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Learning with imbalanced data sets is considered as one of the key topics in machine learning community. Stacking ensemble is an
efficient algorithm for normal balance data sets. However, stacking ensemble was seldom applied in imbalance data. In this paper,
we proposed a novel RE-sample and Cost-Sensitive Stacked Generalization (RECSG) method based on 2-layer learning models.
The first step is Level 0model generalization including data preprocessing and basemodel training.The second step is Level 1 model
generalization involving cost-sensitive classifier and logistic regression algorithm. In the learning phase, preprocessing techniques
can be embedded in imbalance data learning methods. In the cost-sensitive algorithm, cost matrix is combined with both data
characters and algorithms. In the RECSGmethod, ensemble algorithm is combined with imbalance data techniques. According to
the experiment results obtained with 17 public imbalanced data sets, as indicated by various evaluation metrics (AUC, GeoMean,
and AGeoMean), the proposed method showed the better classification performances than other ensemble and single algorithms.
The proposed method is especially more efficient when the performance of base classifier is low. All these demonstrated that the
proposed method could be applied in the class imbalance problem.

1. Introduction

Classification learning becomes complicated if the class
distribution of the data is imbalanced. The class imbalance
problem occurs when the number of representative instances
is much less than that of other instances. Recently, the
classification problem of imbalanced data appears frequently
and has been widely concerned [1–3].

Usually, imbalanced data sets are grouped into binary
class and the majority class and minority class are, respec-
tively, denoted as negative class and positive class. Tra-
ditional techniques are divided into four categories. RE-
sample technique is to increase theminority class of instances
(oversampling) [4] or decrease the majority class of instances
(undersampling) [5, 6]. Existing algorithms are improved
by increasing the weight of positive instances [7]. Classi-
fier ensemble method is widely adopted to deal with the
imbalance problem in the last decade [8]. In cost-sensitive
algorithms, data characters are incorporated withmisclassifi-
cation costs in the classification phase [9, 10]. In general, cost-
sensitive and algorithms levels are more associated with the

imbalance problem,whereas data level and ensemble learning
can be used and independent of the single classifier.

Ensemble methods involving training base classifiers,
integrating their results, and generating a single final class
label can increase the accuracy of classifiers. Bagging algo-
rithm [11] and Ada AdaBoost boost algorithm [12, 13] are the
most common ensemble classification algorithms. Ensem-
ble algorithms combined with the other three techniques
are widely applied in the classification of imbalanced data
sets. Cost-sensitive learning targets the imbalanced learn-
ing problem by using different cost matrices that can be
considered as a numerical representation of the penalty of
misclassifying examples from one class to another. Data
characters are incorporated with misclassification costs in
the classification phase. Cost-sensitive learning is closely
related to learning from imbalanced data. In order to solve
the imbalance problem, ensemble algorithms were combined
with data preprocessing, cost-sensitive method, and relevant
algorithms in previous studies. Four ensemble methods for
imbalance data sets are commonly used: boosting-, bagging-,
cost-sensitive-boosting and hybrid ensemble methods.
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In boosting-based ensembles, the data preprocessing
technique is embedded into boosting algorithms. In each iter-
ation, the data distribution is changed by altering the weight
to train the next classifier towards the positive class. These
algorithmsmainly include SMOTEBoost [14], RUSBoost [15],
MSMOTEBoost [16], and DataBoost-IM [17] algorithms. In
bagging-based ensembles, the algorithms combine bagging
with data preprocessing techniques. The algorithms are usu-
ally simpler than their integration in boosting because of
simplicity and good generalization ability of bagging. The
family includes but not limited to OverBagging, Under-
OverBagging [18], UnderBagging [19], and IIVotes [20].
In cost-sensitive-boosting ensembles, the general learning
framework of AdaBoost is maintained, but amisclassification
cost adjustment function is introduced into the weight
updating formula. These ensembles are usually different in
themodification way of the weight update rule. AdaCost [21],
CSB1, CSB2 [22], RareBoost [23], AdaC1, AdaC2, and AdaC3
[24] are the most representative approaches. Unlike previous
algorithms, hybrid ensemble methods adopt the double
ensemble learningmethods. For example, EasyEnsemble and
BalanceCascade use bagging as the main ensemble learning
method, but each base classifier is trained by AdaBoost.
Therefore, the final classifier is an ensemble of ensembles.

Stacking algorithm is another ensemble method and
has the same base classifiers to the Bagging and AdaBoost
algorithms, but the structure is different. Stacking algorithm
has a two-level structure consisting of Level 0 classifiers and
Level 1 classifiers. Stacking algorithm involves two steps. The
first step is to collect the output of each model into a new
set of data. For each instance in the original training set, the
data set represents every model’s prediction of that instance’s
class and the models are base classifiers. In the second step,
based on the new data and true labels of each instance in the
original training set, a learning algorithm is employed to train
the second-layer model. In Wolpert's terminology, the first
step is referred to as the Level 0 layer and the second-stage
learning algorithm is referred to as the Level 1 layer [25].

