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RÉIDENTIFICATION FACIALE: APPRENDRE DES DONNÉES DÉSÉQUILIBRÉES
À L’AIDE D’ENSEMBLES DE CLASSIFICATEURS

Roghaiyeh SOLEIMANI SAMARIN

RÉSUMÉ

La ré-identification faciale est une application de vidéosurveillance qui fait appel à des engins

de reconnaissance faciale qui sont conçus à partir de visages capturés en séquences vidéo, et

qui cherche à les reconnaître dans des vidéos archivées ou en direct dans un réseau de caméras

vidéo. Les applications vidéo de reconnaissance faciale posent des défis importants en raison

des variations de conditions de capture comme la pose ou l’éclairage. Les autres défis sont de

deux ordres: 1) la distribution déséquilibrée entre les visages capturés pour les personnes à ré-

identifier et les autres; 2) le degré variable de déséquilibre pendant les opérations par rapport

aux données de conception. En général, il est difficile d’estimer la proportion de données

déséquilibrées, en partie à cause de l’incapacité de la plupart des systèmes de classification

à identifier correctement la classe majoritaire, négative ou non ciblée (visages ou images de

personnes à ne pas ré-identifier) de la classe minoritaire, positive ou ciblée (visages ou images

de personnes à ré-identifier), car la plupart de ces systèmes sont conçus pour des conditions de

données équilibrées.

Plusieurs techniques sont proposées dans la littérature pour appendre des données déséquili-

brées, soit des techniques permettant de rééquilibrer les données (en sous-échantillonnant la

classe majoritaire et en sur-échantillonnant la classe minoritaire, ou les deux) pour les classifi-

cateurs de formation, soit des algorithmes permettant de guider le processus d’apprentissage

(avec ou sans approche sensible aux coûts), neutralisant ainsi l’écart de performance dans la

classification de la classe majoritaire. Il a été démontré que les techniques ensemblistes comme

le bagging et le boosting exploitent efficacement ces méthodes pour remédier au déséquili-

bre. Cependant, la littérature fait aussi état de problèmes liés à ces techniques: (1) certains

échantillons informatifs sont délaissés par suite d’un sous-échantillonnage aléatoire, et l’ajout

d’échantillons positifs synthétiques par sur-échantillonnage augmente la complexité de la for-

mation; (2) les facteurs de coût doivent être connus à l’avance ou trouvés; (3) les systèmes de

classification sont souvent optimisés et comparés selon des mesures de performance (comme la

précision) qui ne conviennent pas au problème de déséquilibre; (4) la plupart des algorithmes

d’apprentissage sont conçus et testés d’après un niveau fixe de données déséquilibrées qui peut

différer des scénarios opérationnels. Cette thèse a pour objectif de concevoir des ensembles

de classificateurs spécialisés pour traiter la question du déséquilibre dans l’application de ré-

identification faciale et, comme sous-objectifs, d’éviter les problèmes précités repérés dans la

littérature. De plus, obtenir un ensemble de classificateurs efficace nécessite un algorithme

d’apprentissage pour concevoir et combiner les classificateurs de composants offrant le bon

compromis entre diversité et précision. Pour réaliser cet objectif, quatre contributions majeures

sont présentées dans trois chapitres, dont voici un résumé.
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Au chapitre 3, une nouvelle méthode d’échantillonnage sous forme d’application regroupera

les échantillons du sous-échantillonnage afin d’améliorer le compromis entre diversité et pré-

cision des classificateurs de l’ensemble. Dans les applications de ré-identification faciale, la

méthode d’échantillonnage proposée tire parti du fait que les régions du visage d’une même

personne apparaissant dans le champ de vision d’une caméra peuvent être regroupées en fonc-

tion des trajectoires enregistrées par le localisateur facial (face tracker). Une méthode en-

sembliste de Bagging X est proposée pour tenir compte des variations possibles du niveau de

déséquilibre des données opérationnelles en combinant des classificateurs formés à différents

niveaux de déséquilibre. Dans cette méthode, tous les échantillons servent aux classifica-

teurs de formation, minimisant ainsi la perte d’information. Au chapitre 4, un nouvel algo-

rithme d’apprentissage ensembliste, le Boosting progressif (PBoost), insère progressivement

des groupes d’échantillons non corrélés dans un processus de Boosting pour éviter la perte

d’information tout en générant un groupe diversifié de classificateurs. D’une itération à l’autre,

l’algorithme PBoost accumule ces groupes d’échantillons non corrélés dans un ensemble qui

augmente progressivement en taille et en déséquilibre. Cet algorithme est plus sophistiqué que

celui que l’on propose au chapitre 3, car au lieu de former les classificateurs de base sur cet

ensemble, on les forme sur des sous-ensembles équilibrés tirés de cet ensemble et validés sur

tout l’ensemble. Par conséquent, les classificateurs de base sont plus précis sans compromettre

la robustesse face au déséquilibre. De plus, la sélection des échantillons est fondée sur les poids

attribués aux échantillons correspondant à leur importance. Aussi, la complexité de calcul de

PBoost est inférieure à celle des techniques ensemblistes de Boost dans la littérature, quant à

l’apprentissage de données déséquilibrées, parce que les classificateurs de base ne sont pas tous

validés sur tous les échantillons négatifs. L’on propose également un nouveau facteur de perte

dans PBoost pour éviter de biaiser les performances vers la classe négative. Ce facteur de perte

permet de mettre à jour le poids des échantillons et de fixer la contribution des classificateurs

dans les prédictions finales en fonction de la capacité des classificateurs à reconnaître les deux

classes.

Pour comparer les performances des systèmes de classification vus aux chapitres 3 et 4, il faut

disposer d’un espace d’évaluation qui compare les classificateurs en fonction d’une mesure de

performance appropriée sur tous leurs seuils de décision, les différents niveaux de déséquilibre

des données d’essai et les différentes préférences entre les classes. La mesure F sert sou-

vent à évaluer des classificateurs binaires par rapport aux données déséquilibrées, et aucun

espace global d’évaluation de cette mesure n’a été repéré dans la littérature. Par conséquent,

au chapitre 5, un nouvel espace global d’évaluation est proposé pour la mesure F, analogue aux

courbes de coût par rapport au coût prévu. Dans cet espace, un classificateur est représenté par

une courbe montrant sa performance sur tous ses seuils de décision et les niveaux possibles

de déséquilibre quant au taux positif réel souhaité par rapport à la précision. Ces propriétés

ne paraissent pas dans les espaces ROC (Receiver Operating Characteristic) et de précision-

rappel. Cet espace nous permet également d’améliorer empiriquement la performance des

méthodes spécialisées d’apprentissage d’ensembles déséquilibrés dans une condition opéra-

tionnelle particulière. Par la validation, les classificateurs de base sont combinés d’après une

version modifiée de l’algorithme itératif de combinaison booléenne, de sorte que le critère de
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sélection dans cet algorithme est remplacé par la mesure F au lieu de l’aire sous la courbe

AUC (area under curve), et la combinaison est effectuée pour chaque condition de fonction-

nement. Les approches proposées dans cette thèse ont été validées et comparées à partir des

bases de données synthétiques et des bases vidéo Faces In Action et COX qui émulent les ap-

plications de ré-identification faciale. Les résultats montrent que les techniques proposées sont

plus performantes que les techniques actuelles quant aux différents niveaux de déséquilibre et

de chevauchement entre les classes.

Mots-clés: Déséquilibre des classes, Apprentissage d’ensemble, Bagging, Boosting, Mesure

de la performance, Mesure-F, Outils de visualisation, Ré-identification du visage, Vidéo surveil-

lance





LEARNING FROM IMBALANCED DATA IN FACE RE-IDENTIFICATION USING
ENSEMBLES OF CLASSIFIERS

Roghaiyeh SOLEIMANI SAMARIN

ABSTRACT

Face re-identification is a video surveillance application where systems for video-to-video face

recognition are designed using faces of individuals captured from video sequences, and seek to

recognize them when they appear in archived or live videos captured over a network of video

cameras. Video-based face recognition applications encounter challenges due to variations

in capture conditions such as pose, illumination etc. Other challenges in this application are

twofold; 1) the imbalanced data distributions between the face captures of the individuals to be

re-identified and those of other individuals 2) varying degree of imbalance during operations

w.r.t. the design data. Learning from imbalanced data is challenging in general due in part to the

bias of performance in most two-class classification systems towards correct classification of

the majority (negative, or non-target) class (face images/frames captured from the individuals

in not to be re-identified) better than the minority (positive, or target) class (face images/frames

captured from the individual to be re-identified) because most two-class classification systems

are intended to be used under balanced data condition. Several techniques have been proposed

in the literature to learn from imbalanced data that either use data-level techniques to rebalance

data (by under-sampling the majority class, up-sampling the minority class, or both) for training

classifiers or use algorithm-level methods to guide the learning process (with or without cost-

sensitive approaches) such that the bias of performance towards correct classification of the

majority class is neutralized. Ensemble techniques such as Bagging and Boosting algorithms

have been shown to efficiently utilize these methods to address imbalance. However, there are

issues faced by these techniques in the literature: (1) some informative samples may be ne-

glected by random under-sampling and adding synthetic positive samples through upsampling

adds to training complexity, (2) cost factors must be pre-known or found, (3) classification sys-

tems are often optimized and compared using performance measurements (like accuracy) that

are unsuitable for imbalance problem; (4) most learning algorithms are designed and tested on

a fixed imbalance level of data, which may differ from operational scenarios;

The objective of this thesis is to design specialized classifier ensembles to address the issue

of imbalance in the face re-identification application and as sub-goals avoiding the above-

mentioned issues faced in the literature. In addition achieving an efficient classifier ensemble

requires a learning algorithm to design and combine component classifiers that hold suitable

diversity-accuracy trade off. To reach the objective of the thesis, four major contributions are

made that are presented in three chapters summarized in the following. In Chapter 3, a new

application-based sampling method is proposed to group samples for under-sampling in order

to improve diversity-accuracy trade-off between classifiers of the ensemble. The proposed

sampling method takes the advantage of the fact that in face re-identification applications,

facial regions of a same person appearing in a camera field of view may be regrouped based

on their trajectories found by face tracker. A partitional Bagging ensemble method is proposed
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that accounts for possible variations in imbalance level of the operational data by combining

classifiers that are trained on different imbalance levels. In this method, all samples are used

for training classifiers and information loss is therefore avoided.

In Chapter 4, a new ensemble learning algorithm called Progressive Boosting (PBoost) is pro-

posed that progressively inserts uncorrelated groups of samples into a Boosting procedure to

avoid loosing information while generating a diverse pool of classifiers. From one iteration

to the next, the PBoost algorithm accumulates these uncorrelated groups of samples into a set

that grows gradually in size and imbalance. This algorithm is more sophisticated than the one

proposed in Chapter 3 because instead of training the base classifiers on this set, the base clas-

sifiers are trained on balanced subsets sampled from this set and validated on the whole set.

Therefore, the base classifiers are more accurate while the robustness to imbalance is not jeop-

ardized. In addition, the sample selection is based on the weights that are assigned to samples

which correspond to their importance. In addition, the computation complexity of PBoost is

lower than Boosting ensemble techniques in the literature for learning from imbalanced data

because not all of the base classifiers are validated on all negative samples. A new loss fac-

tor is also proposed to be used in PBoost to avoid biasing performance towards the negative

class. Using this loss factor, the weight update of samples and classifier contribution in final

predictions are set according to the ability of classifiers to recognize both classes.

In comparing the performance of the classifier systems in Chapter 3 and 4, a need is faced for

an evaluation space that compares classifiers in terms of a suitable performance metric over

all of their decision thresholds, different imbalance levels of test data, and different preference

between classes. The F-measure is often used to evaluate two-class classifiers on imbalanced

data, and no global evaluation space was available in the literature for this measure. Therefore,

in Chapter 5, a new global evaluation space for the F-measure is proposed that is analogous

to the cost curves for expected cost. In this space, a classifier is represented as a curve that

shows its performance over all of its decision thresholds and a range of possible imbalance

levels for the desired preference of true positive rate to precision. These properties are missing

in ROC and precision-recall spaces. This space also allows us to empirically improve the

performance of specialized ensemble learning methods for imbalance under a given operating

condition. Through a validation, the base classifiers are combined using a modified version of

the iterative Boolean combination algorithm such that the selection criterion in this algorithm

is replaced by F-measure instead of AUC, and the combination is carried out for each operating

condition.

The proposed approaches in this thesis were validated and compared using synthetic data and

videos from the Faces In Action, and COX datasets that emulate face re-identification applica-

tions. Results show that the proposed techniques outperforms state of the art techniques over

different levels of imbalance and overlap between classes.

Keywords: Class Imbalance, Ensemble Learning, Bagging, Boosting, Performance Metrics,

F-measure, Visualization Tools, Face Re-Identification, Video Surveillance
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φ+ Cost adjustment function for the positive class samples

φ− Cost adjustment function for the negative class samples



INTRODUCTION

Biometric recognition of individuals measures and analyzes the unique intrinsic human phys-

ical or behavioural characteristics for automatic recognition of a person’s identity. One of the

applications of face biometric is in video surveillance systems. A video surveillance system

consists of a number of video cameras used at airports, banks, department stores etc., for se-

curity purposes. In the traditional video surveillance systems, videos are displayed for human

operators to detect specific individuals of interest or behaviours. The more the number of cam-

eras increases the more degrades the human operators’ performance. The new video surveil-

lance systems are improving by utilizing automatic face recognition algorithms for assisting

or replacing human operators. Applications of face recognition in video surveillance include

still-to-video face recognition, and video-to-video face recognition (or face re-identification).

Face re-identification is the focus of this thesis and refers to recognition of individuals (online

or offline) viewed in different video streams at different time instants and/or locations over a

network of cameras using systems that are trained on faces captured from videos. A typical

face re-identification system consists of a segmentation module in order to separate the region

of interest (ROI) of face(s) in the scene from the background, a feature extraction module to

extract more compact while useful information form the face, and a recognition module which

classifies the probe face using the face models from the individual(s) of interest in the gallery

using the feature vectors. The most common classification architecture in the literature for

face re-identification consists of one-class or two-class classifiers or an ensemble of them per

individual of interest (Radtke et al., 2014; Pagano et al., 2014; De-la Torre et al., 2015c).

The video-based face recognition systems can be divided into two categories. In spatial ap-

proaches (Martinel & Foresti, 2012; Bazzani et al., 2012; Stallkamp et al., 2007; Taigman

et al., 2014a; Schroff et al., 2015; Parkhi et al., 2015; Ding & Tao, 2017) videos are treated as

several images of the face.
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In spatio-temporal approaches (Matta & Dugelay, 2007; Ahonen et al., 2006; Hadid & Pietikäi-

nen, 2009; Ye & Sim, 2010; Mitra et al., 2006; Gheissari et al., 2006; Pagano et al., 2014; De-la

Torre et al., 2015c) the temporal dynamics in video is also exploited in various ways within the

recognition process. In this category, motion information may be used as features in addition to

face or appearance (Matta & Dugelay, 2007; Ahonen et al., 2006; Hadid & Pietikäinen, 2009;

Ye & Sim, 2010; Mitra et al., 2006; Gheissari et al., 2006), or tracking and recognition may be

merged into a single task (Saeed et al., 2006; Zhou et al., 2004) or as individual tasks where

the results are combined (Matta & Dugelay, 2007; Mazzon et al., 2012; Tao & Veldhuis, 2009;

Pagano et al., 2014; De-la Torre et al., 2015c). In such systems, a face tracking system also

appears that finds the location of a face present in a frame by utilizing its location information

from the previous frames. Once a face is located and tracked over video frames, the ROIs over

these frames are collected into a trajectory.

Problem Statement:

Face re-identification is challenging since facial captures are obtained from video streams that

are captured unobtrusively under semi- or uncontrolled conditions. Hence, the conditions of

the individuals such as pose and expression, as well as the effects of the environment such as

illumination, occlusion and blur can vary significantly over time. One important challenge in

this application (that is the focus of this thesis) is that the number of reference samples of indi-

viduals of interest is limited and excessively outnumbered by those of others. Therefore, there

exists imbalance between the number of target (positive or minority) and non-target (negative

or majority) classes. In addition, the skew level during operations may differ from what is

considered during design.

Designing most of the conventional classification systems with imbalanced data results in a

classification decision boundary skewed towards the minority class and as a consequence low

accuracy is achieved in recognizing positive samples. Several approaches have been proposed
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in the literature to train classification systems from imbalanced data to avoid this bias of perfor-

mance. Data level approaches exploit data pre-processing methods prior to classification with-

out any modification in the classification algorithm. These approaches involve up-sampling the

minority (target, or positive) class and/or under-sampling the majority (non-target, or negative)

class. Algorithm-level approaches define or modify learning algorithms to bias the perfor-

mance of the classification systems in favour of the minority class and therefore neutralize the

bias of performance towards the majority class caused by training on imbalanced data. These

algorithms may make use of cost-sensitive methods that improve the classification performance

by assigning different misclassification costs to the classes in the learning algorithm. However,

there exists algorithm-level methods that guide the learning process without using different

misclassification costs.

Ensemble-based methods define ensemble learning algorithms using one of the data-level, cost-

sensitive, or cost-free methods, or a combination of them, to train a combination of a set of

classifiers for achieving a high level of performance in terms of classification accuracy as well

as robustness to imbalance.

Performance of an ensemble of classifiers depends on different factors. The base classifiers

that are included in the ensemble must maintain a good level of diversity-accuracy trade-off

and should be combined in an effective way. It means that an ensemble outperforms its compo-

nent classifiers only if the component classifiers provide complementary and accurate enough

recognition of the classes, and if these complementary information are combined properly. In

addition, a suitable performance measure plays an important rule in optimization of designing

an ensemble.

Specialized Boosting and Bagging ensembles (Freund, 1995; Freund et al., 1996; Breiman,

1996; Yan et al., 2003; Li et al., 2013) are commonly used for the issue of class imbalance

in the literature. In these ensemble methods diversity is maintained by training component
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classifiers on different subsets of data. Boosting and Bagging algorithms (Freund, 1995; Freund

et al., 1996) train classifiers iteratively. In Bagging, a bootstrap of data is used to train a

classifier in each iteration. Bootstrap are also used in Boosting algorithm to train classifiers

iteratively with the difference that in this algorithm training samples are assigned with weights

(analogous to misclassification costs) that are updated from one iteration to the next. The

weight update is carried out such that from one classifier to the other, more focus is given to

correctly classifying the samples that are more difficult to classify. In addition to the training

samples in Boosting algorithms, the classifiers are also assigned with weights that determine

their contribution in final decision. In data-level Boosting and Bagging ensembles, the learning

algorithm is modified by under-sampling the majority class (Seiffert et al., 2010; Barandela

et al., 2003) or up-sampling the minority class (Chawla et al., 2003; Hu et al., 2009) , or

both (Wang & Yao, 2009; Díez-Pastor et al., 2015). In cost-sensitive Boosting ensembles (Fan

et al., 1999; Ting, 2000; Sun et al., 2007), misclassification costs control the weight update and

the contribution of each classifier in the ensemble in final prediction.

The challenges that are faced in the literature of classifier ensembles for imbalanced data learn-

ing using the aforementioned methods are summarized as following:

- Under-sampling the majority class may put the learning algorithm in the risk of information

loss, and up-sampling the target class increases the computation cost.

- The performance level of cost sensitive methods relies on the proper selection of cost values.

- In designing most of existing classification systems in the literature, the imbalance level is

considered fixed and known a priori, while in reality the level of imbalance is unknown and

may vary over time.
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- Most of existing classification systems in the literature are evaluated using performance

metrics and spaces that are not suitable for imbalance. In addition these classification sys-

tems are rarely optimized in terms of the suitable performance metrics for imbalance.

Objectives and structure of the thesis:

The main objective of this thesis is to design specialized classifier ensembles to address the

issue of imbalance in recognition of faces from video in face re-identification application. This

system must avoid bias of performance towards the correct classification of the negative class

and result in a high performance in correctly classifying faces from videos in presence of

imbalance. The design of such systems must handle the challenges of the methods in the

literature for imbalanced data classification in general and in face re-identification application.

First, the literature is reviewed in Chapter 1 for (1) face re-identification methods (2) imbal-

anced data classification approaches, and (3) performance metrics to evaluate classification

systems under imbalance. Then in Chapter 2, the experimental methodology used in this thesis

is presented.

A sample selection technique called Trajectory Under-Sampling (TUS) is proposed in Chap-

ter 3 that is specialized for face re-identification to design ensembles of classifiers trained on

imbalanced data. This sampling technique benefits from the fact that there exists some natu-

ral sub-clusters in this application that can be found using tracking information. In fact this

sampling method can be used in any application where there exists some natural sub-clusters

and use one-versus-all learning strategy. Two ensembles are proposed using TUS and it ap-

pears to be more effective than the general-purpose sampling methods in the literature for this

application because TUS improves the diversity-accuracy trade off between classifiers of the

ensemble for this application. In the proposed ensembles the classifiers are trained on data

subsets that have different imbalance levels and the combination of them is optimized based
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on their performance in terms of F-measure. Then we extend this ensemble method by fur-

ther under-sampling the trajectories to support vectors with the intention of decreasing the bias

of performance in classifiers that are trained on imbalanced subsets and to use only the most

important information from the data. The content of Chapter 3 is an extended version of a

conference paper presented in ICPRAM 2016.

In the next step (Chapter 4), a new Boosting ensemble method is proposed that is called Pro-

gressive Boosting (PBoost). In this Boosting algorithm, the skew level of data used for de-

signing the classifiers in the ensemble increases progressively. In contrast to the ensembles

proposed in Chapter 3, the classifiers in the proposed ensemble in this chapter are not trained

on imbalanced subsets of data and are only validated on imbalanced subsets of data. Instead,

the classifiers are trained on balanced sets because training on balanced subsets of data in-

creases the accuracy of each individual classifier in the ensemble which can lead to an overall

better performance of the ensemble. These subsets are drawn from a growing imbalanced set

and this selection depends on the importance of samples based on weights assigned through

the proposed Boosting learning strategy. The classifiers in this ensemble are validated on this

growing set and therefore result in an ensemble with more robustness to varying imbalance.

The weights of the samples and the classifiers in this ensemble are updated based on the per-

formance in terms of F-measure from one iteration to the other. To this aim, the loss function

of the ensemble is modified using the F-measure and each classifier is assigned with a weight

according to its performance in terms of F-measure. Similarly to the ensemble methods pro-

posed in Chapter 3, the proposed TUS appears to be more effective for this application than the

general-purpose sampling methods in the literature. However, note that the proposed PBoost

algorithm can be used in any application since if there is no application-based under-sampling

method for an application, this algorithm works with general-purpose sampling methods like

random under-sampling and cluster under-sampling.
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A part of this work that presents the modification of loss function in Boosting ensemble has

been published in a conference paper (ICPR2016). The full content of this chapter is published

as a regular article in the journal of Expert Systems with applications from Elsevier.

In experiments of Chapters 3 and 4, we compare the classification systems under different im-

balance levels in terms of F-measure to evaluate their accuracy as well as their robustness to

varying imbalance levels during testing. For this purpose an evaluation space is required that

compares classifiers in terms of a suitable performance metric over all of their decision thresh-

olds, different imbalance levels of test data, and different preference between classes. The

F-measure has some advantages over other performance metrics for evaluating and comparing

the classifiers’ performance when data is imbalanced. However, no performance evaluation

space presented in the literature allows to compare classifiers in terms of F-measure over all of

their decision thresholds, different imbalance levels of test data, and different preference be-

tween classes. What’s more, the other existing performance evaluation spaces in the literature

lack at least one of aforementioned three properties. Therefore, a new space is designed to

have all the above properties in Chapter 5. The new space is thoroughly analytically investi-

gated to understand its properties, and it is described how to compare classifiers using it. Then,

as a possible application, it is used to design a modified version of adaptive Iterative Boolean

Combination (IBC) algorithm. With this algorithm, the selection and combination step of the

ensemble learning are adapted to the varying imbalance levels during test in terms of the F-

measure. The ensembles proposed in Chapters 3 and 4 are designed statically and account for

the varying imbalance level of data during design stage. However, the ensembles in this Chap-

ter are designed adaptively to the estimated skew level of data. The content of this chapter is

partially presented in a conference paper (ANNPR2018) and the full content is accepted as a

regular article for the Pattern Recognition journal.
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Note that the proposed ensemble algorithms in this thesis can be implemented with any dis-

criminative classifier such as logistic regression, neural networks, nearest neighbour, etc.

Contributions and the list of publications:

In summary, the main contributions of this thesis, the issues that they target to solve and the

resulting publications are as follows:

1. Proposing an efficient under-sampling method for improving diversity-accuracy trade-off

in designing ensembles in face re-identification application and proposing two Bagging

ensemble methods using the proposed under-sampling method to increase robustness to

varying imbalance (the 5th ICPRAM (Soleymani et al., 2016b)).

2. Proposing a new Boosting ensemble for imbalanced data classification (Expert Systems

with Applications (Soleymani et al., 2018b)) with the following contributions:

- Optimizing the loss function of the Boosting algorithm using the F-measure to avoid

bias of performance (the 23rd ICPR (Soleymani et al., 2016c)).

- Selecting the training subsets from a growing set based on their importance while min-

imizing the risk of information loss.

- Validating the base classifiers on varying imbalance levels in order to increase their

robustness to imbalance and reducing the computation complexity.

3. Proposing a new global performance evaluation space for the scalar metric; the F-measure

(ANNPR (Soleymani et al., 2018a), Pattern Recognition Journal (Soleymani et al., 2019))

with the following properties:

- Possibility of visualizing the performance of any classifier (soft or crisp) under different

imbalance levels of test data.
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- Possibility of comparing more than two classifiers over different decision thresholds

and under different imbalance levels of test data with the ability of selecting a prefer-

ence level between classes.

4. Modifying the Iterative Boolean Combination (IBC) method to adapt the selection and

combination of classifiers in the ensemble using the proposed F-measure space (Pattern

Recognition Journal (Soleymani et al., 2019)).

- Journal publications:

1. Roghayeh Soleymani, Eric Granger and Giorgio Fumera "Progressive Boosting for

Class Imbalance and Its Application to Face Re-Identification.", Expert Systems with

Applications (Soleymani et al., 2018b).

2. Roghayeh Soleymani, Eric Granger and Giorgio Fumera " F-Measure Curves: A Tool

to Visualize Classifier Performance Under Imbalance ", Pattern Recognition Journal

(Soleymani et al., 2019)).

- Conference publications:

1. Roghayeh Soleymani, Eric Granger and Giorgio Fumera "Classifier Ensembles with

Trajectory Under-Sampling for Face Re-Identification", Lecture in the 5th ICPRAM,

2016 (Soleymani et al., 2016b). This paper has won the best student paper award and

was invited to be included in the series "Lecture Notes in Computer Science" (LNCS)

published by Springer.

2. Roghayeh Soleymani, Eric Granger and Giorgio Fumera "Loss Factors for Learning

Boosting Ensembles from Imbalanced Data", Lecture in the 23rd ICPR, 2016 (Soley-

mani et al., 2016c).



10

3. Roghayeh Soleymani, Eric Granger and Giorgio Fumera "F-Measure Curves for Vi-

sualizing Classifier Performance with Imbalanced Data", ANNPR, 2018 (Soleymani

et al., 2018a).



CHAPTER 1

A REVIEW OF TECHNIQUES FOR LEARNING FROM IMBALANCED DATA IN
FACE RE-IDENTIFICATION

1.1 Face Recognition from Video Surveillance

One of the applications of biometrics especially face is in video surveillance systems. A video

surveillance system consists of a number of video cameras used at airports, banks, department

stores etc. for security purposes. In the traditional video surveillance systems, a number of

videos are displayed for human operators to detect specific people or behaviours. Human

operators have low performance in this situation because the scene containing a person or

behaviour of interest might not appear so often and also the time spent in watching videos

is a problem. The new video surveillance systems are improving by utilizing automatic face

recognition algorithms for assisting or replacing human operators.

Face recognition can be applied in many video surveillance systems. Still-to-video face recog-

nition is used in watch list screening application. In this type of application, a high quality

image of a person is captured and a model of the face is created and stored in the gallery dur-

ing enrolment. In deployment (or operational) stage, the faces are captured from the video

streams and the model of the detected person’s face is compared to the models in the gallery.

In systems for video-to-video face recognition (face re-identification) the reference models

are created from the face captures from video streams. In a more general form of "Person

re-identification", both face and/or overall appearance of the individuals could be used to rec-

ognize them.

Video possesses two main characteristics that make it more practical for recognition than still

images:

- Video of a person contains multiple images of that person and might be captured in different

uncontrolled conditions from the operational environment. Therefore, it includes different
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types of information compared to still images. For example, different pose angles of a

person’s face in video could provide extra information of the face.

- Video affords temporal information. For example, the trajectory of feature points along

consecutive frames differs from one person to the other (Zhao et al., 2003).

A typical face recognition system for video surveillance that use both spatial and temporal

information from video is comprised of five major modules which are face segmentation (de-

tection), feature extraction, classification, decision modules, and tracking module. Figure 1.1

presents a general block diagram for this application. The segmentation (face-head detector)

module initiates a new track when the face appears in the scene and extracts the region of inter-

est (ROI) of the face (or the bounding box around the face). The tracker employs local object

detection to find the location of the face in the video frame based on the information from the

previous frames. Therefore, the tracker must periodically interact with the detector (segmenta-

tion module) to initiate new tracks, or to validate and/or update the object template with new

detector bounding boxes (Kiran et al., 2019) (see papers by Breitenstein et al. (2009); Smeul-

ders et al. (2014); Huang et al. (2019) for more on visual tracking and tracking-by-detection).

Then the features are extracted by the feature extraction module from the ROIs to be used in

the classification module.

Figure 1.1 General system for face recognition in video surveillance.
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The classification module identifies the probe face based on the face models in the gallery. In a

common classification architecture for face re-identification a single classifier or an ensemble

of classifiers (EoC) is designed for each individual of interest (Radtke et al., 2013; Pagano

et al., 2014; De-la Torre et al., 2015a). The classifiers are typically one or 2-class classifiers.

The face models in the gallery may be feature vectors that are used directly by a face matcher,

or classification models learned during design. The decision module makes the final decision

based on the results of the classification along with tracking. In some spatial systems the video

is treated as several still images of the face and therefore the tracking information is not used

and the decision module is integrated in the classification module. In addition, in deep neural

network architectures, the feature extraction and classification is carried out in an end-to-end

system. A review of the literature in face recognition from video is presented in the following

sub-section.

Learning and recognition of faces from video is challenging due to uncontrolled face capture

conditions such as variations in pose, illumination, expression, etc. Another challenging prob-

lem in this application, which appears in many other machine learning applications, is the

imbalance between classes because the number of face captures from the individual of interest

is greatly outnumbered by those of others. The issue of imbalance in this application affects

the performance of the classification module in Figure 1.1 and is the main focus of this thesis.

In the rest of this section, after the literature in face recognition from video, the methods from

literature for the issue of classification under imbalance are reviewed in section 1.2.

1.1.1 Techniques in Face Re-Identification

The proposed methods for video-based face recognition in the literature are generally divided

into two main categories based on the type of the video properties they use. The first category

is spatial approaches that consider video as a set of images. The second category is spatiotem-

poral approaches that take advantage of temporal information even partially.
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Spatial methods consider the face re-identification as a problem of matching a set of multiple

samples from a person. In fact the video frames are considered as several independent images

from the same person without considering the temporal relation among them. The images from

the individual of interest are used to build the face model for that individual. On the other hand,

the images from the probe are matched against the face models of the individuals of interest

and the results are combined in four possible levels. The sensor-level, feature-level, score-level

and decision-level are widely used in the spatial methods (Martinel & Foresti, 2012).

Some spatial methods extract features from face and soft biometrics such as clothing and com-

bine them for each frame (sensor-level fusion) and then perform the matching for each frame

and get the final result by combining the matching scores or decisions of all frames (score-level

and decision-level) (Martinel & Foresti, 2012). Some approaches only use the feature-level

fusion and extract one representative feature by combining the same features extracted from

several frames (Bazzani et al., 2012). Some others only use score level or decision level fusion

by combining the classification score or decision obtained from matching each input frame

(Stallkamp et al., 2007; Leng et al., 2013).

Unlike spatial approaches, spatiotemporal approaches exploit the significant characteristic of

video which is temporal dynamics to correctly recognize individuals especially in uncontrolled

and complex environments. Information fusion techniques are also used in this type of methods

to combine the spatial and temporal information for recognition in different levels of feature,

score or decision.

Spatiotemporal methods may use motion information in addition to face or appearance as fea-

tures (Matta & Dugelay, 2007; Ahonen et al., 2006; Hadid & Pietikäinen, 2009; Ye & Sim,

2010; Mitra et al., 2006; Gheissari et al., 2006) and/or employ tracking along with spatial

methods for efficiency improvement especially in the cases that face is temporarily occluded

or the face is not clear due to illumination or motion blur (Pagano et al., 2012; Mazzon et al.,

2012; Barry & Granger, 2007; Tao & Veldhuis, 2009; Pagano et al., 2014; De-la Torre et al.,

2015c). These methods may do tracking and recognition as individual tasks and combine the
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results (Matta & Dugelay, 2007; Mazzon et al., 2012; Tao & Veldhuis, 2009; Pagano et al.,

2014; De-la Torre et al., 2015c) or merge tracking and recognition to a single task (Saeed

et al., 2006; Zhou et al., 2004). For example, in the work of (Pagano et al., 2012, 2014; De-la

Torre et al., 2015c), features of the face are extracted and a user-specific ensemble of two-class

classifiers is trained to recognize the face. They also use a tracker to build the face trajectories

in parallel to the classification system. The results of the classification and tracking are then

accumulated to make a reliable spatiotemporal detection of persons of interest. In the work of

Mazzon et al. (2012), appearance features are extracted and the movement of the person in non-

observed regions is modelled to find the candidate positions for the person. The information

from appearance features and tracking are combined for re-identification.

1.1.2 State of the Art Deep Learning Methods

Deep Learning (DL) model refers to the models that are learned by neural networks that

have numerous layers to learn from experience on large data sets. The most common type

of deep learning architectures for face recognition are end-to-end Convolutional neural net-

works (CNNs), also known as a ConvNets. The hidden layers of a ConvNet typically consist

of convolutional layers, pooling layers and fully connected layers. The basics of CNNs can

be learned from the book (Aghdam & Heravi, 2017). In end-to-end systems that use Con-

vNets for face recognition, features are learned from the training data (face ROIs), instead of

being designed as in the traditional face recognition systems. Therefore, in order to generalize

better, they must be trained with very large datasets that contain enough variations in capture

conditions such as pose and illumination.

After training a CNN architecture, face ROIs can be represented as the output of the fully con-

nected layer before the last layer of the CNN architecture, known as the bottleneck features in

the literature. Then the classification system can be trained on these feature vectors. This clas-

sification system can be more fully-connected layers (a neural network) or any other classifier

(like an SVM), or ensembles of classifiers. Another approach to use CNNs for face recognition

is to train an end-to-end architecture with a purpose of verification or identification.
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The methods in literature for face recognition using CNNs are reviewed by Trigueros et al.

(2018) and Guo & Zhang (2019). Bashbaghi et al. (2019) also review the still-to-video face

recognition systems using CNNs considering the single sample per person problem and Am-

beth Kumar et al. (2019) present a survey on face recognition in video surveillance. Here, we

focus on the systems for video-to-video face recognition using deep learning methods. These

methods can also be divided into spatial and spatio-temporal methods.

Spatial methods treat face captures from the videos as several still images and use still-to-

still neural network architectures. Siamese network (Chopra et al., 2005) was proposed as an

end-to-end system for face verification. During training, contrastive loss function is used to op-

timize two identical networks such that each of them see different training samples. The output

of this network obtains feature descriptors for face captures that can be used for verification or

identification.

Zhu et al. (2013) propose a deep auto-encoder network that reconstructs a face in the canonical

view in order to eliminate variations to pose and illumination. This network has two parts. The

first part has three locally connected layers to extract features. The second part reconstructs a

face using a fully-connected reconstruction layer.

In a series of papers by Sun et al. (Sun et al., 2014a,b, 2015b,a), ConvNets are learned to

obtain deep identification-verification features (Deep hidden IDentity features (DeepID)). The

proposed features are extracted from various local face regions centered around the five facial

landmarks (two eye centers, nose tip, and two mouse corners). Feature extraction is then

followed by either a softmax layer for identification or any classifier for verification.

In DeepFace method proposed by Taigman et al. (2014b), a 3D alignment step is used which is

followed by Siamese network. The network has 6 locally connected layers to extract features

and two fully connected layers to output the descriptor vector and to classify the face captures.

Hu et al. (2014) propose a new discriminative deep metric learning (DDML) method. In this

method, a set of hierarchical nonlinear transformations are learned by training a deep neural
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network. The face pairs are projected by these transformations into a feature subspace which

are used for face verification.

In FaceNet, Schroff et al. (2015) add triplet-loss optimization step to an architecture similar

to Siamese network but replaced L1-norm with L2-norm. The aim of triplet-loss optimization

step is increasing the discrimination capability of network between different identities while

increasing the accuracy of correctly detecting face captures from the same identity. This loss

is applied at multiple layers, not just the final one.

In Light CNN Wu et al. (2015), a semantic bootstrapping method is proposed. Using this

method, the prediction of the networks become more consistent with noisy labels and exploit-

ing this method in training the networks reduces the number of parameters and computational

costs.

VGGFace (Parkhi et al., 2015), train a very deep CNN architecture to identify or verify face

images.

In (Chen, 2017), triplet loss is used in a framework to identify few suspects from the crowd in

real time for public video surveillance. They use Inception-ResNet-v2 (Szegedy et al., 2017)

for feature extraction where the final softmax layer is replaced with a L2-normalization layer.

(Wang et al., 2017) automatically collect and label the data from real-world surveillance videos

and then fine-tune VGGFace (Parkhi et al., 2015) with the constructed dataset.

There exists a few spatio-temporal methods in the literature that are designed specially for

video-to-video face recognition. A temporal slowness principle is used by Zou et al. (2012) to

propose an unsupervised learning method for learning invariant features from videos. Domain-

invariant discriminative representations are learned in the method proposed by Sohn et al.

(2017) using an image to video feature-level domain adaptation approach. The proposed

method uses a pre-trained face recognition CNN on labeled still images to learn discriminative

features, and then adapts them to video domain by synthetic data augmentation. Then domain-
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invariant feature are learned through a domain adversarial discriminator. ASML (Hu et al.,

2017) measure the statistical characteristics of image sets for video-based face recognition.

1.1.3 Challenges of Face Re-Identification

Systems for video-to-video face recognition deal with various problems. In video surveillance,

faces are captured under semi- or unconstrained and complex conditions such as:

1. Scale: The individuals detected in the video streams might move or appear in different

distances from the cameras. Therefore, the captured faces may vary in scale from one

person to the other or from one frame to the other.

2. Pose: People passing through the surveillance regions may change directions in reference

to the location of the camera or move their heads in different directions. Therefore, their

pose may vary significantly in different video frames

3. Expression: People may show different facial expressions in different frames of the video.

4. Motion blur: If the person moves rapidly, motion blur may happen.

5. Illumination: While an individual is moving from one place to another, the illumination

may increase or decrease during this change of location.

6. Occlusion: Faces might be blocked with other people or objects in the environment.

In addition to the mentioned capture conditions, the quality of the face images may be poor

due to low resolution of the camera i.e. face captures in face re-identification may be obtained

from low quality video streams.

Another issue is that, most of the people in the video streams in video surveillance systems are

not of interest. Consequently, a huge amount of comparisons are carried out for finding a small

number of people. In fact, the processing time grows with the number of persons, number of

cameras, frame rate, etc.
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There is another important challenge in this application which is the main focus of this the-

sis. The number of non-target individuals in the scene might vary significantly in time and is

unknown a priory. Thus, there is a significant imbalance between target and non-target indi-

viduals that varies by time. Most of the standard learning algorithms degrade with imbalanced

data because they are optimized with an assumption of balanced data distribution. The effects

of imbalance on learning algorithms and a review of approaches from the literature to mitigate

these effects is presented in more detail in the next section.

1.2 Classification in Imbalanced Environment

The data class distributions in many real-world applications are imbalanced. However, the

class with fewer samples is usually of more interest than the others. In this section the effect

of imbalance on the performance of one and 2-class classifiers will be presented, and then

some indirect imbalance related factors that impose additional degrade in performance of the

classifiers will be investigated. After that, techniques from the literature to design and oper-

ate classifiers under imbalanced data will be analyzed and finally the critical analysis of the

approaches in the literature concludes the section.

When classifiers are trained on imbalanced data, their performance becomes biased to correct

classification of the majority class. In a 2-class classification problem shown in Figure 1.2, a

2-class classifier that is optimized in terms of accuracy is trained on two cases: the same prior

probabilities (Figure 1.2(a)), and imbalanced prior probabilities (Figure 1.2(b)). The optimal

Bayes decision threshold is 1 and 0.5 for balanced and imbalanced cases, respectively. In

balanced case the misclassification rate of both classes are the same. However, in imbalanced

case, the misclassification rate of positive class (the proportion of the number of misclassified

positive samples to all positives) is much larger than the negative class (the proportion of the

number of misclassified negative samples to all negatives).

