
Original Citation:

Coupling different methods for overcoming the class imbalance problem

Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at
http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3156786 since:

10.1016/j.neucom.2015.01.068

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Padova

https://core.ac.uk/display/53519188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Coupling different methods for overcoming the class imbalance

problem

Loris Nanni, Carlo Fantozzi, Nicola Lazzarini

DEI, University of Padua, Via Gradenigo, 6 - 35131- Padova – Italy

Abstract. Many classification problems must deal with imbalanced datasets where one class –

the majority class – outnumbers the other classes. Standard classification methods do not provide

accurate predictions in this setting since classification is generally biased towards the majority class.

The minority classes are oftentimes the ones of interest (e.g., when they are associated with

pathological conditions in patients), so methods for handling imbalanced datasets are critical.

Using several different datasets, this paper evaluates the performance of state-of-the-art

classification methods for handling the imbalance problem in both binary and multi-class datasets.

Different strategies are considered, including the one-class and dimension reduction approaches, as

well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone

classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel

ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the

proposed ensemble does not need to be tuned separately for each dataset and outperforms all the

other tested approaches.

To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions

(training/test) are publicly available and have already been used in the open literature: as a

consequence, it is possible to report a fair comparison among different approaches in the literature.

Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available

at https://www.dei.unipd.it/node/2357.

2

Keywords: imbalanced dataset; ensemble of classifiers; support vector machine;

downsampling/oversampling.

1. Introduction

Highly imbalanced datasets are not uncommon in many pattern recognition tasks [3][4]. For

example, in medical datasets instances of diseased patients are typically rarer than instances of sane

individuals. Yet, it is the rare cases that attract the most interest, as detecting them enables patients

to be diagnosed and treated. Similar needs also appear in other real-world applications such as

anomaly detection, fault diagnosis, email foldering, face recognition, fraud detection.

In binary classification, the under-represented class is called the minority class or positive

class. The other class, which contains the vast majority of the members, is referred to as the

majority class or negative class. When the class distribution is asymmetric, regular classifiers –

such as support vector machines (SVMs) – tend to ignore data in the minority class and treat them

as noise, resulting in a class boundary that unduly benefits the majority class. In turn, this produces

a drop in precision when classifying the minority class [5].

A common approach in m-class learning, with m greater than 2, is the one-against-all method:

the original problem is decomposed into m binary classification instances, where each class is in

turn labeled as positive and the remaining m-1 as negative. Unfortunately, this method aggravates

the issue of imbalance in each of the m instances. As a consequence, ad-hoc systems for handling

multi-class imbalanced problems must be developed [4]. In the rich literature on imbalanced

classification, the most common methods employed [6-13] are undersampling of the majority

class, oversampling of the minority classes, ensemble methods, cost-sensitive learning,

asymmetric classification, dimension reduction.

The simplest approach to undersampling is to randomly select a fraction of records from the

majority class. Unfortunately, this may lead to a loss of useful information. An interesting

undersampling procedure is proposed in two methods [13] called EasyEnsemble and

3

BalanceCascade. In EasyEnsemble, the majority class is sampled into several independent subsets

that are used to train separate classifiers, whose outputs are finally combined to produce the

classification decision. In BalanceCascade, trained models are used to guide the sampling process

for succeeding classifiers. The system is more focused on training patterns that are hard to classify.

The main drawback of these preprocessing algorithms is that, again, potentially useful data from the

majority class may not be considered.

As far as oversampling is concerned, the basic approach is to randomly duplicate the records

in the minority classes to increase the cardinality of the classes themselves. A very popular

approach is SMOTE (Synthetic Minority Oversampling TEchnique), which increases diversity by

generating pseudo minority class data [14]. Several variants of SMOTE have been proposed: among

them, we cite Borderline-SMOTE [64], MSMOTE [15], and the recent MWMOTE [60]. In [59] the

imbalance problem is tackled by generating artificial instances, using an evolutionary framework, in

order to modify the class ratio in the original dataset. A further interesting approach is

RAMOBoost, introduced in [37] for binary classification. This technique oversamples the minority

class using an adaptive weight adjustment procedure that shifts the decision boundary towards the

difficult-to-learn examples from both the minority and majority classes.

Boosting (see also [20][21][41][58]) and other ensemble methods, such as Bagging

[17][18][19][22], have proved to be particularly robust at handling imbalanced data. A recent

review on ensemble methods applied to handle the class imbalance problem is [55]. AdaBoost [65],

for instance, is designed to reduce the bias towards the majority class by focusing on misclassified

training patterns [20], while Bagging introduces the concept of bootstrap aggregating [19] that

consists in training several classifiers with bootstrapped copies of the original training set.

Ensemble classifiers by themselves do not ameliorate the issue of imbalance if they are directly

applied on data: this is due to their accuracy-oriented design. However, their combination with other

techniques leads to positive results. Some examples are: SMOTEBoost [21], SMOTEBagging [22],

IIVotes [23][51], RUSBoost [41]. In these approaches, a data-preprocessing algorithm is applied

4

before bagging/boosting, hence a 3-step process can be identified: resampling, ensemble building,

and voting for the final classification. IRUS [24] is a method that couples random undersampling

and Bagging. The main idea behind it is to create bags where the majority class is so severely

under-sampled that the imbalance situation is reversed with respect to the original one. Each bag

contains all the positive patterns but only a few negatives: in this way, the focus of classification is

on the minority class, which can be successfully separated from the majority class.

Another group of classifiers is based on cost-sensitive learning. In this approach, a different

cost is assigned to false negative and false positive patterns. SVM-WEIGHT implements cost-

sensitive learning for SVM modeling [38]. It is implemented in LIBSVM1, so it is a very interesting

baseline. The cost-sensitive principle is also applied in [44] to the ELM classifier.

A number of recent studies have focused on the development of asymmetric classifiers [24].

The main difference with cost-sensitive classification is that asymmetric classifiers are not

exclusively focused on assigning a different weight to false negative and false positive patterns.

Chew et al. [26] propose an unbalanced SVM (called UnSVMs in their paper) to adjust the error

penalties of each class. Granular SVM is proposed in [27]: it resorts to a repetitive undersampling

method where information loss is minimized and the undersampling process maximizes the positive

effect of data cleaning.

Some researchers have focused on improving dimension reduction methods, such as

principal component analysis (PCA) and linear discriminant analysis (LDA), as a way of handling

imbalanced data sets [28][29][30]. The key idea behind many of these methods is the eigen

decomposition problem, which is tightly bound with data structure and class distribution, where the

latter is asymmetric when data are skewed. To offset the effects of imbalanced data when applying

PCA, an asymmetric principal component and discriminant analysis (APCDA) method was

successfully employed in [28]. It is also worth to mention the method proposed in [34], where the

1	 http://www.csie.ntu.edu.tw/~cjlin/libsvm/	

5

authors implement an asymmetric classifier based on partial least squares (PLS) [33] to generate a

new classification hyperplane and tackle the imbalance.

In recent years, some methods based on plain SVM have been proposed as well. For instance,

in [38] a method called VQSVM is introduced. It is well known that SVM selects a subset of

training patterns and uses them as the set of support vectors within the decision function. In

VQSVM, vector quantization replaces the original set of support vectors with a subset, so that the

number of instances belonging to the majority class is reduced.

In this paper, our aim is twofold.

1. We study the fusion among different approaches for handling the imbalance in the

datasets following the “ensemble of ensembles” strategy.

2. We propose a new ensemble method, called HardEnsemble, to overcome the problems

of existing approaches (e.g. parameters tuning, removal of potentially informative

patterns, generation of new outliers, etc.). HardEnsemble provides good performances

with both 2-class and multi-class datasets. Note that previous works were commonly

focused only one of the two types of datasets, while we cover both.

To validate our results we test many state-of-the-art approaches using more than 40 datasets.

In order to properly evaluate the results we employ a statistical test, the Wilcoxon signed-rank test,

as commonplace in the open literature when it is necessary compare algorithms over multiple

datasets [2].

2. Tested Approaches

The aim of this paper is to find a set of approaches that works well with several datasets: to be

precise, we want to determine whether some fusion of different classifiers for handling the

imbalance problem consistently outperforms each of the classifiers when taken in isolation. We

have tested methods based on different approaches, e.g. cost-sensitive learning, oversampling of the

6

minority classes, and undersampling of the majority class. In all cases, an SVM is used as the base

classifier unless differently specified.

In this section we give a technical summary of the approaches that have been previously

presented in the open literature and included in our investigation; a separate subsection is devoted to

each approach.

2.1 Asymmetric PLS Classifier (APLSC)

APLSC is an asymmetric partial least squares (PLS)	 classifier [34]	 which complexly

researches into the skewed distribution between classes and is prone to give high accuracy to the

minority class in the cost of poor performances on the majority class. It can be summarized into two

steps:

• feature extraction performed using PLS method [33] on normalized feature vectors;

• classification of compressed vectors by translated hyperplane, that is influenced by the

variance of low dimensional data.

2.2 One-class SVM (OCSVM)

One-class SVM is an adaptation, proposed by Scholkpof [40], of SVM to one-class

classification problem. SVM is usually constructed as a two-class algorithm, OCSVM can be

viewed as a regular two-class SVM where all training data belong to the first class and the origin

point of the space is the only member of the second class. The idea of OCSVM is to map the input

into high dimensional feature space using a kernel function and then define a hyperplane that best

separates the class with maximum margin. Given a training set , let us define as the

function which maps the data point from the input space to the feature space F. To separate

the data from the origin it is necessary to minimize:

7

constrained to:

where w is a vector perpendicular to the hyperplane and is the distance from the origin. As

usual in SVM, the slack variable allows for error in classification. The parameter ν ∈ (0, 1]

controls the tradeoff between the number of examples of the training set mapped as positive and the

complexity of the model defined by small values of .

2.3 K-Nearest neighbor data generation (GK)

GK is a method that generates artificial examples using k-nearest neighbors of samples in the

dataset [52]. This allows reducing the ratio between classes in imbalanced datasets. The first m

points are randomly chosen from the dataset, then to each of these points and for each space

direction (feature) a Gaussian distributed offset with zero mean is added. The standard deviation is

obtained by multiplying the input parameter s with the mean signed difference between the

considered point in the dataset and its i-th nearest neighbor. In this way the generated points follow

the local density properties of the original points from whom they are created.

2.4 Modified SMOTE (MSMOTE)

MSMOTE is a modified version of SMOTE [14], an algorithm that creates minority synthetic

samples by randomly interpolating pairs of closest neighbors which belong to the minority class.

MSMOTE divides minority class examples into three groups – safe, border and noise – based on

the label of their k-nearest neighbors. If all neighbors belong to the minority class, then the sample

is considered safe; if all neighbors belong to other classes, then the sample is noise, otherwise it is

treated as border. If the sample is safe then MSMOTE randomly chooses one of the k-nearest

neighbors, if it is border it selects the nearest neighbor, while for noise samples it does nothing. The

main improvement, with respect to the original SMOTE, is to reject latent noisy spots for the

creation of new synthetic samples.

