, meaning that any weaknesses 

present in the network have a profound and direct impact on the overall security of the Cloud.  

As has been highlighted throughout the literature, a number of different intrusions and attacks 

can impact overall network security, meaning Cloud network security is enhanced via the 

adoption of more commonplace defence approaches, including IDSs and firewalls, for 

example. With this noted, and in an effort to further reduce the scope of this work, the decision 

was made to utilise IDSs owing to the inability of firewalls to identify complex attacks, such 

as those of DoS and DDoS, and also insider attacks. In considering the aim of the research 

conducted in this thesis focused on improving the security of the Cloud via the application of 

IDSs, a review pertaining to the use of Artificial Intelligence (AI) has been carried out in line 

with intrusion detection in order to build an intelligent system that has the ability to improve 

IDS performance. Importantly, however, when seeking to examine the performance of the IDS, 

different datasets had to be used as tools of comparison. 

Following a number of different considerations, the KDD Cup 99 dataset was selected as the 

key dataset to be used owing to the recognition that the limitations inherent in other datasets 

will not be an issue in this dataset. Notably, however, there are limitations inherent in this 

dataset, including the fact that some machine-learning classifiers may demonstrate inadequate 

performance in the current specific features of this selected dataset. The most widely influenced 

in this regard is the fact that the KDD Cup 99 is an imbalanced dataset, which arises from the 

fact that there is a significant outnumber of instances in one class over the numbers of another. 

Such an imbalanced dataset may create significant challenges in attack classification, either at 

the multi-class or binary class level, with both demonstrating some degree of bias in relation 

to the major classes and, as a result, leading to minor class misclassifications. The majority of 
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researchers in this regard have centred their attention on binary class misclassifications only; 

this is predominantly owing to the complexity of the multi-class classification, which warrants 

the study of different classes.   

The Chapter 4 directed attention to the multi-class problem on KDD Cup ’99 imbalanced 

dataset, meaning that the imbalance dataset is explored in relation to the approaches that are 

applied in order to improve machine learning classifier performance. Following the conduct of 

research and rigorous examination of results in this regards, it has been concluded that a number 

of classifiers show bias towards major classes—which can subsequently result in minor class 

misclassification at times, or the minor classes being completely disregarded. As explained 

throughout the literature, there is the view that there are only three key approaches to be learned 

with regards to imbalanced data: data level, algorithm level method, and ensemble methods. 

The experiments completed in Chapter 4 recommended the use of cross-validation to avoid the 

diversity of the results. It was also concluded that the imbalanced dataset is recognised as the 

reason behind the inadequate performance of some classifiers.  

The way in which the Naives Byase classifier operates in the case of imbalanced data has been 

examined in Chapter 5, with the conclusion drawn that for NB based network attack 

identification in the case of minor attacks, i.e. R2L and U2R, requires improvement via the 

application of a number of different imbalanced learning methods. Nonetheless, following the 

application of resampling, U2R identification is essentially enhanced when compared with 

R2L. Following an in-depth exploration, it was stated that, as a result of various 

misclassifications, R2L identification has not achieved any improvement, despite the adoption 

of bagging and resampling. Accordingly, the research directs its attention towards the R2L sub-

minor attacks, which established that inadequate levels of NB detection is owing to Multihop 

and Warezclient attacks: these were incorrectly classified as a result of features/behaviour of 

some of the feature selection approaches, applied.  

It was shown that in the KDD cup’ 99 dataset, class distributions are not balanced and there is 

also the need to reduce the dimensionality of the feature space. Chapter 6 investigated whether 

feature selection followed by a method combating the skewness of the dataset or the opposing 

pipelines will perform better. The statistical analysis of the results revealed that both of the 

pipelines should be considered when training for the best classification models; in particular, 

it is based on the classifier used and the feature selection method utilised.  In more of the cases, 

feature selection after resampling approach outperformed the opposing pipeline. 
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However, it was observed that each sub-minor attacks have their own mechanism to exploit, 

each of sub-minor attack has their own selected features some of them are common with the 

other attacks while some of it is unique. 

8.2 Future Work  

Although this thesis carried out a comprehensive and rigorous study of the potential to use 

machine learning algorithms in the recognition of attacks in an imbalanced IDS related dataset, 

further research could have been conducted, time permitted. Below is a list of further directions 

of research that is recommended based on the research findings of this thesis:  

 It will be possible to fine-tune the feature selection algorithms utilised in this research 

by carrying out a sensitivity analysis of their parameters with the view to selecting the 

optimal set of parameters that will result eventually on optimisation of the classification 

accuracies.   

 The research conducted within the context of this thesis can be verified, further 

supported and enhanced through the application of deep learning. 

 The feature selection impact should be investigated via the adoption of other commonly 

used classifiers, such as random forest, for example.  

 Owing to a lack of Cloud-specific, attack datasets, there is a need to collect further 

useful data and making them publically available. 

 Chapter-7 conducted a comprehensive and rigorous study of the significance of attack 

features/parameters on the attack classification accuracy when different, popular 

classification approaches are used. For this purpose feature selection algorithms were 

used which provided the features in their rank order. The Rank order thus obtained 

provides vital features of an attack that could be used in understanding the unique 

characteristics of different kinds of attacks, leading to the possibility that this subject 

understanding can lead to interesting findings on how best to design a software system 

that will most efficient in the detection of network intrusions.  
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