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Abstract. Many classification problems must deal with imbalanced datasets where one class – 

the majority class – outnumbers the other classes. Standard classification methods do not provide 

accurate predictions in this setting since classification is generally biased towards the majority class. 

The minority classes are oftentimes the ones of interest (e.g., when they are associated with 

pathological conditions in patients), so methods for handling imbalanced datasets are critical. 

Using several different datasets, this paper evaluates the performance of state-of-the-art 

classification methods for handling the imbalance problem in both binary and multi-class datasets. 

Different strategies are considered, including the one-class and dimension reduction approaches, as 

well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone 

classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel 

ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the 

proposed ensemble does not need to be tuned separately for each dataset and outperforms all the 

other tested approaches. 

To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions 

(training/test) are publicly available and have already been used in the open literature: as a 

consequence, it is possible to report a fair comparison among different approaches in the literature. 

Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available 

at https://www.dei.unipd.it/node/2357. 
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1. Introduction 

Highly imbalanced datasets are not uncommon in many pattern recognition tasks [3][4]. For 

example, in medical datasets instances of diseased patients are typically rarer than instances of sane 

individuals. Yet, it is the rare cases that attract the most interest, as detecting them enables patients 

to be diagnosed and treated. Similar needs also appear in other real-world applications such as 

anomaly detection, fault diagnosis, email foldering, face recognition, fraud detection. 

In binary classification, the under-represented class is called the minority class or positive 

class. The other class, which contains the vast majority of the members, is referred to as the 

majority class or negative class. When the class distribution is asymmetric, regular classifiers – 

such as support vector machines (SVMs) – tend to ignore data in the minority class and treat them 

as noise, resulting in a class boundary that unduly benefits the majority class. In turn, this produces 

a drop in precision when classifying the minority class [5]. 

A common approach in m-class learning, with m greater than 2, is the one-against-all method: 

the original problem is decomposed into m binary classification instances, where each class is in 

turn labeled as positive and the remaining m-1 as negative. Unfortunately, this method aggravates 

the issue of imbalance in each of the m instances. As a consequence, ad-hoc systems for handling 

multi-class imbalanced problems must be developed [4]. In the rich literature on imbalanced 

classification, the most common methods employed [6-13] are undersampling of the majority 

class, oversampling of the minority classes, ensemble methods, cost-sensitive learning, 

asymmetric classification, dimension reduction. 

The simplest approach to undersampling is to randomly select a fraction of records from the 

majority class. Unfortunately, this may lead to a loss of useful information. An interesting 

undersampling procedure is proposed in two methods [13] called EasyEnsemble and 
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BalanceCascade. In EasyEnsemble, the majority class is sampled into several independent subsets 

that are used to train separate classifiers, whose outputs are finally combined to produce the 

classification decision. In BalanceCascade, trained models are used to guide the sampling process 

for succeeding classifiers. The system is more focused on training patterns that are hard to classify. 

The main drawback of these preprocessing algorithms is that, again, potentially useful data from the 

majority class may not be considered. 

As far as oversampling is concerned, the basic approach is to randomly duplicate the records 

in the minority classes to increase the cardinality of the classes themselves. A very popular 

approach is SMOTE (Synthetic Minority Oversampling TEchnique), which increases diversity by 

generating pseudo minority class data [14]. Several variants of SMOTE have been proposed: among 

them, we cite Borderline-SMOTE [64], MSMOTE [15], and the recent MWMOTE [60]. In [59] the 

imbalance problem is tackled by generating artificial instances, using an evolutionary framework, in 

order to modify the class ratio in the original dataset. A further interesting approach is 

RAMOBoost, introduced in [37] for binary classification. This technique oversamples the minority 

class using an adaptive weight adjustment procedure that shifts the decision boundary towards the 

difficult-to-learn examples from both the minority and majority classes. 

Boosting (see also [20][21][41][58]) and other ensemble methods, such as Bagging 

[17][18][19][22], have proved to be particularly robust at handling imbalanced data. A recent 

review on ensemble methods applied to handle the class imbalance problem is [55]. AdaBoost [65], 

for instance, is designed to reduce the bias towards the majority class by focusing on misclassified 

training patterns [20], while Bagging introduces the concept of bootstrap aggregating [19] that 

consists in training several classifiers with bootstrapped copies of the original training set. 

Ensemble classifiers by themselves do not ameliorate the issue of imbalance if they are directly 

applied on data: this is due to their accuracy-oriented design. However, their combination with other 

techniques leads to positive results. Some examples are: SMOTEBoost [21], SMOTEBagging [22], 

IIVotes [23][51], RUSBoost [41]. In these approaches, a data-preprocessing algorithm is applied 
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before bagging/boosting, hence a 3-step process can be identified: resampling, ensemble building, 

and voting for the final classification. IRUS [24] is a method that couples random undersampling 

and Bagging. The main idea behind it is to create bags where the majority class is so severely 

under-sampled that the imbalance situation is reversed with respect to the original one. Each bag 

contains all the positive patterns but only a few negatives: in this way, the focus of classification is 

on the minority class, which can be successfully separated from the majority class. 

Another group of classifiers is based on cost-sensitive learning. In this approach, a different 

cost is assigned to false negative and false positive patterns. SVM-WEIGHT implements cost-

sensitive learning for SVM modeling [38]. It is implemented in LIBSVM1, so it is a very interesting 

baseline. The cost-sensitive principle is also applied in [44] to the ELM classifier. 

A number of recent studies have focused on the development of asymmetric classifiers [24]. 

The main difference with cost-sensitive classification is that asymmetric classifiers are not 

exclusively focused on assigning a different weight to false negative and false positive patterns. 

Chew et al. [26] propose an unbalanced SVM (called UnSVMs in their paper) to adjust the error 

penalties of each class. Granular SVM is proposed in [27]: it resorts to a repetitive undersampling 

method where information loss is minimized and the undersampling process maximizes the positive 

effect of data cleaning. 

Some researchers have focused on improving dimension reduction methods, such as 

principal component analysis (PCA) and linear discriminant analysis (LDA), as a way of handling 

imbalanced data sets [28][29][30]. The key idea behind many of these methods is the eigen 

decomposition problem, which is tightly bound with data structure and class distribution, where the 

latter is asymmetric when data are skewed. To offset the effects of imbalanced data when applying 

PCA, an asymmetric principal component and discriminant analysis (APCDA) method was 

successfully employed in [28]. It is also worth to mention the method proposed in [34], where the 

                                                
1	  http://www.csie.ntu.edu.tw/~cjlin/libsvm/	  
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authors implement an asymmetric classifier based on partial least squares (PLS) [33] to generate a 

new classification hyperplane and tackle the imbalance. 

In recent years, some methods based on plain SVM have been proposed as well. For instance, 

in [38] a method called VQSVM is introduced. It is well known that SVM selects a subset of 

training patterns and uses them as the set of support vectors within the decision function. In 

VQSVM, vector quantization replaces the original set of support vectors with a subset, so that the 

number of instances belonging to the majority class is reduced. 

In this paper, our aim is twofold. 

1. We study the fusion among different approaches for handling the imbalance in the 

datasets following the “ensemble of ensembles” strategy. 

2. We propose a new ensemble method, called HardEnsemble, to overcome the problems 

of existing approaches (e.g. parameters tuning, removal of potentially informative 

patterns, generation of new outliers, etc.). HardEnsemble provides good performances 

with both 2-class and multi-class datasets. Note that previous works were commonly 

focused only one of the two types of datasets, while we cover both. 

To validate our results we test many state-of-the-art approaches using more than 40 datasets. 

In order to properly evaluate the results we employ a statistical test, the Wilcoxon signed-rank test, 

as commonplace in the open literature when it is necessary compare algorithms over multiple 

datasets [2]. 

 

2. Tested Approaches 

The aim of this paper is to find a set of approaches that works well with several datasets: to be 

precise, we want to determine whether some fusion of different classifiers for handling the 

imbalance problem consistently outperforms each of the classifiers when taken in isolation. We 

have tested methods based on different approaches, e.g. cost-sensitive learning, oversampling of the 
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minority classes, and undersampling of the majority class. In all cases, an SVM is used as the base 

classifier unless differently specified. 

In this section we give a technical summary of the approaches that have been previously 

presented in the open literature and included in our investigation; a separate subsection is devoted to 

each approach. 

 

2.1 Asymmetric PLS Classifier (APLSC) 

APLSC is an asymmetric partial least squares (PLS)	   classifier [34]	   which complexly 

researches into the skewed distribution between classes and is prone to give high accuracy to the 

minority class in the cost of poor performances on the majority class. It can be summarized into two 

steps: 

• feature extraction performed using PLS method [33] on normalized feature vectors; 

• classification of compressed vectors by translated hyperplane, that is influenced by the 

variance of low dimensional data. 

 

2.2 One-class SVM (OCSVM) 

One-class SVM is an adaptation, proposed by Scholkpof [40], of SVM to one-class 

classification problem. SVM is usually constructed as a two-class algorithm, OCSVM can be 

viewed as a regular two-class SVM where all training data belong to the first class and the origin 

point of the space is the only member of the second class. The idea of OCSVM is to map the input 

into high dimensional feature space using a kernel function and then define a hyperplane that best 

separates the class with maximum margin. Given a training set , let us define  as the 

function which maps the data point  from the input space to the feature space F. To separate 

the data from the origin it is necessary to minimize: 
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constrained to:  

where w is a vector perpendicular to the hyperplane and  is the distance from the origin. As 

usual in SVM, the slack variable  allows for error in classification. The parameter ν ∈ (0, 1] 

controls the tradeoff between the number of examples of the training set mapped as positive and the 

complexity of the model defined by small values of . 