	

8

2.5 RUSBoost

RUSBoost [41] is an algorithm that combines data sampling and boosting. It is a variant of

SMOTEBoost [21]. SMOTEBoost creates new synthetic examples for the minority class by using

SMOTE, while RUSBoost realizes a Random UnderSampling (RUS) by removing examples from

the majority class. RUSBoost is really similar to AdaBoost: first the weights of each example are

initialized to 1/m, where m is the number of total examples in training set, then for T times

(iterations) a training set is created by applying Random Undersampling on the original majority

set. Compared to SMOTEBoost, this algorithm is less computationally complex and time

consuming. Results in [41] show that on average RUSBoost significantly outperforms

SMOTEBoost.

2.6 EasyEnsemble

EasyEnsemble is a method proposed in [13] that aims at overcoming the main deficiency of

oversampling: many examples of the majority class are discarded and not considered. The idea

behind EasyEnsemble is to create an ensemble of T classifiers trained on different training sets. Let

us define P and N as the subsets of positive and negative examples, respectively: each training set is

created by using all positive examples and randomly selecting (with replacement) negative

instances from N. The number of negative selected examples is usually |P|, so that each training set

has a size of 2|P|. In this way, EasyEnsemble creates T balanced sub-problems, each of them used to

train an Adaboost classifier .

2.7 BalanceCascade

BalanceCascade is an ensemble learning method that relies on undersampling as the strategy

to deal with an imbalanced dataset while avoiding the already stated flaw of undersampling: it can

discard useful data. BalanceCascade addresses this issue by exploring majority class examples

ignored by the undersampling process. BalanceCascade employs Bagging [53] and uses Adaboost

as base learner: as a consequence, the final model can be considered an “ensemble of ensembles”.

9

The main idea behind BalanceCascade is as follows: if an example (subset of training

examples that belongs to the majority class) is correctly classified by , during the i-th iteration, it

is reasonable to speculate that x is “redundant” in N, because there already exists a classifier to

classify it. Hence, it is possible to remove it from N so that further classifiers do dot take it into

account. In [13]	 it	 is stated that BalanceCascade offers higher AUC, F-measure and G-mean than

almost all methods commonly used to manage data imbalance.

2.8 IRUS

The main idea behind IRUS (Inverse Random UnderSampling) [24] is to reverse the ratio

between majority and minority class cardinality by severely undersampling the majority class

multiple times. IRUS is an ensemble learning method that relies on bagging. Using only few

majority class examples leads to a high true positive rate (tpr) but also to a high false positive rate

(fpr) since the number of negative examples is much lower than the number of positives. By

combining classifiers obtained from different bags (trained on different datasets), the false positive

rate is controlled.

2.9 OverBagging

OverBagging [3] is a method for the management of class imbalance that merges bagging and

data preprocessing. The whole procedure can be described with 3 steps: resampling, construct

ensemble, fuse classification outputs. There are two ways to implement this solution. The first

procedure allows to increase the cardinality of the minority class by replication of original

examples, while the examples in the majority class can be all considered in each bag or can be

resampled to increase the diversity. A second way to oversample the minority class can be obtained

by resorting to the SMOTE algorithm: the resulting method, called SMOTEBagging [3], differs

from OverBagging in how bags are populated: first each class is resampled with replacement at

percentage 100%, then SMOTE is applied to the minority class with a resample rate of b%. The

ratio b changes during each iteration (it ranges from 10% and arrives to 100%, always being a

10

multiple of 10%). Minority instances are randomly selected by SMOTE to generate new synthetic

examples.

2.10 UnderBagging to OverBagging (UO)

UnderBagging to OverBagging [3] applies both undersampling and oversampling to a

Bagging ensemble learner. The way it operates is significantly different from both UnderBagging

and OverBagging, while it is more similar to SMOTEBagging. A resampling rate of b% is set in

each iteration (it starts from 10% in the first iteration and arrives to 100% in the last, always

increasing by 10%) and this value is used during both undersampling and oversampling to resample

the training set.

3. Proposed approach - HardEnsemble (HE_S)

HardEnsemble is a novel ensemble we propose in this paper as our contribution to the quest

for a classifier that is more robust and consistent when dealing with imbalanced datasets.

HardEnsemble leverages on two general observations that can be inferred from the literature on data

imbalance:

• Undersampling the majority class usually improves performance. However, this process can

drop useful data.

• Oversampling the minority class can increase performance, but if outliers are used to create new

training patterns the overall effectiveness may suffer.

Since both undersampling and oversampling may have drawbacks when used in isolation, in our

ensemble we integrate both. To be precise, HardEnsemble contains 50 classifiers that resort to

oversampling, and 100 that employ undersampling. The parameters are chosen empirically using

artificial datasets. For 10 times we generated 500 artificial patterns belonging to two classes (50 to

the minority class, 450 to the majority class); the patterns in each class follow a multinormal

distribution. The parameters of the ensemble were chosen to maximize performance over these

synthetic datasets. The number of 50 classifiers was chosen by observing that when we further

increased the figure, the overall performance remained the same:

11

• To oversample the minority class, the novel Critical SMOTE (CSMOTE) technique (see Section

3.1) is used. CSMOTE generates a set of artificial patterns whose dimension is equal to 5 times

the number of positive patterns. The cardinality of the minority class is constrained not to

overcome the cardinality of the majority class.

• To undersample the majority class, we apply the Reduced Reward-Punishment technique [43],

which removes those cases that lie in the overlapping regions of different classes. In this way,

the most informative patterns of the majority class are more considered in the final training sets.

The patterns of the minority class are not removed even if they are marked as outliers by the

algorithm.

In both cases, RUSBoost (with T=10 iterations) is adopted as the base classifier; the outputs

of the RUSBoost classifiers are combined by sum rule [56]. As in Reduced Reward-Punishment

Editing, only local criteria are used to select the patterns that are removed from the training set (see

[43] for details). Two weights are assigned to each pattern xi.

1. WR(i) is the number of times that the pattern xi contributes to the correct classification of

another pattern.

2. WP(i) is the number of times that the pattern xi contributes to the wrong classification of

another pattern.

Both WR(i) and WP(i) are linearly normalized between 0 and 1. The final weight, WF(i), is

calculated as WF(i)=α×WR(i)+(1- α)×(1-WP(i)). A fraction ep of patterns with highest weight are

then retained. There is also a third parameter, named k: this is the number of nearest neighbors of

each training pattern used to calculate the values of WR(i) and WP(i) (see [43] for details). For each

dataset, we consistently considered several sets of parameter settings, and a different training set

was built for each of them. To be more precise, we considered the training sets obtained using all

combinations of α ∈ {0, 0.25, 0.5, 0.75, 1}, ep ∈ {10%, 22.5%, 35%, 47.5%}, and k ∈ {1, 3, 5, 7,

9}. If a class of a dataset was completely emptied by a certain combination of parameters, then such

12

combination was not included. Notice that all the parameters of the proposed ensemble are fixed in

all the tests reported in Section 4, i.e., in the KEEL datasets, in the multi-class datasets, in the

strongly imbalanced datasets, and so on.

In Figure 1 we report the scheme of the proposed approach. It must be remarked that we

performed several tests with other base classifiers and sampling techniques: in the end we opted for

CSMOTE and RUSBoost since they work well in the maximum number of datasets (see the

experiments in Section 3). The number of artificial patterns generated by CSMOTE was also set

experimentally to a value that gives good results across the wider possible range of datasets.

Figure 1. Proposed approach.

Input Data

UnderSampling

For undersampling the majority

class, we apply an editing
algorithm, the Reduced Reward-

Punishment

OverSampling

	

For oversampling the minority
class, CSMOTE is used

Classification and Fusion

………

To combine the n RUSBoost

classifiers by sum rule

13

3.1 Critical SMOTE (CSMOTE)

In this paper we introduce an improved version of MSMOTE whom we call Critical SMOTE.

Following the idea of using only a subset of the minority class for building synthetic patterns, we

extract from the class two prominent subsets of patterns, categorized using the method proposed in

[42].

• Edge samples define the boundary of the class. These samples are enough to represent

the original data set if all classes in the data set are separated.

• Border samples are carefully selected in the overlapping region between adjacent

classes so as to obtain the best decision surface possible.

Once samples are extracted, the creation of new patterns is performed as in MSMOTE: if the

sample is of Border type, then CSMOTE randomly chooses one of the k-nearest neighbors; if it is

of Edge type, then CSMOTE selects the nearest neighbor.

4. Experimental results

We adopt the area under the Receiver Operating Characteristic curve (AUC) [1], the F-measure

[61], and the G-mean [61] as the performance measures in our experiments. The Receiver Operating

Characteristic (ROC) curve is a plot of the sensitivity vs. false positive rate (1 minus specificity).

The Area Under the Curve (AUC) can be interpreted as the probability that the classifier will assign

a lower score to a randomly chosen positive sample rather than to a randomly chosen negative

sample. The F-measure is the harmonic mean of recall and precision, and it is often used in

document retrieval. It is defined as 2 × precision × recall / (precision + recall). The G-mean is given

by:

14

where TNrate is the specificity rate (true negative rate) and TPrate is the sensitivity rate (true

positive rate).

4.1 Tests with 2-class datasets

To validate our proposed approach, HardEnsemble, and compare it to existing classifiers, we

resort to the same datasets tested in [3]. Table 1 summarizes the characteristics of those datasets.

As in [3], a 5-fold cross-validation is adopted as the testing protocol. The folds (i.e., the dataset

partitions) are publicly available in the KEEL-dataset repository2 and serve to make a fair

comparison possible.

2	 http://sci2s.ugr.es/keel/datasets.php	

15

 # Instances # Attributes %min %maj IR
Abalone9vs18 731 8 5.65 94.25 16.68
Abalone19 4174 8 0.77 99.23 128.87
Ecoli1 336 7 22.92 77.08 3.36
Ecoli2 336 7 15.48 84.52 5.46
Ecoli3 336 7 10.88 89.12 8.19
Ecoli4 336 7 6.74 93.26 13.84
Ecoli0137vs26 281 7 2.49 97.51 39.15
Ecoli0vs1 220 7 35.00 65.00 1.86
Glass0 214 9 32.71 67.29 2.01
Glass1 214 9 35.51 64.49 1.82
Glass2 214 9 8.78 91.22 10.39
Glass4 214 9 6.07 93.93 15.47
Glass5 214 9 4.20 95.80 22.81
Glass6 214 9 13.55 86.45 6.38
Glass0123vs456 214 9 23.83 76.17 3.19
Glass016vs2 192 9 8.89 91.11 10.29
Glass016vs5 184 9 4.89 95.11 19.44
Haberman 306 3 27.42 73.58 2.68
Iris0 150 4 33.33 66.67 2.00
NewThyroid1 215 5 16.28 83.72 5.14
NewThyroid2 215 5 16.89 83.11 4.92
PageBlocks0 5472 10 10.23 89.77 8.77
PageBlocks13vs2 472 10 5.93 94.07 15.85
Pima 768 8 34.84 66.16 1.90
Segment0 2308 19 14.26 85.74 6.01
Shuttle0vs4 1829 9 6.72 93.28 13.87
Shuttle2vs4 129 9 4.65 95.35 20.5
Vehicle0 846 18 23.64 76.36 3.23
Vehicle1 846 18 28.37 71.63 2.52
Vehicle2 846 18 28.37 71.63 2.52
Vehicle3 846 18 28.37 71.63 2.52
Vowel0 988 13 9.01 90.99 10.10
Wisconsin 683 9 35.00 65.00 1.86
Yeast1 1484 8 28.91 71.09 2.46
Yeast3 1484 8 10.98 89.02 8.11
Yeast4 1484 8 3.43 96.57 28.41
Yeast5 1484 8 2.96 97.04 32.78
Yeast6 1484 8 2.49 97.51 39.15
Yeast05679vs4 528 8 9.66 90.34 9.35
Yeast1289vs7 947 8 3.17 96.83 30.56
Yeast1458vs7 693 8 4.33 95.67 22.10
Yeast1vs7 459 8 6.72 93.28 13.87
Yeast2vs4 514 8 9.92 90.08 9.08
Yeast2vs8 482 8 4.15 95.85 23.10

Table 1. Summary description of the binary datasets used in this study.

