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Abstract 

Purpose - Cancer of the upper digestive tract (uGI) is a major contributor to cancer-

related death worldwide. Due to a rise in occurrence, together with poor survival rates 

and a lack of diagnostic or prognostic clinical assays, there is a clear need to establish 

molecular biomarkers. 

Experimental design - Initial assessment was performed using urines from 60 control 

and 60 uGI cancer patients by MS to establish a peak-pattern or fingerprint model, which 

was validated by a further set of 59 samples. 

Results - We detected 86 cluster-peaks by MS above frequency- and detection-

thresholds. Statistical testing and model building resulted in a peak-profiling model of 5 

relevant peaks with an 88% overall sensitivity and 91% specificity, and overall 

correctness of 90%. High resolution MS from 40 samples in the 2-10 kDa range resulted 

in 646 identified proteins, and pattern matching identified 4 of the 5 model-peaks within 

significant parameters, namely Programmed cell death 6-interacting protein 

(PDCD6IP/Alix/AIP1), Rabenosyn-5 (ZFYVE20), Protein S100A8 and Protein S100A9. 

Conclusions and clinical relevance - We demonstrate that MS analysis of human urine 

can identify lead biomarker candidates in uGI cancers which makes this technique 

potentially useful in defining and consolidating biomarker patterns for uGI cancer 

screening. 
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1. Introduction 

Malignant tumours of the upper gastro-intestinal (uGI) tract are a significant cause 

of cancer-related death worldwide. Gastric cancer is the fourth most common cancer 

globally (approximately 8% of all cancer cases) and the second most common cause of 

cancer-related death [1]. Oesophageal cancer is the sixth most common cancer worldwide 

[2]. It affects twice as many males than females, amounts to approximately 4% of all 

cancer cases and 5% of all cancer related deaths, and has a 5-year survival rate of only 

13% [3]. In comparison, pancreatic cancer has one of the lowest survival rates of all (16% 

at one year following diagnosis which drops to 3% by 5 years). In Western populations, 

pancreatic cancer contributes 3% of all diagnosed cancer cases and 5% of all cancer-

related deaths [4].  

The incidence of gastric cancer has been falling continually over the last few 

decades [5], but the incidence rates of pancreatic and oesophageal cancers globally have 

shown a worrying increase [6, 7]. The development of various therapeutic strategies, 

based either on improved surgical techniques or neo-adjuvant/adjuvant chemotherapy has 

improved survival rates but only in the order of a few percent [8-10]. One of the main 

reasons for this is that most cases are diagnosed at an advanced stage. As a consequence, 

it is of utmost importance to develop methodologies to diagnose the onset of malignancy 

as soon as possible, preferably prior to the development of clinical symptoms. 

Currently, there is a clear lack of accepted clinical molecular markers which can 

be used reliably to assess for the presence of malignancy [11]. The most successful and 

clinically widely used assay for pancreatic cancer is serum biomarker CA19.9. However, 

its use is limited by poor sensitivity in symptomatic patients (only 80%), false negative 
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results of 5-10% in the Lewis negative phenotype [12], and increased false positive rates 

of 10-60% in the presence of obstructive jaundice [13]. CA19.9 can not be used for 

screening asymptomatic populations [14], and its specificity to diagnose  pancreatic 

cancer in symptomatic patients ranges from 82 to 90% [15]. Results using commercial 

sources of CA19.9 assays are not interchangeable, and show very poor usability for other 

tumour types such as gastric cancer, with detection rates of 3 to 38% [16]. A more 

suitable pan-cancer biomarker was identified as CA215, which, like CA19.9, consists of 

carbohydrate-associated epitopes of proteins, but the positive predictive values were 

shown to be very low, ranging from 38 to 83% across a number of common cancer types 

[17]. Recent studies have focused on micro RNA, where elevated quantities of miR-222 

in diseased tissue could be associated with pancreatic cancer and poor prognosis [18]. A 

potential complementary set of biomarkers for gastric cancer was recently identified as 

V-crk avian sarcoma virus CT10 oncogene homolog-like (CRKL) and miR-126 [19], and 

legumain (LGMN) was described to be associated with poor prognosis and metastasis 

[20]. Oesophageal cancer biomarkers were identified as phospholipase A2 group IIA 

(PLA2G2A) [21], salivary miRs [22], and HCLS1-associated protein X-1 (HAX1) [23] 

amongst others. Potential markers for a wide range of epithelial tumours include S100A6 

(breast [24], bowel [25], gastric [26], hepatocellular [27], ovarian [28], thyroid [29], and 

uGI cancer [30]), and the protease inhibitor inter-alpha-trypsin inhibitor heavy chain H4 

(ITIH4) (breast [31, 32], ovarian [33], prostate [34, 35], pancreatic [36, 37], lung [38], 

colon [39] and bladder cancer [34]). 

