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Abstract— This paper presents a novel use of spectral cluster-  There are at least two serious drawbacks with this ap-
ing algorithms to support cases where the entries in the affinity proach. First, in most spectral clustering algorithms, the
matrix are costly to compute. The method is incremental — the number of nodes has to be set by hand. It is possible to

spectral clustering algorithm is applied to the affinity matrix . . - - . . .
after each row/column is added — which makes it possible to handle this by simply iterating with an increasing number of

inspect the clusters as new data points are added. The method Nodes, and halting the iteration when the resulting clirgger
is well suited to the problem of appearance-based, on-line is “good enough”. In contrast, the number of clusters in our
topological mapping for mobile robots. In this problem domain,  algorithm follows from a parameter that might be selected in
we show that we can reduce environment-dependent parameters 4 natra| way directly from the data. Secondly, computirey th
of the clustering algorithm to just a single, intuitive parameter. - ; . e .
Experimental results in large outdoor and indoor environments affinity matrix can be COStI_y’ 'even.Wlth ef‘f!CIent r'sllgorlthms
show that we can close |00ps Correcﬂy by Computing 0n|y a to Compute each entry. This is noticeable in partlcular when
fraction of the entries in the affinity matrix. The accompanying the data set becomes large. It would be preferable if we did
video clip shows how an example map is produced by the not have to compute all entries of the affinity matrix, and
algorithm. yet could apply a spectral clustering algorithm.
In this paper we present a general-purpose, incremental
. INTRODUCTION spectral clustering algorithm that addresses the issumseab
Because the affinity matrix is not completely evaluated,
Spectral clustering methods have become increasinglile method will be approximate. Nevertheless, it produces
popular. This family of algorithms have been proven sucvery good results in our special area of interest: on-line
cessful in a number of problem domains, such as comput&pological mapping by a mobile robot. We first describe the
vision [1], [2], speech recognition [3], and classificationalgorithm and show the generality of the method by applying
of biological data [4], [5]. Their primary strength is thatit to toy examples. Finally, we show how the method can
they successfully can cluster data where other well-knowroduce a large, appearance-based topological map.
methods (such as k-means) cannot be applied or fail. Spectra
clustering does not require that the data can be represented Il. RELATED WORK
as coordinates in Euclidean n-space — it is sufficient that Spectral clustering comes in a variety of flavors. In this
a similarity measure between the points can be computeglaper, we will exclusively use the method proposed by Ng,
Common to all spectral clustering algorithms is that theyordan and Weiss [8]. A great overview of the different
take as input an affinity matrix, which describes the siritfar methods is available in [9].
between the data points. Similarity is usually expressed by There are many approaches to appearance-based topolog-
Euclidean distance, but it can equally well be described bigal mapping. Gaspar et al. [6] applied principal component
some other measure. analysis to condense a large data set of panoramic images
In appearance-based topological mapping problems, tirgo a smaller set of eigenimages that was used for local-
environment at different positions is captured by sensoigation. Tapus and Siegwart [7] extract “fingerprints” from
into “snapshots”. Such a snapshot is usually a very higlpanoramic images and laser scan data, and add nodes to
dimensional descriptor (image [6], “fingerprint” [7], etaf the topological map whenever an important change in the
the environment, and it is therefore usually futile to dilec environment (or, rather, to the fingerprint) occurs.
apply a clustering algorithm to the collection of snapshots Mulligan and Grudic [10] used spectral clustering on
However, if it is possible to compute a measure of similaritymage data to produce topological maps for a mobile robot.
between snapshots, we can compute an affinity matrix amtvkovic et al. [11] produced an appearance-based hierar-
then apply a spectral clustering method to extract the nodekical map using spectral clustering in order to obtain an
of the topological map. approximate solution to the normalized cut problem.


https://core.ac.uk/display/55843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IIl. I NCREMENTAL SPECTRAL CLUSTERING
A. Spectral clustering

To produce the examples in this paper, we use the clust
ing algorithm by Ng, Jordan and Weiss [8]. We also appl
the modification suggested by Verma and Meila [9] in order

to achieve greater numerical stability (Algorithm 1).