Our first tests were performed to motivate our idea of adopting several instances of the

same classifier in the ensemble. The results show that if 50 SMOTEs are combined, the fusion

(by sum rule) outperforms (with p-value 0.10 using Wilcoxon signed-rank test [2]) a stand-alone

16

SMOTE. The same conclusion is also reached for RUSBoost and GK.

The use of CSMOTE instead of SMOTE or MSMOTE also deserves some motivation.

CSMOTE is very useful when there are outliers in the datasets. Using the datasets reported in

Table 1 and setting the number of outliers3 to 20%, CSMOTE outperforms SMOTE with p-

value<0.01. When the number of outliers is set to 33%, CSMOTE outperforms MSMOTE as

well (with p-value 0.05). When the number of outliers is limited, the three techniques perform

equally well. It is important to stress in our choice of CSMOTE that a system that is robust to

outliers is very important in some applications, for example, in stream data [62] or data mining

in healthcare [63]. We have also tested the recent MWMOTE [60] technique using the original

code shared by the authors and found that it does not outperform SMOTE (using SVM as base

classifier).

After performing the first tests, we moved on to compare several different methods

(including our proposed method HardEnsemble) for handling imbalanced datasets. We

performed many experiments using all the methods detailed in Section 2, but here we only

report the methods that performed the best in our set of experiments. The methods are listed

below, and Table 2 summarizes their performance indicators:

• SVM: a plain SVM, with both the linear and the radial basis function kernel4 evaluated.

• SV_W: SVM-WEIGHT, where the parameters are overfitted using the entire dataset. We can

consider this as an upper bound of the performance that can be obtained with SVM-

WEIGHT.

• CS: 50 CSMOTEs combined by sum rule, where the SVM parameters are chosen separately

using the training data in each dataset4.

• RB: 50 RUSBoosts combined by sum rule.

• B_C: fusion by sum rule of CS and RB.

3	 To	 simulate	 the	 presence	 of	 outliers,	 we	 change	 the	 labels	 of	 a	 subset	 of	 the	 training	 set.	
4 Its parameters are chosen, by a ten-fold cross validation using the training data, separately in each dataset.

17

• B_Cov: similar to B_C but the parameters are overfitted using the entire dataset. Again, this

gives an upper bound on the performance that can be obtained with the ensemble.

• HE_S: our proposed HardEnsemble classifier, as described in Section 3.

• HE_A: HardEnsemble, where RUSBoost is replaced by an Adaboost of 50 neural networks

as the base classifier.

• HE_FUS: fusion by sum rule5 of HE_S and HE_A.

• Best: best result (separately chosen for each dataset) as reported in [3].

The most interesting fact emerging from our tests is that no single stand-alone method

(including, of course, those described in Section 2 and not listed here because of their lower

performance in the tests) outperforms SVM with p-value <0.10. Surprisingly, many surveys

(e.g., [3][4]) report the opposite result: namely, that methods for handling imbalanced datasets

outperform the base classifier. In our opinion this is due to the fact that other authors use a weak

base classifier (e.g., a decision tree) while we use a strong one.

5 before the fusion the scores of each method are normalized to mean 0 and standard deviation 1

18

AUC SVM SV_W CS RB B_Cov B_C HE_S HE_A HE_FUS Best
Abalone9vs18 0.9673	 0.9762	 0.9732	 0.9583	 0.9765	 0.9731	 0.9711	 0.9661	 0.9699	 0.766
Abalone19 0.7252	 0.7467	 0.7321	 0.7197	 0.7659	 0.7325	 0.7902	 0.8303	 0.8338	 0.720
Ecoli1 0.9597	 0.9592	 0.9587	 0.9594	 0.9646	 0.9599	 0.9567	 0.9605	 0.9607	 0.919
Ecoli2 0.9648	 0.9651	 0.9651	 0.9678	 0.9698	 0.9669	 0.9643	 0.9681	 0.9701	 0.908
Ecoli3 0.9513	 0.9406	 0.9425	 0.9468	 0.9597	 0.9423	 0.9499	 0.9480	 0.9511	 0.907
Ecoli4 0.9978	 0.9975	 0.9895	 0.9802	 0.9986	 0.9892	 0.9911	 0.9883	 0.9901	 0.941
Ecoli0137vs26 0.9567	 0.9585	 0.9589	 0.9419	 0.9622	 0.9586	 0.9610	 0.9473	 0.9588	 0.848
Ecoli0vs1 0.9930	 0.9927	 0.9935	 0.9950	 0.9947	 0.9936	 0.9945	 0.9941	 0.9949	 0.983
Glass0 0.8556	 0.8658	 0.8634	 0.8675	 0.8681	 0.8674	 0.8657	 0.8593	 0.8697	 0.862
Glass1 0.7934	 0.7954	 0.7887	 0.7889	 0.7986	 0.7872	 0.7910	 0.8090	 0.8031	 0.820
Glass2 0.8759	 0.8957	 0.8687	 0.8856	 0.8807	 0.8849	 0.8803	 0.8545	 0.8727	 0.779
Glass4 0.9800	 0.9704	 0.9745	 0.9652	 0.9727	 0.9631	 0.9834	 0.9828	 0.9871	 0.937
Glass5 0.9981	 0.9988	 0.9983	 0.9852	 1.0000	 0.9931	 0.9985	 0.9986	 0.9985	 0.985
Glass6 0.9694	 0.9218	 0.9571	 0.9744	 0.9800	 0.9681	 0.9798	 0.9811	 0.9806	 0.936
Glass0123vs456 0.9805	 0.9783	 0.9886	 0.9827	 0.9888	 0.9852	 0.9868	 0.9881	 0.9903	 0.945
Glass016vs2 0.8528	 0.8796	 0.8233	 0.8778	 0.8836	 0.8636	 0.8601	 0.8088	 0.8217	 0.753
Glass016vs5 0.9833	 0.9976	 0.9890	 0.9718	 0.9979	 0.9896	 0.9892	 0.9899	 0.9897	 0.988
Haberman 0.7098	 0.6985	 0.6748	 0.7043	 0.7116	 0.6941	 0.7084	 0.6975	 0.7206	 0.668
Iris0 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 0.990
NewThyroid1 1.0000	 1.0000	 1.0000	 0.9991	 1.0000	 1.0000	 1.0000	 0.9998	 1.0000	 0.988
NewThyroid2 1.0000	 1.0000	 1.0000	 0.9981	 1.0000	 1.0000	 0.9993	 0.9993	 0.9997	 0.985
PageBlocks0 0.9797	 0.9811	 0.9804	 0.9821	 0.9835	 0.9821	 0.9812	 0.9913	 0.9910	 0.958
PageBlocks13vs2 0.9985	 0.9979	 0.9997	 0.9997	 0.9998	 1.0000	 0.9982	 1.0000	 1.0000	 0.997
Pima 0.8372	 0.8306	 0.8394	 0.8255	 0.8412	 0.8399	 0.8389	 0.8320	 0.8391	 0.763
Segment0 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 0.996
Shuttle0vs4 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.000
Shuttle2vs4 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.000
Vehicle0 0.9985	 0.9986	 0.9990	 0.9981	 0.9986	 0.9995	 0.9961	 0.9985	 0.9986	 0.976
Vehicle1 0.9302	 0.9385	 0.9193	 0.9219	 0.9314	 0.9192	 0.9137	 0.9027	 0.9108	 0.800
Vehicle2 0.9983	 0.9987	 0.9984	 0.9976	 0.9990	 0.9984	 0.9987	 0.9987	 0.9984	 0.985
Vehicle3 0.9113	 0.9175	 0.9033	 0.9049	 0.9135	 0.9031	 0.8956	 0.8938	 0.8962	 0.802
Vowel0 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 0.991
Wisconsin5 0.9952	 0.9952	 0.9958	 0.9916	 0.9951	 0.9959	 0.9956	 0.9937	 0.9958	 0.978
Yeast1 0.7963	 0.8001	 0.7964	 0.8018	 0.8072	 0.7983	 0.8033	 0.7996	 0.8052	 0.739
Yeast3 0.9741	 0.9711	 0.9739	 0.9709	 0.9741	 0.9733	 0.9741	 0.9744	 0.9744	 0.944
Yeast4 0.8796	 0.8821	 0.9034	 0.8950	 0.9092	 0.9033	 0.8962	 0.9091	 0.9096	 0.860
Yeast5 0.9897	 0.9904	 0.9898	 0.9890	 0.9900	 0.9905	 0.9909	 0.9928	 0.9922	 0.965
Yeast6 0.9235	 0.9444	 0.9434	 0.9209	 0.9496	 0.9436	 0.9461	 0.9393	 0.9446	 0.877
Yeast05679vs4 0.8804	 0.8864	 0.8728	 0.8816	 0.8883	 0.8780	 0.8732	 0.8816	 0.8875	 0.818
Yeast1289vs7 0.7666	 0.8018	 0.8128	 0.7590	 0.8235	 0.8128	 0.8211	 0.8057	 0.8122	 0.733
Yeast1458vs7 0.6816	 0.7096	 0.6974	 0.7095	 0.7257	 0.7116	 0.7014	 0.7031	 0.7088	 0.626
Yeast1vs7 0.7957	 0.8628	 0.8542	 0.8155	 0.8585	 0.8549	 0.8520	 0.8491	 0.8581	 0.785
Yeast2vs4 0.9756	 0.9809	 0.9808	 0.9738	 0.9815	 0.9803	 0.9789	 0.9825	 0.9833	 0.941
Yeast2vs8 0.8249	 0.8630	 0.8519	 0.8342	 0.8774	 0.8514	 0.8122	 0.8255	 0.8312	 0.833
MeanAUC 0.9239 0.9293 0.9262 0.9237 0.9346 0.9284 0.9293 0.9283 0.9318 0.887