Stacking ensemble is a general method, in which a high-
level model is combined with the lower-level models. Stack-
ing ensemble can achieve the higher predictive accuracy.
Chen et al. adopted ant colony optimization to configure
stacking ensembles for data mining [26]. Kadkhodaei and
Moghadam proposed an entropy-based approach to search
for the best combination of the base classifiers in ensemble
classifiers based on stack generalization [27]. Czarnowski and
Jędrzejowicz focused on the machine classification with data
reduction based on stacked generalization [28]. Most of the
previous studies were focused on the way to use or generate
stacking algorithm. However, the stacking ensemble does not
consider data distribution and is suitable for the common
data sets other than imbalance data.

In order to solve the imbalance problem, the paper intro-
duces cost-sensitive learning into stacking ensemble and adds
amisclassification cost adjustment function into theweight of
instance and classifier. In this way,misclassification costsmay
be considered in the data set as a form of data space weighting
to select the best distribution for training. On the other hand,
in the combine stage, metatechniques can be integrated with

cost-sensitive classifiers to replace standard cost-minimizing
techniques. The weights for the misclassification of positive
instances are higher and the weights for misclassification of
negative instance are relatively lower. The method provides
an option for imbalanced learning domains.

In this paper, RE-sample and Cost-Sensitive Stacked
Generalization (RECSG) method is proposed in order to
solve the imbalance problem. In the method, preprocessed
imbalance data are used to train the Level 0 layer model.
Unlike common ensemble algorithm for imbalanced data,
the proposed method utilized cost-sensitive algorithm as
the Level 1 (meta)layer. Stacking methods combined with
imbalance data approaches including cost-sensitive learning
had been reported. Kotsiantis proposed a stacking variant
methodologywith cost-sensitivemodels as base learners [29].
In the method, the model tree was replaced by MLR in
metalayer to determine the class with the highest probability
associated with the true class. Lo et al. proposed a cost-
sensitive stacking method for audio tag annotation and
retrieval [30]. In these methods, cost-sensitive learners are
adopted in the base-layer model and the metalayer model
is trained by other learning algorithms such as SVM and
decision tree. In this paper, Level 0model generalizer involves
resampling the data and training the base classifier. The cost-
sensitive algorithm is used to train the Level 1 metalayer
classifier. The two layers adopt the imbalanced data algo-
rithms and take the full advantages of mature methods. Level
1 layer model has a bias towards the performance of the
minority class. Therefore, the method proposed in the study
is more efficient than other methods in which cost-sensitive
algorithms are only used in the Level 0 layer.

The method was compared with common classification
methods, including other ensemble algorithms. Additionally,
the evaluation metrics of the algorithm were analyzed based
on the results of statistical tests. Statistical tests of evaluation
metrics demonstrated that the proposed new approach could
effectively solve the imbalanced problem.

The paper is structured as follows. Related ensemble
approaches and cost-sensitive algorithms are introduced in
Section 2. Section 3 introduces the details of proposed
RECSG approach including Level 0 and Level 1 model
generalizers. In Section 4, experiments and corresponding
results and analysis are presented. Statistical tests of eval-
uation metrics of algorithm performance are analyzed and
discussed. Finally, Section 5 discusses the advantages and
disadvantages of the proposed method.

2. Background

2.1. Performance Evaluation in Imbalanced Domains. The
evaluation metric is a vital factor for the classifier model and
performance assessment. In Table 1, the confusion matrix
demonstrates the results of incorrectly and correctly classified
instances of each class in the two classes of problems.

Accuracy is the most popular evaluation metric. How-
ever, it cannot effectively measure the correct rates of all
the classes, so it is not an appropriate metric for imbalance
data sets. For this reason, in addition to accuracy, more
suitable metrics should be considered in the imbalance



Mathematical Problems in Engineering 3

Table 1: Confusion matrix for performance evaluation.

Positive prediction Negative prediction
Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)

problem. Other metrics have been proposed to measure
the classification performance independently. Based on the
confusion matrix (Table 1), these metrics are defined as

Precision = tp
(tp + fp)

Recall = tp
(tp + fn)

𝐹-Measure = (1 + 𝛽)2 ∗ Recall ∗ Precision
𝛽2 ∗ Recall + Precision

,

(1)

where 𝛽 is a coefficient to adjust the relative importance of
precision versus recall (usually 𝛽 = 1).

