14,178 research outputs found

    LGR5 is associated with tumor aggressiveness in papillary thyroid cancer.

    Get PDF
    PurposeLeucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a cancer stem cell marker and a down-stream target in Wnt/β-catenin signaling. In human papillary thyroid cancer (PTC), over activation of Wnt/β-catenin has been associated with tumor aggressiveness.Patients and methodsUsing established human cell lines (TPC-1, KTC-1, Nthy-ori-3-1), we report LGR5 and R-spondin (RSPO1-3) overexpression in PTC and manipulate LGR5 and Wnt/β-catenin signaling via both pharmacologic and genetic interventions. We test the association of LGR5 tumor expression with markers of PTC aggressiveness using a Discovery Cohort (n = 26 patients) and a Validation Cohort (n = 157 patients). Lastly, we explore the association between LGR5 and the BRAFV600E mutation (n = 33 patients).ResultsOur results reveal that LGR5 and its ligand, RSPO, are overexpressed in human PTC, whereby Wnt/β-catenin signaling regulates LGR5 expression and promotes cellular migration. In two separate cohorts of patients, LGR5 and RSPO2 were associated with markers of tumor aggressiveness including: lymph node metastases, vascular invasion, increased tumor size, aggressive histology, advanced AJCC TNM stage, microscopic extra thyroidal extension, capsular invasion, and macroscopic invasion. As a biomarker, LGR5 positivity predicts lymph node metastasis with 95.5% sensitivity (95% CI 88.8%-98.7%) and 61% specificity (95% CI: 48.4%-72.4%) and has a negative predictive value (NPV) of 91.3% (95% CI 79.2%-97.5%) for lymph node metastatic disease. In human PTC, LGR5 is also strongly associated with the BRAFV600E mutation (p = 0.005).ConclusionWe conclude that overexpression of LGR5 is associated with markers of tumor aggressiveness in human PTC. LGR5 may serve as a future potential biomarker for patient risk stratification and loco regional metastases in PTC

    Identification of potential tissue-specific cancer biomarkers and development of cancer versus normal genomic classifiers

    Get PDF
    Machine learning techniques for cancer prediction and biomarker discovery can hasten cancer detection and significantly improve prognosis. Recent “OMICS” studies which include a variety of cancer and normal tissue samples along with machine learning approaches have the potential to further accelerate such discovery. To demonstrate this potential, 2,175 gene expression samples from nine tissue types were obtained to identify gene sets whose expression is characteristic of each cancer class. Using random forests classification and ten-fold cross-validation, we developed nine single-tissue classifiers, two multi-tissue cancer-versus-normal classifiers, and one multi-tissue normal classifier. Given a sample of a specified tissue type, the single-tissue models classified samples as cancer or normal with a testing accuracy between 85.29% and 100%. Given a sample of non-specific tissue type, the multitissue bi-class model classified the sample as cancer versus normal with a testing accuracy of 97.89%. Given a sample of non-specific tissue type, the multi-tissue multiclass model classified the sample as cancer versus normal and as a specific tissue type with a testing accuracy of 97.43%. Given a normal sample of any of the nine tissue types, the multi-tissue normal model classified the sample as a particular tissue type with a testing accuracy of 97.35%. The machine learning classifiers developed in this study identify potential cancer biomarkers with sensitivity and specificity that exceed those of existing biomarkers and pointed to pathways that are critical to tissuespecific tumor development. This study demonstrates the feasibility of predicting the tissue origin of carcinoma in the context of multiple cancer classes

    Integrative Genomic Data Mining for Discovery of Potential Blood-Borne Biomarkers for Early Diagnosis of Cancer

    Get PDF
    Background: With the arrival of the postgenomic era, there is increasing interest in the discovery of biomarkers for the accurate diagnosis, prognosis, and early detection of cancer. Blood-borne cancer markers are favored by clinicians, because blood samples can be obtained and analyzed with relative ease. We have used a combined mining strategy based on an integrated cancer microarray platform, Oncomine, and the biomarker module of the Ingenuity Pathways Analysis (IPA) program to identify potential blood-based markers for six common human cancer types. Methodology/Principal Findings: In the Oncomine platform, the genes overexpressed in cancer tissues relative to their corresponding normal tissues were filtered by Gene Ontology keywords, with the extracellular environment stipulated and a corrected Q value (false discovery rate) cut-off implemented. The identified genes were imported to the IPA biomarker module to separate out those genes encoding putative secreted or cell-surface proteins as blood-borne (blood/serum/plasma) cancer markers. The filtered potential indicators were ranked and prioritized according to normalized absolute Student t values. The retrieval of numerous marker genes that are already clinically useful or under active investigation confirmed the effectiveness of our mining strategy. To identify the biomarkers that are unique for each cancer type, the upregulated marker genes that are in common between each two tumor types across the six human tumors were also analyzed by the IPA biomarker comparison function. Conclusion/Significance: The upregulated marker genes shared among the six cancer types may serve as a molecular tool to complement histopathologic examination, and the combination of the commonly upregulated and unique biomarkers may serve as differentiating markers for a specific cancer. This approach will be increasingly useful to discover diagnostic signatures as the mass of microarray data continues to grow in the ‘omics’ era