19

F-MEASURE SVM SV_W CS RB B_Cov B_C HE_S HE_A HE_FUS
Abalone9vs18 0.5489	 0.6034	 0.5852	 0.5011	 0.6025	 0.5850	 0.5748	 0.5426	 0.5647	
Abalone19 0.0562	 0.0490	 0.0314	 0.0316	 0.0448	 0.0708	 0.0428	 0.0738	 0.0762	
Ecoli1 0.7460	 0.7465	 0.7388	 0.7458	 0.7794	 0.7518	 0.7266	 0.7581	 0.7493	
Ecoli2 0.7694	 0.7843	 0.7787	 0.7998	 0.8206	 0.7951	 0.7782	 0.7991	 0.8140	
Ecoli3 0.5409	 0.4799	 0.4976	 0.5239	 0.5952	 0.4986	 0.5358	 0.5313	 0.5444	
Ecoli4 0.7664	 0.7704	 0.7012	 0.6435	 0.7707	 0.7118	 0.7132	 0.6934	 0.7103	
Ecoli0137vs26 0.2931	 0.2983	 0.2959	 0.2508	 0.3104	 0.2965	 0.3051	 0.2672	 0.2955	
Ecoli0vs1 0.9748	 0.9705	 0.9864	 0.9985	 0.9988	 0.9872	 1.0000	 0.9955	 0.9972	
Glass0 0.5950	 0.6640	 0.6467	 0.6654	 0.6803	 0.6688	 0.6553	 0.6172	 0.6864	
Glass1 0.6550	 0.6609	 0.6139	 0.6226	 0.6846	 0.6098	 0.6273	 0.7586	 0.7098	
Glass2 0.4158	 0.4953	 0.3863	 0.4556	 0.4360	 0.4538	 0.4358	 0.3287	 0.4058	
Glass4 0.5539	 0.5002	 0.5253	 0.4755	 0.5130	 0.4616	 0.5744	 0.5754	 0.6054	
Glass5 0.8229	 0.8287	 0.8338	 0.7209	 0.8401	 0.7945	 0.8268	 0.8335	 0.8357	
Glass6 0.7199	 0.3309	 0.6296	 0.7643	 0.8101	 0.7191	 0.8064	 0.8230	 0.8127	
Glass0123vs456 0.8064	 0.7748	 0.8680	 0.8208	 0.8807	 0.8427	 0.8487	 0.8736	 0.8816	
Glass016vs2 0.4405	 0.5444	 0.3279	 0.5361	 0.5620	 0.4822	 0.4689	 0.2667	 0.3235	
Glass016vs5 0.7257	 0.8365	 0.7756	 0.6364	 0.8487	 0.7814	 0.7761	 0.7809	 0.7811	
Haberman 0.4883	 0.4249	 0.3011	 0.4556	 0.4907	 0.4019	 0.4721	 0.4161	 0.5452	
Iris0 1.0000	 0.9949	 1.0000	 0.9958	 1.0000	 0.9958	 1.0000	 0.9947	 0.9936	
NewThyroid1 0.9574	 0.9417	 0.9421	 0.9393	 0.9454	 0.9435	 0.9529	 0.9504	 0.9519	
NewThyroid2 0.9503	 0.9358	 0.9377	 0.9349	 0.9394	 0.9450	 0.9461	 0.9315	 0.9396	
PageBlocks0 0.6849	 0.7029	 0.6848	 0.6961	 0.7099	 0.7012	 0.6919	 0.7677	 0.7669	
PageBlocks13vs2 0.7725	 0.7702	 0.7922	 0.7926	 0.7959	 0.7974	 0.7817	 0.7888	 0.7948	
Pima 0.6684	 0.6153	 0.6778	 0.5776	 0.6841	 0.6804	 0.6797	 0.6290	 0.6743	
Segment0 0.9957	 0.9875	 0.9867	 0.9923	 0.9826	 0.9982	 0.9969	 0.9891	 0.9832	
Shuttle0vs4 0.9934	 1.0000	 1.0000	 1.0000	 0.9972	 1.0000	 1.0000	 0.9912	 1.0000	
Shuttle2vs4 0.9264	 0.9255	 0.9347	 0.9299	 0.9257	 0.9287	 0.9350	 0.9349	 0.9369	
Vehicle0 0.9193	 0.9262	 0.9351	 0.9182	 0.9189	 0.9374	 0.9031	 0.9219	 0.9292	
Vehicle1 0.8203	 0.8796	 0.7497	 0.7590	 0.8364	 0.7433	 0.6986	 0.6277	 0.6858	
Vehicle2 0.9391	 0.9468	 0.9510	 0.9305	 0.9561	 0.9374	 0.9442	 0.9464	 0.9444	
Vehicle3 0.7207	 0.7618	 0.6710	 0.6798	 0.7467	 0.6625	 0.6142	 0.6085	 0.6259	
Vowel0 0.9488	 0.9519	 0.9527	 0.9447	 0.9538	 0.9434	 0.9470	 0.9453	 0.9460	
Wisconsin5 0.9599	 0.9607	 0.9673	 0.9289	 0.9676	 0.9643	 0.9758	 0.9573	 0.9763	
Yeast1 0.5382	 0.5591	 0.5328	 0.5700	 0.6065	 0.5485	 0.5755	 0.5521	 0.5969	
Yeast3 0.6791	 0.6537	 0.6770	 0.6630	 0.6798	 0.6696	 0.6750	 0.6801	 0.6755	
Yeast4 0.2410	 0.2481	 0.3144	 0.2860	 0.3372	 0.3146	 0.2916	 0.3334	 0.3364	
Yeast5 0.4483	 0.4500	 0.4420	 0.4446	 0.4444	 0.4457	 0.4504	 0.4605	 0.4592	
Yeast6 0.2818	 0.3584	 0.3488	 0.2712	 0.3749	 0.3540	 0.3640	 0.3357	 0.3558	
Yeast05679vs4 0.4629	 0.4936	 0.4304	 0.4744	 0.5096	 0.4541	 0.4325	 0.4706	 0.5061	
Yeast1289vs7 0.1224	 0.2082	 0.2343	 0.1049	 0.2595	 0.2357	 0.2534	 0.2140	 0.2340	
Yeast1458vs7 0.1469	 0.2033	 0.1786	 0.1997	 0.2329	 0.2054	 0.1868	 0.1882	 0.1984	
Yeast1vs7 0.1493	 0.4100	 0.3785	 0.2248	 0.3914	 0.3747	 0.3672	 0.3517	 0.3895	
Yeast2vs4 0.6815	 0.7192	 0.7162	 0.6636	 0.7197	 0.7161	 0.6937	 0.7274	 0.7352	
Yeast2vs8 0.6163	 0.8745	 0.8032	 0.6831	 0.9606	 0.7889	 0.5334	 0.6208	 0.6623	
Mean 0.6487	 	 	 	 	 0.6646	 	 	 	 	 0.6537	 	 	 	 	 0.6421	 	 	 	 	 0.6942	 	 	 	 	 0.6636	 	 	 	 	 0.6604	 	 	 	 	 0.6558	 	 	 	 	 0.6736	

20

G-MEAN SVM SV_W CS RB B_Cov B_C HE_S HE_A HE_FUS
Abalone9vs18 0.8033	 0.9175	 0.9296	 0.7638	 0.9522	 0.9038	 0.8706	 0.8021	 0.8640	
Abalone19 0.4117	 0.4729	 0.4063	 0.4188	 0.5193	 0.4414	 0.4025	 0.5739	 0.5835	
Ecoli1 0.8102	 0.9076	 0.8519	 0.9230	 0.9178	 0.9432	 0.9294	 0.8839	 0.8725	
Ecoli2 0.8894	 0.9067	 0.8788	 0.8532	 1.0000	 0.9665	 0.9475	 0.8466	 0.9071	
Ecoli3 0.8259	 0.7298	 0.7835	 0.8300	 0.9616	 0.7696	 0.8082	 0.8835	 0.9108	
Ecoli4 0.9867	 1.0000	 0.8871	 0.8698	 0.9148	 1.0000	 0.9115	 0.8330	 0.8362	
Ecoli0137vs26 0.8159	 0.7913	 0.7560	 0.6538	 0.8095	 0.7501	 0.8019	 0.6883	 0.7179	
Ecoli0vs1 0.8813	 0.9116	 1.0000	 0.9908	 1.0000	 1.0000	 0.9924	 1.0000	 0.9317	
Glass0 0.7056	 0.8062	 0.7821	 0.7223	 0.8109	 0.7267	 0.7226	 0.7358	 0.7352	
Glass1 0.7033	 0.6772	 0.6098	 0.6844	 0.7725	 0.6762	 0.6325	 0.8580	 0.6963	
Glass2 0.8805	 1.0000	 0.8098	 0.9524	 0.8963	 0.9017	 0.9329	 0.6344	 0.8073	
Glass4 0.8935	 0.7405	 0.8341	 0.8542	 0.8100	 0.8041	 0.9026	 0.9051	 1.0000	
Glass5 0.9835	 0.9592	 1.0000	 0.7748	 0.9395	 0.9635	 0.9585	 0.9335	 1.0000	
Glass6 0.7686	 0.3205	 0.7206	 0.8327	 0.9068	 0.8208	 0.8340	 0.9834	 0.8557	
Glass0123vs456 0.8916	 0.8291	 0.8505	 0.9041	 0.9452	 0.9736	 0.8304	 0.9916	 0.9156	
Glass016vs2 0.9105	 1.0000	 0.6913	 0.9924	 1.0000	 0.9690	 0.9674	 0.5102	 0.6824	
Glass016vs5 0.8268	 1.0000	 1.0000	 0.7131	 1.0000	 1.0000	 1.0000	 0.9475	 1.0000	
Haberman 0.6592	 0.5609	 0.4031	 0.6326	 0.5833	 0.5390	 0.5580	 0.4797	 0.7149	
Iris0 1.0000	 0.9202	 1.0000	 0.9256	 1.0000	 0.9373	 1.0000	 0.9233	 0.9448	
NewThyroid1 1.0000	 0.9406	 0.9272	 0.9694	 0.9474	 0.9867	 1.0000	 1.0000	 1.0000	
NewThyroid2 1.0000	 0.9180	 0.8964	 1.0000	 0.9553	 1.0000	 1.0000	 0.9762	 0.9367	
PageBlocks0 0.7777	 0.9217	 0.8609	 0.8491	 0.8288	 0.8169	 0.8566	 0.9639	 0.9469	
PageBlocks13vs2 0.8859	 0.9383	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 0.9760	 1.0000	
Pima 0.7317	 0.6723	 0.7719	 0.6290	 0.6937	 0.6840	 0.7780	 0.7228	 0.7122	
Segment0 1.0000	 0.9311	 0.9908	 1.0000	 0.9195	 1.0000	 1.0000	 1.0000	 0.9228	
Shuttle0vs4 0.9641	 1.0000	 1.0000	 1.0000	 0.9158	 1.0000	 1.0000	 0.9114	 1.0000	
Shuttle2vs4 0.9278	 0.9510	 1.0000	 0.9797	 0.9456	 0.9387	 1.0000	 1.0000	 1.0000	
Vehicle0 0.9195	 1.0000	 1.0000	 0.9090	 0.9168	 1.0000	 1.0000	 0.9733	 1.0000	
Vehicle1 0.9039	 1.0000	 0.9126	 0.8238	 1.0000	 0.8537	 0.7829	 0.7836	 0.8886	
Vehicle2 0.9411	 1.0000	 1.0000	 0.9197	 1.0000	 0.9537	 0.9239	 1.0000	 1.0000	
Vehicle3 0.8589	 0.8633	 0.8224	 0.7645	 0.8992	 0.7704	 0.7031	 0.7566	 0.8202	
Vowel0 1.0000	 1.0000	 1.0000	 0.9801	 1.0000	 0.9728	 0.9872	 0.9776	 0.9219	
Wisconsin5 0.9030	 0.9662	 0.9686	 1.0000	 1.0000	 0.9067	 1.0000	 0.9969	 1.0000	
Yeast1 0.6591	 0.6622	 0.5909	 0.6450	 0.7476	 0.5882	 0.6232	 0.6530	 0.7103	
Yeast3 0.9511	 0.8792	 0.8332	 0.9485	 1.0000	 0.9052	 0.8827	 0.8711	 0.8852	
Yeast4 0.6312	 0.6073	 0.7515	 0.7087	 0.8456	 0.7357	 0.6424	 0.7527	 0.7766	
Yeast5 0.9678	 0.9932	 0.8808	 1.0000	 0.8859	 0.9451	 0.9240	 1.0000	 0.9969	
Yeast6 0.7445	 0.9289	 0.8369	 0.5998	 0.9701	 0.9347	 0.9641	 0.8178	 0.8530	
Yeast05679vs4 0.7365	 0.7655	 0.6720	 0.7945	 0.8695	 0.6770	 0.6813	 0.7536	 0.8890	
Yeast1289vs7 0.3406	 0.5940	 0.6850	 0.3155	 0.7097	 0.6353	 0.7118	 0.5813	 0.6676	
Yeast1458vs7 0.4113	 0.6311	 0.5875	 0.6046	 0.7219	 0.6924	 0.5887	 0.5560	 0.5846	
Yeast1vs7 0.2973	 0.8491	 0.7610	 0.3988	 0.7361	 0.7394	 0.7282	 0.6637	 0.7148	
Yeast2vs4 0.9106	 0.9443	 0.9595	 0.9036	 0.9553	 0.9906	 0.8852	 1.0000	 0.9593	
Yeast2vs8 0.6986	 1.0000	 0.9532	 0.8175	 1.0000	 0.8566	 0.5665	 0.6600	 0.7376	
Mean 0.8139	 	 	 	 	 0.8502	 	 	 	 	 0.8377	 	 	 	 	 0.8148	 	 	 	 	 0.8910	 	 	 	 	 0.8561	 	 	 	 	 0.8462	 	 	 	 	 0.8355	 	 	 	 	 0.8614	