There is a current trend to use a combination of several markers to assess tumour 

growth for diagnostic and prognostic purposes. An improvement in CA19.9 applicability 
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for pancreatic cancer detection involves the combination of several additional 

biomarkers, such as regenerating islet-derived 1 beta (REG1B), syncollin (SYCN), 

anterior gradient homolog 2 protein (AGR2), and lysyl oxidase-like 2 (LOXL2) [40]. An 

extension of this approach involves the multiplexing of many different targets 

simultaneously using antibody-arrays [41, 42] or quantum dot technologies [43]. 

Initial studies using transcriptomic and genomic array screens of tissue biopsies 

have shown promise in defining potential biomarkers and response to personalised 

chemotherapy (reviewed in e.g. [44-46]). However, these studies require invasive 

methods to obtain tissue, and currently remain at the experimental phase. For this reason, 

a focus on non-invasive sampling techniques may be beneficial. One medium of choice is 

serum, but since proteolytic fragmentation and degradation of biomolecules by 

endogeneous proteases can occur during or after sample collection [47, 48], this approach 

poses obstacles that might be difficult to standardise. Population heterogeneity and 

genetic variation can also have an unexpected impact on the implementation of biomarker 

screening assays, and therefore there is a need to simplify the screening medium. Urine, 

which contains approximately 4000 to 5000 proteins [49-51] (compared with at least 

10000 in blood [52]), offers a (usually) unlimited quantity of a viable alternative. Urine is 

also relatively stable in protein/peptide composition and fragmentation state [53, 54], 

even after prolonged storage [55]. 

In this study, we have used a combination of mass spectrometric techniques to analyse 

urine samples from a cohort of uGI cancer patients and non-cancer controls, in order to 

define peptide fingerprint profiling patterns and then perform independent protein 

expression profiling. Both sets of results were subsequently combined using 
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bioinformatics tools to uncover significantly altered potential biomarkers, of which 

several were then validated by an independent technique. Additionally, we assessed 

whether there was a correlation of these markers with a plasma marker of inflammation, 

namely C-reactive protein (CRP). Similar procedures were employed in a previous study 

[30], where a cation-exchanger was used to clean and enrich urinary proteins and 

peptides (CM10 chip). This approach, in essence, focussed on medium to high abundance 

molecules present in human urine. In the present study, we focussed on low-abundance 

molecules using metal chelate affinity chromatography (IMAC30 [Cu2+-complexed] 

chip).  
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2. Materials and methods 

The Methods were carried out according to our protocols published previously [30]. 

 

2.1. Materials. Buffers, gels and SELDI chips were from Bio-Rad (Hemel Hempstead, 

UK), and all other chemicals were obtained from Sigma-Aldrich (Gillingham, UK), 

unless stated in the text. 

 

2.2. Sample collection.  Urine samples were obtained from 179 participants (86 upper GI 

patients and 93 non-cancer controls). Non-cancer controls were normal healthy subjects 

without any known inflammatory, neoplastic or renal conditions. Participants were aged 

between 43-83 years for the cancer group and between 19-86 years for controls. One third 

of the cancer patients had pancreatic cancer; approximately one third had oesophageal 

cancer; approximately one sixth had cancer of the oesophagogastric junction (OGJ); and 

approximately one sixth had gastric cancer. Summary participant demographics are 

shown in Table 1 and full details are provided in Supplementary Table 1. Random 

morning urine samples were either supplied by the participants of the study (controls) or 

collected prior to surgery in the operating theatre (cancer patients). All urine samples 

were stored at -40◦C. Long-term storage of samples (>1 month) was at -80◦C. 

