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Abstract Roughly Balanced Bagging is one of the most efficient ensembles specialized
for class imbalanced data. In this paper, we study its basic properties that may influence its
good classification performance. We experimentally analyze them with respect to bootstrap
construction, deciding on the number of component classifiers, their diversity, and ability to
deal with the most difficult types of the minority examples. Then, we introduce two gener-
alizations of this ensemble for dealing with a higher number of attributes and for adapting
it to handle multiple minority classes. Experiments with synthetic and real life data confirm
usefulness of both proposals.

Keywords Class imbalance - Roughly balanced bagging - Types of minority examples -
Feature selection - Multiple imbalanced classes

1 Introduction

Many real-life problems involve learning classifiers from imbalanced data, where one of
the classes (further called a minority class) includes much smaller number of examples than
the other majority classes. For instance, in medical problems the number of patients requir-
ing special attention is usually much smaller than the number of patients who do not need
it. The correct recognition of the minority class is of key importance in these problems.
Similar challenges with imbalanced classes have been also observed in many other appli-
cation domains such as fraud detection in telephone calls or credit cards transactions, bank
risk analysis, technical diagnostics, network intrusion detection, recognition of oil spills in
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images, detecting specific astronomical objects in sky surveys, text categorization, infor-
mation filtering; for some reviews see, e.g., (Chawla 2005; Fernandez et al. 2011; He and
Garcia 2009; He and Ma 2013; Weiss 2004).

The standard learning algorithms usually do not work properly on imbalanced data as
they are biased toward better recognition of the majority classes and they have difficulties
(or even they are unable) to classify correctly new objects from the minority class.

Learning from imbalanced data has received a growing research interest in the last
decade and several specialized methods have already been proposed. For their review see,
e.g., (Branco et al. 2016; He and Garcia 2009; He and Ma 2013; Krawczyk 2016). These
methods are usually categorized in data level and algorithm level approaches. The first cat-
egory includes classifier-independent methods that rely on transforming the original data
to change the distribution into a more appropriate one (usually being more balanced). The
most simple representatives of these preprocessing approaches include random undersam-
pling (i.e., removing some examples from the majority classes) or oversampling (i.e., adding
minority class examples). As they may not be sufficiently effective, more sophisticated
informed pre-processing methods that use the characteristics of the local data distribution,
such as one-side sampling (Kubat and Matwin 1997), NCR (Laurikkala 2001), SMOTE
(Chawla et al. 2002) or SPIDER (Stefanowski and Wilk 2008), are often considered.

The other category of the specialized approaches involves modifications of either a
learning phase of the algorithm, classification strategies, optimizing appropriate evaluation
criteria inside the algorithm, construction of specialized ensembles or adaptation of cost-
sensitive learning. New types of ensemble classifiers are also visible among these methods;
see their review in Galar et al. (2011), Liu and Zhu (2013). Most of them are modifi-
cations of bagging or boosting schemes known from the typical approaches to improve
the total predictive accuracy (Kuncheva 2014). These modifications usually employ either
pre-processing methods before learning component classifiers or embed the cost-sensitive
framework in the learning process.

The number of comprehensive comparative studies of the new ensembles dedicated to
imbalanced data is still quite limited. However, experimental comparisons (Galar et al.
2011; Khoshgoftaar et al. 2011) have shown that extensions of bagging work better than
generalizations of boosting and other, more complex solutions. Moreover, other experiments
from Btaszczynski et al. (2013) have shown that undersampling modifications of bagging
are significantly better than oversampling alternatives. Our recent experimental studies
(Btaszczynski et al. 2013; Btaszczynski and Stefanowski 2015; Stefanowski 2016b) have
also demonstrated that the undersampling bagging called Roughly Balanced Bagging (RBBag)
(Hido and Kashima 2009) has achieved the best prediction results comparing to other
extensions of bagging as well as to modified boosting ensembles (Khoshgoftaar et al. 2011).

The key idea behind Roughly Balanced Bagging is a random undersampling before gen-
erating component classifiers, which reduces the presence of the majority class examples
inside each bootstrap sample. Although this ensemble has been successfully used in several
studies, there are not enough attempts to check which of its properties are the most crucial
for improving classification of complex imbalanced data. In our opinion, they should be
examined more precisely.

Therefore, the first aim of this paper is to experimentally study the following aspects of
constructing Roughly Balanced Bagging:

—  Studying the influence of choosing algorithms for learning component classifiers.
— Deciding on the number of component classifiers in this ensemble.
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— Examine diversity of the component classifier predictions and its relation to the final
accuracy of the ensemble.

—  Abilities of the ensemble to deal with data difficulty factors — which will be modeled by
distinguishing the different types of minority classes following the methodology from
Napierala and Stefanowski (2012).

To the best of our knowledge, such a detailed analysis of Roughly Balanced Bagging
has not been carried out yet. Here, we significantly extend our previous conference paper
(Lango and Stefanowski 2015). On the other hand, one could still ask research questions
with respect to other directions for further extensions and improvements of this ensemble.
In this paper, we consider two kinds of problem: dealing with a higher number of attributes
and adapting this ensemble to handle multiple minority classes.

Imbalanced datasets characterized by relatively many attributes often occur in image
recognition, fraud detection, and genetic data analysis (Pio et al. 2014) and also need more
specialized approaches. We will introduce an extension of Roughly Balanced Bagging —
which integrates its specific bootstrap sampling with a random selection of attributes.

The other extension concerns imbalanced multiple classes as it is a more complex task
than standard binary imbalanced problems. Although considering single minority class ver-
sus the majority class (which could also result from aggregating other classes) is often
justified in several domains, sometimes it is necessary to distinguish additional classes
with low cardinality. Dealing with several minority classes is a more complicated scenario
and approaches for binary imbalanced data are not applicable to it. In particular, it con-
cerns Roughly Balanced Bagging where the modification of bootstrap sampling is defined
with binary probability distribution only. The recent research on using ensembles over such
multi-class problems usually include various decompositions of the original data into binary
ones (Fernandez et al. 2013). In this paper, we have decided to follow a quite different
perspective where all classes are handled simultaneously.

The rest of the paper is organized as follows. In the next section, we recall the bag-
ging scheme, discuss the basics of Roughly Balanced Bagging and show some other related
works. In Section 3, we experimentally study basic properties of constructing Roughly Bal-
anced Bagging. Then, in Section 4, we introduce an attribute selection generalization of this
ensemble and evaluate its usefulness. In the following Section 5, two kinds of its extension
for dealing with multiple minority classes are put forward and compared in experiments
with special synthetic and real datasets. In Section 6 we draw conclusions and discuss lines
of future research.

2 Related works
2.1 Preliminaries

Here, we do not intend to provide a comprehensive review of methods for dealing with
class imbalances and we will briefly present the selected ensemble methods only. For more
details, the reader is referred to a recently published monograph (He and Ma 2013) covering
the most representative issues and to the earlier systematic surveys, such as Chawla (2005),
He and Garcia (2009), Sun et al. (2009). A recent, comprehensive review of pre-processing
methods could be found in Branco et al. (2016) and their comparative studies are provided
by Napierala and Stefanowski (2016), Van Hulse et al. (2007).
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Another issue concerns the nature of imbalance data which poses challenges for learn-
ing accurate classifiers. Although the global ratio between cardinalities of both minority
and majority classes (called an imbalance ratio) is a main characteristic of the imbalanced
data, it may not sufficiently explain differences between classification performance of vari-
ous methods. Some researchers have already shown that the global imbalance ratio is not a
problem itself and it may not be the main source of difficulties (Japkowicz 2003). The degra-
dation of classification performance is linked to other factors related to data distribution,
such as the decomposition of the minority class into many rare sub-concepts playing a role
of small disjuncts (Jo and Japkowicz 2004), the effect of too strong overlapping between the
classes (Garcia et al. 2007) or a presence of too many minority examples inside the major-
ity class regions (Napierala and Stefanowski 2012). It has been shown that when these data
difficulty factors occur together with class imbalance, they seriously hinder the recognition
of the minority class (Lopez et al. 2014; Napierala et al. 2010; Napierala and Stefanowski
2012; Stefanowski 2013, 2016a). In the experimental analysis of Roughly Balanced Bag-
ging (see Section 3) we will refer to some difficulty factors by analysing types of unsafe
examples in the distribution of the minority class following the methodology presented in
Napierala and Stefanowski (2012, 2016).

Most of the research on imbalance concerns binary (two-class) problems. It is justified
by a semantic importance of the rare class versus other classes. The multi-class formulation
of the imbalanced problem will be discussed in Section 5.

2.2 Ensembles dedicated to imbalanced data

Several ensembles dedicated to class imbalance have been proposed in the recent decades.
Their most comprehensive surveys are provided in Galar et al. (2011), Liu and Zhu (2013).
The authors of these papers categorized these ensembles slightly differently.

