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Abstract 

Introduction: Colorectal cancer (CRC) is one of the commonest types of cancer that affects 

a significant proportion of the population and is a major contributor to cancer related 

mortality.  The relatively poor survival rate of CRC could be improved through the 

identification of clinically useful biomarkers.   

Area covered: This review highlights the need for biomarkers and discusses recent 

proteomics discoveries in the aspects of CRC clinical practice including diagnosis, prognosis, 

therapy, screening, and molecular pathological epidemiology (MPE).  Studies have been 

evaluated in relation to biomarker target, methodology, sample selection, limitations, and 

potential impact.  Finally, the progress in proteomic approaches is briefly discussed, and the 

main difficulties facing the translation of proteomics biomarkers into the clinical practice are 

highlighted. 

Expert opinion: The establishment of specific guidelines, best practice recommendations 

and the improvement in proteomic strategies will significantly improve the prospects for 

developing clinically useful biomarkers. 

 

Keywords: biomarkers, colorectal cancer, diagnosis, prognosis, proteomics, predictive 
screening 
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1. Introduction 

1.1 Colorectal cancer background 

Colorectal cancer (CRC) is one of the commonest types of cancer and a major cause 

of cancer related death [1].  The survival rate is still relatively poor particularly for patients 

presenting with distant metastases [2].  Established primary CRC can generally be diagnosed 

based on the histopathological characteristics of tissue biopsies obtained at colonoscopy [3].  

However, it can be more difficult to diagnose early CRC or CRC that presents as metastatic 

disease [4, 5].  Screening programmes for CRC using either colonoscopy or faecal occult 

blood testing have shown that they may reduce the mortality rate from CRC [6, 7].  

Nevertheless, current screening methods suffer from several drawbacks including lack of 

sensitivity and poor participation rates that impede their potential benefits [8].   

Prognosis using the current staging system which is based on the histopathological 

examination of resected CRC does not necessarily reflect the biological heterogeneity of 

CRC and thus patients with the same tumour stage often have variation in clinical outcome 

[9].  This staging system is also the main method whereby therapeutic options are 

determined, yet patients with the same stage often respond differently to the same treatment 

[10, 11].  Therefore, reliable and easily measurable biomarkers are urgently required to assist 

clinicians to overcome current difficulties in clinical practice (Figure 1). 

 

1.2. Proteomics and genomics perspective on biomarker discoveries 

A biomarker is defined as a “characteristic that is objectively measured and evaluated 

as an indicator of normal biological processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention” [12].  In recent years, there have been a noticeable 

shift in the biomarker literature towards genomics and transcriptomics technologies, which 
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undoubtedly have increased our understanding of cancer biology and have led to a variety of 

biomarker discoveries [13, 14].  However, genotype is not necessarily reflected in phenotype 

because of the influence of a range of factors including epigenetic changes, alternative 

splicing, non-coding RNAs (including microRNAs), post translation modifications and 

protein-protein interactions [15, 16].  Moreover, the analysis of large genomic data sets is a 

challenging task that demands complex and sophisticated analytical tools and software [17, 

18].  This can make the interpretation of data generated using different samples, array types, 

sequencing platforms difficult [19, 20].   

However, proteomics can assess proteins which directly reflect a pathogenic 

phenotype and potentially is more likely to provide accurate information on disease state and 

clinical outcome [15, 21, 22].  Current proteomics technologies are able to assess protein 

modifications such as post-translation modifications and sequence variants [23].  Advances in 

proteomic technologies have enabled more accurate and in-depth identification of individual 

proteins within complex protein mixtures [24, 25].  Furthermore, improvements in protein 

extraction and separation have made proteomics analysis suitable for use on formalin fixed 

paraffin embedded (FFPE) tissues, thus potentially exploiting a larger number of archival 

samples necessary for protein biomarker validation [26].  However, current proteomics 

technologies are still potentially lacking in terms of their ability to detect very low abundance 

proteins [27].   

 

2. Biomarkers for CRC diagnosis 

2.1. Diagnosis of malignant polyps 

Currently, the risk of malignant transformation of polyps is determined through the 

pathological analysis of polyp characteristics such as increasing size, degree of epithelial cell 
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dysplasia and greater “villousness” [28].  Patient management guidelines (e.g. time interval 

between surveillance colonoscopies) are based on the identification of these histopathological 

characteristics [29].  Since only less than 5% of polyps proceed to malignancy, it is 

imperative to identify novel protein biomarkers to further assist in identifying high-risk 

adenomas and therefore allow rational use of endoscopic resources [5].  Proteomic studies 

have identified several candidates proteins associated with the malignant transformation of 

adenomatous polyps (Table 1). 

Kininogen-1 was identified as a marker for the diagnosis and/or screening of the 

malignant transformation of adenomas [30].  This study analysed the serum samples of 110 

participants using matrix assisted laser desorption ionization time-of-flight (MALDI-

TOF/TOF-MS).  Kinongen-1 levels were significantly lower in normal mucosa compared 

with CRC and advanced colorectal adenoma, which is consistent with a previous finding 

[36].  Nevertheless, the exact role of kininogen-1 in CRC pathogenesis remains unclear.  

Moreover, it is not clear whether the protein levels vary between different types of adenomas.  

Therefore, there is a need for further experimental validation of the results especially in the 

presence of contradictory results regarding the levels of kininogen-1 detected in adenoma and 

carcinoma [37]. 

In another study, the analysis of plasma samples using MALDI-TOF/TOF-MS has 

enabled the identification of a peptide signature to monitor and predict the malignant 

transformation of polyps in familial adenomatous polyposis (FAP) [31].  This study was the 

first to show that peptide profiling can be used to monitor CRC development in FAP patients.  

However, a significant concern is the specificity of the peptide signature for CRC because 

some of the identified peptides are derived from proteins (e.g. complement C3 and C4) 

involved in inflammation.  Moreover, enzyme linked immunosorbent assay (ELISA) 

validation of complement proteins revealed contradictory results to the proteomic findings.  
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This highlights the need for further evaluation of the results in an independent and much 

larger cohort since the ELISA was performed only on a small cohort (10 FAP, 8 adenoma, 

and 36 CRC).  The contradictory ELISA results were attributed to the increased activity of 

proteases rather than the circulating level of precursor proteins.  The inability to use ELISA 

for assessing and monitoring the peptide signature makes it much more difficult to validate 

the findings and may compromise the potential clinical utility of this proposed biomarker 

signature.  For the detection of peptides using ELISA, it may be possible to use monoclonal 

antibodies produced against short synthetic peptides [38].   

A diagnostic portfolio of proteins that could be used to distinguish adenomas from 

CRC or healthy controls was identified using MALDI-TOF/TOF-MS [32].  This research 

investigated plasma samples from healthy controls, and from patients with colorectal 

adenomas or invasive disease.  Blood-based biomarkers which can accurately diagnose 

potentially malignant adenomas could have great clinical utility.  However, the proteins 

identified in this study included inflammatory cytokines [39].  Moreover, the validation was 

only conducted on a small cohort (30 adenomas and 30 carcinomas).  Hence, additional 

studies are required before these proteins can be considered as potential diagnostic markers. 

Proteomic technologies can also be utilised to assess urine for the purpose of 

identifying biomarkers associated with high-risk adenomas [33].  This study has found that 

urinary levels of prostaglandin metabolites (PGE-M) measured using liquid chromatography–

mass spectrometry (LC/MS) are associated with high-risk adenomas.  The study cohort 

contained a relatively large number of controls and adenomas that were from a prospective 

cohort.  There are limitations in the design and the composition of the cohort used in this 

study.  Firstly, the cohort only included females.  Secondly, and more importantly, there were 

no colorectal carcinomas in the samples analysed.  Nevertheless, the findings are consistent 

with other proteomics studies that have measured urinary PGE-M using the same method [40, 



6 
 

41].  The study by Shrubsole and colleagues [40] used 224 cases with at least one advanced 

adenoma, 152 small tubular adenomas, 300 single small tubular adenoma, and 364 controls.  