Another example is shown in Figure 1.3 where a Support Vector Machine (SVM) classifier

is trained on 2D data distributions with different imbalance levels. It is observed that as the
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Figure 1.2 Joint probability densities p(x,C+), p(x,C−) as the function of a feature

value x (x axis) for two classes C+, C−, and the optimal Bayes decision boundaries to

classify them: balanced vs. imbalanced cases.

imbalance level of training data increases, the decision boundary moves towards the positive

class which in turn result in more misclassified positive class samples.
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Figure 1.3 Distribution of two 2D classes and the decision boundaries of SVM to

classify them: balanced vs. imbalanced cases.
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Imbalance between classes hinders classification performance from different perspectives. From

design viewpoint, it is a well-established fact that training with imbalanced data result in biased

classification performance towards the majority class. On the other hand, the performance of

the classification systems may degrade during deployment due to the unpredictable and chang-

ing skew level of the input data stream.

In addition to these problems, there are some other imbalance related factors that lead to such

degrade in performance. In fact, imbalance and its varying property causes several data intrin-

sic related drawbacks indirectly such as lack of density, variation in overlap and class separa-

bility, dataset shift, within-class imbalance, and small disjuncts. These effects are investigated

by López et al. (2013) in detail and a summary is presented in the following.

- Lack of density: When the data is imbalanced, the density of the minority class, which is

usually the class of interest, is lower than that of the majority class. Therefore, the generated

classification model based on these densities is weak (see Figure 1.3(b) and (c)). This effect

is highlighted when one-class classifiers are used.

- Overlap and class separability: When the imbalance varies between two distributions of

data, the overlap between classes and their separability changes. Figure 1.3(b) and (c) shows

examples of two normal distributions of two classes with the same standard deviation. It is

observed that with increasing the imbalance, the overlap increases and the separability of

the classes decreases.

- Dataset shift: When the imbalance ratio increases the boundary of the classes could change

such that it seems that the data set is shifting. If we look back to Figure 1.3(b) and (c) it

seems that by increasing the imbalance, the majority class is shifting towards the minority

class.

- Within-class imbalance (small disjuncts): Varying imbalance may cause appearance of

some small disjuncts in data distribution. This small disjuncts could come from within-

class imbalance. In fact within-class imbalance corresponds to the case where a class is
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composed of a number of different subclusters and these subclusters do not contain the

same number of examples (Japkowicz, 2001). The small disjuncts are solitude subclusters

in the feature space. This is the case in user-specific 2-class classification systems for face

re-identification. In Figure 1.4 the face captures of 6 individuals are mapped to 2D space.

Consider a case when the classifier is designed with ID1 as positive class. By varying im-

balance from 1:1 to 1:5 one or more individuals with IDs 2 to 6 are selected as the negative

class. Small disjuncts are visible specially in the case of ID2 and ID5. Within-class imbal-

ance is also visible in this application, since the number of samples from each individual is

different.
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Figure 1.4 2D mapping of face captures of individuals from FIA dataset using

Sammon mapping.

Several approaches have been proposed in the literature to design classification systems using

imbalanced data. These approaches are divided into data-level and algorithm-level approaches

(see Figure 1.5). Data-level approaches either up-sample the target class, under-sample the

non-target class or combine up-sampling and under-sampling to re-balance data for the learning
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procedure. Algorithm-level methods create or modify learning algorithms to counter the bias

towards the non-target class through cost-free techniques or by introducing uneven misclassifi-

cation costs for the samples from different classes in cost-sensitive approaches. Ensembles of

classifiers combine a set of diverse classifiers to design a robust classification system. To han-

dle imbalance, ensembles can exploit one or a combination of aforementioned techniques. In

the following, a review of ensemble methods is presented and after that the modified ensembles

for imbalance problem are reviewed in Sections 1.2.1.1 and 1.2.1.2.

Figure 1.5 A taxonomy of static ensembles learning methods specialized for

imbalanced data.

1.2.1 Classifier Ensembles

Ensemble of classifiers improve over the performance of a single classifier by combining a

number of classifiers that are diverse and accurate enough to make uncorrelated and accu-

rate predictions. An ensemble of classifiers is created in three stages; generation, selection

and combination. In the generation stage a pool of base classifiers is created that are at

least more accurate than random guessing and also diverse enough to make different errors.

Even though diversity is a key factor in generating and selecting among classifiers, measur-

ing diversity is not straightforward because there is no generally accepted formal definition
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(Kuncheva & Whitaker, 2003). Nevertheless, diversity is perceived as the level of disagree-

ment among classifiers in the literature. There are several ensemble generation approaches in

the literature to preserve a reasonable level of diversity-accuracy. Diversity could be achieved

in several ways. For example, Bagging (Breiman, 1996) and Boosting (Freund, 1995; Freund

et al., 1996) algorithms train classifiers on different data subsets. Random sub-space method

(RSSM) (Ho, 1995) is another approach that is defined as pseudorandomly drawing subsets of

the components of the feature vector to train each base classifier.

The ensemble could be generated from the same base classifiers with different training strate-

gies. For example, in (Connolly et al., 2012) an adaptive classification system (ACS) for video

based face recognition is proposed. A pool of fuzzy ARTMAP neural network classifiers is

generated. In fact, the authors use the same base classifiers with different hyper-parameters for

each classifier in an adaptive manner.

Different types of base classifiers operating in parallel or serially could be used to generate en-

semble. For example, in (Zhou & Jiang, 2004) decision tree is integrated with neural network.

The training process of ensemble members may be performed in a single or several iterations.

Boosting algorithms (Freund, 1995; Freund et al., 1996) are the most well-known methods that

train the base classifiers iteratively.

The relationship between ensemble members can be successive or co-operative. Successive

ensembles are created dependently whereas there is an interaction between the learning runs

or classification results. The ensembles that are trained iteratively belong to this type of group

such as Boosting ensembles. The concept of co-operative relationship between classifiers refers

to the ensembles that are created with members acting independently. Bagging and its varia-

tions, and the random subspace method belong to this group.

In selection stage of the ensemble members, a subset of the pool is selected and in the combi-

nation stage the selected subset is combined to create the ensemble. Two types of ensembles

could be defined with respect to their selection and combination strategy based on their de-
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pendence on the input data condition. Static ensembles are designed only with training (and

validation) data set and are kept the same for any input pattern. Dynamic ensembles, in turn,

are adaptive to some criteria or some context extracted from the input data. Such criteria or

information from the input data are used for dynamic selection or combination of classifiers in

the ensemble (Connolly et al., 2012; Britto Jr et al., 2014).

An important aspect in ensemble methods is to determine how many and which base classi-

fiers should be included in the final ensemble. Ensemble selection has impact on two aspects:

efficiency and predictive performance. The reason is that a large ensemble increases the com-

putational cost and too few ensemble members might not be sufficient to increase the accuracy.

Some approaches pre-determine the ensemble members by using a controlling parameter such

as number of iterations like Bagging and Boosting. Some others try to make the best selection

of ensemble members during design, or even testing based on the performance of the classi-

fiers. For example, Prodromidis & Stolfo (2001) suggest ranking classifiers according to their

classification performance on a separate validation set and their ability to correctly classify

specific classes. Some approaches use greedy search methods and select the ensemble mem-

bers from a big pool of base classifiers by searching in the space of the different ensembles.

The search is guided by either the predictive performance or the diversity of the alternative en-

sembles. (Ko et al., 2008) propose a dynamic selection of ensembles called K-nearest-oracles

(KNORA). For each test sample, KNORA finds its nearest K neighbours in the validation set,

figures out which classifiers correctly classify those neighbours in the validation set and uses

them as the ensemble for classifying the given pattern in that test set. Skew sensitive Boolean

Combination (SSBC) (Radtke et al., 2014; De-la Torre et al., 2015c) select and combine the

classifiers based on the estimated imbalance of the input data.

The classification results of classifiers in an ensemble system are combined to make a final

single decision for the new unknown data. The combination could be done in two levels,

score level or decision level in either static or adaptive manner. With the majority voting

method, the final decision is made by counting the votes of ensemble members and selecting

the decision with highest number of votes (Kittler et al., 1996). A variant of majority voting
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is weighted majority voting that assigns weights to the classifiers based on their performance

(Littlestone & Warmuth, 1994; Kuncheva et al., 2001) and is also a decision-level approach

that defines a belief function and selects the class that maximizes the belief function based

on a basic probability defined for each of the classes. Boosting approaches assign a weight

to each ensemble member based on its performance during design. Li et al. (2013) assigns

the weight of each ensemble member based on the distance between the positive class and the

negative class cluster that is used to train that classifier. Dass et al. (2005) propose a framework

for combining the matching scores from multiple modalities using the likelihood ratio statistic

computed using the generalized densities estimated from the genuine and impostor matching

scores. Some methods consider the matching scores or decisions as features and train a meta

classifier on them. For example, Tao & Veldhuis (2013) concatenate the individual matching

scores from different classifiers to construct a new feature vector and classify the feature vector

by a Naive Bayes classifier using receiver operating characteristics (ROC). They then obtain

Naive likelihood ratio by summing the individual log-likelihood ratios, which can be derived

from the slope of the component ROCs. Wolpert (1992) transform the decisions made by the

classifiers to a training set and an additional classifier combines the different predictions into a

final decision.

Most of the ensemble learning methods to handle imbalance in the literature are static ap-

proaches. There are a few adaptive ensembles for imbalanced data classification that allow

to adapt the selection and fusion of base classifiers during operations based on the estimated

level of skew (Radtke et al., 2014; De-la Torre et al., 2015c). Bagging and Boosting (Fre-

und & Schapire, 1995; Freund et al., 1996) are two common static ensemble methods that have

been modified in several ways to learn from imbalanced data in the literature (see the reviews

Galar et al. (2012); Branco et al. (2016); Krawczyk (2016a); Haixiang et al. (2016)). There-

fore, this section continues by reviewing Bagging and Boosting algorithms in more detail and

the effect of imbalance on these algorithms is analyzed. After that the variants of Bagging and

Boosting algorithms for imbalance problem are presented.

Bagging:
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In the Bagging (see Algo. 1) ensemble generation technique, to train each classifier, a boot-

strap of samples S′, containing both target and non-target classes, is drawn randomly with

replacement. When data is imbalanced, the non-target samples have higher chance to appear

in the bootstraps due to their abundance. Bagging has been modified to handle imbalance as

presented in Section 1.2.1.1.

Algorithm 1: Bagging

Input: Training set: S = {(xi,yi); i = 1, ...,M},yi ∈ {−1,1}
# of iterations: E
Bootstrap size: NB

Test input : X
Output: Prediction Function: H(·)

1 for e = 1, ..,E do
2 Select NB samples to create training subset S

′
e.

3 Train classifier Ce on S
′
e.

4 for e = 1, ..,E do
5 Test Ce classifier on X and get back he(·).
6 Output the final hypothesis: H(·) = ∑E

e=1 he(·)

Boosting:

Boosting algorithms were initiated with AdaBoost (Freund & Schapire, 1995) and improved in

AdaBoost.M1 (for 2-class problems) and AdaBoost.M2 (for multiple-class problems) (Freund

et al., 1996) to effectively promote a weak learner that performs slightly better than random

guessing into a stronger ensemble.

In AdaBoost.M1 (Algo.2) samples are assigned with weights. These weights guide the learning

process of a weak classifier to build a stronger ensemble. During Boosting iterations, these

weights are used directly or for re-sampling training data, depending on the type of the base

classifier being used. When the base classifier is from a type that is not designed to incorporate

sample weights in its learning process (like SVMs), training data is re-sampled according to

the weights of the samples. This case is considered here to explain the Boosting procedure.

Let’s consider a two-class problem with M labelled training samples S = {(xi,yi); i = 1, ...,M}
where yi ∈ {−1,1} that contains M+ target samples and M− non-target samples. All samples in
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the dataset are initially associated with the same weight W1(i) = 1/M, i = 1, ...,M. In iteration

e, the weights are shown as We and a new training subset is re-sampled into S′ with the weights

as W′ to traine classifier Ce. This classifier is tested on all training samples (S) and a loss factor

(εe) is calculated as the sum of the weights of misclassified samples:

εe = ∑
(i,Yi):yi �=Yi

We(i) (1.1)

where Yi is the label associated with xi by Ce. If the classifier is too weak (εe > 0.5), the

classifier is discarded and the training set is re-sampled to train another classifier. The loss

factor is then used to define a weight update factor αe:

αe =
εe

1− εe
. (1.2)

The weights of the samples are updated as:

We+1(i) = We(i)α
1
2 |yi−Yi|
e , (1.3)

The weight vector is normalized such that the weights of the misclassified samples increase

exponentially while the weights of the correctly classified samples decrease. αe is also used

to determine the contribution of the classifier in final predictions (Equation 1.4) so that more

accurate classifiers play more important role in identifying the class of the input sample. This

process is repeated for a predefined number of times to design E classifiers. Considering he(x)

as the output of Ce (either a classification score or a label) for an input sample x, final prediction

of the ensemble is obtained from:

H(x) =
E

∑
e=1

he(x) log
1

αe
(1.4)

AdaBoost is not effective to learn from imbalanced data for two reasons. Non-target samples

are the majority and when training data is re-sampled in line 3 of AdaBoost (see Algo. 2),

they contribute more in S′. Therefore, Ce is trained biased to correct classification of this
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Algorithm 2: AdaBoost.M1 ensemble learning method.

Input: Training set: S = {(xi,yi); i = 1, ...,M},yi ∈ {−1,1}
# of iterations: E
Test input : X

Output: Prediction Function: H(·)
1 Initialize W1(i) = 1

M for i = 1, ...,M.

2 for e = 1, ..,E do
3 Create new training set S

′
e with weight distribution W

′
e.

4 Train classifier Ce on S
′
e with W

′
e.

5 Test Ce on S and get back a label set {Yi, i = 1, ...,M}.

6 Calculate the pseudo-loss for S and We: εe = ∑
(i,Yi):yi �=Yi

We(i) .

7 If εe > 0.5 go to step 3

8 Calculate the weight update parameter: αe =
εe

1−εe

9 Update We+1(i) = We(i)α
|yi−Yi|/2
e

10 Normalize We+1 such that: ∑We+1 = 1.

11 for e = 1, ..,E do
12 Test Ce classifier on X and get back he(·).
13 Output the final hypothesis: H(·) = ∑E

e=1 he(·) log 1
αe

class. After that, when Ce is tested on S, loss factor in line 6 is calculated as a weighted error

rate of classification. Again, non-target samples contribute more in loss factor calculation and

the weight update formula and classifiers contribution in final prediction become biased such

that weight of non-target samples increases for the next iteration and classifiers that mostly

classify non-target samples correctly get higher importance in final prediction of the ensemble.

AdaBoost have been modified to address these two issues through data-level and algorithm-

level approaches presented in subsections 1.2.1.1 and 1.2.1.2, respectively.

Another issue related to imbalanced data classification in the literature is that, in this case the

most widely used performance metric, classification accuracy, tends to favour the correct clas-

sification of the most populated class (or classes) and most of learning algorithms are optimized

and compared using unsuitable performance metrics or spaces. Therefore, after presenting the

most recent data-level and algorithm-level ensembles from literature in the following subsec-

tions, a review of performance metrics and spaces for imbalanced data classification is also

presented.
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1.2.1.1 Data-Level Ensembles

Class imbalance can be handled in Boosting and Bagging ensembles through upsampling

the target class, under-sampling the non-target class or combination of them. A popular

up-sampling Boosting approach is SMOTEBoost (Chawla et al., 2003) that integrates Syn-

thetic Minority Over-sampling Technique (SMOTE) into AdaBoost.M2. SMOTE creates syn-

thetic samples by interpolating each target sample with its k-nearest neighbours. MSMOTE-

Boost (Hu et al., 2009) modify SMOTE algorithm by eliminating noisy samples and over-

sampling only safe samples. Jous-Boost (Mease et al., 2007) oversamples the target class by

duplicating it, instead of creating new samples, and introduces perturbation (jittering) to this

data in order to avoid overfitting. DataBoost-IM (Guo & Viktor, 2004) oversample difficult

samples from both classes and integrates it into AdaBoost.M2. In OverBagging and SMOTE-

Bagging (Wang & Yao, 2009), Bootstraps are selected after up-sampling the target class.

Up-sampling techniques address the bias of performance in classifiers through balancing class

distribution without loss of information. However, up-sampling, in general, increase the num-

ber of samples and consequently increase the computation time of learning algorithms, and

SMOTE involves additional computations due to interpolating each sample with its k-nearest

neighbours to generate synthetic samples.

In under-sampling Boosting category, RUSBoost (Seiffert et al., 2010) integrates random under-

sampling (RUS) into AdaBoost.M1. RUSBoost is similar to AdaBoost presented in Algo. 2

where in line 3 of this algorithm, S′ contains all target samples and a randomly selected subset

of non-target class, often with a size equal to the target class. The subsets of non-target class

selected randomly over iterations of RUSBoost could be highly correlated and the classifiers

trained on them can lack in diversity, especially when the skew level of training data is high.

The sample selection paradigm in RUSBoost is managed in EUSBoost (Galar et al., 2013b) to

create less correlated subsets using evolutionary prototype selection (García & Herrera, 2009).

In UnderBagging approach (Barandela et al., 2003), the non-target class is under-sampled

with Bagging and the classifiers are trained on balanced subsets of data. Partitioning is also
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an UnderBagging approach in which bootstraps are selected without replacement either ran-

domly (Yan et al., 2003), or by clustering (Li et al., 2013).

Some researchers combine SMOTE and RUS in AdaBoost and Bagging ensembles to achieve

greater diversity and avoid loss of information as in Random Balance Boosting (RB-Boost)(Díez-

Pastor et al., 2015), UnderOverBagging (Wang & Yao, 2009), OverUnderBagging (Wang & Yao,

2009), and IIVotes (Błaszczyński et al., 2010). RB-Boost combines SMOTE and RUS to create

training subsets with random and different skew levels in AdaBoost.M1 to increase diversity

and robustness to imbalance.

Repetition of sampling in Bagging and Boosting ensembles increase the chance of low cor-

relation between subsets of data that are used for designing classifiers in the ensembles and

therefore maintain diversity among them. However, some potentially informative samples may

be overlooked from these subsets in under-sampling process.

Partitional approaches (Yan et al., 2003; Li et al., 2013) design classifiers using data subsets

sampled from different parts of the feature space and as a result increase diversity of decision

boundaries of classifiers. Creating an ensemble from partitions of data can be considered as an

UnderBagging approach (Galar et al., 2012) where each bootstrap is drawn from a set of non-

target samples that reduces size in each iteration. In other words, after selection of a bootstrap

in each iteration, its samples are eliminated from the main set. In random partitioning of non-

target samples by Yan et al. (Yan et al., 2003) the non-target data is randomly decomposed

into a number of subsets and each subset, combined with the target samples, is used to train a

classifier. Li et al. (Li et al., 2013) partition non-target data by clustering it using k-means in

the feature space and then create an ensemble from the classifiers trained on each non-target

cluster and the target samples. The contribution of the classifiers in the ensemble are then

weighted based on the distance between the corresponding non-target cluster and target class.

In contrast to RUSBoost, these partitional approaches use all non-target samples from parti-

tions to design ensembles and avoid loss of information. However, not all samples are infor-

mative and using all samples for training may result in unnecessary time and memory usage.
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Therefore, enhancing partitional methods with more intelligent sample selection and ensemble

learning algorithm (like RUSBoost) can avoid information loss and excessive time usage at the

same time. This is the motivation of our proposed algorithms in chapters 3 and 4.

1.2.1.2 Algorithm-Level Ensembles

Using the standard loss factor based on misclassification rate in Boosting ensemble learning al-

gorithms biases their performance towards negative class. In the literature this issue is avoided

at the algorithm level using two types of techniques; those that employ two different misclas-

sification cost factors, one for positive and another for negative classes and those that handle

this issue without the use of cost factors.

Cost-sensitive Boosting methods including AdaCost (Fan et al., 1999), CSB (Ting, 2000) and

AdaC (Sun et al., 2007), embed different misclassification cost factors into loss function or

weight update formula of AdaBoost.M2.

For example, CSB (Ting, 2000) introduce two different cost factors for positive and negative

classes as CFN = 1 and CFP ≤ 1, respectively.

We+1(i) =

⎧⎪⎨
⎪⎩

We(i)CFN exp{−αe|yi −Yi|/2} for Yi = 1

We(i)CFPexp(−αe|yi −Yi|/2} for Yi =−1

(1.5)

In these cost-sensitive approaches by setting the cost of misclassifying the positive class CFN

greater than the cost of misclassifying the negative class CFP ,the weights of misclassified

samples from positive class increase more than that of the misclassified samples from negative

class. In addition, the weights of the classifiers that correctly classify positive class better than

the negative class is higher in final decision. Therefore, these cost-sensitive approaches can

make up for the usage of standard error rate in Boosting ensembles and allow adapting the

performance by selecting proper cost factors based on the application. The drawback of these

cost-sensitive approaches is that they require known CFN and CFP that are usually set ad-hoc or

by conducting a search in the space of possible costs for a dataset.
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Some cost-free approaches have been proposed to deal with the bias of performance caused by

using standard error in Boosting ensembles. In RareBoost (Joshi et al., 2001), two different

weight update factors α (see Eq. 1.2) are defined for positive and negative classes as:

α+
e =

1

2
ln(

T Pe

FPe
),α−

e =
1

2
ln(

T Ne

FNe
) (1.6)

where T Pe and T Ne are the true positive and true negative counts, respectively. Then the weight

update formula and final classification prediction are modified as:

We+1(i) =

⎧⎪⎨
⎪⎩

We(i)exp{−α+
e |yi −Yi|/2} for Yi = 1

We(i)exp{−α−
e |yi −Yi|/2} for Yi =−1

(1.7)

H(x) = sign( ∑
e:he(x)≥0

α+
e he(x)+ ∑

e:he(x)<0

α−
e he(x))) (1.8)

(Kim et al., 2015) also define two different αes for positive and negative classes as:

α+
e =

1− l+

l+
, l+ =

∑
i;yi=+1

We(i)|yi −Yi|/2

∑
i;yi=+1

We(i)
(1.9)

α−
e =

1− l−

l−
, l− =

∑
i;yi=−1

We(i)|yi −Yi|/2

∑
i;yi=−1

We(i)
(1.10)

where l+ and l− are pseudo errors of classifier in classifying each class. Finally:

αe = ln(

√
μiα+

e α−
e ) , (1.11)

μi is a multiplier to control the weight of each sample. There is an issue with the loss factor

proposed by Kim et al. (2015). If there are no misclassified samples in one class or in both

classes (i.e. l+ and/or l− = 0), αe becomes undefined.

Cost-free methods enhance the performance of Boosting ensembles without setting any cost

factors and guide the learning process using a more suitable loss factor calculation since the use
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of weighted standard accuracy, as in original Boosting algorithm, biases the learning process

towards correct classification of the negative class. This motivates us to use a suitable loss

factor in Boosting ensemble that is presented in chapter 4. For that, a literature of performance

evaluation metrics and spaces for class imbalance is presented in section 1.2.3.

1.2.2 State of the Art Deep Learning Methods

Analogously to the traditional classification systems, class imbalance biases the performance

of the neural network architectures. The reason is that the gradient component of the majority

(negative) class dominates that of the minority (positive) class which affects the weight update

process of the back-propagation algorithm (Anand et al., 1993).

Several traditional data-level and algorithm-level methods are applicable in deep learning and

there are specialized algorithms that exploit neural network feature learning abilities. A review

of the methods in each family is given in the following subsections. The surveys by Buda

et al. (2018) and Johnson & Khoshgoftaar (2019) compare some of the methods reviewed

in this section experimentally and Johnson & Khoshgoftaar (2019) present a discussion that

highlights various gaps in deep learning from class imbalanced.

1.2.2.1 Data-Level Methods

Jeatrakul et al. (2010) combine SMOTE and Complementary Neural Network (CMTNN).

CMTNN (Kraipeerapun et al., 2009) is a technique using a pair of complementary feedforward

backpropagation neural networks called Truth Neural Network (Truth NN) and Falsity Neural

Network (Falsity NN). Truth NN is a neural network that is trained to predict the degree of

the truth memberships, the Falsity NN is trained to predict the degree of false memberships.

Falsity NN uses the complement outputs of the Truth NN to train the network. Truth NN and

Falsity NN are employed to detect and remove misclassification patterns from a training set.

Masko & Hensman (2015) randomly over sample the positive class and Ahmed et al. (2015)

randomly undersample the negative class for training deep neural network architectures.
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Lee et al. (2016) use RUS to rebalance data along with data augmentation (oversampling the

positive class) to improve the performance of a deep CNN architecture under imbalance.

In the method proposed by Huang et al. (2016), data is clustered and the euclidean distance is

optimized in a deep neural network such that the inter-class distance is minimized and intra-

class distance is maximized. To this aim, the samples that are most representative of each class,

and the samples that lie near the border of each class are preserved and the remaining samples

are ignored.

Lee et al. (2016) use RUS to train a deep CNN architecture. Then fine-tune it using the whole

imbalanced data. This method does not suffer from information loss in contrast to plain RUS,

which completely removes potentially useful information from the training set.

A dynamic sampling method is proposed by Pouyanfar et al. (2018) to adapt the sampling

rate during training according to class-wise performance. The misclassified classes are over-

sampled and the correctly classified classes that are under-sampled. The sample size of each

class is selected dynamically based on the F-measure after each iteration.

1.2.2.2 Algorithm-Level Methods

In learning process of the conventional deep neural network architectures, the loss function

poorly captures the errors from the positive class in cases of high class imbalance. This is-

sue can be addressed by either introducina new loss functions or using cost-sensitive learning

methods.

Zhang et al. (2016) propose cost-sensitive deep belief network with differential evolution

(CSDBN-DE) to automatically learn costs for the cost-sensitive deep learning using a differen-

tial evolutionary algorithm. The network is first pre-trained regularly and then the cost matrix

is incorporated into the output layer’s softmax probabilities during the fine-tuning phase.

Wang et al. (2016) propose two new loss functions that are more sensitive to the errors from the

minority class for training the deep neural networks on imbalanced data sets. This makes the
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learning algorithms more sensitive to better capture errors from the positive class and therefore

achieves higher overall classification accuracy under imbalance.

Khan et al. (2017) propose cost-sensitive versions of three widely used loss functions in deep

neural networks meaning minimum squared error loss, SVM hing loss and cross entropy. They

propose an algorithm for jointly optimization of the network parameters and the class-sensitive

costs during training.

Yang et al. (2017) propose learning ensemble of deep neural networks using AdaBoost algo-

rithm to increase accuracy and robustness to imbalance.

Lin et al. (2017) presented the focal loss (FL) which is a modification of the cross entropy (CE)

loss. CE is multiplied by a factor that decreases for the easily classified samples and increases

for the positive class.

Wang et al. (2018) propose a cost-sensitive deep neural network (CSDNN) method by incor-

porating the cost matrix into the CE loss. The limitation of this method is identifying an ideal

cost matrix which often require a domain expert or a grid search procedure.

Zhang et al. (2018) propose category centers (CC), that combines transfer learning, deep CNN

feature extraction, and a nearest neighbour discriminator. They use the fact that the same class

tend to cluster well in CNN deep feature space. However, the decision boundary that is created

by the final layer of the CNN tends to be biased towards the majority class when there is high

level of imbalance between classes. To avoid this bias of the boundary they propose using

high-level features extracted by the CNN to calculate each class’s centroid in deep feature

space. The new images are then assigned to their nearest deep feature category center. This

method is highly dependent on the deep neural network’s ability to generate discriminative

features that cluster well.

Finally, (Guo & Zhang, 2017) add a loss term to the cross entropy loss of the Softmax to

improve the feature extraction performance under imbalance, especially for the persons with

very limited training samples.
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1.2.3 Performance Evaluation Metrics and Spaces for Class Imbalance

Imbalanced data distributions occur in many real-life applications (Krawczyk, 2016a), often in

two-class problems. In these applications, correctly recognizing samples of the positive class

is the main requirement. Avoiding excessive misclassification of negative samples can also be

more or less important, depending on the application at hand.

In some applications, the above requirements can be expressed in terms of misclassification

costs, where a higher cost is assigned to the misclassification of a positive sample. This also

allows one to "indirectly" take into account class imbalance. Similarly, in other applications

assigning different "fictitious" costs to misclassifications of positive and negative instances can

be a (indirect) way to take class imbalance into account. For example, in a medical application

like automatic cancer diagnosis the number of positive samples (patients who have cancer) is

often much less than negative samples (patients who do not have cancer). In this application,

misclassifying a positive sample as a negative i.e., wrongly discharge of a patient who actually

has cancer results in a delayed treatment, cost is usually much higher than the one of misclassi-

fying a negative sample, i.e., wrongly suspecting a patient with cancer; the reason is that in the

latter case the diagnosis can be corrected in the follow-up tests (Artan et al., 2010). Another

example is online video surveillance applications, where the objective is to find images of a

suspected individual (positive samples) in a public place over a network of cameras. In this

application the misclassification of negative samples is tolerable to some extent, since it would

be corrected later by a human operator. However, beyond a certain limit, this could waste too

much time of the operator, up to missing the person of interest. In this case, a small number

of misclassified positive samples could result in saving a relatively higher misclassifications of

negative samples. In such cases, the application requirements cannot be expressed in terms of

misclassification costs.

Several performance metrics have been used so far for applications with imbalanced classes,

and specific metrics have also been proposed that can be divided into two categories; (1) scalar

metrics that are defined in a single operating condition (e.g. decision threshold) of the classifier.
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(2) global performance evaluation spaces that consider the performance of the classifier under

a range of operating conditions. Some reviews of these metrics can be found in the work

by Ferri et al. (2009), where the behaviour of some scalar performance metrics are analyzed

experimentally for several problems including imbalance to find the correlation between these

metrics. Garcıa et al. (2010) also compare the scalar metrics for imbalance problem. Landgrebe

et al. (2006) and Davis & Goadrich (2006) compare ROC and PR spaces and analyze the

relationship between them. ROC, PR and cost spaces are compared in a survey by Prati et al.

(2011). In this section, we focus on reviewing these metrics in terms of their sensitivity to

imbalance, specifically global spaces that consider different operating conditions and different

preference weights.

1.2.3.1 Scalar performance metrics

We focus here on two-class problems, although some of the existing metrics can also be applied

to multi-class problems. We denote the prior probability of the positive and negative class with

P(+) and P(−), respectively, and the measure of class skew with λ = P(−)/P(+) (assuming that

the positive class is the minority one, we have λ > 1).

The performance of a two-class classifier on a given set of labelled samples (e.g., a testing

set) can be summarized by its confusion matrix. For a given data set (i.e., a testing set), let us

denote with M+ and M− the number of positive and negative samples, and with N+ and N−

the number of samples labelled as positive and negative by the classifier at hand. The confu-

sion matrix reports the number of correctly and wrongly classified samples from both classes:

true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). The true

positive and false negative rates, denoted respectively as TPR and FNR, are defined as T P/M+

and FN/M+; analogously, the true negative and false positive rates (TNR and FPR) are de-

fined as T N/M− and FP/M−. These rates are sample-based estimates of the corresponding

probabilities (e.g., TPR estimates the probability of correctly classifying positive samples). In

particular, in image or document retrieval applications Precision (Pr) and Recall (Re) metrics

are used: Re corresponds to TPR, whereas Pr is defined as T P/(T P+FP) or T P/N+, i.e.,
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the fraction of correctly classified samples among the ones labelled as positive. This metric

estimates the probability that a sample labelled as positive is actually positive.

From the above classification rates, several scalar metrics can be defined. The widely used,

standard accuracy is defined as the probability of correctly classifying a random sample, which

can be estimated as A = (T P+T N)/(M++M−). However, in case of imbalanced data, ac-

curacy is biased towards the correct classification of the negative class due to the abundance

of this class. In particular, the accuracy of the trivial classifier that labels all samples as neg-

atives tends to one as level of imbalance increases. This makes it unsuitable when the correct

classification of the positive class is more important, which is often the case in such kind of

problem.

A generalization of accuracy (more precisely, of the error probability, defined as 1 − A) is

the expected cost (EC), which is used in applications where a cost (in a suitable, application-

dependent unit of measurement) can be associated to the classification outcome (either cor-

rect or incorrect) of a sample. In the simplest case, the cost of correct classifications is zero,

whereas two misclassification costs are associated to the positive and negative classes, denoted

respectively as CFN and CFP. EC is then defined as the expected classification cost of a random

sample, which amounts to:

EC = FNR ·P(+) ·CFN +FPR ·P(−) ·CFP (1.12)

When data is imbalanced, misclassifying a positive sample is usually more costly than mis-

classifying a negative one, i.e., CFN >CFP (see, e.g., the above example of medical diagnosis).

This avoids the bias of classification accuracy toward the negative class. Accordingly, EC

can be used also in applications with imbalanced classes where misclassification costs are not

precisely known, or even difficult to define: one can design a classifier focused on correctly

recognizing the positive class by suitably defining CFN and CFP, and using EC as the objective

function to be minimized. On the other hand, as the ratio CFN/CFP increases, minimizing EC
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allows to increase TPR at the expense of increasing FPR, which may be undesirable in some

applications.

In information retrieval applications, misclassifications are usually not associated to a cost,

and thus EC is not used. To evaluate the effectiveness of a retrieval system, Pr and Re are the

most widely used metrics, instead. Note that they measure complementary aspects of retrieval

effectiveness: for a given retrieval system, Pr can usually be increased only at the expense of

a lower Re, and vice versa. For instance, when a two-class classifier is used to label input

samples (e.g., images or documents) as relevant or non-relevant to a given query, changing its

decision threshold results in increasing one of the two metrics and in decreasing the other.

In particular, in the case of class imbalance, Pr takes into account both TP and FP, and drops

severely when correct classification of positive class is attained at the expense of a high number

of misclassified negative samples. This can be seen more clearly by rewriting Pr as follows:

Pr =
T PR

T PR+λFPR
. (1.13)

It is now evident that, as the λ increases, any given increase in FPR results in a higher reduction

in Pr. This is an interesting feature compared to EC mentioned above for class imbalance

problems.

To obtain a single scalar metric, the F-measure has been proposed by Van Rijsbergen (1979).

It is defined as the weighted harmonic mean of Pr and Re:

Fα =
1

α 1
Pr +(1−α) 1

Re

, (1.14)

where 0 < α < 1 is the weight parameter. Note that another form of the F-measure is more

commonly used: it is obtained by rewriting the weight as α = (1+β 2)−1, with β ∈ [0,+∞),

which leads to

Fβ =
(1+β 2)Pr ·Re

β 2Pr+Re
(1.15)
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=
(1+β 2)TP

(1+β 2)TP+FP+β 2FN
. (1.16)

It is easy to see that for α → 0, Fα → Re, whereas for α → 1, Fα → Pr; setting α = 1/2 one

gets the unweighted harmonic mean of Pr and Re, i.e., both metrics are equally weighted. One

interesting feature of the F-measure is that its sensitivity to the correct classification of the

positive and the negative classes can be adjusted by tuning α . This measure can be better than

the expected cost to compare classifiers when data is imbalanced, especially in information

retrieval, since it weighs the relative importance of TPR and Pr rather than TPR and FPR

directly as in obtaining expected cost. This inspires us to use this metric to optimize ensembles

of classifiers in terms of F-measure in chapters 3, 4 and 5.

In general, note that each of the metrics TPR, FPR, TNR and FNR, that are directly extracted

from the confusion matrix, focuses on the performance of each class individually, and does not

allow to evaluate the effect of class imbalance. However, any metric that uses values from both

rows of this matrix, like Pr, will be inherently sensitive to imbalance (He & Garcia, 2009).

We finally mention other existing scalar metrics that have been exploited, and new ones that

have been specifically proposed, for class imbalance problems, although they are currently less

used than EC and the F-measure (some of them include parameters that can be tuned to weigh

the correct classification of both classes). A more extensive review of these metrics can be

found in (Ferri et al., 2009; Garcıa et al., 2010): Matthews correlation coefficient (Matthews,

1975), defined as the correlation between the true and the predicted label of a random sam-

ple; the geometrical mean (Kubat et al., 1998) either between TNR and Re, or between Pr

and Re (the former values the correct classification of both classes equally, whereas the lat-

ter is more sensitive to imbalance due to the use of Pr); the arithmetic average of TPR and

TNR (macro-averaged accuracy) (Ferri et al., 2009), which values the correct classification

of both classes equally; its variant mean-class-weighted accuracy (Cohen et al., 2006), that

includes a weight to increase the relative importance of the two classes; optimized preci-

sion (Ranawana & Palade, 2006), that combines Re and TNR and accounts for the relative



42

number of positive and negative samples; the adjusted geometric mean (Batuwita & Palade,

2009) between Re and TNR, that aims at increasing Re while keeping the reduction of TNR

to a minimum; and the index of balanced accuracy (Garcıa et al., 2010), aimed at reducing

the effect of the difference in TPR and TNR in metrics that combine them. Variants of the

above performance metrics have also been proposed to account for P(+) (Garcıa et al., 2010;

Flach & Kull, 2015).

1.2.3.2 Global Evaluation Curves

In many real-world applications, there is no precise knowledge of the operating condition

where the classification system will be deployed, i.e., the misclassification costs (when they

can be applied) or the relative importance of Pr and Re (the weight α of the F-measure), and

the class priors. In this case, it is desirable that the classifier performs well over a wide range

of operating conditions, and it is thus useful to evaluate its performance over such a range.

Global curves depict the trade-offs between different evaluation metrics in a multidimensional

space under different operating conditions, rather than reducing these aspects to a single scalar

measure which gives an incomplete picture of prediction performance. However, global meth-

ods are not as easy to interpret and analyze as single scalar values and pose some difficulties in

conducting experiments where many data sets are used.

A well known and widely used tool for two-class problems is the Receiver-Operating Char-

acteristic (ROC) curve, which plots TPR vs FPR for a classifier (typically as a function of its

decision threshold), allowing to evaluate the trade-off between these measures for different op-

erating conditions, as well as to compare different classifiers. Each classifier with a specific

threshold corresponds to a point in the ROC space, and a potentially optimal classifier lies on

the convex hull of the available set of points, regardless of operating conditions (misclassifica-

tion costs and class skew). The performance of a classifier in ROC space can be summarized

by a scalar metric defined as the area under the ROC curve (AUC), which equals the probability

that a random positive sample is given a higher score than a random negative sample.
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In problems with class imbalance, a drawback of the ROC space is that it does not reflect

the impact of imbalance since for a given classifier, the TPR and FPR values do not depend on

class priors (Fawcett, 2006) (see Figure 1.6(a)). However, it is possible to estimate the expected

performance of the classifier in ROC space for a given skew level of data in terms of EC. In

ROC space, each operating condition corresponds to a set of “isoperformance” lines that have

the same slope. An optimal classifier for a specific operating condition is found by intersecting

the ROC convex hull (ROCCH) with the upper left isoperformance line.

To make this process easier, Cost Curves (CC) (Drummond & Holte, 2006) have been proposed

to better visualize the performance of the classifiers over a range of misclassification costs

and/or skew levels in terms of EC (see Figure 1.6(c)). This space is further investigated in

section 1.2.3.3.

In contrast to TPR and FPR, precision (Pr), is sensitive to class imbalance. When Pr and Re,

the well-known metrics in information retrieval, are used as the performance metrics, their

trade-off across different choices of the classifier’s decision threshold can be evaluated by the

precision-recall (PR) curve, which is obtained by plotting Pr as a function of Re. Contrary

to the ROC curve, the PR curve is sensitive to class imbalance, given its dependence on Pr.

However, for different operating conditions (skew levels), different curves are obtained in this

space, which makes it difficult to compare the classifiers when a range of operating conditions

are considered (see Figure 1.6(b)). A disadvantage with respect to the ROC space is that the

convex hull of a set of points in PR space, and the area under the PR curve, have no clear

meaning, despite they are used by several authors Flach & Kull (2015).

In PR space, a given Pr and Re pair, under a specific operating condition (skew level and

desired preference of Re to Pr), can be summarized into a single value metric; F-measure

(similarly to EC in ROC space). F-measure isometrics (sets of points that correspond to the

same value of F-measure) in PR space are hyperbolic (Hanczar & Nadif, 2013; Flach & Kull,

2015). In fact, it is not easy to visualize the performance of a classifier in terms of F-measure

over a range of decision thresholds, skew level, and preference of Pr to Re at the same time
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in PR space. This is analogous to difficulty of visualizing the performance in terms of the

expected cost in ROC space. In the case of the expected cost, this problem has been addressed

by proposing the cost (and Brier) curves visualization tools, alternative to the ROC space,

described in Section 1.2.3.3. Inspired by them, we will propose in Chapter 5 an analogous

visualization tool for the F-measure.
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Figure 1.6 Performance of two soft classifiers in ROC, PR and Cost spaces.