The taxonomy proposed by Galar et al. in (2011) distinguishes between cost-sensitive
approaches vs. integrations with data pre-processing. The first group covers mainly
cost-minimizing techniques combined with boosting ensemble, e.g., AdaCost, AdaC or
RareBoost. The second group of approaches is divided into three sub-categories: Boosting-
based, Bagging-based and Hybrid. A classifier ensemble is assigned to them depending on
the type of classical ensemble technique which is integrated into the schema for learning
component classifiers and their aggregation. In their view, most of these proposals integrate
some pre-processing techniques. For instance, the majority of Bagging-based ensembles
apply a kind of random undersampling, or oversampling to change class distribution inside
the bootstrap sampling. Few authors refer to the use of the SMOTE method (Chawla et al.
2002) or playing with different oversampling ratios in each bootstrap to increase ensem-
ble diversity (Wang and Yao 2009). Similar modifications of examples are proposed inside
each iteration of AdaBoost, see SMOTEBoost, RUSBoost or DataBoost. For these and other
ensembles descriptions please refer, e.g., to Galar et al. (2011). The authors of (Galar et al.
2011) also distinguish approaches which exploit kinds of re-sampling in more untypical
adaptive ensembles, like IIVotes (Btaszczynski et al. 2010). Then, different combinations
of boosting and bagging extensions into one complex ensemble, such as EasyEnsemble or
BalancedCasade, are assigned to the hybrid generalizations.

Liu and Zhu (2013) also categorizes the ensembles for class imbalance into bagging-
like, boosting-based methods and hybrid ensembles, depending on their relation to standard
approaches. All other proposals, like cost embedding, are put in a simple category “others”.
Note, that the authors of Liu and Zhu (2013) have paid more attention to extensions of
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Random Forest to imbalanced data and showed a good performance of Balanced Random
Forest (Chen et al. 2004) in their experiments.

Although these ensembles are promoted as a remedy to imbalanced data, there is still a
lack of a wider study of their properties. Authors often compare their proposals against the
basic versions of other methods or compare over a too limited collection of datasets. Up
to now, only two comprehensive studies were carried out in different experimental frame-
works (Galar et al. 2011; Khoshgoftaar et al. 2011). The first study (Galar et al. 2011) covers
comparison of 20 different ensembles from simple modifications of bagging or boosting to
complex cost or hybrid approaches. The main conclusion from this study is that simple ver-
sions of undersampling or SMOTE re-sampling combined with bagging work better than
more complex solutions. In the study (Khoshgoftaar et al. 2011), two best boosting and
bagging ensembles are compared over noisy and imbalanced data. The experimental results
show that bagging significantly outperforms boosting and the difference is more significant
when the data is noisier. The similar observations on the good performance of undersam-
pling generalizations of bagging vs. cost like generalizations of boosting have been recently
reported in Anyfantis et al. (2008). Furthermore, the most recent chapter of Liu and Zhu
(2013) includes another experimental study showing that new ensembles specialized for
class imbalance should work better than an approach consisting of first pre-processing data
and then using standard ensembles.

There are also two theoretical papers on properties of random re-sampling with respects
to probability distributions. The research of Wallace et al. (2011) provides a probabilistic
theory of imbalance and its reference to undersampling ensembles. Another recent work
(Dal Pozzolo et al. 2015) proposes a theoretical analysis specifying under which conditions
undersampling could be effective in pre-processing for a single classifier.

Following these experimental and other motivations, we have decided to consider the
under-bagging extensions and Roughly Balanced Bagging as a basis for our study. Below
we briefly describe them.

2.3 Bagging and its re-sampling generalizations

The Bagging approach (its name is shortening from Bootstrap aggregating) was introduced
by Breiman (1996). It aggregates by voting classifiers generated from different bootstrap
samples. Its main element is adopting bootstrap sampling to inject some random perturba-
tion into parallel training sets that allows learning more diverse component classifiers in
this ensemble. The bootstrap sample is obtained by uniformly sampling with replacement
examples from the original training dataset. Each sample has usually the same size as the
original set, however, some examples do not appear in it, while others may appear more
than once. For a training set with N examples, the probability of an example being selected
at least once is 1 — (1 — 1/N)". For a large N, this is about 1 — 1/e. Each bootstrap sample
contains, on the average, 63.2% unique examples from the training set.

The generic schema of bagging is presented in Algorithm 1. Given a parameter k, which
is a number of component classifiers, the algorithm draws with replacement k bootstrap
samples from training data D of size N. Then, the same learning algorithm LA is applied
to generate component classifiers C;, which are aggregated to create the final ensemble C*.
The classification decision of the ensemble is a result of the simple majority voting (see (1))
— a new instance is assigned to a class predicted by the most of the component classifiers.
In the case of using classifiers with probabilistic outputs, this prediction formula aggregates
probabilities of classes from component classifiers and may use different operators as sum,
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median or product of probabilities. The reader is referred to such books as Kuncheva (2014)
for more information on the details of bagging, an explanation why it works and its popular
generalizations.

Algorithm 1 Standard bagging algorithm

Input: D: original training set of examples of size N, k: number of bootstrap samples, LA:
learning algorithm;

Output: C* bagging ensemble with k component classifiers

Learning phase:

1: fori =1 — kdo

2: S; < bootstrap sample from D;
3: generate classifier C; <— LA(S;)
4: end for
Predicting class label for new instance x:
> k
C*(x) = argmax Y [ Ci(x) = ] (1)

i=1

Considering its applicability to imbalanced data, note that bootstrap sampling is per-
formed on all data elements, regardless their class labels (majority or minority). Therefore,
the imbalanced class distribution will be hold in each bootstrap and the ensemble will fail
to sufficiently classify the minority class.

Most of the current proposals overcome this drawback by applying pre-processing tech-
niques to each bootstrap sample, which change the balance between classes — usually
leading to the same, or similar, cardinality of the minority and majority classes in each
sample.

For instance, the oversampling methods typically replicate the minority class data (either
by random sampling or by generating synthetic examples) to balance classes in bootstraps.
In this way, the number of minority examples is increased (e.g., by a random replication),
while the majority class is not reduced. This idea was realized in many ways as authors con-
sidered integrations with different oversampling techniques. OverBagging is the simplest
version which applies a simple random oversampling to transform each training bootstrap
sample S;. The number of Nl.m % minority class examples is sampled with replacement to
exactly balance the cardinality of the minority and the majority class in each bootstrap sam-
ple. Another approach is used in SMOTEBagging to increase the diversity of component
classifiers (Wang and Yao 2009). First, SMOTE is used instead of the random oversam-
pling of the minority class. Then, SMOTE resampling rate («) is stepwise changed in each
iteration from smaller to higher values. Quite a similar way of varying ratio « to construct
bootstrap samples is also used in ”from underbagging to overbagging” ensemble mentioned
in Wang and Yao (2009).

In under-bagging the number of the majority class examples in each bootstrap is reduced
to the cardinality of the minority class (Np;,) in the original training set. In the simplest pro-
posals, as Exactly Balanced Bagging (Chang 2003), the entire minority class is just copied
to the bootstrap and then combined with the randomly chosen subset of the majority class
to exactly balance the cardinality between classes.

Other variations of under-bagging have been also proposed. For instance, the method pro-
posed in Chan and Stolfo (1998) partitions the majority class into a set of non-overlapping
subsets, with each subset having approximately N,;, examples. Then, each of these
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majority subsets and all examples from the minority class forms a bootstrap sample for
building component classifiers. The predictions of these classifiers were originally com-
bined by stacking although Liu et al. argued for switching to the majority voting (Liu and
Zhu 2013). The other option is to construct Balanced Random Forests as an extension of
classical Random Forests (Chen et al. 2004). This algorithm first draws with replacement
a bootstrap sample containing N,,;, from the minority class and the same number of the
majority class examples. Then, the tree procedure originating from CART with random
feature subset selection is used at each tree split (it is the same solution as in the original
Random Forest). An interesting extension of Random Forests for massive and imbalanced
data, which is paralelly implemented in MapReduce and Hadoop frameworks, has been
studied in Rio et al. (2014).

Yet another approach has been considered in Neighbourhood Balanced Bagging, where
sampling probabilities of examples to the bootstraps are modified according to the class
distribution in their neighbourhood (Btaszczynski and Stefanowski 2015). It shifts the sam-
pling toward the examples located in the most difficult sub-regions of the minority class
(identified with the safe level of examples (Napierala and Stefanowski 2012)).

This chapter will not discuss all such extensions, as we focus on Roughly Balanced
Bagging which according to many experimental studies is the most accurate at imbalanced
datasets.

2.4 Roughly balanced bagging

While such under-bagging strategies seem to be intuitive and work efficiently in some stud-
ies, Hido et al. (2009) have claimed that they do not truly reflect the philosophy of bagging
and could be still improved. In the original bagging ensemble, the class distribution of
each sampled subset varies according to the binomial distribution while in the aforemen-
tioned under-bagging strategies each subset has the same class ratio as the desired balanced
distribution.