Whereas the study by Johnson et al. [41] assessed PGE-M in 58 CRC, 70 polyps, 28 Crohn’s 

disease, and 72 healthy controls.  In addition, Nakanishi et al. [42] found that the inhibition of 

PGE2 production suppresses intestinal carcinogenesis in an APC-mutant mouse model.  A 

significant concern is that PGE-M are also involved in several inflammatory pathways and 

also other malignancies, hence there is a need to assess the specificity of urinary PGE-M in 

CRC versus other cancers and inflammatory diseases (e.g. Crohn’s disease, ulcerative colitis) 

[43].  It is therefore difficult to interpret the association between PGE-M levels and 

development of CRC without further study of well-defined cohorts.   

In another study, nuclear magnetic resonance (NMR) spectrum analysis of urinary 

samples of 988 high-risk individuals who required colonoscopy identified metabolomics 

signatures associated with CRC [34].  Using an algorithmic classifier of metabolic signature 

(4 metabolites and 4 clinical questions), the study showed it was possible to predict 

individuals who required colonoscopy with an accuracy better than faecal occult blood test.  

This is potentially a useful addition to the clinical practice because it could ensure patients 

avoid colonoscopy.  Additionally, the learning algorithmic classifier may represent a novel 

method of transforming complex proteomics data into clinically relevant parameters.  

However, the study classified both participants with hyperplastic polyps or adenomas into 

one group requiring colonoscopic follow-up even though the risk of progression to CRC 

significantly differs between the two groups.  The risk of malignant transformation should be 

the main determinant of who needs colonoscopy.  Furthermore, it is difficult to interpret these 

findings without further study since only two carcinomas were included in the study.  The 

lack of early CRC from the samples may results in a failure to identify important changes in 

proteins associated with the early stages of malignant transformation.  
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2.2. Diagnosis of metastatic CRC  

The identification of the primary origin of an unknown metastatic tumour is still 

challenging in spite of the availability of a variety of diagnostic methods including 

histopathology, molecular analysis, imaging, and endoscopy [4].  The majority of cancers of 

unknown primary are metastatic adenocarcinomas of which around 7 % are of colo-rectal 

origin [44].  Failure to identify the primary origin of a tumour is a significant problem since 

the clinical management of patients particularly the selection of appropriate treatment 

regimens depends on the identification of the specific cancer type.  Histopathological 

assessment using a combination of the immunohistochemical markers cytokeratin 20, 

cytokeratin 7 and CDX2 is often used to identify CRC, although the typical cytokeratin 

20+/CDX2+/cytokeratin 7-ve phenotype is not expressed by all colorectal carcinomas [45].  

Recent studies have shown that the assessment of a combination of Stabilin-2 (STAB2) with 

cytokeratin 7 and cytokeratin 20 can provide a highly sensitive and specific test for CRC 

diagnosis [46, 47].  Both studies used immunohistochemistry (IHC) to evaluate STAB2, 

cytokeratin 20 and cytokeratin 7 expression in large cohorts (n = 840 and n = 2696) which 

included CRC, benign tumours, normal tissues, and other common malignancies.  While few 

studies have focused on the identification of new markers that help differentiate metastatic 

CRC from other malignancies there is a clear requirement for such biomarkers.   

 

3. Biomarkers for CRC prognosis 

3.1. The need for prognostic markers in the clinical practice 

A prognostic biomarker can be defined as a (biological) variable that provides 

prospective information on patient outcome which is complementary to the data obtained by 
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the pathologist from histopathology and on which therapeutic decisions can be guided [48].  

There is unjustifiable scepticism towards prognostic marker studies as they are generally 

perceived as unnecessary in CRC since histopathological examination of the resected 

colorectal cancers provide key prognostic information (tumour stage, lymph node stage, 

extramural venous invasion).  However, the clinical outcome can vary considerably between 

patients who are diagnosed with the same tumour stage especially for patients with stage II 

and III CRC [3].  Thus, the identification of protein biomarkers on both biopsies of CRC and 

surgically resected CRC, which reflect the heterogeneity of CRC, will help in providing 

accurate prediction of the clinical outcome of patients.   

 

3.2. Recent proteomics discoveries 

Large numbers of potential prognostic markers have been identified using proteomic-

based approaches (supplementary information Table S1).  For example, a combination of 

Nano LC-MS and gene expression analysis of stage IV CRC patients (n = 46) was used to 

identify metastasis associated markers [49].  Maspin was found to vary between the two 

groups of patients divided based on time to recurrence (Table S1).  Immunohistochemical 

analysis of maspin expression in a tissue microarray containing 419 stage II and III CRC 

samples indicated it was an independent prognostic factor of time to recurrence and disease 

specific survival in stage III CRC.  The finding was validated using three transcriptomics data 

sets (75 stage II, 78 stage III, and 53 stage IV).  Consistent with this study, high maspin 

expression was linked to increased apoptosis resistance in a colon cancer cell line (HCT-

116RC) [50].  The discovery of maspin highlights the fact that some proteins might have a 

stage-specific function and thus have stage-related expression profiles that could be detected 

through proteomics.  Stage-specific markers carry important prognostic information that 
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could complement or even replace the current staging system when surgical specimens are 

not available.  Several other studies have demonstrated that it is possible to identify protein 

markers associated with tumour stage using comparative proteomics (studies 1, 2, and 9 

described in Table S1).  However, it is worth noting that the size of the samples used in those 

studies were small and therefore further validation using larger and independent cohorts is 

required.   

Stomatin-like 2 (STOML2) protein was identified using high-performance LC-MS 

analysis of membrane proteome in 28 pairs of normal and CRC tissues [51].  The subsequent 

assessment of the protein expression by IHC showed a strong association between STOML2 

and disease-specific survival.  High expression of STOML2 was associated with decreased 

CRC-related survival.  Furthermore, the plasma levels of STOML2 as measured by ELISA 

were higher in early stage CRC compared with healthy individuals, which suggest STOML2 

could potentially be used as a screening marker.  The main drawback of this study is the 

small numbers of CRC samples included in the proteomics analysis (n = 28), ELISA (n = 70) 

and IHC (n = 205).  Additional validation using a large and independent cohort is still needed 

as well as further investigation of the role of STOML2 in CRC pathogenesis.   

Another interesting study has revealed a prognostic protein signature using tailored 

computational analysis of proteomics data generated via a combination of LC-MS and 

targeted LC-MS (SRM) assessment of plasma samples [52].  The protein signature (major 

histocompatibility complex class I-A, complement factor H, CD44, protein tyrosine 

phosphatase, receptor type J, haptoglobin, and cadherin 5 type 2) was associated with 

different prognostic parameters and could stratify patients to distinct prognostic subgroups.  

The study also used data from three external transcriptomics cohorts for additional validation.  

The findings of this study are encouraging and may have considerable implication on the 

management of CRC patients because, unlike the key pathological prognostic factors which 
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require examination of a resected CRC specimen, this protein signature can be evaluated 

noninvasively in the plasma.  Nevertheless, additional assessment of the findings on a larger 

cohort is needed because only 202 CRC samples were used.  Moreover, there may be a need 

to evaluate whether this protein signature is detectable by ELISA since this technology is 

generally easily implemented in laboratories where quality assurances and best practice 

guidelines are in place.  Other studies which have also utilised proteomics analysis of plasma 

for prognostic marker identification are described in Table S1. 