All procedures were approved by the local research ethics committee, and the study 

conformed to the standards set by the Declaration of Helsinki. Written informed consent 

was obtained.  
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2.3. SELDI-TOF-MS. IMAC30 SELDI-chips were prepared for sample application 

according to the manufacturer’s recommendations, as previously reported [30]. Briefly, 

IMAC30 chips were loaded with 0.1 M CuSO4, washed with water, neutralised with 0.1 

M NaHAc pH4 and washed with water, followed by two washes with binding buffer (0.1 

M NaHPO4, 0.5 M NaCl), and then processed in a bioprocessor-assembly by incubating 

0.1 ml urine and 0.1 ml binding buffer for 1 hour at room temperature with vigorous 

shaking, followed by three washes with 0.2 ml binding buffer for 5 minutes at room 

temperature with vigorous shaking, and two washes with 0.2 ml water at room 

temperature with vigorous shaking. The chips were removed from the bioprocessor 

assembly, air-dried and 2 times 1 µl energy-absorbing matrix (SPA, in 50% ACN, 0.5% 

TFA) was added. Air-dried chips were analysed in a PCS4000 SELDI-TOF instrument 

(Bio-Rad, Hemel Hempstead, UK) by measuring the 1000-25000 Da range with a laser 

setting of 2.5 µJ. Spectra were exported as ‘.xml’ files. The SELDI instrument was 

calibrated using the ProteinChip All-In-one peptide standard (Bio-Rad, Hemel 

Hempstead, UK). Source voltage was 25000 V, and detector voltage was 2946 V. Quality 

control and consistency were ensured by using one random pool of urines on one spot per 

chip. Spectra of the full analysis (179 cohort samples, 26 quality control samples, 410 

spectra in total) were recorded in two large batches to minimize instrument variability 

and drift. Spectral alignments of all quality controls ensured consistency of all spectra. 

 

2.4. Data processing. ProteinChip Data Manager Software (PCDMS) version 4.1 with 

integrated Biomarker Wizard cluster analysis (Bio-Rad, Hemel Hempstead, UK) was 

used for analysis. SELDI-TOF-MS traces were split into control and cancer groups. The 
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baseline was subtracted from individual m/z traces and profiles were normalised using 

total ion current, followed by identification of peak clusters using the cluster analysis 

tool. In the first pass, peaks were selected where the signal to noise (S/N) ratio was >5, 

and valley depth was >3, and in the second pass, S/N >2 and valley depth >2. The cluster 

mass window was set to 0.2% of mass. Clustered peaks were only included if they 

occurred in at least 10% of all spectra. The resulting p-values, ROC areas, average and 

median m/z values, and intensities of the clustered peaks were exported and saved as 

‘.csv’ files and used for model building. Heat-maps using Pearson’s correlation and 

principle component analysis (PCA) plots were calculated to assess global group 

divisions (i.e. cancer and control). A two-sample t-test was used to compare mean 

normalized intensities between the case and control groups. The p-value was set at 0.05 

to be statistically significant. 

 

2.5. Model building and validation. Clustered peak lists were analysed with the 

Biomarker Pattern Software (BPS) (Bio-Rad, Hemel Hempstead, UK). m/z versus 

intensity matrices were analysed using decision tree-analysis, selecting the standard error 

rule of minimum cost-tree regardless of size, and the method used was Gini. V-fold 

testing was set to 1000. 60 cancer samples and 60 control samples were randomly chosen 

and used as the learning and testing dataset. The remainder of 59 samples was used as the 

validation dataset for blind-testing. Sensitivity was defined as the probability of 

predicting cancer cases, and the specificity was defined as the probability of predicting 

control samples. 
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2.6. Peak isolation and identification.  Peaks observed in the IMAC30 chip-type (see 

Supplementary Table 2) that showed marked expression differences between control and 

cancer samples, and were branching points in the model (see Table 2) were further 

investigated. 0.5 ml urine from positive or negative samples in relation to specific peaks 

was added to 30 µl Cu2+-loaded IMAC30 spin column resin (Bio-Rad, Hemel 

Hempstead, UK) and 0.75 ml binding buffer (0.1 M NaHPO4, 0.5 M NaCl) and incubated 

for one hour at room temperature under constant agitation. Unbound material was 

removed and the resin washed four times with 0.3 ml binding buffer. Bound material was 

separated by electrophoresis on a 16.5% Tris-Tricine gel (Bio-Rad, Hemel Hempstead, 

UK), and gel bands in the region of 2-10 kDa were excised after Coomassie staining 

(BioSafe Coomassie, Bio-Rad, Hemel Hempstead, UK). Positive and negative samples 

were chosen based on the presence or absence of a specific m/z peak to be identified from 

SELDI-TOF-MS analysis. Proteins and peptides from gel bands were digested in situ 

with trypsin, the resulting peptides eluted with ACN, and analysed by LC-MS/MS [30]. 