 

2.3 K-Nearest neighbor data generation (GK) 

GK is a method that generates artificial examples using k-nearest neighbors of samples in the 

dataset [52]. This allows reducing the ratio between classes in imbalanced datasets. The first m 

points are randomly chosen from the dataset, then to each of these points and for each space 

direction (feature) a Gaussian distributed offset with zero mean is added. The standard deviation is 

obtained by multiplying the input parameter s with the mean signed difference between the 

considered point in the dataset and its i-th nearest neighbor. In this way the generated points follow 

the local density properties of the original points from whom they are created. 

 

2.4 Modified SMOTE (MSMOTE) 

MSMOTE is a modified version of SMOTE [14], an algorithm that creates minority synthetic 

samples by randomly interpolating pairs of closest neighbors which belong to the minority class. 

MSMOTE divides minority class examples into three groups – safe, border and noise – based on 

the label of their k-nearest neighbors. If all neighbors belong to the minority class, then the sample 

is considered safe; if all neighbors belong to other classes, then the sample is noise, otherwise it is 

treated as border. If the sample is safe then MSMOTE randomly chooses one of the k-nearest 

neighbors, if it is border it selects the nearest neighbor, while for noise samples it does nothing. The 

main improvement, with respect to the original SMOTE, is to reject latent noisy spots for the 

creation of new synthetic samples. 
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2.5 RUSBoost 

RUSBoost [41] is an algorithm that combines data sampling and boosting. It is a variant of 

SMOTEBoost [21]. SMOTEBoost creates new synthetic examples for the minority class by using 

SMOTE, while RUSBoost realizes a Random UnderSampling (RUS) by removing examples from 

the majority class. RUSBoost is really similar to AdaBoost: first the weights of each example are 

initialized to 1/m, where m is the number of total examples in training set, then for T times 

(iterations) a training set is created by applying Random Undersampling on the original majority 

set. Compared to SMOTEBoost, this algorithm is less computationally complex and time 

consuming. Results in [41] show that on average RUSBoost significantly outperforms 

SMOTEBoost. 

 

2.6 EasyEnsemble 

EasyEnsemble is a method proposed in [13] that aims at overcoming the main deficiency of 

oversampling: many examples of the majority class are discarded and not considered. The idea 

behind EasyEnsemble is to create an ensemble of T classifiers trained on different training sets. Let 

us define P and N as the subsets of positive and negative examples, respectively: each training set is 

created by using all positive examples and randomly selecting (with replacement) negative 

instances from N. The number of negative selected examples is usually |P|, so that each training set 

has a size of 2|P|. In this way, EasyEnsemble creates T balanced sub-problems, each of them used to 

train an Adaboost classifier . 

2.7 BalanceCascade 

BalanceCascade is an ensemble learning method that relies on undersampling as the strategy 

to deal with an imbalanced dataset while avoiding the already stated flaw of undersampling: it can 

discard useful data. BalanceCascade addresses this issue by exploring majority class examples 

ignored by the undersampling process. BalanceCascade employs Bagging [53] and uses Adaboost 

as base learner: as a consequence, the final model can be considered an “ensemble of ensembles”. 
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The main idea behind BalanceCascade is as follows: if an example (subset of training 

examples that belongs to the majority class) is correctly classified by , during the i-th iteration, it 

is reasonable to speculate that x is “redundant” in N, because there already exists a classifier to 

classify it. Hence, it is possible to remove it from N so that further classifiers do dot take it into 

account. In [13]	   it	   is stated that BalanceCascade offers higher AUC, F-measure and G-mean than 

almost all methods commonly used to manage data imbalance. 

2.8 IRUS 

The main idea behind IRUS (Inverse Random UnderSampling) [24] is to reverse the ratio 

between majority and minority class cardinality by severely undersampling the majority class 

multiple times. IRUS is an ensemble learning method that relies on bagging. Using only few 

majority class examples leads to a high true positive rate (tpr) but also to a high false positive rate 

(fpr) since the number of negative examples is much lower than the number of positives. By 

combining classifiers obtained from different bags (trained on different datasets), the false positive 

rate is controlled. 

2.9  OverBagging 

OverBagging [3] is a method for the management of class imbalance that merges bagging and 

data preprocessing. The whole procedure can be described with 3 steps: resampling, construct 

ensemble, fuse classification outputs. There are two ways to implement this solution. The first 

procedure allows to increase the cardinality of the minority class by replication of original 

examples, while the examples in the majority class can be all considered in each bag or can be 

resampled to increase the diversity. A second way to oversample the minority class can be obtained 

by resorting to the SMOTE algorithm: the resulting method, called SMOTEBagging [3], differs 

from OverBagging in how bags are populated: first each class is resampled with replacement at 

percentage 100%, then SMOTE is applied to the minority class with a resample rate of b%. The 

ratio b changes during each iteration (it ranges from 10% and arrives to 100%, always being a 
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multiple of 10%). Minority instances are randomly selected by SMOTE to generate new synthetic 

examples. 

2.10  UnderBagging to OverBagging (UO) 

UnderBagging to OverBagging [3] applies both undersampling and oversampling to a 

Bagging ensemble learner. The way it operates is significantly different from both UnderBagging 

and OverBagging, while it is more similar to SMOTEBagging. A resampling rate of b% is set in 

each iteration (it starts from 10% in the first iteration and arrives to 100% in the last, always 

increasing by 10%) and this value is used during both undersampling and oversampling to resample 

the training set. 

3. Proposed approach - HardEnsemble (HE_S) 

HardEnsemble is a novel ensemble we propose in this paper as our contribution to the quest 

for a classifier that is more robust and consistent when dealing with imbalanced datasets. 

HardEnsemble leverages on two general observations that can be inferred from the literature on data 

imbalance: 

• Undersampling the majority class usually improves performance. However, this process can 

drop useful data. 

• Oversampling the minority class can increase performance, but if outliers are used to create new 

training patterns the overall effectiveness may suffer. 

Since both undersampling and oversampling may have drawbacks when used in isolation, in our 

ensemble we integrate both. To be precise, HardEnsemble contains 50 classifiers that resort to 

oversampling, and 100 that employ undersampling. The parameters are chosen empirically using 

artificial datasets. For 10 times we generated 500 artificial patterns belonging to two classes (50 to 

the minority class, 450 to the majority class); the patterns in each class follow a multinormal 

distribution. The parameters of the ensemble were chosen to maximize performance over these 

synthetic datasets. The number of 50 classifiers was chosen by observing that when we further 

increased the figure, the overall performance remained the same: 



11 
 

 

• To oversample the minority class, the novel Critical SMOTE (CSMOTE) technique (see Section 

3.1) is used. CSMOTE generates a set of artificial patterns whose dimension is equal to 5 times 

the number of positive patterns. The cardinality of the minority class is constrained not to 

overcome the cardinality of the majority class. 

• To undersample the majority class, we apply the Reduced Reward-Punishment technique [43], 

which removes those cases that lie in the overlapping regions of different classes. In this way, 

the most informative patterns of the majority class are more considered in the final training sets. 

The patterns of the minority class are not removed even if they are marked as outliers by the 

algorithm. 

In both cases, RUSBoost (with T=10 iterations) is adopted as the base classifier; the outputs 

of the RUSBoost classifiers are combined by sum rule [56]. As in Reduced Reward-Punishment 

Editing, only local criteria are used to select the patterns that are removed from the training set (see 

[43] for details). Two weights are assigned to each pattern xi. 

1. WR(i) is the number of times that the pattern xi contributes to the correct classification of 

another pattern. 

2. WP(i) is the number of times that the pattern xi contributes to the wrong classification of 

another pattern. 

Both WR(i) and WP(i) are linearly normalized between 0 and 1. The final weight, WF(i), is 

calculated as WF(i)=α×WR(i)+(1- α)×(1-WP(i)). A fraction ep of patterns with highest weight are 

then retained. There is also a third parameter, named k: this is the number of nearest neighbors of 

each training pattern used to calculate the values of WR(i) and WP(i) (see [43] for details). For each 

dataset, we consistently considered several sets of parameter settings, and a different training set 

was built for each of them. To be more precise, we considered the training sets obtained using all 

combinations of α ∈ {0, 0.25, 0.5, 0.75, 1}, ep ∈ {10%, 22.5%, 35%, 47.5%}, and k ∈ {1, 3, 5, 7, 

9}. If a class of a dataset was completely emptied by a certain combination of parameters, then such 
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combination was not included. Notice that all the parameters of the proposed ensemble are fixed in 

all the tests reported in Section 4, i.e., in the KEEL datasets, in the multi-class datasets, in the 

strongly imbalanced datasets, and so on. 

In Figure 1 we report the scheme of the proposed approach. It must be remarked that we 

performed several tests with other base classifiers and sampling techniques: in the end we opted for 

CSMOTE and RUSBoost since they work well in the maximum number of datasets (see the 

experiments in Section 3). The number of artificial patterns generated by CSMOTE was also set 

experimentally to a value that gives good results across the wider possible range of datasets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Proposed approach. 
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3.1 Critical SMOTE (CSMOTE) 

In this paper we introduce an improved version of MSMOTE whom we call Critical SMOTE. 

Following the idea of using only a subset of the minority class for building synthetic patterns, we 

extract from the class two prominent subsets of patterns, categorized using the method proposed in 

[42]. 

• Edge samples define the boundary of the class. These samples are enough to represent 

the original data set if all classes in the data set are separated. 

• Border samples are carefully selected in the overlapping region between adjacent 

classes so as to obtain the best decision surface possible. 