The analysis of preclinical models (cell lines and xenograft tumours) using 2-D 

difference gel electrophoresis (DIGE) and MALDI-TOF/TOF MS followed by validation 

with human samples provides another approach to the identification of prognostic markers 

[53].  Comparative proteome analysis found stathmin 1 (STMN1) levels to be lower in colon 

cancer cell line (HCT-116) compared to its metastatic derivative E1.  Both knockdown and 

overexpression of STMN1 in HCT-116 and E1 showed it was associated with significant 

changes in cell migration, invasion, adhesion, and colony formation.  This study also 

performed IHC staining on a tissue microarray containing 324 primary CRC.  The expression 

of STMN1 was higher in CRC compared to the adjacent normal mucosa, and increasing 

intensity of expression was associated with poorer CRC specific survival.  These results are 

consistent with a recent study which showed that the silencing of STMN1 inhibited 

metastasis in (E1) and (HCT116) colon cancer cell lines [54].  However, in contrast to the 

finding of that study, the expression of STMN1 assessed by IHC using 546 CRC cases from 

two independent cohorts showed that the overexpression of STMN1 was associated with 

improved survival [55].  Therefore, although STMN1 has shown a promising potential as a 

prognostic marker for CRC, there is a need for further research of STMN1 in CRC.  

Although some studies have used large and well-characterised cohorts for the 

validation of their proteomics results [56, 57], the majority of studies have used relatively 
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small cohorts.  Another limitation is the insufficient reporting in a variety of aspects 

including the collection and processing procedure of specimens, inclusion criteria of patients, 

clinicopathological characteristics of the cohort and clearly defined endpoints.  Many 

biomarker studies still suffer from lack of adherence to the Reporting Recommendations for 

Tumour Marker (REMARK) guidelines [58].  Compliance with the REMARK guidelines 

should help to standardise and improve the quality of biomarker studies [59].   

 

4. Biomarkers for predicting the outcome of CRC therapy  

4.1. The need for predictive markers in the clinical practice 

A predictive biomarker is defined as a variable that indicates the outcome of a specific 

type of therapy and therefore aids in making treatment decisions [60].  Predictive markers are 

needed in CRC management because the benefit of neoadjuvant and/or adjuvant therapy is 

not clear for a significant proportion of patients [10, 11].  The increasing range of therapeutic 

options have further highlighted the need for predictive biomarkers.  One of the few 

predictive markers to be in current clinical practice is the identification of KRAS mutations 

as KRAS mutant tumours do not respond to anti-epidermal growth factor receptor drugs [61].  

In addition, the assessment of mismatch repair proteins seems to offer valuable information 

on the potential benefit of fluorouracil based adjuvant therapy and immune checkpoint 

inhibitors [62, 63].   

 

4.2. Recent proteomics studies 

Several research groups have used proteomics analysis to identify putative predictive 

markers for CRC (Table 2).  Using a combination of 2D-DIGE and LC-MS/MS to assess 
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serum samples from a group of patients with CRC who had received chemotherapy and 

bevacizumab, sixty-four differentially expressed proteins were identified between responders 

and non-responders [64].  The study also used ELISA and IHC to validate three proteins 

(apolipoprotein E, angiotensinogen and vitamin D binding protein) which were significantly 

associated with overall survival and or progression free survival in metastatic CRC patients 

treated with chemotherapy and bevacizumab.  This could be useful as less than 50% of 

patients showed a response to this therapy [69].  Nevertheless, the number of CRC samples in 

the validation cohort was relatively small (ELISA: n = 68 and IHC: n = 95), therefore further 

validation of the results is still required.   

A panel of 32 proteins associated with CRC was identified using isobaric tags for 

relative and absolute quantitation (iTRAQ –LC-MS) analysis of cancer-associated fibroblasts 

obtained from colon cancer and normal tissue [65].  This study presented strong and well-

designed discovery model whereby proteins derived from colon-associated fibroblast can 

be assessed for biomarker discoveries.  High expression of lysyl oxidase-like 2 (LOXL2) 

was associated with poor overall survival and high recurrence, and demonstrated predictive 

value for adjuvant therapy in stage II colon cancer.  The results were validated on a number 

of independent cohorts using different methods (IHC, gene expression profiling and 

polymerase chain reaction (PCR)).  Still, the number of colon cancer cases in the validation 

cohorts (IHC: n = 121 and PCR: n= 70) was relatively small and hence further validation is 

required.  A previous study found LOX, a family member and paralog of LOXL2, to play an 

important role in promoting CRC angiogenesis using in in vitro (SW480 and SW620 cell 

lines) and mouse models (LS174T human CRC cell lines grown as subcutaneous tumours in 

nude mice) [70].  The results of the preclinical models were further validated by IHC (on a 

CRC tissues microarray (n=515)) which showed the expression of LOX correlated with 

VEGF expression and blood vessel formation in patients [70].   
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Dasatinib, an inhibitor of Src tyrosine kinases, is currently being evaluated for use in 

CRC.  However, this therapy is expensive and can cause side effects.  Therefore, there is a 

need for predictive biomarkers that can accurately select patients based on the potential 

response to this drug.  In a recent study, delta-type protein kinase C (PKCδ) was identified as 

predictive marker for dasatinib in CRC [67].  Shotgun phosphotyrosine proteomics was used 

to obtain a global view of tyrosine phosphorylation in HCT-116 colon cancer cell lines and 

HCT-116 xenograft tumour.  The results showed that the measurement of PKCδ pY313 as a 

promising method for assessing the response to dasatinib.   

However, there is still an apparent lack of research focused on the identification of 

predictive markers.  This can be attributed in part to the lack of readily available, large, well- 

characterised cohorts. 

 

5. Biomarkers for CRC screening 

5.1. The need for screening markers in clinical practice 

The five-year survival rate of CRC patients is significantly worse for those patients 

diagnosed with metastatic disease compared with early stage disease [1].  Considering CRC 

is often asymptomatic at early stages of development, sensitive screening methods may 

reduce CRC associated mortality through early diagnosis when treatment is more effective.  

Flexible sigmoidoscopy and faecal occult blood test based screening programmes have 

shown some success in reducing the mortality rate of CRC [6, 7].  However, faecal occult 

blood tests generally suffer from a lack of sensitivity and a significant false positive rate, 

while endoscopic examination of the colon is invasive, expensive and involves a degree of 

risk [8].  Therefore, there is a need for accurate, cost effective, reliable, and non-invasive 
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biomarkers.  Blood-based markers are ideal for screening because samples can be obtained 

with minimal trauma.   

The plasma levels of adiponectin measured using ELISA seem to be inversely 

associated with CRC risk in men in a large prospective cohort (n=616 CRC and n=1205 

controls) [71].  Further validation studies are needed before adiponectin can be used as 

screening marker.  MicroRNAs, cell-free DNA and circulating tumour cells are available in 

the peripheral blood and they have shown encouraging results as useful screening markers for 

CRC, however further optimisation is still required [3, 72].   

 

5.2. Recent proteomics studies 

Proteomics studies enabled the identification of large number of proteins that may 

potentially be used as screening biomarkers for CRC (supplementary material Table S2). 

The use of a multiple autoantibody-based assay as a screening tool for CRC has shown 

promising results [73, 74].  In a recent study, 64 autoantibodies were assessed using 

multiplex serology assay, and a panel of four autoantibodies showed combined strong 

diagnostic ability in detecting early CRC [75].  The study conducted following a robust 

approach using technology that allows simultaneous assessment of a large number of 

potential markers in blood samples selected from the target screening population.  

