612 research outputs found

    SPATIAL PERCEPTION AND ROBOT OPERATION: THE RELATIONSHIP BETWEEN VISUAL SPATIAL ABILITY AND PERFORMANCE UNDER DIRECT LINE OF SIGHT AND TELEOPERATION

    Get PDF
    This dissertation investigated the relationship between the spatial perception abilities of operators and robot operation under direct-line-of-sight and teleoperation viewing conditions. This study was an effort to determine if spatial ability testing may be a useful tool in the selection of human-robot interaction (HRI) operators. Participants completed eight cognitive ability measures and operated one of four types of robots under tasks of low and high difficulty. Performance for each participant was tested during both direct-line-of-sight and teleoperation. These results provide additional evidence that spatial perception abilities are reliable predictors of direct-line-of-sight and teleoperation performance. Participants in this study with higher spatial abilities performed faster, with fewer errors, and less variability. In addition, participants with higher spatial abilities were more successful in the accumulation of points. Applications of these findings are discussed in terms of teleoperator selection tools and HRI training and design recommendations with a human-centered design approach

    Influence of spatial orientation and spatial visualization abilities on space teleoperation performance

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.Includes bibliographical references (p. 63-65).Astronauts perform space teleoperation tasks with visual feedback from outside cameras. Individuals differ greatly in the ability to integrate camera views, understand the workspace, and ensure clearances between the robot arm and obstacles. We believe that these individual differences correlate with two known subcomponents of spatial intelligence: perspective-taking (PT) and spatial visualization (SV). A preliminary study [1] supports this hypothesis. We believe astronauts use PT (the ability to imagine an object from a different viewpoint) to integrate camera information into an environmentally-referenced frame defined by the arm control axes. In some cases, it may be easier to visualize the manipulation of the payload with respect to the robot arm itself, than to the environment. In that case, SV(i.e., the ability to mentally manipulate an object from an egocentric perspective) may be exploited. We measured the performance of 25 naive subjects who used hand-controllers to rotate and translate, and 3 environmentally-fixed camera views. These devices controlled a 2-boom, 6 degree-of-freedom virtually-simulated arm to perform pickup and docking subtasks.(cont.) To challenge the subjects' spatial ability we introduced a wide separation between camera views for some tests, and misalignments between the translation control and the display reference frames. We used the Perspective-Taking Ability test (PTA) and the Purdue Spatial Visualizations Test: Visualization of Views (PSVT:V) to measure PT, and the Cube Comparisons test (CC) to assess SV. We concluded that PTA predicted performance on pickup and docking subtasks, but PSVT:V did not. CC scores correlated with those measures of performance that did not necessarily require PT. High perspective-taking scorers performed the pickup task significantly more efficiently than low, but not faster. In docking, however, they were both significantly faster and more accurate, collided less often, and docked more accurately. In both tasks they moved along only one axis at a time. High CC scorers docked significantly more accurately and rotated about fewer axes at any one time. Whenever we found a significant effect of PSVT:V on a dependent variable, we also found one for PTA; but not the reverse.(cont.) We had expected higher PT scorers to perform better than others under the challenge of wider camera angles and greater control-display frame misalignments, but we could not demonstrate this. On average females were slower and had lower docking accuracy, an effect related, perhaps, to their lower spatial ability scores. This study of performance during the first two hours of teleoperation training may help define issues for future research.by María Alejandra Menchaca Brandan.S.M

    The Paradox of Human Expertise: Why Experts Can Get It Wrong

    Get PDF
    Expertise is correctly, but one-sidedly, associated with special abilities and enhanced performance. The other side of expertise, however, is surreptitiously hidden. Along with expertise, performance may also be degraded, culminating in a lack of flexibility and error. Expertise is demystified by explaining the brain functions and cognitive architecture involved in being an expert. These information processing mechanisms, the very making of expertise, entail computational trade-offs that sometimes result in paradoxical functional degradation. For example, being an expert entails using schemas, selective attention, chunking information, automaticity, and more reliance on top-down information, all of which allow experts to perform quickly and efficiently; however, these very mechanisms restrict flexibility and control, may cause the experts to miss and ignore important information, introduce tunnel vision and bias, and can cause other effects that degrade performance. Such phenomena are apparent in a wide range of expert domains, from medical professionals and forensic examiners, to military fighter pilots and financial traders

    Spatial ability and handedness as potential predictors of space teleoperation performance