Hido et al. have introduced the Roughly Balanced Bagging (RBBag) (Hido and Kashima
2009), where the numbers of instances for both classes are determined in a different way
by equalizing the sampling probability for each class. The number of minority examples
(Nl.””") in each bootstrap S; is set to the size of the minority class N, in the original data
D. On the contrary, the number of majority examples is decided probabilistically according
to the negative binomial distribution. This distribution! is a probability distribution of the
number of m failures given the number of n successes in the sequence of Bernoulli trials. It
is defined by the following probability mass function:

—1
p(min) = (m o )p”q’" @

where p is the probability of success and ¢ = 1 — p is the probability of failure. For the
imbalanced data, these authors set both probabilities p and ¢ to 0.5. After fixing the number
of minority examples to N,,;, and setting the probability of success equal to 0.5, they used
this distribution to find the number of the majority examples for each bootstrap. Note that the
size of the majority examples (Nl.m /) varies over the bootstraps in the ensemble, however
its average value is N,,;, (Hido and Kashima 2009).

I The negative binomial distribution with an integer parameter n is also called Pascal distribution.
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The other elements of constructing RBBag ensemble are the same as in the earlier under-
bagging extensions, i.e. component classifiers are induced by the same learning algorithm
from each i-th bootstrap sample and their predictions form the final decision with the
equal weight majority voting - although (Hido and Kashima 2009) promotes using proba-
bility outputs of component classifiers. Algorithm 2 presents the pseudocode of the RBBag
algorithm.

Algorithm 2 Roughly Balanced Bagging

Input: D = Dy U Dyygj: original training set of examples of size N, k: number of boot-
strap samples, L A: learning algorithm;
Output: C* bagging ensemble with k component classifiers
Learning phase:
I: fori =1— kdo
2 N,'min < [Dmin|
Nl.ma/ <« following negative binomial distribution with n = Nlmi” andp=¢g =05
Slf"" "« N imi"—element sample drawn with replacement from D,
Sma_/'
1
Ci < LA(S™M U S
end for
Prediction phase:

<~ Nl.m‘” -element sample drawn with replacement from D,

AN U

k
* j—
C*(x) = arg max > pe(lx)

i=1

Hido et al. compared RBBag with several classifiers showing that it was better on G-
mean and AUC measures (Hido and Kashima 2009). Another study (Khoshgoftaar et al.
2011) demonstrated that under-bagging ensembles, including RBBag, significantly outper-
formed best extensions of boosting and the difference was even more significant when data
were noisier. Then, the comparative experiments from Btaszczynski et al. (2013) showed
that under-bagging ensembles, as Exactly and Roughly Balanced bagging, were signifi-
cantly better than several main oversampling extensions of bagging (either using random
oversampling or SMOTE) with respect to all evaluated measures. Roughly Balanced Bag-
ging was also slightly better than Exactly Balanced one. This is why we have chosen RBBag
as the best performing specialized ensemble for this paper. Recall the introductory moti-
vation that there have not been so many attempts to experimentally examine properties of
this ensemble or to more theoretically explain why and when it should outperform other
methods.

2.5 Feature ensembles and class imbalance

Most of the current research on imbalanced data concerns problems with a relatively small
or medium number of attributes. The proposed methods often do not work sufficiently well
with a higher number of attributes. For instance, popular informed pre-processing methods,
such as SMOTE (Chawla et al. 2002), NCR (Laurikkala 2001) or SPIDER (Stefanowski
and Wilk 2008), intensively exploit calculations of distances between learning examples. As
they use typical metrics — usually being variants of Euclidean or HVDM distances (Wilson
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and Martinez 1997), they meet difficulties for problems with a higher number of attributes.
The dimensionality curse also concerns the methods which modify algorithms. On the
other hand, several practical classification problems in domains, such as text categorization,
image analysis, medical data analysis or genetics, are characterized by many attributes.

Recall that this problem is also a challenge for standard classifier learning as it
increases risks of overfitting as well as spurious findings. However, considering it with
class-imbalance presents an additional source of difficulties for prediction, as it biases clas-
sification towards majority class for most classifiers (see, e.g. experimental analyses from
Blagus and Lusa (2010)). The attribute (feature) selection is often applied in standard bal-
anced classification to enhance predictive performance. Although these selection methods
have been extensively studied, see surveys as Tang et al. (2014), many popular filtering
methods are too biased toward majority class. Thus, some new class imbalance techniques
have been recently introduced, see e.g. FAST (Chen and Wasikowski 2008), or others
surveyed in Pant and Srivastava (2015).

This dimensionality challenge can be solved in another way in ensemble classifiers. Note
that the motivation for feature subset selection is slightly different as it is often used as an
additional mechanism for introducing the diversity of component classifiers. According to
it, the learning sets for creating the ensemble could be obtained by using different subsets
of attributes for each of them. Improving global accuracy and diversity of the ensemble is
also known under the name ensemble feature selection; see Kuncheva (2014) for a review
of these approaches. One of the most well-known approaches is Random Subspace Method
(RSM) (Ho 1998), where in each iteration of constructing the ensemble a subset of all
available attributes is randomly drawn and a component classifier is built using only this
subset. This method has been further generalized where firstly learning examples are boot-
strap sampled, like in the standard bagging, then the random attribute selection is done in
each of these bootstraps, see Latinne et al. (2000). Recall that Breiman combined bootstrap
sampling with random selection of attributes in nodes of trees inside the Random Forest
ensemble. Nowadays, Random Forest seems to be often used in many highly dimensional
practical problems. In particular, see review of various its modifications for bio-medical
problems (Draminski et al. 2016).

However, there are not so many proposals of new feature selection ensembles specialized
for imbalanced datasets with many attributes, see e.g. a review in Lin and Chen (2013). Typ-
ically, only Balanced Random Forest (Chen et al. 2004) is considered. Its adaptation mainly
includes undersampling of the majority class to exactly balance class cardinalities in each
bootstrap. Then, attributes are randomly selected in each tree node following ideas from
the original Random Forest. Recent experiments of Liu and Zhu (2013) demonstrated that
Balanced Random Forests makes it competitive to other good generalizations of ensemble
- however these experiments do not concern datasets with too many attributes. On the other
hand, Roughly Balanced Bagging, which is not dependent on a particular tree induction, has
not been considered and generalized yet to this challenging data characteristics. Therefore,
it motivates our research in the next sections of this paper.

2.6 Multiple imbalanced classes
A binary classification task is mostly studied in the case of imbalanced data. This formula-

tion is justified by focus an interest in the most important class and its real-life semantics,
like in medical diagnosis (distinguishing sick vs. healthy patients), spam detection (e.g.,
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valid activity vs. malicious one), image recognition (target object vs. background), etc. Even
if the dataset includes more majority classes, then they are aggregated into one global major-
ity class as in most applications it is necessary to improve the recognition of the minority
class — for yet stronger its justification see He and Ma (2013), Krawczyk (2016), Sun et al.
(2009), Weiss (2004). A straightforward discrimination between the minority class and the
majority one have led to a development of several methods that take into account only this
relation, such as random re-sampling. It is also the basis for balanced bootstrap samples in
the current generalizations of bagging, such as Roughly Balanced Bagging.

On the other hand, in some situations it may be reasonable to distinguish more classes
with low cardinalities. Consider for instance, technical diagnostics where the experts dis-
tinguish an intermediate status of the working machine besides considering bad (damaged)
and good technical status. Similar situations may occur in some medical problems. Usually,
this intermediate class contains fewer examples than the majority class. As it is also quite
difficult to recognize examples of this class, there are needs for improving its classification.
However, the classifier will fail to do it when this class is aggregated with either minority
or majority ones.

Considering multiple minority classes makes the learning task more difficult as relations
between particular classes become more complex (Wang and Yao 2012). Internal data dis-
tributions or decision boundaries will be different than in the case when some classes are
aggregated. Techniques developed for binary imbalanced problems are usually not directly
applicable to multi-class problems. Quite often they lose performance on one class while
trying to gain it on another. Therefore, more specialized techniques have been recently
proposed; Their review is available in Seaz et al. (2016).

In this paper we are more interested in ensemble based methods for multi-class imbalanced
data. Nearly all of them adapt solutions already introduced in non-imbalanced ensembles to
deal with many classes, see the review of ECOC, pairwise-coupling and other methods in
Kuncheva (2014). Practically, the analysis of Wang and Yao (2012) is the only exception.

The decomposition of the multi-class imbalanced dataset to a set of binary problems
is a dominating strategy so far, see a review in (Krawczyk 2016). Researchers consider
either one-vs-all classes or one-vs-one decompositions. These techniques pre-process the
binary decomposed datasets (usually by means of balancing classes with various known
re-sampling methods), apply identical learning algorithms to learn a set of component clas-
sifiers, then aggregate their predictions using known combination rules. For a representative
family of such decomposition-based ensembles and their experimental evaluation refer to
Fernandez et al. (2013). Although these decomposition approaches are quite easy to imple-
ment and some experimental results seem to be promising, this problem still requires new
solutions.