1.2.3.3 Expected Costs Visualization Tools

There are at least three or four distinct sets of samples during the design and deployment of

a classification system that each might have a different proportion of positive class samples.

Ptrain(+) is the proportion of positive samples in the dataset used to learn the classification

system. Depending on the type and the structure of the classification system, a validation stage

may or may not exist. Pvalidation(+) is the proportion of positive samples in the dataset used to

evaluate and tune the parameters of the classification system during the validation stage. After

the classification system is designed, it is tested with another set of data of which Ptest(+) is

the proportion of positive samples. Pdeploy(+) is the proportion of the positive samples during

deployment. The ROC curve plots TPR versus FPR computed from the class-conditional prob-

abilities, which are assumed to remain constant for different Pdeploy(+). However, because we

do not necessarily know Pdeploy(+) at the time we are learning or evaluating the classifier we

would like to visualize the classifier’s performance across all possible values of Pdeploy(+).
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Cost curves (Drummond & Holte, 2006) do precisely that and estimates the classifier perfor-

mance in terms of EC across all possible values of P(+). Therefore, it is Pdeploy(+) that should

be used for P(+) because it is the classifier performance during deployment that we wish to

estimate.

With P(−) = 1−P(+), and FNR = 1−TPR, EC (Eq. (1.12)) is normalized to take the maxi-

mum value of 1 as:

PC(+) =
P(+) ·CFN

P(+) ·CFN +(1−P(+))CFP
(1.17)

NEC = (1−TPR−FPR)PC(+)+FPR (1.18)

Cost curve depicts the normalized expected cost NEC (Eq. (1.18)) versus PC(+)

NEC =

⎧⎪⎨
⎪⎩

FPR if PC(+) = 0

1−TPR if PC(+) = 1

(1.19)

The always positive and always negative classifiers are shown with two lines in the cost space

connecting (1,0) to (0,1), and (0,0) to (1,1), respectively. The operating range of a classi-

fier is the set of operating points, for which the classifier dominates both these lines (Drum-

mond & Holte, 2006). Note that in the rest of the thesis, we use EC instead of NEC.

There is a point-line duality between cost curves and ROC space. A point in ROC space is

represented by a line in the cost space and a point in cost space is represented by a line in the

ROC space. The lower envelope of cost lines in cost space shapes the CC corresponding to the

convex hall of all pairs of (TPR and FPR) points in the ROC space (ROCCH). There are some

advantages in cost space to visualize the performance of the classifiers compared to ROC space.

For reading quantitative performance information from an ROC plot for specific operating

conditions, one deals with some geometric constructions using the iso-performance lines and it

is difficult to analyze them when inspecting ROC curves with naked eye (Drummond & Holte,

2006). In contrast, the classifiers can be analyzed easily by a quick visual inspection for given
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operating conditions. This property of cost space helps the user to easily compare the classifiers

to the trivial classifiers, to select between them, or to measure the difference in performance

between classifiers for the given operating conditions (Drummond & Holte, 2006).

Brier curves (BC) Ferri et al. (2011) visualize classifier performance assuming that the classi-

fier scores are estimates of the posterior class probabilities, without requiring optimal decision

threshold for a given operating condition. Similarly to the cost space BC plots classification

error versus CFN, CFP and P(+) assuming a fixed decision threshold equal to cost proportion

c =CFN/(CFN +CFP) or skew that is defined as z = cP(+)/(cP(+)+(1− c)(1−P(+))).

Having in mind the advantages of CC and BC to visualize the expected cost of the classifiers,

no performance visualization tools analogous to CC and BC exist for the F-measure, and inves-

tigating such space is the subject of Chapter 5 which, to our knowledge, has not been addressed

in the literature. There is a first step by (Flach, 2014) "towards linking threshold choice meth-

ods and performance metrics for loss functions based on F-measure." derived as F-cost curves.

F-cost curves plot a non-linear transformation of the F-measure, defined as 2(1−Fα)/Fα , as a

function of a parameter that corresponds to (1−α). In this space, the curves which correspond

to a single TPR, FPR point are straight lines as in CC. So F-cost curves are visually similar

to CC. However, this does not allow one to see the behavior of the F-measure as a function of

class skew, which is the (different) goal of the proposed F-measure space in Chapter 5.



CHAPTER 2

EXPERIMENTAL METHODOLOGY

In this chapter, the experimental methodology used throughout this thesis is presented. We

start this chapter by introducing the datasets and then continue with the experimental protocol.

Then the performance evaluation used in our experiments are presented. For the experiments

in this thesis, we use SVM with RBF kernel (Chang & Lin, 2011) as the base classifier where

K(x′,x′′) = exp{‖x′−x′′‖2

2κ2 }. The kernel parameter κ is set as the average of the mean minimum

distance between any two training samples and the scatter radius of the training samples in the

input space (Li et al., 2008). The scatter radius is calculated by selecting the maximum distance

between the training samples and a point corresponding to the mean of training samples. We

used the LibSVM implementation of (Chang & Lin, 2011).

2.1 Datasets

As explained in Section 1.2 , one of the main finding of López et al. (2013) is that variations

in imbalance affects overlap and class separability and imbalance becomes an issue specially

when there is overlap between classes. In addition, different classification systems may per-

form differently when they are trained and tested on different imbalance levels of data. There-

fore, in this Ph.D. project, we generate synthetic datasets to control and vary these factors

and evaluate the proposed and baseline classification systems under different conditions. The

proposed and baseline classification systems are also evaluated on video datasets for face re-

identification application.

2.1.1 Synthetic Dataset

2D synthetic datasets used in experiments of Chapters 3 and 4 are generated to emulate a

nonlinear classification problem similar to face re-identification classification problem. The

data is generated to emulate both binarization of a multi-class classification problem when the

classification strategy is one versus all and binary classification problems where there is no
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prior knowledge of optimal sub-clusters of data. The samples of both positive and negative

classes are generated from a mixture of Gaussian distributions. The samples from one normal

distribution are considered as positive class and all other samples are considered as negative

class.

To generate the 2D synthetic data, M+ = 100 positive class samples are generated with a

normal distribution as N(m+,σ+), where m+ = (0,0) and σ+ = [1 0
0 1 ] indicate its mean and

covariance matrix, respectively. Then, n−T = 100 points are generated randomly from a uniform

distribution around m+. These points (m−, j, j = 1, ...,n−T ) are generated as the mean of n−T
Normal distributions (N(m−, j,σ−), j = 1, . . . ,n−T ) for negative class where σ− = σ+. Each

normal distribution contains M+ = 100 samples and is considered as an ideal sub-cluster of

negative class. The mean of these clusters (m−, js) keep a margin distance δ from m+. This

margin δ is used to control the level of overlap between positive and negative classes.

For the experiments in Chapters 3 and 4, we selected the parameter δ as 0.1 (maximum over-

lap) and 0.2 (medium overlap). For each overlap level, each normal distribution is randomly

divided into two subsets for design and testing. Then the design subsets are divided into 5 folds

considering one fold for validation and 4 folds for training. Five replications are carried out by

alternating the validation fold in each iteration and by reversing the role of design and testing

subsets for a total of 10 replications.

Two skew levels and two overlap levels of training data have been considered for the experi-

ments, which have been combined into the three settings shown in Table 2.1. Λtrain = 1 : λ ,

λ = M−
/M+ is set to 1:50 in two setting and to 1:20 in the other (or Ptrain(+) = {0.04,0.02} in

terms of prior probability).

In a similar way, four imbalance levels (Λtest = {1 : 1,1 : 20,1 : 50,1 : 100}) are considered

in Chapters 3 and 4 for testing to evaluate the robustness of the classification algorithms over

varying skew levels of data during operation.
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Examples of synthetic training and test data corresponding to different settings are presented

in Figures 2.1 and 2.2.
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Figure 2.1 Examples of synthetic training data generated under different settings D1,

D2 and D3 used in the experiments of Chapters 3 and 4.
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c) Λtest = 1 : 100

Figure 2.2 Examples of synthetic test data generated with δ = 0.2 and different skew

levels λtest used in the experiments of Chapters 3 and 4.

Table 2.1 Settings used for data generation.

D1 D2 D3

Λtrain 1:50 1:50 1:20

δ 0.2 0.1 0.2
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2.1.2 Video Dataset

In addition to Synthetic datasets, the experiments in this thesis are carried out on two datasets

for video-based face recognition are considered: FIA video database (Goh et al., 2005) and the

COX Face dataset (Huang et al., 2015).

FIA video database (Goh et al., 2005) contains video sequences that emulate a passport check-

ing scenario. The video streams are collected from 221 participants under different capture

conditions such as pose, illumination and expression in both indoor and outdoor environments.

Videos were collected over three sessions where second and third sessions are three months

later than the previous one. The participants are present before 6 cameras for about 5 seconds,

resulting in total of 18 video sequences per person.
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a) Examples of 2D mapping of LBP feature vectors

belonging to 8 individuals using Sammon mapping

(Sammon, 1969).

b) examples of 70 × 70 pixels ROIs along

a trajectory captures with camera 3, during

session one for ID010 with their frame

numbers.

Figure 2.3 Representation of FIA dataset.
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Figure 2.4 Examples of 20 ROIs captured in a trajectory for individual ID

20110319−0010 and camera 3 (video 2) of the COX dataset.

For experiments in this paper using FIA dataset, only the faces captured with frontal camera

in indoor environment are used for both design and testing. ROIs are extracted using Viola

Jones algorithm (Viola & Jones, 2001) from the video. Then, they are converted to gray-scale

and rescaled to 70× 70 pixels. Some examples of ROIs from this data set are presented in

Figure 2.3. The number of face captures from each individual is different from the other in this

dataset.

The COX Face dataset for face recognition in video surveillance (Huang et al., 2015) contains

videos from 1000 participants captured with 4 cameras under different capture conditions. The

faces are tracked and resized such that for each frame with a face detected, an image patch

centered at the head of the subject is cropped out with a size of 66×66. In this dataset, there

is 25 images for each individual. Some examples of ROIs from this data set are presented in

Figure 2.4.

For experiments with video data, multi-resolution gray-scale and rotation invariant Local Bi-

nary Patterns (LBP) (Ojala et al., 2002) histograms have been extracted as features. The local

image texture for LBP has been characterized with 8 neighbours on a 1 radius circle centred

on each pixel. Finally, a feature vector with the length of 59 has been obtained for each ROI.

In these experiments, face captures from one individual (that is randomly selected as target)

are considered as the positive class and the face captures from a number of randomly selected
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individuals are considered as the negative class1. For the experiments in Chapters 3 and 4,

one video is used for both design and testing whereas in Chapter 5, one video is used for

design and one video is used for testing. 2 × 5-fold cross validation is used to split the data

for design and testing. The design set is divided into 5 folds, and for each round one fold is

considered for validation and remaining 4 folds are considered for training. Then the roles of

design and testing sets is reversed. Therefore, for each target individual, three independent

sets are collected from these face patterns for training, validation and testing. Thus, there is

10 rounds of experiments for each target individual. In the experiments in this thesis, 10 target

individuals are randomly selected to carry out and average the results of the experiments that

yields overall 10×10 = 100 rounds of experiments.

For the experiments in Chapters 3 and 4 two imbalance levels (Λtrain = 1 : 50 and 100) and

four different imbalance levels Λtest = {1 : 1,1 : 20,1 : 50,1 : 100} are considered for selecting

the training and testing negative class samples for each positive individual, respectively. This

is to evaluate the performance of different classification algorithms when they are trained on

different imbalance levels, and to evaluate the robustness of the classification algorithms over

varying skew levels during operations. When Λtrain = 1 : 50, for each positive individual,

T− = 50 individuals are used as the negative class from the training set that was collected for

that positive individual. Therefore, when Λtest = 1 : 100, there are 50 negative individuals in

the testing set that were not included in training the classification systems and the skew level of

test data is higher than the skew level of training data. When Λtest < 1 : 50, most of the negative

individuals that were used for training do not appear in testing data. When Λtrain = Λtest = 100,

the maximum imbalance level of testing data is the same as the imbalance level of training

data. Therefore, all individuals are seen in both training and testing. However, in this case a

high level of imbalance exists in both training and testing stages that makes both learning and

classification more difficult. It is worth mentioning that in all settings, the skew level of the

validation data is selected to be the same as testing data.

1 The ROIs of each individual in FIA and COX datasets are already grouped.
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In Chapter 5, two imbalance levels are considered for train, validation and testing. For Ptrain(+)=

Pvalidation(+)=Ptest(+)= 0.1 and Ptrain(+)=Pvalidation(+)=Ptest(+)= 0.04, 9 and 24 negative

class individuals are selected, respectively.

2.2 Performance Evaluation

As reviewed in section 1.2.3, global performance evaluation curves such as ROC and precision-

recall, show the trade off between two metrics for different operational settings. For classifiers

that output scores or probability estimates, this setting is usually the choice of decision thresh-

old. Area under the curve, shows the global performance of the classifier over a range of

possible decision thresholds, where local evaluation metric such as F-measure show the per-

formance for a specific decision threshold.

When data is imbalanced, the same change in the number of true positives and false positives

reflects more significantly in TPR than FPR. Therefore, precision is preferred to FPR because

it magnifies FPR by the skew level of data for the given TPR. Consequently, AUPR (area under

precision-recall curve) is preferred to AUC (area under ROC curve) when data is imbalanced.

However, positive class is often the class of interest which makes TPR (or recall) very impor-

tant. In this case, the F-measure is a more suitable metric to compare the performance of the

classification systems.

Fβ -measure shows the harmonic mean of precision and recall(Re) when a higher importance

is given to recall (in other words changes in precision is eased by β 2). Therefore, in the

experiments in Chapters 3 and 4, AUPR is used to compare the performance of ensembles

globally which shows the average value of precision for different values of recall (or TPR)

giving them equal importance. F-measure is used for giving a higher importance to recall and

G-mean is used to evaluates the performance of the classification systems giving equal weight

to the T PR and T NR(= 1−FPR).

In experiments of Chapter 4, the performance of the proposed ensembles in both Chapters 3

and 4 are also compared to state of the art ensembles in terms of computational complexity.
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In Chapter 5, the performance is compared in ROC, Precision-Recall, Cost and the proposed

F-measure spaces.



CHAPTER 3

CLASSIFIER ENSEMBLES WITH TRAJECTORY UNDER-SAMPLING FOR FACE
RE-IDENTIFICATION

In this chapter, a new method of sample selection called trajectory under-sampling (TUS) is

proposed to design individual-specific ensembles for face re-identification under imbalance.

TUS is an application-specific sample selection method that uses contextual information from

data to group samples. TUS strategy is inspired by the characteristics of the application (face

re-identification) considered in this thesis i.e. face captures that are assigned to a trajectory by

the tracker create a natural sub-cluster of data and sample selection strategies can be adapted

to select such sub-clusters instead of general purpose sampling methods like random sampling.

This sample selection technique is then used in two ensemble design strategies called random

trajectory under-sampling (RTUS) and sorted trajectory under-sampling (STUS). The proposed

ensemble design strategies benefit from training the base two-class classifiers of the ensembles

on data subsets that have different data imbalances and complexities. Training subsets contain

samples from target trajectory and a growing selection of samples from non-target trajectories

to minimize the risk of information loss and to increase diversity among the classifiers trained

on them as well as increasing the robustness to varying imbalance levels.

Starting from one non-target trajectory for the first subset, the level of imbalance (and decision

bound complexity) is increased for the next subsets by adding a number of non-target trajecto-

ries to the previous ones. In RTUS ensemble, the trajectories are selected randomly to create

these data subsets and the contribution of each classifier is weighted based on its accuracy

measured on a validation set. In STUS ensemble, non-target trajectories are selected based

on their proximity to the target trajectory. In another step, the proposed ensemble method is

further extended by shrinking the training subsets to the Support Vectors prior to adding the

next trajectories and training the next classifier in the ensemble on them. With this extended

under-sampling of training subsets, only the most informative samples which are support vec-

tors are preserved and the more relatively redundant samples are discarded. Consequently the
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diversity is maintained while the classifiers are trained on less imbalanced data which in turn

results in increasing their accuracy.

The accuracy and diversity of the proposed ensembles are compared to reference methods

from the literature including UnderBagging approach (Barandela et al., 2003), Partitional Un-

derBagging using random under-sampling without replacement (Yan et al., 2003), SeEn-SVM

(Li et al., 2013), and RUSBoost (Seiffert et al., 2010). Both synthetic data and videos in the

FIA and COX datasets are used for the experiments. The evaluation is done with different

data distribution complexities by varying imbalance level of training and test data as well as

overlap between classes. The content of this chapter is an extended version of a conference pa-

per published in the international conference in pattern recognition applications and methods

(ICPRAM2016).

3.1 Trajectory Under-Sampling

It is well-known that classifier ensembles can increase accuracy and robustness over a sin-

gle classifier by combining uncorrelated classifiers (Rokach, 2010). The optimal accuracy-

diversity trade-off is a key factor in designing an accurate and effective ensemble of classifiers

(Rokach, 2009). Even though there is no straightforward definition of diversity in the literature,

base classifiers are usually deemed diverse when their misclassification events are not corre-

lated (Rokach, 2009). Diversity in ensembles that are specialized to handle imbalance can be

obtained by training base classifiers on target samples and different subsets of the non-target

data. These subsets of non-target data may be collected by randomly selecting subsets from the

whole set of non-target samples with replacement (Random under-sampling (RUS)) for exam-

ple in UnderBagging approach (Barandela et al., 2003) or RUSBoost (Seiffert et al., 2010). The

subsets of non-target data may also be collected by partitioning the whole set of non-target data.

Partitioning can be done by random selection of bootstraps without replacement (Yan et al.,

2003) or by clustering the non-target set in the feature space (Li et al., 2013). In sample-based

partitional approaches like random under-sampling without replacement (RUSwR) (Yan et al.,

2003) the samples are treated independently, while in cluster-based under sampling (CUS)
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techniques (Li et al., 2013), the samples are under-sampled based on their relative distribution

and their proximity to each other. When compared in the feature space, clustering generates

non-overlapping (uncorrelated) partitions, whereas randomly selected subsets of samples both

with and without replacement are highly correlated. The classifiers trained on data subsets that

are uncorrelated in the feature space maintain higher diversity of opinions, however may have

low accuracy in recognition of the overall data distribution. In contrast, the classifiers trained

on data subsets that are correlated in the feature space and resemble the overall data distribution

maintain higher accuracy. An ensemble of classifiers outperforms its components when they

are accurate and make uncorrelated errors at the same time (Rokach, 2009). Therefore, a sam-

ple selection scheme is preferred to the above mentioned ones if it results in training classifiers

that maintain optimal accuracy-diversity trade-off in order to design efficient ensembles.

In many applications, the data consists of subclusters inherently. In fact grouping all samples

that belong to the same subject form a set of natural subclusters of the subjects. This is the case

when a multi-class classification problem is converted to a one versus all binary classification

problem. In this chapter we propose and investigate using such natural subclusters to under-

sample data to design ensembles of classifiers for imbalanced data classification specifically

for face re-identification application.

In many video surveillance applications a tracker is used to follow and regroup objects in a cam-

era’s field of view according to trajectories for spatio-temporal recognition. Spatio-temporal

recognition methods may do tracking and recognition as individual tasks and combine the re-

sults (Matta & Dugelay, 2007; Mazzon et al., 2012; Tao & Veldhuis, 2009; Pagano et al., 2014;

De-la Torre et al., 2015c) or merge tracking and recognition to a single task (Saeed et al., 2006;

Zhou et al., 2004). The tracker could follow the position of each person observed in the scene

over consecutive frames, and the facial regions of interest (ROIs) of the same person are col-

lected into a trajectory. These trajectories of the individuals can be representative of natural

sub-clusters in this application.
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Facial samples in a trajectory are captured under different operating conditions and conse-

quently, they are dispersed in the feature space compared to the samples from a cluster of data

that is obtained from conventional clustering methods. In fact, using this contextual informa-

tion to group samples, or in other words using the natural subclusters of the data, could provide

a better modelling of data from different people. For instance, the facial regions captured

within trajectories are defined by different geometric and environmental conditions, so the fa-

cial region of interest (ROI) patterns in a trajectory may exhibit multi-modal distribution that

correlate in some regions of the feature space. Accordingly, a pool of 2-class classifiers that are

trained on samples selected based on the trajectories (trajectory under-sampling (TUS)) may

provide more variability, separability, and diversity and provide better decision bounds.
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Figure 3.1 Sammon mapping of a target trajectory and 5 non-target trajectories

clustered using k-means with k = 5

An example is shown in Figures 3.1 and 3.2 to show above-mentioned differences between

RUS, CUS and TUS. In Figure 3.1, the face samples of 6 individuals (collected in trajectories)

are mapped to 2D space using Sammon mapping. These face samples are also clustered using

k-means clustering. It is observed that samples that belong to different trajectories exhibit
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multi-modal distribution that correlate in some regions of the feature space and by clustering

the whole data, three clusters contain samples from 3 different individuals. In Figure 3.2,

five SVMs are trained on five data subsets selected using TUS (first column), CUS (second

column), and RUS (third column). It is observed that the decision boundaries of classifiers that

are trained using RUS are very similar and more accurate than CUS and TUS since RUS takes

samples from all parts of the feature space. However, training on data subsets using TUS and

CUS result in classifiers with diverse decision boundaries that are not accurate to classify the

whole data on their own, but complement each other. This difference is presented in terms of

Kappa diversity measure (see section 3.3 for more on this measure) in Figure 3.3, when the

classifiers are tested on 4 different imbalance levels (shown on x-axis). When CUS and TUS

are compared in Figure 3.2, the decision boundary is similar when the cluster contains the same

samples in a trajectory (rows 2, 3). When they contain different samples the classifiers that are

trained on trajectories are more accurate in rows 1 and 4, and the classifier that is trained on

the cluster in row 5 is more accurate.

3.2 Ensembles with Trajectory Under-Sampling

This approach is specialized for video surveillance applications like person re-identification,

where faces or soft biometrics are captured and regrouped in terms of trajectories. A tracker

assigns a track ID to each different person appearing in the scene. During consecutive frames,

the tracker follows the positions of persons and regroups the face captures along each track

into trajectories. Consider the faces captured in training video streams as Str = {(xi,yi, IDi); i =

1, ...,Mtr} where yi ∈ {1,0} indicates the class label, i.e. target (1) or non-target (0) classes,

and IDi is the track ID assigned by the tracker to the face. Let ID+ be the track ID assigned

by tracker to the target face. All target samples are grouped into a trajectory t+ = {(xp,yp) ∈
Str|IDp = ID+}. In the same way, the non-target samples that are assigned the same track ID

are grouped into a non-target trajectory as t−j . By collecting all non-target trajectories into a set

T− = {t−j ; j = 1, ..,n−T }, the overall non-target set can be under-sampled by selecting a number

of t−j s from this set.
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Figure 3.2 Decision boundaries of 5 SVMs trained on 2D mapping of FIA data set

using TUS (first column), CUS (second column) and RUS (third column). Each figure

shows the decision boundary of the an SVM trained on a subset of the negative class.

The corresponding subsets are shown below each figure.
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Figure 3.3 Kappa diversity measure of classifiers presented in Figure 3.2.

In this chapter, an ensemble method is proposed that is based on gradually increasing the skew

level of training data subsets that are used for training the base classifiers of the ensemble.

With this method of training, the ensemble becomes more robust to varying imbalance levels.

In addition, training classifiers on different imbalance levels means training classifiers on data

subsets with different data complexities which result in different decision boundaries and in-

crease the diversity between the base classifiers of the ensemble. Another advantage of this

method is that there won’t be any information loss during under-sampling of non-target class
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during design of the ensemble because all the non-target samples are used to train at least one

classifier in the ensemble.

To generate design data with several skew levels, non-target samples in each subset are selected

by accumulating trajectories incrementally. Two important concerns arise with this ensemble

generation technique. First is the suitable selection of the ensemble size and the number of

trajectories for each classifier and second is that the performance of base classifiers in the

ensemble can be affected by the order of trajectories.

TUS-ensemble can be designed by training a pool of classifiers equal to the number of non-

target trajectories. In other words, the skew level of design data for each base classifier is

approximately one level higher than the previous one. However, the ensemble size can be

limited by using larger skew steps between base classifiers. In addition, bigger difference

between skew levels of classifiers in the ensemble result in greater diversity among them.

To select the ensemble size, we determine the steps between skew levels based on the overall

imbalance level of design data. The level of imbalance in a data distribution is typically calcu-

lated as the proportion of overall number of non-target samples to the overall number of target

ones (M−/M+). In this chapter, the skew level is indicated in a different way based on the number

of trajectories. Letting nT
− be the number of non-target trajectories, nT

+ be the number of tar-

get trajectories (typically nT
+ = 1 in a single video sequence), and ns as the desired skew level

difference between two consecutive classifiers in the ensemble, the number of imbalanced sets

to design classifiers in the ensemble nE , is determined from:

nE =

⎢⎢⎢⎣ nT
−

nsnT
+

⎥⎥⎥⎦ (3.1)

Considering the balanced case in addition to imbalanced ones, there are E = nE +1 classifiers

in the ensemble. Defining the skew level of eth classifier in the ensemble as λe, skew levels

of data subsets in the ensemble are determined from the set: Λ = {1 : λe|λ1 = 1,λe+1 = ns ×
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e,e = 1,3, ...,nE}. As an example, if ns = 5 and nT
−/5nT

+ = 5.2 for a dataset, the number of

classifiers in the ensemble will be E = 6, with skew levels Λ= {1:1,1:5,1:10,1:15,1:20,1:25}.

Regarding the second concern, the order of selecting non-target trajectories can be random, or

predefined. Therefore, two ensembles are proposed in this chapter based on these trajectory se-

lection schemes RTUS (random TUS) and STUS (sorted TUS). These ensembles are described

in sections 3.2.1 and 3.2.2.

3.2.1 Sorted Trajectory Under-Sampling (STUS)

Some non-target trajectories are more relevant than others, and can play a critical role in defin-

ing accurate class boundary. Samples of non-target trajectories that are closer to the target class

are more relevant to define good classifier decision bounds (Stefanowski & Wilk, 2008). To

generate ensembles with STUS (Algorithm 3), first the non-target trajectories are sorted based

on their proximity to the target class using Hausdorff distance (Edgar, 2007) that measures

the distance between two sets of samples as the maximum of the minimum distances between

pairs of elements from two sets. The Hausdroff distance between all non-target trajectories and

target trajectory is calculated as:

HD j = max{min ‖ x+−x− ‖ | x+ ∈ t+,x− ∈ t−j }. (3.2)

There are two ways to sort and select the non-target trajectories. With the first method that we

call STUSA (sorted trajectory under sampling in ascending order), the trajectories are sorted

from the closest to the farthest. In other words, given D= {HD j; j = 1, ...,nT
−|HD j ≤HD j+1},

the non-target trajectories are sorted into T−
s = {t−j ; j = 1, ..,n−T } in the same order as D. Then,

for training the first classifier in the ensemble t−1 is selected from T−
s and for the next e-th

classifiers (e= 2, ...,E), {t−k ; k = 1, ...,λe}) are used. With this method, the decision boundaries

of classifiers in the ensemble get closer and closer to the target class, as the imbalance level of

the training subsets increases. Therefore, the classifiers make less error in correct classification

of non-target class. However, if the overlap between target and non-target class be higher, less
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error in correct classification of non-target class would be in expense of more error in correct

classification of target class.

The other way proposed here to sort and select the non-target trajectories is called STUSD

(sorted trajectory sampling in descending order). With this method the distance vector men-

tioned above changes to D = {HD j; j = 1, ...,n−T |HD j ≥ HD j+1}. The benefit of this method

is that the classifiers in the ensemble make less error in correct classification of the target class.

However, this might be in expense of making more error in correct classification of the non-

target class if the overlap between the target and non-target class is low.

Algorithm 3: STUS Ensemble Algorithm.

Input:

- Str = {(xi,yi; i = 1, ...,Mtr}: Training set

- yi ∈ {1,0}: Class label of samples

- t+: Target trajectory

- T− = {t−j ; j = 1, ..,nT
−}: Non-target trajectories

- X: Input probe sample

Output: H(·): Prediction function

1 The Hausdorff distance ( Eq. 3.2 ) between all t−j s and t+ are sorted into

D = {HD j; j = 1, ...,nT
−|HD j ≥ HD j+1} (or D = {HD j; j = 1, ...,nT−|HD j ≤ HD j+1} in STUSA)

2 Non-target trajectories are sorted based on D into T−
s = {t−j ; j = 1, ..,nT−}

3 The number of base classifiers E and their skew levels λe for e = 1, ..,E:

4 nE = 
nT
−/nsnT

+�, E = nE +1, Λ = {λe|λ1 = 1,λe+1 = ns · e,e = 2, ..,E}
5 for e = 1, ..,E do
6 Collect a subset of T−

s into T−
s,e = {t−k , k = 1, ...,λe}

7 Train a classifier Ce on T−
s,e and t+

8 for e = 1, ..,E do
9 he(·) ← Prediction of Ce (classification score or decision) on X.

10 Combine the predictions of classifiers: H(·) = sign
(
∑E

e=1(he(·))
)
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3.2.2 Random Trajectory Under-Sampling (RTUS)

In contrast to sorted selection of trajectories, in random selection of trajectories, the perfor-

mance of the classifiers in the ensemble is not predictable. In order to avoid weak classifiers

in the final ensemble, more importance is given to the component classifiers with better perfor-

mance in classifying imbalanced data.

In Boosting ensembles, a weight is assigned to each classifier based on its error rate. In the

case of classifying imbalanced data distributions, accuracy is not an appropriate measure to

evaluate the performance of a classifier. Therefore, in the proposed ensemble, the weight of

each base classifier is set based on its performance measured using the F-measure, because this

is a more suitable metric when classifying imbalanced data.

The pseudo code of RTUS ensemble is presented in Algorithm 4. When a classifier is trained

for the ensemble it is tested with a validation subset to determine its weight. This validation

subset should have the same level of imbalance (λe) as the training subset. The performance

Fe of the e−th classifier in the ensemble is measured in terms of the F-measure and its weight

is assigned using:

we = log

(
Fe

1−Fe

)
. (3.3)

This weight is then used for weighted combination of the ensemble.

Unlike STUS, this method of selecting trajectories may not suffer from the issue of correctly

classifying one class in expense of misclassifying the other. However, the change in the de-

cision boundary of the classifiers is not predictable, as the skew level of training data subsets

increases. Nevertheless, assigning weights to classifiers in the final prediction of the ensemble

lowers the impact of the weak classifiers.

3.2.3 Under-Sampling Trajectories to Support Vectors

As explained in section 1.2, training classifiers on imbalanced data moves their decision bound-

ary towards the target class. Under-sampling the non-target class in order to balance the number
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Algorithm 4: RTUS Ensemble Algorithm.

Input:

- Str = {(xi,yi); i = 1, ...,Mtr}: Training set

- Sval = {(xi,yi); i = 1, ...,Mval}: Validation set

- yi ∈ {+1,−1}: Class label of samples

- t+: Target trajectory

- T− = {t−j ; j = 1, ..,N−}: Non-target trajectories

- X: Input probe sample

Output: H(·): Prediction function.

1 Non-target trajectories are randomly shuffled into T−
r = {t−j ; j = 1, ..,n−T }

2 The number of base classifiers E and their skew levels λe for e = 1,2, ...,E:

3 nE = 
n−T /nsn+T �, E = nE +1, Λ = {1 : λe|λ1 = 1,λe+1 = nEe}
4 for e = 1, ..,E do
5 Collect a subset of T−

r into

6 T−
r,e = {t−k ;k = 1, ...,λe}

7 Train a classifier Ce on T−
r,e and t+

8 Under-sample the validation set Sval to λe level

9 Fe ← the F-measure attained by Ce on the validation subset

10 Set the weight of Ce as: we = log( Fe
1−Fe

)

11 for e = 1, ..,E do
12 he(·) ← Prediction of Ce (classification score or decision) on X.

13 Combine the predictions of classifiers: H(·) = sign
(
∑E

e=1(wehe(·))
)

of samples from both classes resolves this issue, however, cause information loss and higher

misclassification rate of the non-target class. Combining classifiers trained on data subsets with

different imbalance levels avoids both of these biases and result in a classification system that

is more robust to imbalance and perform well in classifying both classes. However, the bias of

performance in classifiers that are trained on imbalanced subsets of data can be further reduced

by under-sampling the non-target trajectories to the support vectors. Tang et al. (2009) utilize

SVM for data cleaning/under-sampling because support vectors are the training samples that

define classification model of an SVM classifier and other samples can be safely removed with-

out substantially affecting classification. Therefore, we modify the proposed RTUS and STUS

algorithms in another step as presented in Algorithms 5 and 6. The reason is that not all the

samples are informative and eliminating non-informative samples from the progressive training
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of the base classifiers in the ensemble decreases the computation and memory use. In addition,

the accuracy of the base classifiers increases since they are training on less imbalanced training

subsets. For the first classifier in the ensemble, one target and one non-target trajectories are

used to train an SVM. The non-target support vectors of this classifier is stored and then it is

added to E non-target trajectories to train the second classifier in the ensemble. The non-target

support vectors of this classifier is again stored, and the same procedure is repeated to train re-

maining classifiers in the ensemble. Note that in contrast to the original versions of the RTUS

and STUS ensembles, this modification is only applicable if the base classifier of the ensem-

ble is an SVM classifier. RTUS and STUS ensembles are applicable with any discriminative

classifier.

Algorithm 5: STUS Ensemble Algorithm using SVs.

Input:

- Str = {(xi,yi; i = 1, ...,Mtr}: Training set

- yi ∈ {1,0}: Class label of samples

- t+: Target trajectory

- T− = {t−j ; j = 1, ..,nT
−}: Non-target trajectories

- X: Input probe sample

Output: H(·): Prediction function.

1 The Hausdorff distance ( Eq. 3.2 ) between all t−j s and t+ are sorted into

D = {HD j; j = 1, ...,nT
−|HD j ≥ HD j+1} (or D = {HD j; j = 1, ...,nT−|HD j ≤ HD j+1} in STUSA)

2 Non-target trajectories are sorted based on D into T−
s = {t−j ; j = 1, ..,nT−}

3 The number of base classifiers E and their skew levels λe for e = 1, ..,E:

4 nE = 
nT
−/nsnT

+�, E = nE +1, Λ = {λe|λ1 = 1,λe+1 = ns · e}
5 Collect a subset of T−

s = t−1 .

6 Train an SVM classifier C1 on T−
s and t+

7 Store the non-target support vectors of C1 into a set SV 1

8 for e = 2, ..,E do
9 Collect a subset of T−

s into T−
s,e = {SV e−1, t−k , k = e−1, ...,λe,e = 2, ..,E}

10 Train a classifier Ce on T−
s,e and t+

11 for e = 1, ..,E do
12 he(·)← Prediction of Ce (classification score or decision) on X.

13 Combine the predictions of classifiers: H(·) = sign
(
∑E

e=1(he(·))
)
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Algorithm 6: RTUS Ensemble Algorithm using SVs.

Input:

- Str = {(xi,yi); i = 1, ...,Mtr}: Training set

- Sval = {(xi,yi); i = 1, ...,Mval}: Validation set

- yi ∈ {+1,−1}: Class label of samples

- t+: Target trajectory

- T− = {t−j ; j = 1, ..,N−}: Non-target trajectories

Output: H(X): Prediction function.

1 Non-target trajectories are randomly shuffled into T−
r = {t−j ; j = 1, ..,n−T }

2 The number of base classifiers E and their skew levels λe for e = 1,2, ...,E:

3 nE = 
n−T /nsn+T �, E = nE +1, Λ = {1 : λe|λ1 = 1,λe+1 = nEe}
4 Collect a subset of T−

r = t−1 .

5 Train an SVM classifier C1 on T−
r and t+

6 Store the non-target support vectors of C1 into a set SV 1

7 for e = 2, ..,E do
8 Collect a subset of T−

r into T−
r,e = {SV e−1, t−k , k = e−1, ...,λe,e = 2, ..,E}

9 Train a classifier Ce on T−
r,e and t+

10 for e = 1, ..,E do
11 he(·) ← Prediction of Ce (classification score or decision) on X.

12 Combine the predictions of classifiers: H(·) = sign
(
∑E

e=1(he(·))
)

3.3 Experimental Methodology

In the experiments of this chapter, different versions of the proposed RTUS and STUS en-

sembles are compared to ensemble methods from the literature in the same family of methods

including UnderBagging approach (Barandela et al., 2003), Partitional UnderBagging using

random under-sampling without replacement (Yan et al., 2003), SeEn-SVM (Li et al., 2013),

and RUSBoost (Seiffert et al., 2010). The experiments are carried out on both synthetic and

video datasets described in Chapter 2 and an RBF-SVM classifier is used as the base classifier.

The classification systems are compared in terms of both accuracy and diversity.

The accuracy is measured in terms of AUPR (as a global performance metric), the F-measure

by setting β = 2, and the G-mean (to measure the performance for both classes at the same

time disregarding the imbalance). Therefore, the ensembles are combined in two ways. The
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F-measure and G-mean scalar metrics are obtained by combining decisions of the classifiers

and AUPR is obtained by combining scores of the classifiers.

Several measures of ensemble diversity have been introduced in the literature (Kuncheva & Whitaker,

2003) Q-statistics and Kappa diversity measures are the most commonly used metrics among

them. Measuring diversity between several classifiers in terms of Q-statistics involves calcu-

lating Q-statistics between pairs of classifiers on a given validation set of data and averaging

them. The diversity between several classifiers in terms of Kappa measure can be calculated

both pairwise and non-pairwise.

Considering di and dk as decisions of a pair of classifiers on the validation data, the diversity

matrix in Table 3.1 is obtained and the pairwise Q-statistics for the ith and kth classifiers is

calculated as:

qi,k =
DccDww −DcwDwc

DccDww +DcwDwc . (3.4)

The overall Qav measure for E classifiers is calculated as:

Qav =
2

E(E −1)

E−1

∑
i=1

E

∑
k=i+1

qi,k. (3.5)

Non-pairwise kappa diversity measure (κ) is calculated as follows:

ρ̄ =
1

EM

M

∑
j=1

E

∑
n=1

Y j
e , (3.6)

κ = 1−
1
E ∑M

j=1 L j(E −L j)

M(E −1)ρ̄(1− ρ̄)
. (3.7)

where Y j
e ∈{0,1} is the classification result of the eth classifier out of E classifiers on the jth val-

idation sample x j out of overall M samples. L j = ∑E
e=1Y j

e is the number of classifiers that cor-

rectly classify x j. Smaller values of κ and Q indicate high diversity, κ = 0 and Q=−1 indicates

independent classifiers, and κ =Q= 1 indicates identical classifiers citekuncheva2003measures.

Take note that these measures also rely on the accuracy of the classifiers and in fact can be used
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to evaluate the base classifiers of an ensemble in terms of both accuracy and diversity at the

same time. Q and κ are greater if the classifiers are more accurate and less diverse. In turn if Q

and κ be low, it could either mean that the decisions of most of the classifiers are not correlated,

or that the classifiers are not accurate in general.

Table 3.1 Diversity measure matrix.

di
correct

di wrong

d j correct Dcc Dcw

d j wrong Dwc Dww

Different versions of RTUS and STUS are implemented whose properties are explained in the

following:

- RTUS-1, STUSA-1, STUSD-1:

RTUS, STUSA (sorted TUS with distances in ascending order), STUSD (sorted TUS with

distances in descending order) when the difference between two consecutive training sub-

sets is one (ns = 1), meaning that the imbalance is increased by adding one trajectory to the

previous ones at a time. The skew levels of data subsets used to train classifiers in these

ensembles are determined from the set: Λ = {1 : λe|λ1 = 1,λe+1 = ns × e,e = 1,3, ...,nE}.

- RTUS-5, STUSA-5, STUSD-5: RTUS, STUSA, STUSD when the difference between two

consecutive training subsets is five (ns = 5). The skew levels of data subsets used to train

classifiers in these ensembles are determined from the set: Λ = {1 : λe|λ1 = 1,λe+1 =

ns × e,e = 1,3, ...,nE}.

- RTUS-1sv, STUSA-1sv, STUSD-1sv, RTUS-5sv, STUSA-5sv, STUSD-5sv: RTUS-1, STUSA-

1, STUSD-1, RTUS-5, STUSA-5, STUSD-5 when the trajectories are under-sampled by

preserving support vectors.
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From the literature, the following systems are implemented and compared. UnderBagging ap-

proach (Barandela et al., 2003) uses random under-sampling with replacement and we show it

by RUS in this chapter. Partitional UnderBagging using random under-sampling without re-

placement (Yan et al., 2003) is shown by RUSwR. In addition to SeEn-SVM (Li et al., 2013),

another cluster under-sampling ensemble is implemented which is shown as CUS, that is sim-

ilar to RUS with the difference that the number of clusters in this ensemble is found based

on Dunn index (Dunn, 1973). Dunn index depends on the proportion of the intra-cluster to

the inter-cluster distance between samples. To select the number of clusters, it is varied over

a range of possible values and the value of Dunn index is calculated for each case using a

validation set. Finally, the optimal number of clusters, is selected when Dunn index takes its

maximum value. In addition, these methods are modified and implemented by growing im-

balance (similarly to RTUS-1 explained above) to analyze the effect of varying imbalance of

training subsets. These modified versions are shown as RUSG, RUSwRG, and CUSG.

