656 research outputs found

    Incremental topological mapping using omnidirectional vision

    Get PDF
    This paper presents an algorithm that builds topological maps, using omnidirectional vision as the only sensor modality. Local features are extracted from images obtained in sequence, and are used both to cluster the images into nodes and to detect links between the nodes. The algorithm is incremental, reducing the computational requirements of the corresponding batch algorithm. Experimental results in a complex, indoor environment show that the algorithm produces topologically correct maps, closing loops without suffering from perceptual aliasing or false links. Robustness to lighting variations was further demonstrated by building correct maps from combined multiple datasets collected over a period of 2 month

    Incremental spectral clustering and its application to topological mapping

    Get PDF
    This paper presents a novel use of spectral clustering algorithms to support cases where the entries in the affinity matrix are costly to compute. The method is incremental – the spectral clustering algorithm is applied to the affinity matrix after each row/column is added – which makes it possible to inspect the clusters as new data points are added. The method is well suited to the problem of appearance-based, on-line topological mapping for mobile robots. In this problem domain, we show that we can reduce environment-dependent parameters of the clustering algorithm to just a single, intuitive parameter. Experimental results in large outdoor and indoor environments show that we can close loops correctly by computing only a fraction of the entries in the affinity matrix. The accompanying video clip shows how an example map is produced by the algorithm

    An adaptive appearance-based map for long-term topological localization of mobile robots

    Get PDF
    This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor

    An adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    Map Building and Monte Carlo Localization Using Global Appearance of Omnidirectional Images

    Get PDF
    In this paper we deal with the problem of map building and localization of a mobile robot in an environment using the information provided by an omnidirectional vision sensor that is mounted on the robot. Our main objective consists of studying the feasibility of the techniques based in the global appearance of a set of omnidirectional images captured by this vision sensor to solve this problem. First, we study how to describe globally the visual information so that it represents correctly locations and the geometrical relationships between these locations. Then, we integrate this information using an approach based on a spring-mass-damper model, to create a topological map of the environment. Once the map is built, we propose the use of a Monte Carlo localization approach to estimate the most probable pose of the vision system and its trajectory within the map. We perform a comparison in terms of computational cost and error in localization. The experimental results we present have been obtained with real indoor omnidirectional images

    Incremental vision-based topological SLAM

    No full text
    Published versio

    Augmented indoor hybrid maps using catadioptric vision

    Get PDF
    En este Trabajo de Fin de Máster se presenta un nuevo método para crear mapas semánticos a partir de secuencias de imágenes omnidireccionales. El objetivo es diseñar el nivel superior de un mapa jerárquico: mapa semántico o mapa topológico aumentado, aprovechando y adaptando este tipo de cámaras. La segmentación de la secuencia de imágenes se realiza distinguiendo entre Lugares y Transiciones, poniendo especial énfasis en la detección de estas Transiciones ya que aportan una información muy útil e importante al mapa. Dentro de los Lugares se hace una clasificación más detallada entre pasillos y habitaciones de distintos tipos. Y dentro de las Transiciones distinguiremos entre puertas, jambas, escaleras y ascensores, que son los principales tipos de Transiciones que aparecen en escenarios de interior. Para la segmentación del espacio en estos tipos de áreas se han utilizado solo descriptores de imagen globales, en concreto Gist. La gran ventaja de usar este tipo de descriptores es la mayor eficiencia y compacidad frente al uso de descriptores locales. Además para mantener la consistencia espacio-temporal de la secuencia de imágenes, se hace uso de un modelo probabilístico: Modelo Oculto de Markov (HMM). A pesar de la simplicidad del método, los resultados muestran cómo es capaz de realizar una segmentación de la secuencia de imágenes en clusters con significado para las personas. Todos los experimentos se han llevado a cabo utilizando nuestro nuevo data set de imágenes omnidireccionales, capturado con una cámara montada en un casco, por lo que la secuencia sigue el movimiento de una persona durante su desplazamiento dentro de un edificio. El data set se encuentra público en Internet para que pueda ser utilizado en otras investigaciones

    Creation and maintenance of visual incremental maps and hierarchical localization.