In particular, we share the opinions expressed in the position paper (Krawczyk 2016).
According to it while decomposing the multiple imbalanced classes, pairwise relations
between two classes only may be a too strong over-simplification and they do not reflect
more complex relations between several of classes, as one class influences several neigh-
boring classes at the same time. The researchers may risk a loss of somehow balanced
improved performance on all minority classes and reject a more global view of data nature
with respect to all classes.

In this paper we follow such a critical perspective and will consider new generaliza-
tions of Roughly Balanced Bagging that will deal with changing bootstraps with respect to
recognizing all multiple classes.
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3 Studying properties of Roughly Balanced Bagging
3.1 Experimental setup

In this section we carry our comprehensive experiments, where we study the following basic
properties of constructing Roughly Balanced Bagging (RBBag):

1. Using different learning algorithms to build component classifiers.

2. Theinfluence of the number of component classifiers on final classification performance.
3. The role of diversity of component classifier’s predictions.

4. The influence of data difficulty factors on confidence of predictions.

According to our best knowledge, these characteristics of Roughly Balanced Bagging
have not been studied in the literature yet.

We choose 24 UCI datasets which have been used in the most related experimen-
tal studies (Blaszczyniski and Stefanowski 2015; Khoshgoftaar et al. 2011; Napierala and
Stefanowski 2012, 2016). They represent different imbalance ratios, different numbers of
attributes and they come from different domains. Due to the fact that the original version
of RBBag is not able to handle multi-class classification problems, we first consider binary
class versions of these data as it is done in the earlier related studies (Galar et al. 2011;
Hido and Kashima 2009; Khoshgoftaar et al. 2011). A generalization of RBBag for multiple
classes will be further studied in Section 5.

Moreover, these datasets represent different difficulty factors referring to distributions
of the minority class which is the additional issue to study in our experimental analysis.
Recall that different difficulty factors could be considered: a fragmentation of the minor-
ity class into small disjuncts, overlapping of decision boundaries, presence of rare cases,
outliers, noise (Stefanowski 2016a). Here we follow the methodology from Napieraha and
Stefanowski (2012, 2016), where most of these data difficulty factors can be modeled by
distinguishing the following types of examples: safe examples (located in the homogeneous
regions populated by examples from one class only); borderline (placed close to the deci-
sion boundary between classes); rare examples (isolated groups of few examples located
deeper inside the opposite class), or outliers.

Following the method introduced in Napierala and Stefanowski (2012) our approach to
identify these types of examples in data is based on analyzing class label distribution inside
the neighbourhood of the minority class example. Such an analysis has been implemented
either with k-nearest neighbours or kernels — according to experiments from Napierala and
Stefanowski (2016) both approaches provided comparative labeling for studied datasets. In
this study, we decided to use the method where the type of example can be identified by
analysing class labels of the k-nearest neighbours of this example. For instance, if k = 5,
the type of the example is assigned in the following way (Napierala and Stefanowski 2012;
2016): 5:0 or 4:1 — an example is labeled as a safe example; 3:2 or 2:3 — a borderline
example; 1:4 —labeled as a rare example; 0:5 — example is labeled as an outlier. This rule can
be generalized for higher k values, however, results of recent experiments (Napierala and
Stefanowski 2016) show that they lead to a similar categorization of considered datasets.
Therefore, in the following study we stay with k = 5.

Basing on this method for an identification of example types, we were able to distinguish
between easier (safe) distributions and more difficult ones, including borderline, rare or
outlier examples. In Table 1 we present characteristics of the chosen datasets with respect
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Table 1 Datasets characteristics

Dataset #examples # attrib. IR Difficulty type
breast-w 699 9 1.90  safe

vehicle 846 18 325  safe
new-thyroid 215 5 5.14  safe
abdominal-pain 723 13 2.58  safe

acl 140 6 2.50  safe
scrotal-pain 201 13 241  safe/borderline
car 1728 6 24.04 safe/borderline
ionosphere 351 34 1.79  safe/borderline
pima 768 8 1.87  borderline
bupa 345 6 1.38  borderline
hepatitis 155 19 3.84  borderline
credit-g 1000 20 2.33  borderline
haberman 306 4 2.78  borderline
ecoli 336 7 8.60  borderline/rare
cme 1473 9 3.42  borderline/rare
transfusion 748 4 320 rare

yeast 1484 8 28.10 rare
solar-flareF 1066 12 23.79 rare
postoperative 90 8 2.75  rare

cleveland 303 13 7.66  rare

hsv 122 11 7.71 rare
breast-cancer 286 9 2.36  outlier

abalone 4177 8 11.47 outlier
balance-scale 625 4 11.76  outlier

to these properties, the number of attributes, number of examples and the global imbalance
ratio (IR).

The performance of ensembles is evaluated using measures developed for binary imbal-
anced problems. They are defined on the basis of the binary confusion matrix. We have
chosen the following measures:

1. Sensitivity of the minority class (the local accuracy of the minority class),
2. Specificity of the minority class (the local accuracy of majority classes),
3. Their aggregation to the geometric mean (G-mean).

For their definitions see, e.g., Japkowicz and Shah (2011). We have chosen these point
measures instead of AUC, as the most of considered learning algorithms employed in
RBBag produce deterministic outputs. These measures are estimated with the stratified 10-
fold cross-validation repeated several times to reduce the variance. All experiments were
performed in the WEKA framework in which we extended the previous implementation of
RBBag done by L. Idkowiak for Blaszczyinski et al. (2013).
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3.2 Choosing algorithms to learn component classifiers

The related works show that Roughly Balanced Bagging, as well as other undersampling
extensions of bagging, are usually constructed with decision trees. In this study, we check
whether classification performance of this ensemble may depend on using other learning
algorithms. Besides J4.8 unpruned tree we considered linear classifiers such as logistic
regression and Support Vector Machines, decision rule algorithms — Ripper and PART as
well as probabilistic algorithms: Naive Bayes and BayesNet classifiers. We also checked
the performance of different tree algorithms: Naive Bayes tree and REPTree. All these algo-
rithms are available in the WEKA framework. The RBBag ensemble was constructed with
different numbers (30, 50 and 70) of component classifiers. For comparison, we also added
the standard bagging to our experiment.

In Table 2 we report the average G-mean values and average ranks (the smaller, the bet-
ter) from Friedman test for this measure. However, quite similar rankings were obtained for
other measures. For all considered evaluation measures we were unable to reject the null
hypothesis on equal performance of all versions of RBBag (e.g. for G-mean p = 0.5045).
On the contrary to the standard bagging for which we observe significant differences
between algorithms and we were able to reject the null hypothesis with rather small p-values
(e.g. for G-mean p = 0.0003)

All these results did not show significant differences of using any of these algorithms
inside RBBag and show its robustness to the change of the classifier. It is important to notice
that for each single algorithm RBBag was significantly better than its standard bagging
equivalent (according to the paired Wilcoxon test).

3.3 The influence of the number of component classifiers

Related works showed that RBBag was constructed with rather a high number of com-
ponent classifiers. Hido and Kashima (2009) tested it with 100 C4.5 trees. In the study
(Khoshgoftaar et al. 2011) authors applied a dozen of components. Then, 30, 50 or 70 trees
were considered in Btaszczynski et al. (2013). Thus, we have decided to examine more
systemically other (also smaller) sizes of this ensemble and its influence on classification

Table 2 Average values of

G-mean and average ranks in Average rank Average G-mean

Friedman test Component classifier Bagging RBBag Bagging RBBag
Bayes Net 2.92 5.00 0.5854  0.7081
J4.8 unpruned tree 4.64 5.08 0.5475 0.7373
Logistic regression 5.60 5.16 0.4893 0.7234
Naive Bayes 3.60 5.44 0.5772  0.6935
Naive Bayes Tree 5.04 4.08 0.5135 0.7254
PART 4.44 5.20 0.5441 0.7314
REPTree 4.88 5.84 0.5426  0.7106
Ripper 4.12 4.60 0.4935  0.7412
SVM 5.20 4.56 0.4464  0.7275
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performance. We stayed with learning components with J4.8 unpruned trees, and for each
dataset we constructed a series of Roughly Balanced Bagging ensembles increasing its size
one by one - so the number of component classifiers changed from 2 trees up to 100 ones.
We present the changes of G-mean values for all datasets in Fig. 1.

For almost all considered datasets increasing the number of component classifiers
improves the evaluation measures up to the certain size of the ensemble. Then, values
of measures stay at a stable level or slightly vary around a certain level. Note that the
RBBag ensemble achieves good performance for a relatively small number of component
classifiers. For most datasets, the stable highest value of G-mean is observed approxi-
mately between 10 and 15 trees. In case of the sensitivity or F-measure we noticed similar
tendencies.