Once samples are extracted, the creation of new patterns is performed as in MSMOTE: if the 

sample is of Border type, then CSMOTE randomly chooses one of the k-nearest neighbors; if it is 

of Edge type, then CSMOTE selects the nearest neighbor. 

 

4. Experimental results 

We adopt the area under the Receiver Operating Characteristic curve (AUC) [1], the F-measure 

[61], and the G-mean [61] as the performance measures in our experiments. The Receiver Operating 

Characteristic (ROC) curve is a plot of the sensitivity vs. false positive rate (1 minus specificity). 

The Area Under the Curve (AUC) can be interpreted as the probability that the classifier will assign 

a lower score to a randomly chosen positive sample rather than to a randomly chosen negative 

sample. The F-measure is the harmonic mean of recall and precision, and it is often used in 

document retrieval. It is defined as 2 × precision × recall / (precision + recall). The G-mean is given 

by: 
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where TNrate is the specificity rate (true negative rate) and TPrate is the sensitivity rate (true 

positive rate). 

4.1 Tests with 2-class datasets 

To validate our proposed approach, HardEnsemble, and compare it to existing classifiers, we 

resort to the same datasets tested in [3]. Table 1 summarizes the characteristics of those datasets. 

As in [3], a 5-fold cross-validation is adopted as the testing protocol. The folds (i.e., the dataset 

partitions) are publicly available in the KEEL-dataset repository2 and serve to make a fair 

comparison possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                
2	  http://sci2s.ugr.es/keel/datasets.php	  
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 # Instances # Attributes %min %maj IR 
Abalone9vs18 731 8 5.65 94.25 16.68 
Abalone19 4174 8 0.77 99.23 128.87 
Ecoli1 336 7 22.92 77.08 3.36 
Ecoli2 336 7 15.48 84.52 5.46 
Ecoli3 336 7 10.88 89.12 8.19 
Ecoli4 336 7 6.74 93.26 13.84 
Ecoli0137vs26  281 7 2.49 97.51 39.15 
Ecoli0vs1 220 7 35.00 65.00 1.86 
Glass0 214 9 32.71 67.29 2.01 
Glass1 214 9 35.51 64.49 1.82 
Glass2 214 9 8.78 91.22 10.39 
Glass4 214 9 6.07 93.93 15.47 
Glass5 214 9 4.20 95.80 22.81 
Glass6 214 9 13.55 86.45 6.38 
Glass0123vs456 214 9 23.83 76.17 3.19 
Glass016vs2 192 9 8.89 91.11 10.29 
Glass016vs5 184 9 4.89 95.11 19.44 
Haberman 306 3 27.42 73.58 2.68 
Iris0  150 4 33.33 66.67 2.00 
NewThyroid1 215 5 16.28 83.72 5.14 
NewThyroid2 215 5 16.89 83.11 4.92 
PageBlocks0 5472 10 10.23 89.77 8.77 
PageBlocks13vs2 472 10 5.93 94.07 15.85 
Pima 768 8 34.84 66.16 1.90 
Segment0 2308 19 14.26 85.74 6.01 
Shuttle0vs4 1829 9 6.72 93.28 13.87 
Shuttle2vs4 129 9 4.65 95.35 20.5 
Vehicle0 846 18 23.64 76.36 3.23 
Vehicle1 846 18 28.37 71.63 2.52 
Vehicle2 846 18 28.37 71.63 2.52 
Vehicle3 846 18 28.37 71.63 2.52 
Vowel0 988 13 9.01 90.99 10.10 
Wisconsin 683 9 35.00 65.00 1.86 
Yeast1 1484 8 28.91 71.09 2.46 
Yeast3 1484 8 10.98 89.02 8.11 
Yeast4 1484 8 3.43 96.57 28.41 
Yeast5 1484 8 2.96 97.04 32.78 
Yeast6 1484 8 2.49 97.51 39.15 
Yeast05679vs4 528 8 9.66 90.34 9.35 
Yeast1289vs7 947 8 3.17 96.83 30.56 
Yeast1458vs7 693 8 4.33 95.67 22.10 
Yeast1vs7 459 8 6.72 93.28 13.87 
Yeast2vs4 514 8 9.92 90.08 9.08 
Yeast2vs8 482 8 4.15 95.85 23.10 

 

Table 1. Summary description of the binary datasets used in this study. 

 

Our first tests were performed to motivate our idea of adopting several instances of the 

same classifier in the ensemble. The results show that if 50 SMOTEs are combined, the fusion 

(by sum rule) outperforms (with p-value 0.10 using Wilcoxon signed-rank test [2]) a stand-alone 
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SMOTE. The same conclusion is also reached for RUSBoost and GK. 

The use of CSMOTE instead of SMOTE or MSMOTE also deserves some motivation. 

CSMOTE is very useful when there are outliers in the datasets. Using the datasets reported in 

Table 1 and setting the number of outliers3 to 20%, CSMOTE outperforms SMOTE with p-

value<0.01. When the number of outliers is set to 33%, CSMOTE outperforms MSMOTE as 

well (with p-value 0.05). When the number of outliers is limited, the three techniques perform 

equally well. It is important to stress in our choice of CSMOTE that a system that is robust to 

outliers is very important in some applications, for example, in stream data [62] or data mining 

in healthcare [63]. We have also tested the recent MWMOTE [60] technique using the original 

code shared by the authors and found that it does not outperform SMOTE (using SVM as base 

classifier). 

After performing the first tests, we moved on to compare several different methods 

(including our proposed method HardEnsemble) for handling imbalanced datasets. We 

performed many experiments using all the methods detailed in Section 2, but here we only 

report the methods that performed the best in our set of experiments. The methods are listed 

below, and Table 2 summarizes their performance indicators: 

• SVM: a plain SVM, with both the linear and the radial basis function kernel4 evaluated. 

• SV_W: SVM-WEIGHT, where the parameters are overfitted using the entire dataset. We can 

consider this as an upper bound of the performance that can be obtained with SVM-

WEIGHT. 

• CS: 50 CSMOTEs combined by sum rule, where the SVM parameters are chosen separately 

using the training data in each dataset4. 

• RB: 50 RUSBoosts combined by sum rule. 

• B_C: fusion by sum rule of CS and RB. 

                                                
3	  To	  simulate	  the	  presence	  of	  outliers,	  we	  change	  the	  labels	  of	  a	  subset	  of	  the	  training	  set.	  
4 Its parameters are chosen, by a ten-fold cross validation using the training data, separately in each dataset. 
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• B_Cov: similar to B_C but the parameters are overfitted using the entire dataset. Again, this 

gives an upper bound on the performance that can be obtained with the ensemble. 

• HE_S: our proposed HardEnsemble classifier, as described in Section 3. 

• HE_A: HardEnsemble, where RUSBoost is replaced by an Adaboost of 50 neural networks 

as the base classifier. 

• HE_FUS: fusion by sum rule5 of HE_S and HE_A. 

• Best: best result (separately chosen for each dataset) as reported in [3]. 

The most interesting fact emerging from our tests is that no single stand-alone method 

(including, of course, those described in Section 2 and not listed here because of their lower 

performance in the tests) outperforms SVM with p-value <0.10. Surprisingly, many surveys 

(e.g., [3][4]) report the opposite result: namely, that methods for handling imbalanced datasets 

outperform the base classifier. In our opinion this is due to the fact that other authors use a weak 

base classifier (e.g., a decision tree) while we use a strong one. 

 

 

 

 

 

 

 

 

 

 

 

 
                                                