FPrate = FP
(FP + TN)

TPrate = TP
(TP + FN) .

(2)

The used combined evaluation metrics of these measures
include receiver operating characteristic (ROC) graphic [31],
the area under the ROC curve (AUC) [2], average geometric
mean of sensitivity and specificity (GeoMean) [32] (see (4)),
and average adjusted geometric mean (AGeoMean) [33] (see
(5)), where 𝑁𝑛 refers to the proportion of the majority
samples. These metrics are defined as

AUC = (1 + TPrate − FPrate)
2 (3)

GeoMean = √TPrate ∗ TNrate (4)

AGeoMean

=
{
{
{

GeoMean + TNrate ∗ 𝑁𝑛
1 + 𝑁𝑛

, TPrate > 0
0, TPrate = 0.

(5)

2.2. Stacking. Bagging and AdaBoost are the most common
ensemble learning algorithms. In bagging method, different
base classifier models generate different classification results
and the final decision is decided by majority voting. In
AdaBoost algorithm, a series of base weak classifiers are
trained with the whole training set and the final decision
is generated by a weighted majority voting scheme. In each
round of training iteration, different weights are attributed to
each instance. In the two algorithms, the base classifiers are
the same.

Stacking ensemble is another ensemble algorithm, in
which the prediction result of base classifiers is used as the

attribute to train the combination function in metalayer clas-
sifier [25]. The algorithm has a two-level structure consisting
of Level 0 classifiers and Level 1 classifiers. It was proposed
by Wolpert and used by Breiman [34] and Leblanc and
Tibshirani [35].

Set a data set:

𝐷 = {(𝑋𝑛, 𝑌𝑛) , 𝑛 = 1, . . . , 𝑁} , (6)

where 𝑋𝑛 is a vector representing the attribute values of
the instance 𝑛 and 𝑌𝑛 is the class value. All 𝑁 instances
are randomly split into 𝑗 equivalent parts and 𝑗-fold cross-
validation is used to train the model. The prediction results
of every time testing set gives a vector which includes 𝑛
instances:

{𝑦1, 𝑦2, . . . , 𝑦𝑛}󸀠 . (7)

Set 𝑀𝑗 is the difference base learning algorithm model
obtained with the data set 𝐷, 𝑗 = 1, . . . , 𝑘, and𝑀𝑗 is the part
of Level 0 models. Level 0 layer consists of 𝑗 base classifiers,
which are employed to estimate the class probability of each
instance.

In𝑀𝑗, 𝑗-fold cross-validation of training data set𝐷 gives
the prediction result:

{𝑦(𝑗)1 , 𝑦
(𝑗)
2 , . . . , 𝑦(𝑗)𝑛 } , 𝑗 = 1, . . . , 𝑘. (8)

All the𝑀𝑗 prediction results generate input space of Level
1 model and the real value of instance is treated as the output
space. The model is expressed as follows:

Input output

𝑦(1)1 , 𝑦(2)1 , . . . , 𝑦(𝑖)1 , . . . , 𝑦(𝑘)1 , 𝑦1
𝑦(1)2 , 𝑦(2)2 , . . . , 𝑦(𝑖)2 , . . . , 𝑦(𝑘)2 , 𝑦2

... ...
𝑦(1)𝑛 , 𝑦(2)𝑛 , . . . , 𝑦(𝑖)𝑛 , . . . , 𝑦(𝑘)𝑛 , 𝑦𝑛.

(9)

The above intermediate data are considered as the train-
ing data of the Level 1 layer model. The input data are
treated as features and the real value of instance is treated
as the output space. The next step is to train the data with
some fused leaning algorithms. The process is called Level 1
generalizer and Level 1 model is denoted by 𝑀̃, which can be
regarded as the function of (𝑦(1), 𝑦(2), . . . , 𝑦(𝑖), . . . , 𝑦(𝑘)).

In the stacking process, Level 0 (𝑀𝑗, 𝑗 = 1, . . . , 𝑘 ) is
combined with Level 1 (𝑀̃). Given a new instance 𝑥󸀠, models
𝑀𝑗 produce a prediction result vector:

𝑦(1), 𝑦(2), . . . , 𝑦(𝑖), . . . , 𝑦(𝑘) 𝑖 = 1, . . . , 𝑘. (10)

Then, 𝑀̃ model is used to combine base classifiers and
predict the final result of 𝑥󸀠.