Changing the number of components gives a slightly different effect on hsv and
postoperative datasets. Observe that augmenting the number of components on these
datasets causes a slight decrease of sensitivity and G-mean values, instead of increasing
them. Then, values start to fluctuate around certain levels. However, both datasets are the
smallest ones as well as the distributions of the minority class are the most sparse and the
most difficult ones (Napierala and Stefanowski 2016).
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Fig.1 G-mean vs. a number of component classifiers in RBBag

@ Springer

number of component classifiers



J Intell Inf Syst (2018) 50:97-127 111

Moreover, we decided to examine confidence of the final decision of RBBag. We refer
to a margin of the ensemble prediction. For standard ensembles, it is defined as a difference
between the number of votes of components for the most often predicted class label and the
number of votes for the second predicted label. Here, we modified it as the relative ratio:

marg = Ncor — Mincor 3)

Neptclas
where n.,, is the number of votes for the correct class, n;,c0r 1S the number of votes for
the incorrect class and n¢p;cjqs is the number of component classifiers in the ensemble. The
higher absolute value of marg is interpreted as high confidence while values closer to 0
indicate uncertainty in making a final decision for a classified instance. It is worth noticing
that the margin value close to —1 means the highly confident but incorrect decision.

In Fig. 2 we present a representative trend of changes of the relative margin with the size
of RBBag for ecoli and cmc data. For many other datasets the trend line of the margin
also stabilizes after a certain size (Note the resolution of the margin scale is more detailed
than G-mean, so margin values achieve a satisfactory level also quite fast). We can conclude
that good performance of Roughly Balanced Bagging comes from rather a small number of
component classifiers.

3.4 Diversity of component classifiers

The final accuracy of ensembles may be also related to their diversity - which is usually
understood as the degree to which component classifiers make different decisions on one
problem (in particular, if they do not make the same wrong decisions). Although such an
intuition behind constructing diverse component classifiers is present in many solutions,
research concerns the total accuracy perspective (Kuncheva 2014). It is still not clear how
diversity of components affects ensemble classification performance, especially for minor-
ity classes. The only work on ensembles dedicated for imbalance data (Wang and Yao 2009)
does not provide a clear conclusion. Its authors empirically studied diversity of special-
ized oversampling ensembles and noticed that larger diversity improved recognition of the
minority class, but at the cost of deteriorating the majority classes. However, nobody has
analysed diversity of RBBag.

A popular group of measures to evaluate ensemble diversity are pairwise diversity mea-
sures (Kuncheva 2014; Tang et al. 2006). They are designed to compare the differences
in predictions of two classifiers, which are treated as oracle outputs, i.e. it is only known
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Fig. 2 G-mean and margin vs. a number of component classifiers in RBBag for cmc (leff) and ecoli
(right) datasets
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whether the classifier prediction for a given object is correct or wrong? (Kuncheva 2014).
The measures are defined for a pair of classifiers on the 2 x 2 oracle matrix containing the
number of examples for which both classifiers makes correct decision (11), the number
of misclassified examples by one of the classifiers (19, 701) and the number of examples
which were incorrectly classified by both algorithms (n¢g). To evaluate the diversity of the
whole ensemble, one calculates these measures for each pair of component classifiers. Then,
the globally averaged value for an ensemble is averaged over all pairs of classifiers.

In this study we use two popular pairwise diversity measures, one of them is the
disagreement measure defined by following equation:

nig+n
D= 10 01 @)
ny1 +nio + no1 + noo
The larger its value is, the more diverse classifiers are, but the maximal value of this
measure depends on the accuracy of classifiers (Kuncheva 2014). For this reason the Q-

statistics will be also used as another diversity measure:

0= ny1ngo — 110101 )
ni1noo + 110101

It has a constant range of possible values from —1 to 1 which also makes it easier to inter-
pret. It is worth to notice that this measures simply take into account the number of examples
classified by a pair of algorithms regardless its class label. This causes that the diversity of
classifiers when predicting the majority classes has big influence on the final value of diver-
sity measures. For this reason besides the global diversity measures for predictions in both
classes (D, Q) we also calculated these measures for the minority class only (denoted with
min in the subscript). The results for RBBag with 30 component J4.8 trees are presented in
Table 3. For some pairs of classifiers we were unable to calculate Q-statistics for minority
examples only due to the zero denominator — if we were unable to calculate this metric for
more than 25 % of components pairs then we present the result with a star symbol.

Notice that values of disagreement measures are relatively low. For nearly all datasets
they are between 0.1 and 0.3. This small diversity concerns both class predictions (D)
and minority class (D), although D,,;, is usually lower than D. We also checked that
changing the number of component classifiers in RBBag did not influence values of the
disagreement measure. The conclusions from the results of Q-statistic are consistent with
those for the disagreement measure.

To sum up, this high accuracy of RBBag may not be directly related to its higher diversity.
We have also analysed predictions of particular pairs of classifiers and noticed that they
quite often make the same correct decisions.

3.5 Influence of the type of examples

Experiments carried out in the related works indicates the superiority of RBBag over other
specialized ensembles for imbalance data. However, it is unclear whether good predictive
results of RBBag come from its special abilities to deal with particular data difficulty factors or
just from handling very efficiently the global class imbalance. In this section, we conduct

2This interpretation of the classifier outputs disregards the precise information on which class label has
been assigned to the classified object. Nevertheless, for binary imbalanced classes it is sufficient. For mul-
tiple classes other generalizations of these pairwise diversity measures could be considered, see e.g. recent
proposals such as Mikami et al. (2015).
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Table 3 Diversity measures,

calculated for examples from Dataset D Dinin 0 Omin
both classes (D, Q) and from the

minority class only (Dpin, abalone 0,2072 0,1642 0,8001 0,7939
Omin), for Roughly Balanced abdominal-pain  0,1564  0,1310  0,8444 0,8479
Bagging acl 0,0756  0,0843  0,8551 0,2533

balance-scale 0,4884 04963 —0,0112  *0,0080
breast-cancer 0,3154 0,2876 0,5576 0,5265

breast-w 0,0361  0,0476  0,9523 —0, 1040
bupa 0,2371  0,2759  0,5192 0,6298
car 0,0951  0,0201  0,8707 *—(), 7852
cleveland 0,2807  0,2470  0,6680 *—(), 4505
cmc 0,2798  0,2481  0,7259 0,7364
credit-g 0,2648  0,2279  0,6167 0,6558
ecoli 0,1197  0,1040 09144 0,6538
haberman 0,2667 00,2482  0,8337 0,9417
hepatitis 0,2476  0,2127  0,6343 0,0865
hsv 0,4529  0,3384 0,3311 *0,1667
ionosphere 0,0733 0,0909 0,5370 *0,2471
new-thyroid 0,0525 0,0297 0,6198 *0,1036
pima 0,2100  0,1949  0,8136 0,8143
postoperative 0,4011 0,3837 0,3424 0,0889
scrotal-pain 0,1871  0,1670  0,7888 0,7553
solar-flareF 0,1062  0,0999 0,9318 0,8047
transfusion 0,1931  0,1897  0,8625 0,9536
vehicle 0,0592  0,0509  0,9222 *—0, 3853
yeast 0,1335 0,0885 09127 *—0, 3308

experiments which should provide us to get an insight into the work of RBBag on differ-
ent types of examples, following the methodology from Napierala and Stefanowski (2012)
which was also described earlier in this paper.

Similarly to Napieraha and Stefanowski (2012, 2016) we observed that the most of the
datasets considered in this paper contain rather a small number of safe examples from
the minority class. The exceptions are two datasets composed of many safe examples:
new-thyroid and car. Many datasets such as cleveland, balance-scale or
solar-flare do not contain any safe examples but many outliers and rare cases. The
similar analysis of the majority class shows that the datasets contain mostly safe types
of majority examples. Recalling recent experiments from Blaszczynski and Stefanowski
(2015) we add that differences between the performance of various generalizations of bag-
ging are smaller for datasets where safe minority examples dominate inside the distribution.
On the other hand, RBBag stronger outperforms other generalizations if datasets contain
many unsafe minority examples.

In the current experiments, we identified a type of the testing example and recorded
whether it was correctly classified or not. Additionally, we refer types of examples in both
(minority and majority) classes to the relative margins of the RBBag predictions (these are
presented as histograms of numbers of testing examples with a given value of the margins).
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In Figs. 3 and 4 we present a representative results of RBBag and the standard bagging for
cleveland dataset. Histograms for other datasets present similar observations.

Notice that RBBag quite well recognizes the borderline examples from the minority
class. Rare minority examples are more difficult, however, on average RBBag can still
recognize many of them. It classifies them much better than the standard bagging. Out-
liers are the most difficult, but RBBag classifies correctly some of them and again this is
the main difference to the standard bagging and other its oversampling extensions evalu-
ated in Btaszczynski and Stefanowski (2015). The similar tendency is observed for other
unsafe datasets which are not visualized due to page limits. If the dataset contains some safe
minority examples, nearly all of them are correctly classified with high margins.