    Bioinformatic identification of proteins with tissue-specific expression for biomarker discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is an important need for the identification of novel serological biomarkers for the early detection of cancer. Current biomarkers suffer from a lack of tissue specificity, rendering them vulnerable to non-disease-specific increases. The present study details a strategy to rapidly identify tissue-specific proteins using bioinformatics.</p> <p>Methods</p> <p>Previous studies have focused on either gene or protein expression databases for the identification of candidates. We developed a strategy that mines six publicly available gene and protein databases for tissue-specific proteins, selects proteins likely to enter the circulation, and integrates proteomic datasets enriched for the cancer secretome to prioritize candidates for further verification and validation studies.</p> <p>Results</p> <p>Using colon, lung, pancreatic and prostate cancer as case examples, we identified 48 candidate tissue-specific biomarkers, of which 14 have been previously studied as biomarkers of cancer or benign disease. Twenty-six candidate biomarkers for these four cancer types are proposed.</p> <p>Conclusions</p> <p>We present a novel strategy using bioinformatics to identify tissue-specific proteins that are potential cancer serum biomarkers. Investigation of the 26 candidates in disease states of the organs is warranted.</p

    Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types.

    Get PDF
    Isoforms of human miRNAs (isomiRs) are constitutively expressed with tissue- and disease-subtype-dependencies. We studied 10 271 tumor datasets from The Cancer Genome Atlas (TCGA) to evaluate whether isomiRs can distinguish amongst 32 TCGA cancers. Unlike previous approaches, we built a classifier that relied solely on \u27binarized\u27 isomiR profiles: each isomiR is simply labeled as \u27present\u27 or \u27absent\u27. The resulting classifier successfully labeled tumor datasets with an average sensitivity of 90% and a false discovery rate (FDR) of 3%, surpassing the performance of expression-based classification. The classifier maintained its power even after a 15× reduction in the number of isomiRs that were used for training. Notably, the classifier could correctly predict the cancer type in non-TCGA datasets from diverse platforms. Our analysis revealed that the most discriminatory isomiRs happen to also be differentially expressed between normal tissue and cancer. Even so, we find that these highly discriminating isomiRs have not been attracting the most research attention in the literature. Given their ability to successfully classify datasets from 32 cancers, isomiRs and our resulting \u27Pan-cancer Atlas\u27 of isomiR expression could serve as a suitable framework to explore novel cancer biomarkers

    BMP2/BMPR1A is linked to tumour progression in dedifferentiated liposarcomas

    Get PDF
    Bone Morphogenic Protein 2 (BMP2) is a multipurpose cytokine, important in the development of bone and cartilage, and with a role in tumour initiation and progression. BMP2 signal transduction is dependent on two distinct classes of serine/threonine kinase known as the type I and type II receptors. Although the type I receptors (BMPR1A and BMPR1B) are largely thought to have overlapping functions, we find tissue and cellular compartment specific patterns of expression, suggesting potential for distinct BMP2 signalling outcomes dependent on tissue type. Herein, we utilise large publicly available datasets from The Cancer Genome Atlas (TCGA) and Protein Atlas to define a novel role for BMP2 in the progression of dedifferentiated liposarcomas. Using disease free survival as our primary endpoint, we find that BMP2 confers poor prognosis only within the context of high BMPR1A expression. Through further annotation of the TCGA sarcoma dataset, we localise this effect to dedifferentiated liposarcomas but find overall BMP2/BMP receptor expression is equal across subsets. Finally, through gene set enrichment analysis we link the BMP2/BMPR1A axis to increased transcriptional activity of the matrisome and general extracellular matrix remodelling. Our study highlights the importance of continued research into the tumorigenic properties of BMP2 and the potential disadvantages of recombinant human BMP2 (rhBMP2) use in orthopaedic surgery. For the first time, we identify high BMP2 expression within the context of high BMPR1A expression as a biomarker of disease relapse in dedifferentiated liposarcomas

    Programmed cell death 6 interacting protein (PDCD6IP) and Rabenosyn-5 (ZFYVE20) are potential urinary biomarkers for upper gastrointestinal cancer