Fragmentation spectra were then processed by Xcalibur and BioWorks software (Thermo 

Fisher Scientific, Loughborough, UK) and submitted to the Mascot search engine (Matrix 

Science, London, UK) using UniProt/SwissProt as the reference database. Mascot search 

parameters were: enzyme specificity trypsin; maximum missed cleavage 1; fixed 

modifications cysteine carbamidomethylation; variable modification methionine 

oxidation; precursor mass tolerance +/-3Da; fragment ion mass tolerance +/- 0.4 Da. Only 

Mascot hits with a false discovery rate <0.05 were taken into consideration. 
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2.7. Mascot-SELDI matrix matching. Observed proteins with at least two peptide matches 

from the LC-MS/MS analysis were then further analysed by pattern matching based on 

SELDI-TOF-MS measured expression levels of peaks of interest (expected abundance in 

selected samples). This was done using software written in-house, which compares 

observed protein expression patterns in a pre-defined set of samples (LC-MS/MS results) 

against a matrix of peak patterns (SELDI-TOF clustered peak intensities, where estimated 

peaks are set to null) in the same set of samples. The scoring is based on sensitivity 

(percent observed over expected) and specificity (percent not observed over not 

expected), and results are presented in descending order of cumulative scores. The 

distribution of identified peptides within a protein, as well as calculated molecular mass 

of identified proteins, were also used to assess whether breakdown products were likely 

to account for mass variances between the expected mass and the molecular weight of the 

full length protein. 

 

2.8. Validation of Mascot search results. Cross-validation of identified peaks was done 

by Western blotting of raw urine samples (20 µl per well) using standard protocols [30]. 

Antibodies used were goat-anti-human Rabenosyn-5 (N-20) (SantaCruz Biotechnology, 

Santa Cruz, CA, U.S.A.) (used at a dilution of 1:200); mouse-anti-human PDCD6IP 

(ab56932) (AbCam, Cambridge, UK) (used at a dilution of 1:1000); rabbit-anti-human 

serum albumin (Sigma-Aldrich, Gillingham, UK) (used at a dilution of 1:1000); and 

peroxidase-coupled secondary antibodies were from Upstate (Lake Placid, NY, U.S.A.) 

(used at a dilution of 1:5000). Detection of signals was by chemiluminescence using ECL 

Western blotting reagents (Thermo Fisher Scientific, Cramlington, UK). 
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2.9 Measurement of plasma CRP. Plasma CRP was assayed using automated methods on 

an Olympus AU2700 analyser (Olympus Diagnostica GmbH [Irish Branch], Lismeehan, 

Ireland), in the Department of Clinical Chemistry, Royal Infirmary of Edinburgh (fully 

accredited by Clinical Pathology Accreditation [UK] Ltd). 
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3. Results 

We collected mass spectra in the m/z range of 1000 to 25000 for the 179 patient 

urine samples. The full peak list used in PCDMS data analysis is shown in 

Supplementary Table 2. We could identify 86 cluster peaks (with threshold settings as 

described in the Materials and Methods section), of which 42 peak clusters showed p-

values <0.05, indicating a potentially significant difference in expression levels for a 

particular protein or peptide cluster. Analysis using peak clustering and group distribution 

demonstrated that both control and uGI cancer groups shared a general overlap in PCA 

for both the IMAC30 and CM10 [30] chip-types (see Supplementary Figure 1), but we 

distinct enough to allow a degree of separation in heat-map plotting using Pearson’s 

correlation. 