In this paper, for imbalance data, we propose a stacked
generalization based on cost-sensitive classification. In Level
0 model generalizer layer, we firstly resample the imbal-
ance data. Resampling approaches include oversampling and



4 Mathematical Problems in Engineering

Training dataset

and
test dataset

Level 0 (base)-
layer

resample
(oversample) (undersample) (SMOTE) 

Level 0 (base)-layer
classification · · ·

· · ·

· · ·

Ensemble spaceLevel 1 (meta)layer
classification

New data2
New data3New data1

Ｌ？Ｍ；ＧＪＦ？1 Ｌ？Ｍ；ＧＪＦ？2 Ｌ？Ｍ；ＧＪＦ？k

M1
M2 Mk

Decision space of M2 Decision space of Mk

MＧ？Ｎ；

Decision space of M1

u1 xi
N
i=1, u1 x

i

N

i=1
( ) ( ) u2 xi

N
i=1, u2 x

i

N

i=1
( ) ( ) uk xi

N
i=1, uk x

i

N

i=1
( ) ( )

ŷ
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Figure 1: Flowchart of the RECSG architecture.

undersampling. Secondly, Model𝑀𝑗, 𝑗 = 1, . . . , 𝑘, is trained
by the classification with new data, and the prediction output
𝑦(𝑗)𝑖 by 𝑗 = 1, . . . , 𝑘 is produced with original data. In Lever
1 model generalizer layer, 𝑀̃ model is generated by cost-
sensitive classification based on logistic regression.

3. Stacked Generalization for
the Imbalance Problem

The proposed RECSG architecture includes two layers. The
first layer (Level 0) consisting of classifiers ensemble is called
the base layer; the second layer (Level 1) combined with
base classifiers is called the metalayer. The flowchart of the
architecture is shown in Figure 1.

3.1. Level 0 Model Generalizers. For the imbalance prob-
lem, Level 0 model generalizer step of RECSG includes
preprocessing data and training the base classifier. Firstly,
the oversampling (SMOTE) method has been used in data
preprocessing of base classifier. Secondly, the base classifier
model is trained with the new data set. In this level, we
employed three base algorithms: Näıve Bayes (NB) [36],
decision tree C4.5 [37], and 𝑘-nearest neighbors (𝑘-NN) [38].

(1) Naı̈ve Bayes (NB). Given instance 𝑥, set 𝑃(𝑖 | 𝑥) is the
posterior probability of class 𝑖, then

𝑃𝑖 (𝑥) =
𝑃 (𝑖 | 𝑥)
Σ𝑖𝑃 (𝑖 | 𝑥)

, (11)

where NB uses an Laplacian estimate for estimating the
conditional probabilities.
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Table 2: Cost matrix.

Actual negative Actual positive
Predict negative 𝐶 (0, 0) = 𝑐00 𝐶 (0, 1) = 𝑐01
Predict positive 𝐶 (1, 0) = 𝑐10 𝐶 (1, 1) = 𝑐11

Table 3: Cost matrix of credit data sets.

Actual bad Actual good
Predict bad 0 1
Predict good 5 0

(2) Decision Tree (C4.5). Decision tree classification is a
method usually used in data mining [39]. A decision tree is
a tree, where each input feature labels a nonleaf node, one
class, or probability over the class labels each leaf node of the
tree. By recursive partitioning, a tree can be “learned” until
no prediction value is added or the subset has the same value.
When the parameter of training data selects information
entropy, the decision tree is named C4.5.

(3) 𝑘-NN. k-NN is a nonparametric algorithm used for
regression or classification. An instance is classified by a
majority vote of its 𝑘-nearest neighbors. If 𝑘 = 1, the instance
is simply classified in accordance with the class label of the
nearest neighbor.

All the above algorithms are simple and have low com-
plexity, so they are applicable weak base classifiers.

3.2. Level 1 Model Generalizers. Prediction results of several
base classifiers in Level 0 layer are used as input space and
true value class of instance is used as output space. Based on
Level 0 layer, Level 1 layer model is trained by other learning
algorithms. For imbalanced data, the cost-sensitive algorithm
is used to train the Level 1 metalayer classifier in the paper.

3.2.1. Cost-Sensitive Classifier. Aiming at imbalanced data
learning problem, in cost-sensitive classifier, different cost
matrices are used as the penalty ofmisclassified instance [40].
For example, a cost matrix 𝐶 has the following structure in a
binary classification scenario in Table 2.

In the cost matrix, the row indicated alternative predicted
classer, whereas the column indicates actual classes. The cost
of false negative is notated as 𝑐01 and the cost of false positive
is notated as 𝑐10. Conceptually, the cost of correctly classified
instances should always be less than the cost of incorrectly
classified instances. In the imbalance problem, 𝑐10 is always
greater than 𝑐01. For the German credit data set previously
reported as the part of the Stalog project [41], the cost matrix
is provided in Table 3.

The cost of false good prediction is greater than the cost
of false bad prediction in the view of economical reason. So,
in Level 1 classifier of stacking for the imbalance problem, the
cost-sensitive algorithm is adopted.