Algorithm 1 Modified NJW algorithm

function cLusTERaffinity matrix A € R™*™, number of
clustersk)
A0
D;; <—sum of row: of A; D is a diagonal matrix
X «Fk largest generalized eigenvectors&df = ADv
Y <—normalized rows ofX

C « k clusters of rows iflY, using k-means or similar

returnC
end function

As input to the spectral clustering algorithm, we assume A
an affinity matrix A. This matrix is computed using the

distances between the points in the data Seinfluenced
by the scaling parameter:

A= (‘W)) ®

whered(s;, s;) denotes the distance between poistsand
Sj.
The value of the scaling parameteris very important,

replaced by a single cluster representative. The origioal ¢
tents of the cluster are stored for future use in computation
of a new cluster representative, if it becomes necessagy. Th

el

affinity matrix is thus shrunk to a smaller size. The process

X¥hen continues with the next data point.

Incremental spectral clustering is summarized in Algo-
rithm 2. It requires two external functions. The function
sim computes the affinity between data points, i.e. it would
typically compute the affinity between one or more data
points according to equation 1. The functi@@LUSTER
computesk clusters from the current affinity matriA.

The method presented in this paper is not restricted to the
modified NJW algorithm. Any spectral clustering algorithm
that takes an affinity matrix and a number of clusters as
input (i.e. it implements th&€LUSTERfunction) could be
used without major modifications to the method.

Algorithm 2 Incremental spectral clustering

A is empty > A is the current affinity matrix
> A is the current set

k—1 > k is the number of nodes
for all s; € S do

A— AU S;

a «— sim(s;, A > a iS a row vector

A —

A a
a O
new_node «— false

> C,, is ani x j matrix

and alone determines how similarity depends on distance. If
o is set too high, compared to the true scale of the problem,
most points will appear similar. 15 is set too low, the
similarity between even close points will be low. Both of
these scenarios imply suboptimal clustering. Computirgg th
value ofo is, however, out of the scope of this paper (but see
for example [12]). For our purposes, we find thanaturally
follows from another parameter (section V-B).

The NJW algorithm further requires as input the number of
clustersk, since the algorithm utilizes the k-means clustering
algorithm to produce the clusters.

B. Incremental spectral clustering

The incremental spectral clustering method starts with an
empty data setd and thus an empty affinity matriA. For
each data poing; € S that is added to the data sdt the
algorithm iteratively estimates aluster representativdor
each cluster. The cluster representative is the data puant t
is most similar to all other points.

We require that the cluster representative is not too far
away from any point in the cluster. If it is, the number of

clusters must be increased and a new clustering is performed

> R, is the point inC,, most similar to all
> other points inC,,
> N, is the similarity value for clusteRz,,

N, <0
while min(N,,) < similarity thresholddo
C « CLUSTERA, k)
for all C,, € C do
C,, «— sim(C,,C,)
R, = argmax;.c (minjec, (Cn))
Ny, = max;ec, (minjec, (Cn))
end for
if min(N,,) < similarity thresholdthen
new-_node «— true
k—k+1
end if
end while
if new_node then
A—R
A — sim(A, A)
end if

end for

We call the smallest allowed distance #imilarity threshold

Whenever the number of clusters is increased (and when
each cluster has a suitable cluster representative), thesen C. Tweaking the algorithm

in the affinity matrix that have been assigned to a cluster are There are some issues not addressed with Algorithm 2:

1if the data pointsio have a representation in Euclidean space, the cluster ® While the aIgonthm can SucceSSfu”y handle_ Casles
representative would be the point closest to the clustetraiein where two clusters are merged, there is no functionality



300 data points, 6 clusters, 30909 comparisons (69 %)

for splitting clusters. This can be easily introduced 2
by observing a newly created clustéy, that did not
pass the similarity threshold, and performing a separate 1%
spectral clustering on the matri€C,,. The resulting
clusters are then written back t.