5 before the fusion the scores of each method are normalized to mean 0 and standard deviation 1 
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AUC SVM SV_W CS RB B_Cov B_C HE_S HE_A HE_FUS Best 
Abalone9vs18 0.9673	   0.9762	   0.9732	   0.9583	   0.9765	   0.9731	   0.9711	   0.9661	   0.9699	   0.766 
Abalone19 0.7252	   0.7467	   0.7321	   0.7197	   0.7659	   0.7325	   0.7902	   0.8303	   0.8338	   0.720 
Ecoli1 0.9597	   0.9592	   0.9587	   0.9594	   0.9646	   0.9599	   0.9567	   0.9605	   0.9607	   0.919 
Ecoli2 0.9648	   0.9651	   0.9651	   0.9678	   0.9698	   0.9669	   0.9643	   0.9681	   0.9701	   0.908 
Ecoli3 0.9513	   0.9406	   0.9425	   0.9468	   0.9597	   0.9423	   0.9499	   0.9480	   0.9511	   0.907 
Ecoli4 0.9978	   0.9975	   0.9895	   0.9802	   0.9986	   0.9892	   0.9911	   0.9883	   0.9901	   0.941 
Ecoli0137vs26  0.9567	   0.9585	   0.9589	   0.9419	   0.9622	   0.9586	   0.9610	   0.9473	   0.9588	   0.848 
Ecoli0vs1 0.9930	   0.9927	   0.9935	   0.9950	   0.9947	   0.9936	   0.9945	   0.9941	   0.9949	   0.983 
Glass0 0.8556	   0.8658	   0.8634	   0.8675	   0.8681	   0.8674	   0.8657	   0.8593	   0.8697	   0.862 
Glass1 0.7934	   0.7954	   0.7887	   0.7889	   0.7986	   0.7872	   0.7910	   0.8090	   0.8031	   0.820 
Glass2 0.8759	   0.8957	   0.8687	   0.8856	   0.8807	   0.8849	   0.8803	   0.8545	   0.8727	   0.779 
Glass4 0.9800	   0.9704	   0.9745	   0.9652	   0.9727	   0.9631	   0.9834	   0.9828	   0.9871	   0.937 
Glass5 0.9981	   0.9988	   0.9983	   0.9852	   1.0000	   0.9931	   0.9985	   0.9986	   0.9985	   0.985 
Glass6 0.9694	   0.9218	   0.9571	   0.9744	   0.9800	   0.9681	   0.9798	   0.9811	   0.9806	   0.936 
Glass0123vs456 0.9805	   0.9783	   0.9886	   0.9827	   0.9888	   0.9852	   0.9868	   0.9881	   0.9903	   0.945 
Glass016vs2 0.8528	   0.8796	   0.8233	   0.8778	   0.8836	   0.8636	   0.8601	   0.8088	   0.8217	   0.753 
Glass016vs5 0.9833	   0.9976	   0.9890	   0.9718	   0.9979	   0.9896	   0.9892	   0.9899	   0.9897	   0.988 
Haberman 0.7098	   0.6985	   0.6748	   0.7043	   0.7116	   0.6941	   0.7084	   0.6975	   0.7206	   0.668 
Iris0  1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   0.990 
NewThyroid1 1.0000	   1.0000	   1.0000	   0.9991	   1.0000	   1.0000	   1.0000	   0.9998	   1.0000	   0.988 
NewThyroid2 1.0000	   1.0000	   1.0000	   0.9981	   1.0000	   1.0000	   0.9993	   0.9993	   0.9997	   0.985 
PageBlocks0 0.9797	   0.9811	   0.9804	   0.9821	   0.9835	   0.9821	   0.9812	   0.9913	   0.9910	   0.958 
PageBlocks13vs2 0.9985	   0.9979	   0.9997	   0.9997	   0.9998	   1.0000	   0.9982	   1.0000	   1.0000	   0.997 
Pima 0.8372	   0.8306	   0.8394	   0.8255	   0.8412	   0.8399	   0.8389	   0.8320	   0.8391	   0.763 
Segment0 1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   0.996 
Shuttle0vs4 1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.000 
Shuttle2vs4 1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.000 
Vehicle0 0.9985	   0.9986	   0.9990	   0.9981	   0.9986	   0.9995	   0.9961	   0.9985	   0.9986	   0.976 
Vehicle1 0.9302	   0.9385	   0.9193	   0.9219	   0.9314	   0.9192	   0.9137	   0.9027	   0.9108	   0.800 
Vehicle2 0.9983	   0.9987	   0.9984	   0.9976	   0.9990	   0.9984	   0.9987	   0.9987	   0.9984	   0.985 
Vehicle3 0.9113	   0.9175	   0.9033	   0.9049	   0.9135	   0.9031	   0.8956	   0.8938	   0.8962	   0.802 
Vowel0 1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   0.991 
Wisconsin5 0.9952	   0.9952	   0.9958	   0.9916	   0.9951	   0.9959	   0.9956	   0.9937	   0.9958	   0.978 
Yeast1 0.7963	   0.8001	   0.7964	   0.8018	   0.8072	   0.7983	   0.8033	   0.7996	   0.8052	   0.739 
Yeast3 0.9741	   0.9711	   0.9739	   0.9709	   0.9741	   0.9733	   0.9741	   0.9744	   0.9744	   0.944 
Yeast4 0.8796	   0.8821	   0.9034	   0.8950	   0.9092	   0.9033	   0.8962	   0.9091	   0.9096	   0.860 
Yeast5 0.9897	   0.9904	   0.9898	   0.9890	   0.9900	   0.9905	   0.9909	   0.9928	   0.9922	   0.965 
Yeast6 0.9235	   0.9444	   0.9434	   0.9209	   0.9496	   0.9436	   0.9461	   0.9393	   0.9446	   0.877 
Yeast05679vs4 0.8804	   0.8864	   0.8728	   0.8816	   0.8883	   0.8780	   0.8732	   0.8816	   0.8875	   0.818 
Yeast1289vs7 0.7666	   0.8018	   0.8128	   0.7590	   0.8235	   0.8128	   0.8211	   0.8057	   0.8122	   0.733 
Yeast1458vs7 0.6816	   0.7096	   0.6974	   0.7095	   0.7257	   0.7116	   0.7014	   0.7031	   0.7088	   0.626 
Yeast1vs7 0.7957	   0.8628	   0.8542	   0.8155	   0.8585	   0.8549	   0.8520	   0.8491	   0.8581	   0.785 
Yeast2vs4 0.9756	   0.9809	   0.9808	   0.9738	   0.9815	   0.9803	   0.9789	   0.9825	   0.9833	   0.941 
Yeast2vs8 0.8249	   0.8630	   0.8519	   0.8342	   0.8774	   0.8514	   0.8122	   0.8255	   0.8312	   0.833 
MeanAUC 0.9239 0.9293 0.9262 0.9237 0.9346 0.9284 0.9293 0.9283 0.9318 0.887 
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F-MEASURE SVM SV_W CS RB B_Cov B_C HE_S HE_A HE_FUS 
Abalone9vs18 0.5489	   0.6034	   0.5852	   0.5011	   0.6025	   0.5850	   0.5748	   0.5426	   0.5647	  
Abalone19 0.0562	   0.0490	   0.0314	   0.0316	   0.0448	   0.0708	   0.0428	   0.0738	   0.0762	  
Ecoli1 0.7460	   0.7465	   0.7388	   0.7458	   0.7794	   0.7518	   0.7266	   0.7581	   0.7493	  
Ecoli2 0.7694	   0.7843	   0.7787	   0.7998	   0.8206	   0.7951	   0.7782	   0.7991	   0.8140	  
Ecoli3 0.5409	   0.4799	   0.4976	   0.5239	   0.5952	   0.4986	   0.5358	   0.5313	   0.5444	  
Ecoli4 0.7664	   0.7704	   0.7012	   0.6435	   0.7707	   0.7118	   0.7132	   0.6934	   0.7103	  
Ecoli0137vs26  0.2931	   0.2983	   0.2959	   0.2508	   0.3104	   0.2965	   0.3051	   0.2672	   0.2955	  
Ecoli0vs1 0.9748	   0.9705	   0.9864	   0.9985	   0.9988	   0.9872	   1.0000	   0.9955	   0.9972	  
Glass0 0.5950	   0.6640	   0.6467	   0.6654	   0.6803	   0.6688	   0.6553	   0.6172	   0.6864	  
Glass1 0.6550	   0.6609	   0.6139	   0.6226	   0.6846	   0.6098	   0.6273	   0.7586	   0.7098	  
Glass2 0.4158	   0.4953	   0.3863	   0.4556	   0.4360	   0.4538	   0.4358	   0.3287	   0.4058	  
Glass4 0.5539	   0.5002	   0.5253	   0.4755	   0.5130	   0.4616	   0.5744	   0.5754	   0.6054	  
Glass5 0.8229	   0.8287	   0.8338	   0.7209	   0.8401	   0.7945	   0.8268	   0.8335	   0.8357	  
Glass6 0.7199	   0.3309	   0.6296	   0.7643	   0.8101	   0.7191	   0.8064	   0.8230	   0.8127	  
Glass0123vs456 0.8064	   0.7748	   0.8680	   0.8208	   0.8807	   0.8427	   0.8487	   0.8736	   0.8816	  
Glass016vs2 0.4405	   0.5444	   0.3279	   0.5361	   0.5620	   0.4822	   0.4689	   0.2667	   0.3235	  
Glass016vs5 0.7257	   0.8365	   0.7756	   0.6364	   0.8487	   0.7814	   0.7761	   0.7809	   0.7811	  
Haberman 0.4883	   0.4249	   0.3011	   0.4556	   0.4907	   0.4019	   0.4721	   0.4161	   0.5452	  
Iris0  1.0000	   0.9949	   1.0000	   0.9958	   1.0000	   0.9958	   1.0000	   0.9947	   0.9936	  
NewThyroid1 0.9574	   0.9417	   0.9421	   0.9393	   0.9454	   0.9435	   0.9529	   0.9504	   0.9519	  
NewThyroid2 0.9503	   0.9358	   0.9377	   0.9349	   0.9394	   0.9450	   0.9461	   0.9315	   0.9396	  
PageBlocks0 0.6849	   0.7029	   0.6848	   0.6961	   0.7099	   0.7012	   0.6919	   0.7677	   0.7669	  