3.2.2. Logistic Regression. Ting and Witten illustrated that
MLR (Multiresponse Linear Regression) algorithm had an

advantage over other Level 1 generalizers in stacking [42].
In this paper, the logistic regression classifier is used as the
metalayer algorithm. Based on the metalayer, the cost of mis-
classification is considered in the cost-sensitive algorithm. In
logistic regression classifier, the prediction result of Level 0
layer is used as the attribute of Level 1 metalayer and the real
value of instance is used as output space.The linear regression
for class 𝑖 is simply obtained as

LR𝑖 (𝑥) =
𝐾

∑
𝑗=1

𝛼𝑗𝑖𝑃𝑗𝑖 (𝑥) 𝑗 = 1, . . . , 𝑘. (12)

Details of the implementation of RECSG are presented
below.

3.3. Algorithm Pseudocode. Pseudocode 1 presents the pro-
posed RECSG approach. Input parameters are two data sets:
training set and testing set. Output predicts class labels
of the test samples. The first step in the process is data
preprocessing, resample new instances, and train model
𝑀𝑗 (𝑗 = 1, . . . , 𝑘), where 𝑗 is the number of base classifiers
and 𝑢𝑗(𝑥𝑖) is the generated function of 𝑥𝑖 based on model𝑀𝑗
(lines (1)-(2) in Pseudocode 1).

Then, the metalayer model 𝑀̃ is constructed based on
the data 𝐷meta, which is firstly predicted with Level 0 layer
(line (3) in Pseudocode 1). Finally, Lever 1 layer classification
(cost-sensitive and logistic regression) is used to predict the
ultimate value of the tested samples.

4. Empirical Investigation

The experiment aims to verify whether the RECSG approach
can improve the classification performance for the imbalance
problem. In this paper, the RECSG approach was compared
with other algorithms involving various combination ensem-
ble techniques and imbalanced approaches. For eachmethod,
the same training set, testing set, and validation set were used.

The experimental system has been implemented and is
composed of 7 learning methods implemented in Weka [43],
namely, Naı̈ve Bayes(1) (NB), C4.5(j48)(2), 𝑘-nearest neigh-
bor (k-NN)(3), cost-sensitive(4), AdaBoost(5), Bagging(6), and
stacking(7). The brief description, the standard version, and
parameters of these methods are shown in Table 4.

The RECSG approach includes 2 layers. Level 1 layer
(metalearning) system consists of 2 learning methods imple-
mented inWeka, namely, simple logistic regression(9) (MLP),
and cost-sensitive classifier(4). MLP is the base classification
algorithm of cost-sensitive classifier. Level 0 layer (base -
learning) of stacking is composed of 3 classifiers: Naı̈ve
Bayes(1), C4.5(2), and 𝑘-NN(3). Evaluation metrics of algo-
rithmperformance includeAUC,GeoMean, andAGeoMean.

4.1. Experimental Settings. Experiments were implemented
with 17 data sets from the UCI Machine Learning Repository
[44]. These data sets cover various fields and are based on
IR measure values (from 0.54 to 0.014), unique data set
names, a varying number of samples (from 173 to 2338),
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Input Training set𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, Test dataset𝐷test = {(𝑥󸀠𝑖 )}𝑁
󸀠

𝑖=1

Output Predict class labels of the test samples {𝑦󸀠𝑖,meta}𝑁
󸀠

𝑖=1

For each𝑗 = 1, 2, . . . , 𝐾 do
(1) Resample imbalance data and generate 𝑗–fold cross-validation sets to obtain New data𝑗;
(2) Train and compute 𝑢𝑗(𝑥𝑖)𝑁𝑖=1 and 𝑢𝑗(𝑥󸀠𝑖 )𝑁

󸀠

𝑖=1 in Level-0 (base)-layer classifier𝑀𝑗
end
(3) Construct𝐷meta = {𝑢1(𝑥𝑖), 𝑦𝑖}𝑁

󸀠

𝑖=1, and𝐷󸀠meta = {𝑢1(𝑥󸀠𝑖 ), 𝑦𝑖}𝑁
󸀠

𝑖=1

(4) Based on the data𝐷meta, classification (cost-sensitive and Logistic Regression) is used to
generate Level-1 (meta)-layer model 𝑀̃, through 𝑀̃ with𝐷󸀠meta to predict {𝑦󸀠𝑖,meta}𝑁

󸀠

𝑖=1

Pseudocode 1: Pseudocodes of RE-sample and Cost-Sensitive Stacked Generalization.

Table 4: Base classifier methods and corresponding ensemble algorithms.