« The number of clusterk alwaysincreases. Because the

method is iterative, the resulting number of clusters is > : R < x

usually higher than necessary - this is especially true o} ar, . W © . 1
when the data points arrive randomly (instead of in - <

cluster order). Improved clustering can be achieved by -05¢ i 1
regularly or randomly decreasing the number of clusters o o

k by 1. =l _® ]

The implementation of the algorithm in this paper has _ .| |
these additional features. The decreasing of the number of
clusters was done with a probability of 0.1; this value was ~ -2L—— ——— 00—
found to be a good trade-off between speed and having too

many clusters. Fig. 1. Incremental spectral clustering. 6 clusters with $&3&an noise
added. Similarity threshold is based on the true clusteadés 1.0.

D. When to use incremental spectral clustering

If the data points cannot readily be represented by a

: : : : PP : 300 data points, 17 clusters, 11693 comparisons (26 %)
coordinate in n-dimensional space, but it is possible to ) ‘

compute a similarity measure, spectral clustering is a good °©

option. If the entries in the matrix are costly to compute,  1s} o ]

and an approximate result can be accepted, the incremental . oo

spectral clustering method is significantly faster. Furtlife 1r o] ¥ y X?X;g 7

the data should be clustered on-line (i.e. clusters shoeld b - EED i x@ O

formed as new data points are added to the data set), the o5y oy : < % 1
=]

incremental spectral clustering method is preferred feesp
reasong. Finally, if the number of clusters of the data is

unknown, the incremental clustering algorithm is prefeiea -0.5} 1

since it automatically determines the number of clusters by

using the similarity threshold. -1f ) 1
®

E. Results on synthetic data -15F 1

Some examples on synthetic data illustrate the strengths
. . . -2
and weaknesses of the algorithm. The examples in Fig. 1 2 -15 -1 05 0 05 1 15 2
and Fig. 2 illustrate the importance of the similarity thres

old23 The data points represent 6 coordinate$-ai.5, 0.0), F,ig-,IZ-_t Ir;ﬁremher:(tjalhspegtral Cr:ulstegng- Same delté:\ point!:J aEFrltere, éh?

(05 00), (_05’10), (05 10)’ (_05 _1'0)' (05’_10) ISrllrg:'leaal’sll)r/] resno as pbeen nhalved, Increasing the numbperlusters bu
o . . ) . ’ . g performance.

with Gaussian noise added. With knowledge of the noise

distribution, it is possible to set the similarity thresthalo
that the points are almost perfectly classified. Fig. 1 also
illustrates that it is possible to achieve satisfactorstgtng UP into several smaller parts. This is because we do not
without computing the entire affinity matrix; only 69% of theallow the points within a cluster to be too dissimilar. In
total number of entries in the affinity matrix were evaluatedthis case, if we were to set the similarity threshold to a too

Fig. 3 shows an example which the NJW algorithm, gi\,erlgigh value, the algorithm would not be able to differentiate
a correct value of sigma and the number of clusters, cdietween the center cluster and the surrounding ring. The
cluster into two intuitive clusters - a center cluster andiumber of clusters in this case is thus directly determined
a ring surrounding it. The incremental spectral clusteringy the similarity threshold.
successfully finds the center cluster, but must split thg rin

F. Performance

2Consider a naive on-line approach using normal spectraltering, ; i i i
where clustering is performed after each data point. Theigffinatrix will The incremental spectral clustering algorithm applies the

grow asn2, which means that the computation time will soon be largesSPECtral clustering algorithm multiple times to the dated a

than for the incremental spectral clustering algorithm @hihiries to limit ~ also introduces some additional overhead in searching for
the size of the affinity matrix). This is true even if the costooimputing the cluster representatives, splitting and merging ctsste
the entries in the affinity matrix is ignored. . ! .

3These examples are for illustration only. Simple clusterask$ such as etc. However, this does not mean that incremental spectral

these would usually be better tackled by a simpler clustesiggrithm. clustering is slower than normal spectral clustering.