Table 2. AUC, F-measure and G-mean of several classifiers and ensembles compared with the

state of the art. The best performing classifier (with the exception of overfitted classifiers) for

each dataset is marked in bold.

By examining the results (considering the AUC) in Table 2, the following observations can be

made.

21

• SVM is outperformed with p-value<0.05 by SVM_W, B_Cov, HE_S, and HE_FUS.

• HE_FUS outperforms B_C with p-value<0.10. The only approach that outperforms

HE_FUS with p-value <0.10 is B_Cov, but it is an overfitted system that is only

meaningful as an upper bound.

• The performance obtained in [3] is much lower than that obtained in this work. This is

due to the different base classifiers tested in the two papers (a decision tree in [3] vs. an

SVM here). Moreover, AUC in [3] is calculated in a different way (see [3] for details).

All in all, HE_FUS is the best choice since it has no parameters6 (except the SVM

parameters in the base SVM) to be chosen for each dataset, while other approaches (e.g.,

SMOTE and RUSBoost) require a fine-tuning phase in order to obtain the best results. In all the

tested datasets, we have used the parameters reported in Section 3.

Using the F-measure and G-mean, we have compared all the methods detailed in Section 2

and the methods reported in Table 2. Similar conclusions to those found using AUC are drawn:

in particular, HE_FUS outperforms with p-value <0.10 all the other approaches except B_Cov

(an overfitted system that is only meaningful as an upper bound). A recent paper ([66]) reports

the G-mean obtained by several baseline approaches (e.g., SMOTE, Cost-sensitive SVM,

SMOTEBoost, RUSBoost, SMOTEBagging, and UnderBagging) and two novel ensembles

proposed by the authors of that paper. Our ensemble performs similarly to the best approaches

reported in [66] and outperforms the baseline approaches. However, in all tests we always use

the same parameters for building our ensembles, while in [66] the parameters are optimized for

each dataset.

In Table 3 we report the AUC obtained by some variants of HE-FUS.

• HE_WFUS: a weighted sum rule between HE_S and HE_A where the weight of HE_S is

2 and the weight of HE_A is 1.

• HE_2WFUS: a weighted sum rule similar to HE_WFUS, but the weight of the classifiers

6	 All	 the	 parameters	 of	 CSMOTE,	 RUSBoost,	 and	 of	 the	 editing	 method	 are	 fixed	 in	 our	 ensemble	 for	 all	 the	 datasets.

22

trained using the training sets built by CSMOTE is halved.

• HE_WFUS_SUM: a weighted sum rule between HE_S, HE_A, and SVM where the

weight of HE_S is 2 and the weight of HE_A and SVM is 1.

The last two columns of Table 3 report the F-measure/G-mean obtained by the best

ensemble. On average, the best results are obtained by HE_WFUS_SVM. However, there are no

statistical differences among the three ensembles.

 HE_FUS HE_WFUS HE_WFUS_SVM F-Measure
(HE_WFUS_SVM)

G-Mean
(HE_WFUS_SVM)

Abalone9vs18 0.9699 0.9692 0.9705 0.5719 0.9139
Abalone19 0.8338 0.8345 0.8345 0.0772 0.6458
Ecoli1 0.9607 0.9577 0.9617 0.7622 0.8937
Ecoli2 0.9701 0.9673 0.9683 0.8049 0.9266
Ecoli3 0.9511 0.9524 0.9552 0.5666 0.8660
Ecoli4 0.9901 0.9897 0.9921 0.7257 0.9414
Ecoli0137vs26 0.9588 0.9562 0.9563 0.2911 0.7528
Ecoli0vs1 0.9949 0.9940 0.9936 0.9861 0.9795
Glass0 0.8697 0.8691 0.8712 0.6971 0.7734
Glass1 0.8031 0.8011 0.7966 0.6700 0.7168
Glass2 0.8727 0.8732 0.8727 0.4023 0.7974
Glass4 0.9871 0.9842 0.9850 0.5891 0.9516
Glass5 0.9985 1.0000 0.9976 0.8267 0.9902
Glass6 0.9806 0.9796 0.9811 0.8198 0.9386
Glass0123vs456 0.9903 0.9898 0.9898 0.8813 0.9486
Glass016vs2 0.8217 0.8367 0.8390 0.3866 0.7566
Glass016vs5 0.9897 0.9914 0.9914 0.7933 0.9795
Haberman 0.7206 0.7200 0.7186 0.5301 0.6794
Iris0 1.0000 1.0000 1.0000 1.0000 1.0000
NewThyroid1 1.0000 1.0000 1.0000 0.9483 0.9888
NewThyroid2 0.9997 0.9992 0.9992 0.9367 0.9859
PageBlocks0 0.9910 0.9883 0.9886 0.7521 0.9555
PageBlocks13vs2 1.0000 1.0000 0.9996 0.7879 0.9818
Pima 0.8391 0.8418 0.8415 0.6917 0.7577
Segment0 1.0000 0.9999 0.9999 0.9880 0.9972
Shuttle0vs4 1.0000 0.9999 0.9999 1.0000 1.0000
Shuttle2vs4 1.0000 1.0000 1.0000 0.9333 0.9960
Vehicle0 0.9986 0.9970 0.9979 0.9174 0.9718
Vehicle1 0.9108 0.9111 0.9168 0.7276 0.8567
Vehicle2 0.9984 0.9982 0.9982 0.9398 0.9760
Vehicle3 0.8962 0.8957 0.9058 0.6877 0.8303
Vowel0 1.0000 0.9999 0.9999 0.9476 0.9944
Wisconsin5 0.9958 0.9950 0.9951 0.9616 0.9775
Yeast1 0.8052 0.8051 0.8061 0.5964 0.7144
Yeast3 0.9744 0.9744 0.9748 0.6832 0.9218
Yeast4 0.9096 0.9078 0.9076 0.3309 0.8143
Yeast5 0.9922 0.9914 0.9914 0.4529 0.9621
Yeast6 0.9446 0.9444 0.9450 0.3576 0.8767
Yeast05679vs4 0.8875 0.8813 0.8835 0.4824 0.8001
Yeast1289vs7 0.8122 0.8153 0.8157 0.2403 0.6498
Yeast1458vs7 0.7088 0.7042 0.7047 0.1921 0.5954
Yeast1vs7 0.8581 0.8577 0.8577 0.3890 0.7621
Yeast2vs4 0.9833 0.9807 0.9807 0.7124 0.9307
Yeast2vs8 0.8312 0.8251 0.8295 0.6514 0.7510
Mean values 0.9318 0.9314 0.9321 0.6748 0.8750

Table 3. AUC, F-measure, and G-mean of some variants of the proposed ensemble.

23

In Table 4 we compare among them the methods tested in this paper (using the datasets tested in

the previous table 3). Three symbols are used in the table:

• “L” indicates that the method indicated in the row exhibits lower performance, with p-value

<0.10, than the method in the column (it is the “loser”);

• “ND” indicates that there is no statistically significant difference between the performances

of the two methods;

• “W” marks the fact that the method in the row obtains higher performance, with p-value

<0.10 (it is the “winner”).

The approaches that never lose when combined with the other approaches are GK, CSMOTE,

RUSBoost, and IRUS. The performances of these methods are very similar, and our ensemble

outperforms them with p-value <0.10.

 APLSC OCSVM GK MSMOTE CSMOTE RUSBoost EasyEnsemble BalanceCascade IRUS OverBagging UO
APLSC -‐-‐-‐-‐-‐	 W	 L	 L	 L	 L	 L	 L	 L	 L	 L	
OCSVM -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 L	 L	 L	 L	 L	 L	 L	 L	 L	
GK -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 W	 ND	 ND	 W	 W	 ND	 W	 W	
MSMOTE -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 L	 L	 ND	 W	 ND	 W	 ND	
CSMOTE -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 ND	 W	 W	 ND	 W	 W	
RUSBoost -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 W	 W	 ND	 W	 W	
EasyEnsemble -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 W	 L	 ND	 ND	
BalanceCascade -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 L	 L	 L	
IRUS -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 ND	 ND	
OverBagging -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 -‐-‐-‐-‐-‐	 ND	

Table 4. Comparisons (using AUC as performance indicator) between all the pairs of tested

methods.