In the experimental protocol, the results of the algorithms have been averaged by alternating

the target individual among overall 10 target individuals and using 2 × 5-fold cross-validation

as described in Chapter 2. The test data subsets with different skew levels Λtest = {1 : 1,1 :

20,1 : 50,1 : 100} are used to evaluate the robustness of each approach over varying skew

levels during operation.

In summary, the experiments are carried out to analyze the following aspects in terms of accu-

racy and diversity:

1. Effect of varying imbalance of training subsets.

2. Comparing TUS versus RUS, RUSwR and CUS.

3. Comparing the proposed RTUS and STUS ensembles versus the literature.

- RTUS versus STUS (ordered descending and ascending).

- Effect of steps of increasing imbalance (1 versus 5).

- Effect of under-sampling trajectories using support vectors.
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4. Comparing the robustness of the ensembles to varying skew level in the testing data.

5. Comparing the performance of the ensembles for different levels of overlap and skew

between classes in the training data.

3.4 Results and Discussion

3.4.1 Results of experiments with synthetic datasets

Tables 3.2, 3.3 and 3.4 show the results of experiments on synthetic data-sets. As expected,

increasing the level of imbalance in test data result in degradation of performance for all clas-

sification systems in terms of AUPR and F-measure but not in terms of G-mean. Higher level

of overlap between classes for the same skew level of training data (D2 and D1) as well as

lower imbalance level of training data for the same level of overlap (D3 and D1) lower the

performance of the classification systems.

It is observed that modifying RUS, RUSwR, and CUS by using training data subsets with

different skew levels improves their performance in terms of F-measure and G-mean. However,

the performance does not improve in terms of AUPR. The same applies when TUS is compared

to the variations of RTUS and STUS.

The performance of TUS ensemble is very similar to that of CUS ensemble and both outper-

form RUS and RUSwR in terms of AUPR. However, the TUS and CUS ensembles degrade in

performance in terms of F-measure and G-mean. These ensembles are better used by classifi-

cation score combination rather than decision combination.

By increasing the difference of imbalance between classifiers from one to five, the performance

of RTUS and STUSA ensembles improve or stay the same in terms of AUPR, F-measure and

G-mean with datasets D1, D2, and D3. The performance of STUSD also improves in terms of

F-measure and G-mean. With highly overlapped data D2, the performance of STUSD improves

in terms of AUPR, however, it degrades with less overlapped data D1 and D3. In summary, the
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Table 3.2 Average of AUPR performance of baseline techniques with and without

F-measure loss factor on synthetic data over different levels of skew and overlap in test

data.

Ensembles
Train
Data D1 (Λtrain =1:50, δ = 0.2) D2 (Λtrain =1:50, δ = 0.1) D3 (Λtrain =1:20, δ = 0.2)

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

RUSBoost
0.98

± 0.00

0.83

± 0.08

0.73

± 0.14

0.68

± 0.15

0.63

± 0.31

0.44

± 0.24

0.37

± 0.30

0.19

± 0.15

0.96

± 0.01

0.75

± 0.06

0.75

± 0.06

0.37

± 0.07

Seg-EoSVMs
0.98

± 0.00

0.04

± 0.00

0.02

± 0.00

0.01

± 0.00

0.98

± 0.00

0.04

± 0.00

0.02

± 0.00

0.01

± 0.00

0.98

± 0.00

0.05

± 0.00

0.02

± 0.00

0.01

± 0.00

RUS
0.98

± 0.00

0.93

± 0.02

0.90

± 0.02

0.87

± 0.03

0.94

± 0.02

0.66

± 0.05

0.66

± 0.05

0.38

± 0.02

0.98

± 0.00

0.88

± 0.03

0.88

± 0.03

0.37

± 0.08

RUSwR
0.98

± 0.00

0.94

± 0.03

0.90

± 0.02

0.87

± 0.04

0.91

± 0.05

0.61

± 0.08

0.61

± 0.08

0.35

± 0.04

0.97

± 0.01

0.85

± 0.06

0.85

± 0.06

0.34

± 0.07

RUSG
0.98

± 0.00

0.93

± 0.03

0.90

± 0.03

0.54

± 0.21

0.98

± 0.00

0.90

± 0.02

0.90

± 0.02

0.43
± 0.05

0.98

± 0.00

0.92

± 0.03

0.74

± 0.11

0.25

± 0.08

RUSwRG
0.98

± 0.00

0.93

± 0.03

0.90

± 0.03

0.54

± 0.21

0.98

± 0.00

0.91

± 0.01

0.91
± 0.01

0.42

± 0.05

0.98

± 0.00

0.92

± 0.02

0.77

± 0.09

0.24

± 0.05

CUS
0.98

± 0.00

0.97
± 0.01

0.93
± 0.02

0.90
± 0.02

0.98

± 0.00

0.90

± 0.03

0.90

± 0.03

0.42

± 0.05

0.98

± 0.00

0.95
± 0.02

0.93

± 0.03

0.68
± 0.06

CUSG
0.98

± 0.01

0.91

± 0.07

0.87

± 0.09

0.64

± 0.22

0.98

± 0.00

0.90

± 0.02

0.89

± 0.02

0.41

± 0.06

0.98

± 0.00

0.93

± 0.02

0.85

± 0.08

0.37

± 0.15

TUS
0.98

± 0.00

0.97
± 0.00

0.94
± 0.01

0.90
± 0.01

0.98

± 0.00

0.87

± 0.03

0.87

± 0.03

0.42

± 0.05

0.98

± 0.00

0.96
± 0.01

0.94
± 0.02

0.60

± 0.07

RTUS-1
0.98

± 0.00

0.94

± 0.02

0.91

± 0.03

0.56

± 0.23

0.98

± 0.00

0.93
± 0.00

0.89

± 0.01

0.38

± 0.06

0.98

± 0.00

0.82

± 0.03

0.49

± 0.10

0.11

± 0.01

RTUS-1s
0.98

± 0.00

0.97
± 0.00

0.94
± 0.00

0.92
± 0.01

0.98

± 0.00

0.77

± 0.03

0.77

± 0.03

0.42

± 0.02

0.98

± 0.00

0.95
± 0.02

0.95
± 0.02

0.75
± 0.04

RTUS-5
0.98

± 0.00

0.94

± 0.02

0.91

± 0.03

0.51

± 0.24

0.98

± 0.00

0.93
± 0.00

0.89

± 0.01

0.38

± 0.06

0.98

± 0.00

0.85

± 0.04

0.56

± 0.10

0.13

± 0.02

RTUS-5s
0.98

± 0.00

0.92

± 0.02

0.84

± 0.06

0.73

± 0.14

0.98

± 0.00

0.48

± 0.21

0.19

± 0.15

0.09

± 0.06

0.98

± 0.00

0.37

± 0.06

0.31

± 0.06

0.12

± 0.03

STUSA-1
0.97

± 0.00

0.92

± 0.03

0.89

± 0.04

0.47

± 0.22

0.98

± 0.00

0.92
± 0.01

0.91
± 0.00

0.38

± 0.03

0.98

± 0.00

0.87

± 0.06

0.61

± 0.11

0.14

± 0.03

STUSA-1s
0.97

± 0.01

0.90

± 0.04

0.87

± 0.05

0.44

± 0.22

0.98

± 0.00

0.93
± 0.01

0.91
± 0.00

0.33

± 0.01

0.97

± 0.01

0.83

± 0.05

0.63

± 0.11

0.11

± 0.02

STUSA-5
0.97

± 0.00

0.92

± 0.03

0.89

± 0.04

0.48

± 0.22

0.98

± 0.00

0.91

± 0.01

0.91
± 0.01

0.39

± 0.03

0.98

± 0.00

0.90

± 0.04

0.65

± 0.13

0.16

± 0.03

STUSA-5s
0.98

± 0.00

0.91

± 0.03

0.88

± 0.04

0.45

± 0.21

0.98

± 0.00

0.93
± 0.01

0.92
± 0.00

0.33

± 0.01

0.97

± 0.01

0.90

± 0.04

0.74

± 0.13

0.14

± 0.03

STUSD-1
0.98

± 0.00

0.96
± 0.01

0.93
± 0.01

0.86

± 0.04

0.98

± 0.00

0.83

± 0.02

0.83

± 0.02

0.43
± 0.04

0.98

± 0.00

0.94

± 0.02

0.92

± 0.04

0.66

± 0.03

STUSD-1s
0.98

± 0.00

0.95

± 0.01

0.93
± 0.01

0.86

± 0.04

0.98

± 0.00

0.83

± 0.02

0.83

± 0.02

0.43
± 0.04

0.98

± 0.00

0.94

± 0.02

0.92

± 0.04

0.68
± 0.03

STUSD-5
0.98

± 0.00

0.95

± 0.01

0.92

± 0.01

0.81

± 0.08

0.98

± 0.00

0.90

± 0.02

0.90

± 0.02

0.44
± 0.06

0.98

± 0.00

0.93

± 0.02

0.87

± 0.06

0.45

± 0.06

STUSD-5s
0.98

± 0.00

0.95

± 0.02

0.92

± 0.02

0.80

± 0.08

0.98

± 0.00

0.90

± 0.02

0.90

± 0.02

0.44
± 0.06

0.98

± 0.00

0.93

± 0.03

0.84

± 0.08

0.50

± 0.05

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

performance of TUS ensembles improves or stays the same by increasing the difference of

imbalance between training subsets from one to five even though the size of the ensemble
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Table 3.3 Average of F2-measure performance of baseline techniques with and without

F-measure loss factor on synthetic data over different levels of skew and overlap in test

data.

Ensembles
Train
Data D1 (Λtrain =1:50, δ = 0.2) D2 (Λtrain =1:50, δ = 0.1) D3 (Λtrain =1:20, δ = 0.2)

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

RUSBoost
0.92

± 0.04

0.24

± 0.02

0.13

± 0.01

0.07

± 0.01

0.67

± 0.00

0.40

± 0.07

0.15

± 0.05

0.07

± 0.02

0.67

± 0.00

0.37

± 0.01

0.29

± 0.02

0.12

± 0.01

Seg-EoSVMs
0.76

± 0.06

0.10

± 0.00

0.05

± 0.00

0.02

± 0.00

0.67

± 0.00

0.10

± 0.00

0.05

± 0.00

0.02

± 0.00

0.67

± 0.00

0.11

± 0.01

0.05

± 0.00

0.02

± 0.00

RUS
0.98
± 0.02

0.33

± 0.01

0.19

± 0.01

0.10

± 0.01

0.67

± 0.00

0.50

± 0.00

0.25

± 0.01

0.10

± 0.00

0.71

± 0.02

0.42

± 0.01

0.33

± 0.02

0.16

± 0.02

RUSwR
1.00
± 0.00

0.42

± 0.02

0.27

± 0.02

0.16

± 0.01

0.67

± 0.01

0.50

± 0.01

0.32

± 0.01

0.13

± 0.01

0.76

± 0.03

0.46

± 0.01

0.42

± 0.01

0.22

± 0.02

RUSG
0.94

± 0.03

0.84

± 0.04

0.78

± 0.03

0.47

± 0.07

0.99
± 0.01

0.87

± 0.03

0.86

± 0.04

0.37

± 0.02

0.99
± 0.02

0.82

± 0.02

0.53

± 0.06

0.25

± 0.02

RUSwRG
0.94

± 0.03

0.85
± 0.04

0.80

± 0.02

0.48

± 0.07

0.99
± 0.01

0.88

± 0.02

0.86

± 0.04

0.38

± 0.02

0.98

± 0.02

0.84

± 0.02

0.56

± 0.07

0.27

± 0.03

CUS
0.67

± 0.03

0.09

± 0.00

0.04

± 0.00

0.02

± 0.00

0.67

± 0.00

0.10

± 0.01

0.04

± 0.00

0.02

± 0.00

0.67

± 0.00

0.11

± 0.00

0.05

± 0.00

0.02

± 0.00

CUSG
0.95

± 0.05

0.75

± 0.17

0.64

± 0.22

0.38

± 0.17

0.86

± 0.14

0.71

± 0.20

0.54

± 0.26

0.24

± 0.12

0.98

± 0.03

0.65

± 0.20

0.46

± 0.21

0.22

± 0.09

TUS
0.67

± 0.00

0.09

± 0.00

0.04

± 0.00

0.02

± 0.00

0.67

± 0.00

0.09

± 0.00

0.04

± 0.00

0.02

± 0.00

0.67

± 0.00

0.11

± 0.00

0.05

± 0.00

0.02

± 0.00

RTUS-1
0.93

± 0.04

0.86
± 0.04

0.81

± 0.03

0.47

± 0.09

0.98
± 0.01

0.90
± 0.01

0.49

± 0.03

0.23

± 0.01

0.95

± 0.03

0.62

± 0.03

0.39

± 0.04

0.17

± 0.01

RTUS-1s
1.00
± 0.00

0.81

± 0.04

0.70

± 0.05

0.50

± 0.03

0.85

± 0.02

0.62

± 0.01

0.58

± 0.02

0.27

± 0.01

0.99
± 0.01

0.80

± 0.03

0.74
± 0.02

0.44
± 0.02

RTUS-5
0.93

± 0.04

0.86
± 0.04

0.81

± 0.03

0.48

± 0.10

0.98
± 0.01

0.91
± 0.01

0.74

± 0.02

0.33

± 0.02

0.94

± 0.02

0.68

± 0.02

0.42

± 0.02

0.18

± 0.01

RTUS-5s
0.76

± 0.02

0.11

± 0.00

0.05

± 0.00

0.02

± 0.00

0.98
± 0.03

0.13

± 0.01

0.06

± 0.00

0.03

± 0.00

1.00
± 0.00

0.16

± 0.00

0.06

± 0.00

0.03

± 0.00

STUSA-1
0.92

± 0.05

0.86
± 0.06

0.83
± 0.05

0.54
± 0.10

0.98
± 0.01

0.90
± 0.01

0.89
± 0.02

0.42
± 0.03

0.94

± 0.03

0.86
± 0.03

0.61

± 0.10

0.28
± 0.04

STUSA-1s
0.90

± 0.06

0.84

± 0.07

0.82
± 0.07

0.52

± 0.13

0.93

± 0.02

0.88

± 0.02

0.87
± 0.03

0.43
± 0.02

0.92

± 0.03

0.84

± 0.03

0.66
± 0.10

0.27

± 0.04

STUSA-5
0.92

± 0.06

0.86
± 0.06

0.83
± 0.06

0.54
± 0.11

0.98
± 0.01

0.90
± 0.01

0.89
± 0.01

0.43
± 0.02

0.94

± 0.03

0.87
± 0.02

0.62

± 0.09

0.28
± 0.04

STUSA-5s
0.90

± 0.06

0.85
± 0.07

0.82
± 0.07

0.53
± 0.13

0.92

± 0.02

0.88

± 0.02

0.87
± 0.02

0.43
± 0.02

0.93

± 0.03

0.84

± 0.03

0.66
± 0.10

0.27

± 0.04

STUSD-1
0.89

± 0.04

0.26

± 0.00

0.14

± 0.00

0.07

± 0.00

0.67

± 0.00

0.42

± 0.01

0.17

± 0.00

0.08

± 0.00

0.67

± 0.00

0.29

± 0.01

0.21

± 0.01

0.09

± 0.00

STUSD-1s
0.89

± 0.03

0.26

± 0.01

0.14

± 0.00

0.07

± 0.00

0.67

± 0.00

0.43

± 0.01

0.17

± 0.00

0.08

± 0.00

0.67

± 0.00

0.29

± 0.01

0.21

± 0.01

0.09

± 0.00

STUSD-5
0.95

± 0.02

0.31

± 0.00

0.17

± 0.00

0.09

± 0.00

0.67

± 0.00

0.46

± 0.01

0.20

± 0.01

0.09

± 0.00

0.67

± 0.00

0.38

± 0.01

0.32

± 0.01

0.16

± 0.01

STUSD-5s
0.95

± 0.01

0.30

± 0.00

0.16

± 0.00

0.09

± 0.00

0.67

± 0.00

0.46

± 0.01

0.19

± 0.01

0.08

± 0.00

0.67

± 0.00

0.36

± 0.01

0.29

± 0.01

0.14

± 0.01

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

reduces in this case. The reason is that by increasing the difference of imbalance between data

subsets from one to five the diversity between classifiers trained on them increases.
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Table 3.4 Average of G-mean performance of baseline techniques with and without

F-measure loss factor on synthetic data over different levels of skew and overlap in test

data.

Ensembles
Train
Data D1 (Λtrain =1:50, δ = 0.2) D2 (Λtrain =1:50, δ = 0.1) D3 (Λtrain =1:20, δ = 0.2)

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

RUSBoost
0.91

± 0.06

0.83

± 0.02

0.86

± 0.01

0.86

± 0.01

0.00

± 0.00

0.92

± 0.03

0.87

± 0.05

0.83

± 0.06

0.05

± 0.09

0.91

± 0.01

0.95

± 0.00

0.93

± 0.01

Seg-EoSVMs
0.55

± 0.23

0.37

± 0.06

0.43

± 0.04

0.43

± 0.03

0.00

± 0.00

0.31

± 0.03

0.44

± 0.03

0.44

± 0.03

0.00

± 0.00

0.39

± 0.07

0.43

± 0.04

0.45

± 0.05

RUS
0.97
± 0.02

0.89

± 0.01

0.91

± 0.01

0.91

± 0.01

0.00

± 0.00

0.95

± 0.00

0.94

± 0.00

0.91

± 0.00

0.43

± 0.09

0.93

± 0.00

0.96

± 0.00

0.95

± 0.01

RUSwR
1.00
± 0.00

0.93

± 0.01

0.94
± 0.01

0.94
± 0.01

0.06

± 0.13

0.95

± 0.00

0.96

± 0.00

0.93

± 0.00

0.59

± 0.08

0.94

± 0.00

0.97
± 0.00

0.96
± 0.00

RUSG
0.94

± 0.03

0.93

± 0.03

0.94
± 0.03

0.93

± 0.03

0.99
± 0.01

0.99
± 0.01

0.99
± 0.01

0.98
± 0.01

0.99
± 0.02

0.98
± 0.01

0.97
± 0.02

0.96

± 0.02

RUSwRG
0.94

± 0.03

0.94
± 0.03

0.94
± 0.03

0.93

± 0.03

0.99
± 0.01

0.99
± 0.01

0.99
± 0.01

0.98
± 0.01

0.98

± 0.02

0.97
± 0.02

0.97
± 0.02

0.96
± 0.02

CUS
0.06

± 0.18

0.15

± 0.13

0.16

± 0.11

0.16

± 0.11

0.00

± 0.00

0.29

± 0.13

0.26

± 0.10

0.25

± 0.11

0.00

± 0.00

0.42

± 0.05

0.43

± 0.03

0.45

± 0.03

CUSG
0.95

± 0.05

0.94
± 0.05

0.94
± 0.05

0.93

± 0.05

0.72

± 0.36

0.96

± 0.02

0.96

± 0.03

0.94

± 0.03

0.98

± 0.03

0.95

± 0.06

0.95

± 0.07

0.94

± 0.06

TUS
0.00

± 0.00

0.00

± 0.00

0.00

± 0.00

0.03

± 0.01

0.00

± 0.00

0.00

± 0.00

0.00

± 0.00

0.00

± 0.00

0.00

± 0.00

0.42

± 0.01

0.42

± 0.01

0.44

± 0.00

RTUS-1
0.94

± 0.04

0.93

± 0.04

0.93

± 0.04

0.93

± 0.04

0.98
± 0.01

0.97
± 0.01

0.96

± 0.01

0.95

± 0.01

0.95

± 0.03

0.93

± 0.03

0.92

± 0.03

0.91

± 0.03

RTUS-1s
1.00
± 0.00

0.99
± 0.00

0.99
± 0.00

0.99
± 0.00

0.80

± 0.03

0.97
± 0.00

0.98
± 0.00

0.97
± 0.00

0.99
± 0.01

0.98
± 0.01

0.99
± 0.01

0.98
± 0.01

RTUS-5
0.94

± 0.04

0.93

± 0.04

0.93

± 0.04

0.93

± 0.04

0.98
± 0.01

0.97
± 0.01

0.97

± 0.01

0.96

± 0.01

0.94

± 0.02

0.93

± 0.02

0.92

± 0.02

0.91

± 0.02

RTUS-5s
0.59

± 0.08

0.42

± 0.01

0.49

± 0.01

0.46

± 0.01

0.98
± 0.03

0.59

± 0.04

0.64

± 0.01

0.64

± 0.01

1.00
± 0.00

0.67

± 0.00

0.63

± 0.01

0.66

± 0.00

STUSA-1
0.93

± 0.05

0.92

± 0.05

0.92

± 0.05

0.92

± 0.05

0.98
± 0.01

0.97
± 0.01

0.98
± 0.01

0.97
± 0.01

0.95

± 0.03

0.94

± 0.03

0.94

± 0.03

0.92

± 0.03

STUSA-1s
0.91

± 0.06

0.91

± 0.06

0.91

± 0.06

0.90

± 0.06

0.93

± 0.02

0.93

± 0.02

0.93

± 0.02

0.92

± 0.02

0.93

± 0.03

0.92

± 0.03

0.92

± 0.03

0.90

± 0.03

STUSA-5
0.92

± 0.05

0.92

± 0.05

0.92

± 0.05

0.92

± 0.05

0.98
± 0.01

0.97
± 0.01

0.97

± 0.01

0.96

± 0.01

0.94

± 0.03

0.94

± 0.03

0.93

± 0.03

0.92

± 0.03

STUSA-5s
0.91

± 0.06

0.91

± 0.06

0.91

± 0.06

0.90

± 0.06

0.93

± 0.02

0.92

± 0.02

0.93

± 0.02

0.92

± 0.01

0.93

± 0.03

0.93

± 0.02

0.92

± 0.03

0.91

± 0.03

STUSD-1
0.86

± 0.05

0.85

± 0.00

0.87

± 0.00

0.87

± 0.00

0.00

± 0.00

0.93

± 0.00

0.90

± 0.00

0.87

± 0.00

0.00

± 0.00

0.87

± 0.01

0.92

± 0.00

0.90

± 0.00

STUSD-1s
0.86

± 0.04

0.85

± 0.01

0.87

± 0.00

0.87

± 0.00

0.00

± 0.00

0.93

± 0.00

0.90

± 0.00

0.87

± 0.00

0.00

± 0.00

0.87

± 0.01

0.92

± 0.00

0.90

± 0.00

STUSD-5
0.94

± 0.02

0.88

± 0.00

0.89

± 0.00

0.90

± 0.00

0.00

± 0.00

0.94

± 0.00

0.92

± 0.00

0.89

± 0.00

0.07

± 0.07

0.92

± 0.00

0.96

± 0.00

0.95

± 0.00

STUSD-5s
0.94

± 0.02

0.88

± 0.00

0.89

± 0.00

0.89

± 0.00

0.00

± 0.00

0.94

± 0.00

0.91

± 0.00

0.88

± 0.00

0.00

± 0.00

0.91

± 0.01

0.95

± 0.00

0.94

± 0.00

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

Under-sampling the trajectories to the support vectors improves RTUS-1 substantially in terms

of AUPR, F-measure and G-mean. However, RTUS-5 degrade except for RTUS-5 in terms
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of F-measure and G-mean. The performance of STUSD-1, and STUSD-5 remain the same

after under-sampling the trajectories to the support vectors and the performance of STUSA-

1 and STUSA-5 go down slightly. The decision boundary of classifiers in RTUS-5 change

more abruptly than RTUS-1, and most of the classifiers in the ensemble are trained on higher

imbalance levels which means there is higher bias of performance in base classifiers towards

the non-target class. Therefore, under-sampling the trajectories to the support vectors is useful

when the SVMs are accurate enough to select the proper support vectors.

In Table 3.2, when the overlap between classes is lower (D1) CUS, TUS, RTUS-1s, and

STUSD-1outperform the others in terms of AUPR. For the highly imbalanced data with high

level of overlap, STUSD-1, STUSD-1s, STUSD-5, and STUSD-5s perform the best in terms of

AUPR. In Table 3.3, STUSA-1, STUSA-1s, STUSA-5, and STUSA-5s outperform the others

with all three cases of data complexities (D1, D2, and D3) in terms of F-measure. RTUS-1s out-

performs the others substantially when D3 (lower imbalance level of training data and lower

overlap between classes) is used for the experiments. In Table 3.4, RUSG, RUSwRG, and

RTUS-1s outperform the other methods in terms of G-mean. STUSA-1 outperforms the other

methods when the overlap between classes is higher and RUSwR outperform the other when

the overlap between classes is lower.

3.4.2 Results of experiments with video datasets

Tables 3.5, 3.6 and 3.7 show the results of experiments on the FIA video dataset and Tables

3.8, 3.9 and 3.10 show the results of experiments on the COX video dataset . In Table 3.5,

it is observed that RUSBoost, SeRn-SVM, and CUS are outperformed by all the other en-

sembles in terms of AUPR. However, the results of experiments on the FIA video dataset in

terms of the AUPR in Table 3.8 show that RUSG, RUSwRG, STUSA-1, STUSA-1s, STUSA-5

and STUSA-5s outperform the other methods over all ranges of imbalance during design and

testing.
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Table 3.5 Average of AUPR performance of baseline and proposed techniques on FIA

data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain=1:50 Λtrain=1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

RUSBoost
0.98

± 0.01

0.96

± 0.02

0.95

± 0.03

0.94

± 0.03

0.98

± 0.01

0.95

± 0.04

0.94

± 0.05

0.92

± 0.05

Seg-EoSVMs
0.98

± 0.01

0.96

± 0.02

0.93

± 0.05

0.91

± 0.06

0.98

± 0.01

0.95

± 0.03

0.93

± 0.04

0.91

± 0.05

RUS
0.98

± 0.01

0.96

± 0.02

0.95

± 0.03

0.94

± 0.03

0.98

± 0.01

0.96

± 0.03

0.95

± 0.03

0.93

± 0.04

RUSwR
0.98

± 0.01

0.97

± 0.02

0.95

± 0.02

0.95

± 0.03

0.98

± 0.01

0.96

± 0.02

0.95

± 0.03

0.93

± 0.04

RUSG
0.98

± 0.01

0.97

± 0.02

0.96

± 0.02

0.96

± 0.02

0.98

± 0.01

0.97

± 0.02

0.96

± 0.02

0.94

± 0.03

RUSwRG
0.98

± 0.01

0.97

± 0.01

0.96

± 0.02

0.96

± 0.02

0.98

± 0.01

0.97

± 0.02

0.96

± 0.02

0.94

± 0.03

CUS
0.97

± 0.05

0.95

± 0.11

0.93

± 0.13

0.92

± 0.13

0.98

± 0.01

0.96

± 0.05

0.95

± 0.06

0.93

± 0.08

CUSG
0.97

± 0.04

0.96

± 0.08

0.95

± 0.08

0.94

± 0.08

0.98

± 0.01

0.97

± 0.02

0.96

± 0.02

0.94

± 0.03

TUS
0.98

± 0.01

0.97

± 0.02

0.96

± 0.02

0.95

± 0.03

0.98

± 0.01

0.96

± 0.02

0.95

± 0.03

0.94

± 0.04

RTUS-1
0.98

± 0.01

0.97

± 0.01

0.96

± 0.02

0.95

± 0.03

0.98

± 0.01

0.97

± 0.01

0.95

± 0.03

0.94

± 0.03

RTUS-1s
0.98

± 0.01

0.97

± 0.01

0.96

± 0.02

0.95

± 0.03

0.98

± 0.01

0.97

± 0.01

0.96

± 0.02

0.94

± 0.03

RTUS-5
0.98

± 0.01

0.97

± 0.01

0.96

± 0.02

0.95

± 0.03

0.98

± 0.01

0.97

± 0.01

0.95

± 0.02

0.94

± 0.03

RTUS-5s
0.98

± 0.01

0.96

± 0.02

0.95

± 0.03

0.94

± 0.03

0.98

± 0.01

0.96

± 0.03

0.94

± 0.05

0.92

± 0.05

STUSA-1
0.98

± 0.01

0.97

± 0.01

0.96

± 0.02

0.95

± 0.02

0.98

± 0.01

0.97

± 0.02

0.96

± 0.02

0.94

± 0.03

STUSA-1s
0.98

± 0.01

0.97

± 0.01

0.96

± 0.02

0.96

± 0.02

0.98

± 0.01

0.97

± 0.02

0.96

± 0.02

0.94

± 0.03

STUSA-5
0.98

± 0.01

0.97

± 0.01

0.96

± 0.02

0.95

± 0.02

0.98

± 0.01

0.97

± 0.02

0.96

± 0.02

0.94

± 0.03

STUSA-5s
0.98

± 0.01

0.97

± 0.01

0.96

± 0.02

0.96

± 0.02

0.98

± 0.01

0.97

± 0.02

0.96

± 0.02

0.94

± 0.03

STUSD-1
0.98

± 0.01

0.96

± 0.02

0.95

± 0.03

0.94

± 0.03

0.98

± 0.01

0.96

± 0.03

0.95

± 0.03

0.93

± 0.04

STUSD-1s
0.98

± 0.01

0.96

± 0.02

0.95

± 0.03

0.94

± 0.03

0.98

± 0.01

0.96

± 0.03

0.95

± 0.03

0.93

± 0.04

STUSD-5
0.98

± 0.01

0.96

± 0.02

0.95

± 0.03

0.94

± 0.03

0.98

± 0.01

0.96

± 0.02

0.95

± 0.03

0.93

± 0.04

STUSD-5s
0.98

± 0.01

0.96

± 0.02

0.95

± 0.03

0.95

± 0.03

0.98

± 0.01

0.96

± 0.02

0.95

± 0.03

0.93

± 0.04

It is observed that modifying RUS, RUSwR, CUS and TUS using training data subsets with

different skew levels improves their performance in terms of F-measure substantially. Modify-

ing RUS and RUSwR does not improve their performance in terms of G-mean. However, the

performance of CUS and TUS improve substantially in terms of G-mean.
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Table 3.6 Average of F2-measure performance of baseline and proposed techniques on

FIA data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain=1:50 Λtrain=1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

RUSBoost
0.98
± 0.02

0.89

± 0.08

0.76

± 0.16

0.65

± 0.18

0.98
± 0.02

0.86

± 0.10

0.71

± 0.15

0.57

± 0.17

Seg-EoSVMs
0.99
± 0.01

0.69

± 0.16

0.48

± 0.21

0.32

± 0.21

0.99
± 0.02

0.68

± 0.15

0.45

± 0.18

0.31

± 0.18

RUS
0.98
± 0.02

0.88

± 0.08

0.73

± 0.16

0.61

± 0.18

0.98
± 0.02

0.85

± 0.09

0.70

± 0.14

0.54

± 0.15

RUSwR
0.98
± 0.02

0.92

± 0.05

0.83

± 0.11

0.74

± 0.12

0.98
± 0.02

0.90

± 0.08

0.81

± 0.12

0.67

± 0.14

RUSG
0.96

± 0.03

0.95
± 0.03

0.95
± 0.03

0.94
± 0.04

0.96

± 0.04

0.95
± 0.04

0.94
± 0.04

0.89

± 0.06

RUSwRG
0.96

± 0.03

0.95
± 0.03

0.95
± 0.03

0.94
± 0.03

0.95

± 0.04

0.95
± 0.04

0.94
± 0.04

0.90
± 0.05

CUS
0.89

± 0.07

0.32

± 0.18

0.18

± 0.15

0.10

± 0.09

0.89

± 0.06

0.30

± 0.17

0.16

± 0.14

0.09

± 0.09

CUSG
0.96

± 0.02

0.95
± 0.03

0.94
± 0.04

0.93
± 0.04

0.97

± 0.03

0.95
± 0.03

0.93
± 0.05

0.87

± 0.08

TUS
0.90

± 0.06

0.32

± 0.20

0.18

± 0.17

0.10

± 0.10

0.90

± 0.06

0.30

± 0.17

0.16

± 0.15

0.09

± 0.09

RTUS-1
0.96

± 0.03

0.96
± 0.03

0.95
± 0.03

0.92

± 0.05

0.97

± 0.03

0.96
± 0.03

0.92

± 0.05

0.85

± 0.08

RTUS-1s
0.94

± 0.04

0.94

± 0.04

0.94
± 0.04

0.93
± 0.04

0.95

± 0.04

0.94

± 0.04

0.93
± 0.05

0.91
± 0.06

RTUS-5
0.96

± 0.03

0.96
± 0.03

0.95
± 0.03

0.93
± 0.04

0.96

± 0.03

0.96
± 0.04

0.92

± 0.05

0.87

± 0.07

RTUS-5s
0.95

± 0.06

0.48

± 0.24

0.30

± 0.24

0.19

± 0.20

0.96

± 0.05

0.46

± 0.19

0.27

± 0.19

0.15

± 0.14

STUSA-1
0.96

± 0.03

0.95
± 0.03

0.95
± 0.03

0.93
± 0.04

0.96

± 0.04

0.95
± 0.04

0.93
± 0.05

0.87

± 0.07

STUSA-1s
0.96

± 0.03

0.95
± 0.03

0.95
± 0.03

0.94
± 0.04

0.96

± 0.04

0.95
± 0.04

0.93
± 0.05

0.88

± 0.07

STUSA-5
0.96

± 0.03

0.95
± 0.03

0.95
± 0.03

0.93
± 0.04

0.96

± 0.04

0.95
± 0.04

0.93
± 0.05

0.88

± 0.07

STUSA-5s
0.96

± 0.03

0.95
± 0.03

0.95
± 0.03

0.94
± 0.04

0.96

± 0.04

0.95
± 0.04

0.93
± 0.05

0.89

± 0.06

STUSD-1
0.97

± 0.02

0.93

± 0.05

0.86

± 0.12

0.82

± 0.13

0.97

± 0.03

0.89

± 0.09

0.80

± 0.14

0.70

± 0.17

STUSD-1s
0.97

± 0.02

0.93

± 0.05

0.88

± 0.11

0.85

± 0.12

0.97

± 0.03

0.90

± 0.08

0.81

± 0.13

0.73

± 0.16

STUSD-5
0.97

± 0.02

0.93

± 0.05

0.87

± 0.11

0.83

± 0.12

0.97

± 0.03

0.91

± 0.08

0.83

± 0.12

0.74

± 0.15

STUSD-5s
0.97

± 0.02

0.94

± 0.04

0.89

± 0.10

0.86

± 0.11

0.97

± 0.03

0.91

± 0.08

0.84

± 0.11

0.77

± 0.14

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

The performance of TUS ensemble is very similar to that of CUS ensemble and both outper-

form RUS and RUSwR in terms of AUPR. However, the TUS and CUS ensembles degrade in
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Table 3.7 Average of G-mean performance of baseline and proposed techniques on FIA

data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain=1:50 Λtrain=1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

RUSBoost
0.84

± 0.34

0.84

± 0.34

0.84

± 0.34

0.84

± 0.34

0.89

± 0.25

0.91

± 0.24

0.90

± 0.24

0.90

± 0.24

Seg-EoSVMs
0.98
± 0.03

0.93

± 0.05

0.92

± 0.07

0.92

± 0.07

0.97
± 0.06

0.93

± 0.05

0.92

± 0.06

0.92

± 0.06

RUS
0.97
± 0.04

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.95

± 0.08

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

RUSwR
0.98
± 0.03

0.98
± 0.02

0.98
± 0.02

0.98
± 0.02

0.98
± 0.03

0.98
± 0.02

0.98
± 0.02

0.98
± 0.02

RUSG
0.96

± 0.02

0.96

± 0.02

0.96

± 0.02

0.96

± 0.02

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

RUSwRG
0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.95

± 0.04

0.96

± 0.04

0.96

± 0.04

0.95

± 0.04

CUS
0.50

± 0.38

0.55

± 0.27

0.55

± 0.27

0.55

± 0.26

0.53

± 0.36

0.54

± 0.25

0.54

± 0.25

0.53

± 0.24

CUSG
0.95

± 0.14

0.95

± 0.14

0.95

± 0.14

0.95

± 0.14

0.97
± 0.03

0.97
± 0.03

0.97
± 0.03

0.97
± 0.03

TUS
0.52

± 0.38

0.54

± 0.28

0.54

± 0.27

0.54

± 0.26

0.55

± 0.38

0.54

± 0.26

0.53

± 0.25

0.53

± 0.25

RTUS-1
0.97
± 0.02

0.97
± 0.03

0.97
± 0.03

0.96

± 0.03

0.97
± 0.03

0.97
± 0.03

0.96

± 0.03

0.96

± 0.03

RTUS-1s
0.94

± 0.04

0.94

± 0.04

0.94

± 0.04

0.94

± 0.04

0.95

± 0.04

0.95

± 0.04

0.95

± 0.04

0.95

± 0.04

RTUS-5
0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

RTUS-5s
0.74

± 0.38

0.71

± 0.29

0.70

± 0.29

0.70

± 0.28

0.79

± 0.32

0.75

± 0.22

0.74

± 0.23

0.72

± 0.24

STUSA-1
0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.04

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

STUSA-1s
0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.04

0.96

± 0.04

0.96

± 0.04

0.96

± 0.04

STUSA-5
0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.04

0.96

± 0.04

0.96

± 0.04

0.96

± 0.04

STUSA-5s
0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.04

0.96

± 0.04

0.96

± 0.04

0.96

± 0.04

STUSD-1
0.97
± 0.03

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.95

± 0.08

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

STUSD-1s
0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.95

± 0.07

0.97
± 0.03

0.96

± 0.03

0.97
± 0.03

STUSD-5
0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.95

± 0.06

0.97
± 0.03

0.97
± 0.03

0.97
± 0.03

STUSD-5s
0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.95

± 0.06

0.96

± 0.03

0.96

± 0.03

0.97
± 0.03

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

performance in terms of F-measure and G-mean. These ensembles are better used by classifi-

cation score combination followed by threshold optimization rather than decision combination.
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Table 3.8 Average of AUPR performance of baseline and proposed techniques on COX

data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain=1:50 Λtrain=1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

RUSBoost
0.90

± 0.04

0.80

± 0.11

0.79

± 0.12

0.78

± 0.13

0.90

± 0.03

0.81

± 0.13

0.79

± 0.13

0.78

± 0.15

Seg-EoSVMs
0.91

± 0.02

0.81

± 0.10

0.76

± 0.13

0.72

± 0.17

0.91

± 0.01

0.83

± 0.11

0.77

± 0.14

0.73

± 0.17

RUS
0.90

± 0.04

0.82

± 0.11

0.81

± 0.11

0.80

± 0.12

0.90

± 0.03

0.83

± 0.11

0.82

± 0.11

0.81

± 0.13

RUSwR
0.90

± 0.04

0.82

± 0.11

0.81

± 0.12

0.80

± 0.12

0.90

± 0.03

0.83

± 0.11

0.82

± 0.12

0.80

± 0.13

RUSG
0.90

± 0.03

0.85

± 0.08

0.85
± 0.09

0.84
± 0.09

0.91

± 0.02

0.86

± 0.08

0.85
± 0.09

0.82
± 0.12

RUSwRG
0.90

± 0.03

0.86
± 0.08

0.85
± 0.09

0.85
± 0.09

0.91

± 0.02

0.86

± 0.08

0.85
± 0.09

0.82
± 0.12

CUS
0.90

± 0.05

0.82

± 0.12

0.81

± 0.12

0.81

± 0.12

0.90

± 0.04

0.82

± 0.14

0.81

± 0.15

0.79

± 0.16

CUSG
0.91

± 0.02

0.85

± 0.08

0.84
± 0.09

0.84
± 0.09

0.91

± 0.03

0.84

± 0.13

0.83

± 0.14

0.80

± 0.16

TUS
0.90

± 0.05

0.84

± 0.09

0.83

± 0.10

0.82

± 0.10

0.90

± 0.03

0.84

± 0.09

0.84

± 0.10

0.82
± 0.12

RTUS-1
0.91

± 0.02

0.86
± 0.07

0.84
± 0.09

0.82

± 0.11

0.91

± 0.01

0.87
± 0.08

0.83

± 0.10

0.79

± 0.13

RTUS-1s
0.91

± 0.02

0.87
± 0.07

0.85
± 0.08

0.83

± 0.10

0.92

± 0.01

0.88
± 0.06

0.85
± 0.07

0.82
± 0.11

RTUS-5
0.91

± 0.02

0.86
± 0.07

0.84
± 0.09

0.82

± 0.11

0.91

± 0.01

0.87
± 0.07

0.84

± 0.10

0.80

± 0.13

RTUS-5s
0.91

± 0.02

0.80

± 0.13

0.78

± 0.14

0.76

± 0.16

0.91

± 0.02

0.81

± 0.14

0.78

± 0.16

0.76

± 0.18

STUSA-1
0.91

± 0.03

0.86
± 0.09

0.85
± 0.09

0.84
± 0.10

0.91

± 0.02

0.86

± 0.07

0.85
± 0.08

0.82
± 0.12

STUSA-1s
0.91

± 0.03

0.86
± 0.09

0.84
± 0.09

0.84
± 0.10

0.91

± 0.02

0.86

± 0.07

0.85
± 0.08

0.82
± 0.12

STUSA-5
0.91

± 0.03

0.86
± 0.09

0.85
± 0.09

0.84
± 0.10

0.91

± 0.02

0.87
± 0.07

0.85
± 0.08

0.82
± 0.12

STUSA-5s
0.91

± 0.03

0.86
± 0.08

0.85
± 0.09

0.84
± 0.10

0.91

± 0.02

0.87
± 0.07

0.86
± 0.08

0.82
± 0.12

STUSD-1
0.90

± 0.04

0.82

± 0.11

0.81

± 0.12

0.80

± 0.12

0.90

± 0.03

0.84

± 0.10

0.83

± 0.11

0.81
± 0.13

STUSD-1s
0.90

± 0.04

0.82

± 0.11

0.81

± 0.12

0.81

± 0.12

0.90

± 0.03

0.84

± 0.10

0.83

± 0.11

0.81
± 0.12

STUSD-5
0.90

± 0.04

0.82

± 0.11

0.81

± 0.11

0.81

± 0.12

0.90

± 0.03

0.84

± 0.10

0.83

± 0.11

0.81
± 0.12

STUSD-5s
0.90

± 0.04

0.82

± 0.11

0.81

± 0.11

0.81

± 0.12

0.90

± 0.03

0.84

± 0.10

0.84

± 0.10

0.81
± 0.12

By increasing the difference of imbalance between classifiers from one to five, the performance

of RTUS, STUSA and STUSD ensembles improve or stay the same in terms of AUPR, F-

measure and G-mean.
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Table 3.9 Average of F2-measure performance of baseline and proposed techniques on