On the other hand, for the majority class, one can notice that RBBag correctly classifies
most of safe examples while facing some difficulties with borderline ones. It also holds for
other non-visualized datasets (where the margin’s median for borderline majority examples
is always worse than the median for borderline minority examples). The majority class does
not contain any rare or outlying examples for nearly all considered datasets. For few excep-
tions as pima, breast-cancer or cmc, these rare majority examples are misclassified
with the high negative margin.
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Fig. 3 Histogram of RBBag margins for cleveland dataset with respect to a class and a type of an
example. Blue vertical line shows the value of the margin’s median
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Fig. 4 Histogram of standard bagging margins for cleveland dataset with respect to a class and a type of
an example. Blue vertical line shows the value of the margin’s median

In conclusion, we can hypothesize that Roughly Balanced Bagging improves recognition
of unsafe minority examples, but at the cost of worse dealing with unsafe majority examples.
However, as the number of unsafe examples is relatively small in the majority class, the
final performance of RBBag is improved.

4 Generalization of Roughly Balanced Bagging with selection of attributes

Although the previous experiments have shown very good predictive abilities of Roughly
Balanced Bagging, we have decided to study its applicability to some other complex classi-
fication problems and directions of potential improvements. Firstly, we will consider dealing
the higher number of attributes. A higher number of attributes in datasets is common in
text categorization, image recognition, and bio-informatics and it requires additional pro-
cessing of attributes. For instance, earlier studies with medical images, such as Jelonek and
Stefanowski (1997), have shown that some classes are well discriminating with smaller
subsets of attributes.
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Recall the discussion presented in Section 2.5 which concludes that the most of the cur-
rent research on class-imbalanced problems covers the relatively small number of attributes.
Yet another motivation comes from noticing a rather low diversity of component classifiers
in the typical undersampling ensemble, in particular, see our results presented in Section 3.4.

In our proposals, we will follow the line of modifying the construction of bootstrap sam-
ples of bagging, which is inspired by earlier research on applying random attribute selection
while constructing standard ensembles, see e.g. a review available in Kuncheva (2014).
More precisely we refer to Ho’s proposal of Random Subspace method (RSM) (Ho 1998),
and Breiman’s Random Forest ensemble. Besides simplicity, while dealing with the higher
number of attributes, this random selection of attributes increases the diversity of component
classifiers.

While recent experiments of Liu and Zhu (2013) with Balanced Random Forest demon-
strated its usefulness for class imbalance, here we are more interested in adapting Random
Subspace into the context of Roughly Balanced Bagging as it is a classifier independent
strategy. To the best of our knowledge, it has not been considered in this ensemble yet. In
the only related work (Hoens and Chawla 2010) authors successfully applied this method
to SMOTE based oversampling bagging.

Our proposal named RBBag+RSM? extends Roughly Balanced Bagging with the ran-
dom attribute selection in the following way. After sampling examples to each bootstrap a
subset of F' attributes is randomly drawn from the set of all attributes (where each attribute
has the same probability to be selected). One should decide about the number of the drawn
attributes. The inspiration of Random Subspace Method may result in taking 50 % of the
number of attributes in the original dataset. On the other hand, if we want to deal with
both higher number of attributes and improving diversity we will follow Breiman’s rule
from Random Forest which takes a smaller number of attributes. Subsequently, we train
component classifier with such bootstrap sample with selected attributes only, e.g. [VF1,
[log, F 4 17. As these component classifiers may be more diversified than in the standard
RBBag, we expect that the number of components of the ensemble should be higher. Their
predictions are aggregated into the final decision of the ensemble in the same way as in the
standard version.

Below we experimentally evaluate it. Since it is an approach designed to deal with a
higher number of attributes, we have focused our experiments only on these datasets from
earlier phases of experiments, which contain more than 11 attributes. As this condition
holds for 9 datasets only, we added 4 new, high-dimensional imbalanced datasets from UCI
repository (Lichman 2013). Finally, in this experiment we examine 13 following datasets:
abdominal-pain (13 attributes), cleveland (13), credit-g (20), dermatology
(35), hepatitis (19), ionosphere (34), satimage (37), scrotal-pain (13),
segment (20), seismic-bumps (19), solar-flare (12), vehicle (18) and
vowel (14).

We tested it with J4.8 decision tree (without pruning) and SVM as base classifiers. Fol-
lowing the literature review, we considered setting f parameter to [VF1, [log, F + 17 and
['/,F7, where F is the total number of attributes in the dataset. Due to space limit we
present detailed results only for J4.8 decision trees and f = [v/F1, since this parameter
setting gives, on average, the highest increments.

Another issue concerns the size of RBBag+RSM. Although bagging can be constructed
with a small number of components (our experiments may recommend RBBag approx. 15),

3RSM is an abbreviation from Random Subspace Method.
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their number in case of attribute selection should be higher as the randomization of attributes
increases the variance of bootstrap samples. This is why we will compare RBBag against
the RBBag+RSM ensemble with more components: 30, 50, 70 and 90.

The values of G-mean and sensitivity are presented in Tables 4 and 5, respectively. One
can notice increases on the values of both measures, in particular for RBBag+RSM with
more trees. For instance, the increase on sensitivity (abdominal-pain, hepatitis
— above 6 %) and G-mean (abdominal-pain, hepatitis, scrotal-pain,
seismic-bumps — above 3 %). We performed the paired Wilcoxon test to compare
RBBag+RSM against RBBag. With the confidence o = 0.05, RBBag+RSM is better on G-
mean for 50 (p = 0.021), 70 (p = 0.013) and 90 (p = 0.006) trees and nearly for 30 trees
(p = 0.054). Similar results we obtained for the sensitivity measure.

In additional experiments, we also observed that RBBag+RSM needs more components
than RBBag, e.g. for 15 trees there were no significant differences in values of G-mean
(p = 0.11). It confirms our expectations and earlier literature opinions saying that while
introducing random attribute selection one should use more components than in the standard
bagging. However, as we do not want to increase computational costs too much compar-
ing to the basic version of RBBag, so we prefer to stay with the considered sizes of the
ensemble.

We also analysed the results of specificity to see whether good recognition of the minor-
ity class is not achieved at a high cost of majority class accuracy. Surprisingly, for most
datasets, this measure has actually increased while the highest decrease does not exceed 2 %.

Similar results were obtained for RBBag+RSM with SVM as a component classifier.
Since SVMs are more robust, the improvements on G-mean and sensitivity measure were
smaller, but still significant on many datasets. For example on scrotal -pain dataset we
observe above 3 % improvement on G-mean and over 5 % increase of sensitivity.

Additionally, we calculated the disagreement measure for all examples (D) and also
the minority class (D). The values presented in Table 6 are calculated for 30 trees. For

Table 4 G-mean for Roughly Balanced Bagging (RBBag) and its modification by a random attribute
selection (RBBag+RSM)

RBBag RBBag+RSM
Dataset 30 50 70 90 30 50 70 90

abdominal-pain 0.8077 0.8072 0.8062 0.8050 0.8336 0.8411 0.8358 0.8363

cleveland 0.7161 0.7247 0.7208 0.7086 0.6938 0.7197 0.7410 0.7347
credit-g 0.6735 0.6755 0.6792 0.6704 0.6930 0.6923 0.7007 0.7036
dermatology 0.9868 0.9864 0.9873 0.9925 0.9986 1.0000 1.0000 1.0000
hepatitis 0.7663 0.7947 0.7920 0.7841 0.8131 0.8113 0.8029 0.8083
ionosphere 0.9063 0.9079 0.9098 0.9098 0.9068 0.9104 0.9152 0.9142
satimage 0.8727 0.8734 0.8752 0.8800 0.8677 0.8678 0.8698 0.8701
scrotal-pain 0.7484 0.7414 0.7455 0.7452 0.7869 0.7846 0.7884 0.7831
segment 0.9892 0.9895 0.9896 0.9890 0.9945 0.9955 0.9953 0.9951
seismic-bumps 0.6824 0.6945 0.6937 0.6914 0.7103 0.7153 0.7124 0.7123
solar-flare 0.8499 0.8511 0.8529 0.8548 0.8351 0.8437 0.8458 0.8500
vehicle 0.9525 0.9548 0.9552 0.9546 0.9590 0.9588 0.9599 0.9596
vowel 0.9623 0.9604 0.9606 0.9616 0.9751 0.9766 0.9789 0.9805
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Table 5 Sensitivity for Roughly Balanced Bagging (RBBag) and its modification by random attribute
selection (RBBag+RSM)

RBBag RBBag+RSM
Dataset 30 50 70 90 30 50 70 90

abdominal-pain 0.7955 0.7975 0.7925 0.7811 0.8523 0.8623 0.8563 0.8560

cleveland 0.7067 0.7175 0.7100 0.6883 0.6800 0.7117 0.7567 0.7325
credit-g 0.6610 0.6637 0.6657 0.6243 0.6493 0.6407 0.6540 0.6323
dermatology 0.9900 0.9950 0.9950 1.0000 1.0000 1.0000 1.0000 1.0000
hepatitis 0.7500 0.7917 0.7950 0.7717 0.8200 0.8267 0.8267 0.8217
ionosphere 0.8553 0.8561 0.8593 0.8529 0.8660 0.8737 0.8796 0.8715
satimage 0.8690 0.8726 0.8753 0.8816 0.8738 0.8720 0.8777 0.8777
scrotal-pain 0.7400 0.7330 0.7360 0.7240 0.7467 0.7560 0.7453 0.7277
segment 0.9863 0.9875 0.9875 0.9857 0.9918 0.9933 0.9930 0.9930
seismic-bumps 0.6312 0.6547 0.6529 0.6488 0.6624 0.6629 0.6612 0.6653
solar-flare 0.8690 0.8705 0.8730 0.8785 0.8450 0.8670 0.8670 0.8760
vehicle 0.9688 0.9703 0.9724 0.9679 0.9990 0.9990 0.9990 0.9995
vowel 0.9667 0.9667 0.9667 0.9667 0.9911 0.9911 0.9900 0.9889

the reader’s convenience, we present results together with the difference of disagreement
between RBBag+RSM and original RBBag.