Nonetheless, the relatively small cohort used in validation (49 CRC, 29 non-advanced 

adenoma, and 99 advanced adenoma) and the dissimilarities in the clinico-pathological 

characteristics between cohorts used for training and validation are limitations which could 

influence the outcome of this study.  Moreover, there are concerns regarding the 

determination of the appropriate cut-off values.   

A panel of proteins including APC-binding protein EB1 (MAPRE1) were elevated in 

CRC compared to healthy controls in a study that used LC-MS analysis of plasma samples 
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and CRC cell lines [76].  The study used one cohort (90 CRC) for discovery phase and two 

independent cohorts for ELISA validation.  The samples were collected 17 months prior to 

CRC diagnosis in the discovery cohort, 7 months prior to diagnosis in one validation cohort 

and from newly diagnosed patients in the second validation cohort.  The inclusion of prior-

diagnosis samples can help in detecting important protein changes that happen very early in 

the process of CRC development.  However, one validation cohort included only 32 CRC 

(with only four stage I cases) and the second cohort included 58 CRC without providing 

further characteristics of the samples.  Furthermore, the study used two cohorts that consisted 

entirely of women while the third cohort was composed of both women and men.  Therefore, 

further assessment of the results with a large cohort in a well-designed study is imperative. 

In another study, the diagnostic potential of MAPRE1 in CRC was assessed using a 

combination of LC-MS and antibody array analysis of plasma samples, followed by IHC 

validation on fixed tissue samples [77].  The level of MARPE1 was higher in adenoma and 

CRC compared to normal healthy samples, which is consistent with the previous study [76].  

In this study, the combination of MAPRE1 with carcinoembryonic antigen and adenylate 

kinase 1 has shown promising results in differentiating adenoma and early CRC, respectively, 

from healthy controls.  Nevertheless, the relatively small number of samples (antibody array: 

60 adenomas and 60 CRC/ IHC: 10 adenomas and 66 CRC) makes it difficult to determine 

the clinical usefulness of this marker combination.  MAPRE1 knockdown in APC 

mutant (HT-29) and APC wildtype (HCT-116) showed an anti-proliferative effect which 

maybe dependent on APC status [78].  This indicates the importance of further research of 

the role of MAPRE1 in CRC and the need for further validation. 

A diagnostic protein signature (ceruloplasmin, serum paraoxonase/arylesterase 1, 

serpin peptidase inhibitor, clade A, leucine-rich alpha-2-glycoprotein, and tissue inhibitor of 

metalloproteinases 1) was identified using proteomics and computational analysis [79].  The 
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study used robust methodology utilising LC-MS for discovery and targeted LC-MS for 

validation on a cohort that reflected different stages of CRC development and included other 

relevant diseases.  Comprehensive analysis of the data revealed a five-protein panel with 72% 

diagnostic accuracy.  The protein signature could be utilised in clinical practice as an 

independent screening test or in combination with existing diagnostic tests.  However, there 

is a need for further validation using larger cohorts and it may be necessary to investigate the 

finding using alternative technique such as ELISA. 

Proteomics analysis of blood proteome is not the only approach exploited to identify 

screening markers.  Other studies have shown promising results using proteomics to assess 

urine, faecal, tissues and cell lines (Table S2).  Follow up validation is required in larger 

cohorts for all these biomarkers.   

 

6. The role of proteomics in molecular pathological epidemiology (MPE) 

The rise in the incidence of CRC in developed countries have been linked to classic 

epidemiological factors such as diet, physical exercise, smoking, alcohol intake and an ageing 

population and these factors can be associated with specific molecular abnormalities [80].  

Such epidemiological factors can be integrated by MPE to provide a more comprehensive 

understanding of CRC [81].  The phenotype of a disease can be better defined within the 

paradigm of MPE, which interpret specific molecular signatures within the context of 

recognised aetiological factors [82, 83].  For example, both CpG island methylator phenotype 

and microsatellite status in CRC can be linked to a variety of aetiological factors [84, 85].  

Therefore, proteomics can provide another dimension for MPE.  The challenges, 

opportunities, and recommendations of this multidisciplinary approach have been recently 

discussed at the second international MPE meeting [86]. 
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7. Progress and difficulties 

Potentially significant limitations observed in many of proteomics studies are the 

sample size, annotation and the composition of the cohorts.  For example, there is a lack of 

early stage CRC in samples used for investigating potential screening markers.  The presence 

of advanced CRC instead may distort the findings because changes in the profile of plasma 

proteome are likely to be greater than in early invasive lesions.  Moreover, there is a lack of 

detailed clinicopathological characteristics of many cohorts (e.g., tumour differentiation, 

presence of extramural venous invasion, stage).   

Another potential problem is the low levels of individual protein markers in early 

tumours which might not be reliably detected in serum with current technologies since it can 

be difficult to detect low abundance proteins especially in complex protein mixtures [87]. 

New strategies such as enrichment technologies (e.g. enrich for N- or C-terminal peptides), 

labelling approaches (e.g. neutron encoding (NeuCode)) may help overcome the 

inconsistency and lack of sensitivity of unlabelled MS, particularly when dealing with post-

translation modifications [88].  Targeted MS is also gaining popularity because it is highly 

specific, accurate, and even applicable when there are problems with the antibodies [89].  

However, there are difficulties when targeting several biomarkers simultaneously in multiple 

samples, and the method requires exhaustive and challenging optimisation process.  Some of 

the challenges might potentially be addressed using a wider MS/MS window termed 

Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH) strategy [90].  

Finally, new approaches that are increasingly used include immunocapture strategies such as 

reverse phase protein microarray and immunocapture coupled to mass spectrometry [91].  

Some of the advantages using such methods include the ability to measure multiple targets 

with highly sensitivity, requiring only small volume of serum or plasma, and with no need for 
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albumin depletion.  However, the main weakness of this method is the dependency on the 

quality of the antibodies.  

  

8. Expert commentary 

“Precision medicine refers to the tailoring of medical treatment to the individual 

characteristics of each patient” [92].  The ongoing improvements in proteomic technologies 

should enable a comprehensive profiling of the proteome to provide a platform from which 

specific biomarkers necessary for precision medicine can be identified.  In colorectal cancer 

there is still an urgent need for sensitive, reliable, and cost-effective biomarkers to 

complement the current methods of diagnosis, prognosis, therapy determination, and 

screening.  Proteomics studies have generated a large number of potentially useful 

biomarkers.  However, no protein biomarkers appear to have been successfully translated into 

clinical practice.  This is attributed in part to the lack of reproducibility of results and the 

limitations of the validation studies.  The reproducibility of proteomics studies is 

compromised by deficiencies in the studies design; small sample size, variations in the 

sample preparation and storage protocols, and complexities of data analysis and interpretation 

[93].  The lack of standardisation between different laboratories regarding quality assurance 

in the analytical techniques makes the results difficult to replicate and interpret [94].  The 

lack of reproducibility of the results could be minimised if the studies adopted strong 

experimental design and adhered to best practice guidelines.  In addition, the introduction of 

automated quality control might significantly improve the reproducibility of proteomics 

results [95].   

Lack of follow-up validation studies and deficiencies in validation assays also 

contribute to the lack of biomarkers success [96].  The assessment of biomarkers studies and 

their subsequent validation can seriously be hindered by the lack of large collaborative 
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projects, shortage of well-characterised samples, inconsistency of proteomics results, and 

insufficient reporting.  Consequently, it makes it difficult to interpret, analyse, and validate 

the findings.  The characteristics of samples should be carefully selected, justified, and 

clearly stated because they effect the results of biomarker studies.  Finally, the validation 

methods (often antibody based) also suffer from absence of standardisation, absence of 

reliable antibodies, lack of best practice and quality controls [97, 98].  Rigorous and 

standardised characterisation process is needed to validate the antibodies used for 

immunoassays [99].   

