32 research outputs found

    Control of Discrete Event Systems

    Get PDF
    Discrete Event Systems (DES) are a special type of dynamic systems. The state of these systems changes only at discrete instants of time and the term event is used to represent the occurrence of discontinuous changes (at possibly unknown intervals). Different Discrete Event Systems models are currently used for specification, verification, synthesis as well as for analysis and evaluation of different qualitative and quantitative properties of existing physical systems. The main focus of this paper is the presentation of the automata and formal language model for DES introduced by Raniadge and Wonham in 1985. This model is suitable for the examination of some important control theoretic issues, such as controllability and observability from the qualitative point of view, and provides a good basis for modular synthesis of controllers. We will also discuss an Extended State Machine and Real-Time Temporal Logic model introduced by Ostroff and Wonham in [OW87]. It incorporates an explicit notion of time and means for specification and verification of discrete event systems using a temporal logic approach. An attempt is made to compare this model of DES with other ones

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection

    Full text link
    We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.Comment: Accepted for publication at German Conference on Pattern Recognition (GCPR) 2017. This research was supported by German Research Foundation DFG within Priority Research Programme 1894 "Volunteered Geographic Information: Interpretation, Visualisation and Social Computing

    Cooperative Material Handling by Human and Robotic Agents:Module Development and System Synthesis

    Get PDF
    In this paper we present the results of a collaborative effort to design and implement a system for cooperative material handling by a small team of human and robotic agents in an unstructured indoor environment. Our approach makes fundamental use of human agents\u27 expertise for aspects of task planning, task monitoring, and error recovery. Our system is neither fully autonomous nor fully teleoperated. It is designed to make effective use of human abilities within the present state of the art of autonomous systems. It is designed to allow for and promote cooperative interaction between distributed agents with various capabilities and resources. Our robotic agents refer to systems which are each equipped with at least one sensing modality and which possess some capability for self-orientation and/or mobility. Our robotic agents are not required to be homogeneous with respect to either capabilities or function. Our research stresses both paradigms and testbed experimentation. Theory issues include the requisite coordination principles and techniques which are fundamental to the basic functioning of such a cooperative multi-agent system. We have constructed a testbed facility for experimenting with distributed multi-agent architectures. The required modular components of this testbed are currently operational and have been tested individually. Our current research focuses on the integration of agents in a scenario for cooperative material handling

    A-Contrario Horizon-First Vanishing Point Detection Using Second-Order Grouping Laws

    Get PDF
    International audienceWe show that, in images of man-made environments, the horizon line can usually be hypothesized based on a-contrario detections of second-order grouping events. This allows constraining the extraction of the horizontal vanishing points on that line, thus reducing false detections. Experiments made on three datasets show that our method, not only achieves state-of-the-art performance w.r.t. horizon line detection on two datasets, but also yields much less spurious vanishing points than the previous top-ranked methods

    VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change

    Get PDF
    Visual place recognition (VPR) is the process of recognising a previously visited place using visual information, often under varying appearance conditions and viewpoint changes and with computational constraints. VPR is related to the concepts of localisation, loop closure, image retrieval and is a critical component of many autonomous navigation systems ranging from autonomous vehicles to drones and computer vision systems. While the concept of place recognition has been around for many years, VPR research has grown rapidly as a field over the past decade due to improving camera hardware and its potential for deep learning-based techniques, and has become a widely studied topic in both the computer vision and robotics communities. This growth however has led to fragmentation and a lack of standardisation in the field, especially concerning performance evaluation. Moreover, the notion of viewpoint and illumination invariance of VPR techniques has largely been assessed qualitatively and hence ambiguously in the past. In this paper, we address these gaps through a new comprehensive open-source framework for assessing the performance of VPR techniques, dubbed “VPR-Bench”. VPR-Bench (Open-sourced at: https://github.com/MubarizZaffar/VPR-Bench) introduces two much-needed capabilities for VPR researchers: firstly, it contains a benchmark of 12 fully-integrated datasets and 10 VPR techniques, and secondly, it integrates a comprehensive variation-quantified dataset for quantifying viewpoint and illumination invariance. We apply and analyse popular evaluation metrics for VPR from both the computer vision and robotics communities, and discuss how these different metrics complement and/or replace each other, depending upon the underlying applications and system requirements. Our analysis reveals that no universal SOTA VPR technique exists, since: (a) state-of-the-art (SOTA) performance is achieved by 8 out of the 10 techniques on at least one dataset, (b) SOTA technique in one community does not necessarily yield SOTA performance in the other given the differences in datasets and metrics. Furthermore, we identify key open challenges since: (c) all 10 techniques suffer greatly in perceptually-aliased and less-structured environments, (d) all techniques suffer from viewpoint variance where lateral change has less effect than 3D change, and (e) directional illumination change has more adverse effects on matching confidence than uniform illumination change. We also present detailed meta-analyses regarding the roles of varying ground-truths, platforms, application requirements and technique parameters. Finally, VPR-Bench provides a unified implementation to deploy these VPR techniques, metrics and datasets, and is extensible through templates

    Podnikový management vybraného ekonomického subjektu

    No full text
    This diploma thesis deals with corporate management of selected economic subject and its analysis, on the base of it recommendation are formulated, which can be used for management and growth of company. The theoretical part of the thesis analyses the current state of the solved problems in the literature, the practical part deals with investigated company and results of the thesis. In terms of analysis of external environment are realised PEST and EFE analysis, which revealed an above-average dependence on the external environment. In the internal environment, the analysis focuses on the object of business, organizational structure, selected area of human resources management, also on profits and financial analysis. Part of the diploma thesis is SWOT analysis and structural analysis of branch by Porter's model of five power also. These analysis support ether a slightly proactive approach to business
    corecore