In the previous tests, we simply combined by sum rule all the classifiers that build up our

proposed system HardEnsemble. We also investigated the following alternative rules for improving

the performance of the fusion step: Knora [45], MPOEC [46], SparseEnsemble [47], stacking with

PCA [48], combination with correspondence analysis [49], and weighted sum rule [45]. Obviously,

all the parameters for the aforementioned methods were selected using only the training data.

However, no combination method outperforms the simple sum rule, with p-value <0.05.

24

To shed light on the reasons behind the good performance of the proposed ensemble, we

performed experiments to measure the diversity among the decisions produced by the components

of the ensemble. As already pointed out by Kuncheva [57], “there is no gain in combining identical

components and, therefore, diversity is an important issue to take into consideration when designing

ensemble models.” We investigated the relationship among the different components of the

ensemble by evaluating the average Yule’s Q-statistic [57] over the datasets detailed in Table 1. For

two classifiers Gi and Gj, the Q-statistic is an a posteriori measure defined as:

10010011

10010011

, NNNN
NNNNQ ji +

−
=

where Nab is the number of instances in the testing set that are classified correctly (a=1) or

incorrectly (a=0) by classifier Gi and correctly (b=1) or incorrectly (b=0) by the classifier Gj. Qi,j

varies between –1 and 1 and assumes the value 0 for statistically independent classifiers. Classifiers

that tend to recognize the same patterns correctly will have Q>0, and those that commit errors on

different patterns will have Q<0.

In Table 5 we report the Q-statistic among the classifiers that compose CS, RB, and HE_FUS

(see Section 4.1 for the description of these ensemble classifiers). In the same table we also report

the performance of modified ensembles where a decision tree, implemented as in http://prtools.org/,

is used as the base learner instead of SVM. Such modified ensembles exhibit a low Q-statistic;

indeed, the average performance of the base learner is so low that the ensembles coupled with SVM

outperform the ensembles based on decision trees. Ensembles of SVMs have already been proposed

in the literature [68-69]. All in all, for each ensemble we report:

• “Avg Q”, the average Q-statistic among the classifiers of the given ensemble;

• “Avg AUC”, the average AUC obtained by the classifiers of the given ensemble;

• “AUC ensemble”, the AUC obtained by the ensemble.

25

 SVM as base learner Decision tree as base learner
 CS RB HE_FUS CS RB HE_FUS
Avg Q 0.9400 0.9872 0.8832 0.7750 0.7803 0.6582
Avg AUC 0.9102 0.9213 0.9111 0.8005 0.8156 0.8562
AUC ensemble 0.9262 0.9237 0.9318 0.8852 0.8965 0.9095

Table 5. Yule’s Q-statistic among the classifiers forming the different ensembles.

The reported results in Table 5 experimentally endorse our idea of building an ensemble

where two different classifiers are employed and where two different methods are used for creating

the different training sets. The Q-statistic among the classifiers of HE_FUS is quite low, and lower

than that obtained by an ensemble of RUSBoosts or SMOTEs. The low Q-statistic boosts the

performance obtained by the single classifiers that contribute to HE_FUS.

4.2 Tests with multi-class datasets

We now shift focus to multi-class datasets in order to test the validity of our approach in this

domain as well. We consider the multi-class datasets tested in [4]. The data partitions are, again,

available in the KEEL-dataset repository, so it is still possible to report a fair comparison. The

methods are applied to the original multi-class data directly. As in [4], we adopt the extension of

AUC for multi-class datasets as the performance indicator. This extension is called MAUC [54],

and it represents the average AUC of all pairs of classes. The results of our tests are summarized in

Table 6. The column Best reports the best result, separately chosen for each dataset, among the

methods proposed in [4]. In Table 6 we also report the performance of what in [4] is considered the

best approach, i.e., SMB-dw. Since SVM is a 2-class classifier we use the one-vs-all approach for

handling multiclass classification.

26

Table 6. Performance (MAUC) in the multi-class datasets.

The following conclusions can be drawn from Table 6.

• As in the previous comparison, the performance of the method based on decision trees, i.e.,

SMB-dw, is often lower than that obtained with a plain SVM.

• HE_S performs similarly to SVM, but HE_FUS outperforms SVM. This is further

experimental evidence that the heterogeneous ensemble approach is a sound approach

method for handling imbalanced datasets.

4.3 Tests with strongly imbalanced datasets

In this series of tests, the 5-fold cross-validation testing protocol is used in what we consider to be

strongly imbalanced 2-class datasets. Some of these datasets are retrieved from the UCI Machine

Learning Repository:

• PIMA: the Pima Indians diabetes dataset;

• IONO: the Ionosphere dataset;

• CreditG: the German credit data dataset;

• Sonar: Mines vs. Rocks dataset;

• Breast: the Breast cancer dataset;

 SMB-dw
[4]

Best SVM HE_S HE_A HE_FUS

Car 0.997 0.997 0.9913 0.9876 0.9903 0.9925
Balance 0.633 0.703 0.9992 0.9965 0.9906 0.9944
Glass 0.924 0.925 0.9486 0.9649 0.9625 0.9687
New-Thyroid 0.988 0.988 0.9991 0.9994 0.9991 0.9994
PageBlocks 0.973 0.989 0.9696 0.9825 0.9821 0.9908
Yeast 0.847 0.857 0.9256 0.9282 0.9332 0.9348

27

• Yeast: the Yeast UCI dataset where only the classes ‘POX’ and ‘CYT’ are considered (as in

[37]);

• Wdbc: the Cancer Wisconsin Diagnostic Data Set;

• Wpbc: the Wisconsin Prognostic Breast Cancer;

• House: the Housing Data Set;

• Haber: the Haberman's Survival Data Set;

• Transf: the Blood Transfusion Service Center;

• Austr: the Australian Credit Approval Data Set.

Other datasets used in the following tests include Astro (the astronomical matching catalogues

in [67]) and spot (the microarray spot quality classification dataset in [70]).

For all datasets (except CreditG and Yeast), we randomly keep only ten patterns of the minority

class, with the aim of increasing the imbalance. For reproducible research, the specific datasets used

in these tests (i.e. the split training/testing sets and the randomly selected patterns) will be available

with the software tool created for this paper.

Results of the tests are summarized in Table 7. For some methods, two values are reported: the

first one is for a “standard” execution of the method, while the second one gives the performance

obtained with 50 executions combined with the sum rule. Notice that in this test, GK and other

approaches work better than SVM; this is not the case with the datasets reported in Table 1 (here the

datasets are strongly imbalanced). In the last column of Table 7, the average performance over

several datasets is reported.

We also ran another experiment changing CSMOTE with GK in our ensemble (see HE_Sgk and

HE_Agk), without obtaining any improvement.

The same conclusion in the previous tests is obtained here: the ensemble works quite well in all

the tested datasets.

28

 PIMA IONO CreditG Yeast Sonar Breast Astro
SVM 0.6891 0.9740 0.7989 0.8239 0.8660 0.9938 0.9843
SV_W 0.7782 0.9492 0.7987 0.8061 0.8656 0.9667 0.9899
GK 0.7689 0.7659 0.9744 0.9744 0.7986 0.8002 0.7890 0.8024 0.8663 0.8700 0.9936 0.9938 0.9879 0.9913
MSMOTE 0.6941 0.6957 0.9723 0.9720 0.7746 0.7743 0.8271 0.8231 0.8653 0.8621 0.9940 0.9940 0.9868 0.9887
CSMOTE (CS) 0.7332 0.7376 0.9728 0.9728 0.7691 0.7703 0.8054 0.8103 0.8660 0.8660 0.9939 0.9939 0.9843 0.9841
RUSBoost (RB) 0.7648 0.7661 0.9755 0.9765 0.7711 0.7711 0.7748 0.7814 0.8457 0.8393 0.9939 0.9939 0.9909 0.9906
EasyEnsemble 0.7776 0.7696 0.9683 0.9635 0.7654 0.7714 0.7195 0.7588 0.8228 0.8456 0.9906 0.9913 0.9835 0.9850
BalanceCascade 0.7198 0.7398 0.9253 0.9540 0.7667 0.7702 0.7522 0.8298 0.7982 0.8300 0.9915 0.9914 0.9818 0.9839
IRUS 0.7666 0.7678 0.9587 0.9638 0.7722 0.7692 0.8374 0.8320 0.8371 0.8425 0.9930 0.9930 0.9875 0.9867
OverBagging 0.7479 0.7466 0.9688 0.9689 0.7714 0.7742 0.8061 0.7929 0.8655 0.8656 0.9939 0.9939 0.9862 0.9869
UO 0.7441 0.7392 0.9706 0.9699 0.7879 0.7965 0.8116 0.8191 0.8720 0.8665 0.9942 0.9941 0.9853 0.9853
B_C 0.7544 0.9765 0.7848 0.8005 0.8564 0.9939 0.9943
HE_S 0.7837 0.9746 0.7812 0.8021 0.8372 0.9938 0.9923
HE_A 0.7643 0.9762 0.7651 0.7177 0.8668 0.9888 0.9964
HE_Sgk 0.7784 0.9743 0.7819 0.7820 0.8352 0.9933 0.9908
HE_Agk 0.7358 0.9768 0.7649 0.7075 0.8625 0.9885 0.9949
HE_FUS 0.7875 0.9778 0.7805 0.7672 0.8672 0.9924 0.9961
HE_WFUS 0.7907 0.9770 0.7823 0.7805 0.8614 0.9930 0.9934
HE_WFUS_SVM 0.7743 0.9795 0.7970 0.7590 0.8679 0.9933 0.9957

 wdbc spot wpbc House Haber Transf Austr AVG
SVM 0.9929 0.9479 0.5765 0.9731 0.6281 0.5654 0.8502 0.8331
SV_W 0.9851 0.9479 0.5937 0.9731 0.6814 0.7059 0.8453 0.8491
GK 0.9930 0.9929 0.9637 0.9598 0.6044 0.5981 0.9769 0.9768 0.6950 0.6930 0.6418 0.6454 0.8886 0.8883 0.8530 0.8537
MSMOTE 0.9902 0.9901 0.9618 0.9579 0.6055 0.6090 0.9680 0.9677 0.6671 0.6689 0.6181 0.6167 0.8282 0.8276 0.8395 0.8391
CSMOTE (CS) 0.9929 0.9928 0.9536 0.9685 0.5765 0.5765 0.9675 0.9703 0.6281 0.6281 0.5654 0.5654 0.8502 0.8502 0.8328 0.8348
RUSBoost (RB) 0.9913 0.9910 0.9565 0.9615 0.5999 0.5980 0.9779 0.9792 0.6996 0.6960 0.6297 0.6297 0.8902 0.8927 0.8473 0.8476
EasyEnsemble 0.9729 0.9760 0.9572 0.9633 0.5858 0.6143 0.9748 0.9761 0.6386 0.6510 0.6394 0.6420 0.8753 0.8938 0.8337 0.8430
BalanceCascade 0.9681 0.9743 0.9502 0.9642 0.5964 0.5965 0.9773 0.9754 0.6199 0.6439 0.6309 0.5217 0.8809 0.8928 0.8257 0.8334
IRUS 0.9841 0.9840 0.9698 0.9619 0.6004 0.5980 0.9766 0.9779 0.6851 0.6826 0.7103 0.7119 0.8953 0.8958 0.8550 0.8549
OverBagging 0.9908 0.9910 0.9504 0.9479 0.5962 0.6021 0.9731 0.9731 0.6933 0.6831 0.6393 0.6399 0.8560 0.8581 0.8456 0.8446
UO 0.9896 0.9892 0.9447 0.9418 0.6100 0.6151 0.9731 0.9731 0.6829 0.6875 0.6883 0.6937 0.8552 0.8552 0.8507 0.8519
B_C 0.9922 0.9699 0.5936 0.9761 0.6742 0.6222 0.8885 0.8484
HE_S 0.9889 0.9663 0.6020 0.9821 0.6925 0.6596 0.8981 0.8539
HE_A 0.9858 0.9803 0.5808 0.9849 0.6487 0.6638 0.8927 0.8437
HE_Sgk 0.9885 0.9620 0.6024 0.9832 0.6891 0.6532 0.8895 0.8503
HE_Agk 0.9864 0.9790 0.5882 0.9851 0.6558 0.6435 0.8785 0.8391
HE_FUS 0.9895 0.9787 0.6015 0.9851 0.6776 0.6753 0.9002 0.8555
HE_WFUS 0.9906 0.9755 0.6020 0.9844 0.6866 0.6773 0.9008 0.8568
HE_WFUS_SVM 0.9918 0.9715 0.6015 0.9838 0.6809 0.6717 0.8992 0.8548

Table 7. Results (AUC) in strongly imbalanced datasets.