 

9. Five-year view 

Further advancement in proteomics technologies will result in a more accurate 

assessment of plasma, serum, tissues, urine, saliva, and faeces proteome.  Moreover, the 

introduction of sophisticated computational software should lead to improved and consistent 

data generation and analysis.  There will also be significant improvement in study design, 

quality of samples, quality of antibodies, and adherence to best practice guidelines.  It is also 

expected that there will be more collaborative projects with pooling of a wide range of 

expertise and resources.  Thus, more biomarker targets will be identified using proteomics 

but their potential impact on the clinical practice is largely determined by the amount of 

progress made in addressing current limitations.   

 

10. Key issues 

• CRC is a common cancer with significant mortality. 
• Biomarkers offer a solution to some of the current problems in CRC clinical 

management. 
• Major advancements in proteomics coupled with innovative computational analysis 

have allowed the analysis of complex protein samples. 
• Large numbers of potential CRC biomarkers have already been identified for use in 

diagnosis, prognosis, therapy determination, and screening.  
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• The majority of proteomics studies have focused on prognosis and screening. 
• The failure of biomarkers is the consequence of three main factors; lack of validation, 

limitations in proteomics technologies and methodology deficiencies. 
• More biomarkers will be identified considering the ongoing advancement in 

proteomics strategies and computational analysis.  
• Addressing the current limitations will give future biomarkers discoveries a higher 

chance of success. 
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Table 1. Summary of recent diagnostic biomarkers discoveries and their potential applications in CRC. 

Target(s) 
Proteomics Validation 

Findings Potential 
utility Ref 

Method(s) Sample type Method(s) Sample type 

Kininogen-1 

Clinprot-
MALDI-

TOF/TOF-
MS 

 

Sera: 35 healthy, 35 
advanced colorectal 
adenoma (ACA) and 40 
preoperative CRC  

 

ELISA 

 

 

IHC 

Sera: 85 healthy, 80 ACA, 143 
preoperative CRC (AJCC stage: I = 
14, II = 63, III = 37 and IV = 29) and 
58 postoperative CRC 

Tissues: 75 normal mucosa, 77 ACA 
and 248 CRC (Dukes’ stage: A = 53, 
B = 101, C = 63 and D = 31) 

The sensitivity, specificity, 
and accuracy are 70.13%, 
65.88% and 67.90%, 
respectively 

Diagnosis 
and 

screening 
[30] 

Peptide signature 
MALDI-

TOF/TOF-
MS 

Plasma: 38 healthy,13 FAP, 
26 adenoma and 58 sporadic 
CRC (29 early stages and 29 
late stages)  

ELISA Plasma: 22 healthy, 10 FAP, 8 
adenoma and 36 CRC 

Associated with malignant 
transformation of adenomas in 
FAP patients 

Diagnosis 
and 

screening 
[31] 

Panel of proteins 
including; IL8, IP-
10 and TNF-alpha 

MALDI-
TOF/TOF-

MS 

Plasma: 30 adenomas and 30 
carcinomas (AJCC Stage: I 
= 4, II = 15 and III = 11) 

ELISA and 
multiplex 

array 

Plasma: 30 adenomas and 30 
carcinomas (AJCC stage: I = 4, II = 
15 and III = 11) 

A significant increase in the 
levels of proteins in carcinoma 
compared to adenomas 

Diagnosis 
and 

screening 
[32] 

PGE2 metabolites 
(PGE-M) LC-MS 

Urine: 420 control, 130 low 
risk adenoma and 290 high 
risk adenoma  

None NA 

PGE-M level is indicator of an 
increased risk for advanced 
adenoma and identifies 
patients who might benefit 
from NSAID 
chemoprevention 

Diagnosis, 
screening 

and 
predictive 

[33] 

Metabolomics 
profiles 

NMR 
spectrum 

and learning 
algorithm 

Urine:  633 healthy, 110 
hyperplastic polyps 243 
adenoma and 2 CRC 

None NA Sensitivity of 64% and a 
specificity of 65% Diagnosis [34] 

Olfactomedin 
4  (OLFM4) 

iTRAQ -
MALDI-

TOF/TOF- 
MS 

Tissues: 4 adenoma and 24 
CRC 
 

IHC 

Tissues: 30 adenomas, 12 intra-
mucosal carcinoma and 84 CRC 
(AJCC stage: I = 26, II = 14, III = 25 
and IV = 19) 

OLFM4 increases in 
adenomas and in early stage 
CRC before dropping 
significantly in stages (III-IV)   

Diagnosis 
and 

prognosis 
[35] 
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Table 2. Summary of recent predictive biomarkers discoveries and their potential applications in CRC. 

Target(s) 
Proteomics Validation 

Findings Potential 
utility Ref 

Method(s) Sample type Method(s) Sample type 

AGT, APOE 
and DBP 

2D-DIGE 
and LC-
MS/MS 

Sera: 23 CRC responders to 
treatment (AJCC stage: II = 1 
and III = 10) and 12 non-
responders (stage  IV) 
 

ELISA 
 
 

IHC 

Sera: 68 CRC (AJCC stage: I = 3, 
II = 8, III = 14 and IV = 43) 
 
Tissues: 95 CRC (AJCC stage: I = 
1, II = 14, III = 34 and IV = 46) 

Proteins are associated with 
survival outcomes in 
metastatic CRC patients 
treated with chemotherapy and 
bevacizumab 

Predictive [64] 

LOXL2 iTRAQ –
LC-MS 

 
Cell lines 
 
 
Tissues: 12 matched colon 
cancer (AJCC stage: II = 5 and 
III = 7) 

 

PCR 
 
 

IHC 
 
 
Transcipto 

mics 

Tissues: 70 colon cancer (AJCC 
stage: I = 8, II = 26, III = 22 and 
IV = 14)   
Tissues: 121 colon cancer (AJCC 
stage: I = 31, II = 53, III = 9 and 
IV = 28)  
Tissues: two external cohorts: 232 
and 90 colon cancers 

LOXL2 identifies a subgroup 
of patients (stage II and III 
CRC) who can benefit from 
adjuvant chemotherapy   
 
LOXL2 has a prognostic value 
in stage II patients 

Predictive 
and 

prognostic 
[65] 

Protein panel 
(n=14), 

validated (n=4): 
HADHA, 
PLEC1, 

TAGLN and 
TKT  

Isotope 
coded 
protein 
label 

Tissues: 20 rectal carcinoma  
(AJCC stage: II = 10 and III = 
10)  

IHC 
Tissues: 10 good responders and 
10 bad responders to neoadjuvant 
chemoradiation after surgery 

This protein panel predicts the 
response for neoadjuvant 
chemoradiation in rectal 
carcinomas 

Predictive [66] 

Delta-type 
protein kinase C 

(PKCδ) 

LC-
MS/MS 

Cell line and animal xenograft 
tumour treated with dasatinib 

IHC and 
western 

blot 

Cell lines and animal xenograft 
tumour treated with dasatinib 

PKCδ pY313 assessment can 
determine the benefit of 
dasatinib in a subset of CRC 
patients 

Predictive [67] 

Phosphorylated 
epidermal 

growth factor 
receptor 
(pEGFR) 

LC–
MS/MS 

3D secretomes of CRC 
isogenic cells treated with 
cetuximab 
Sera: 18 metastatic CRC with 
the KRAS (exon 2) WT 
status, treated with cetuximab 
plus FOLFIRI 

ELISA 

Plasma: 18 metastatic CRC with 
the KRAS (exon 2) WT 
status, treated with cetuximab 
plus FOLFIRI 

pEGFR is associated with 
CRC cells sensitivity to 
cetuximab and therefore 
patients’ response to this drug 

Predictive [68] 
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Figure legend 

Figure 1. 