200 data points, 8 clusters, 10286 comparisons (52 %)
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Fig. 4. Example of feature matching on typical images used mphper.
-1.5F ®
s o s o - os 1 s 5 camera. Local features are extracted from the images. We

use SIFT, the Scale-Invariant Feature Transform, which was
Fig. 3. Incremental spectral clustering. Concave areas edrahdled, but  first presented by David Lowe in 1999 [13]. The main
the clustering differs from what a human would intuitivelyocise. characteristic of SIFT is that it uses a feature description

that is invariant to scaling and rotation. It is also palyial

invariant to changes in illumination and camera location.

Consider the data set shown in Fig. 1. An unoptimized The local features extracted from one image can be
Matlab implementation of the incremental spectral clister matched to features from another image. Using local feature
algorithm takes about 70 seconds for the entire data sétrimage comparison in this way has several advantages over
The time to perform spectral clustering on the entire affinit methods that use global features for the comparison: isis le
matrix is about 0.5 seconds on the same machine. Howevegnsitive to occlusion and changing environments [14], and
the incremental spectral clustering algorithm needs o8%6 it is possible to directly use the number of feature matches
of the affinity matrix to obtain the clusters. This means thads a measure of image similarity. There is, however, always
we (in this particular case) reach the break-even point atrisk that some features will be wrongly matched. We set
about 5 milliseconds per entry in the affinity matrix. If thea thresholdN,,,;,, for the minimum number of local feature
evaluation of an average entry in the affinity matrix takesnatches before two images are said to match each other.
more time than this, then incremental spectral clustering i The feature matching algorithm calculates the Euclidean
faster than spectral clustering. distance between each feature in imaged all the features
The performance of incremental spectral clustering is veriy image;. A potential match is found if the smallest distance

dependent on the distribution of the points, and thus it i smaller than 60% of the second smallest distance. Note
very difficult to estimate the performance of the algorithmthat a featuref; in imagei may match featuref; in image
Larger matrices obviously take longer to handle in generaj, without f; matching f;. To reduce the chance of false
which would imply that data sets with large clusters conmatches, we require reciprocal matching, which means that
taining many points should be faster to process. This is ngie features must mutually match each other.
necessarily true, however, because the search for theeclust An example of feature matching is shown in Fig. 4. Note
representative means that more entries of the affinity matrihat matches for features corresponding to the robot have
have to be evaluated. been removed.

As mentioned in the introduction, the reason for de- The number of matches/ (i, j) between two images
ve_lo_ping the incremental sp_ectral cluste_rlng _a_lgorlth_rrswaandj can be used to compute the corresponding entry in
originally to produce topological maps using vision. Willet he affinity matrix. We use the following simple formula to

incremental spectral clustering algorithm in place, thg kecompute the distance meastré(i, j) that is used in the
to produce correct topological maps is to compute correglmpytation of the affinity (1):

affinities within a set of images. In our case, we have a

sequence of panoramic images obtained from a mobile robot. (i, j) = 1

We use local features extracted from the images to compute ’ M, j)+1
the affinity matrix.

)

o ) “We note thatd(i, j) is not a true distance measure in the geometric
A. Matching images using local features sense; it does not fulfi(i,i) = 0, neither does it fulfil the triangle

. ired b idi . | inequality. However, it is difficult to construct a true diate metric for
The Images are acquire y an omnidirectiona Camerﬁnage similarity, and we have chosen the easy route here. Eudting

consisting of a curved mirror lens mounted above a digitaldffinity matrix will still be useful.
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I | The similarity threshold is based on this value, as well

! ] as the scaling parametet The affinity as a function of the

0 20 20 60 ) 100 number of matchesd\/(i,j) and o is shown in Fig. 5. A
plumber of maches good choice ofr is one where the affinity approaches zero

when the number of matches approachgs;,,. This ensures

that spectral clustering does not unnecessarily creastech

that will have a too low maximum similarity valu®,, (see

Algorithm 2).

In our case, a choice a¥,,;, = 15 implieso = 0.03.

Fig. 5. The affinity computed as a function®@find the number of matches.