PageBlocks13vs2 0.7725	   0.7702	   0.7922	   0.7926	   0.7959	   0.7974	   0.7817	   0.7888	   0.7948	  
Pima 0.6684	   0.6153	   0.6778	   0.5776	   0.6841	   0.6804	   0.6797	   0.6290	   0.6743	  
Segment0 0.9957	   0.9875	   0.9867	   0.9923	   0.9826	   0.9982	   0.9969	   0.9891	   0.9832	  
Shuttle0vs4 0.9934	   1.0000	   1.0000	   1.0000	   0.9972	   1.0000	   1.0000	   0.9912	   1.0000	  
Shuttle2vs4 0.9264	   0.9255	   0.9347	   0.9299	   0.9257	   0.9287	   0.9350	   0.9349	   0.9369	  
Vehicle0 0.9193	   0.9262	   0.9351	   0.9182	   0.9189	   0.9374	   0.9031	   0.9219	   0.9292	  
Vehicle1 0.8203	   0.8796	   0.7497	   0.7590	   0.8364	   0.7433	   0.6986	   0.6277	   0.6858	  
Vehicle2 0.9391	   0.9468	   0.9510	   0.9305	   0.9561	   0.9374	   0.9442	   0.9464	   0.9444	  
Vehicle3 0.7207	   0.7618	   0.6710	   0.6798	   0.7467	   0.6625	   0.6142	   0.6085	   0.6259	  
Vowel0 0.9488	   0.9519	   0.9527	   0.9447	   0.9538	   0.9434	   0.9470	   0.9453	   0.9460	  
Wisconsin5 0.9599	   0.9607	   0.9673	   0.9289	   0.9676	   0.9643	   0.9758	   0.9573	   0.9763	  
Yeast1 0.5382	   0.5591	   0.5328	   0.5700	   0.6065	   0.5485	   0.5755	   0.5521	   0.5969	  
Yeast3 0.6791	   0.6537	   0.6770	   0.6630	   0.6798	   0.6696	   0.6750	   0.6801	   0.6755	  
Yeast4 0.2410	   0.2481	   0.3144	   0.2860	   0.3372	   0.3146	   0.2916	   0.3334	   0.3364	  
Yeast5 0.4483	   0.4500	   0.4420	   0.4446	   0.4444	   0.4457	   0.4504	   0.4605	   0.4592	  
Yeast6 0.2818	   0.3584	   0.3488	   0.2712	   0.3749	   0.3540	   0.3640	   0.3357	   0.3558	  
Yeast05679vs4 0.4629	   0.4936	   0.4304	   0.4744	   0.5096	   0.4541	   0.4325	   0.4706	   0.5061	  
Yeast1289vs7 0.1224	   0.2082	   0.2343	   0.1049	   0.2595	   0.2357	   0.2534	   0.2140	   0.2340	  
Yeast1458vs7 0.1469	   0.2033	   0.1786	   0.1997	   0.2329	   0.2054	   0.1868	   0.1882	   0.1984	  
Yeast1vs7 0.1493	   0.4100	   0.3785	   0.2248	   0.3914	   0.3747	   0.3672	   0.3517	   0.3895	  
Yeast2vs4 0.6815	   0.7192	   0.7162	   0.6636	   0.7197	   0.7161	   0.6937	   0.7274	   0.7352	  
Yeast2vs8 0.6163	   0.8745	   0.8032	   0.6831	   0.9606	   0.7889	   0.5334	   0.6208	   0.6623	  
Mean 0.6487	  	  	  	  	   0.6646	  	  	  	  	   0.6537	  	  	  	  	   0.6421	  	  	  	  	   0.6942	  	  	  	  	   0.6636	  	  	  	  	   0.6604	  	  	  	  	   0.6558	  	  	  	  	   0.6736	  
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G-MEAN SVM SV_W CS RB B_Cov B_C HE_S HE_A HE_FUS 
Abalone9vs18 0.8033	   0.9175	   0.9296	   0.7638	   0.9522	   0.9038	   0.8706	   0.8021	   0.8640	  
Abalone19 0.4117	   0.4729	   0.4063	   0.4188	   0.5193	   0.4414	   0.4025	   0.5739	   0.5835	  
Ecoli1 0.8102	   0.9076	   0.8519	   0.9230	   0.9178	   0.9432	   0.9294	   0.8839	   0.8725	  
Ecoli2 0.8894	   0.9067	   0.8788	   0.8532	   1.0000	   0.9665	   0.9475	   0.8466	   0.9071	  
Ecoli3 0.8259	   0.7298	   0.7835	   0.8300	   0.9616	   0.7696	   0.8082	   0.8835	   0.9108	  
Ecoli4 0.9867	   1.0000	   0.8871	   0.8698	   0.9148	   1.0000	   0.9115	   0.8330	   0.8362	  
Ecoli0137vs26  0.8159	   0.7913	   0.7560	   0.6538	   0.8095	   0.7501	   0.8019	   0.6883	   0.7179	  
Ecoli0vs1 0.8813	   0.9116	   1.0000	   0.9908	   1.0000	   1.0000	   0.9924	   1.0000	   0.9317	  
Glass0 0.7056	   0.8062	   0.7821	   0.7223	   0.8109	   0.7267	   0.7226	   0.7358	   0.7352	  
Glass1 0.7033	   0.6772	   0.6098	   0.6844	   0.7725	   0.6762	   0.6325	   0.8580	   0.6963	  
Glass2 0.8805	   1.0000	   0.8098	   0.9524	   0.8963	   0.9017	   0.9329	   0.6344	   0.8073	  
Glass4 0.8935	   0.7405	   0.8341	   0.8542	   0.8100	   0.8041	   0.9026	   0.9051	   1.0000	  
Glass5 0.9835	   0.9592	   1.0000	   0.7748	   0.9395	   0.9635	   0.9585	   0.9335	   1.0000	  
Glass6 0.7686	   0.3205	   0.7206	   0.8327	   0.9068	   0.8208	   0.8340	   0.9834	   0.8557	  
Glass0123vs456 0.8916	   0.8291	   0.8505	   0.9041	   0.9452	   0.9736	   0.8304	   0.9916	   0.9156	  
Glass016vs2 0.9105	   1.0000	   0.6913	   0.9924	   1.0000	   0.9690	   0.9674	   0.5102	   0.6824	  
Glass016vs5 0.8268	   1.0000	   1.0000	   0.7131	   1.0000	   1.0000	   1.0000	   0.9475	   1.0000	  
Haberman 0.6592	   0.5609	   0.4031	   0.6326	   0.5833	   0.5390	   0.5580	   0.4797	   0.7149	  
Iris0  1.0000	   0.9202	   1.0000	   0.9256	   1.0000	   0.9373	   1.0000	   0.9233	   0.9448	  
NewThyroid1 1.0000	   0.9406	   0.9272	   0.9694	   0.9474	   0.9867	   1.0000	   1.0000	   1.0000	  
NewThyroid2 1.0000	   0.9180	   0.8964	   1.0000	   0.9553	   1.0000	   1.0000	   0.9762	   0.9367	  
PageBlocks0 0.7777	   0.9217	   0.8609	   0.8491	   0.8288	   0.8169	   0.8566	   0.9639	   0.9469	  
PageBlocks13vs2 0.8859	   0.9383	   1.0000	   1.0000	   1.0000	   1.0000	   1.0000	   0.9760	   1.0000	  
Pima 0.7317	   0.6723	   0.7719	   0.6290	   0.6937	   0.6840	   0.7780	   0.7228	   0.7122	  
Segment0 1.0000	   0.9311	   0.9908	   1.0000	   0.9195	   1.0000	   1.0000	   1.0000	   0.9228	  
Shuttle0vs4 0.9641	   1.0000	   1.0000	   1.0000	   0.9158	   1.0000	   1.0000	   0.9114	   1.0000	  
Shuttle2vs4 0.9278	   0.9510	   1.0000	   0.9797	   0.9456	   0.9387	   1.0000	   1.0000	   1.0000	  
Vehicle0 0.9195	   1.0000	   1.0000	   0.9090	   0.9168	   1.0000	   1.0000	   0.9733	   1.0000	  
Vehicle1 0.9039	   1.0000	   0.9126	   0.8238	   1.0000	   0.8537	   0.7829	   0.7836	   0.8886	  
Vehicle2 0.9411	   1.0000	   1.0000	   0.9197	   1.0000	   0.9537	   0.9239	   1.0000	   1.0000	  
Vehicle3 0.8589	   0.8633	   0.8224	   0.7645	   0.8992	   0.7704	   0.7031	   0.7566	   0.8202	  
Vowel0 1.0000	   1.0000	   1.0000	   0.9801	   1.0000	   0.9728	   0.9872	   0.9776	   0.9219	  
Wisconsin5 0.9030	   0.9662	   0.9686	   1.0000	   1.0000	   0.9067	   1.0000	   0.9969	   1.0000	  
Yeast1 0.6591	   0.6622	   0.5909	   0.6450	   0.7476	   0.5882	   0.6232	   0.6530	   0.7103	  
Yeast3 0.9511	   0.8792	   0.8332	   0.9485	   1.0000	   0.9052	   0.8827	   0.8711	   0.8852	  
Yeast4 0.6312	   0.6073	   0.7515	   0.7087	   0.8456	   0.7357	   0.6424	   0.7527	   0.7766	  
Yeast5 0.9678	   0.9932	   0.8808	   1.0000	   0.8859	   0.9451	   0.9240	   1.0000	   0.9969	  
Yeast6 0.7445	   0.9289	   0.8369	   0.5998	   0.9701	   0.9347	   0.9641	   0.8178	   0.8530	  
Yeast05679vs4 0.7365	   0.7655	   0.6720	   0.7945	   0.8695	   0.6770	   0.6813	   0.7536	   0.8890	  
Yeast1289vs7 0.3406	   0.5940	   0.6850	   0.3155	   0.7097	   0.6353	   0.7118	   0.5813	   0.6676	  
Yeast1458vs7 0.4113	   0.6311	   0.5875	   0.6046	   0.7219	   0.6924	   0.5887	   0.5560	   0.5846	  
Yeast1vs7 0.2973	   0.8491	   0.7610	   0.3988	   0.7361	   0.7394	   0.7282	   0.6637	   0.7148	  
Yeast2vs4 0.9106	   0.9443	   0.9595	   0.9036	   0.9553	   0.9906	   0.8852	   1.0000	   0.9593	  
Yeast2vs8 0.6986	   1.0000	   0.9532	   0.8175	   1.0000	   0.8566	   0.5665	   0.6600	   0.7376	  
Mean 0.8139	  	  	  	  	   0.8502	  	  	  	  	   0.8377	  	  	  	  	   0.8148	  	  	  	  	   0.8910	  	  	  	  	   0.8561	  	  	  	  	   0.8462	  	  	  	  	   0.8355	  	  	  	  	   0.8614	  