Methods Descriptions and parameters Abbreviations
(1) Näıve Bayes weka.classifiers.bayes.NaiveBayes NB
(2) C4.5 weka.classifiers.trees.J48 -C 0.25 -M 2 C4.5

(3) 𝑘-nearest neighbor
weka.classifiers.lazy.IBk -K 1 -W 0 -A

"weka.core.neighboursearch.LinearNNSearch -A
\"weka.core.EuclideanDistance -R first-last\""

KNN

(4) Cost-sensitive with Naı̈ve Bayes weka.classifiers.meta.AdaBoostM1 -P 100 -S 1 -I 10
-W weka.classifiers.bayes.NaiveBayes Cost-NB

(5) AdaBoost with Näıve Bayes weka.classifiers.meta.AdaBoostM1 -P 100 -S 1 -I 10
-W weka.classifiers.bayes.NaiveBayes Ada-NB

(6) AdaBoost with cost-sensitive and Naı̈ve Bayes

weka.classifiers.meta.AdaBoostM1 -P 100 -S 1-I10
-W weka.Classifiers.meta.CostSensitiveClassifier
-- -cost-matrix "[1.0 3.0; 1.0 1.0]" -S 1 -W weka.

classifiers.bayes.NaiveBayes

Ada-Cost-NB

(7) Bagging with Näıve Bayes
weka.classifiers.meta.Bagging -P 100 -S 1

-num-slots 1 -I 10 -W
weka.classifiers.bayes.NaiveBayes

Bag-NB

(8) Bagging with cost-sensitive and Näıve Bayes

weka.classifiers.meta.Bagging -P 100 -S 1
-num-slots 1 -I 10 -W

weka.classifiers.meta.CostSensitive Classifier --
-cost-matrix "[1.0 3.0; 1.0 1.0]" -S 1 -W

weka.classifiers.bayes.NaiveBayes

Bag-Cost-NB

(9) Stacking with NB, KNN, C4.5, and logistic

weka.classifiers.meta.Stacking -X 10 -M "weka.
classifiers.functions.Logistic -R 1.0E-8 -M -1
–num –decimal-places 4" -S 1 -num-slots 1 -B

"weka. classifiers.bayes.NaiveBayes" -B
"weka.classifiers. lazy.IBk -K 1 -W 0 -A

\"weka.core.neighboursearch. LinearNNSearch
-A \ \ \"weka.core.EuclideanDistance -R

first-last\ \ \"\"" -B "weka.classifiers.trees.J48 -C
0.25 -M 2"

Stacking-log

(10) Stacking cost-sensitive with NB, KNN, C4.5,
and logistic

weka.classifiers.meta.Stacking -X 10 -M "weka.
classifiers.meta.CostSensitiveClassifier –cost

-matrix \"[1.0 3.0; 1.0 1.0]\" -S 1 -W
weka.classifiers. functions.Logistic -- -R 1.0E-8 -M
-1 –num –decimal –places 4" -S 1 -num-slots 1 -B

"weka. classifiers. bayes.NaiveBayes " -B
"weka.classifiers.lazy.IBk -K 1 -W 0 -A

\"weka.core.neighboursearch.LinearNN Search
-A \ \ \"weka.core.EuclideanDistance -R first-

last\ \ \"\"" -B "weka.classifiers.trees.J48 -C 0.25
-M 2"

Stacking-
Cost-log
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Table 5: Summary of imbalanced data sets.

Data sets #sam. (#min., #maj.) IR #fea.
wisconsin 683 (239, 444) 0.54 9
pima 768 (268, 500) 0.53 8
haberman 306 (81, 225) 0.36 3
Vehicle1 846 (217, 629) 0.345 18
Vehicle0 846 (199, 647) 0.307 18
segment0 2308 (329, 1979) 0.17 19
yeast-0-3-5-9 vs 7-8 506 (50, 456) 0.11 8
yeast-0-2-5-6 vs 3-7-8-9 1004 (99, 905) 0.11 8
vowel0 988 (90, 898) 0.10 13
led7digit-0-2-4-5-6-7-8-9 vs 1 443 (37, 406) 0.09 7
Glass2 214 (17, 197) 0.08 10
cleveland-0 vs 4 173 (13, 160) 0.08 13
glass-0-1-6 vs 5 184 (9, 175) 0.05 9
car-good 1728 (69, 1659) 0.04 6
flare-F 1066 (43, 1023) 0.04 11
car-vgood 1728 (65, 1663) 0.039 6
abalone-17 vs 7-8-9-10 2338 (58, 2280) 0.0254 9

and variations in the amount of class overlap (see the KEEL
repository [45]). Multiclass data sets were modified to obtain
two-class imbalanced problems so that the union of one or
more classes became the positive class and the union of one
or more of the remaining classes was labeled as the negative
class. A brief description of the used date set is presented in
Table 5. It includes the total number of instances (#Sam.),
the total number of each class instances (#Min., #Maj.), the
imbalance ratio (IR = the ratio of the number of minority
class instance to majority class instance), and the number of
features (#Fea.).