V. EXPERIMENT

A. Experimental setup

The topological maps shown in Fig. 7 and 8 werd>. Results
produced from two sequences of images, acquired by anfig. 7 and 8 show two topological maps based on data
ActivMedia P3-AT robot fitted with a standard consumersets acquired in winter and summer, respectively. The winte
grade SLR digital camera (Canon EOS350D, 8 megapixelfap exhibits some false links. This is probably due to poor
with a curved mirror from 0-360.com. This camera-mirroffeature matching in the snow covered environment. The
combination produces omnidirectional images that can k& mmer map, which covers partly the same area as the winter
unwrapped into high-resoluticsphericalimages by a simple set, is reproduced with correct topology. Fig. 9 illustsate
polar-to-Cartesian conversion. In what follows, we ignth®  the computation time requirement for each image acquired,
geometrical distortion in the spherical image. excluding feature computation and matching. Matching two

The robot was teleoperated around a combined indoor afiages from our data set took at least 1 second; the overhead
outdoor environment. The images were acquired by remofgtroduced by incremental spectral clustering is thus inegl
control, at semi-regular intervals. The positions of thag®s gible compared to the matching time. Because it was only
were determined by hand. However, the positions do not haygcessary to evaluate roughly half of the entries in the full
any influence on the resulting topological map and are usegfinity matrix, the total computation time was nearly halve

only for visualization. (compared to spectral clustering) for these maps.
The images were unwrapped and scaled down to about
1300x400 pixels. Features were extracted from each image VI. CONCLUSION AND FUTURE WORK

(on average, about 2000) and the number of matches between ) . L . .
images was calculated, The algorithm outlined in this paper is incremental, which

makes it useful for mobile robots that should update their
B. Similarity threshold and the scaling parameter map on-line. The algorithm supports cluster merging and
The choice of the similarity threshold directly affects thesplitting, which means that the algorithm successfully can
clustering, because it determines the smallest simildaty close loops. Also, there is no need to compute the simisriti
rather, largest dissimilarity) that we are prepared to pccebetween the current image and all previous images, which
in each node. implies less computation time in those cases where the
Usually, the similarity threshold comes from experiencesimilarity measure is costly to compute.
Using SIFT features extracted from images, it is possible to We have shown how the incremental spectral clustering
inspect the images and manually select the correct numbalgorithm can use the power of spectral clustering to obtain
of SIFT matches for a “place”. One might expect the valuelusters without evaluating the entire affinity matrix. The
to vary largely over a large data set. However, as longumber of clusters does not need to be set; instead a
as the environment is not extreme in some way (i.e. it isimilarity threshold, which in many cases may be a more
completely featureless or contains repeating patterns, ointuitive parameter, is introduced.
value is usually sufficient for the entire data set [15]. Note that all topological maps shown in this paper have
We know that for our particular equipment, a good choicéeen computed using appearance only. It is highly likely tha
for the value of the minimum number of feature matchethe maps can be greatly improved by introducing additional
Nnin 1S 15. The value varies with the resolution of thesensor information. Odometry or other methods of determin-
images and the environment to be mapped; here, howevary position would seem to be ideal candidates, as distance
the same value has been used for all data sets. measurements are easily transformed into affinity.



134 images, 54 nodes, 4643 comparisons (52 %)
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162 images, 77 nodes, 6928 comparisons (53 %)
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Resulting topological map from a data set acquireduimraer.

[m] Computation time was 140 seconds, excluding feature compntand
matching (see Fig. 9).

Fig. 7. Resulting topological map from a data set acquired intex
(with snow). The false links in this data set are to be exmkcts the
images contained very few strong features (see Fig. 6 foriaalypnage).
Total computation time was 160 seconds in Matlab on an AMD62035
excluding feature computation and matching.

In the pipeline for future work is a more theoretical

treatment, to more precisely highlight the cases where in-

cremental spectral clustering out-performs other clisger
algorithms. In addition, introduction of geometric coastts
in the image matching (by using RANSAC, for example),
will probably improve the resulting topological map.
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