COX data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain=1:50 Λtrain=1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

RUSBoost
0.89

± 0.10

0.41

± 0.17

0.36

± 0.18

0.33

± 0.20

0.87

± 0.12

0.42

± 0.22

0.36

± 0.23

0.29

± 0.25

Seg-EoSVMs
0.95
± 0.06

0.62

± 0.16

0.45

± 0.19

0.34

± 0.20

0.95
± 0.07

0.64

± 0.18

0.46

± 0.19

0.34

± 0.20

RUS
0.90

± 0.10

0.46

± 0.17

0.41

± 0.17

0.38

± 0.18

0.91

± 0.10

0.52

± 0.20

0.45

± 0.20

0.37

± 0.23

RUSwR
0.90

± 0.10

0.47

± 0.17

0.42

± 0.17

0.39

± 0.18

0.90

± 0.10

0.53

± 0.20

0.46

± 0.20

0.38

± 0.23

RUSG
0.92

± 0.08

0.90
± 0.09

0.90
± 0.09

0.89
± 0.09

0.92

± 0.09

0.90
± 0.10

0.89
± 0.10

0.80
± 0.18

RUSwRG
0.92

± 0.08

0.91
± 0.08

0.90
± 0.09

0.90
± 0.09

0.92

± 0.09

0.91
± 0.09

0.90
± 0.09

0.82
± 0.17

CUS
0.68

± 0.03

0.11

± 0.03

0.05

± 0.02

0.03

± 0.02

0.68

± 0.03

0.11

± 0.03

0.06

± 0.02

0.03

± 0.01

CUSG
0.92

± 0.09

0.85

± 0.14

0.84

± 0.15

0.83

± 0.16

0.92

± 0.09

0.84

± 0.16

0.82

± 0.18

0.72

± 0.24

TUS
0.68

± 0.04

0.11

± 0.04

0.06

± 0.03

0.04

± 0.02

0.69

± 0.06

0.12

± 0.05

0.07

± 0.04

0.04

± 0.03

RTUS-1
0.92

± 0.08

0.91
± 0.09

0.90
± 0.09

0.84

± 0.16

0.93

± 0.08

0.91
± 0.09

0.80

± 0.15

0.69

± 0.26

RTUS-1s
0.85

± 0.12

0.84

± 0.12

0.84

± 0.12

0.84

± 0.13

0.87

± 0.11

0.87

± 0.11

0.84

± 0.11

0.80
± 0.18

RTUS-5
0.92

± 0.08

0.91
± 0.09

0.90
± 0.09

0.85

± 0.13

0.92

± 0.08

0.91
± 0.09

0.80

± 0.15

0.70

± 0.25

RTUS-5s
0.95
± 0.06

0.35

± 0.15

0.23

± 0.13

0.17

± 0.13

0.96
± 0.05

0.35

± 0.15

0.23

± 0.12

0.16

± 0.13

STUSA-1
0.92

± 0.08

0.89

± 0.09

0.88

± 0.10

0.88

± 0.10

0.92

± 0.09

0.89

± 0.10

0.88

± 0.10

0.80
± 0.17

STUSA-1s
0.92

± 0.08

0.89

± 0.09

0.89
± 0.09

0.89
± 0.10

0.92

± 0.09

0.89

± 0.10

0.88

± 0.10

0.80
± 0.17

STUSA-5
0.91

± 0.08

0.89

± 0.09

0.89
± 0.09

0.89
± 0.09

0.92

± 0.09

0.89

± 0.10

0.89
± 0.10

0.82
± 0.16

STUSA-5s
0.92

± 0.08

0.89

± 0.09

0.89
± 0.09

0.89
± 0.09

0.92

± 0.09

0.90
± 0.09

0.89
± 0.09

0.82
± 0.17

STUSD-1
0.94
± 0.07

0.67

± 0.23

0.63

± 0.25

0.60

± 0.26

0.93

± 0.08

0.64

± 0.24

0.58

± 0.26

0.48

± 0.30

STUSD-1s
0.94
± 0.07

0.69

± 0.23

0.65

± 0.24

0.62

± 0.26

0.93

± 0.08

0.67

± 0.24

0.61

± 0.26

0.52

± 0.31

STUSD-5
0.94
± 0.07

0.70

± 0.23

0.66

± 0.24

0.63

± 0.26

0.93

± 0.08

0.71

± 0.22

0.66

± 0.23

0.56

± 0.29

STUSD-5s
0.94
± 0.07

0.71

± 0.22

0.67

± 0.24

0.65

± 0.25

0.93

± 0.08

0.71

± 0.22

0.66

± 0.24

0.56

± 0.30

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

Under-sampling the trajectories to the support vectors improves RTUS-1 in terms of F-measure,

but not in terms of G-mean. The performance of RTUS-5 degrades similarly to the experiments
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Table 3.10 Average of G-mean performance of baseline and proposed techniques on

COX data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain=1:50 Λtrain=1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

RUSBoost
0.68

± 0.38

0.71

± 0.36

0.74

± 0.38

0.76

± 0.38

0.76

± 0.30

0.84

± 0.19

0.88

± 0.19

0.89

± 0.19

Seg-EoSVMs
0.95
± 0.06

0.93
± 0.05

0.93
± 0.06

0.92

± 0.07

0.95
± 0.07

0.93
± 0.07

0.92

± 0.07

0.92

± 0.07

RUS
0.87

± 0.17

0.90

± 0.06

0.94
± 0.05

0.95
± 0.05

0.88

± 0.15

0.92

± 0.06

0.94
± 0.05

0.95
± 0.05

RUSwR
0.87

± 0.16

0.91

± 0.06

0.94
± 0.05

0.95
± 0.05

0.88

± 0.15

0.91

± 0.07

0.94
± 0.06

0.94
± 0.06

RUSG
0.93

± 0.07

0.93
± 0.07

0.93
± 0.07

0.93

± 0.07

0.93

± 0.08

0.93
± 0.08

0.93

± 0.08

0.93

± 0.08

RUSwRG
0.93

± 0.07

0.93
± 0.07

0.93
± 0.07

0.93

± 0.07

0.93

± 0.08

0.93
± 0.08

0.93

± 0.08

0.93

± 0.08

CUS
0.13

± 0.20

0.27

± 0.25

0.35

± 0.28

0.44

± 0.28

0.11

± 0.20

0.25

± 0.24

0.39

± 0.29

0.35

± 0.27

CUSG
0.93

± 0.08

0.93
± 0.08

0.93
± 0.08

0.93

± 0.08

0.90

± 0.17

0.90

± 0.17

0.91

± 0.17

0.91

± 0.17

TUS
0.18

± 0.23

0.34

± 0.25

0.44

± 0.27

0.54

± 0.25

0.18

± 0.26

0.40

± 0.24

0.56

± 0.23

0.53

± 0.23

RTUS-1
0.92

± 0.07

0.92

± 0.07

0.92

± 0.07

0.92

± 0.07

0.93

± 0.08

0.93
± 0.08

0.93

± 0.07

0.92

± 0.08

RTUS-1s
0.86

± 0.10

0.86

± 0.10

0.86

± 0.10

0.86

± 0.10

0.88

± 0.09

0.88

± 0.09

0.88

± 0.09

0.88

± 0.09

RTUS-5
0.92

± 0.07

0.92

± 0.07

0.92

± 0.07

0.92

± 0.07

0.93

± 0.08

0.93
± 0.08

0.92

± 0.07

0.92

± 0.08

RTUS-5s
0.95
± 0.06

0.85

± 0.08

0.88

± 0.08

0.89

± 0.07

0.96
± 0.05

0.86

± 0.08

0.89

± 0.07

0.88

± 0.08

STUSA-1
0.92

± 0.08

0.92

± 0.07

0.93
± 0.07

0.93

± 0.07

0.92

± 0.08

0.92

± 0.08

0.92

± 0.08

0.92

± 0.08

STUSA-1s
0.93

± 0.08

0.93
± 0.07

0.93
± 0.07

0.93

± 0.07

0.92

± 0.08

0.92

± 0.08

0.93

± 0.08

0.93

± 0.08

STUSA-5
0.92

± 0.08

0.92

± 0.07

0.92

± 0.07

0.92

± 0.07

0.92

± 0.08

0.92

± 0.08

0.92

± 0.08

0.92

± 0.08

STUSA-5s
0.92

± 0.08

0.93
± 0.07

0.93
± 0.07

0.93

± 0.07

0.92

± 0.08

0.92

± 0.08

0.92

± 0.08

0.92

± 0.08

STUSD-1
0.94
± 0.07

0.93
± 0.06

0.94
± 0.06

0.95
± 0.06

0.92

± 0.10

0.93
± 0.07

0.94
± 0.06

0.94
± 0.06

STUSD-1s
0.94
± 0.07

0.93
± 0.06

0.94
± 0.06

0.95
± 0.06

0.92

± 0.09

0.93
± 0.06

0.94
± 0.06

0.94
± 0.06

STUSD-5
0.94
± 0.07

0.93
± 0.06

0.94
± 0.06

0.95
± 0.06

0.93

± 0.09

0.94
± 0.07

0.95
± 0.06

0.94
± 0.07

STUSD-5s
0.94
± 0.07

0.93
± 0.06

0.94
± 0.06

0.95
± 0.06

0.93

± 0.08

0.93
± 0.06

0.95
± 0.06

0.94
± 0.06

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

with the synthetic data. The performance of STUSD-1, STUSD-5, STUSA-1 and STUSA-5

either improve or stay the same.
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Figure 3.4 Average of diversity of proposed and baseline techniques in terms of

kappa measure on the FIA video dataset.

Figures 3.4 and 3.5, show the diversity among classifiers of the baseline and proposed ensem-

bles in terms of kappa measure and Q-statistics when the classifiers are trained on two different

imbalance levels. Diversity between the classifiers of the CUS ensemble is the greatest in terms

of both kappa and Q measures. Growing imbalance in RUS and RUSwR either increase the

diversity or keeps it the same. However, growing imbalance in CUS and TUS decrease the
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Figure 3.5 Average of diversity of proposed and baseline techniques in terms of

Q-statistics on the FIA video dataset.

value of Q and kappa measures except for variations of STUSD that show greater diversity. As

explained in section 3.3, increase in Q and kappa measures could be the result of improving

the accuracy of classifiers in an ensemble. Since the accuracy of both CUS and TUS ensem-

bles improve in Tables 3.5, 3.6 and 3.7, it is justified that growing imbalance in CUS and TUS

does not decrease the diversity. In variations of TUS ensembles increasing the difference of
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imbalance between training data subsets reduce the diversity. Under-sampling the trajectories

to support vectors either increase the diversity or keeps it the same in all variations of TUS

ensembles.

In summary, the experiments on both synthetic and video data sets show that growing im-

balance in training classifiers in the ensemble improves the performance. Trajectory under-

sampling in this application improves the accuracy-diversity trade-off between classifiers com-

pared to the general-purposed sampling methods and the performance of the proposed en-

sembles either improve or stay the same by reducing the trajectories to support vectors. The

proposed STUSA outperforms the state of the art methods in terms of F-measure. It is worth

mentioning that, analogous to any other face classification system, the capture conditions like

illumination and pose as well as the accuracy of the extracted ROIs (if the face is fully in-

cluded and well fitted in the ROI) affects the quality of the feature vectors (how well they rep-

resent the face) and therefore the performance of the proposed classification system designed

by them.The accuracy of the tracking module can affect the performance of the proposed en-

sembles only if the positive class trajectory contains samples from the negative class or the

negative class trajectories contain samples from the positive class.

3.5 Conclusion

In this chapter, a novel technique was proposed for the design of individual-specific ensembles

to address the class imbalance problem in person re-identification applications. In ensembles

with trajectory under-sampling, training subsets contain samples from target trajectory and a

growing selection of samples from non-target trajectories to minimize the risk of information

loss. Instead of using general-purpose under-sampling techniques such as random or cluster-

based under-sampling, contextual information (i.e., trajectory structure) is exploited to under-

sample from an abundance of non-target data to design diverse ensembles of 2-class classifiers.

The proposed under-sampling technique can be applicable in any multiclass classification ap-

plication where the data consists of sub-clusters inherently and the one-versus-all strategy is

used. Starting from one target and non-target trajectory for the first subset, the level of im-
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balance and decision bound complexity is increased for the next subsets by adding non-target

trajectories to the previous ones. Variants of these ensembles can give more importance to the

most efficient classifiers in recognizing target samples, or define efficient and diverse decision

boundaries by starting selection of trajectories from the farthest ones to the target class. Ex-

perimental results obtained using both synthetic and video data sets indicate that the proposed

ensembles outperform several baseline techniques over a range of test set imbalance levels.

Although using all non-target trajectories eliminate the risk of information loss, not all sam-

ples are informative and yield better generalization. Therefore, in a next step the trajectories

are further under-sampled to support vectors that improve these ensembles’ performance and

efficiency.



CHAPTER 4

PROGRESSIVE BOOSTING FOR CLASS IMBALANCE AND ITS APPLICATION
TO FACE RE-IDENTIFICATION

Most of the ensemble learning methods to handle imbalance in the literature are static ap-

proaches. Boosting (Freund & Schapire, 1995; Freund et al., 1996) is a common static en-

semble method that has been modified in several ways to learn from imbalanced data (see the

reviews by (Galar et al., 2012; Branco et al., 2016; Krawczyk, 2016b; Haixiang et al., 2016)).

In data-level Boosting approaches, training data is rebalanced by up-sampling positive class,

under-sampling negative class, or using both up-sampling and under-sampling (Chawla et al.,

2003; Hu et al., 2009; Mease et al., 2007; Guo & Viktor, 2004; Seiffert et al., 2010; Galar

et al., 2013b; Díez-Pastor et al., 2015). Up-sampling methods like SMOTEBoost (Chawla

et al., 2003) are often more accurate, but they are computationally complex. In contrast, ran-

dom under-sampling (RUS) (Seiffert et al., 2010) is more computationally efficient, but suffers

from information loss. Partitional approaches (Yan et al., 2003; Li et al., 2013) avoid informa-

tion loss by splitting the negative class to uncorrelated subsets and training classifiers using all

of these subsets.

Another issue with Boosting-based ensembles is that they may suffer from the bias of perfor-

mance towards negative class because the loss factor, which guides their learning process, is

obtained based on weighted accuracy. In cases of imbalance, weighted accuracy reflects the

ability for correct classification of negative samples more than positive ones. This issue can be

avoided by adopting a cost-sensitive approach (Fan et al., 1999; Ting, 2000; Sun et al., 2007),

that defines different misclassification costs for different classes and integrates these cost fac-

tors into Boosting learning process. The drawback of these cost-sensitive techniques is that

they rely on the suitable selection of cost factors which is often estimated by searching a range

of possible values. In contrast, cost-free techniques modify learning algorithms by enhancing

loss factor calculation without considering cost factors (Joshi et al., 2001; Kim et al., 2015).
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In this chapter we address the two above mentioned issues of Boosting-based ensembles in im-

balanced problems, and in particular in face re-identification applications: the computational

complexity of up-sampling methods, the loss of information of under-sampling ones; and the

bias of the standard loss factor towards the negative class. To this aim we propose the Progres-

sive Boosting (PBoost) algorithm to design static classifier ensembles that can maintain a high

level of performance over a range of possible levels of imbalance and complexity in the data

encountered during operations.

PBoost uses a partitioning method inspired by face re-identification applications, Trajectory

Under-Sampling (TUS), that we proposed in Chapter 3. TUS uses partitions of the negative

class based on tracking information to design ensembles of classifiers. In particular, samples

from the negative class are regrouped into disjoint partitions, and over iterations, these parti-

tions are gradually accumulated into a temporary design subset.

However, samples from the newly added partition and the important samples from previous

iterations have an equally higher probability of being selected than the other negative samples

in the temporary set (those that were correctly classified in the previous iteration). The base

classifier is then validated on the whole temporary subset. As with traditional Boosting ensem-

bles, the samples that are misclassified are considered as the most important samples and their

weights increase. With the sample selection scheme proposed in this Chapter, loss of infor-

mation is considerably reduced, correlation among subsets of negative class is low, and only

important samples tend to appear in more than one training subset. Therefore, the diversity and

accuracy of Boosting ensembles tend to increase. In addition, to avoid biasing the performance

towards the negative class, we propose employing a loss factor based on the Fβ -measure in the

proposed PBoosting algorithm.

The diverse pool of classifiers generated with PBoost allows to globally model a range of dif-

ferent levels of imbalance and decision boundary complexities for the data. Therefore, the

static ensembles produced using PBoost are robust to possible variations in data processed dur-

ing operations because base classifiers are validated on a growing number of negative samples
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(imbalance level). In addition, the number of samples used per iteration to design (train and

validate) a classifier in this ensemble is smaller than Boosting methods in the literature, which

translates to a lower computational complexity for design.

The contributions of the proposed PBoost algorithm for face re-identification is summarized as

follows:

- A new sample selection process for designing Boosting ensembles where negative class

samples enter the Boosting process in uncorrolated partitions to avoid loss of information.

Specifically for face re-identification application, the disjoint partitions are selected using

tracking information.

- Modifying the validation step in Boosting learning such that base classifiers are validated

on growing number of negative samples to increase robustness to imbalance and decrease

computation complexity;

- Proposing a specific loss factor (F-measure) in Boosting algorithm to avoid bias of perfor-

mance towards the majority class.

The PBoost algorithm has been compared to state of the art Boosting ensembles on synthetic

and video datasets, that emulate face re-identification application, in terms of both accuracy

and computational complexity. The content of this chapter has been partially published in a

conference paper presented in ICPR2016 and the full content has been published as an article

in Expert Systems with Applications Journal.

The rest of the chapter is structured as follows. In Section 1, the proposed PBoost algorithm

is described. The experimental methodology and results are presented in Sections 2 and 3,

respectively.
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4.1 Progressive Boosting for Learning Ensembles from Imbalanced Data

The Progressive Boosting (PBoost) learning method is proposed to sustain a high level of per-

formance over a range of imbalance and complexity levels in the data seen during operations.

This method follows a static approach, and learns ensembles based on a combination of under-

sampling and cost-free adjustment of Boosting ensemble learning.

With the PBoost algorithm, negative class is partitioned into disjoint subsets. These partitions

are accumulated into a temporary design set progressively as learning iterations proceed. In

each iteration, a subset of this temporary set is used for training a classifier such that the most

important samples plus samples from the new partition are given an equally high opportunity

to be used in training a base classifier. Loss of information is therefore avoided and ensemble

diversity is increased. The trained classifier is then validated on the temporary set that contains

all positive samples and only those negative partitions that have already been used in previous

training iterations. As the temporary set grows, its imbalance level increases and therefore,

the ensemble’s robustness to diverse levels of skew and decision boundary complexities during

operations is increased. In PBoost, the error of the classifier is determined based on its ability

to correctly classify both positive and negative classes. This loss factor plays an important

role in determining the contribution of classifiers in final prediction, and in selection criteria of

samples for designing the next classifiers.

There are several possible ways to partition the negative samples into disjoint subsets in the

literature (Xu & Wunsch, 2005) e.g., prototype-based methods like k-means and GMM al-

gorithms, affinity-based methods like spectral, normalized-cut and sub-space algorithms to

represent the negatives, and thus define partitions (number of clusters and association of data

to clusters). Two general-purpose partitioning techniques have been used in the literature to

partition data to learn ensembles from imbalanced data: Random Under-Sampling without re-

placement (we call RUSwR in this Chapter) (Yan et al., 2003) , and Cluster Under-Sampling

(CUS) (Li et al., 2013). In some applications the data is already partitioned, like binarization
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of multi-class classification problems using one-vs-all strategy. In some others, the data may

be grouped based on some contextual or application-based knowledge of data.

Trajectory Under-Sampling (TUS) is applicable in video surveillance applications where Re-

gions Of Interest (ROIs), which are faces in face re-identification, are regrouped into a set

called a trajectory with a high quality face tracker (as proposed in the previous chapter).

A high quality tracking system finds the trajectories by efficiently following the location of

the ROIs that belong to the same individual over consecutive video frames. This application-

based under-sampling method appeared to be more effective than the general-purposed under-

sampling methods in designing classifier ensembles for face re-identification in terms of diver-

sity and accuracy of opinions.

The progressive Boosting method is presented in Algo. 7 and Figure 4.1. Its main steps are ex-

plained in the following. The negative samples are regrouped to E disjoint partitions Pe, where

e = 1, ..,E, one per classifier in the ensemble (line 1). E and the number of negative samples in

each partition NP
e varies and depends on the partitioning method and the data distribution. In

the case of random under-sampling without replacement E is preselected and NP
e takes a fixed

random value NP
e ∈ [M+/2,2M+] such that ∑E

e=1 NP
e = M−. In the case of CUS and TUS, E

and NP
e depend on the number of samples that are assigned to each partition by the clustering

algorithm and the tracker, respectively.

Given a training data set S, one partition Pe is selected in each iteration and added to a tempo-

rary set Stmp
e (line 7) which initially contains the positive samples. The same initial weight wini

is assigned to the samples in the new partition creating a weight vector Wp
e (line 6) which is

also added to a temporary weight set Wtmp
e (line 7). In the next step (line 9), NP

e samples from

the temporary set Stmp
e are selected through random under-sampling to create a new subset S

′
e

with the weight distribution of W
′
e. A classifier Ce is trained on S

′
e (line 10). Then it is tested

on the whole temporary set Stmp
e that has an imbalance level of Λe = 1 : ∑e

f=1
Nf/M+ (line 11).

Therefore, the classifiers in this ensemble are in fact validated on data subsets with a growing

level of imbalance and complexity.
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After that, a new loss factor is calculated that adapts Boosting algorithm for classifying imbal-

anced data based on the Fβ -measure (line 19). To calculate the loss factor, we first split the

temporary weight vector Wtmp
e to two weight matrices for target Wtmp,+

e and non-target Wtmp,−
e

classes. The size of Wtmp,+
e is M+ and the size of Wtmp,−

e is ∑e
f=1 Nf , and:

Wtmp,+
e = {Wtmp

e ( j), j = 1, ...,(M++
e

∑
f=1

Nf )|y j = 1} , (4.1)

Wtmp,−
e = {Wtmp

e ( j), j = 1, ...,(M++
e

∑
f=1

Nf )|y j =−1} . (4.2)

Then, weighted versions of true positive, false positive, true negative and false negative counts

are defined as:

TPe = ∑
k:Yk=1

Wtmp,+
e (k),k = 1, ...,M+, (4.3)

FPe = ∑
k:Yk=1

Wtmp,−
e (k),k = 1, ...,

e

∑
f=1

Nf , (4.4)

TNe = ∑
k:Yk=−1

Wtmp,−
e (k),k = 1, ...,

e

∑
f=1

Nf , (4.5)

FNe = ∑
k:Yk=−1

Wtmp,+
e (k),k = 1, ...,M+. (4.6)

To measure the error of the classifiers, the corresponding loss factor is defined as:

Le = 1−AF =
FPe +β 2FNe

(1+β 2)TPe +FPe +β 2FNe
. (4.7)

After calculation of αe (line 22) from:

αe =
Le

1−Le
, (4.8)
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the weights in the temporary set Wtmp
e are updated (line 23) as:

Wtmp
e+1( j) = Wtmp

e ( j) α |yj−Yj|/2
e . (4.9)

Figure 4.1 Block diagram representation of PBoost learning method.
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Algorithm 7: Progressive Boosting ensemble learning method.

Input: Training set: S = {(xi,yi); i = 1, ...,M},yi ∈ {−1,1},M = M−+M+

Output: Predicted score or label: H(·)
1 Partition non-target samples from S into E clusters {Pe;e = 1, ...,E}.

2 Create a temporary training set and weight vector: Stmp
1 ←{(xi,yi) ∈ S|yi = 1} and

Wtmp
1 (k) = 1,k = 1, ...,M+.

3 Initialize wini
1 = 1.

4 Set lb = M−
(1+β 2)M++M−

5 for e = 1, ..,E do
6 Initialize weight distribution of Pe as Wp

e (k) = wini
e ,k = 1, ...,NP

e .

7 Stmp
e ← Stmp

e
⋃

Pe , Wtmp
e ← Wtmp

e
⋃

Wp
e

8 Normalize Wtmp
e such that: ∑Wtmp

e = 1.

9 Randomly select NP
e non-target samples from Stmp

e based on Wtmp
e , to create a training subset S

′
e

with W
′
e.

10 Train Ce on S
′
e with W

′
e.

11 Test Ce on Stmp
e and get back labels Yj, j = 1, ...,(M++∑e

f=1 Nf ).

12 Calculate the pseudo-loss for Stmp
e from Wtmp

e (using Equations 4.1 to 4.6):

13 Wtmp,+
e = {Wtmp

e ( j), j = 1, ...,(M++∑e
f=1 Nf )|y j = 1},

14 Wtmp,−
e = {Wtmp

e ( j), j = 1, ...,(M++∑e
f=1 Nf )|y j =−1},

15 TPe = ∑
(k,Yk):Yk=1

Wtmp,+
e (k),k = 1, ...,M+,

16 FPe = ∑
(k,Yk):Yk=1

Wtmp,−
e (k),k = 1, ...,∑e

f=1 Nf ,

17 TNe = ∑
(k,Yk):Yk=−1

Wtmp,−
e (k),k = 1, ...,∑e

f=1 Nf ,

18 FNe = ∑
(k,Yk):Yk=−1

Wtmp,+
e (k),k = 1, ...,M+,

19 Le = 1−AF = FPe+β 2FNe
(1+β 2)TPe+FPe+β 2FNe

.

20 If Le > lb go to step 9

21 Calculate the weight update parameter:

22 αe =
Le

1−Le

23 Update Wtmp
e+1( j) = Wtmp

e ( j)α |yj−Yj|/2
e

24 Normalize Wtmp
e+1 such that: ∑Wtmp

e+1 = 1.

25 Set wini
e+1 = max(Wtmp

e ),y j =−1

26 for e = 1, ..,E do
27 l Test Ce classifier on x and get back he(x).
28 Output the final hypothesis: H(·) = ∑E

e=1 he(·) log 1
αe

Even though it is desirable to limit the loss of information during under-sampling of data,

some samples (like borderline samples) are of more interest than others for training classifiers
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in the ensemble. In Boosting ensembles, these samples are often detected as misclassified

samples because borderline samples play more important role in defining the decision boundary

and they are more likely to be misclassified. More importance is given to these samples by

assigning higher weights to them, so that they have a higher chance to be included in training

subset(s). In the proposed PBoost ensemble, after normalization of Wtmp
e , its maximum value

among negative samples is selected as the initial weight for the next iteration (line 25):

wini
e+1 = max

y j=−1
{Wtmp

e ( j)}, j = 1, ...,M++
e

∑
f=1

Nf . (4.10)

This value corresponds to the weight of more important misclassified negative samples. There-

fore, in each iteration, new samples and misclassified samples from previous iterations have

more chance to be included in the training subset. Finally, αe is used to obtain the final class

prediction of the ensemble from in line 28.

PBoost is somewhat inspired from RUSBoost, but differs in three main respects. First, during

each iteration, instead of random under-sampling with replacement, most of training negative

samples are selected from disjoint partitions. Consequently, repeatedly selection of the same

samples over all iterations and information loss is avoided while the diversity increases. Sec-

ond, instead of validating the classifiers on all samples, the classifiers are validated only on a

subset of training set that grows in size and imbalance over iterations. Therefore, robustness to

different levels of data imbalance and complexity increases, and the computations complexity

of validation step decreases significantly. Third, instead of weighted accuracy, F-measure, an

imbalance-compatible performance metric, avoids biasing performance towards negative class.

4.2 Experimental Methodology

In the experiments of this chapter, the proposed PBoost ensemble learning method is com-

pared to AdaBoost.M1 (Freund et al., 1996), and one method from each family of the data-

level Boosting approaches reviewed in Section 1.2.1.1 including SMOTEBoost (Chawla et al.,

2003), RUSBoost (Seiffert et al., 2010), and RB-Boost (Díez-Pastor et al., 2015). The datasets
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that are used for the experiments include: (1) A set of synthetic 2D data sets in which the

level of skew and overlap between classes are controllable, (2) the Face In Action (FIA) video

database (Goh et al., 2005) that emulates a passport checking scenario in face re-identification

application, and (3) COX Face dataset the face recognition in video surveillance applica-

tions (Huang et al., 2015)(see Section 2.1.2)

A brief description of the implemented ensembles, their variants and the abbreviations used for

them are shown in Table 4.1. The abbreviations assigned to these ensembles are selected based

on their sampling techniques and loss factor as described in the following.

The baseline sampling techniques include Ada (resampling in AdaBoost), SMT (SMOTE in

SMOTEBoost), RUS (random under-sampling in RUSBoost), RB (random balance in RB-

Boost). For PBoost three partitioning techniques are used for under-sampling the negative class

to evaluate the effect of the partitioning technique on the performance of PBoost ensemble:

random under sampling without replacement (PRUS) and cluster under-sampling (PCUS) are

used as general partitioning techniques for PBoost disregarding the data structure, whether or

not the negative class is partitioned a priori. For PCUS, kernel k-means is used for clustering

negative samples. To select k, it is varied over a range of possible values and the value of

Dunn index (Dunn, 1973) is calculated for each case using a validation set. Finally, the optimal

k, is selected when Dunn index takes its maximum value. The third partitioning technique is

progressive trajectory under-sampling (PTUS).

The loss factor is calculated in two ways based on: the traditional technique i.e. weighted accu-

racy, and the F-measure. To indicate the use of F-measure in the Boosting ensembles in Table

4.1, the abbreviation is followed by -F. For the use of proposed loss factor calculation with the

F-measure, β is set as 2 in all experiments because β ≥ 1 is more suitable for imbalanced data

classification when the positive class is the minority class. An experiment is done to evaluate

the performance of Boosting ensembles with different values of β .

The performance of classifiers is measured in terms of AUPR (as a global performance metric),

the F2-measure (a metric of performance that takes the imbalance level of data into account and
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Table 4.1 Ensembles and their variants.

Abbreviation Sampling method Boosting Ensemble Loss factor
Ada: Resampling with replacement AdaBoost (Freund et al., 1996) Weighted accuracy

Ada-F: Resampling with replacement Modified AdaBoost (Freund et al., 1996) Proposed F-measure

SMT: Synthetic minority over-sampling technique (SMOTE) SMOTEBoost (Chawla et al., 2003) Weighted accuracy

SMT-F Synthetic minority over-sampling technique(SMOTE) Modified SMOTEBoost (Chawla et al., 2003) Proposed F-measure

RUS: Random under-sampling with replacement (RUS) RUSBoost (Seiffert et al., 2010) Weighted accuracy

RUS-F: Random under-sampling with replacement (RUS) Modified RUSBoost (Seiffert et al., 2010) Proposed F-measure

TUS: Selecting trajectories in video dataset or ideal clusters in synthetic dataset Growing imbalance -

RB: Combination of up-sampling (SMOTE) and under-sampling (RUS) RB-Boost (Díez-Pastor et al., 2015) Weighted accuracy

RB-F: Combination of up-sampling (SMOTE) and under-sampling (RUS) Modified RB-Boost (Díez-Pastor et al., 2015) Proposed F-measure

PRUS: Random under-sampling without replacement (RUSwR) Progressive Boosting Weighted accuracy

PRUS-F: Random under-sampling without replacement (RUSwR) Progressive Boosting Proposed F-measure

PCUS: Selecting clusters found by k-means Progressive Boosting Weighted accuracy

PCUS-F: Selecting clusters found by k-means Progressive Boosting Proposed F-measure

PTUS: Selecting trajectories or ideal clusters Progressive Boosting Weighted accuracy

PTUS-F: Selecting trajectories or ideal clusters Progressive Boosting Proposed F-measure

gives a little more importance to the target class by setting β = 2), and the G-mean (to measure

the performance for both classes at the same time disregarding the imbalance).

In the experiments with synthetic and video data sets, two different imbalance levels are used

for training and four different imbalance levels are used for testing. This is to evaluate the

sensitivity of classification systems to the level of imbalance during training and their robust-

ness to possible variations in skew level during operations. In experiments with synthetic data,

the overlap level between positive and negative classes are also varied because the issue of

imbalance is related to the level of overlap between classes (López et al., 2013).

In experiments with synthetic and video datasets, the size of all Boosting ensembles is set equal

to the maximum imbalance level of the data, except from PCUS. The reason for this setting is

that the number of ideal clusters and the number of trajectories are both known and equal to the

level of skew. In addition, based on a preliminary experiment under setting D2 (see Table 2.1)

on baseline ensembles in Figure 4.2, it is observed that the size of these ensembles does not

have a significant impact on their performance. The performance of these ensembles vary in

terms of F2-measure as the ensemble size grows. However, their global performance in terms

of AUPR do not change significantly. For PCUS, the size of ensemble is selected equal to the

optimal k obtained using Dunn index.

The values of performance metrics are averaged over all replications. In the experiments of

this chapter, the decision threshold to obtain the F2-measure is set to the value that maximizes
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Figure 4.2 Performance of baseline Boosting ensembles for different values of E on

D2 with Λtest = 1 : 100.
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Figure 4.3 PR curve of baseline Boosting ensembles on validation data and finding

the optimal threshold
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Figure 4.4 PR curve of baseline Boosting ensembles on test data using the optimal

threshold obtained from validation step.

the value of F2-measure on the validation data for comparing the performance of different

classification algorithms.

An example is shown in Figure 4.3, the PR curve of an experiment under setting D2 on the

validation data with skew level of 1:50. In Figure 4.4, the ensembles are tested on a different

test set and Fop shows the value of F-measure when the optimal threshold is selected using

the validation step described. FD is the value of F-measure when the combination function in

Boosting ensembles is majority voting and the decisions of base classifiers are combined. It is

observed that Fop and FD may differ significantly and in most cases Fop > FD.
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In our experiments, the performance of the proposed PBoost ensemble is also compared to

Boosting ensembles from literature in terms of computational complexity. Time complexity

for SVM training depends on several factors including the number of training samples, the

learning (optimization) algorithm and the number of features. The computational complexity

of SVM implemented in LibSVM is evaluated in (Chang & Lin, 2011), as O(ntrd) per iteration

I, where ntr is the training set size, and d is the number of features. The authors state that “the

number of iterations p may be higher than linear to the number of training data". Therefore,

the complexity is O(np
tr ·d) for some p > 2. This means that, time complexity for SVM training

is not proportional to, but increases more than linearly with respect to the training set size.

In the proposed PRUS and baseline Boosting ensembles, p is unknown and d is identical in

all algorithms. Each iteration of Boosting ensembles includes a validation step that should be

added to training complexity to obtain the overall time complexity of learning process. Time

complexity of the validation step O(nSV · nval), depends on the number of validation samples

nval and the number of support vectors nSV obtained from training each SVM. The reason is

that, when an RBF SVM with nSV support vectors is tested on a probe sample x, the value of

K(x,SVj) = exp{−‖x−SVj‖2
/2κ2} is accumulated for all support vectors ( j = 1, . . . ,nSV) and the

sign of the resulting quantity determines the decision.

Table 4.2 shows the number of samples to train and validate the ensembles of the size E.

The number of validation samples in baseline Boosting ensembles is the same and equal to

the overall number of training samples. However, the overall number of samples used for

validation in PTUS is calculated as:

E

∑
e=1

(M++
e

∑
f=1

Nf ) = EM++
E

∑
e=1

(E − (e−1))NP
e , (4.11)

= EM++E2 −
E

∑
e=1

eNP
e +M−, (4.12)

= EM++M−+E2 −
E

∑
e=1

eNP
e . (4.13)
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Table 4.2 Number of training and validation samples.

Ensemble ntr in iteration e Total ntr nval in iteration e Total nval

Ada M++M− E(M++M−) M++M− E(M++M−)
SMT 2M− 2EM− M++M− E(M++M−)
RUS 2M+ 2EM+ M++M− E(M++M−)
TUS M++∑e

f=1 Nf EM++M−+E2 −∑E
e=1 eNP

e M++∑e
f=1 Nf EM++M−+E2 −∑E

e=1 eNP
e

RB M++M− E(M++M−) M++M− E(M++M−)
PTUS M++NP

e EM++M− M++∑e
f=1 Nf EM++M−+E2 −∑E

e=1 eNP
e

This value is less than E(M++M−) that is the total number of validation samples in the sate

of the art Boosting ensembles. Table 4.2 shows that the total number of training and validation

samples in PTUS ensemble is the smallest one. The number of training and validation samples

in TUS is also found using Eq. 4.13.

4.3 Results and Discussion

The performance of the proposed and ensemble learning methods from the literature are ana-

lyzed for synthetic and video data in 4 parts: (1) accuracy and robustness over different levels

of overlap and imbalance between design and test data and of using the proposed loss factor;

(2) the performance of RUSBoost with and without progressive partitioning; (3) the combined

impact of progressive partitioning and proposed loss factor; (4) the computation complexity

during design and testing.

4.3.1 Results of Experiments with Synthetic Data

4.3.1.1 Impact of Loss Factor Based on the F-measure

The performance of the baseline Boosting ensembles: AdaBoost , SMOTEBoost, RUSBoost,

and RB-Boost are compared in Tables 4.3, 4.4 and 4.5 for different settings. In addition, Fβ is

used to optimize loss factor calculation in these ensembles.

Given a fixed skew level of test data, the performance of all Boosting ensembles declines in

terms of F-measure and AUPR as the overlap between positive and negative classes grows.
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This decline of performance is more significant when test data is imbalanced compared to the

case where test data is balanced. In our experiments, changes in skew level of test data result

in different number of misclassified negative samples and no change in the number of correctly

classified positive samples. Therefore, even for the same level of overlap, the performance of

all ensembles degrades, in terms of F-measure and AUPR when testing on a more imbalanced

data. However, the value of G-mean is relatively high and does not change significantly with

variations in imbalance.

For the same level of overlap and different imbalance of training data (settings D1 and D3) the

performance of all Boosting ensembles is lower when imbalance of training data is lower. The

reason is that less information is provided for training and also the skew level of training and

test data has a greater difference. Overall, Tables 4.3, 4.4 and 4.5 show that SMT and RB are

the most robust to changes in overlap and imbalance than Ada and RUS. In addition, using the

F-measure loss factor improves the performance of RUS significantly with D1, D2 and D3 for

all Λtest in terms of all three metrics. Performance of SMT and RB improves only in terms of

AUPR and with D1 and D2. Performance of Ada improves when Λtest = 1 : 100 in terms of

G-mean and AUPR.

Using the F-measure loss factor may improve the performance of the Boosting ensembles that

rely on under-sampling of data in terms of F-measure, especially for more difficult problems

with overlapping data. The performance of Boosting ensembles that involve up-sampling of

positive samples does not improve significantly in terms of F-measure. However, the global

performance of these Boosting ensembles in terms of AUPR does improve after using the F-

measure loss factor.