Decision-tree modelling using the Biomarker Pattern software (BPS) of peak 

clusters (see Supplementary Table 3 for raw input data and group dividers) of 60 random 

samples of each cohort was validated by the remainder of the entire cohort (33 control 

and 26 cancer samples). The decision tree model is shown in Figure 1A, and in more 

detail in Supplementary Figure 2. The validation data-set showed a sensitivity of 85% 

and a specificity of 79% with an overall correctness of 81%, and application of the 

derived model to the entire cohort showed a sensitivity of 88%, specificity of 91% and an 

overall correctness of 90%. Statistical analysis of the five m/z cluster peaks implicated in 

the model is shown in Table 2. Two of the candidate targets at m/z 3589 and 13387 

displayed down-regulation in cancer, whereas m/z 2577, 5646 and 7477 peak clusters 

showed a cancer-associated up-regulation. All potential markers were statistically 
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significant (p<0.05). Expression analysis using box-and-whisker-plots of these five lead 

candidates is shown in Figure 1, panels B to F. 

We then evaluated whether we inadvertently biased our model-prediction towards 

a specific cancer type, and could show that two major cancer types in our cohort 

(oesophagus and pancreas) were distributed equally (see Supplementary Figure 3). 

Additionally, we could not detect an age-dependency or age-covariance of any of the 

peaks of interest. These m/z peaks were then further investigated in order to elucidate 

their molecular composition. Protein and peptides from 40 urine samples were then 

enriched by IMAC30 batch chromatography, followed by peptide gel electrophoresis, gel 

band excisions and tryptic digest. Mascot searching after LC-MS/MS analysis resulted in 

646 positively identified proteins in the 2-10 kDa range with peptide counts ≥2 each and 

Mascot scores ≥16. This expression pattern was then compared to the expected 

expression pattern derived from SELDI-TOF-MS measured peak intensity values in the 

same 40 samples in order to associate the m/z peaks with identified proteins. The scores 

were calculated as a percentage of the expected pattern in the Mascot-identified protein 

list compared to the measured pattern of peaks found by SELDI-TOF above base-line 

(sensitivity), thereby setting all estimated peaks as null values, which were used to 

calculate the specificity. Table 3 lists all molecules found by this approach. 

The m/z 13387 peak cluster expression profile could not be positively matched to 

proteins and protein fragments found by gel-excision, LC-MS/MS and Mascot searching. 

This is most likely due to low expression levels in the sample even after IMAC-

chromatographic enrichment, which was also evident by the low intensity values 

observed by SELDI mass spectrometry (Table 2). The expression pattern of the m/z 2577 
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peak cluster matched the pattern of both glial fibrillary acidic protein and Rabenosyn-5; 

m/z 3589 matched S100A8; m/z 5646 matched with neuron navigator 1, 2, 3, and 

programmed cell death 6-interacting protein (PDCD6IP, ALIX); and m/z 7477 matched 

S100A9 (Table 3). A detailed list of these molecules, including peptide sequences is 

supplied in Supplementary Table 4. Both Rabenosyn-5 and PDCD6IP were cross-

validated by Western blot analysis (Figure 2), and both molecules showed a very good 

correlation to the expected cluster-peak pattern observed by SELDI analysis, thereby 

validating both the predictor model and the Mascot identification, as well as the SELDI 

peak clustering of these molecules. 

Furthermore, we evaluated whether plasma levels of C-reactive protein (CRP) 

correlated with any of the proposed cancer-associated SELDI-TOF m/z peaks. Plotting 

the CRP levels of 122 patient samples against the measured intensity levels of 9 

individual m/z cluster peaks implicated as potential biomarkers shows no correlation 

between any of the m/z clusters and CRP levels (Figure 3). The same result was obtained 

previously for m/z cluster peak lead candidates for the CM10 chip-type [30] (Figure 3). 
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4. Discussion 

Urine is arguably the best biological substrate for biomarker development in the 

clinical setting, as it is relatively stable and easily obtainable in large quantities through 

non-invasive sampling. Previous studies have found SELDI-TOF-MS to be ideally suited 

for urine analysis,  as it combines speed and high throughput with relatively low cost 

[56]. The main disadvantage  of SELDI-TOF-MS is the medium resolution of the spectra 

obtained. However, this technique is able to resolve peaks in the 1000-25000 Da range 

from spectra with less than 500 peaks. We found that the IMAC30 chip, and previously 

the CM10 chip [30], are both useful chip-types for the analysis of human urine, and we 

were able to generate models based on the full analysis of 179 uGI cancer and non-cancer 

samples. Using the tree-analysis method, we established a statistical model with an 

overall sensitivity of 88% and specificities of 91% across the entire datasets. Using 

expression pattern matching, we could assign several proteins identified in urine to our 

proposed biomarkers. These sensitivities and specificities are superior to those exhibited 

by established serum uGI cancer markers, such as CA 19-9 used in the diagnosis of 

pancreatic cancer (sensitivity of about 79-81% and a specificity of about 82-90%) [57]. 