One can notice that the selection of attributes resulted in an increase of disagreement
on almost all datasets (except seismic-bumps). Interestingly, despite a decline of the
disagreement measure on this dataset we observed improvements on both G-mean and

Table 6 Disagreement measures, calculated for examples from both classes (D) and from the minority class
only (Dpin), for Roughly Balanced Bagging (RBBag) and its modification by random attribute selection
(RBBag+RSM)

RBBag RBBag+RSM Difference

Dataset D Dyin D Dyin D Dyin

abdominal-pain 0.1564 0.1310 0.2995 0.2580 0.1431 0.1269
cleveland 0.2807 0.2470 0.3506 0.3050 0.0700 0.0581
credit-g 0.2648 0.2279 0.4075 0.3951 0.1427 0.1672
dermatology 0.0211 0.0162 0.1815 0.1384 0.1604 0.1222
hepatitis 0.2476 0.2127 0.3156 0.2915 0.0680 0.0788
ionosphere 0.0733 0.0909 0.1158 0.1650 0.0424 0.0741
satimage 0.1549 0.1160 0.1782 0.1448 0.0233 0.0288
scrotal-pain 0.1871 0.1670 0.3522 0.3139 0.1651 0.1469
segment 0.0168 0.0106 0.0659 0.0293 0.0491 0.0187
seismic-bumps 0.2891 0.2373 0.2470 0.2383 —0.0421 0.0010
solar-flare 0.1062 0.0999 0.2362 0.2395 0.1300 0.1396
vehicle 0.0592 0.0509 0.1461 0.0972 0.0869 0.0463
vowel 0.0461 0.0251 0.2126 0.0825 0.1665 0.0574
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sensitivity. The further analysis of diversity shows that the highest increase occurs for safe
majority and borderline minority examples.

The analysis of histograms of decision margins for RBBag+RSM (done in the same
way as for RBBag in Section 3.5) shows that it increases the margin on rare and outlier
minority examples. Moreover, more safe and borderline minority instances are classified
correctly, although the average of the margin slightly decreases. Due to increased diver-
sity, fewer examples are classified with a maximum decision margin. Sometimes it also
decreases the decision margin too much, ending with misclassification of some examples.
Then, RBBag+RSM decreases the margin of safe majority examples, but this does not
adversely affect the final prediction.

5 Multi-class extensions of RBB bagging for imbalanced data
5.1 Multi-class Roughly Balanced Bagging

In this section, we introduce a new extension of Roughly Balanced Bagging for multi-class
imbalanced data. In opposition to the related works it does not decompose the multi-class
problem into many binary problems, but it learns all the classes at once. This property of
our extension is obtained by considering simultaneously all classes during the construction
of bootstrap samples.

Recall that in original bagging, a bootstrap sample is constructed by sampling examples
one by one from the uniform joint distribution p(x, ¢) where x is an example of a class
c¢. This can be simply decomposed into the conditional probability of selecting an exam-
ple given the class ¢ and the probability of selecting example from a particular class (i.e.
p(x,c) = p(c)p(x|c)). Thus, the bootstrap construction can be realized by repetitively
sampling examples in the following way: first select (with a proper probability) the class
from which the example will be taken and then choose an example from the selected class
(Hido and Kashima 2009).

Note that the number of each class examples in the bootstrap samples of original bagging
varies according to the multinomial distribution — which in the case of binary classification
is simply the binomial distribution. The authors of RBBag (which works for binary classifi-
cation only) exploit it by fixing the number of selected minority class examples to N,;, and
using the negative binomial distribution to estimate a proper number of majority examples.
Then, these numbers of examples are sampled from each class with replacement (where
each example has the same probability of being selected); see Section 2.4.

Hido et al. (2009) claims that this approach better reflects the philosophy of bagging
than other specialized bagging approaches for imbalance data. However, in contrast to the
original bagging which constructs bootstrap samples of a constant size, Roughly Balanced
Bagging creates bootstraps of different sizes. In our approach, we propose yet another sam-
pling schema, which is also coherent with the ideas of bagging. However, it creates samples
of equal size — just like in the original Breiman’s proposal (Breiman 1996). Nevertheless,
our main objective it to adapt it to a multi-class scenario.

Therefore, in Multi-class Roughly Balanced Bagging (further abbreviated as MRBBag)
the main modification concerns a construction of bootstrap samples, which is realized in
the following way. First, the number of examples to be selected from each class has to
be estimated for each bootstrap. Following the aforementioned probabilistic interpretation
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we will estimate it from the multinomial distribution, which is defined by the following
probability mass function:

I’l' ny _np Ne
p(1, N2, ey M) = e PPy P
nilny!l---ng!

where p1, p2, ..., pc andn = Y _i_, n; are the parameters of the distribution.

In the original bagging the pi, p, ..., p. values should be selected proportionally to
the presence of classes in the training set. In our algorithm we want to handle the class
imbalance problem by obtaining roughly balanced bootstrap samples also with respect to
class probabilities, so we fix values pi, p2, ..., pc to the same constant value equal to %,
such that > ;_; p; = 1. Then, just like in the Roughly Balanced Bagging we sample a
proper number of examples from each class.

The value of n which determines the sample size is a parameter of our algorithm. In this
study, we set n = N which is the size of training set. In MRBBag, which creates roughly
balanced samples this will bring the oversampling of minority classes — this version we will
be later denoted as oMRBBag. Alternatively, following earlier observations from binary
imbalance classification where undersampling strategies gave better results (Blaszczyriski
and Stefanowski 2015), we also consider setting n to the size of the smallest minority class
in the original training dataset (i.e., n = min;e(12,....c} N;). We refer to this version of the
algorithm later as uMRBBag.

Algorithm 3 Multi-class Roughly Balanced Bagging

Input: D = U;z  Dj: original training set with c classes, N: size of each bootstrap sample,
k: number of bootstrap samples, L A: learning algorithm;
Output: C* bagging ensemble with k component classifiers
Learning phase:
1: fori =1 — kdo
2: S; =0
3: [n1, na, ..., n.] < following multinomial distribution withn = N and ¢; = 1/c¢ for
i=1,2,...,c
for j=1— cdo
S;,j < nj-element bootstrap sample drawn with replacement from D
Si < S US;;
end for
C; < LA(S))
end for
Prediction phase:

© X DR

k
C*(x) =argmax y _ pe, (y1x)

i=1

5.2 Evaluation of Multi-class Roughly Balanced Bagging on artificial data

Firstly, we investigate experimentally the performance of MRBBag on artificially gener-
ated data that are affected by different difficulty factors. We apply a special generator
(Wojciechowski and Wilk 2014). The datasets have three classes: two minority classes and
one majority class. The examples of both minority classes are generated randomly inside
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predefined spheres and the majority class examples are randomly distributed in an area
surrounding them. We consider three configurations of these spheres positions:

— no overlap between classes— the centers of spheres are far away each other and the
minority classes are separated by majority class examples,

— small overlap — the borders of spheres which contains examples of minority classes are
touching each other,

— overlap — the spheres have a larger common part in the attribute space.

The majority examples are randomly generated in a cube which contains both spheres. How-
ever, they are added in a way which ensures that the minority classes will have predefined
a number of safe and borderline examples. Later, additional minority examples are placed
among the majority ones to create the predefined number of rare and outlier examples.

We generated datasets with the following configurations:

— 50 % of safe examples, 35 % of borderline, 10 % of rare and 5 % of outliers (50-35-10-
5);

— 50 % of safe, 30 % of borderline, 10 % of rare and 10 % of outliers (50-30-10-10);

— 70 % of safe and 30 % of borderline examples (70-30-0-0).

These three configurations are combined with three different setups of spheres positions which
finally results in nine artificial datasets. All datasets are generated with three attributes and
900 examples — 100 of them belong to the first minority class, 200 belong to the second
one and 600 belong to the majority class. We have also generated data with more attributes,
however as their analysis gave similar results as three dimensions, we skip their presentation
due to page limits. Figure 5 visualizes two of three-dimensional artificial datasets.