A number of conclusions can be drawn from the results in Table 7.

• In some datasets (PIMA, ASTRO, Spot, Wpbc, Haber, and Tranf/Austr), SVM performs

quite poorly with respect to the best approaches for handling imbalance, while it works well

with the other datasets.

• Our proposed ensembles HE_FUS and HE_WFUS exhibit good results across all the

datasets except Yeast, where they are outperformed by several methods. However, notice

that HE_A performs very poorly with such dataset.

29

• It is clear that the best method is different for each dataset. However, HardEnsemble obtains

very good results with all the tested datasets. The best standard method (considering the

average performance) in Table 7 is IRUS, but notice that it works very well with some

datasets, such as Transf, Yeast and the Austr datasets, but poorly with others. Moreover,

although IRUS has a similar average performance to HE_WFUS, IRUS is outperformed by

HE_WFUS with a p-value of 0.10.

While tests reported in Table 2 indicate that increasing the number of iterations (and combining

the classifiers from different iterations by sum rule) improves SMOTE, RUSBoost, and GK, in the

tests with strongly imbalanced datasets this phenomenon occurs for EasyEnsemble and

BalanceCascade. In any case, increased iteration does not deteriorate performance, so, if there are

no computation time constraints, we suggest iterating many times before combining, since it is

difficult to know a priori when having more iterations will be useful.

4.4 Comparisons with the literature

As a further evaluation test for our proposed method HardEnsemble, we also report a comparison

with two recently proposed ensemble approaches that aim to tackle the imbalance issue. The first

one, EUSBoost [58], is a variant of RUSBoost that combines random undersampling (based on

evolutionary learning) with Boosting. The second one, IPADE [59], is a new evolutionary

framework to oversample the minority class. In [59], the authors define two variants by coupling

the framework with a Nearest Neighbor classifier and with C4.5 (decision tree). In both [58] and

[59], the authors show that these systems outperform some of the state-of-the-art considered in our

analysis. HE_FUS absolutely outperforms the competition. These results further reinforce the

strength and the validity of the proposed ensemble. The main reason behind the performance

difference is that in [58] and [59] different base learners are used. It is well known that weak

learners provide a significantly higher performance boost than strong learners when combined into

30

ensembles due to the diversity among the classifiers in the ensemble: the diversity among the weak

learners is higher than the diversity among the strong learners. Unfortunately, the performance of

C4.5 (a widely used weak learner) and of decision trees in general is so low that in several

applications an ensemble of SVM outperforms an ensemble of C4.5. Moreover, the authors of [58]

and [59] do not compute AUC using the standard approach based on a point-wise ROC curve, but

rather they replace the complete curve with an unique point computing the AUC as (1+TPrate-

FPrate) / 2. Therefore, the comparison of their ensemble with our approaches is not completely fair.

In a further set of experiments, we compare our proposed approaches HE_S, HE_A, HE_FUS

and HE_WFUS with the best method introduced in [50], named DCIL, which was shown in that

paper to outperform several other methods, such as LPSVM, SVM, SMOTE+LPSVM, weighted

LPSVM, weighted SVM and partitioning ensemble SVM. In these tests, we consider the same UCI

datasets used with DCIL, along with the same testing protocol (we adopt the testing protocol where

the highest degree of class imbalance occurs, which is called ‘Exp 3’ in [50]). Each experiment

consists of 20 rounds of independent tests using the F-measure as the performance indicator (we use

this same measure so that our results can be directly compared with those in [50]).

The results of the comparison are summarized in Table 8. Even in this comparison, our proposed

methods works well, outperforming DCIL. Moreover, it is interesting to note that in some datasets

HE_S outperforms HE_A while in other datasets the opposite happens. The fusion of the two

classifiers, however, always performs very well.

 DCIL [50] SVM HE_S HE_A HE_FUS HE_WFUS
Breast 0.9366 0.8767 0.9630 0.8350 0.9500 0.9630
Car 0.9367 0.8636 0.8818 0.7700 0.9487 0.9620
Abalone 0.9547 0.9869 0.6885 0.6592 0.9873 0.9873
Cardiotocography 0.9109 0.7792 0.9637 0.9950 0.9950 0.9950

Table 8. Comparison with DCIL (using F-Measure as performance indicator).

31

In Table 9 we compare our ensembles HE_S, HE_A and HE_FUS with another recent state-

of-the-art approach: MWMOTE [60]. We also tabulate the performance of the other approaches

(SMOTE, ADSYN, and RAMO) implemented by the authors of MWMOTE. In Table 9 we report the

performance of MWMOTE only for the KEEL datasets, which are the ones considered in this

paper. Our ensemble outperforms the competition in three out of the four datasets.

 SMOTE [60] ADSYN [60] RAMO [60] MWMOTE [60] HE_S HE_A HE_FUS

Abalone9vs18 0.5443 0.4747 0.5530 0.5445 0.5452 0.6153 0.5913
Ecoli1 0.7714 0.7527 0.7627 0.7621 0.7566 0.7521 0.7892
Pima 0.6612 0.6695 0.6682 0.6890 0.6443 0.6842 0.6844
Vehicle0 0.9507 0.9567 0.9437 0.9596 0.9185 0.9385 0.9616

Table 9. Comparison with MWMOTE (using F-Measure as performance indicator).

The performances of the proposed classifiers are also good when compared with other

published methods. For example, RAMOboost [37], which uses a neural network as the base

learner, obtains an AUC of 0.741 on the CreditG dataset and 0.745 on the Yeast dataset.

5 Conclusions

An important problem in machine learning is the management of imbalanced datasets where one

class – the majority class – outnumbers the others. In general, classifiers are biased towards the

majority class. For this reason, a research stream has developed, approaching the issue with several

different solutions. In this paper we have compared and tested many of them, and we have proposed

a classifier of our own which is an ensemble of ensembles, does not need to be tuned separately

over each dataset, and outperforms the other tested approaches. The classifier is based on the

following principles:

• oversampling of the minority class, based on a variant of SMOTE;

• undersampling of the majority class using an editing algorithm;

32

• application of boosting (RUSBoost) to each new built training set.

We want to highlight the absence of parameters to be tuned in our approach. Most state-of-the-art

solutions such as SMOTE, SPIDER, EasyEnsemble and the recent EUSBoost, require a fine-tuning

step during training in order to obtain their best results. Obviously, as stated in [3], this undermines

the robustness of such solutions. On the contrary, our ensemble can be directly use without any

extra tuning phase. Moreover, we have shown that the performance can be improved using an

heterogeneous system (fusion between SVM and an Adaboost of neural networks) in the

classification step.

The MATLAB code of our classifier can be reached via the URL address

https://www.dei.unipd.it/node/2357. We hope that our code will serve as foundation for other

researches in this data mining field.

References

[1] T. Fawcett, ROC graphs: Notes and practical considerations for researchers. HP

Laboratories, Palo Alto, (2004).

[2] Demsar, J. (2006) Statistical comparisons of classifiers over multiple data sets,

Journal of Machine Learning Research, 7 1-30.

[3] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and

Francisco Herrera, ―A review on ensembles for the class imbalance problem: Bagging-, Boosting-,

and Hybrid-Based Approaches ―, IEEE Transactions on systems, MAN, and Cybernetics— 2011

[4] Wang S , Yao X, Multiclass Imbalance Problems: Analysis and Potential Solutions.

IEEE Trans Syst Man Cybern B Cybern.2012 Mar 16

[5] Edward Y. Gang Wu, K.B.A. Chang, Kernel boundary alignment considering

imbalanced data distribution, IEEE Trans. Knowl. Data Eng. 17 (6) (2006) 786–796.

33

[6] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng.

21 (9) (2009) 1263–1284.

[7] Z.H. Zhou, X.Y. Liu, Training cost-sensitive neural networks with methods

addressing the class imbalance problem, IEEE Trans. Knowl. Data Eng. 18 (1) (2006) 63–77.

[8] H. He, Y. Bai, E.A. Garcia, S. Li, ADASYN: adaptive synthetic sampling approach

for imbalanced learning, in: IEEE Joint Conference on Neural Networks, 2008, pp. 1322–1328.

[9] J. Laurikkala, Improving identification of difficult small classes by balancing class

distribution, Conference of AI in Medicine in Europe: Artificial intelligence Medicine, 2001, pp.

63–66.

[10] A. Estabrooks, T. Jo, N. Japkowicz, A multiple resampling method for learning from

unbalanced data sets, Comput. Intell. 20 (2004) 18–36.

[11] D. Mease, A.J. Wyner, A. Buja, Boosted classification trees and class

probability/quantile estimation, J. Mach. Learn. Res. 8 (2007) 409–439.

[12] C. Drummond, R.C. Holte, C4.5, class imbalance, and cost sensitivity: why

undersampling beats oversampling, in: International Conference of Machine Learning, Workshop

on Learning from Unbalanced Data Sets II, 2003.

[13] X.Y. Liu, J. Wu, Z.H. Zhou, Exploratory under sampling for class unbalanced

learning, in: International Conference of Data Mining, 2006, pp. 965–969.

[14] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: Synthetic

Minority Oversampling Technique, J. Artif. Intell. Res. 16 (2002) 321–357.

[15] Shengguo Hu , Yanfeng Liang , Lintao Ma , Ying He, MSMOTE: Improving

Classification Performance When Training Data is Imbalanced, Proceedings of the 2009 Second

International Workshop on Computer Science and Engineering, p.13-17, October 28-30, 2009

[16] J. Stefanowski and S. Wilk, Selective Pre-processing of Imbalanced Data for

Improving Classification Performance, Proceedings of DaWaK. 2008, 283-292.