An overview of colorectal cancer biomarkers types, methods of assessment and potential 
utilities of biomarkers in clinical practice. 

 

 

 



CRC biomarkers

Type Method
Potential 
utilities

• Screening: diagnosis at asymptomatic, early 
stage and at precancerous stage (high risk 
population).

• Diagnostic: diagnosis of metastatic CRC of 
unknown origin and classifications of polyps.

• Prognostic: risk stratification based on natural 
outcome and guide treatment decisions.

• Predictive: patients stratification based the 
outcome of particular drug therapy (response 
and side affect).

• Monitoring: monitor progression and 
detection of recurrence.

• Others: therapeutic targets and molecular 
understanding of cancer biology.

Proteomics including 
antibody arrays, 
immunoassays

DNA/RNA microarray, 
miRNA expression profiling, 
whole genome sequencing

Metabolomics

Proteins

Genomics

Lipids, 
metabolites    

and 
carbohydrate



Table S1.  Summary of recent prognostic biomarkers discoveries and their potential applications in CRC 

Target(s) 
Proteomics Validation 

Findings Potential 
utility Ref 

Methods(s) Sample type Method(s) Sample type 

IGF1-R, 
IRF2BP1 and 

MX1 
LC-MS 

Tissues: 19 CRC (10 lymph 
node metastatic and 9 non-
metastatic)   

IHC Tissues: 40 CRC (UICC stage: II = 
20 and III = 20) 

Expression of these proteins is 
associated with lymph node 
metastasis 

Prognosis [1] 

ALDOA, CA1, 
GRP78 and 

PPIA 

MALDI-
TOF-MS 
and 2D-
DIGE 

 
Tissues: 5 CRC for each stage   

 

IHC 
 
 

Western 
blot (WB) 

Tissues: 103 CRC (AJCC stage: I = 
3, II = 45, III = 30 and IV = 25) 
 
Tissues: 1 control and 1 CRC sample 
for each stage 

Dynamic patterns of proteins 
expression are associated with 
CRC prognosis especially for 
stage III and IV 

Prognosis [2] 

Mapsin 

Nano LC-
MS 

 
 
 

Gene 
expression 

Tissues: 5 stage IV patients 
(time to recurrence<6 months) 
and 5 patients longer time to 
recurrence 

 
Tissues:30 stage IV CRC 
(divided based on time to 
recurrence) 

IHC 
 
 

WB 
 
 

Transcript
omics 

Tissues:419 CRC (AJCC stage: II = 
243 and III = 176) 
 
Tissues; 5 stage IV patients (time to 
recurrence<6 months) and 5 patients 
longer time to recurrence 
 
External cohorts 

Maspin expression is 
independent predictor of time 
to recurrence and is associated 
with diseases specific survival 
in stage III CRC 

Prognosis [3] 

STOML2 LC-MS/MS 

 

Tissues: 28 pair of normal and 
CRC (Dukes’ stage: A = 4, B 
= 7, C = 11 and D = 6)   

 

ELISA 
 
 
 
 

IHC 
 
 

Tissues:70 CRC and 70 healthy (29 
early stage and 41 advance stage) 

 

Tissues: 184 adenoma and 205 CRC 
matched with normal mucosa (AJCC 
stage: I + II 33 and III + IV = 172)   

Overexpression of STOML2 
is associated with poor 
survival.  Plasma 
concentrations of STOML2 
were higher in early-stage 
CRC compared with healthy 
individuals 

Prognosis 
and 

screening 
[4] 

CDH17, 
DEFA1, EZR, 
FN1, ITGB2, 
MLEC and 

TNC  

LC–MS/MS 

Tissues: 8 primary CRC (2 for 
each stage) and their 
corresponding adjacent normal 
mucosa 

IHC and 
WB 

Tissues: 8 primary CRC (2 for each 
stage) and their corresponding 
adjacent normal mucosa 

Proteins signature is 
associated with CRC stage 
and epidermal growth factor 
receptor expression 

Prognosis [5] 



ALDH1 and 
14-3-3β  

LC–MS and 
2D-DIGE 

Tissues: 28 normal and 28 
stage B CRC IHC 

Tissues: 515 CRC (Dukes’ stage: A = 
90, B = 201 and C = 224) and 50 
normal mucosa 

ALDH1 and 14-3-3β negative 
tumours have a better 
prognosis than tumours 
showing either 14-3-3β or 
ALDH1 positivity 

Prognosis [6] 

RAI3 LC–MS/MS Tissues: 4 colon cancer and 4 
normal 

IHC  
 
 
  

WB 

367 colon cancer (Dukes’ stage: A = 
49, B = 122, C = 144 and D = 52) and 
51 normal mucosa 

 
4 colon cancer and 4 normal 

High RAI3 expression is 
associated with colon cancer 
recurrence in small subgroup 
of patients 

Prognosis [7] 

Cytokeratin 17 
and Moesin   

2D- DIGE 
and 

MALDI-
TOF/ 

TOF-MS 

Tissues: 4 CRC (AJCC stage: 
II = 1 and III = 3) and 4 
normal 

IHC  
 
 
 

 WB 

Tissues: 166 CRC (AJCC stage: I = 
33, II = 59, III = 65 and IV = 19) 

 
Tissues: 4 CRC (AJCC stage: II = 1 
and III = 3) and 4 normal 

Moesin and KRT17 were not 
expressed in normal mucosa 
and their expression increased 
as tumour (pT) stage advanced 

Prognosis 
and 

diagnosis 
[8] 

FXYD3, 
GSTM3 and 

S100A11  

MALDI-
TOF MS 

 
LC-MS 

Tissues: 54 colon cancer 
(UICC stage: II = 21 and III = 
33)  
Tissues: 6 colon cancer (II = 3 
and III = 3) 

IHC Tissues: 168 colon cancer (UICC 
stage: II = 87 and III = 81) 

Protein expressions correlate 
with the presence of nodal 
metastases 

Prognosis [9] 

HSP27 
2D-DIGE 
and LC-
MS/MS 

Tissues: 9 colon and 3 rectal 
cancer (stage III)   IHC 

Tissues: 199 colon cancer and 205 
rectal cancer (AJCC stage I + II = 
108 and III + IV = 97)   
Independent cohort: 200 colon cancer 
and 115 rectal cancer 

HSP27 expression is 
associated with poor outcome 
in rectal cancer 

Prognosis [10] 

Metabolomic 
profile 

(H NMR) 
spectrometry 
and GC-MS 

Sera: 42 stages II and III loco-
regional CRC, 45 liver-only 
metastases and 25 extrahepatic 
metastases 

None NA 

Metabolome profile is 
different in locoregional CRC, 
in liver-only metastases and in 
extrahepatic metastases 

Prognosis [11] 

CEA, IL-8 and 
prolactin 

Multiplex 
immunoassa
y platforms 

Plasma: 75 CRC (15 for each 
Dukes stage A-D) and 15 
healthy 

None NA 

Protein signature is associated 
with increased CRC 
progression and correlates 
with Dukes’ stage 

Prognosis [12] 



Gelsolin 

Cy-dye 
labelled 
proteins 

(MALDI-
TOF MS, 
LC-MS) 