In Table 4.6, the performance of baseline ensembles and their variants for different values of

β is compared for D2. The goal is to evaluate the effect of the value of β on improving the

performance when the proposed loss factor is used. This Table shows the performance only

when Λtest = 1 : 100 because the performance of baseline systems usually decline for higher

skew levels of test data.
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Table 4.3 Average of F2-measure performance of baseline techniques with and without

F-measure loss factor on synthetic data over different levels of skew and overlap in test

data.

Ensembles
Train
Data D1 (Λtrain =1:50, δ = 0.2) D2 (Λtrain =1:50, δ = 0.1) D3 (Λtrain =1:20, δ = 0.2)

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.97

± 0.02

0.97

± 0.03

0.92

± 0.02

0.78

± 0.04

0.85

± 0.05

0.75

± 0.07

0.62

± 0.05

0.42

± 0.05

0.98

± 0.02

0.93

± 0.03

0.85

± 0.02

0.57

± 0.04

Ada-F
0.96

± 0.03

0.96

± 0.03

0.92

± 0.03

0.79
± 0.04

0.87
± 0.09

0.74

± 0.08

0.58

± 0.05

0.42

± 0.08

0.98

± 0.02

0.92

± 0.03

0.85

± 0.02

0.58
± 0.05

RUS
0.89

± 0.11

0.85

± 0.21

0.55

± 0.19

0.34

± 0.15

0.82

± 0.09

0.62

± 0.10

0.47

± 0.08

0.27

± 0.08

0.56

± 0.20

0.35

± 0.24

0.21

± 0.18

0.13

± 0.11

RUS-F
0.93
± 0.06

0.93
± 0.06

0.81
± 0.11

0.63
± 0.17

0.93
± 0.04

0.71
± 0.06

0.51
± 0.03

0.36
± 0.07

0.85
± 0.15

0.77
± 0.20

0.67
± 0.21

0.47
± 0.18

SMT
0.96

± 0.04

0.96

± 0.04

0.94

± 0.04

0.90

± 0.03

0.94

± 0.04

0.85

± 0.02

0.65

± 0.02

0.61

± 0.02

0.96

± 0.04

0.91

± 0.01

0.90

± 0.02

0.74

± 0.03

SMT-F
0.95

± 0.04

0.95

± 0.04

0.94

± 0.04

0.90

± 0.03

0.94

± 0.04

0.85

± 0.02

0.65

± 0.02

0.61

± 0.02

0.96

± 0.04

0.91

± 0.01

0.90

± 0.02

0.74

± 0.03

RB
0.96

± 0.02

0.96

± 0.02

0.94

± 0.02

0.90

± 0.01

0.91

± 0.05

0.85

± 0.01

0.63

± 0.01

0.60

± 0.01

0.96

± 0.03

0.92

± 0.02

0.90

± 0.02

0.73

± 0.05

RB-F
0.96

± 0.03

0.96

± 0.03

0.94

± 0.03

0.90

± 0.02

0.91

± 0.03

0.85

± 0.02

0.63

± 0.02

0.59

± 0.03

0.97

± 0.03

0.91

± 0.01

0.89

± 0.03

0.72

± 0.05

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

Evaluation is done in terms of the same Fβ -measure that is used in loss factor calculation. The

results are shown in terms of both FD and Fop. FD is the value of F-measure when the decisions

of base classifiers are combined in Boosting ensembles and Fop is the value of F-measure when

the scores of base classifiers are combined in Boosting ensembles and the optimal decision

threshold of each ensemble is set to the point that maximizes F-measure when that ensemble is

validated on an independent set of data (see section 4.2.1.).

The performance of Ada improves for all values of β in terms of both FD and Fop. Some

improvements are seen for SMT and RB, but FD and Fop tend to stay the same in most cases

and decrease in a few cases. The performance of RUS improves for β = 1 and 2 in terms of both

FD and Fop, and the improvement tends to decrease for higher β values. This was expected,

since using higher values of β to calculate F-measure means giving more importance to recall

than precision. Therefore, the impact of imbalance is masked when higher values of β is used

and the performance may not change when the loss factor is calculated based on F-measure.

For each of the classification systems, the same reason result in higher values of FD and Fop
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Table 4.4 Average of G-mean performance of baseline techniques with and without

F-measure loss factor on synthetic data over different levels of skew and overlap in test

data.

Ensembles
Train
Data D1 (Λtrain =1:50, δ = 0.2) D2 (Λtrain =1:50, δ = 0.1) D3 (Λtrain =1:20, δ = 0.2)

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.97

± 0.02

0.97

± 0.02

0.97

± 0.02

0.97

± 0.02

0.86

± 0.05

0.86

± 0.05

0.86

± 0.05

0.85

± 0.05

0.98

± 0.02

0.98

± 0.02

0.98

± 0.02

0.97

± 0.02

Ada-F
0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.88
± 0.08

0.87
± 0.07

0.87
± 0.07

0.87
± 0.07

0.98

± 0.02

0.98

± 0.02

0.98

± 0.02

0.97

± 0.02

RUS
0.93

± 0.05

0.93

± 0.05

0.92

± 0.05

0.91

± 0.06

0.84

± 0.08

0.83

± 0.08

0.83

± 0.08

0.82

± 0.08

0.50

± 0.20

0.68

± 0.23

0.68

± 0.23

0.68

± 0.23

RUS-F
0.94
± 0.06

0.94
± 0.06

0.93
± 0.06

0.93
± 0.05

0.93
± 0.04

0.92
± 0.04

0.92
± 0.04

0.92
± 0.04

0.80
± 0.25

0.91
± 0.08

0.91
± 0.08

0.91
± 0.08

SMT
0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.94

± 0.04

0.94

± 0.04

0.94

± 0.04

0.94

± 0.04

0.96

± 0.04

0.96

± 0.03

0.96

± 0.04

0.96

± 0.04

SMT-F
0.96

± 0.04

0.96

± 0.04

0.96

± 0.04

0.95

± 0.04

0.94

± 0.03

0.94

± 0.03

0.93

± 0.03

0.94

± 0.03

0.96

± 0.04

0.96

± 0.03

0.96

± 0.04

0.96

± 0.04

RB
0.96

± 0.02

0.96

± 0.02

0.96

± 0.02

0.96

± 0.02

0.91

± 0.05

0.91

± 0.04

0.90

± 0.04

0.91

± 0.05

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

RB-F
0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.91

± 0.03

0.91

± 0.03

0.90

± 0.03

0.91

± 0.03

0.97

± 0.03

0.96

± 0.03

0.97

± 0.03

0.96

± 0.03

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

with higher values of β . Comparing FD and Fop of each ensemble for each value of β shows

that selecting the proper decision threshold can improve the performance in terms of accuracy

and robustness, especially for lower values of β .

The results are not shown in terms of AUPR because AUPR does not change with variations

in the value of β , since the importance of recall and precision stays the same and equal in

obtaining AUPR.

4.3.1.2 Impact of progressive partitioning in RUSBoost

In this section, progressive partitioning is integrated into RUS without the use of F-measure in

loss factor calculation. It is observed in Table 4.8 that robustness of RUS improves significantly

after using this method of sampling. Indeed, using all samples for training through partitioning

avoids loss of information and may improve the classification accuracy. In addition, validating

on different imbalance levels of data increases the robustness to variations in the imbalance
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Table 4.5 Average of AUPR performance of baseline techniques with and without

F-measure loss factor on synthetic data over different levels of skew and overlap in test

data.

Ensembles
Train
Data D1 (Λtrain =1:50, δ = 0.2) D2 (Λtrain =1:50, δ = 0.1) D3 (Λtrain =1:20, δ = 0.2)

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
1.00

± 0.00

1.00

± 0.00

0.98

± 0.01

0.89

± 0.04

1.00

± 0.00

0.82

± 0.07

0.66

± 0.05

0.34

± 0.07

1.00

± 0.00

0.99

± 0.01

0.96

± 0.01

0.70

± 0.04

Ada-F
1.00

± 0.00

1.00

± 0.00

0.98

± 0.01

0.90
± 0.03

1.00

± 0.00

0.81

± 0.08

0.55

± 0.13

0.36
± 0.14

1.00

± 0.00

0.99

± 0.01

0.95
± 0.02

0.71
± 0.05

RUS
0.93

± 0.21

0.90

± 0.28

0.46

± 0.25

0.29

± 0.23

1.00

± 0.00

0.70

± 0.13

0.40

± 0.08

0.20

± 0.08

0.64

± 0.20

0.34

± 0.33

0.20

± 0.23

0.10

± 0.11

RUS-F
1.00
± 0.00

1.00
± 0.00

0.86
± 0.19

0.71
± 0.23

1.00
± 0.00

0.75
± 0.11

0.37
± 0.07

0.26
± 0.09

0.89
± 0.22

0.81
± 0.27

0.73
± 0.30

0.51
± 0.27

SMT
0.90

± 0.32

0.90

± 0.32

0.89

± 0.31

0.88

± 0.31

0.90

± 0.32

0.84

± 0.30

0.52

± 0.19

0.51

± 0.19

1.00

± 0.00

0.99

± 0.01

0.98

± 0.01

0.88

± 0.01

SMT-F
1.00
± 0.00

1.00
± 0.00

0.99
± 0.01

0.98
± 0.01

1.00
± 0.00

0.93
± 0.03

0.58
± 0.04

0.57
± 0.05

1.00

± 0.00

0.99

± 0.01

0.98

± 0.01

0.88

± 0.01

RB
0.80

± 0.42

0.80

± 0.42

0.79

± 0.42

0.78

± 0.41

0.60

± 0.52

0.57

± 0.49

0.32

± 0.28

0.31

± 0.27

1.00

± 0.00

0.99

± 0.01

0.98

± 0.01

0.84

± 0.03

RB-F
1.00
± 0.00

1.00
± 0.00

0.99
± 0.00

0.98
± 0.01

1.00
± 0.00

0.94
± 0.02

0.53
± 0.03

0.51
± 0.03

1.00

± 0.00

0.98

± 0.01

0.98

± 0.01

0.85
± 0.02

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

Table 4.6 Average of F2-measure performance of baseline techniques with and without

F-measure loss factor for different values of β on D2, Λtest = 1 : 100.

Ensembles FD Fop

β = 1 β = 2 β = 4 β = 7 β = 10 β = 1 β = 2 β = 4 β = 7 β = 10

Ada
0.24

± 0.14

0.26

± 0.15

0.19

± 0.17

0.20

± 0.15

0.24

± 0.16

0.38

± 0.10

0.25

± 0.18

0.27

± 0.16

0.34

± 0.06

0.32

± 0.13

Ada-F
0.30
± 0.07

0.31
± 0.07

0.33
± 0.05

0.34
± 0.03

0.33
± 0.04

0.41
± 0.09

0.39
± 0.11

0.36
± 0.05

0.36
± 0.08

0.38
± 0.07

RUS
0.09

± 0.01

0.09

± 0.01

0.09

± 0.01

0.09

± 0.01

0.09

± 0.01

0.51

± 0.03

0.46

± 0.03

0.48

± 0.04

0.43

± 0.13

0.48

± 0.03

RUS-F
0.19
± 0.04

0.10
± 0.01

0.09

± 0.01

0.09

± 0.01

0.08

± 0.02

0.52
± 0.08

0.48
± 0.03

0.43

± 0.10

0.44
± 0.12

0.46

± 0.07

SMT
0.36

± 0.02

0.36

± 0.02

0.36

± 0.02

0.33

± 0.12

0.33

± 0.12

0.49

± 0.05

0.47

± 0.04

0.41

± 0.15

0.41

± 0.15

0.45

± 0.03

SMT-F
0.36

± 0.02

0.36

± 0.02

0.36

± 0.02

0.37
± 0.02

0.36
± 0.02

0.49

± 0.05

0.47

± 0.04

0.45
± 0.03

0.45
± 0.03

0.45

± 0.03

RB
0.33

± 0.01

0.32

± 0.02

0.29

± 0.10

0.26

± 0.14

0.23

± 0.16

0.47

± 0.03

0.41

± 0.15

0.34

± 0.18

0.38

± 0.14

0.29

± 0.20

RB-F
0.30

± 0.02

0.30

± 0.02

0.30
± 0.02

0.30
± 0.02

0.31
± 0.02

0.47

± 0.04

0.46
± 0.05

0.41
± 0.02

0.42
± 0.02

0.41
± 0.02

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

level of test data. The performance of PTUS is significantly better than RUS in terms of both
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F-measure and G-mean with D1, D2 and D3 and all Λtest. In terms of AUPR, integrating PTUS

improves the performance of RUS with D2, and higher skew levels of test data with D1 and

D2. Integrating PRUS and PCUS also improves the performance of RUS specially in terms of

F-measure and AUPR and with D1 and D3.

Table 4.7 Average of F2-measure, G-mean and AUPR performance of RUSBoost with

and without integrating progressive Boosting on synthetic data over different levels of

skew and overlap of test data.

Ensembles
Train
Data D1 (Λtrain =1:50, δ = 0.2) D2 (Λtrain =1:50, δ = 0.1) D3 (Λtrain =1:20, δ = 0.2)

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100
F2-measure

RUS
0.89

± 0.11

0.85

± 0.21

0.55

± 0.19

0.34

± 0.15

0.82

± 0.09

0.62

± 0.10

0.47

± 0.08

0.27

± 0.08

0.56

± 0.20

0.35

± 0.24

0.21

± 0.18

0.13

± 0.11

PRUS
0.82

± 0.09

0.64

± 0.11

0.61
± 0.12

0.55
± 0.15

0.90
± 0.09

0.43

± 0.18

0.35

± 0.14

0.32
± 0.11

0.70
± 0.06

0.58
± 0.18

0.56
± 0.20

0.48
± 0.19

PCUS
0.83

± 0.12

0.61

± 0.17

0.58
± 0.16

0.54
± 0.14

0.92
± 0.13

0.60

± 0.15

0.48
± 0.09

0.43
± 0.09

0.88
± 0.09

0.84
± 0.09

0.82
± 0.08

0.71
± 0.06

PTUS
0.97
± 0.03

0.92
± 0.03

0.92
± 0.03

0.90
± 0.03

0.99
± 0.01

0.79
± 0.09

0.63
± 0.09

0.58
± 0.12

0.94
± 0.05

0.92
± 0.05

0.91
± 0.04

0.78
± 0.04

G-mean

RUS
0.93

± 0.05

0.93

± 0.05

0.92

± 0.05

0.91

± 0.06

0.84

± 0.08

0.83

± 0.08

0.83

± 0.08

0.82

± 0.08

0.50

± 0.20

0.68

± 0.23

0.68

± 0.23

0.68

± 0.23

PRUS
0.85

± 0.06

0.70

± 0.09

0.69

± 0.09

0.69

± 0.09

0.91
± 0.08

0.57

± 0.15

0.53

± 0.17

0.53

± 0.17

0.78
± 0.05

0.76
± 0.06

0.76
± 0.06

0.76
± 0.06

PCUS
0.86

± 0.11

0.69

± 0.14

0.69

± 0.14

0.67

± 0.15

0.95
± 0.08

0.71

± 0.15

0.70

± 0.15

0.69

± 0.16

0.89
± 0.08

0.87
± 0.07

0.87
± 0.08

0.85
± 0.07

PTUS
0.97
± 0.03

0.93
± 0.03

0.93
± 0.03

0.93
± 0.03

0.99
± 0.01

0.94
± 0.02

0.93
± 0.02

0.93
± 0.06

0.94
± 0.05

0.94
± 0.05

0.93
± 0.04

0.92
± 0.05

AUPR

RUS
0.93

± 0.21

0.90

± 0.28

0.46

± 0.25

0.29

± 0.23

1.00

± 0.00

0.70

± 0.13

0.40

± 0.08

0.20

± 0.08

0.64

± 0.20

0.34

± 0.33

0.20

± 0.23

0.10

± 0.11

PRUS
1.00
± 0.00

0.95
± 0.14

0.64
± 0.30

0.49
± 0.35

1.00

± 0.00

0.77
± 0.08

0.43
± 0.04

0.26
± 0.08

0.88
± 0.21

0.81
± 0.26

0.62
± 0.28

0.37
± 0.20

PCUS
1.00
± 0.00

0.96
± 0.05

0.69
± 0.24

0.45
± 0.29

1.00

± 0.00

0.57

± 0.19

0.38

± 0.15

0.27
± 0.15

0.99
± 0.02

0.86
± 0.20

0.76
± 0.17

0.53
± 0.16

PTUS
0.90

± 0.32

0.90

± 0.32

0.89
± 0.31

0.86
± 0.31

0.90

± 0.32

0.44

± 0.24

0.35

± 0.22

0.29
± 0.21

1.00
± 0.00

0.97
± 0.02

0.96
± 0.03

0.80
± 0.07

The boldface entries correspond to improvement in the performance of RUS after integrating progressive

Boosting.

4.3.1.3 Impact of progressive partitioning and loss factor combined

In this section progressive partitioning and the proposed loss factor are integrated into RUS

algorithm, resulting in PRUS-F, PCUS-F, and PTUS-F. In terms of F-measure, PTUS-F out-
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performs other classification systems for higher skew levels of test data. PTUS-F outperforms

others in terms of G-mean with D2. Comparing Tables 4.3 and 4.5 with 4.7 and 4.8 shows that

combining the use of F-measure and progressive partitioning is more effective in increasing

performance and robustness compared to using each of them independently because during

learning process, accuracy and robustness to imbalance improve at the same time, not sepa-

rately. If the negative class is partitioned a priori (TUS), PBoost performs significantly better

than the case when general partitioning techniques (RUS and CUS) are used.

Table 4.8 Average of F2-measure performance of proposed and baseline techniques on

synthetic data over different levels of skew and overlap of test data.

Ensembles
Train
Data D1 (Λtrain =1:50, δ = 0.2) D2 (Λtrain =1:50, δ = 0.1) D3 (Λtrain =1:20, δ = 0.2)

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.97

± 0.02

0.97
± 0.03

0.92

± 0.02

0.78

± 0.04

0.85

± 0.05

0.75

± 0.07

0.62

± 0.05

0.42

± 0.05

0.98

± 0.02

0.93

± 0.03

0.85

± 0.02

0.57

± 0.04

RUS
0.89

± 0.11

0.85

± 0.21

0.55

± 0.19

0.34

± 0.15

0.82

± 0.09

0.62

± 0.10

0.47

± 0.08

0.27

± 0.08

0.56

± 0.20

0.35

± 0.24

0.21

± 0.18

0.13

± 0.11

SMT
0.96

± 0.04

0.96

± 0.04

0.94
± 0.04

0.90

± 0.03

0.94

± 0.04

0.85
± 0.02

0.65

± 0.02

0.61

± 0.02

0.96

± 0.04

0.91

± 0.01

0.90

± 0.02

0.74

± 0.03

RB
0.96

± 0.02

0.96

± 0.02

0.94
± 0.02

0.90

± 0.01

0.91

± 0.05

0.85
± 0.01

0.63

± 0.01

0.60

± 0.01

0.96

± 0.03

0.92

± 0.02

0.90

± 0.02

0.73

± 0.05

TUS
0.95

± 0.05

0.95

± 0.05

0.94
± 0.04

0.89

± 0.04

0.83

± 0.02

0.71

± 0.02

0.67
± 0.02

0.62

± 0.02

0.99
± 0.02

0.96
± 0.02

0.87

± 0.02

0.77

± 0.01

PRUS-F
0.90

± 0.07

0.76

± 0.10

0.75

± 0.09

0.74

± 0.09

0.99

± 0.02

0.54

± 0.12

0.45

± 0.08

0.44

± 0.08

0.72

± 0.06

0.63

± 0.16

0.62

± 0.16

0.57

± 0.13

PCUS-F
0.80

± 0.10

0.57

± 0.22

0.54

± 0.21

0.53

± 0.21

0.91

± 0.11

0.55

± 0.19

0.46

± 0.13

0.42

± 0.12

0.87

± 0.07

0.83

± 0.08

0.78

± 0.09

0.65

± 0.13

PTUS-F
0.98
± 0.01

0.93

± 0.03

0.92

± 0.03

0.91
± 0.03

1.00
± 0.00

0.83

± 0.03

0.67
± 0.03

0.63
± 0.04

0.93

± 0.05

0.92

± 0.05

0.92
± 0.05

0.81
± 0.05

The boldface entries correspond to the best values of performance for each skew level of testing.

4.3.2 Results of Experiments with Video Data

Similarly to the synthetic data sets, the results of experiments on video datasets are shown in

three parts, assessing the impact of: (1) using the F-measure loss factor on the performance of

baseline Boosting ensembles, (2) integrating progressive partitioning into RUS, and (3) using

the F-measure loss factor and progressive partitioning compared with the baseline and ensem-

ble methods from the literature.
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Table 4.9 Average of G-mean performance of proposed and baseline techniques on

synthetic data over different levels of skew and overlap of test data.

Ensembles
Train
Data D1 (Λtrain =1:50, δ = 0.2) D2 (Λtrain =1:50, δ = 0.1) D3 (Λtrain =1:20, δ = 0.2)

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.97

± 0.02

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.86

± 0.05

0.86

± 0.05

0.86

± 0.05

0.85

± 0.05

0.98

± 0.02

0.98
± 0.02

0.98
± 0.02

0.97

± 0.02

RUS
0.93

± 0.05

0.93

± 0.05

0.92

± 0.05

0.91

± 0.06

0.84

± 0.08

0.83

± 0.08

0.83

± 0.08

0.82

± 0.08

0.50

± 0.20

0.68

± 0.23

0.68

± 0.23

0.68

± 0.23

SMT
0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.94

± 0.04

0.94
± 0.04

0.94
± 0.04

0.94
± 0.04

0.96

± 0.04

0.96

± 0.03

0.96

± 0.04

0.96

± 0.04

RB
0.96

± 0.02

0.96

± 0.02

0.96

± 0.02

0.96

± 0.02

0.91

± 0.05

0.91

± 0.04

0.90

± 0.04

0.91

± 0.05

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

0.96

± 0.03

TUS
0.95

± 0.04

0.95

± 0.04

0.95

± 0.04

0.95

± 0.04

0.84

± 0.01

0.84

± 0.01

0.84

± 0.01

0.84

± 0.01

0.99
± 0.01

0.98
± 0.01

0.98
± 0.01

0.98
± 0.01

PRUS-F
0.90

± 0.06

0.78

± 0.08

0.78

± 0.08

0.78

± 0.08

0.99

± 0.02

0.62

± 0.09

0.62

± 0.09

0.61

± 0.09

0.78

± 0.05

0.77

± 0.05

0.76

± 0.05

0.76

± 0.06

PCUS-F
0.78

± 0.20

0.65

± 0.18

0.65

± 0.18

0.65

± 0.18

0.94

± 0.07

0.68

± 0.17

0.67

± 0.17

0.64

± 0.19

0.88

± 0.06

0.86

± 0.06

0.86

± 0.06

0.86

± 0.06

PTUS-F
0.98
± 0.01

0.93

± 0.03

0.93

± 0.03

0.93

± 0.03

1.00
± 0.00

0.94
± 0.02

0.94
± 0.02

0.94
± 0.02

0.94
± 0.04

0.94

± 0.04

0.94

± 0.04

0.93

± 0.05

The boldface entries correspond to the best values of performance for each skew level of testing.

Table 4.10 Average of AUPR performance of proposed and baseline techniques on

synthetic data over different levels of skew and overlap of test data.

Ensembles
Train
Data D1 (Λtrain =1:50, δ = 0.2) D2 (Λtrain =1:50, δ = 0.1) D3 (Λtrain =1:20, δ = 0.2)

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
1.00
± 0.00

1.00
± 0.00

0.98

± 0.01

0.89

± 0.04

1.00
± 0.00

0.82

± 0.07

0.66

± 0.05

0.34

± 0.07

1.00
± 0.00

0.99
± 0.01

0.96

± 0.01

0.70

± 0.04

RUS
0.93

± 0.21

0.90

± 0.28

0.46

± 0.25

0.29

± 0.23

1.00
± 0.00

0.70

± 0.13

0.40

± 0.08

0.20

± 0.08

0.64

± 0.20

0.34

± 0.33

0.20

± 0.23

0.10

± 0.11

SMT
0.90

± 0.32

0.90

± 0.32

0.89

± 0.31

0.88

± 0.31

0.90

± 0.32

0.84

± 0.30

0.52

± 0.19

0.51

± 0.19

1.00
± 0.00

0.99
± 0.01

0.98
± 0.01

0.88

± 0.01

RB
0.80

± 0.42

0.80

± 0.42

0.79

± 0.42

0.78

± 0.41

0.60

± 0.52

0.57

± 0.49

0.32

± 0.28

0.31

± 0.27

1.00
± 0.00

0.99
± 0.01

0.98
± 0.01

0.84

± 0.03

TUS
1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

0.96

± 0.01

0.99

± 0.00

0.75

± 0.04

0.68
± 0.01

0.62
± 0.02

1.00
± 0.00

0.99
± 0.01

0.96

± 0.01

0.92
± 0.01

PRUS-F
1.00
± 0.00

1.00
± 0.00

0.99

± 0.01

0.97
± 0.02

1.00
± 0.00

0.86
± 0.05

0.44

± 0.04

0.35

± 0.07

0.99

± 0.01

0.99
± 0.01

0.90

± 0.09

0.64

± 0.15

PCUS-F
0.99

± 0.04

0.92

± 0.10

0.66

± 0.27

0.47

± 0.29

1.00

± 0.00

0.57

± 0.19

0.39

± 0.15

0.27

± 0.17

0.96

± 0.07

0.87

± 0.14

0.74

± 0.17

0.53

± 0.22

PTUS-F
1.00
± 0.00

1.00
± 0.00

0.98

± 0.01

0.97
± 0.02

1.00
± 0.00

0.80

± 0.09

0.55

± 0.07

0.50

± 0.09

1.00
± 0.00

0.98

± 0.01

0.97

± 0.01

0.85

± 0.04

The boldface entries correspond to the best values of performance for each skew level of testing.

From Tables 4.11 and 4.14, the performance level of all ensembles is lower when the skew

level of training data is higher. This is despite the fact that when the imbalance of training data

is lower, the data that is used to test classifiers contain samples from some individuals that are
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not in the training data. Using the F-measure loss factor improves the performance of Ada and

RUS in terms of F-measure, and has less impact on the performance of RB and SMT in most

cases of skew between classes in training and testing data. In terms of G-mean (Tables 4.12

and 4.15), the performance improves for all ensembles with both datasets, except for RUS

with FIA. The performance of these ensembles after using the F-measure loss factor does not

change significantly in terms of AUPR (Tables 4.13 and 4.16). In fact, the use of F-measure

loss factor performs similarly to adjusting the decision threshold of the Boosting algorithms to

better account for imbalance and therefore may improve the performance only in terms of local

performance metrics like F-measure.

Table 4.11 Average of F2-measure performance of baseline techniques before and after

using the F-measure loss factor on FIA data sets over different levels of skew in training

and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.80

± 0.18

0.80

± 0.18

0.80

± 0.18

0.79

± 0.18

0.62

± 0.29

0.62

± 0.29

0.62

± 0.29

0.62

± 0.29

Ada-F
0.99
± 0.01

0.99
± 0.01

0.75

± 0.03

0.75

± 0.02

0.87
± 0.09

0.74
± 0.08

0.60

± 0.05

0.62

± 0.08

RUS
0.98

± 0.02

0.86

± 0.10

0.72

± 0.15

0.57

± 0.16

0.98

± 0.02

0.85

± 0.10

0.70

± 0.16

0.59

± 0.17

RUS-F
0.96

± 0.04

0.89
± 0.03

0.72

± 0.03

0.58
± 0.04

0.93

± 0.04

0.85

± 0.06

0.71
± 0.03

0.60
± 0.07

SMT
0.93

± 0.04

0.93

± 0.04

0.93

± 0.04

0.92

± 0.05

0.92

± 0.05

0.92

± 0.05

0.92

± 0.05

0.92

± 0.05

SMT-F
0.98
± 0.02

0.98
± 0.02

0.92

± 0.01

0.90

± 0.02

0.94
± 0.04

0.90

± 0.02

0.90

± 0.02

0.90

± 0.02

RB
0.89

± 0.24

0.89

± 0.24

0.89

± 0.24

0.87

± 0.24

0.77

± 0.37

0.77

± 0.37

0.76

± 0.37

0.76

± 0.37

RB-F
0.99
± 0.01

0.99
± 0.01

0.88

± 0.01

0.85

± 0.03

0.91
± 0.03

0.85
± 0.02

0.75

± 0.02

0.74

± 0.03

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

After integrating the progressive partitioning in RUS using PRUS and PTUS, the performance

of RUS improves and becomes more robust in terms of both F-measure and AUPR (see Tables

4.17 and 4.18), especially when TUS is used for partitioning. Validating base classifiers on

different imbalance levels of imbalance result in more robust classification systems and using
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Table 4.12 Average of G-mean performance of baseline techniques before and after

using the F-measure loss factor on FIA data sets over different levels of skew in training

and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.82

± 0.16

0.82

± 0.16

0.82

± 0.16

0.82

± 0.16

0.67

± 0.25

0.67

± 0.25

0.67

± 0.25

0.67

± 0.25

Ada-F
0.99
± 0.01

0.99
± 0.01

0.97
± 0.01

0.97
± 0.01

0.88
± 0.08

0.87
± 0.07

0.87
± 0.07

0.87
± 0.07

RUS
0.97

± 0.05

0.97

± 0.02

0.97

± 0.02

0.97

± 0.02

0.95

± 0.06

0.97

± 0.02

0.97

± 0.02

0.97

± 0.02

RUS-F
0.96

± 0.04

0.96

± 0.04

0.95

± 0.03

0.95

± 0.03

0.93

± 0.04

0.92

± 0.04

0.92

± 0.04

0.92

± 0.04

SMT
0.94

± 0.04

0.94

± 0.04

0.94

± 0.04

0.94

± 0.04

0.92

± 0.04

0.92

± 0.04

0.92

± 0.04

0.92

± 0.04

SMT-F
0.98
± 0.02

0.98
± 0.02

0.97
± 0.02

0.97
± 0.02

0.94
± 0.03

0.94
± 0.03

0.93
± 0.03

0.94
± 0.03

RB
0.89

± 0.24

0.89

± 0.24

0.89

± 0.24

0.89

± 0.24

0.77

± 0.37

0.77

± 0.37

0.77

± 0.37

0.77

± 0.37

RB-F
0.99
± 0.01

0.99
± 0.01

0.98
± 0.01

0.98
± 0.01

0.91
± 0.03

0.91
± 0.03

0.90
± 0.03

0.91
± 0.03

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

all samples for training through partitioning avoids loss of information and may improve the

classification accuracy.

Comparing the performance of final PBoost variants with baseline ensembles in Tables 4.19,

4.20, 4.21 and 4.22, 4.23, 4.24, PTUS-F outperforms all other approaches in terms of F-

measure. In terms of G-mean RUS performs the best and in terms of AUPR, SMT has the

highest mean value. From these results, it is observed that combining the use of F-measure

and integration of progressive partitioning, is more effective in increasing performance and ro-

bustness compared to using each of them independently. In the experiments on the video data,

trajectory under-sampling is more effective when used in PBoost compared to random under-

sampling without replacement and cluster under-sampling. This is the case when partitions of

negative class are known a priori.
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Table 4.13 Average of AUPR performance of baseline techniques before and after using

the F-measure loss factor on FIA data sets over different levels of skew in training and test

data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.85

± 0.35

0.82

± 0.34

0.80

± 0.33

0.77

± 0.33

0.83

± 0.36

0.79

± 0.35

0.76

± 0.35

0.74

± 0.34

Ada-F
1.00
± 0.00

1.00
± 0.00

0.80

± 0.06

0.77

± 0.05

1.00
± 0.00

0.81
± 0.08

0.75

± 0.13

0.72

± 0.14

RUS
0.91

± 0.29

0.88

± 0.29

0.86

± 0.28

0.85

± 0.28

0.90

± 0.30

0.88

± 0.30

0.86

± 0.29

0.85

± 0.29

RUS-F
1.00
± 0.00

0.96
± 0.02

0.85

± 0.04

0.84

± 0.04

1.00
± 0.00

0.88

± 0.11

0.86

± 0.07

0.84

± 0.09

SMT
1.00

± 0.00

0.99

± 0.01

0.99

± 0.01

0.98

± 0.02

1.00

± 0.00

0.99

± 0.01

0.99

± 0.01

0.98

± 0.02

SMT-F
1.00
± 0.00

1.00
± 0.00

0.96

± 0.02

0.99

± 0.01

1.00
± 0.00

0.93

± 0.03

0.98

± 0.04

0.97

± 0.05

RB
0.93

± 0.26

0.92

± 0.25

0.92

± 0.25

0.91

± 0.25

0.81

± 0.39

0.80

± 0.39

0.80

± 0.39

0.79

± 0.39

RB-F
1.00
± 0.00

1.00
± 0.00

0.91

± 0.03

0.90

± 0.02

1.00
± 0.00

0.94
± 0.02

0.79

± 0.03

0.79

± 0.03

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

4.3.3 Statistical Comparison of the Classification Systems

The statistical comparison in this Chapter is carried out once for each skew level of test data.

K = 8 is the number of classification systems in Tables 4.8, 4.17, 4.22, 4.23, and 4.24. N = 8

is the number of independent datasets used for statistical comparison that includes six syn-

thetic datasets and two video datasets. The results of experiments with three of the syn-

thetic datasets D1, D2 and D3 have been presented in section 4.3.1. Remaining three datasets

used for statistical comparison are D4(Λtrain = 1 : 20,δ = 0.1), D5(Λtrain = 1 : 100,δ = 0.2),

D6(Λtrain = 1 : 100,δ = 0.1). The data used for two settings of experiments on video data

are dependent because all the samples that are used when Λtrain = 1 : 50 are used again when

Λtrain = 1 : 100. Therefore, only the results with Λtrain = 1 : 100 are used for statistical com-

parison of the classification systems with FIA and COX datasets.

For each skew level of test data (s = 1, ...,4), Table 4.25 shows the mean rank of each classi-

fication system (Rs
k = (1/N)∑n rk

n,s where k = 1, ...,K and n = 1, ...,N). rk
n,s is the rank of kth
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Table 4.14 Average of F2-measure performance of baseline techniques before and after

using the F-measure loss factor on COX data sets over different levels of skew in training

and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.48

± 0.30

0.48

± 0.30

0.48

± 0.30

0.48

± 0.30

0.43

± 0.25

0.43

± 0.25

0.43

± 0.25

0.43

± 0.25

Ada-F
0.99
± 0.01

0.99
± 0.01

0.55
± 0.03

0.47

± 0.02

0.87
± 0.09

0.74
± 0.08

0.58
± 0.05

0.42

± 0.08

RUS
0.89

± 0.11

0.50

± 0.22

0.43

± 0.22

0.37

± 0.24

0.87

± 0.12

0.44

± 0.19

0.40

± 0.19

0.36

± 0.20

RUS-F
0.96
± 0.04

0.89
± 0.03

0.55
± 0.03

0.42
± 0.04

0.93
± 0.04

0.71
± 0.06

0.51
± 0.03

0.36

± 0.07

SMT
0.81

± 0.15

0.80

± 0.15

0.80

± 0.15

0.80

± 0.15

0.82

± 0.12

0.82

± 0.12

0.82

± 0.12

0.82

± 0.12

SMT-F
0.98
± 0.02

0.98
± 0.02

0.80

± 0.01

0.80

± 0.02

0.94
± 0.04

0.85
± 0.02

0.80

± 0.02

0.80

± 0.02

RB
0.83

± 0.13

0.83

± 0.13

0.83

± 0.13

0.82

± 0.13

0.82

± 0.17

0.82

± 0.17

0.82

± 0.17

0.82

± 0.17

RB-F
0.99
± 0.01

0.99
± 0.01

0.82

± 0.01

0.81

± 0.03

0.91
± 0.03

0.85
± 0.02

0.80

± 0.02

0.79

± 0.03

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

classification system for sth skew level with nth dataset such that best performing algorithm gets

rank of 1 and the worst one gets rank of 8. In case of ties average ranks are assigned. From Ta-

ble 4.25, it is observed that PTUS-F takes the highest rank in terms of F-measure and G-mean.

To determine if there are any significant differences between the ranks, we use Friedman test

and the subsequent version of Iman and Davenport (Iman & Davenport, 1980) which rejects

the null hypothesis that all classification systems perform the same. Then we use Hochberg

test (Hochberg, 1988) to compare the Boosting ensemble methods from the literature (Ada,

RUS, SMT, RB and TUS) to PTUS-F. Table 4.26 shows the p-values of these comparisons.

With α of 0.05, the boldface entries of the table indicate the rejection of null hypothesis that

PTUS-F does not outperform these ensembles. It is observed that the null hypothesis is rejected

in 14 out of 20 comparisons in terms of F-measure, and 6 out of 20 comparisons in terms of

G-mean and AUPR.
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Table 4.15 Average of G-mean performance of baseline techniques before and after

using the F-measure loss factor on COX data sets over different levels of skew in training

and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.56

± 0.25

0.56

± 0.25

0.56

± 0.25

0.56

± 0.25

0.52

± 0.20

0.52

± 0.20

0.52

± 0.20

0.52

± 0.20

Ada-F
0.99
± 0.01

0.99
± 0.01

0.97
± 0.01

0.97
± 0.01

0.88
± 0.08

0.87
± 0.07

0.87
± 0.07

0.87
± 0.07

RUS
0.85

± 0.18

0.90

± 0.07

0.94

± 0.05

0.94

± 0.05

0.83

± 0.19

0.89

± 0.08

0.93

± 0.07

0.94

± 0.07

RUS-F
0.96
± 0.04

0.96
± 0.04

0.95
± 0.03

0.95
± 0.03

0.93
± 0.04

0.92
± 0.04

0.92

± 0.04

0.92

± 0.04

SMT
0.83

± 0.12

0.83

± 0.12

0.83

± 0.12

0.83

± 0.12

0.84

± 0.10

0.84

± 0.10

0.84

± 0.10

0.84

± 0.10

SMT-F
0.98
± 0.02

0.98
± 0.02

0.97
± 0.02

0.97
± 0.02

0.94
± 0.03

0.94
± 0.03

0.93
± 0.03

0.94
± 0.03

RB
0.85

± 0.11

0.85

± 0.11

0.85

± 0.11

0.85

± 0.11

0.84

± 0.16

0.84

± 0.16

0.84

± 0.16

0.84

± 0.16

RB-F
0.99
± 0.01

0.99
± 0.01

0.98
± 0.01

0.98
± 0.01

0.91
± 0.03

0.91
± 0.03

0.90
± 0.03

0.91
± 0.03

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

4.3.4 Computational Complexity

In this section the time complexity needed to design and test the proposed and baseline Boost-

ing ensembles are compared. To compare the training time and memory cost of these en-

sembles, the number of training samples is counted and to compare their validation time and

memory cost the number of validation samples and the number of support vectors of base

classifiers are considered.

Figure 4.5 show the results obtained with setting D2 in our experiments. The number of training

and validation samples, the average number of support vectors, and overall number of evalua-

tions of the kernel function (nSV ·nval) is presented in Figure 4.5(a)-(d) to estimate and compare

design time of the proposed and baseline Boosting ensembles. To compare the complexity of

these classification systems during testing O(nSV) with a probe sample x, we compared the

overall number of support vectors in these ensembles in Figure 4.5(e) because computing each

SVM output requires nSV evaluations of the kernel function.
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Table 4.16 Average of AUPR performance of baseline techniques before and after using

the F-measure loss factor on COX data sets over different levels of skew in training and

test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.80

± 0.36

0.66

± 0.34

0.64

± 0.34

0.60

± 0.35

0.83

± 0.32

0.65

± 0.32

0.63

± 0.33

0.61

± 0.33

Ada-F
1.00
± 0.00

1.00
± 0.00

0.62

± 0.06

0.60

± 0.05

1.00
± 0.00

0.81
± 0.08

0.62

± 0.13

0.60

± 0.14

RUS
0.89

± 0.28

0.81

± 0.27

0.80

± 0.27

0.79

± 0.27

0.66

± 0.46

0.57

± 0.41

0.56

± 0.41

0.56

± 0.41

RUS-F
1.00
± 0.00

0.96
± 0.02

0.79

± 0.04

0.77

± 0.04

1.00
± 0.00

0.75
± 0.11

0.57

± 0.07

0.56

± 0.09

SMT
0.99

± 0.02

0.95

± 0.05

0.95

± 0.05

0.91

± 0.07

0.99

± 0.02

0.97

± 0.05

0.96

± 0.05

0.96

± 0.05

SMT-F
1.00
± 0.00

1.00
± 0.00

0.94

± 0.02

0.90

± 0.01

1.00
± 0.00

0.96

± 0.03

0.95

± 0.04

0.95

± 0.05

RB
0.99

± 0.03

0.94

± 0.06

0.94

± 0.06

0.91

± 0.07

0.96

± 0.17

0.93

± 0.17

0.92

± 0.17

0.92

± 0.17

RB-F
1.00
± 0.00

1.00
± 0.00

0.93

± 0.03

0.90

± 0.02

1.00
± 0.00

0.94
± 0.02

0.91

± 0.03

0.90

± 0.03

The boldface entries correspond to improvement in the performance of the Boosting ensemble after modifying

loss factor using F-measure.