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 60-61).NASA is concerned with finding performance predictors for space teleoperation tasks in order to improve training efficiency. Experiment 1 determined whether scores on tests of spatial skills could predict performance when selecting camera views for a simulated teleoperation task. The hypothesis was that subjects with high spatial ability would perform camera selection tasks more quickly and accurately than those with lower spatial ability, as measured by the Mental Rotation Test (MRT), Purdue Spatial Visualization Test (PSVT), and the Perspective Taking Ability (PTA) test. Performance was defined by task time, number of correct camera selections, preparation time, number of camera changes, and correct identification of clearance issues. Mixed regression and nonparametric tests showed that high-scoring subjects on the MRT and PTA spatial ability tests had significantly lower task times, higher camera selection scores, and fewer camera changes than subjects with lower scores, while High PSVT scorers had significantly lower preparation times. Experiment 2 determined whether spatial ability, joystick configuration, and handedness influenced performance of telerobotic fly-to tasks in a virtual ISS environment. 11 righthanded and 9 left-handed subjects completed 48 total trials, split between two hand controller configurations. Performance was defined by task time, percentage of translational and rotational multi-axis movement, percentage of bimanual movement, and number of discrete movements. High scorers for the MRT, PSVT, and PTA tests had lower Task Times, and High PSVT and PTA scorers made fewer Discrete Movements than Low scorers. High MRT and PTA scorers had a higher percentage of translational and rotational multi-axis movement, and High MRT scorers had a higher percentage of bimanual movement. The overall learning effect appears to be greater than the effect of switching between hand controller configurations. No significant effect of handedness was found. These results indicate that these spatial ability tests could predict performance on space teleoperation tasks, at least in the early phases of training. This research was supported by the National Space Biomedical Research Institute through NASA NCC 9- 58.by Teresa Maria Pontillo.S.M

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    Get PDF
    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed

    Modeling and Compensation for Efficient Human Robot Interaction

    Get PDF
    The purpose of this research is to first: identify the important human factors to performance when operating an assistive robotic manipulator, second: develop a predictive model that will be able to determine a user\u27s performance based on their known human factors, and third: develop compensators based on the determined important human factors that will help improve user performance and satisfaction. An extensive literature search led to the selection of ten potential human factors to be analyzed including reaction time, spatial abilities (orientation and visualization), working memory, visual perception, dexterity (gross and fine), depth perception, and visual acuity of both eyes (classified as strongest and weakest). 93 participants were recruited to perform six different pick-and-place and retrieval tasks using an assistive robotic device. During this time, a participants Time-on-Task, Number-of-Moves, and Number-of-Moves per minute were recorded. From this it was determined that all the human factors except visual perception were considered important to at least one aspect of a user\u27s performance. Predictive models were then developed using random forest, linear models, and polynomial models. To compensate for deficiencies in certain human factors, the GUI was redesigned based on a heuristic analysis and user feedback. Multimodal feedback as well as adjustments in the sensitivity of the input device and reduction in the robot\u27s speed of movement were also implemented. From a user study using 15 participants it was found that certain compensation did improve satisfaction of the users, particularly the multimodal feedback and sensitivity adjustment. The reduction of speed was met with mixed reviews from the participants

    Influence of spatial abilities on primary and secondary space telerobotics operator performance

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 80-81).Teleoperated manipulators have been invaluable tools during space missions. Arm operators work in pairs, with the primary operator controlling the arm and the secondary operator assisting by monitoring arm clearance and helping to avoid singularities. Individual ability to manipulate the arm and integrate camera views is believed to correlate with 3 subcomponents of spatial intelligence: spatial visualization (SV), mental rotation (MR) and perspective taking (PT). In particular, PT (the ability to imagine an object from another viewpoint) is thought to be important for integrating camera views. Two experiments were performed; one on primary operator performance, and one on secondary operator performance. In Experiment 1, 19 naive subjects were trained to manipulate a 6 degree of freedom (DOF) simulated arm using a pair of hand-controllers. Over 18 trials, the disparity between the arm's control frame and the cameras was varied between low ( 90 degrees) conditions. We used the Cube Comparisons (CC) test to assess SV, the Vandenberg Mental Rotations Test (MRT) to assess MR, and the Purdue Spatial Visualization of Views Test (PSVT) and a Perspective Taking Ability (PTA) test to assess PT. Subjects with high PSVT scores moved the arm more directly to the target and were better at maintaining the required clearance between the arm and obstacles, even without a direct camera view. The subjects' performance degraded under the high disparity condition. In Experiment 2, 11 naive and 9 returning subjects were trained to manipulate the same simulated arm during 6 trials and then acted as a secondary operator observing an additional 32 trials.(cont.) The MRT, PSVT, and PTA were used to assess spatial abilities. Though the primary operator task was slightly different, we confirmed many results of Experiment 1. Subjects with high PTA scores took less time, moved the arm more directly to the target, and moved the arm more fluidly, especially under the high disparity condition. High scorers on the PSVT and PTA were better at maintaining required clearance. Low PTA scorers looked from monitor to map more often. Prior experience with the arm didn't significantly improve task performance, and performance as primary operator didn't reliably predict performance as a secondary operator. However, subjects with high PSVT scores had better overall secondary operator performance and high PTA scorers were better at detecting problems before they occurred. The results of these studies could be used to customize initial training for astronauts. This research is supported by NSBRI through NASA Cooperative Agreement NCC 9-58.by Zakiya Alexandra Tomlinson.S.M
    • …
    corecore