 
 

Table 2. AUC, F-measure and G-mean of several classifiers and ensembles compared with the 

state of the art. The best performing classifier (with the exception of overfitted classifiers) for 

each dataset is marked in bold. 

 

By examining the results (considering the AUC) in Table 2, the following observations can be 

made. 
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• SVM is outperformed with p-value<0.05 by SVM_W, B_Cov, HE_S, and HE_FUS. 

• HE_FUS outperforms B_C with p-value<0.10. The only approach that outperforms 

HE_FUS with p-value <0.10 is B_Cov, but it is an overfitted system that is only 

meaningful as an upper bound. 

• The performance obtained in [3] is much lower than that obtained in this work. This is 

due to the different base classifiers tested in the two papers (a decision tree in [3] vs. an 

SVM here). Moreover, AUC in [3] is calculated in a different way (see [3] for details).   

All in all, HE_FUS is the best choice since it has no parameters6 (except the SVM 

parameters in the base SVM) to be chosen for each dataset, while other approaches (e.g., 

SMOTE and RUSBoost) require a fine-tuning phase in order to obtain the best results. In all the 

tested datasets, we have used the parameters reported in Section 3. 

Using the F-measure and G-mean, we have compared all the methods detailed in Section 2 

and the methods reported in Table 2. Similar conclusions to those found using AUC are drawn: 

in particular, HE_FUS outperforms with p-value <0.10 all the other approaches except B_Cov 

(an overfitted system that is only meaningful as an upper bound). A recent paper ([66]) reports 

the G-mean obtained by several baseline approaches (e.g., SMOTE, Cost-sensitive SVM, 

SMOTEBoost, RUSBoost, SMOTEBagging, and UnderBagging) and two novel ensembles 

proposed by the authors of that paper. Our ensemble performs similarly to the best approaches 

reported in [66] and outperforms the baseline approaches. However, in all tests we always use 

the same parameters for building our ensembles, while in [66] the parameters are optimized for 

each dataset. 

In Table 3 we report the AUC obtained by some variants of HE-FUS. 

• HE_WFUS: a weighted sum rule between HE_S and HE_A where the weight of HE_S is 

2 and the weight of HE_A is 1. 

• HE_2WFUS: a weighted sum rule similar to HE_WFUS, but the weight of the classifiers 
                                                
6	  All	  the	  parameters	  of	  CSMOTE,	  RUSBoost,	  and	  of	  the	  editing	  method	  are	  fixed	  in	  our	  ensemble	  for	  all	  the	  datasets. 
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trained using the training sets built by CSMOTE is halved. 

• HE_WFUS_SUM: a weighted sum rule between HE_S, HE_A, and SVM where the 

weight of HE_S is 2 and the weight of HE_A and SVM is 1. 

The last two columns of Table 3 report the F-measure/G-mean obtained by the best 

ensemble. On average, the best results are obtained by HE_WFUS_SVM. However, there are no 

statistical differences among the three ensembles. 

 HE_FUS HE_WFUS HE_WFUS_SVM F-Measure  
(HE_WFUS_SVM) 

G-Mean  
(HE_WFUS_SVM) 

Abalone9vs18 0.9699 0.9692 0.9705 0.5719 0.9139 
Abalone19 0.8338 0.8345 0.8345 0.0772 0.6458 
Ecoli1 0.9607 0.9577 0.9617 0.7622 0.8937 
Ecoli2 0.9701 0.9673 0.9683 0.8049 0.9266 
Ecoli3 0.9511 0.9524 0.9552 0.5666 0.8660 
Ecoli4 0.9901 0.9897 0.9921 0.7257 0.9414 
Ecoli0137vs26  0.9588 0.9562 0.9563 0.2911 0.7528 
Ecoli0vs1 0.9949 0.9940 0.9936 0.9861 0.9795 
Glass0 0.8697 0.8691 0.8712 0.6971 0.7734 
Glass1 0.8031 0.8011 0.7966 0.6700 0.7168 
Glass2 0.8727 0.8732 0.8727 0.4023 0.7974 
Glass4 0.9871 0.9842 0.9850 0.5891 0.9516 
Glass5 0.9985 1.0000 0.9976 0.8267 0.9902 
Glass6 0.9806 0.9796 0.9811 0.8198 0.9386 
Glass0123vs456 0.9903 0.9898 0.9898 0.8813 0.9486 
Glass016vs2 0.8217 0.8367 0.8390 0.3866 0.7566 
Glass016vs5 0.9897 0.9914 0.9914 0.7933 0.9795 
Haberman 0.7206 0.7200 0.7186 0.5301 0.6794 
Iris0  1.0000 1.0000 1.0000 1.0000 1.0000 
NewThyroid1 1.0000 1.0000 1.0000 0.9483 0.9888 
NewThyroid2 0.9997 0.9992 0.9992 0.9367 0.9859 
PageBlocks0 0.9910 0.9883 0.9886 0.7521 0.9555 
PageBlocks13vs2 1.0000 1.0000 0.9996 0.7879 0.9818 
Pima 0.8391 0.8418 0.8415 0.6917 0.7577 
Segment0 1.0000 0.9999 0.9999 0.9880 0.9972 
Shuttle0vs4 1.0000 0.9999 0.9999 1.0000 1.0000 
Shuttle2vs4 1.0000 1.0000 1.0000 0.9333 0.9960 
Vehicle0 0.9986 0.9970 0.9979 0.9174 0.9718 
Vehicle1 0.9108 0.9111 0.9168 0.7276 0.8567 
Vehicle2 0.9984 0.9982 0.9982 0.9398 0.9760 
Vehicle3 0.8962 0.8957 0.9058 0.6877 0.8303 
Vowel0 1.0000 0.9999 0.9999 0.9476 0.9944 
Wisconsin5 0.9958 0.9950 0.9951 0.9616 0.9775 
Yeast1 0.8052 0.8051 0.8061 0.5964 0.7144 
Yeast3 0.9744 0.9744 0.9748 0.6832 0.9218 
Yeast4 0.9096 0.9078 0.9076 0.3309 0.8143 
Yeast5 0.9922 0.9914 0.9914 0.4529 0.9621 
Yeast6 0.9446 0.9444 0.9450 0.3576 0.8767 
Yeast05679vs4 0.8875 0.8813 0.8835 0.4824 0.8001 
Yeast1289vs7 0.8122 0.8153 0.8157 0.2403 0.6498 
Yeast1458vs7 0.7088 0.7042 0.7047 0.1921 0.5954 
Yeast1vs7 0.8581 0.8577 0.8577 0.3890 0.7621 
Yeast2vs4 0.9833 0.9807 0.9807 0.7124 0.9307 
Yeast2vs8 0.8312 0.8251 0.8295 0.6514 0.7510 
Mean values 0.9318 0.9314 0.9321 0.6748 0.8750 

 

Table 3. AUC, F-measure, and G-mean of some variants of the proposed ensemble. 
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In Table 4 we compare among them the methods tested in this paper (using the datasets tested in 

the previous table 3). Three symbols are used in the table: 

• “L” indicates that the method indicated in the row exhibits lower performance, with p-value 

<0.10, than the method in the column (it is the “loser”); 

• “ND” indicates that there is no statistically significant difference between the performances 

of the two methods; 

• “W” marks the fact that the method in the row obtains higher performance, with p-value 

<0.10 (it is the “winner”). 

The approaches that never lose when combined with the other approaches are GK, CSMOTE, 

RUSBoost, and IRUS. The performances of these methods are very similar, and our ensemble 

outperforms them with p-value <0.10. 

 
     
 APLSC OCSVM GK MSMOTE CSMOTE   RUSBoost   EasyEnsemble BalanceCascade IRUS OverBagging UO 
APLSC -‐-‐-‐-‐-‐	   W	   L	   L	   L	   L	   L	   L	   L	   L	   L	  
OCSVM -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   L	   L	   L	   L	   L	   L	   L	   L	   L	  
GK -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   W	   ND	   ND	   W	   W	   ND	   W	   W	  
MSMOTE -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   L	   L	   ND	   W	   ND	   W	   ND	  
CSMOTE   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   ND	   W	   W	   ND	   W	   W	  
RUSBoost   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   W	   W	   ND	   W	   W	  
EasyEnsemble -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   W	   L	   ND	   ND	  
BalanceCascade -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   L	   L	   L	  
IRUS -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   ND	   ND	  
OverBagging -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   -‐-‐-‐-‐-‐	   ND	  

 
Table 4. Comparisons (using AUC as performance indicator) between all the pairs of tested 

methods.  

 

In the previous tests, we simply combined by sum rule all the classifiers that build up our 

proposed system HardEnsemble. We also investigated the following alternative rules for improving 

the performance of the fusion step: Knora [45], MPOEC [46], SparseEnsemble [47], stacking with 

PCA [48], combination with correspondence analysis [49], and weighted sum rule [45]. Obviously, 

all the parameters for the aforementioned methods were selected using only the training data. 

However, no combination method outperforms the simple sum rule, with p-value <0.05. 
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To shed light on the reasons behind the good performance of the proposed ensemble, we 

performed experiments to measure the diversity among the decisions produced by the components 

of the ensemble. As already pointed out by Kuncheva [57], “there is no gain in combining identical 

components and, therefore, diversity is an important issue to take into consideration when designing 

ensemble models.” We investigated the relationship among the different components of the 

ensemble by evaluating the average Yule’s Q-statistic [57] over the datasets detailed in Table 1. For 

two classifiers Gi and Gj, the Q-statistic is an a posteriori measure defined as: 

10010011

10010011

, NNNN
NNNNQ ji +

−
=

 

where Nab is the number of instances in the testing set that are classified correctly (a=1) or 

incorrectly (a=0) by classifier Gi and correctly (b=1) or incorrectly (b=0) by the classifier Gj. Qi,j 

varies between –1 and 1 and assumes the value 0 for statistically independent classifiers. Classifiers 

that tend to recognize the same patterns correctly will have Q>0, and those that commit errors on 

different patterns will have Q<0. 