Our system was compared with other ensemble algo-
rithms including AdaBoost with Näıve Bayes, AdaBoost with
cost-sensitive, bagging with Näıve Bayes, bagging with cost-
sensitive, and stacking cost-sensitive with NB, k-NN, C4.5,
and logistic regression. All the experiments were performed
by 10-fold cross-validation.

4.2. Experimental Results. Tables 6, 7, and 8, respectively,
show the results of the three metrics (AUC, GeoMean, and
AGeoMean) for the algorithms in Table 4 obtained with the
data set in Table 5.The best results are emphasized in boldface
on each data set in these tables.

The results showed that the performance of the proposed
RECSG method was the best for 12 of 17 data sets in terms
of GeoMean and AGeoMean and for 10 of 17 data sets in
terms of AUC. Some methods are better than others in some
evaluation metrics, but not in all metric and most data sets.

In Table 6 (AUC), the performance of the RECSGmethod
is better than that of the 3 single-base classification methods
for 14 of 17 data sets and better than that of other 5 ensemble
algorithms for 13 of 17 data sets. In Table 7 (GeoMean),
the RECSG method outperforms all the 3 single-base clas-
sification methods in 15 of 17 data sets and outperforms
other 5 ensemble algorithms in 15 of 17 data sets. In Table 8

(AGeoMean), the RECSG method outperforms all the 3
single-base classification methods in 14 of 17 data sets and
outperforms other 5 ensemble algorithms in 16 of 17 data sets.
For the 17 data sets, the evaluation metrics of GeoMean and
AGeoMean are better than AUC.

4.3. Statistical Tests. Statistical test [46] is adopted to compare
different algorithms. In the paper, we use two types of com-
parisons: pairwise comparison (between a pair of algorithms)
and multiple comparisons (among a group of algorithms).

4.3.1. Pair of Algorithms. We performed statistic 𝑇-tests
to explore whether RECSG approach is the significantly
better than other algorithms in the three metrics (AUC,
GeoMean, and AGeoMean). Table 9 shows the results of
RECSG approach compared with the other methods in
terms of AUC, GeoMean, and AGeoMean. The values in
the square brackets indicate the number of the metrics with
statistically significant difference in the 𝑇-test performed
with the confidence level 𝛼 = 0.05 in the three evaluation
metrics. As for the evaluation metric of AUC, the RECSG
outperformed NB for 11 of 17 data sets and 5 data sets showed
the statistically significant differencewith the confidence level
of 𝛼 = 0.05.

4.3.2. Multiple Comparisons. We performed Holm post hoc
test [47] and selected multiple groups to test the three
metrics (AUC, GeoMean, and AGeoMean). The post hoc
procedures can determine whether a comparison hypothesis
should be rejected at a specified confidence level 𝛼. Statistical
experiment was performed in the platform on the website
http://tec.citius.usc.es/stac/. Table 10 provides the results that
RECSGapproach is significantly differentwith the confidence
level of𝛼 = 0.05 in terms of AUC,GeoMean, andAGeoMean.
𝐻0 indicates that there is no significant difference. According

http://tec.citius.usc.es/stac/
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Table 9: Comparison between RECSG and other algorithms in terms of wins/losses of the results.

NB C4.5 KNN Cost-NB Ada-NB Ada-Cost-
NB Bag-NB Bag-Cost-

NB Stacking-log

Stacking-
Cost-log
(AUC)

11 [5]/6 [3] 15 [11]/2 [2] 17 [15]/0 [2] 11 [6]/6 [5] 13 [7]/4 [2] 14 [9]/3 [1] 10 [6]/7 [5] 10 [6]/7 [5] 11 [3]/6 [2]

Stacking-
Cost-log
(GeoMean)

15 [13]/2 [2] 17 [13]/0 [0] 15 [13]/2 [1] 14 [8]/3 [2] 16 [12]/1 [1] 16 [10]/1 [0] 17 [13]/0 [0] 16 [10]/3 [0] 16 [12]/1 [0]

Stacking-
Cost-log
(AGeoMean)

14 [10]/3 [1] 15 [9]/2 [2] 15 [12]/2 [1] 13 [7]/4 [3] 15 [11]/2 [2] 15 [10]/2 [2] 16 [10]/1 [1] 15 [8]/2 [1] 16 [10]/1 [1]

Table 10: Holm post hoc test to show differences of Stacking-Cost-log (AUC) and other algorithms.