    Get PDF
    PURPOSE: Cancer of the upper digestive tract (uGI) is a major contributor to cancer-related death worldwide. Due to a rise in occurrence, together with poor survival rates and a lack of diagnostic or prognostic clinical assays, there is a clear need to establish molecular biomarkers. EXPERIMENTAL DESIGN: Initial assessment was performed on urine samples from 60 control and 60 uGI cancer patients using MS to establish a peak pattern or fingerprint model, which was validated by a further set of 59 samples. RESULTS: We detected 86 cluster peaks by MS above frequency and detection thresholds. Statistical testing and model building resulted in a peak profiling model of five relevant peaks with 88% overall sensitivity and 91% specificity, and overall correctness of 90%. High-resolution MS of 40 samples in the 2-10 kDa range resulted in 646 identified proteins, and pattern matching identified four of the five model peaks within significant parameters, namely programmed cell death 6 interacting protein (PDCD6IP/Alix/AIP1), Rabenosyn-5 (ZFYVE20), protein S100A8, and protein S100A9, of which the first two were validated by Western blotting. CONCLUSIONS AND CLINICAL RELEVANCE: We demonstrate that MS analysis of human urine can identify lead biomarker candidates in uGI cancers, which makes this technique potentially useful in defining and consolidating biomarker patterns for uGI cancer screening

    Knowledge Management Approaches for predicting Biomarker and Assessing its Impact on Clinical Trials

    Get PDF
    The recent success of companion diagnostics along with the increasing regulatory pressure for better identification of the target population has created an unprecedented incentive for the drug discovery companies to invest into novel strategies for stratified biomarker discovery. Catching with this trend, trials with stratified biomarker in drug development have quadrupled in the last decade but represent a small part of all Interventional trials reflecting multiple co-developmental challenges of therapeutic compounds and companion diagnostics. To overcome the challenge, varied knowledge management and system biology approaches are adopted in the clinics to analyze/interpret an ever increasing collection of OMICS data. By semi-automatic screening of more than 150,000 trials, we filtered trials with stratified biomarker to analyse their therapeutic focus, major drivers and elucidated the impact of stratified biomarker programs on trial duration and completion. The analysis clearly shows that cancer is the major focus for trials with stratified biomarker. But targeted therapies in cancer require more accurate stratification of patient population. This can be augmented by a fresh approach of selecting a new class of biomolecules i.e. miRNA as candidate stratification biomarker. miRNA plays an important role in tumorgenesis in regulating expression of oncogenes and tumor suppressors; thus affecting cell proliferation, differentiation, apoptosis, invasion, angiogenesis. miRNAs are potential biomarkers in different cancer. However, the relationship between response of cancer patients towards targeted therapy and resulting modifications of the miRNA transcriptome in pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have created an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. We present a novel SMARTmiR algorithm to predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer. The application of an optimised and fully automated version of the algorithm has the potential to be used as clinical decision support tool. Moreover this research will also provide a comprehensive and valuable knowledge map demonstrating functional bimolecular interactions in colorectal cancer to scientific community. This research also detected seven miRNA i.e. hsa-miR-145, has-miR-27a, has- miR-155, hsa-miR-182, hsa-miR-15a, hsa-miR-96 and hsa-miR-106a as top stratified biomarker candidate for cetuximab therapy in CRC which were not reported previously. Finally a prospective plan on future scenario of biomarker research in cancer drug development has been drawn focusing to reduce the risk of most expensive phase III drug failures

    Application of Proteomics in Cancer Study

    Get PDF
    Cancer is one of the most malignant diseases in the world, accounting for 7.6 million deaths (around 13% of all deaths) in 2008 based on WHO reports. Early detection of cancer is vital due to its final control and prevention. Despite advances in diagnostic strategies, they have not the required sensitivity and specificity for prognosis. During the last decays, one of the most challenges for cancer research is to determine biological basis of this malignancy as a characteristic agents for an early-stage cancer. Understanding these agents requires molecular level examination of the disease followed by analysis of protein networks and their interactions in cells, signaling events among cancer cells, interactions among the cancer cells, and the tumor microenvironment. Proteomics as one of the modern areas of biochemistry holds great promise in cancer study. Inasmuch as, proteome reflects the real state of a cell, tissue or organism, it is expected to achieve more accurate tumor markers for disease diagnosis and therapeutic monitoring. In fact, the utility of this innovative large-scale proteome analyzer has shown significant prospective in biomarker discovery, patient monitoring, drug targeting and cell signaling; moreover, advances in the field of proteomics will provide new insight into the molecular complexity of the disease process, and enable the development of tools to help in treatment as well as in detection and prevention. In this review, proteomics approaches in cancer studies have been represented and discussed
    corecore