Given ne
tr as the number of samples to train the eth classifier in the ensemble, Figure 4.5(a)

shows ∑E
e=1 ne

tr. In Figure 4.5(b), ∑E
e=1 ne

val is presented, where ne
val is the number of samples

that the eth classifier in the ensemble is validated with. Average number of support vectors

in E classifiers of the ensembles are shown in Figure 4.5(c). Given ne
SV as the number of

support vectors obtained after training the eth classifier in the ensemble, Figure 4.5(d) shows

∑E
e=1 ne

val ·ne
SV for each ensemble.

In terms of training (see Figure 4.5(a)), PTUS and RUS are under-sampling ensembles and

have the lowest computational cost, while SMT and RB-Boost include up-sampling and are

significantly more costly. Total number of validation samples is equal for Ada, SMT, RUS

and RB, and total number of validation samples is less with PTUS (see Figure 4.5(b)). The

average number of support vectors is higher for SMT (see Figure 4.5(c)) because the base

classifiers in this ensemble are trained on higher number of samples. Therefore, SMT is the

most costly method, in terms of validation (see Figure 4.5(d)). Note that time and memory

required for partitioning in PTUS, and generating synthetic samples in SMT and RB-Boost
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Table 4.17 Average of F2-measure, G-mean and AUPR performance of RUSBoost with

and without integrating progressive Boosting FIA data sets over different levels of skew

in training and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

F2-measure

RUS
0.98

± 0.02

0.86

± 0.10

0.72

± 0.15

0.57

± 0.16

0.98

± 0.02

0.85

± 0.10

0.70

± 0.16

0.59

± 0.17

PRUS
0.99
± 0.01

0.95
± 0.04

0.91
± 0.06

0.89
± 0.06

0.99
± 0.01

0.94
± 0.04

0.90
± 0.06

0.89
± 0.07

PCUS
0.99
± 0.01

0.95
± 0.04

0.91
± 0.06

0.88
± 0.06

0.99
± 0.01

0.95
± 0.04

0.91
± 0.06

0.89
± 0.06

PTUS
0.99
± 0.01

0.95
± 0.04

0.92
± 0.05

0.90
± 0.06

0.99
± 0.01

0.95
± 0.04

0.92
± 0.06

0.90
± 0.06

G-mean

RUS
0.97

± 0.05

0.97

± 0.02

0.97

± 0.02

0.97

± 0.02

0.95

± 0.06

0.97

± 0.02

0.97

± 0.02

0.97

± 0.02

PRUS
0.98
± 0.03

0.97
± 0.03

0.95
± 0.04

0.94

± 0.04

0.97
± 0.04

0.97
± 0.03

0.95

± 0.03

0.94

± 0.04

PCUS
0.98
± 0.03

0.97
± 0.02

0.95
± 0.03

0.94

± 0.04

0.97
± 0.04

0.97
± 0.02

0.95

± 0.03

0.94

± 0.04

PTUS
0.98
± 0.03

0.97
± 0.03

0.95
± 0.04

0.94

± 0.04

0.98
± 0.03

0.97
± 0.03

0.95

± 0.04

0.94

± 0.04

AUPR

RUS
0.91

± 0.29

0.88

± 0.29

0.86

± 0.28

0.85

± 0.28

0.90

± 0.30

0.88

± 0.30

0.86

± 0.29

0.85

± 0.29

PRUS
1.00
± 0.00

0.95
± 0.03

0.93
± 0.05

0.91
± 0.05

1.00
± 0.00

0.95
± 0.03

0.93
± 0.05

0.91
± 0.05

PCUS
1.00
± 0.00

0.97
± 0.03

0.95
± 0.04

0.93
± 0.05

0.98
± 0.14

0.95
± 0.14

0.93
± 0.14

0.91
± 0.14

PTUS
0.98
± 0.14

0.96
± 0.14

0.94
± 0.14

0.92
± 0.14

0.97
± 0.16

0.95
± 0.16

0.93
± 0.16

0.91
± 0.16

The boldface entries correspond to improvement in the performance of RUS after integrating progressive

Boosting.

is neglected here. Nevertheless, PTUS is the most efficient ensemble technique in terms of

designing memory and time complexity.

The number of training and validation samples as well as the average number of support vectors

is smaller with PTUS and therefore, PTUS is less costly in terms of design time and memory

complexity.

In terms of testing time complexity (see Figure 4.5(e)) PTUS and RUS have the lowest number

of evaluations of the kernel function per probe sample. RB-Boost and SMT have the highest

number of evaluations of the kernel function per probe sample.
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Table 4.18 Average of F2-measure, G-mean and AUPR performance of RUSBoost with

and without integrating progressive Boosting COX data sets over different levels of skew

in training and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

F2-measure

RUS
0.89

± 0.11

0.50

± 0.22

0.43

± 0.22

0.37

± 0.24

0.87

± 0.12

0.44

± 0.19

0.40

± 0.19

0.36

± 0.20

PRUS
0.95
± 0.06

0.88
± 0.10

0.86
± 0.09

0.85
± 0.10

0.95
± 0.06

0.86
± 0.13

0.85
± 0.13

0.84
± 0.13

PCUS
0.95
± 0.07

0.88
± 0.11

0.85
± 0.11

0.84
± 0.11

0.95
± 0.07

0.85
± 0.13

0.84
± 0.14

0.84
± 0.14

PTUS
0.95
± 0.06

0.88
± 0.10

0.86
± 0.10

0.85
± 0.11

0.94
± 0.07

0.87
± 0.12

0.86
± 0.12

0.85
± 0.13

G-mean

RUS
0.85

± 0.18

0.90

± 0.07

0.94

± 0.05

0.94

± 0.05

0.83

± 0.19

0.89

± 0.08

0.93

± 0.07

0.94

± 0.07

PRUS
0.95
± 0.06

0.92
± 0.07

0.92

± 0.07

0.91

± 0.07

0.95
± 0.06

0.91
± 0.08

0.90

± 0.09

0.90

± 0.09

PCUS
0.95
± 0.07

0.91
± 0.08

0.90

± 0.08

0.90

± 0.08

0.95
± 0.08

0.91
± 0.09

0.90

± 0.09

0.89

± 0.10

PTUS
0.95
± 0.06

0.91
± 0.09

0.90

± 0.09

0.88

± 0.09

0.94
± 0.06

0.91
± 0.08

0.90

± 0.09

0.89

± 0.10

AUPR

RUS
0.89

± 0.28

0.81

± 0.27

0.80

± 0.27

0.79

± 0.27

0.66

± 0.46

0.57

± 0.41

0.56

± 0.41

0.56

± 0.41

PRUS
0.98
± 0.04

0.88
± 0.11

0.85
± 0.11

0.83
± 0.11

0.83
± 0.21

0.72
± 0.23

0.71
± 0.23

0.71
± 0.23

PCUS
0.97
± 0.05

0.88
± 0.12

0.87
± 0.12

0.85
± 0.13

0.83
± 0.21

0.72
± 0.23

0.70
± 0.23

0.70
± 0.24

PTUS
0.97
± 0.16

0.88
± 0.17

0.86
± 0.18

0.84
± 0.18

0.84
± 0.35

0.76
± 0.33

0.75
± 0.33

0.73
± 0.33

The boldface entries correspond to improvement in the performance of RUS after integrating progressive

Boosting.

Although AdaBoost is given the same ensemble size, it fails to generate enough classifiers

and consequently result in smaller number of support vectors. Therefore, the total number of

validation and testing processes of Ada is lower than expected.

4.3.5 Summary of Results

As a summary of results on synthetic and video datasets, we observed that: Using the proposed

loss factor calculation may reduce the bias of performance in Boosting ensembles and increase

the accuracy. Partitioning improves the performance of RUS in all cases in terms of both ac-

curacy and robustness to imbalance. Integrating both partitioning and the proposed loss factor
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Table 4.19 Average of F2-measure performance of proposed and baseline techniques

FIA data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.80

± 0.18

0.80

± 0.18

0.80

± 0.18

0.79

± 0.18

0.62

± 0.29

0.62

± 0.29

0.62

± 0.29

0.62

± 0.29

RUS
0.98

± 0.02

0.86

± 0.10

0.72

± 0.15

0.57

± 0.16

0.98

± 0.02

0.85

± 0.10

0.70

± 0.16

0.59

± 0.17

SMT
0.93

± 0.04

0.93
± 0.04

0.93
± 0.04

0.92
± 0.05

0.92

± 0.05

0.92

± 0.05

0.92
± 0.05

0.92
± 0.05

RB
0.89

± 0.24

0.89

± 0.24

0.89

± 0.24

0.87

± 0.24

0.77

± 0.37

0.77

± 0.37

0.76

± 0.37

0.76

± 0.37

TUS
0.63

± 0.18

0.63

± 0.17

0.62

± 0.17

0.62

± 0.17

0.87

± 0.08

0.87

± 0.08

0.87

± 0.08

0.86

± 0.08

PRUS-F
0.99
± 0.01

0.95

± 0.05

0.92

± 0.06

0.90

± 0.06

0.99
± 0.01

0.95
± 0.04

0.91

± 0.06

0.90

± 0.06

PCUS-F
0.99
± 0.01

0.95

± 0.04

0.92

± 0.06

0.90

± 0.06

0.99
± 0.02

0.95
± 0.04

0.91

± 0.06

0.90

± 0.07

PTUS-F
0.99
± 0.01

0.95

± 0.04

0.92

± 0.05

0.90

± 0.06

0.99
± 0.01

0.95
± 0.04

0.92
± 0.06

0.90

± 0.06

The boldface entries correspond to the best values of performance for each skew level of testing.

Table 4.20 Average of G-mean performance of proposed and baseline techniques FIA

data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.82

± 0.16

0.82

± 0.16

0.82

± 0.16

0.82

± 0.16

0.67

± 0.25

0.67

± 0.25

0.67

± 0.25

0.67

± 0.25

RUS
0.97

± 0.05

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

0.95

± 0.06

0.97
± 0.02

0.97
± 0.02

0.97
± 0.02

SMT
0.94

± 0.04

0.94

± 0.04

0.94

± 0.04

0.94

± 0.04

0.92

± 0.04

0.92

± 0.04

0.92

± 0.04

0.92

± 0.04

RB
0.89

± 0.24

0.89

± 0.24

0.89

± 0.24

0.89

± 0.24

0.77

± 0.37

0.77

± 0.37

0.77

± 0.37

0.77

± 0.37

TUS
0.49

± 0.15

0.75

± 0.13

0.76

± 0.14

0.76

± 0.14

0.88

± 0.07

0.88

± 0.07

0.88

± 0.07

0.88

± 0.07

PRUS-F
0.98
± 0.03

0.97
± 0.03

0.95

± 0.04

0.94

± 0.04

0.98
± 0.04

0.97
± 0.03

0.95

± 0.03

0.94

± 0.04

PCUS-F
0.98
± 0.03

0.97
± 0.02

0.95

± 0.04

0.94

± 0.04

0.97

± 0.04

0.97
± 0.02

0.95

± 0.03

0.94

± 0.04

PTUS-F
0.98
± 0.02

0.97
± 0.03

0.95

± 0.04

0.94

± 0.04

0.98
± 0.03

0.97
± 0.02

0.95

± 0.04

0.94

± 0.04

The boldface entries correspond to the best values of performance for each skew level of testing.

outperforms the Boosting ensembles from the literature, relying on the choice of partitioning

technique for each dataset such that: With synthetic data, PTUS-F outperforms all systems in

terms of both F-measure and AUPR, while PRUS and PCUS outperform RUS in most cases
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Table 4.21 Average of AUPR performance of proposed and baseline techniques FIA

data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.85

± 0.35

0.82

± 0.34

0.80

± 0.33

0.77

± 0.33

0.83

± 0.36

0.79

± 0.35

0.76

± 0.35

0.74

± 0.34

RUS
0.91

± 0.29

0.88

± 0.29

0.86

± 0.28

0.85

± 0.28

0.90

± 0.30

0.88

± 0.30

0.86

± 0.29

0.85

± 0.29

SMT
1.00
± 0.00

0.98
± 0.01

0.96
± 0.01

0.94
± 0.02

1.00
± 0.00

0.99
± 0.01

0.97
± 0.01

0.94

± 0.02

RB
0.93

± 0.26

0.92

± 0.25

0.92

± 0.25

0.91

± 0.25

0.81

± 0.39

0.80

± 0.39

0.80

± 0.39

0.79

± 0.39

TUS
0.62

± 0.15

0.62

± 0.15

0.61

± 0.15

0.60

± 0.15

1.00
± 0.00

0.99
± 0.02

0.97

± 0.03

0.96
± 0.03

PRUS-F
1.00
± 0.00

0.97

± 0.04

0.95

± 0.05

0.94

± 0.06

1.00
± 0.00

0.98

± 0.03

0.95

± 0.04

0.94

± 0.05

PCUS-F
1.00
± 0.00

0.98

± 0.03

0.95

± 0.05

0.93

± 0.05

1.00
± 0.00

0.97

± 0.03

0.95

± 0.05

0.93

± 0.06

PTUS-F
1.00
± 0.00

0.98

± 0.03

0.96

± 0.04

0.94

± 0.05

1.00
± 0.00

0.98

± 0.03

0.95

± 0.04

0.94

± 0.05

The boldface entries correspond to the best values of performance for each skew level of testing.

Table 4.22 Average of F2-measure performance of proposed and baseline techniques

COX data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.48

± 0.30

0.48

± 0.30

0.48

± 0.30

0.48

± 0.30

0.43

± 0.25

0.43

± 0.25

0.43

± 0.25

0.43

± 0.25

RUS
0.89

± 0.11

0.50

± 0.22

0.43

± 0.22

0.37

± 0.24

0.87

± 0.12

0.44

± 0.19

0.40

± 0.19

0.36

± 0.20

SMT
0.81

± 0.15

0.80

± 0.15

0.80

± 0.15

0.80

± 0.15

0.82

± 0.12

0.82

± 0.12

0.82

± 0.12

0.82

± 0.12

RB
0.83

± 0.13

0.83

± 0.13

0.83

± 0.13

0.82

± 0.13

0.82

± 0.17

0.82

± 0.17

0.82

± 0.17

0.82

± 0.17

TUS
0.58

± 0.27

0.49

± 0.23

0.49

± 0.23

0.48

± 0.23

0.59

± 0.27

0.59

± 0.27

0.59

± 0.27

0.59

± 0.27

PRUS-F
0.94

± 0.07

0.87

± 0.13

0.86

± 0.14

0.85

± 0.14

0.95
± 0.06

0.87

± 0.12

0.86

± 0.13

0.85

± 0.14

PCUS-F
0.95
± 0.07

0.85

± 0.16

0.84

± 0.17

0.82

± 0.18

0.95
± 0.07

0.85

± 0.16

0.84

± 0.17

0.83

± 0.17

PTUS-F
0.95
± 0.06

0.89
± 0.11

0.87
± 0.11

0.86
± 0.11

0.94

± 0.06

0.88
± 0.11

0.87
± 0.11

0.86
± 0.11

The boldface entries correspond to the best values of performance for each skew level of testing.

of skew and overlap between classes. With the video data, PTUS is more accurate than the

Boosting ensembles from the literature, PRUS as well as PCUS. PBoost is computationally

less costly than the Boosting ensembles from the literature in terms of computational complex-
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Table 4.23 Average of G-mean performance of proposed and baseline techniques COX

data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

G-mean

Ada
0.56

± 0.25

0.56

± 0.25

0.56

± 0.25

0.56

± 0.25

0.52

± 0.20

0.52

± 0.20

0.52

± 0.20

0.52

± 0.20

RUS
0.85

± 0.18

0.90

± 0.07

0.94
± 0.05

0.94
± 0.05

0.83

± 0.19

0.89

± 0.08

0.93
± 0.07

0.94
± 0.07

SMT
0.83

± 0.12

0.83

± 0.12

0.83

± 0.12

0.83

± 0.12

0.84

± 0.10

0.84

± 0.10

0.84

± 0.10

0.84

± 0.10

RB
0.85

± 0.11

0.85

± 0.11

0.85

± 0.11

0.85

± 0.11

0.84

± 0.16

0.84

± 0.16

0.84

± 0.16

0.84

± 0.16

TUS
0.70

± 0.21

0.68

± 0.20

0.69

± 0.21

0.69

± 0.21

0.71

± 0.21

0.71

± 0.21

0.71

± 0.21

0.71

± 0.21

PRUS-F
0.94

± 0.08

0.91
± 0.08

0.91

± 0.08

0.90

± 0.09

0.95
± 0.07

0.92
± 0.07

0.91

± 0.08

0.90

± 0.09

PCUS-F
0.95
± 0.07

0.91
± 0.08

0.90

± 0.08

0.89

± 0.08

0.95
± 0.08

0.91

± 0.09

0.91

± 0.09

0.90

± 0.09

PTUS-F
0.95
± 0.08

0.91
± 0.09

0.90

± 0.09

0.89

± 0.09

0.94

± 0.07

0.91

± 0.08

0.90

± 0.08

0.90

± 0.09

The boldface entries correspond to the best values of performance for each skew level of testing.

Table 4.24 Average of AUPR performance of proposed and baseline techniques COX

data set over different levels of skew in training and test data.

Ensembles
Train
Data Λtrain =1:50 Λtrain =1:100

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada
0.80

± 0.36

0.66

± 0.34

0.64

± 0.34

0.60

± 0.35

0.83

± 0.32

0.65

± 0.32

0.63

± 0.33

0.61

± 0.33

RUS
0.89

± 0.28

0.81

± 0.27

0.80

± 0.27

0.79

± 0.27

0.66

± 0.46

0.57

± 0.41

0.56

± 0.41

0.56

± 0.41

SMT
0.99
± 0.02

0.95
± 0.05

0.95
± 0.05

0.91
± 0.07

0.99
± 0.02

0.97
± 0.05

0.96
± 0.05

0.96
± 0.05

RB
0.99
± 0.03

0.94

± 0.06

0.94

± 0.06

0.91
± 0.07

0.96

± 0.17

0.93

± 0.17

0.92

± 0.17

0.92

± 0.17

TUS
0.99
± 0.02

0.40

± 0.16

0.38

± 0.17

0.37

± 0.17

0.99
± 0.01

0.95

± 0.05

0.93

± 0.06

0.91

± 0.08

PRUS-F
0.97

± 0.06

0.88

± 0.14

0.87

± 0.14

0.86

± 0.14

0.98

± 0.04

0.88

± 0.12

0.87

± 0.14

0.86

± 0.14

PCUS-F
0.97

± 0.06

0.85

± 0.18

0.83

± 0.19

0.82

± 0.20

0.97

± 0.06

0.85

± 0.18

0.83

± 0.19

0.83

± 0.20

PTUS-F
0.99
± 0.02

0.91

± 0.09

0.89

± 0.10

0.87

± 0.11

0.99
± 0.02

0.91

± 0.09

0.89

± 0.11

0.88

± 0.12

The boldface entries correspond to the best values of performance for each skew level of testing.

ity. Therefore, PBoost is an effective approach in correct classification of data when data is

imbalanced in comparison to the Boosting ensembles from the literature especially for face re-
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Table 4.25 Average ranking of the performance of proposed and baseline techniques.

Ensembles
Train
Data F-measure G-mean AUPR

Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100
Ada 4.50 3.25 5.38 5.75 4.50 3.38 3.38 3.38 2.88 3.62 4.25 4.50

RUS 6.62 6.12 6.88 7.75 6.62 5.50 5.12 5.12 3.50 5.81 6.75 7.50

SMT 4.25 3.12 2.50 2.62 4.25 3.25 3.25 3.12 2.12 2.38 2.12 2.00
RB 4.38 3.38 3.88 4.12 4.50 3.38 3.38 3.50 5.56 6.31 5.62 5.00

TUS 5.12 4.38 4.00 3.88 5.12 4.25 4.25 4.12 2.31 4.06 3.38 3.00

PRUS-F 3.50 6.38 5.62 4.88 3.62 6.38 6.50 6.75 1.62 2.00 3.75 3.25

PCUS-F 5.88 6.50 6.12 5.38 5.62 6.88 7.00 6.62 3.00 5.94 6.88 6.88

PTUS-F 1.75 2.88 1.62 1.62 1.75 3.00 3.12 3.38 1.50 3.38 3.25 3.88

Table 4.26 P-values of statistical comparison between PTUS-F and baseline techniques.

Ensembles Metric F-measure G-mean AUPR
Λtest 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100 1:1 1:20 1:50 1:100

Ada 0.0125 0.3821 0.0011 0.0004 0.1250 0.3821 0.4207 0.5000 0.1314 0.4207 0.2090 0.3050

RUS 0.0010 0.0040 0.0000 0.0000 0.0000 0.0207 0.0516 0.0778 0.0516 0.0233 0.0022 0.0016
SMT 0.0207 0.4207 0.2389 0.0000 0.0207 0.4207 0.4602 0.5000 0.3050 0.5000 0.5000 0.5000

RB 0.0162 0.3446 0.0336 0.2090 0.0125 0.3821 0.4207 0.0398 0.0005 0.0084 0.0268 0.1814

TUS 0.0030 0.3888 0.0268 0.0336 0.0030 0.1539 0.1814 0.2709 0.2546 0.2877 0.4602 0.5000

identification. This method relies on the choice of partitioning technique for each dataset and

performs significantly better when a more suitable partitioning technique is used. In problems

that the natural clusters are known, as with trajectory under-sampling in face re-identification

application, the performance is better than using the general partitioning methods such as ran-

dom under-sampling without replacement or k-means clustering. Therefore, PBoost can be

more efficient than baseline Boosting ensembles for face re-identification under imbalance

considering both accuracy and complexity factors. Note that the proposed PBoost algorithm

can be implemented with any discriminative classifier.

4.4 Conclusion

In this Chapter, a new Boosting ensemble algorithm named as PBoost is proposed to address

imbalance based on the idea of modifying RUSBoost by (1) under-sampling the majority class

using partitional techniques and in particular trajectory-based partitioning, inspired by face

re-identification applications, (2) validating classifiers on a growing validation subset, and (3)
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Figure 4.5 Complexity related to the design and testing process of ensembles: (a)

total number of training samples, (b) total number of validation samples, (c) Number of

nSV ·nval during validation, (d) total number of nSV ·nval during validation, (e) total

number of evaluations of the kernel function per probe sample during testing.
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using a more suitable loss factor calculation. The partitions enter the Boosting process pro-

gressively for designing classifiers over iterations to avoid information loss and to maintain

diversity among them. Validating base classifiers on a growing number of negative samples

makes the PBoost ensembles more robust to possible skew levels of data during operations in

addition to lowering the computational complexity. The loss factor based on F-measure han-

dles bias of performance towards negative class, and guides the Boosting process in a more

effective direction with the purpose of correctly classifying both classes. Experiments show

that PBoost may perform differently with different techniques of partitioning for each dataset

such that more suitable partitioning result in better performance. For face re-identification

application, the PBoost ensemble using trajectory under-sampling outperforms the Boosting

ensembles from the literature in terms of accuracy. In addition, PBoost has significantly lower

computational complexity in both designing and testing stages compared to the Boosting en-

sembles from the literature. The applicability of PBoost to multi-class classification problems

and other real-world applications can be further investigated in a future work.



CHAPTER 5

F-MEASURE CURVES: A TOOL TO VISUALIZE CLASSIFIER PERFORMANCE
UNDER IMBALANCE

Evaluating classification performance is an important step, for both guiding the learning pro-

cess and comparing systems to each other. Classification systems are usually trained over a

number of iterations, and the direction of the design process in each iteration depends on the

outcome of the classifier(s) in the previous iteration(s). As an example, in Boosting ensembles,

the error of the classifier in each iteration affects the sample selection in the next iteration as

well as the final prediction function. What’s more, after designing any classification system,

its performance should be compared to alternative systems for the problem in hand.

This aspect becomes more critical in the case of class imbalance, since in this case the most

widely used performance metric, classification accuracy, tends to favour the correct classifica-

tion of the most populated class (or classes). This is an issue in many machine learning applica-

tions, where the number of available samples from the class of interest (“positive”, or “target”

class) is heavily outnumbered by other classes especially in two-class classification problems.

Since the objective functions of many standard learning algorithms (e.g., support vector ma-

chines) seek to maximize unsuitable performance metrics for imbalance, the trained classifiers

become biased towards correctly recognizing the majority (“negative” or “non-target” class)

at the expense of high misclassification rates for the positive class. On the other hand, the

widely used ROC curve, area under ROC curve and G-mean favour the correct classification

of positive samples, in expense of excessive misclassification of negative samples. When data

is highly imbalanced, a change in the number of correctly classified positive samples (TP) and

the number of misclassified negative samples (FP), reflect in a more significant change in the

true positive rate (TPR) compared to the change in false positive rate (FPR).

To address this issue, other performance metrics like the expected cost (EC) and the F-measure

are being used in imbalanced data classification. Such metrics follow different objectives in

terms of favouring the correct classification of positive samples, and of avoiding the opposite
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drawback of allowing excessive misclassification of negative samples. The choice between

them is therefore application-dependent. When the performance measure is EC, two graphical

techniques have been proposed to easily visualize and compare classifier performance under

all possible operational points, i.e. class prior probabilities and misclassification costs (or rel-

ative preference of classes): Cost curves (CC) (Drummond & Holte, 2006) and Brier curves

(BC) (Ferri et al., 2011). These plots exhibit several advantages over the traditional, well-

known Receiver Operating Characteristic (ROC) plot since ROC curves are independent of

class imbalance (Davis & Goadrich, 2006). Precision-Recall (PR) space is in turn more suit-

able than ROC space for imbalance problem and plot the performance of the classifier in terms

of precision vs. recall (or TPR) (Landgrebe et al., 2006; Davis & Goadrich, 2006). The rea-

son is that, precision is preferred to FPR when classifying imbalanced data because precision

measures the proportion of TPR to the FPR multiplied by the skew level. However, PR curves

are difficult to analyze when comparing classifiers under different skew levels of data because

each skew level of data may result in a different curve and the curves in this space correspond

to equal preference of classes.

The other widely used metric in information retrieval and class imbalance problems is F-

measure that have been analyzed by many researchers (Pillai et al., 2017; Dembczynski et al.,

2011; Lipton et al., 2014; Parambath et al., 2014). The main benefit of F-measure is that it com-

pares the performance of the classifier in terms of recall (or TPR) to precision using a factor

that controls their relative importance. However, no analogous to cost space performance vi-

sualization tool exists for the F-measure. We point out that in the Precision-Recall (PR) space,

the F-measure is presented as hyperbolic isometrics (Hanczar & Nadif, 2013; Flach & Kull,

2015), and does not allow to easily visualize the F-measure of a given classifier under different

operational conditions (different class priors and different preference of precision and recall).

In summary the main contribution of this chapter is proposing a new global performance eval-

uation space that allows evaluating performance directly, in terms of the scalar F-measure

metric. To our knowledge, no performance visualization tool analogous to CC and BC exist

for the F-measure. The proposed F-measure space has the following properties.



125

- Possibility of visualizing the performance of any classifier (soft or crisp) under different

imbalance levels of deployment data.

- Possibility of selecting the best threshold of a classifier under the given imbalance level and

preference between precision and recall.

- Possibility of comparing more than two classifiers over different decision thresholds and

under different imbalance levels of test data with the ability of selecting a preference level

between classes.

- Possibility of selecting the best combination of a set of classifiers based on their perfor-

mance in the F-measure space. As the second contribution, the proposed F-measure space

is used to modify the Iterative Boolean Combination (IBC) method to adapt the selection

and combination of classifiers in the ensemble for an optimal performance under different

operating conditions (imbalance levels).

- The F-measure space is preferred to the ROC and Precision-Recall spaces to compare clas-

sifiers under different imbalance levels and preference between classes.

- The F-measure space can be preferable to cost space in some applications when precision-

recall is preferred to the misclassification cost like in information retrieval. In addition, the

F-measure space is more sensitive to class imbalance and tuning the preference between

classes results in a visible difference in performance in the F-measure space compared to

the cost space.

5.1 The F-Measure Space

In this section, an alternative visualization tool is proposed that is analogous to cost curves

for evaluating the F-measure of one classifier. This tool is used to compare classifiers under

different operating conditions, that correspond to class priors and to the α parameter in the case

of the F-measure. To this aim, we start by rewriting the F-measure from Eq. (1.14) as follows,
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to make its dependence on P(+) and on α explicit:

Fα =
TPR

α(TPR+λ ·FPR)+(1−α)
(5.1)

=
1/αTPR

1/α + 1/P(+)FPR+TPR−FPR−1
(5.2)

As a reminder from section 1.2.4.3, P(+) is the Pdeploy(+) in this context, with respect to a fixed

(pre-trained) classifier. Contrary to the EC of Eq. (1.12), Eq. (5.2) shows that the F-measure

cannot be written as a function of a single parameter (PC(+) in case of EC) that takes into

account both P(+) and α . This means that the Fα values of a classifier should in principle

be plotted as a 3D surface as a function of two distinct variables, P(+) and α . However, this

would not allow an easy visualization. Therefore, since the main focus of this Chapter is class

imbalance, in the following we will consider a simpler plot of the F-measure as function of

P(+) only, for a fixed value of α .

5.1.1 F-measure curve of a classifier

Let us first consider the behavior of Fα for a given crisp classifier (i.e., for given TPR and

FPR values), as a function of P(+). From Eq. (5.2) one obtains that, when P(+) = 0, Fα =

0, whereas when P(+) = 1, Fα = TPR/(α(TPR − 1) + 1). It is then easy to see that the

first derivative of Fα with respect to P(+) is strictly positive; the second derivative is strictly

negative when TPR > FPR, which is always the case for a non-trivial classifier. Accordingly,

the F-measure curve that corresponds to a given classifier is an increasing and concave function

of P(+).

For different values of α we get a family of curves. For α = 0 we have Fα = TPR for any value

of P(+) and for α = 1 we have Fα = Pr. Therefore, for 0 < α < 1, each curve starts at Fα = 0

for P(+) = 0 and ends in Fα = Pr for P(+) = 1.

By computing the first derivative of Fα (Eq. 5.2) with respect to α , for any fixed P(+), one

gets that its value is zero for P(+) = FPR/(FPR−T PR+ 1), it is negative for smaller P(+)
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values, and it is positive for higher P(+) values. This means that all curves (including the one

for α = 0) cross when P(+) = FPR/(FPR−T PR+1).

An example is shown in Fig. 5.1, for a classifier with TPR = 0.8 and FPR = 0.15, and for five

values of α .
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Figure 5.1 The Fα curves for a given classifier with TPR=0.8 and FPR=0.15, for

different values of α . Note that for all values of P(+) and α = 0, Fα = T PR.

Consider now the behavior of the F-measure curve for a given soft classifier and a given α

value, when the decision threshold changes. Let us first recall that, as mentioned in Sect. 1.2.3.3,

a point in the ROC space corresponds to a line in the cost space. Similarly, it corresponds to

a (non-linear) curve in the F-measure space. As the decision threshold of a classifier changes,

one obtains a curve in ROC space and a family of lines in cost space. Similarly, one also

obtains a family of (non-linear) curves in F-measure space. More precisely, as the decision

threshold increases from its maximum to its minimum (assuming that higher classifier scores

correspond to a higher probability that the input sample is positive), TPR and FPR start at

T PR = 0 and FPR = 0, and increase towards T PR = 1 and FPR = 1. For a given value of

α , the corresponding curves in F-measure space move away from the Y axis and get closer



128

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Th1

Th2

Th3

Th4

Th5 Th6

FPR

T
PR

a) ROC

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Th1

Th2 Th3

Th4

Th5

Th6

Re
Pr

C1, p(+) =0.25
C1, p(+) =0.5
C1, p(+) =0.75

b) PR

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PC(+)

E
C

Th1

Th2

Th3

Th4

Th5

Th6

c) Cost

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(+)

F-
m

ea
su

re Th1

Th2

Th3

Th4

Th5

Th6

d) F-measure

Figure 5.2 Performance of one soft classifier in ROC, inverted PR, Cost and

F-measure spaces with m = 0.5 and α = 0.5.

to the diagonal line connecting the lower-left point P(+) = 0,Fα = 0 to the upper-right point

P(+) = 1,Fα = 1. This behavior is intuitive: as we move from (0,0) on the ROC curve towards

the (1,1), both FPR and TPR are increasing. However, for a non-trivial classifier, the increase

in TPR becomes less and less greater for a small increase of FPR. In other words, the slope of

the tangent line to the ROC curve becomes steeper. The steeper the tangent line to the curve is,

the better performance is achieved for the correct classification of positive samples when the

class skew is high (smaller P(+)).



129

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(+)

F-
m

ea
su

re

(TPR, FPR)1

(TPR, FPR)2

a) FPR2 > FPR1, TPR2 < TPR1:

(T PR,FPR)1 = (0.98,0.5) ,

(T PR,FPR)2 = (0.93,0.6).
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(T PR,FPR)1 = (0.55,0.08),
(T PR,FPR)2 = (0.5,0.03).

Figure 5.3 F-measure curves of two classifiers (α = 0.5).

In the example shown in Fig. 5.2, we assume a classifier with six different threshold values

(Th1 > Th2 > .. . > Th6), which correspond to TPR1 = [10−6,0.55,0.75,0.88,0.98,1], and

FPR1 = [10−6,0.08, 0.15,0.28,0.5,1]. From top-left to bottom-right, Fig. 5.2 shows the convex

hull of the corresponding ROC curve, the corresponding precision-recall curves for three values

of P(+), cost lines, and the F-measure curves (one for each point in ROC space) with α = 0.5.

From Eq. 1.13, corresponding precision to the points in ROC space, could vary based on the

skew level of data, as seen in Fig. 5.2.

For any given operating condition, i.e., for each value of P(+), it is clear that only one of the

decision thresholds provides the highest Fα . Accordingly, among the curves that correspond to

all the available pairs of (TPR, FPR) values of a soft classifier, their upper envelope shows the

best performance of the classifier with the most suitable tuning of decision threshold for each

operating condition.
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Figure 5.4 Performance of two soft classifiers in ROC, inverted PR, Cost and

F-measure spaces with m = 0.5 and α = 0.5.

5.1.2 Comparing classifiers in the F-measure space

We now discuss how two or more classifiers, characterized by given values of (T PRi, FPRi)

and (T PR j, FPR j), etc. , can be compared in the F-measure space, for a fixed value of α . As

explained above, the F-measure curve of any classifier starts at Fα = 0 for P(+) = 0, whereas

the one of a classifier characterized by (T PRi, FPRi) ends at Fi
α = T PRi/[α(T PRi − 1)+ 1]

when P(+) = 1. Note that the latter value depends only on the TPR value, not on FPR.
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It is easy to see that F j
α > Fi

α for all values of P(+)> 0, under three different conditions:

(i) when FPRi = FPR j and TPR j > TPRi;

(ii) when TPRi = TPR j and FPR j < FPRi;

(iii) when FPR j < FPRi and TPR j > TPRi.

The analogous conditions under which F2
α < F1

α for all values of P(+) > 0 can be easily ob-

tained. As an example, consider two classifiers with FPR1 < FPR2 and TPR1 > TPR2, where

(T PR,FPR)1 = (0.98,0.5) and (T PR,FPR)2 = (0.93,0.6). The corresponding F-curves are

shown in Fig. 5.3(a) (α = 0.5). It can be seen that C2 dominates C1 for all values of P(+).

Instead, if FPR j < FPRi and TPR j < TPRi, or when FPR j > FPRi and TPR j > TPRi, then the

corresponding F-measure curves cross in a single point, with the following value of P∗
i,j(+):

P∗
i,j(+) =

FPRi ·TPR j −FPR j ·TPRi

((α −1)/α)(TPR j −TPRi)+FPRi ·TPR j −FPR j ·TPRi
. (5.3)

As an example, consider two classifiers with FPR1 >FPR2 and TPR1 >TPR2, where (T PR,FPR)1 =

(0.55,0.08) and (T PR,FPR)2 =(0.5,0.03). The corresponding F-curves are shown in Fig. 5.3(b).

In particular, from Eq. (5.3), we can determine the exact range of P(+) for the given α value

when one classifier can outperform the other in terms of F-measure. We see that, if FPRi ·
TPR j = FPR j ·TPRi, the curves cross only when P(+) = 0 (P∗

i,j(+) = 0), which means that

the classifier with highest TPR and lowest FPR exhibits a higher value of Fα for all values of

P(+) > 0. If FPRi ·TPR j �= FPR j ·TPRi, the classifier with highest TPR and FPR exhibits a

higher value of Fα for P(+) > P∗
i,j(+) than Eq. (5.3), and the opposite happens for P∗

i,j(+) <

P(+).

Therefore, given a set of classifiers characterized by given values of (T PRi, FPRi), those that

lie on the upper envelope of F-measure curves can be determined accurately because a classifier
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Cj(T PR j, FPR j) dominates Ci(T PRi, FPRi) in contributing to the upper envelope F-curve for

all P(+)> P∗
i,j(+) if and only if one of the following conditions hold:

(i) FPR j < FPRi and TPR j > TPRi, P∗
i,j(+) = 0;

(ii) FPR j > FPRi and TPR j > TPRi, P∗
i,j(+) �= 0.

If these conditions hold, the classifiers lie on the ROC convex hull and the upper envelope of

F-curves of the given classifiers is obtained from F-curves of all or a subset of classifiers that lie

on the ROC convex hull. Note that two classifiers may both correspond to the upper envelope

in F-measure space at P∗
i,j(+) if condition (ii) holds.

The overall performance of two or more soft classifiers can be easily compared by compar-

ing the upper envelopes of their F-curves. An example of the comparison of two classifiers

is shown in Fig. 5.4. Classifier C1 is the same as in Fig. 5.2. Also for classifier C2 we

consider six different threshold values (Th1 > Th2 > .. . > Th6), corresponding to TPR2 =

[10−6,0.5,0.73,0.88,0.93,1], and FPR2 = [10−6,0.03,0.09,0.28,0.6,1]. In Fig. 5.4(a), we

show the convex hulls of the ROC curves of the two classifiers, which cross on a single point

around FPR = 0.3. Fig. 5.4(b) shows the PR curve of these classifiers for three values of P(+).

It is difficult to make a statement to compare C1 and C2 about their performance for different

skew levels of data from their PR curves.

In Fig. 5.4(c), the lower envelopes of the cost curves are compared. The cost curve of these

classifiers cross when PC(+) is close to 0.7, and thus C1 and C2 perform the same for ap-

proximately 0.6 < PC(+)< 0.7, and C1 outperforms C2 for PC(+)< 0.6. From Eq. 1.17, the

classifiers can be compared in this space for any given P(+), CFN and CFP.

In Fig. 5.4(d), the upper envelopes of the F-measure curves of C1 and C2 are compared for

α = 0.5. From F-space, C2 outperforms C1 for P(+) < 0.4, whereas C1 and C2 perform the

same for 0.4 < P(+)< 0.6, and C1 outperforms C2 for P(+)> 0.6. These examples show that

comparing the F-measure of two or more classifiers over all skew levels using the F-measure

space is as easy as comparing their expected cost using the cost curves.
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5.1.3 F-measure Space vs. Cost Space

As explained in section 1.2.3.3, cost space is usually used to compare classifiers’ performance

in terms of expected cost, given two cost factors CFP and CFN. In this chapter, a similar per-

formance visualization space is proposed to compare classifiers’ performance in terms of the

F-measure. In this section, the similarities and dissimilarities of the proposed F-measure space

and cost space are analysed. To investigate the analogy and the difference between the F-

measure space and the cost space a factor m is defined for the expected cost calculation similar

to α for the F-measure as follows:

m =
CFP

CFP +CFN
, where 0 < m ≤ 1 (5.4)

m can take different values to weigh importance of positive and negative classes. For m < 0.5,

CFN > CFP (similar to α > 0.5) and correct classification of positive class is considered more

important. For m = 0.5, CFP =CFN and correct classification of both classes becomes equally

important. For 0.5<m≤ 1, CFN <CFP (similar to α < 0.5) and correct classification of positive

class becomes less important. It should be noted that α and m are actually unrelated, so the

pairs of values used in examples in the rest of the paper (where m = α) have no particular

meaning.

From 5.4 equation 1.17 is rewritten as:

PC(+) =
(1/m−1) ·P(+)

(1/m−2) ·P(+)+1
. (5.5)

For m = 0, PC(+) = 1 and EC = 1 − T PR, for m = 0.5, PC(+) = P(+) and EC = (1 −
T PR − FPR)P(+) + FPR, and for m = 1, PC(+) = 0 and EC = FPR. Figure 5.5 shows

the expected cost of a single classifiers against PC(+) and P(+) for different values of m.