In Table 5 we report the Q-statistic among the classifiers that compose CS, RB, and HE_FUS 

(see Section 4.1 for the description of these ensemble classifiers). In the same table we also report 

the performance of modified ensembles where a decision tree, implemented as in http://prtools.org/, 

is used as the base learner instead of SVM. Such modified ensembles exhibit a low Q-statistic; 

indeed, the average performance of the base learner is so low that the ensembles coupled with SVM 

outperform the ensembles based on decision trees. Ensembles of SVMs have already been proposed 

in the literature [68-69]. All in all, for each ensemble we report: 

• “Avg Q”, the average Q-statistic among the classifiers of the given ensemble; 

• “Avg AUC”, the average AUC obtained by the classifiers of the given ensemble; 

• “AUC ensemble”, the AUC obtained by the ensemble. 
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 SVM as base learner Decision tree as base learner 
 CS RB HE_FUS CS RB HE_FUS 
Avg Q 0.9400 0.9872 0.8832 0.7750 0.7803 0.6582 
Avg AUC 0.9102 0.9213 0.9111 0.8005 0.8156 0.8562 
AUC ensemble 0.9262 0.9237 0.9318 0.8852 0.8965 0.9095 

 
Table 5. Yule’s Q-statistic among the classifiers forming the different ensembles. 

 

The reported results in Table 5 experimentally endorse our idea of building an ensemble 

where two different classifiers are employed and where two different methods are used for creating 

the different training sets. The Q-statistic among the classifiers of HE_FUS is quite low, and lower 

than that obtained by an ensemble of RUSBoosts or SMOTEs. The low Q-statistic boosts the 

performance obtained by the single classifiers that contribute to HE_FUS. 

 

4.2 Tests with multi-class datasets 

We now shift focus to multi-class datasets in order to test the validity of our approach in this 

domain as well. We consider the multi-class datasets tested in [4]. The data partitions are, again, 

available in the KEEL-dataset repository, so it is still possible to report a fair comparison. The 

methods are applied to the original multi-class data directly. As in [4], we adopt the extension of 

AUC for multi-class datasets as the performance indicator. This extension is called MAUC [54], 

and it represents the average AUC of all pairs of classes. The results of our tests are summarized in 

Table 6. The column Best reports the best result, separately chosen for each dataset, among the 

methods proposed in [4]. In Table 6 we also report the performance of what in [4] is considered the 

best approach, i.e., SMB-dw. Since SVM is a 2-class classifier we use the one-vs-all approach for 

handling multiclass classification.  
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Table 6. Performance (MAUC) in the multi-class datasets. 

 

The following conclusions can be drawn from Table 6. 

• As in the previous comparison, the performance of the method based on decision trees, i.e., 

SMB-dw, is often lower than that obtained with a plain SVM. 

• HE_S performs similarly to SVM, but HE_FUS outperforms SVM. This is further 

experimental evidence that the heterogeneous ensemble approach is a sound approach 

method for handling imbalanced datasets. 

 

4.3 Tests with strongly imbalanced datasets 

In this series of tests, the 5-fold cross-validation testing protocol is used in what we consider to be 

strongly imbalanced 2-class datasets. Some of these datasets are retrieved from the UCI Machine 

Learning Repository: 

• PIMA: the Pima Indians diabetes dataset;  

• IONO: the Ionosphere dataset; 

• CreditG: the German credit data dataset;  

• Sonar: Mines vs. Rocks dataset;  

• Breast: the Breast cancer dataset;  

 SMB-dw 
[4] 

Best SVM HE_S HE_A HE_FUS 

Car 0.997 0.997 0.9913 0.9876 0.9903 0.9925 
Balance 0.633 0.703 0.9992 0.9965 0.9906 0.9944 
Glass 0.924 0.925 0.9486 0.9649 0.9625 0.9687 
New-Thyroid 0.988 0.988 0.9991 0.9994 0.9991 0.9994 
PageBlocks 0.973 0.989 0.9696 0.9825 0.9821 0.9908 
Yeast 0.847 0.857 0.9256 0.9282 0.9332 0.9348 
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• Yeast: the Yeast UCI dataset where only the classes ‘POX’ and ‘CYT’ are considered (as in 

[37]);  

• Wdbc: the Cancer Wisconsin Diagnostic Data Set;  

• Wpbc: the Wisconsin Prognostic Breast Cancer; 

• House: the Housing Data Set; 

• Haber: the Haberman's Survival Data Set; 

• Transf: the Blood Transfusion Service Center; 

• Austr: the Australian Credit Approval Data Set. 

Other datasets used in the following tests include Astro (the astronomical matching catalogues 

in [67]) and spot (the microarray spot quality classification dataset in [70]). 

For all datasets (except CreditG and Yeast), we randomly keep only ten patterns of the minority 

class, with the aim of increasing the imbalance. For reproducible research, the specific datasets used 

in these tests (i.e. the split training/testing sets and the randomly selected patterns) will be available 

with the software tool created for this paper. 

Results of the tests are summarized in Table 7. For some methods, two values are reported: the 

first one is for a “standard” execution of the method, while the second one gives the performance 

obtained with 50 executions combined with the sum rule. Notice that in this test, GK and other 

approaches work better than SVM; this is not the case with the datasets reported in Table 1 (here the 

datasets are strongly imbalanced). In the last column of Table 7, the average performance over 

several datasets is reported. 

We also ran another experiment changing CSMOTE with GK in our ensemble (see HE_Sgk and 

HE_Agk), without obtaining any improvement. 

The same conclusion in the previous tests is obtained here: the ensemble works quite well in all 

the tested datasets. 
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 PIMA IONO CreditG Yeast Sonar Breast Astro 
SVM 0.6891 0.9740 0.7989 0.8239 0.8660 0.9938 0.9843 
SV_W 0.7782 0.9492 0.7987     0.8061 0.8656 0.9667 0.9899 
GK 0.7689     0.7659     0.9744 0.9744     0.7986     0.8002     0.7890     0.8024     0.8663 0.8700 0.9936     0.9938     0.9879 0.9913     
MSMOTE 0.6941     0.6957     0.9723 0.9720     0.7746     0.7743     0.8271     0.8231     0.8653 0.8621 0.9940     0.9940     0.9868 0.9887     
CSMOTE  (CS) 0.7332     0.7376     0.9728 0.9728     0.7691     0.7703     0.8054     0.8103     0.8660 0.8660 0.9939     0.9939     0.9843 0.9841     
RUSBoost  (RB) 0.7648     0.7661     0.9755 0.9765     0.7711     0.7711     0.7748     0.7814     0.8457 0.8393 0.9939     0.9939     0.9909 0.9906     
EasyEnsemble 0.7776     0.7696     0.9683 0.9635     0.7654     0.7714     0.7195     0.7588     0.8228 0.8456 0.9906     0.9913     0.9835 0.9850     
BalanceCascade 0.7198     0.7398     0.9253 0.9540     0.7667     0.7702     0.7522     0.8298     0.7982 0.8300 0.9915     0.9914     0.9818 0.9839     
IRUS 0.7666     0.7678     0.9587 0.9638     0.7722     0.7692     0.8374     0.8320     0.8371 0.8425 0.9930     0.9930     0.9875 0.9867     
OverBagging 0.7479     0.7466     0.9688 0.9689     0.7714     0.7742     0.8061     0.7929     0.8655 0.8656 0.9939     0.9939     0.9862 0.9869     
UO 0.7441 0.7392 0.9706 0.9699 0.7879 0.7965 0.8116 0.8191 0.8720 0.8665 0.9942     0.9941     0.9853 0.9853     
B_C 0.7544 0.9765 0.7848 0.8005 0.8564 0.9939 0.9943 
HE_S 0.7837 0.9746 0.7812 0.8021 0.8372 0.9938 0.9923 
HE_A 0.7643 0.9762 0.7651 0.7177 0.8668 0.9888 0.9964 
HE_Sgk 0.7784 0.9743 0.7819 0.7820 0.8352 0.9933 0.9908 
HE_Agk 0.7358 0.9768 0.7649 0.7075 0.8625 0.9885 0.9949 
HE_FUS 0.7875 0.9778 0.7805 0.7672 0.8672 0.9924 0.9961 
HE_WFUS 0.7907 0.9770 0.7823 0.7805 0.8614 0.9930 0.9934 
HE_WFUS_SVM 0.7743     0.9795 0.7970     0.7590 0.8679 0.9933     0.9957     