Larger prospective studies are required to investigate whether theses statistical models 

can be used effectively in clinical practice. 

GFAP is a marker for glioblastoma, where serum levels are substantially elevated 

compared to healthy controls in whom the molecule is practically undetectable [58]. Our 

observed up-regulation of GFAP in urine from uGI cancer patients would indicate that 

this protein is not restricted to glioblastoma, but might be a more general marker of 

malignant disease. We could also detect a down-regulation in uGI cancer samples for 
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S100A8. It was reported that the serum levels of S100A8 were marginally reduced in 

cancer patients [59], which is similar to our observed down-regulation of the S100A8 

associated m/z 3589 cluster. The presence of members of the S100 gene family, including 

S100A9, in our screen is not entirely surprising. The up-regulation of this protein in 

cancer has already been documented in our previous study and was validated using 

Western blotting [30]. Neuron navigators 1 to 3, which are cytoskeletal regulators that 

track microtubules, belong to a molecular class that can reorganize the cytoskeleton and 

induce neurite outgrowth and axonal elongation [60]. Neuron navigator 2 was found to be 

a retinoic-acid response-element in neuroblastoma [61], and Neuron navigator 3 was 

reported to be a cancer-associated molecule that contributes to the pathogenesis of some 

basal and squamous cell cancers [62]. However, based on our peptide sequence 

identification, it is likely that we observed only one of these three molecules, but due to 

sequence similarities we cannot distinguish between them in our analysis.  

Importantly, we were able to validate two of our potential biomarkers through 

Western blotting, namely Rabenosyn-5 and PDCD6IP. Rabenosyn-5 (ZFYVE20) is a 

Rab GTPase that was reported to be involved in endosomal trafficking, including a role in 

the lysosomal trafficking of cathepsin D from the Golgi apparatus to lysosomes [63]. 

Programmed cell death 6-interacting protein (PDCD6IP), also termed AIP1 or Alix, has a 

described role in actin filament bundling and endosomal sorting, and mediates 

extracellular integrin-mediated cell adhesions [64]. Our measured up-regulation, both by 

MS and by Western blotting, could be an indicator of impending metastasis within the 

cancer patients.  
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It is noteworthy that all of the postulated peak markers in the present study were 

fragments, unlike the proteins we identified in the CM10 chip-type based cancer dataset 

[30]. This phenomenon could be due to chromatography-resin properties, where smaller 

polypeptides were favoured over larger ones, or biochemical/biological reasons, such as 

fragmentation states of low abundance molecules. 

Systemic inflammation (as evidenced by an elevated plasma CRP level [65, 66]) 

is a common finding in patients with cancer (where it plays a role in the aetiology of 

cachexia and cancer-associated anorexia), and can be a confounding factor in biomarker 

discovery [67]. However, others have failed to find such an association [68]. In this 

study, we could not detect any correlation between biomarkers, cancer types and CRP, a 

robust serum marker of systemic inflammation. 

In conclusion, we could demonstrate several potential urinary uGI cancer markers 

using mass spectrometry techniques, bioinformatics data processing, and Western 

blotting. Most of these markers were up-regulated (rather than down-regulated) in the 

urinary proteome in association with cancer. Further work is required before such 

biomarkers can be utilised in the clinical setting. Firstly, larger prospective studies, with 

the possible inclusion of anti-cancer intervention, will help determine biomarker validity. 

Secondly, the development of rapid, high-throughput assays (such as ELISA) for 

confirmed biomarkers will aid the day-to-day employment of biomarker measurement in 

the clinical setting. It is also worth mentioning that a simultaneous screen of several 

markers, as opposed to decision-making using a single biomarker, will undoubtedly 

expand the usability, accuracy, sensitivity and specificity in clinical diagnosis of uGI 

cancers as has been shown in assessing pancreatic cancer [69]. Lastly, further studies to 



 - 20 - 

explain the mechanistic roles of these biomarkers in uGI cancer would improve our 

understanding of the disease and potentially yield new therapeutic targets.  
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Table and Figure Legends: 

Table 1. Demography of the cohort used in this study. Urine specimens from 179 

study participants were analysed (86 cancer patients and 93 non-cancer controls). Data 

are presented as finite numbers, except for the participants’ ages, which are presented as 

means with standard deviations in parentheses. 