Comparing Figure 5.5(a) with Figure 5.1 shows that the sensitivity of the F-measure to the

correct classification of the positive and the negative classes can be adjusted by tuning α and

therefore a classifier can result in different curves in the F-measure space depending on the
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value of α . However, tuning m doesn’t provide the same effect in the conventional cost space

that depicts EC against PC(+).
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Figure 5.5 Global expected cost of a given classifier with TPR = 0.8 and FPR = 0.15,

for different values of m against PC(+) and P(+). Note that for all values of P(+): (1)

for m = 0, EC = 1−T PR, (2) for m = 1, EC = FPR.

The cost curves of two classifiers (Ci and Cj) may cross and one classifier may outperform the

other for a certain range of operating points, i.e. either before or after the intersection point

found as:

PC∗
i,j(+) =

FPRi −FPR j

(TPRi −TPR j)+FPRi −FPR j
, (5.6)

or,

P′
i,j(+) =

FPRi −FPR j

(TPRi −TPR j)+(1/(m−1))(FPRi −FPR j).
(5.7)

The relative performance of a pair of classifiers may differ in the F-measure and cost space

and the best classifier for the same P(+) can be different if one uses the EC or the F-measure

because the crossing point of the curves in the F-measure and cost spaces can differ. Two

examples are shown in Figure 5.6, where the F-measure and EC is plotted vs. P(+) and
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PC(+) for (TPR, FPR) pairs to present cases when a crisp classifier dominates another one in

CC space whereas their F-measure curves cross, or vice versa. In this example α and m are set

to 0.5 (note that when m = 0.5, PC(+) = P(+)).

The difference between behaviors of the F-measure and cost curves is due to the difference

between their sensitivity to the difference between FPR values of classifiers when data is im-

balanced (P(+) < 0.5). The partial derivatives of EC (Eq. (1.18)) with respect to FPR is

1− PC(+) for any values of TPR and FPR and therefore it only depends on P(+) and m.

However the partial derivative of the F-measure (Eq. (5.2)) with respect to FPR is
1−1/p

T PR F2
α and

is a function of TPR, FPR, α and P(+). Similarly, the partial derivatives of EC with respect

to TPR is −PC(+) whereas the partial derivative of the F-measure with respect to TPR is

α
T PRF2

α + 1
T PRFα .

An example is shown in Figure 5.7 that demonstrate the behavior of curves in the F-measure

and cost spaces when comparing different classifiers with different FPR values and the same

TPR value. In Figure 5.7(a), the F-measure and 1-EC are plotted against 0 < FPR < 0.5 for

a fixed TPR = 0.75, P(+) = 0.25, and α = m = 0.50. It is observed that the F-measure ex-

hibits a larger decrease than 1−EC as FPR increases for the same value of TPR. Figure 5.7(b)

shows the F-measure and cost curves of classifiers for a fixed TPR = 0.75, 0 < FPR < 0.5,

α = m = 0.50 and a range of 0.0001 < P(+) < 0.50. Comparing the plots show that the

difference between F-measure curves of classifiers with the same TPR and different FPR val-

ues is more significant than their cost curves, especially for higher imbalance level of data

(smaller P(+)). For example, the cost curves of classifiers with FPR = 0.01 and 0.00 (shown

as dashed and dotted curves) almost overlap whereas their F-measure curves exhibit visibly

more different behavior as the P(+) decreases. Very small changes in FPR when data is highly

imbalanced means large changes in the number of false positives (or false alarms). Therefore,

the F-measure space can be better than the cost space when the correct classification of positive

class is attained at the expense of an excessive number of misclassified negative samples.
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Note that the goal of CC (and of the F-measure space) is to evaluate classifier performance

in terms of the skew level at deployment time (which is shown as P(+)). However, one can

not access the exact value of P(+) and these curves are plotted as an estimate from Eq. 1.17

and eq:F-measure-alpha-new given a single TPR, FPR point. Therefore, the accuracy of these

curves depend on the accuracy of the TPR, FPR. In practice the values of TPR and FPR are

obtained by testing the classifier on test data and therefore with different test sets, different

curves may be obtained for the same classifier.

5.2 Using F-measure Space to Tune Classification Systems

ROC curves can be used to set the parameters of the system such as the optimal decision

threshold or to select the best classifier to gain the best performance for a particular operating

condition. For that, ROCCH of the classifier(s) is found and the optimal classifier (or the

threshold of the classifier) is selected by intersecting the iso-performance lines (extensively

analysed by Drummond & Holte (2006)) corresponding to the given operating condition with

the ROCCH at the most upper left side of the curve. If two classifiers (vertices) belong to

the desired iso-performance line, there are two optimal classifiers (or threshold values). This

process is easier in cost and F-measure spaces because the operating condition is shown on the

x axis and one can easily find the optimal decision threshold of a soft classifier, or select the

best classifier among a group or find the best combination of a set.

Two classifiers (vertices) in ROC space that belong to the desired iso-performance correspond

to two lines in cost space that intersect in the given operating condition. Similarly, in F-space,

two classifiers (vertices) in ROC space correspond to two curves. The cost and F-measure

spaces are therefore useful to adapt the classification systems for the given conditions during

operations. Three problems can be addressed using this space: (1) tuning the decision threshold

of a single classifier; (2) choosing a given classifier between different available ones (each

one with a predefined decision threshold); (3) choosing the best combination of a (subset of)

available classifiers (each one with a predefined decision threshold).
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Figure 5.6 F-measure and cost curves of pairs of classifiers with α = m = 0.5 (in this

case PC(+) = P(+)).

5.2.1 Setting an Optimal Decision Threshold or Selecting the Best Classifier

Each decision threshold of a soft classifier corresponds to a crisp classifier and therefore setting

an optimal decision threshold and selecting the best classifier among a group are carried out

the same way. ROC curves are ideally suited for setting the optimal decision threshold of a

classifier based on Neyman-Pearson criterion. In this case, a decision threshold is optimal if

it corresponds to the maximum TPR for the given acceptable FPR. In cost space, a point can
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b) F-measure and 1−EC curves for all P(+)

Figure 5.7 TPR = 0.75 and different FPRs (α = m = 0.5)

be placed on the y-axis representing the criterion (a vertical line crossing the acceptable FPR)

and the classifier corresponding the cost line that intersects the y-axis under this point and also

participates in forming the lower envelope is the best (Drummond & Holte, 2006). The lower

bound of expected cost with FPRmax and TPR= 1 has ECmin = (1−PC(+))FPR. Analogously,

in the proposed F-measure space the upper bound of F-measure value with FPRmax and TPR =

1 has Fmax
α = 1

1+α(1/P(+)−1)FPRmax
. Therefore, the best classifier is found as the one that has Fα

closer to Fmax
α and dominates the others because if FPR1 = FPR2 and F1

α < F2
α , then for any α

and P(+), TPR1 < TPR2.
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Another criterion to select the best classifier is the operating condition which is the skew level

and the preference of classes. In ROC space the best classifier is found at the intersection of

ROC convex hull with iso performance lines that correspond to the given operating condition

in most up left part of ROC space. In both cost and F-measure spaces, the best classifier can be

found more easily than ROC space because the skew level (P(+)) is shown on the x-axis. The

preference between classes (α) is considered in plotting the curves corresponding to classifiers

in F-measure space. In cost space the preference between classes (m) is considered along with

P(+) in PC(+) on the x-axis.

5.2.2 Choosing the Best Combination of Available Classifiers Using Iterative Boolean
Combination

For imbalanced data classification, the best single classifier or a combination of a subset of

classifiers from a pool may be selected for each operating condition during deployment (Khre-

ich et al., 2010; Radtke et al., 2014; De-la Torre et al., 2015c). For this purpose, the classifiers

in the pool are tested using validation sets with different imbalance levels after training to find

the best (single or an ensemble of) classifier for the specific imbalance level of the validation

data. During test, the imbalance level of the test data is estimated (using Hausdorff distance

Edgar (2007)) and the corresponding best (single or an ensemble of) classifier is used for clas-

sification of test data. However, note that the goal of CC (and of the F-measure space) is to

evaluate classifier performance in terms of the skew level at deployment time. So, using these

tools the performance (at deployment time) for different imbalance levels can be estimated

from the testing set performance estimated for a single imbalance level (that corresponds to

a single TPR, FPR point) and from Eq. 1.17 and eq:F-measure-alpha-new), the same as in

training data.

Several ways exist to combine classifiers in either score or decision levels including score

averaging, majority voting, learning a meta-classifier on either decisions or score, etc. An

interesting combination method is Iterative Boolean Combination (IBC) of classifiers Khreich

et al. (2010), which involves selection and combination at the same time.
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In this chapter, the IBC algorithm is optimized using the F-measure space to select the best

combination of classifiers across a range of operating conditions (P(+)). Before describing

the proposed approach in section 5.4 based on IBC, the Boolean combination of classifiers is

described.

5.3 Boolean Combination of Classifiers

Diverse classifiers may be combined using the Boolean functions to achieve a more accurate

and robust classification system. The Boolean combination of classifiers in ROC space have

been investigated in literature for both crisp and soft classifiers (Black & Craig, 2002; Haker

et al., 2005; Fawcett, 2004; Barreno et al., 2008; Tao & Veldhuis, 2009). The output of pairwise

Boolean conjunction (AND) and disjunction (OR) of crisp classifiers may differ when they are

conditionally independent or dependent. However, direct combination of responses from soft

classifiers (probability estimates) considers the joint conditional probabilities of each classifier

at each threshold. Therefore, no assumptions regarding the independence of the classifiers is

required (Khreich et al., 2010).

In this section the behaviour of curves of classifiers in ROC, EC, and F-measure spaces and

their corresponding curves for pairwise combination of classifiers with Boolean functions are

analysed.

5.3.1 Independent Classifiers

Given two conditionally independent classifiers Ci and Cj with (TPRi,FPRi), and (TPR j,FPR j),

the TPR and FPR of C∧ =Ci ∧Cj (AND) and C∨ =Ci ∨Cj (OR) are obtained from:

TPR∧ = TPRi ·TPR j, (5.8)

FPR∧ = FPRi ·FPR j, (5.9)

TPR∨ = TPRi +TPR j −TPRi ·TPR j, (5.10)

FPR∨ = FPRi +FPR j −FPRi ·FPR j. (5.11)
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From these equations, TPR∧ <TPRi, TPR∧ <TPR j, FPR∧ < FPRi, and FPR∧ < FPR j. There-

fore, (TPR∧,FPR∧) is located in lower-left side of both (TPRi,FPRi) and (TPR j,FPR j) in

ROC space. For Boolean disjunction, TPR∨ > TPRi, TPR∨ > TPR j, and FPR∨ > FPRi,

FPR∨ > FPR j. Therefore, (TPR∨,FPR∨) is located in upper-right side of both (TPRi,FPRi)

and (TPR j,FPR j) in ROC space.

In cost space, the expected cost of C∧ and C∨ could be higher or lower than the expected cost

of both Ci and Cj based on the value of PC(+).

⎧⎪⎨
⎪⎩

EC∧ < ECi if PC(+)< FPRi−FPR∧
( 1−m

m )(TPR∧−TPRi)+FPRi−FPR∧
.

EC∧ ≥ ECi otherwise.

(5.12)

Similarly:

⎧⎪⎨
⎪⎩

EC∨ < ECi if PC(+)> FPR∨−FPRi
( 1−m

m )(TPRi−TPR∨)+FPR∨−FPRi
.

EC∨ ≥ EC∨ otherwise.

(5.13)

In F-space, based on the conditions explained in section 5.1.2, F∧
α > Fi

α , F∧
α > F j

α , F∨
α > Fi

α ,

and F∨
α > F j

α is not true for all values of P(+) > 0, and the corresponding F-measure curves

cross in a single point. Therefore,

P∗
∧,i(+) =

FPR∧ ·TPRi −FPRi ·TPR∧
(1− 1/α)(TPRi −TPR∧)+FPR∧ ·TPRi −FPRi ·TPR∧

,

⎧⎪⎨
⎪⎩

F∧
α < Fi

α if P(+)< P∗
∧,i(+),

F∧
α ≥ Fi

α if P(+)≥ P∗
∧,i(+),

(5.14)
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P∗
∨,i(+) =

FPRi ·TPR∨−FPR∨ ·TPRi

(1− 1/α)(TPR∨−TPRi)+FPR∨ ·TPRi −FPRi ·TPR∨
,

⎧⎪⎨
⎪⎩

F∨
α < Fi

α if P(+)> P∗
∨,i(+),

F∨
α ≥ Fi

α if P(+)≤ P∗
∨,i(+).

(5.15)
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Figure 5.8 Indirect combination of independent (TPR, FPR) points.

5.3.2 Dependent Classifiers

In most real-world problems, the classifiers are dependent and the probability that both detec-

tors classify positive samples correctly (positive correlation between classifiers) may take any

value between TPRi ·TPR j, and min(TPRi,TPR j) (Black & Craig, 2002). Similarly the prob-

ability that both classifiers classify negative samples correctly (negative correlation between

classifiers) takes a value between (1 − FPRi)(1 − FPR j) and min((1 − FPRi),(1 − FPR j)).

Therefore,

TPRi ·TPR j < TPR∧ < min(TPRi,TPR j), (5.16)
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FPRi ·FPR j < FPR∧ < FPRi +FPR j −1+min(FPRi,FPR j),

TPR∨ > TPRi +TPR j −min(TPRi,TPR j), (5.17)

TPR∨ < TPRi +TPR j −TPRi ·TPR j, (5.18)

FPR∨ > 1−min(1−FPRi,1−FPR j), (5.19)

FPR∨ < FPRi +FPR j −FPRi ·FPR j. (5.20)

In this case TPR∧ < TPRi and TPR∧ < TPR j. However, it is not easy to determine the rela-

tive position of resulting classifiers from AND and OR functions to the original classifiers in

ROC, cost or F-measure spaces. Therefore, it is not possible to find an exact value neither for

(TPR∧,FPR∧) nor for (TPR∨,FPR∨).
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Figure 5.9 Resulting range of possible values from combination of two dependent

classifiers using AND and OR functions in ROC space.

5.3.3 Direct Combination of Decisions

Exploiting direct combination of decisions from pairs of classifiers as done in Iterative Boolean

Combination (IBC) (Khreich et al., 2010) is more straightforward and implicitly accounts for

dependence between classifiers. The direct combination of decisions from pairs of classifiers

is carried out as follows.
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The decision thresholds of each classifier are selected by sorting the scores of the classifier in

ascending order. Let’s consider T ht
i (i = 1, ...,Ni) as the thresholds of Ci and T ht

j, ( j = 1, ...,Nj)

as the thresholds of Cj. First two vectors dk
i and dk

j (k = 1, ...,Ni, ...,Ni×Nj) are found for each

pair of (T hk
i ,T hk

j ) such that the elements of dk
i and dk

j are set to 1 when the decisions of Ci and

Cj are correct, and to 0 when the decisions are incorrect. Then, dk
i and dk

j are directly combined

using the Boolean functions to Dij. Based on the true labels of samples, the confusion matrix

is obtained from Dij and (TPRij, FPRij) of the resulting classifier is calculated.

With the indirect combination method, first (TPRi, FPRi) and (TPR j, FPR j) of the classifiers

are found from dk
i and dk

j . Then, the (TPRij, FPRij) of the combination is obtained from equa-

tions (5.8), (5.9), (5.10) or (5.11) based on the dependency or independency of the classifiers.

5.3.4 Comparing Combination Methods

Given two sets of scores, the Boolean combination of two soft classifiers in Figures 5.9 and A5.11

is found in three ways: (1) assuming dependent classifiers and using the values of TPR and

FPR (Figure 5.9), (2) assuming independent classifiers and using the values of TPR and FPR

(Figure 5.11), (3) direct combination of decisions given the scores (Figures 5.10).

It is observed that the three methods may have different combination results. With the first

two methods, AND function improves the performance for lower values of P(+) better than

OR function. However, with the third method we can only identify a range for the ROC curves

of AND and OR combination results. Showing this range is more complicated in cost and

F-measure spaces.

In Figure 5.10, “IBC’ corresponds to combination of classifiers using 10 Boolean functions

(Ci∧Cj, ¬Ci∧Cj, Ci∧¬Cj, ¬(Ci∧Cj), Ci∨Cj, ¬Ci∨Cj, Ci∨¬Cj, ¬(Ci∨Cj), Ci
⊕

Cj, Ci ≡Cj)

(Khreich et al., 2010). Comparing results of AND, OR, and IBC in Figure 5.10 shows that

using all Boolean functions to combine decisions of two classifiers directly results in a more

accurate and robust classification system.
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a) Direct combination of decisions (AND)
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b) Direct combination of decisions (OR)
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c) Direct combination of decisions (all)

Figure 5.10 Direct combination of decisions.

5.4 Iterative Boolean Combination of Classifiers in F-measure Space

Iterative Boolean Combination (IBC) of classifiers (Khreich et al., 2010), which involves se-

lection and combination at the same time, starts by combining two classifiers and keeps the

combination if it improves ROCCH over the ROC curves of the combined classifiers. In the
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next iteration, the resulting classifier from the previous iteration is combined with the third

classifier and this process continues until all the classifiers are combined. The combination

method used in this algorithm is the direct Boolean combination of decisions from pairs of

classifiers.
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Figure 5.11 Boolean combination of decisions in ROC and F-measure spaces.

In this section the IBC algorithm is modified in the proposed F-measure space by replacing

the AUC condition by the value of the F-measure (Alg. 8). A pool of classifiers are trained on

a dataset with Ptrain(+) and then tested on the validation set with Pvalidation(+). Then all the

decision vectors of each soft classifier are found by varying its decision threshold (lines 1-3 of

Algo. 8). After that every single decision vector is combined with the other using each of the

Boolean functions B1 : a∧ b,B2 : ¬a∧ b,B3 : a∧¬b,B4 : ¬(a∧ b),B5 : a∨ b,B6 : ¬a∨ b,B7 :

a∨¬b,B8 : ¬(a∨b),B9 : a⊕b,B10 : a ≡ b. This process results in ND = T1 +T2...+Te +10×
E × (E −1)×T1×T2...×Te decision thresholds that also includes the original decision vectors

of the classifiers in the pool.

In section 5.1.1, it was explained that a soft classifier in the F-measure space can be shown as

the upper envelope of all the curves that correspond to all the available pairs of (TPR, FPR)

values of that soft classifier, and the upper envelope shows the best performance of the classifier

with the most suitable tuning of decision threshold for each operating condition. Therefore,
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one can justify that finding the upper envelope of all the F-measure curves of the available

pairs of (TPR, FPR) values obtained from a pool of classifiers and different combinations of

them results in finding the best collection of classifiers across a range of P(+) based on the

F-measure. This idea is used in lines 13-16 of the proposed algorithm (Alg. 8) to collect the

best classifiers or a combination of them for each operating condition.

The worst-case time complexity of combining a pair of classifiers with this algorithm is O(TeTk)

for each of 10 Boolean operations, given classifiers ce and ck have respectively Te and Tk thresh-

olds Khreich et al. (2010). Therefore, for combining E classifiers in design stage of the pro-

posed Boolean combination of classifiers in the F-measure space, the worst-case time complex-

ity of Boolean combination algorithm is O(T 2
maxE(E − 1)) Boolean operations. Where Tmax

corresponds to the maximum number of thresholds among E classifiers. During deployment,

given a specific operating condition, the worst-case time complexity is O(TD) (see Alg. 8).

An example is shown in Figure 5.11 for combining two soft classifiers in both ROC space and

the proposed F-measure space. The AND function alone improves over the performance of C1

and C2 for higher imbalance levels (lower P(+)) and using Alg. 8 improves the performance

over the whole range of operating conditions.

5.5 Experiments and Results

The experiments in this chapter consist of two parts carried out on the FIA and COX video

datasets. In the first part (Section 5.2.1), three classifiers are trained and tested and their perfor-

mance is visualized in ROC, PR, EC, and F-measure spaces. Then, given an operating condi-

tion (imbalance level and preference between classes), the F-measure and cost spaces are used

for (1) selecting a single best classifier among them, (2) setting an optimal decision threshold

of each classifier. In the second part (Section 5.2.2), the Bagging ensemble learning (Baran-

dela et al., 2003) method (with RBF-SVM base classifiers) for imbalance is adapted to given

operating conditions using F-measure space by selecting and combining a subset of classifiers

using a modified version of the IBC technique proposed in this chapter (see Algorithm 8).
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Algorithm 8: Choosing the Best Combination of Classifiers in F-measure Space

Input: Soft classifiers: ce , e = 1, ...,E
Validation Set: V = {(xi,yi); i = 1, ...,M}, yi ∈ {0,1}
Preference between classes: α
Operating points: P(+) = {p j, j = 1, ...,Nop}
Boolean functions: B1 : a∧b,B2 : ¬a∧b,B3 : a∧¬b,B4 : ¬(a∧b),B5 : a∨b,B6 : ¬a∨b,B7 :

a∨¬b,B8 : ¬(a∨b),B9 : a⊕b,B10 : a ≡ b
Output: Combined set of classifiers: BC

1 for e = 1, ..,E do
2 Test ce on V and get back scores set Se.

3 Define Te thresholds as the unique values in Se and get back decisions de
i (i = 1, ...,Te)

4 Define Dbc and store all de
i s.

5 for l = 1, ...,10 do
6 for e = 1, ...,E do
7 for k = 1, ...,E(k �= e) do
8 for t = 1, ...,Te do
9 for n = 1, ...,Tk do

10 Combine de
t and dk

n using Bl and add the resulting decision vector to Dbc.

11 Find the F-measure curve of Dbc with the size ND = T1 +T2...+Te +10×E × (E −1)×T1 ×T2...×Te

(as the upper envelope of F-measure curves corresponding to all decision vectors in Dbc) as:

12 for i = 1, ..,Nop do
13 for j = 1, ..,ND do
14 Find TPR and FPR values from the jth decision vector in Dbc and the true labels of the

validation data using confusion matrix.

15 Calculate f j =
α−1T PR

α−1+p−1
j FPR+T PR−FPR−1

16 Fi = max
j=1,...,ND

f j

17 Store the corresponding (l, e, k, t, n) for the ith operating condition and call it BCi to be used during

testing and deployment.

5.5.1 Experiments for Comparing Classifiers in F-measure Space

In this experiment, C1: Naive Bayes, C2: MLP (one hidden layer, 8 hidden units) and C3: RBF-

SVM (LibSVM Chang & Lin (2011)) are designed and tested when Ptrain(+)=Ptest(+)= 0.01.

This experiment is an example of:

1. How the performance of different classifiers can be compared for each considered scalar

performance measure, using the corresponding (different) global measures/visualization

tools.
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2. How the effect of class imbalance can be observed using these global measures/visualiza-

tion tools.

For this experiment, one video is used for training and one video is used for testing. One

individual is randomly selected as the target class and 99 individuals are selected randomly as

the non-targets. The ROIs in the trajectory of the target individual are considered as the positive

class and the ROIs in the trajectories of the non-target individuals are considered as the negative

class. Therefore, Ptrain(+) = Ptest(+) = 0.01. There are 25 samples in each trajectory.

Figures 5.12 and 5.13 shows the performance of the above mentioned classifiers respectively on

COX and FIA datasets in Precision-Recall (when P(+) = 0.01, 0.25 and 0.50), ROC, EC, and

F-measure spaces. In Cost and F-measure spaces both m and α are set to 0.5. Note that in this

case PC(+) = P(+). From ROC, Cost and F-measure spaces in Figure 5.12, it is observed that

C3 outperforms the others. In cost and F-measure spaces, it is easy to compare these classifiers

for any given P(+). In the cost space, C2 outperforms C1 when PC(+) < 0.2 whereas in the

F-measure space C2 outperforms C1 when P(+) < 0.11. When P(+) < 0.03, the difference

between the performance of C2 and C3 is not easy to detect in both the cost and the F-measure

spaces. It is difficult to make a justification about the relative performance of these classifiers

in the precision-recall space. However, in Figure 5.13, it is observed from all visualization

spaces that C3 dominates C1 and C2 over all operating conditions.

As a reminder from sections 1.2.3.3 and 5.1.1, note that different decision thresholds of a soft

classifier correspond to different lines and curves in cost and F-measure spaces, respectively.

The optimal threshold value for each operating condition corresponds to the lower and upper

envelopes in the cost and F-measure spaces, respectively.

In Figures 5.14 and 5.15, both cost and F-measure spaces are used to select an optimal decision

threshold for C3 given different values of P(+) on the COX and FIA datasets, respectively.

Each row corresponds to one value of P(+). In both Cost and F-measure spaces in Figures 5.14

and 5.15, the curves that correspond to each threshold (shown as Th) are plotted with grey color

that appear as shaded areas in the figures of first and second columns. The final lower envelope
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Figure 5.12 Comparing C1, C2 and C3 for different values of P(+) on COX dataset.
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Figure 5.13 Comparing C1, C2 and C3 for different values of P(+) on FIA dataset.

curve in the Cost space and the upper envelope curve in the F-measure space is also shown in

these figures.
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In this experiment, the unique values of the classification scores are used as the decision thresh-

olds

If the given P(+) is not considered during finding the lower/upper envelope of the cost and

F-measure plots, no threshold value (or (TPR, FPR) pair) may be found that corresponds to the

lower/upper envelope for that P(+). In Figures 5.14 and 5.15, the cost and F-measure curves

are plotted with P(+) = 0.01,0.02,0.03, ...,0.5 and validated to find the optimal decision for

P(+)= 0.015,0.035,0.065,0.285 are not among those considered during plotting these curves.

When there is a threshold value (or (TPR, FPR) pair) that corresponds to the lower/upper

envelope for a given P(+) (Figure 5.14(a), (g), (d), (h), and Figure 5.15 (d) (e) (g) (h) (k)),

that optimal point is returned and the corresponding cost line or F-measure curve is shown.

However, in Figure 5.14(e), (b), (f), (c) and Figure 5.15(a), (b), (j) there is no threshold value

(or (TPR, FPR) pair) that corresponds to the lower/upper envelope for the given P(+). In these

cases, the interpolation of the adjacent threshold values is returned as the optimal threshold (the

cost lines and F-measure curves corresponding to all three points are shown in the figures).

In the third column of Figure 5.14, the optimal threshold values (or (TPR, FPR) pairs) obtained

from cost and F-measure curves are then shown and compared in ROC space. In Figure 5.14,

it is observed that for any P(+) < 0.03, the best (TPR, FPR) pair found using the Cost space

is close to (0,0) in the ROC space, which is not optimal since it corresponds to a classifier

that does not classify any positive class sample correctly. For example in the first row, P(+) is

set to 0.015 which corresponds to the optimal point of (T PR,FPR) = (0.82,0.022) from the

F-measure space. When P(+) is set to any value between 0.03 and 0.09 (e.g. Figure 5.14(b),

(f) and (j)), the optimal point of (TPR, FPR) obtained from the cost curve is different than the

one obtained from the F-measure space. When P(+) is set to any value higher than 0.09, the

optimal thresholds obtained from Cost and F-measure spaces are identical. The problem of not

being able to find an optimal threshold from cost space is not encountered in the results with

the FIA dataset (Figure 5.15).
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5.5.2 Experiments for Iterative Boolean Combination of Classifiers in F-measure Space

It was explained in sections 5.1.1 and 5.2.2 that finding the upper envelope of F-measure curves

that correspond to the available (TPR, FPR) points results in finding the best collection of

classifiers across a range of possible P(+) during deployment. We used this idea to modify the

IBC algorithm in 5.2.2. In the experiments of this section, this algorithm is put to test to see if

this method can result in a better performance in terms of F-measure when the classifiers that

are stored for the test time are those that have been selected and combined during validation

using the proposed IBC algorithm in the F-measure space.

In this experiment, a pool of 20 classifiers is trained using Bagging algorithm (Barandela et al.,

2003) that randomly samples balanced subsets of data to train each classifier in the pool. Then,

the classifiers in the pool are tested with the validation set and a subset of the classifiers is

selected and combined using Algorithm 8. At test time, the combination that was selected

from the validation step is used.

Both FIA and COX datasets are used for the experiments. As explained in section 2.1.2,

for this experiment, face captures from one individual (that is randomly selected as target)

are considered as the positive class and the face captures from a number of randomly se-

lected individuals are considered as the negative class. In order to consider two cases where

Ptrain(+) = Pvalidation(+) = Ptest(+) = 0.1 and Ptrain(+) = Pvalidation(+) = Ptest(+) = 0.04, 9

and 24 negative class individuals are selected randomly, respectively.

The F-measure curves resulting from these experiments are averaged over the overall 10×10=

100 overall rounds of experiments and the results are shown in Figure 5.16.

In Figure 5.16 , the F-measure curve of resulting combined classifier (shown as adaptive IBC)

is compared to the original Bagging ensemble (shown as adaptive Bag) that combines all clas-

sifiers in the pool by score averaging. It is observed that the proposed IBC picks and combines

the classifiers better and improves the performance in terms of the F-measure, over a range of

imbalance levels. In Figure 5.16 (a), that range is P(+)< 0.25 when Ptrain(+)=Pvalidation(+)=
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Ptest(+) = 0.1, and it is P(+)< 0.4 when Ptrain(+) = Pvalidation(+) = Ptest(+) = 0.04. In Figure

5.16 (b), that range is 0.04 > P(+) when Ptrain(+) = Pvalidation(+) = Ptest(+) = 0.1, and it is all

P(+)s when Ptrain(+)=Pvalidation(+)=Ptest(+)= 0.04. This could be due to the fact that when

the classifiers are trained, validated and tested on higher imbalance levels they become more

efficient to handle higher imbalance levels during deployment time (as observed in previous

chapters of this thesis).

5.6 Discussion

Here we summarize the discussion related to the results of analysis and experiments throughout

the paper that support the the main contribution of the paper. We proposed a new global

performance evaluation space that simply allow one to directly evaluate performance in terms

of the scalar metric; the F-measure with the following properties:

- Possibility of visualizing the performance of any classifier (soft or crisp) under different

imbalance levels of test data. In section 5.1.1 (Figures 5.1 and 5.2), we showed how a

crisp classifier corresponds to a single curve in the F-measure space and a soft classifier

corresponds to the upper envelope of several curves (each of which corresponds to a single

threshold). We also showed that one gets different curves for a single classifier for different

preference level between classes (different values of α).

- Possibility of selecting the best threshold of a classifier under the given imbalance level

and preference between precision and recall. This idea was presented in section 5.2.1. In

section 5.5.1 (Figure 5.14), we carried out an experiment to select the best optimal decision

threshold of SVM classifier, for the given P(+) values.

- Since each classifier corresponds to a curve in the proposed F-measure space, it becomes

possible to compare more than two classifiers over different decision thresholds and under

different imbalance levels of test data and preference between classes (see section 5.1.2).

This also provides us the possibility of selecting the best classifier among others for the

given imbalance level (P(+)) and preference between precision and recall (α). In sec-
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tion 5.5.1 (Figure 8), we carried out an experiment to compare the performance of three

classifiers with a real-world video dataset.

- This space can also be used to select the best combination of a set of classifiers. As the

second contribution of the paper in section 5.2.2, the proposed F-measure space is used to

modify the Iterative Boolean Combination (IBC) method to adapt the selection and combi-

nation of classifiers in the ensemble for an optimal performance under different operating

conditions (imbalance levels). In section 5.5.2 (Figure 5.16), an experiment is carried out on

the video dataset to select the best combination of classifiers generated using the Bagging

algorithm. The result of the experiment shows a significant improvement of performance in

the F-measure space.

- The proposed F-measure space is preferred to the ROC and Precision-Recall spaces. ROC

space is not focused on a specific performance measure, and is also not sensitive to class

imbalance, which makes it unsuitable to classification problems with skewed class distribu-

tions. The PR space is analogous to ROC space when precision and recall are of interest,

instead of TPR and FPR. Although this space is sensitive to imbalance, it does not allow

to easily visualize how the F-measure behaves as a function of class skew. In Figures 5.2

and 5.12 experiments are used to show the advantage of the F-measure space to the ROC

and Precision-Recall spaces.

- The F-measure space can be preferable to cost space in some applications when precision-

recall is preferred to the misclassification cost like in information retrieval. In addition,

the F-measure space can be preferable to cost space in some scenarios of imbalanced data

classification when no specific performance measure can be defined with regard to the pref-

erence between expected cost and precision-recall. The reason is that the F-measure space

is more sensitive to class imbalance and tuning the preference between classes results in a

visible difference in performance in the F-measure space compared to the cost space. In

section 5.1.3, we analyzed and compared the F-measure and cost spaces. We saw that tun-

ing α results in a visible difference in performance while tuning m does not provide the

same effect in the conventional cost space that depicts EC against PC(+). In addition in
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Figure 5.7 and the related text, the sensitivity of the F-measure to differences in TPR and

FPR between two or more classifiers is more significant than the sensitivity of the EC to

those. In the results of the experiments in Figure 5.14, we also observed that for high level

of imbalance the F-measure space is preferred to the cost space for selecting the suitable

decision threshold.

5.7 Conclusions

In this paper, the main existing global evaluation measures and visualization tools were overviewed,

and a new one was proposed specifically for the scalar F-measure and for class imbalance prob-

lems. The scalar F-measure, weighs the ability of a classifier in recognizing the positive class

(the minority and the class of interest) versus the misclassification rate of the negative class

(the majority class). It is a suitable scalar performance measure to compare classifiers under

imbalance and no visualization tool exists to depict it globally for different operational condi-

tions. Therefore, the F-measure space is proposed as a versatile tool to visualize and compare

classifiers performance under different operating conditions (i.e. skew level of data and prefer-

ence between recall and precision). This space can be used to select the best decision threshold

for a soft classifier as well as the best soft classifier among a group, for the given operating

condition. This space can also be used to select the best classifiers based on Neyman-Pearson

criterion. This space can be further used to modify learning algorithms to address imbalance.

In this paper, this space is used to modify the Iterative Boolean Combination algorithm. The

experiments on a real-world video dataset is carried out in order to show the use of this space

to compare and select classifiers as well as the improvement of performance using the modified

Iterative Boolean Combination algorithm for the Bagging ensemble learning method.
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Figure 5.14 Results of experiments on COX dataset to find the optimal decision

threshold (and the corresponding TPR, FPR values) in cost and F-measure spaces given

a specific operating condition (P(+)). First column shows the cost curves, the second

column shows the F-measure curves and the third column shows the ROC curves.
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Figure 5.15 Results of experiments on FIA dataset to find the optimal decision

threshold (and the corresponding TPR, FPR values) in cost and F-measure spaces given

a specific operating condition (P(+)). First column shows the cost curves, the second

column shows the F-measure curves and the third column shows the ROC curves.
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Figure 5.16 F-measure curves of Bagging ensemble method and its modified version

using IBC in the F-measure space on COX dataset (first row) and FIA dataset (second

row).

First column: Ptrain(+) = Pvalidation(+) = Ptest(+) = 0.1.

Second column: Ptrain(+) = Pvalidation(+) = Ptest(+) = 0.04





CONCLUSION AND RECOMMENDATIONS

Face re-identification, an application of face recognition in video surveillance, is challenging

due to variations in capture condition and imbalance. Imbalance is a fundamental problem in

many machine learning applications since most of classification algorithms are designed with

assumption of balanced data distribution and therefore, when these classification systems are

designed using imbalanced data their performance becomes biased towards classification of

the majority class. This bias of performance is also due in part to using unsuitable performance

metrics in optimization of most classification algorithms. In addition, most of the classification

algorithms in the literature that are specialized for imbalanced data consider a fixed imbalance

level known a priori. In this thesis three ensemble methods are proposed for robust learning

and classification of imbalanced data in face re-identification application. In these ensembles

the property of varying imbalance of data is taken into account and a suitable performance

measure is used to optimize their learning algorithms. In addition, a versatile performance

measurement space is proposed that provide the possibility of comparing classification systems

under different operating conditions.

In Chapter 1 a review of literature about the systems for face recognition in video, and special-

ized classification systems for imbalance is presented. It was found that Bagging and Boosting

ensembles of classifiers have been modified to learn from imbalanced data and can be further

improved in this thesis by accounting for varying imbalance level of data during operations.

In addition, this review showed us that F-measure is a suitable performance metric to evaluate

classifiers under imbalance. However, there exists no global performance evaluation tool to

compare classifiers in terms of F-measure under different operating conditions.

In Chapter 2 an experimental methodology is presented that involves comparing specialized

classification systems using the suitable performance metrics for this kind of problem in dif-

ferent operating conditions using both synthetic and video datasets. A synthetic data set is
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generated such that the level of imbalance as well as the overlap between classes is control-

lable.

In Chapter 3 an under-sampling method (Trajectory Under-Sampling (TUS)) is proposed for

Bagging ensemble that is specialized for face re-identification application. The proposed

under-sampling method maintains a good level of diversity-accuracy and is used to design

Bagging ensembles that use data subsets with different imbalance levels to learn base classi-

fiers of the ensemble with two strategies. One strategy relies on random selection of non-target

trajectories and the other relies on sorting non-target trajectories based on their distance from

the target class. In the first strategy the F-measure is used to weigh the contribution of clas-

sifiers in final prediction of the ensemble. The proposed ensemble method is then further

extended by under-sampling trajectories to support vectors using SVM classifiers to improve

performance and efficiency. The experiments on both synthetic and video datasets showed that

the proposed under-sampling method is more suitable than general-purpose sampling methods

for this application and ensembles designed using this sampling strategy outperform ensembles

from literature in this application.

In Chapter 4 a new Boosting ensemble (Progressive Boosting (PBoost)) is proposed that ac-

counts for varying imbalance level of data during operations in face re-identification applica-

tion. In the proposed ensemble the RUSBoost ensemble is improved in three ways. First, the

proposed under-sampling method (TUS) replaces the random under sampling to avoid infor-

mation loss and increase diversity. Second, the loss function of Boosting algorithm is modi-

fied using the F-measure to avoid bias of performance towards the majority class. Third, the

classifiers in the ensemble are validated on different imbalance levels to improve robustness

to varying imbalance level of data during operations. The experiments on both synthetic and

video datasets showed that the proposed PBoost algorithm outperform the specialized Boosting

ensembles for imbalance in terms of accuracy, robustness, and computation complexity.
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In Chapter 5 a global performance evaluation tool is proposed to compare classifiers under

different operating conditions in terms of F-measure. F-measure is sensitive to imbalance and

includes a controlling parameter to set the preference between classes. In this space each clas-

sifier is presented as a curve that shows its performance under different imbalance levels with

different decision thresholds for the given preference between classes. The proposed space is

then used to adapt specialized ensemble methods from literature to varying imbalance levels

to select and combine classifiers at the same time using Iterative Boolean Combination (IBC).

The experiments on video datasets showed that the proposed space provides the possibility of

comparing classification systems under varying imbalance for the given preference between

classes. In addition, experiments showed that the proposed modified IBC improves the robust-

ness of classification systems to imbalance significantly.

Future work:

- The proposed under-sampling method can be applicable in many image classification ap-

plications where there exists a natural sub-clasters of data in a one-versus-all classification

strategy.

- The proposed TUS ensembles and PBooost can be used in any application to learn from

imbalanced data.

- Although the proposed systems in this thesis demonstrated robust and efficient performance

for face re-identification application under imbalance, more strategies can be developed.

An important open issue is to account for changes in capture condition in videos such as

variations in illumination, pose, expression, etc in conjunction with imbalance problem. For

example, the training samples can be assigned with weights based on their quality in terms

of the capture conditions and these weights can be integrated into the proposed PBoost

algorithm.
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- As mentioned in section 5.1.3, the accurateness of the F-measure and cost curves of a

classifier depend on the quality of the test data used to obtain them and TPR and FPR

estimation errors. Therefore, in practice, with different validation sets, different curves may

be obtained for the same classifier. Tackling this problem analogous to Brier curves (which

take into account the use of suboptimal decision thresholds estimated from validation data)

is an open issue for future work.

- There exists other classification algorithms that have not been adapted to imbalance in this

thesis. For example, the trending interest in deep neural networks opens the opportunity

to design end-to-end recognition systems robust to imbalance for application in real-world

problems. As reviewed in section 1.2.2 designing such systems is still a young research area

because conventional neural network architectures are not suitable for imbalance problems.

There are three reasons for this problem. First, these networks are often trained on balanced

datasets that do not reflect the real-world application scenario. Second, the greater gradient

component of the class with higher number of samples result in the optimization of the

parameters of the network biased towards this class. Third, these networks are optimized

based on loss functions that are unsuitable for imbalanced data classification. In addition,

the performance of these networks is often measured based on either accuracy or AUC

which are known to be unsuitable for imbalanced data classification problems.

- Direct optimization of the learning procedure of the neural network based on the F-measure

(as proposed in this thesis) is not applicable since the F-measure based loss function is

not differentiable. Therefore, finding a way to use F-measure to optimize a deep CNN

architecture for face video recognition under imbalance could be investigated in a future

work.

- Using the proposed trajectory under-sampling method and progressively inserting the sam-

ples as the mini-batches that are used for training the neural network can be a possible
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way to make the neural network architecture robust to imbalance. This algorithm can be

investigated in a future work.
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