 
 

 wdbc spot wpbc House Haber Transf Austr AVG 
SVM 0.9929 0.9479 0.5765 0.9731 0.6281 0.5654 0.8502 0.8331 
SV_W 0.9851     0.9479 0.5937 0.9731 0.6814 0.7059 0.8453 0.8491 
GK 0.9930     0.9929 0.9637 0.9598     0.6044     0.5981     0.9769     0.9768     0.6950     0.6930     0.6418     0.6454     0.8886     0.8883     0.8530     0.8537     
MSMOTE 0.9902     0.9901     0.9618     0.9579     0.6055     0.6090     0.9680     0.9677     0.6671     0.6689     0.6181     0.6167     0.8282     0.8276     0.8395     0.8391     
CSMOTE  (CS) 0.9929     0.9928     0.9536     0.9685     0.5765     0.5765     0.9675     0.9703     0.6281     0.6281     0.5654     0.5654     0.8502     0.8502     0.8328     0.8348     
RUSBoost  (RB) 0.9913     0.9910     0.9565     0.9615     0.5999     0.5980     0.9779     0.9792     0.6996     0.6960     0.6297     0.6297     0.8902     0.8927     0.8473     0.8476     
EasyEnsemble 0.9729     0.9760     0.9572     0.9633     0.5858     0.6143     0.9748     0.9761     0.6386     0.6510     0.6394     0.6420     0.8753     0.8938     0.8337     0.8430     
BalanceCascade 0.9681     0.9743     0.9502     0.9642     0.5964     0.5965     0.9773     0.9754     0.6199     0.6439     0.6309     0.5217     0.8809     0.8928     0.8257     0.8334     
IRUS 0.9841     0.9840     0.9698     0.9619     0.6004     0.5980     0.9766     0.9779     0.6851     0.6826     0.7103     0.7119     0.8953     0.8958     0.8550     0.8549     
OverBagging 0.9908     0.9910     0.9504     0.9479     0.5962     0.6021     0.9731     0.9731     0.6933     0.6831     0.6393     0.6399     0.8560     0.8581     0.8456     0.8446     
UO 0.9896 0.9892 0.9447 0.9418 0.6100 0.6151 0.9731 0.9731 0.6829 0.6875 0.6883 0.6937 0.8552 0.8552 0.8507 0.8519 
B_C 0.9922 0.9699 0.5936 0.9761 0.6742 0.6222 0.8885 0.8484     
HE_S 0.9889 0.9663 0.6020 0.9821 0.6925 0.6596 0.8981 0.8539     
HE_A 0.9858 0.9803 0.5808 0.9849 0.6487 0.6638 0.8927 0.8437     
HE_Sgk 0.9885 0.9620 0.6024 0.9832 0.6891 0.6532 0.8895 0.8503     
HE_Agk 0.9864 0.9790 0.5882 0.9851 0.6558 0.6435 0.8785 0.8391     
HE_FUS 0.9895 0.9787 0.6015 0.9851 0.6776 0.6753 0.9002 0.8555     
HE_WFUS 0.9906 0.9755 0.6020 0.9844 0.6866 0.6773 0.9008 0.8568     
HE_WFUS_SVM 0.9918 0.9715 0.6015 0.9838 0.6809 0.6717 0.8992 0.8548     

     
Table 7. Results (AUC) in strongly imbalanced datasets. 

 
A number of conclusions can be drawn from the results in Table 7. 

• In some datasets (PIMA, ASTRO, Spot, Wpbc, Haber, and Tranf/Austr), SVM performs 

quite poorly with respect to the best approaches for handling imbalance, while it works well 

with the other datasets. 

• Our proposed ensembles HE_FUS and HE_WFUS exhibit good results across all the 

datasets except Yeast, where they are outperformed by several methods. However, notice 

that HE_A performs very poorly with such dataset. 
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• It is clear that the best method is different for each dataset. However, HardEnsemble obtains 

very good results with all the tested datasets. The best standard method (considering the 

average performance) in Table 7 is IRUS, but notice that it works very well with some 

datasets, such as Transf, Yeast and the Austr datasets, but poorly with others. Moreover, 

although IRUS has a similar average performance to HE_WFUS, IRUS is outperformed by 

HE_WFUS with a p-value of 0.10. 

 

While tests reported in Table 2 indicate that increasing the number of iterations (and combining 

the classifiers from different iterations by sum rule) improves SMOTE, RUSBoost, and GK, in the 

tests with strongly imbalanced datasets this phenomenon occurs for EasyEnsemble and 

BalanceCascade. In any case, increased iteration does not deteriorate performance, so, if there are 

no computation time constraints, we suggest iterating many times before combining, since it is 

difficult to know a priori when having more iterations will be useful.  

 

4.4 Comparisons with the literature 

As a further evaluation test for our proposed method HardEnsemble, we also report a comparison 

with two recently proposed ensemble approaches that aim to tackle the imbalance issue. The first 

one, EUSBoost [58], is a variant of RUSBoost that combines random undersampling (based on 

evolutionary learning) with Boosting. The second one, IPADE [59], is a new evolutionary 

framework to oversample the minority class. In [59], the authors define two variants by coupling 

the framework with a Nearest Neighbor classifier and with C4.5 (decision tree). In both [58] and 

[59], the authors show that these systems outperform some of the state-of-the-art considered in our 

analysis. HE_FUS absolutely outperforms the competition. These results further reinforce the 

strength and the validity of the proposed ensemble. The main reason behind the performance 

difference is that in [58] and [59] different base learners are used. It is well known that weak 

learners provide a significantly higher performance boost than strong learners when combined into 
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ensembles due to the diversity among the classifiers in the ensemble: the diversity among the weak 

learners is higher than the diversity among the strong learners. Unfortunately, the performance of 

C4.5 (a widely used weak learner) and of decision trees in general is so low that in several 

applications an ensemble of SVM outperforms an ensemble of C4.5. Moreover, the authors of [58] 

and [59] do not compute AUC using the standard approach based on a point-wise ROC curve, but 

rather they replace the complete curve with an unique point computing the AUC as (1+TPrate-

FPrate) / 2. Therefore, the comparison of their ensemble with our approaches is not completely fair. 

In a further set of experiments, we compare our proposed approaches HE_S, HE_A, HE_FUS 

and HE_WFUS with the best method introduced in [50], named DCIL, which was shown in that 

paper to outperform several other methods, such as LPSVM, SVM, SMOTE+LPSVM, weighted 

LPSVM, weighted SVM and partitioning ensemble SVM. In these tests, we consider the same UCI 

datasets used with DCIL, along with the same testing protocol (we adopt the testing protocol where 

the highest degree of class imbalance occurs, which is called ‘Exp 3’ in [50]). Each experiment 

consists of 20 rounds of independent tests using the F-measure as the performance indicator (we use 

this same measure so that our results can be directly compared with those in [50]). 

The results of the comparison are summarized in Table 8. Even in this comparison, our proposed 

methods works well, outperforming DCIL. Moreover, it is interesting to note that in some datasets 

HE_S outperforms HE_A while in other datasets the opposite happens. The fusion of the two 

classifiers, however, always performs very well. 

 
 DCIL [50]  SVM HE_S HE_A HE_FUS HE_WFUS 
Breast 0.9366 0.8767 0.9630 0.8350 0.9500 0.9630 
Car 0.9367 0.8636 0.8818 0.7700 0.9487 0.9620 
Abalone 0.9547 0.9869 0.6885 0.6592 0.9873 0.9873 
Cardiotocography 0.9109 0.7792 0.9637 0.9950 0.9950 0.9950 

 
Table 8. Comparison with DCIL (using F-Measure as performance indicator). 
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In Table 9 we compare our ensembles HE_S, HE_A and HE_FUS with another recent state-

of-the-art approach: MWMOTE [60]. We also tabulate the performance of the other approaches 

(SMOTE, ADSYN, and RAMO) implemented by the authors of MWMOTE. In Table 9 we report the 

performance of MWMOTE only for the KEEL datasets, which are the ones considered in this 

paper. Our ensemble outperforms the competition in three out of the four datasets. 

 

 SMOTE [60] ADSYN [60] RAMO [60] MWMOTE [60] HE_S HE_A HE_FUS 

Abalone9vs18 0.5443 0.4747 0.5530 0.5445 0.5452 0.6153 0.5913 
Ecoli1 0.7714 0.7527 0.7627 0.7621 0.7566 0.7521 0.7892 
Pima 0.6612 0.6695 0.6682 0.6890 0.6443 0.6842 0.6844 
Vehicle0 0.9507 0.9567 0.9437 0.9596 0.9185 0.9385 0.9616 

 

Table 9. Comparison with MWMOTE (using F-Measure as performance indicator). 

 

The performances of the proposed classifiers are also good when compared with other 

published methods. For example, RAMOboost [37], which uses a neural network as the base 

learner, obtains an AUC of 0.741 on the CreditG dataset and 0.745 on the Yeast dataset. 

 

5 Conclusions 

An important problem in machine learning is the management of imbalanced datasets where one 

class – the majority class – outnumbers the others. In general, classifiers are biased towards the 

majority class. For this reason, a research stream has developed, approaching the issue with several 

different solutions. In this paper we have compared and tested many of them, and we have proposed 

a classifier of our own which is an ensemble of ensembles, does not need to be tuned separately 

over each dataset, and outperforms the other tested approaches. The classifier is based on the 

following principles: 

• oversampling of the minority class, based on a variant of SMOTE; 

• undersampling of the majority class using an editing algorithm; 
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• application of boosting (RUSBoost) to each new built training set. 

We want to highlight the absence of parameters to be tuned in our approach. Most state-of-the-art 

solutions such as SMOTE, SPIDER, EasyEnsemble and the recent EUSBoost, require a fine-tuning 

step during training in order to obtain their best results. Obviously, as stated in [3], this undermines 

the robustness of such solutions. On the contrary, our ensemble can be directly use without any 

extra tuning phase. Moreover, we have shown that the performance can be improved using an 

heterogeneous system (fusion between SVM and an Adaboost of neural networks) in the 

classification step. 

The MATLAB code of our classifier can be reached via the URL address 

https://www.dei.unipd.it/node/2357. We hope that our code will serve as foundation for other 

researches in this data mining field. 
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