 
Plasma: 32 CRC, collected 
before surgery and one closest 
to distal metastasis diagnosis 
(AJCC stage at first diagnosis: 
I = 2, II= 7 and III = 23)  

 

WB and 
ELISA 

 
ELISA  

 
 
 

IHC 
 

Plasma: the same cohort used in 
proteomic 
 
Plasma: 149 CRC (I + II = 74 and 
III+IV=75) and 25 normal 

 
Tissues: 148 CRC (I = 10, II = 64, III 
= 48 and IV = 26) and 133 normal 
mucosa 

 
 
Plasma levels of secretory 
gelsolin are higher in patients 
with distal metastases (stage 
IV versus stages I–III CRC 
before treatment) 
 
 

Prognosis [13] 

CD44, CDH5, 
CFH, HLA-A, 
HP and PTPRJ 

LC-MS/MS 

Plasma: 202 CRC (AJCC 
stage: I = 43, II = 58, III = 49 
and IV = 52) 

 

Targeted 
LC-MS 
(SRM)  

 
Transcript

omics 

Plasma: 202 CRC (AJCC stage: I = 
43, II = 58, III = 49 and IV = 52) 
 
 
 
Three external cohorts 

This panel provides a 
prognostic information on 
survival and other prognostic 
parameters 

Prognosis [14] 

MIC1 and 
PTGS2 

 

ELISA 
 
 
 

IHC 

Plasma: 618 CRC (AJCC stage: I + II + III = 533 
and IV = 85) 
 
 
Tissues: 245 CRC (stage not stated) 

MIC1 level measured prior 
diagnosis is associated with 
disease specific mortality, 
mainly in PTGS2-positive 
tumours 

Prognosis [15] 

STMN1 

2-D DIGE, 
MALDI-
TOF/TOF 

MS 

CRC cell lines (HCT-116 and 
its metastatic derivative E1) 

IHC  
 
 
 
 

 WB 

Tissues: 324 CRC (AJCC stage: I = 
22, II = 120, III = 97 and IV = 85) 

 
 
 

Cell lines 

Higher expression of STMN1 
correlates with poorer 
prognosis.  STMN1 
expression is higher in 
primary and metastatic CRC 
compared with normal mucosa 

Prognosis [16] 

COL6A3 iTRAQ-LC-
MS Cell lines 

IHC 
 
 
 
 

  ELISA  

Tissues: 90 matched CRC (AJCC 
stage: I = 9, II = 47, III = 31 and IV = 
2) 

 
Plasma: 42 CRC (16 lymph node 
positive) and 48 normal 

Expression of COL6A3 is  
higher in CRC and it is 
associated with Dukes stage, T 
stage and recurrence  

Prognosis 
and 

screening 
[17] 

 

 

 

 



Table S2.  Summary of recent screening biomarkers discoveries and their potential applications in CRC 

Target(s) 
Proteomics Validation 

Findings Potential 
utility Ref 

Method(s) Sample type Method(s) Sample type 

CP, LRG1, 
PON1, 

SERPINA3 and 
TIMP1 

LC MS/MS 

Plasma: 23 non advanced 
adenoma, 11 hyperplastic 
polyp, 66 normal and 97 
CRC (AJCC stage: I = 32, II 
= 26, III = 31 and IV = 8)  

Targeted 
LC-MS 
(SRM) 

Plasma: 4 advanced adenoma, 2 
benign adenoma, 1 dysplastic polyp, 
6 diverticular disease, 4 Crohn, 50 
healthy and 202 CRC (AJCC stage: I 
= 43, II = 58, III = 49 and IV = 52) 

This panel detect CRC at 
72% accuracy compared 
with 49% for CEA 

Screening [18] 

Autoantibodies: 
IMPDH2, 
MAGEA4, 
MDM2 and 

TP53  

Multiplex 
serology, a 
fluorescent 
bead-based 

GST capture 
immunosorb

ent assay 

Sera: 124 normal and 352 
CRC (AJCC stage: I = 96, II 
= 102, III= 105 and IV=49) 

The same 
method 

Sera: 49 CRC (AJCC stage: 0 = 4, I = 
18, II = 5, III = 19 and IV = 3); 100 
normal, 29 non-advanced adenoma, 
and 99 advanced adenoma 

Sensitivity of autoantibodies 
is 26% for early stage CRC 
at a specificity of 90%.  
Detected 20% of advanced 
adenomas 

Screening [19] 

CEA, IGFBP2, 
LRG1 and 
MAPRE1 

2D-HPLC 
and LC-
MS/MS 

Cell lines and plasma: 18 
months pre diagnosis, 90 
CRC (AJCC stage: I = 8, II 
= 29, III = 37 and IV = 16) 
and 90 controls  

ELISA 

Plasma: 58 newly diagnosed CRC 
(stage not provided) and 58 age-
matched controls   

Plasma: 7 months prior diagnosis, 32 
CRC (AJCC stage: I = 4, II = 13, III 
= 12 and IV = 3) and 32 controls 

Predictive value in pre-
diagnostic CRC plasmas 
(41% sensitivity at 95% 
specificity) 

Screening [20] 

Anti-p53, CEA, 
CYFRA 21-1, 

OPN and 
seprase 

ELISA 

Sera: 301 CRC (UICC stage: 0 = 6, I = 53, II = 68, 
III = 76 and IV = 68), 14 hyperplastic polyps, 143 
advanced adenoma, 135 healthy, 176 other cancers 
(prostate, liver, lung, breast, kidney, bladder, ovary, 
and endometrium) 258 disease and other controls 
(Diverticulitis, inflammatory bowel disease, 
infection-related diarrhoea) 

Diagnostic power: 69.6% 
sensitivity at 95% specificity 
and 58.7% at 98% 
specificity 

Screening [21] 



Anti-p53, CEA, 
ferritin, 

osteopontin and 
seprase 

[21] 

Electroche
milumines

cence 
cobas e601 

assay 

Sera: 1,200 controls, 420 advanced 
adenoma, 4 carcinoma in situ, and 36 
CRC (UICC stage: I = 13, II = 5, 
III=12 = 6 and IV = 2) 

Performance is inferior to 
FIT, but comparable with 
the faecal occult blood test 
(FOBT) 

Screening [22] 

Complement co
mponent 9 (C9) 

2DICAL and 
LC-MS 

Plasma: 59 healthy and 31 
CRC (AJCC stage: 0 = 5, I = 
10, II = 7, III = 6 and IV = 
3) 

RPPM 

Plasma: 115 CRC (0=17, I = 35, II = 
28, III = 25 and IV = 10) and 230 
healthy    

Plasma: 109 healthy, 100 CRC, 105 
gastric cancer, 14 hepatocellular 
carcinoma, 10 oesophageal cancer, 14 
pancreatic cancer, 18 
cholangiocarcinoma and 8 
pancreatitis 

C9 was elevated in patients 
with early stages of CRC Screening [23] 

C3, C9, GSN, 
HABP2, ORM1 

and SAA2  

HPLC and 
MRM 

LC/MS 

Sera: 259 healthy and 172 
CRC (AJCC stage: I = 19, II 
= 53, III = 71 and IV = 27) 

None NA 

Diagnostic assay showed 
promising results in 
detecting CRC (sensitivity 
of 93.75%, a specificity of 
82.89%) 

Screening [24] 

ORM2 

iTRAQ 
coupled with 

micro Q-
TOF/MS. 