 

Table 2. Expression profiles of potential biomarker peaks identified in decision tree-

analysis models and cluster analysis. Peaks of interest were analysed by m/z clustering 

with a window of 0.2% of mass in 179 samples. Both median and average m/z and 

intensities with standard errors and coefficients of variation (%CV) are shown. P-values 

were calculated using the Mann-Whitney test, and the receiver-operating characteristic 

(ROC) area with cancer as the positive group. The average and median fold change was 

calculated using intensity values of individual peak clusters from the cancer and control 

groups. Frequency % describes the likelihood of a particular peak to be found in a 

specific group by peak-clustering using a S/N of 5. Sensitivity and specificity values were 

calculated by computational decision-tree modelling using the peak in question as the 

sole predictor, and the SELDI normalised cut-off values are the associated mass 

spectrometric intensity values where the reported sensitivity and specificity levels are 

met. The model score is derived from the tree-analysis modelling of the entire cohort and 

describes the importance of a peak within the model. 
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Table 3. List of potential biomarkers. LC-MS/MS and Mascot-search identified protein 

expression in the 2-10 kDa range were compared to the expected expression pattern 

found by IMAC30 chip-based SELDI screens in the same 40 urine samples. Mascot-

SELDI matrix matching scores were calculated as percentages for sensitivity (protein 

found in samples which contain the target peak) and specificity (protein not found in 

samples which do not contain the target peak). Protein ID was the Swiss-Prot identifier. 

Mascot scores, number of peptides found, emPAI, % sequence coverage, and the 

expected % sequence coverage, based on molecular mass and the m/z, are listed. 

 

 

Figure 1. Decision tree-analysis model and expression profiles of potential 

biomarker peaks using the IMAC30 chip-type. Cluster-peaks implicated in the tree-

analysis model (A) stratifying cancer (blue) and control (red) were plotted according to 

their normalized intensity values (B to F, y-axis) for peak clusters of m/z 2577 (B), 3589 

(C), 5646 (D), 7477 (E), 13387 (F). 

 

Figure 2. Validation of identified proteins by Western blotting. Urine samples were 

separated by 20% SDS-PAGE and analysed by Western blotting using antibodies specific 

against Rabenosyn-5, PDCD6IP and albumin. Samples were tested initially for the 

presence of fragments of Rabenosyn-5 and PDCD6IP in the region of the measured m/z 

(open triangles) as well as full-length molecules or other breakdown products. Reliable 

signals in the 35 kDa range for Rabenosyn-5, and 30 kDa for PDCD6IP were then further 

analysed. Validation and confirmation of LC-MS/MS and Mascot results are shown in 
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the strip-blots in panels A and C, which show the results of 8 urine samples that were 

used in LC-MS/MS and subsequent Mascot searches, together with the cluster peak 

intensity matrices derived from the SELDI analysis (underneath the individual blots). 

Panel B depicts the analysis of 4 random cancer and 4 control samples, and panel D is the 

analysis of 8 random cancer samples. Samples were selected based on the IMAC30 

SELDI analysis for the presence of a peak cluster at m/z 2577 (Rabenosyn-5) and m/z 

5646 (PDCD6IP) (cancer samples) or absence of these m/z peaks (healthy controls). ‘e‘ 

corresponds to an estimated value, where no peak at the m/z point could be detected 

above the S/N ratio. The density ratio was calculated based on the densitometric 

measurements of the Western blot signals for the specified molecule compared with the 

qualitative loading control of albumin, a common urinary molecule. For cancer locus: C 

= non-cancer control; D = duodenum; O = oesophagus; OGJ = oesophago-gastric 

junction; P = pancreas; SB = small bowel.  

 

Figure 3. Relationship of predicted cancer biomarker levels and C-reactive protein 

levels. CRP levels from 86 cancer patients (blue) and 38 non-cancer controls (red) were 

compared to normalised and clustered SELDI-MS peak intensities of selected potential 

biomarker peaks from the IMAC30-based dataset (m/z 2577 and 5646) and the CM10-

based dataset (m/z 10234 and 10468). Scatter plot of CRP levels (x-axis, logarithmic 

scale) against normalised intensity values (y-axis) derived from SELDI mass 

spectrometry using the IMAC30 (top) or CM10 (bottom) chip-type. The left box plot 

shows the distribution of CRP values within each participant group. 
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Supplementary Table legends 

 

Supplementary Table 1. Participant demographics. The particpant demographics are 

shown, together with notations of groupings used in modeling and the mass spectrometry 

measured clustered peak intensities of selected significant peaks derived from the 

statistical analysis of both IMAC30 SELDI chip datasets. 