In our experiment, we decided to compare classification performance of proposed multi-
class oMRBBag and uMRBBag generalizations against original bagging and a single J4.8
decision tree as baseline multi-class classifiers. Moreover, as the original RBBag cannot
deal directly with multi-class datasets, we have used its slight modification (denoted as
RBBag*). There were two issues to resolve, in order to enable RBBag to handle multiple
classes. First of all, the choice of a base learner algorithm has been limited to multi-class
classifiers only. Secondly, the process of bootstrap samples construction was slightly mod-
ified. Normally, while constructing bootstrap samples, RBBag divides the training set into

Fig. 5 Visualization of two artificial datasets with different levels of overlapping: “small overlap” (a) and
“overlap” (b). Minority classes in both datasets contains 70 % of safe and 30 % of borderline examples
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a set of minority examples D,,;, and a set of majority examples D,,,;. Later, these sets are
utilized to establish the parameter of the reverse binomial distribution (n = N imi" = |Dpinl)
and to perform sampling of minority and majority examples separately. Unfortunately, par-
titioning of the training set in this way is not possible in the multi-class scenario since we
have multiple minority classes. In our modification, we simply substituted the size of minor-
ity class (Nl.mi " in step 2 of Algorithm 2) with the number of all minority examples (a sum
of all minority classes sizes). Later, instead of taking a sample from the set of minority
class examples, the stratified sampling of all minority classes is used (step 4). By doing this
simple adjustments RBBag* is able to handle classification problems with multiple classes.

As the evaluation of classification performance concerns now the non-binary case, we
calculated sensitivity of each class and aggregated it into the geometric mean. All ensembles
were learned with the same algorithm J4.8 learning decision unpruned trees. Always the
same number of 30 component classifiers was induced. The values of the generalized G-
mean are presented in Table 7.

Note that the undersampling proposal — uMRBBag — is the best performing ensemble.
The next ones are o MRBBag and RBBag*. In all cases, they are better than the standard
bagging and a single J4.8 tree classifier. As it could be expected the single tree is always the
worst classifier. The interesting observation concerns a simpler modification RBBag*. It is
comparable to our extensions only for one dataset which is the simplest and the easiest one
— it contained only safe and borderline minority examples (70-30-0-0) with no overlapping.
However, it is sometimes better than oversampling strategy in MRBBag. Note that o MRB-
Bag outperforms RBBag* for two datasets only. On contrary, uMRBBag is almost always
better than RBBag* and when it is not, the difference is not significant. The differences
between uMRBBag and RBBag* are also higher on more difficult datasets. Especially, on
the dataset with the highest number of difficult examples (50-30-10-10) and with class
overlapping our modification improved G-mean above 3 %.

5.3 Evaluation of Multi-class Roughly Balanced Bagging on real data sets

The results on artificial datasets have led us to carry out more experiments on real datasets.
We selected several multi-class imbalanced datasets from UCI repository. Some of them

Table 7 G-mean and average ranks (the lower, the better) for multi-class artificial data

Difficulty types Overlapping Bagging uMRBBag oMRBBag RBBag* J4.8

50-30-10-10 no overlap 0,7863 0,8111 0,7980 0,8104 0,7853
50-30-10-10 small overlap 0,7735 0,7945 0,7989 0,7962 0,7666
50-30-10-10 overlap 0,6822 0,7293 0,6839 0,6955 0,6576
50-35-10-5 no overlap 0,8195 0,8523 0,8522 0,8444 0,8101
50-35-10-5 small overlap 0,8169 0,8438 0,8428 0,8345 0,8010
50-35-10-5 overlap 0,6686 0,7449 0,7193 0,7280 0,6168
70-30-0-0 no overlap 0,9401 0,9496 0,9525 0,9566 0,9340
70-30-0-0 small overlap 0,9154 0,9378 0,9402 0,9386 0,9045
70-30-0-0 overlap 0,8245 0,8707 0,8335 0,8439 0,8022
average rank 4,0000 1,6666 2,2222 2,1111 5,0000
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Table 8 G-mean and average -
ranks (the lower, the better) for Dataset Bagging uMRBBag oMRBBag RBBag* J4.8

multi-class real datasets

car 0,8603 0,9016 0,9516 0,8680 0,7890
cleveland 0,0000 0,0128 0,0034 0,0000 0,0037
cleveland-sm 0,0833 0,1746 0,1238 0,1910 10,0755
dermatology  0,9542 00,9668 0,9658 0,9512  0,9436
dermatology-3 0,9494  0,9602 0,9569 0,9569 0,9275

ecoli 0,6534 0,7800 0,7460 0,7108  0,6095
ecoli-3 0,6872 0,8474 0,8004 0,8272  0,6613
glass 0,2819 0,4169 0,4424 0,4229 10,2591
glass-3 0,1386 0,6191 0,5236 0,5076 0,2885
new-thyroid  0,8937 00,9224 0,9215 0,9276 0,8778
thyroid 0,9425 10,9232 0,9455 0,9383 0,9420
vehicle 0,7162 0,7141 0,7181 0,7243  0,6825
yeast 0,0000 0,0336 0,0348 0,0000 0,0058
yeast-sm 0,0000 0,1307 0,0699 0,0109 0,0058
yeast-3 0,5602 0,8296 0,7104 0,8150 0,5874

average rank  4,0000 11,7142 2,0000 2,73331 4,5454

contained classes which have an extremely small number of examples. Note that some of
these datasets contain extremely rare classes — containing few examples only. Thus, we
removed classes which have less than 5 examples from the datasets and created simpler
versions of these datasets. We denote them by adding to the original dataset name a suffix
- sm. Additionally, we created a few three-class datasets by choosing two minority classes
and treating all other examples as majority class (suffix -3). Proceeding in that way we
prepared 15 datasets. The classification results of the same classifiers as considered in the
previous sub-section are give in Table 8.

The best performing algorithm was uMRBBag. For two datasets the improvement of G-
mean measure was above 11 % while comparing to RBBag*. Then, o MRBBag was better
than RBBag* on more than a half of datasets. Again, a single tree classifier and original bag-
ging had the worst performance on G-mean. We performed the Friedman test and we were
able to reject the null hypothesis about lack of significant differences between classifiers
with a very small p-value (p < 0.0001). The critical difference between ranks according to
the post-hoc Nemenyi test CD = 1.575, which supports significant differences between a
single classifier, original bagging and all modifications of Roughly Balanced Bagging. The
differences between modifications of RBBag were not statistically significant.

6 Conclusions
Our study has covered two aims: (1) to experimentally study properties of Roughly Bal-

anced Bagging (RBBag), and (2) to extend it for dealing with additional complexities of
data referring either to a higher number of attributes or multiple class imbalances.
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The experimental study of the properties of the RBBag ensemble has led us to the
following main observations:

— It can be constructed with a relatively small number of component classifiers (approx.
15 ones).

— The choice of the considered algorithms for learning component classifiers does not
influence the final performance of RBBag.

— Component classifiers in RBBag are characterized by quite low diversity according to
the disagreement measure and Q-statistics.

— Studying the local recognition of types of classified examples shows that RBBag
improves classification of unsafe minority examples. Its power for dealing with
borderline, rare and outlying examples distinguishes it from other ensembles.

Comparing quite low diversity of Roughly Balanced Bagging to earlier results
(Btaszczynski et al. 2013) we argue that RBBag is less diversified than over-bagging or
SMOTE-based bagging (Wang and Yao 2009). On the other hand, RBBag is more accu-
rate than these more diversified ensembles. We have also checked that its components are
quite accurate and pairs of classifiers often make the same correct decisions. It may open
another research on studying the trade-off between accuracy and diversity of ensembles for
imbalanced data.

In spite of a good performance of Roughly Balanced Bagging, we have also asked
questions about its further extensions. Our paper presents two types of methodological
contributions.

Firstly, we have proposed to integrate a random selection of attributes into this ensemble.
In experiments, we have shown that this proposal improves G-mean and sensitivity measures
for more dimensional complex datasets. We have also observed that: (1) it increases the
diversity of component classifiers and (2) using the higher number of components improves
classification, differently than in the original RBBag.

Secondly, we have also introduced a generalization of Roughly Balanced Bagging for
multiple imbalanced classes, which exploits the multinomial distribution to estimate car-
dinalities of class examples in bootstrap samples. The experiments with synthetic and real
datasets have clearly demonstrated that the undersampling version of our proposed Multi-
class RBBag improves G-mean and it is better than the oversampling variant and simpler
multi-class classifiers.

Other lines of further research could also concern modifications of bootstrap sampling
with information about types of minority examples and directing sampling more toward the
unsafe examples. Recall that experiments from Section 3.5 have shown that RBBag also
improves recognition of unsafe minority examples while worsening classification of bor-
derline majority examples. Therefore, looking for other modifications of sampling which
capture the trade-off between choosing examples from both classes could be still under-
taken. Furthermore, a decomposition of classes into sub-concepts (Jo and Japkowicz 2004)
could be considered. In Parinaz et al. (2015) authors applied k-means clustering to strat-
ify sampling majority examples inside their modifications of standard bagging. Looking for
another semi-supervised clustering to better handle complex boundaries of data distribu-
tions could be yet another direction for future research. Finally, considering both multiple
classes and attribute selection could be also a line of future research.
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