Rejected (𝐻0) Accepted (𝐻0)
Stacking-Cost-log (AUC) versus other algorithms 3 6
Stacking-Cost-log (GeoMean) versus other algorithms 8 1
Stacking-Cost-log (AGeoMean) versus other algorithms 9 0

to the evaluation metric of GeoMean, the RECSG is signifi-
cantly better than other 8 methods with the confidence level
of 𝛼 = 0.05.

4.4. Discussion. According to the experiments performed
with 17 different imbalance data sets and the comparison
with other 9 classification methods, the proposed RECSG
method showed the higher performance than other methods
in terms of AUC, GeoMean, and AGeoMean, as illustrated
in Tables 7, 8, and 9. The RECSG method showed the better
performance for 10 of 17 cases in terms of AUC and for 12 of
17 cases in terms of GeoMean and AGeoMean. The method
outperformed other 5 ensemble algorithms for 16 of 17 data
sets in terms ofGeoMean andAGeoMean and for 13 of 17 data
sets in terms of AUC. GeoMean and AGeoMean are better
than AUC in evaluation metrics in 17 data sets. The means of
RECSGmethod in terms of GeoMean, AGeoMean, and AUC
are all higher than other methods. The Holm post hoc test
shows that RECSGmethod significantly outperforms the rest
with the confidence level 𝛼 = 0.05 in terms of AGeoMean, for
8 of 9methods in terms of AGeoMean, and for 3 of 9methods
in terms of AUC.

Experimental results and statistical tests show that the
RECSG approach has improved the classification perfor-
mance of imbalanced data sets. The reasons can be explained
as follows.

Firstly, stacking algorithm uses 𝑀̃ to combine the result
of base classifier, whereas bagging employs majority vote.
Bagging is only a simple decision combinationmethodwhich
requires neither cross-validation nor Level 1 learning. In this
paper, stacked generalization 𝑀̃ adopts logistic regression,
thus providing the simplest linear combination of pooling the
Level 0 models’ confidence.

Secondly, cost-sensitive algorithm can affect imbalance
data sets in two aspects. Firstly, cost-sensitive modifications
can be applied in the probabilistic estimation.Moreover, cost-
sensitive factors change theweight of instance, and theweight

of the minority class is higher than that of the majority
class. Therefore, the method directly changes the number of
common instances without discarding or duplicating any of
the rare instances.

Thirdly, RECSG method introduces cost-sensitive learn-
ing into stacking ensemble. The cost-sensitive function in 𝑀̃
replaces the error-minimizing function, thus allowing Level 1
learning to be prone to focus on the minority class.

The results in Tables 7 and 8 demonstrate that the RECSG
method has the higher performancewhen the evaluation per-
formance metric of base classifier is weaker (such as Vehicle1,
Vehicle0, and car-vgood). The reason is that the alternative
methods of NB, C4.5, and 𝑘-NN have shortcomings. The
independence assumption hampers the performance of NB
in some data sets. In C4.5 tree construction, the selection
of attributes affects the model performances. Error ratio of
𝑘-NN is relatively high when data sets are in imbalance.
Therefore, logistic regression adopted in 𝑀̃ can improve the
performance when base classifier is weaker.

The performance of the RECSG method is generally
better when the IR is low (such as Glass2, car-good, flare-F,
car-vgood, and abalone-17 vs 7-8-9-10). The performance of
RECSG method is probably related to the setting of the cost
matrix. Different data sets should use different cost matrices.
For the purpose of simplicity in the paper, we have adopted
the same cost matrices, whichmay bemore suitable to low IR
values.

5. Conclusions

In this paper, in order to solve the class imbalance problem,
we proposed the RECSG method based on 2-layer learning
models. Experimental results and statistical tests showed
that the RECSG approach improved the classification per-
formance. The proposed RECSG approach may have the
relatively high computational complexity in the training
stage because the approach involves 2-layer classifier models



12 Mathematical Problems in Engineering

which consist of several base classifiers and metaclassifiers.
The number and kinds of the base-level classifiers are
closely related to the performance of stacking algorithm.
In the fusion stage of base classifiers, the selection of the
metaclassifier is also important. In this paper, in order to
validate the performance improvement compared with other
current classification algorithms, we only randomly selected
3 classification algorithms (NB, 𝑘-NN, and C4.5) as base
classifier and cost-sensitive algorithm as metaclassifier in
the fuse stage. Selection of the number or kind of the base
classifiers and metaclassifier was not discussed. Therefore,
we will explore the diversity and quality of base classifier in
the future. The adoption of these strategies would improve
the prediction performance and reduce the training time of
stacking algorithm for imbalance problems.
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