34

[17] G.-Z. Li, H.-H. Meng, W.-C. Lu, J.Y. Yang,and, M.Q. Yang, Asymmetric bagging

and feature selection for activities prediction of drug molecules, BMC Bioinformatics 9 (S6) (2008)

S7.

[18] J.G. Xie, Z.D. Qiu, Z.J. Miao, Bootstrap FDA for counting positives accurately in

imprecise environments, Pattern Recognition 40 (11) (2007) 3292–3298.

[19] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140.

[20] Y.M. Sun, M.S. Kamel, A.K.C. Wong, Cost-sensitive boosting for classification of

unbalanced data, Pattern Recognition 40 (12) (2007) 3358–3378.

[21] N.V.Chawla,A.Lazarevic,L.O.Hall,andK.W.Bowyer,“SMOTEBoost:Improving

prediction of the minority class in boosting,” in Proc. Knowl. Discov. Databases, 2003, pp. 107–

119

[22] S. Wang and X. Yao, “Diversity analysis on imbalanced data sets by using ensemble

models,” in IEEE Symp. Comput. Intell. Data Mining, 2009, pp. 324–331.

[23] B_laszczynski, J., Deckert, M., Stefanowski, J., Wilk, S.: Integrating Selective Pre-

processing of Imbalanced Data with Ivotes Ensemble. In: Szczuka, M., Kryszkiewicz, M.,

Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 148–157. Springer,

Heidelberg (2010)

[24] M.Tahir, J.Kittler, F.Yan Inverse random under sampling for class imbalance

problem and its application to multi-label classification. In: Pattern Recognition, Volume 45 Issue

10, October, 2012, Pages 3738-3750

[25] A.F. Atiya, A. Al-Ani, A penalized likelihood based pattern classification algorithm,

Pattern Recognition 42 (11) (2009) 2684–2694.

[26] H.G. Chew, R.E. Bogner, C.C. Lim, Dual v-support vector machine with error rate

and training size biasing, in: Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing, 2001, pp. 1269–1272.

35

[27] Y. Tang, Y.Q. Zhang, N.V. Chawla, S. Krasser, SVMs modeling for highly

unbalanced classification, IEEE Trans. Syst. Man Cybern. 39 (1) (2009) 281–289.

[28] X.D. Jiang, Asymmetric principle component and discriminant analyses for pattern

recognition, IEEE Trans. Pattern Anal. Mach. Intell. 31 (5) (2009) 931–937.

[29] J.H. Xue, D.M. Titterington, Do unbalanced data have a negative effect on LDA?

Pattern Recognition 41 (5) (2008) 1558–1571.

[30] J. Xie, Z.D. Qiu, The effect of unbalanced data sets on LDA: a theoretical and

empirical analysis, Pattern Recognition 40 (2) (2007) 557–562.

[31] R. Rosipal, N. Kramer, Overview and recent advances in partial least squares, in:

Subspace, Latent Structure and Feature Selection, Statistical and Optimization, Perspectives

Workshop, 2005, pp. 34–51.

[32] X.D. Jiang, B. Mandal, A. Kot, Eigen feature regularization and extraction in face

recognition, IEEE Trans. Pattern Anal. Mach. Intell. 30 (3) (2008) 383–394.

[33] M. Barker, W. Rayens, Partial least squares for discrimination, J. Chemometr. 17

(2003) 166–173.

[34] Hai-Ni Qu, Guo-Zheng Li, Wei-Sheng Xu: An asymmetric classifier based on partial

least squares. Pattern Recognition 43(10): 3448-3457 (2010)

[35] T. Ryan Hoens and Nitesh V. Chawla: Generating Diverse Ensembles to Counter the

Problem of Class Imbalance, Pacific-Asia Conference on Knowledge Discovery and Data Mining

(June 2010).

[36] T.K. Ho, The Random Subspace Method for Constructing Decision Forests, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20 (8) (August-1998) 832-844.

[37] Sheng Chen, Haibo He, Edwardo A. Garcia. RAMOBoost: Ranked Minority

Oversampling in Boosting, IEEE Transactions on Neural Networks, Vol. 21, No. 10. (October

2010), pp. 1624-1642.

36

[38] Yu, T., Jan, T., Simoff, S.J., and Debenham, J.K. A Hierarchical VQSVM for

Imbalanced Data Sets. In Proceedings of IJCNN. 2007, 518-523.

[39] Charles X. Ling, Jin Huang, Harry Zhang: AUC: A Better Measure than Accuracy in

Comparing Learning Algorithms. Canadian Conference on AI 2003: 329-341

[40] B. Scholkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson,

“Estimating the support of a high-demensional distribution,” Neural Computation, vol. 13, pp.

1443�1472, 2001.

[41] Seiffert, C. Khoshgoftaar, T.M. ; Van Hulse, J. ; Napolitano, A. (2010) RUSBoost: A

Hybrid Approach to Alleviating Class Imbalance, IEEE Transaction on Systems, Man and

Cybernetics-Part A: Systems and Human, Vol.40(1), January 2010.

[42] Yuhua Li, Maguire L. (2011) Selecting critical patterns based on local geometrical

and statistical information," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

33, no. 6, pp. 1189-1201.

[43] L. Nanni and A. Franco, "Reduced Reward-Punishment Editing for building

ensembles of classifiers", Expert Systems With Applications, vol.38, no.3, pp.2395-2400, March

2011

[44] Weiwei Zong, Guang-Bin Huang, and Yiqiang Chen, “Weighted extreme learning

machine for imbalance learning,” Neurocomputing, vol. 101, pp. 229-242, 2013.

[45] A. H. R. Ko, R. Sabourin, and A. S. Britto Jr. “From dynamic classifier selection to

dynamic ensemble selection,” Pattern Recognition, vol. 41, pp. 1718-1731, 2008.

[46] Shasha Mao, Licheng Jiao, Lin Xiong, Shuiping Gou: Greedy optimization

classifiers ensemble based on diversity. Pattern Recognition 44(6): 1245-1261 (2011)

[47] Zhang, L., Zhou, W.D.: Sparse Ensembles Using Weighted Combination Methods

Based on Linear Programming Pattern Recognit 44:10 97–106 (2011)

[48] Aydın Ulaş, Olcay Taner Yıldız, Ethem Alpaydın, Eigenclassifiers for Combining

Correlated Classifiers, Information Sciences, Vol. 187, pp:109-120, 2012.

37

[49] L. Nanni and A. Lumini, A genetic encoding approach for learning methods for

combining classifiers, Expert Systems With Applications, vol.36, no.4, pp.7510-7514, May 2009.

[50] Pang, S., Zhu, L., Chen, G., Sarrafzadeh, A., Ban, T., & Inoue, D. Dynamic class

imbalance learning for incremental LPSVM. Neural Networks (2013),

http://dx.doi.org/10.1016/j.neunet.2013.02.007

[51] Jerzy Blaszczynski, Magdalena Deckert, Jerzy Stefanowski, Szymon Wilk: IIvotes

ensemble for imbalanced data. Intell. Data Anal. 16(5): 777-801 (2012)

[52] Yates, D., S. Gangopadhyay, B. Rajagopalan and K. Strzepek, (2003) A technique

for generating regional climate scenarios using a nearest-neighbor algorithm, Water Resources

Research, 39(7):SWC 7-1 – 7-14.

[53] Richard O. Duda, Peter E. Hart, David G. Stork, (2000) Pattern Classification (2nd

Edition), Wiley-Interscience | ISBN: 0471056693

[54] David Hand and Robert Till. A simple generalization of the area under the ROC

curve to multiple class classification problems. Machine Learning, 45(2):171–186,

November 2001

[55] Z.-H. Zhou. Ensemble Methods: Foundations and Algorithms, Boca Raton, FL:

Chapman & Hall/CRC, 2012

[56] Kittler, J., Hatef, M., Duin, R., & Matas, J. (1998). On combining classifiers. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–239

[57] Kuncheva L.I. Combining Pattern Classifiers. Methods and Algorithms, Wiley, 2004.

[58] Mikel Galarm Alberto Fernández, Edurne Barrenechea, Francisco Herrera.

EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary

undersampling. Pattern Recognition 46: 3460–3471 (2013).

[59] Victoria López, Isaac Triguero, Cristóbal J. Carmona, Salvador García, Francisco

Herrera. Addressing imbalanced classification with instance generation techniques: IPADE-

ID. Neurocomputing 126: 15–28 (2014).

38

[60] S. Barua, M. M. Islam, X. Yao and K. Murase, ``MWMOTE -- Majority Weighted

Minority Oversampling Technique for Imbalanced Data Set Learning,'' IEEE Transactions

on Knowledge and Data Engineering, 26(2):405-425, February 2014.

[61] Van Rijsbergen, C. J. (1979). Information Retrieval (2nd ed.). Butterworth.

[62] Hossein Moradi Koupaie, Suhaimi Ibrahim and Javad Hosseinkhani, Outlier

Detection in Stream Data by Machine Learning and Feature Selection Methods,

International Journal of Advanced Computer Science and Information Technology

(IJACSIT) Vol. 2, No. 3, 2013, Page: 17-24.

[63] Cleophas TJ., (2014) Machine Learning in Therapeutic Research: The Hard Work of

Outlier Detection in Large Data. American Journal of Therapeutics: doi:

10.1097/MJT.0b013e31827ab4a0

[64] H. Han, W.Y. Wang, and B.H. Mao, “Borderline-SMOTE: A New Oversampling

Method in Imbalanced Data Sets Learning,” Proc. Int’l Conf. Intelligent Computing, pp.

878-887, 2005.

[65] Yoav Freund, Robert E Schapire, “A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting,” Journal of Computer and System Sciences,

Volume 55, Issue 1, pp. 119-139, August 1997.

[66] Maciej Zięba, Jakub M. Tomczak, “Boosted SVM with active learning strategy for

imbalanced data”, Soft Computing, DOI 10.1007/s00500-014-1407-5, 2014

[67] D.J. Rohde, M.J. Drinkwater, M.R. Gallagher, K.A. Pimbblet, Matching of

catalogues by probabilistic pattern classification, MNRAS, 369 (2006) 2-14.

[68] Dacheng Tao, Xiaoou Tang, Xuelong Li, and Xindong Wu. 2006. Asymmetric

Bagging and Random Subspace for Support Vector Machines-Based Relevance Feedback in

Image Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 28, 7 (July 2006), 1088-1099.

[69] Kim. H.C., Pang. S., Je.H.M., Kim. D., Bang. S.Y., “Constructing Support Vector

Machine Ensemble”, Pattern Recognition, Vol.36, pp. 2757-2767, 2003.

39

[70] Hautaniemi S, Edgren H, Vesanen P, Wolf M, Ja¨rvinen AK, YliHarja O, Astola J,

Kallioniemi O, Monni O (2003) A novel strategy for microarray quality control using

Bayesian networks.Bioinformatics 19(16):2031–2038