 

Supplementary Table 2. Peak map and statistical analysis of the entire IMAC30 

chip dataset. Spectra specific data, such as sample name and normalization factor, and 

peak specific data, such as measured m/z and clustered m/z, m/z width at half height of a 

peak, resolution, normalized intensity, S/N ratio, TOF and TOF at half height of the peak, 

as well as the peak type based on thresholding (pass 1: S/N min. 5, valley depth min. 3; 

pass 2: S/N min 2, valley depth min. 2; estimation of missing peaks below threshold), are 

shown. 

 

Supplementary Table 3. IMAC30 clustered peak table. The table contains sample ID 

and participant group details, which allows the extraction of peak and intensity values 

necessary to build the learning, testing and validation files used in model generating and 

scoring. 

 

Supplementary Table 4. LC-MS/MS identified proteins found in human urine after 

IMAC-enrichment. Proteins are listed by SwissProt accession numbers, protein names, 

relative molecular mass (Da), and calculated isoelectric point pI. MS specific data 
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includes the Mascot identification scores; % sequence coverage based on the identified 

peptides; total number of matched peptides and spectral counts; and the exponentially 

modified protein abundance index (emPAI) value. Additionally, the discovery matrix 

where each individual protein was observed in a sample by LC-MS/MS with the number 

of identified peptides is included. 

 

Supplementary Table 5. Proteins identified by LC-MS/MS analysis as potential 

upper GI cancer biomarkers. Protein/peptide peaks of interest from 40 individual urine 

samples were enriched on IMAC30 resin, separated by gel electrophoresis, and the 2-10 

kDa region excised. Tryptic fragments were identified by LC-MS/MS followed by 

database searching. The UniProt/SwissProt accession name, protein name, mass (Da), 

and classifier of the 8 potential cancer biomarker entries are listed, together with 

information such as how many times the protein was found, Mascot scores, number of 

peptides matched, and the exponentially modified protein abundance index (emPAI) 

value (averaged across all samples the protein was identified in). Also included are 

PubMed identifiers (PMID), linked to published articles in which the specified protein 

was identified in other urine samples, and % sequence coverage of the identified peptides 

within a given protein sequence. Each individual sequence is also included, and the 

identified peptide stretches are highlighted in red. 
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Supplementary Figure Legends 

Supplementary Figure 1. Cluster analysis of urine samples.  Pearson’s correlation 

analysis of clustered m/z peaks are displayed as a heat-map (A). PCA plots were 

generated using the ProteinChip Data Manager software. PCA analyses were plotted as 

component 1 against 2 (B) and 1 against 3 (C). Controls are coloured red, and cancer 

samples blue. Up-regulated clusters in the heat-map are coloured red, and down-regulated 

m/z peaks green. 

 

Supplementary Figure 2. Decision tree analysis model of potential upper GI cancer 

biomarker patterns using IMAC30 SELDI chips, and statistical relevance. 60 control 

and 60 cancer patient samples were analysed by SELDI-TOF-MS.The measured m/z 

peaks were clustered with a mass window of 0.2% of mass and used to build decision 

tree-models to define cancer probabilities. The receiver-operating characteristic (ROC) 

plots of the model from the learning, validation, and total (all) datasets are shown on the 

top-right. The sensitivity, specificity and overall correctness were calculated for the 

IMAC30 model for the learning/testing and validation groups, as well as the entire 

dataset, and are included on top. N are the number of unique samples. 

 

Supplementary Figure 3. Distribution of cancer types used in the statistical 

modeling of the learning/testing and validation groups. 86 upper GI cancer samples 

were randomly distributed into learning/testing (60 samples) and validation (26 samples) 

groups for model building using the BPS software. The percentage distribution of the 



 - 34 - 

cancer-types within each sub-group is displayed as a pie chart. Numbers around the pie 

charts refer to the finite number of samples of each cancer types. 
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