 

Plasma: 10 CRC and 10 
healthy  

 

ELISA 

 

 

WB 

Plasma: 65 control, 59 hyperplastic 
polyp, 62 inflammatory bowel 
disease, 53 adenoma and 180 CRC 
(AJCC stage: I = 49, II = 31, III = 62 
and IV = 38)   

Tissues: 41 pairs of normal and CRC 
samples 

ORM2 level in plasma and 
tissue was higher in CRC 
compared with the healthy 
samples 

Screening [25] 

Clusterin LC-ESI-
MS/MS 

Plasma: 10 CRC and 10 
healthy in each of first two 
phases 

Targeted 
LC-MS 
(SRM) 

Plasma: 48 CRC and 48 healthy 
(Stage of CRC not stated) 

Plasma levels of clusterin 
were higher in CRC 
compared with control and 
protein was associated with 
risk of CRC (only in men) 

Screening [26] 



Autoantibodies 
against: EDIL3, 
GTF2B, HCK, 
P53, PIM1 and 

STK4 

MALDI-
TOF-MS Proteins expressed in E.coli 

Multiplex 
beads 

assay and 
ELISA 

Sera: 135 CRC (AJCC stage: I = 35, 
II = 25, III = 46 and IV = 29), 65 
other cancer types, 14 inflammatory 
bowel disease and 93 healthy 

Combination of 
autoantibodies achieved 
diagnostic accuracy of 
89.7%, with 66% sensitivity 
at 90.0% fixed specificity 

Screening [27] 

Collagen I LC–MS 
Sera: 91 CRC (UICC stage:  
I = 21, II = 41, III = 22 and 
IV = 7) and 33 healthy 

ELISA  

 

WB 

 

PCR 

Sera: same cohort used in proteomic 

 

Tissues: 26 pair of normal and CRC 
(UICC stage:  I = 7, II = 7, III = 7 and 
IV = 5) 

Sera: same cohort as used in WB 

The expression of collagen I 
may be an early event in 
CRC tumorigenesis and 
could provide prognostic 
information 

Screening 
and 

prognosis 
[28] 

Adipophilin LC/MS 
(2DICAL) 

 

Plasma: 21 healthy and 22 
CRC (AJCC stage: I = 3, II 
= 6, III = 8 and IV = 5)  

 

RPPM 

Plasma: 109 healthy and 101 CRC 
(AJCC stage: I = 19, II = 31, III = 32  
and IV = 17) 

Plasma: 87 healthy and 26 CRC 
(AJCC stage: I = 12, II = 5, III = 8  
and IV = 1) 

Adipophilin is expressed 
primarily in the basal sides 
of CRC cells, while it is 
absent from adjacent normal 
mucosa, and the detection 
power was superior to that 
of CEA 

Screening [29] 

MRC1 and 
S100A9 LC-MS Sera: 3 healthy and 3 CRC 

WB 

 

ELISA 

Cell lines and sera: 3 healthy and 3 
CRC 

Sera: 96 healthy and 112 CRC 
(AJCC stage: I = 21, II = 50 and III = 
41) 

Proteins were differentially 
expressed between normal 
and CRC 

Screening [30] 

MAPRE1 LC/MS 

Mouse model, cell lines and 
plasma: 60 adenomas, 60 
CRC (AJCC stage: I = 11, II 
= 19, III = 21 and IV = 9) 
and 60 healthy 

Antibody 
array 

 

IHC 

Plasma: 60 adenomas, 60 CRC 
(AJCC stage: I = 11, II = 19, III = 21 
and IV = 9) and 60 healthy 

Tissues: 20 normal tissues, 10 
adenomas, and 66 CRC (stage not 
provided) 

Protein levels were higher in 
adenoma and early stages of 
CRC compared with normal 
mucosa, the diagnostic 
power is stronger with other 
markers (CEA and AK1) 

Screening 
and 

diagnosis 
[31] 



Proteins (A2M, 
APOH, IGL@, 
MACF1 and 
VDB) and 
metabolite 
signature 

2DIGE, 
Finnigan 
LTQ-MS 

and GC-MS 

Sera: 30 CRC (Dukes’ stage: 
A = 3, B = 13, C = 8 and D 
= 6) and 30 healthy 

ELISA  Sera: same cohort as used in 
proteomics 

Differential expression of 
proteins in CRC compared 
with healthy.  93.5% of CRC 
patients are identified using 
the 6 metabolites 

Screening [32] 

Volatile organic 
compounds 
signature 

FAIMS and 
GC-MS 

Urine: 83 CRC (AJCC stage: 
I = 9, II = 24, III = 32, IV = 
9 and no stage = 9) and 50 
control 

None NA 
Sensitivity and specificity 
for CRC detection were 88% 
and 60% respectively 

Screening [33] 

Angiopoietin-2, 
calprotectin, 

FGF-23, IL-13, 
M2-PK, MMP-

10 and TPO  

Biotin label-
based 

protein array 

Faeces: 20 CRC (AJCC 
stage: I = 2, II = 7, III = 9 

and IV = 2) and 20 healthy 

ELISA and 
multiplex 

faecal 
protein 
biochip 

Faeces: same cohort as used in 
proteomics 

Proteins levels are 
significantly higher in CRC 
compared with healthy 
controls 

Screening [34] 

A1AT and 
CTSD 

Gel-
enhanced 
LC−MS 

 

Tissues: 37 CRC (AJCC 
stage: I = 13 and II = 24) 
and 37 normal   

 

IHC 

 

WB 

  

Tissues: 93 CRC (AJCC stage: I = 4, 
II = 86 and III = 3) 

Tissues: paired samples from 14 early 
stage CRC, and sera: 84 samples (42 
early CRC and 42 healthy) 

Less A1AT and more CTSD 
in CRC compared with 
healthy samples.  
Combination of both 
proteins identified 96.77% 
of CRC 

Screening [35] 

EFEMP2 Nano LC-
MS/MS 

Tissues: 9 CRC (AJCC 
stage: I = 7 and II = 2) 
paired with normal mucosa 

IHC 

 

 

ELISA 

 

WB 

Tissues: 88 CRC (UICC stage: I = 
23, II = 29, III = 26 and IV = 10), 19 
adenoma and 16 normal colon 

Sera: 79 healthy, 14 adenoma, and 
122 CRC, stage not stated, but 
smallest proportion of cases is in 
stage I (figure 7B) 

Tissues and sera: 9 pairs of CRC and 
normal mucosa 

The expression level of 
EFEMP2 increases in early 
stages CRC.  Diagnostic 
accuracy significantly better 
than CEA 

Screening [36] 



CAMP, ERp29, 
HSPA8 and 

TPM3  

2D LC-
MS/MS 

Tissues: 3 CRC and 3 
normal 

IHC  

 

 WB 

Tissues: 69 CRC matched with 
normal (AJCC stage: I = 15, II = 21 
and III = 33) 

Tissues: 3 CRC and 3 normal 

The protein panel can detect 
CRC via IHC (accuracy of 
73.2%) 

Screening [37] 

SORD 
iTRAQ 8-

plex labelled 
LC-MS/MS 

 

Cell lines and tissues: 30 
adenomas and 30 normal 

 

IHC  

 

 

WB 

Cell lines and tissue: normal colon, 
colorectal adenomas, and 
adenocarcinomas (numbers not 
provided) 

Cell lines and tissues: 4 pairs of 
adenoma and normal mucosa 

Significant increase in 
SORD expression in 
adenomas and cancer cell 
lines 

Screening [38] 

TRFM LC-MS/MS 

 

Cell lines 

 

ELISA 

   

 

WB 

 

Plasma: 77 healthy and 228 CRC (I = 
68, II = 68, III = 65 and IV = 27) 

 

Plasma: 80 CRC (20 per stage), 10 
adenoma, 10 polyps and 30 healthy 
controls   

TRFM expression increases 
in stages I and II compared 
with stages III and IV 

Screening [39] 
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