    Get PDF
    Over the last few years, the presence of the mobile robotics has considerably increased in a wide variety of environments. It is common to find robots that carry out repetitive and specific applications and also, they can be used for working at dangerous environments and to perform precise tasks. These robots can be found in a variety of social environments, such as industry, household, educational and health scenarios. For that reason, they need a specific and continuous research and improvement work. Specifically, autonomous mobile robots require a very precise technology to perform tasks without human assistance. To perform tasks autonomously, the robots must be able to navigate in an unknown environment. For that reason, the autonomous mobile robots must be able to address the mapping and localization tasks: they must create a model of the environment and estimate their position and orientation. This PhD thesis proposes and analyses different methods to carry out the map creation and the localization tasks in indoor environments. To address these tasks only visual information is used, specifically, omnidirectional images, with a 360º field of view. Throughout the chapters of this document solutions for autonomous navigation tasks are proposed, they are solved using transformations in the images captured by a vision system mounted on the robot. Firstly, the thesis focuses on the study of the global appearance descriptors in the localization task. The global appearance descriptors are algorithms that transform an image globally, into a unique vector. In these works, a deep comparative study is performed. In the experiments different global appearance descriptors are used along with omnidirectional images and the results are compared. The main goal is to obtain an optimized algorithm to estimate the robot position and orientation in real indoor environments. The experiments take place with real conditions, so some visual changes in the scenes can occur, such as camera defects, furniture or people movements and changes in the lighting conditions. The computational cost is also studied; the idea is that the robot has to localize the robot in an accurate mode, but also, it has to be fast enought. Additionally, a second application, whose goal is to carry out an incremental mapping in indoor environments, is presented. This application uses the best global appearance descriptors used in the localization task, but this time they are constructed with the purpose of solving the mapping problem using an incremental clustering technique. The application clusters a batch of images that are visually similar; every group of images or cluster is expected to identify a zone of the environment. The shape and size of the cluster can vary while the robot is visiting the different rooms. Nowadays. different algorithms can be used to obtain the clusters, but all these solutions usually work properly when they work ‘offline’, starting from the whole set of data to cluster. The main idea of this study is to obtain the map incrementally while the robot explores the new environment. Carrying out the mapping incrementally while the robot is still visiting the area is very interesting since having the map separated into nodes with relationships of similitude between them can be used subsequently for the hierarchical localization tasks, and also, to recognize environments already visited in the model. Finally, this PhD thesis includes an analysis of deep learning techniques for localization tasks. Particularly, siamese networks have been studied. Siamese networks are based on classic convolutional networks, but they permit evaluating two images simultaneously. These networks output a similarity value between the input images, and that information can be used for the localization tasks. Throughout this work the technique is presented, the possible architectures are analysed and the results after the experiments are shown and compared. Using the siamese networks, the localization in real operation conditions and environments is solved, focusing on improving the performance against illumination changes on the scene. During the experiments the room retrieval problem, the hierarchical localization and the absolute localization have been solved.Durante los últimos años, la presencia de la robótica móvil ha aumentado substancialmente en una gran variedad de entornos y escenarios. Es habitual encontrar el uso de robots para llevar a cabo aplicaciones repetitivas y específicas, así como tareas en entornos peligrosos o con resultados que deben ser muy precisos. Dichos robots se pueden encontrar tanto en ámbitos industriales como en familiares, educativos y de salud; por ello, requieren un trabajo específico y continuo de investigación y mejora. En concreto, los robots móviles autónomos requieren de una tecnología precisa para desarrollar tareas sin ayuda del ser humano. Para realizar tareas de manera autónoma, los robots deben ser capaces de navegar por un entorno ‘a priori’ desconocido. Por tanto, los robots móviles autónomos deben ser capaces de realizar la tarea de creación de mapas, creando un modelo del entorno y la tarea de localización, esto es estimar su posición y orientación. La presente tesis plantea un diseño y análisis de diferentes métodos para realizar las tareas de creación de mapas y localización en entornos de interior. Para estas tareas se emplea únicamente información visual, en concreto, imágenes omnidireccionales, con un campo de visión de 360º. En los capítulos de este trabajo se plantean soluciones a las tareas de navegación autónoma del robot mediante transformaciones en las imágenes que este es capaz de captar. En cuanto a los trabajos realizados, en primer lugar, se presenta un estudio de descriptores de apariencia global en tareas de localización. Los descriptores de apariencia global son transformaciones capaces de obtener un único vector que describa globalmente una imagen. En este trabajo se realiza un estudio exhaustivo de diferentes métodos de apariencia global adaptando su uso a imágenes omnidireccionales. Se trata de obtener un algoritmo optimizado para estimar la posición y orientación del robot en entornos reales de oficina, donde puede surgir cambios visuales en el entorno como movimientos de cámara, de mobiliario o de iluminación en la escena. También se evalúa el tiempo empleado para realizar esta estimación, ya que el trabajo de un robot debe ser preciso, pero también factible en cuanto a tiempos de computación. Además, se presenta una segunda aplicación donde el estudio se centra en la creación de mapas de entornos de interior de manera incremental. Esta aplicación hace uso de los descriptores de apariencia global estudiados para la tarea de localización, pero en este caso se utilizan para la construcción de mapas utilizando la técnica de ‘clustering’ incremental. En esta aplicación, conjuntos de imágenes visualmente similares se agrupan en un único grupo. La forma y cantidad de grupos es variable conforme el robot avanza en el entorno. Actualmente, existen diferentes algoritmos para obtener la separación de un entorno en nodos, pero las soluciones efectivas se realizan de manera ‘off-line’, es decir, a posteriori una vez se tienen todas las imágenes captadas. El trabajo presentado permite realizar esta tarea de manera incremental mientras el robot explora el nuevo entorno. Realizar esta tarea mientras se visita el resto del entorno puede ser muy interesante ya que tener el mapa separado por nodos con relaciones de proximidad entre ellos se puede ir utilizando para tareas de localización jerárquica. Además, es posible reconocer entornos ya visitados o similares a nodos pasados. Por último, la tesis también incluye el estudio de técnicas de aprendizaje profundo (‘deep learning’) para tareas de localización. En concreto, se estudia el uso de las redes siamesas, una técnica poco explorada en robótica móvil, que está basada en las clásicas redes convolucionales, pero en la que dos imágenes son evaluadas al mismo tiempo. Estas redes dan un valor de similitud entre el par de imágenes de entrada, lo que permite realizar tareas de localización visual. En este trabajo se expone esta técnica, se presentan las estructuras que pueden tener estas redes y los resultados tras la experimentación. Se evalúa la tarea de localización en entornos heterogéneos en los que el principal problema viene dado por cambios en la iluminación de la escena. Con las redes siamesas se trata de resolver el problema de estimación de estancia, el problema de localización jerárquica y el de localización absoluta
    corecore