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Abstract— Real-world environments such as houses and offices
change over time, meaning that a mobile robot’s map will
become out of date. In previous work we introduced a method to
update the reference views in a topological map so that a mobile
robot could continue to localize itself in a changing environment
using omni-directional vision. In this work we extend this long-
term updating mechanism to incorporate a spherical metric
representation of the observed visual features for each node in
the topological map. Using multi-view geometry we are then able
to estimate the heading of the robot, in order to enable navigation
between the nodes of the map, and to simultaneously adapt
the spherical view representation in response to environmental
changes. The results demonstrate the persistent performance of
the proposed system in a long-term experiment.

Index Terms— Long-term SLAM, Persistent Mapping, Omni-
directional Vision, Mobile Robot Navigation.

I. INTRODUCTION

Maintaining an up to date representation of the surrounding
environment is a necessity for mobile robots to be able to
work with people in their everyday environment and to have
the ability to localize and navigate using sensory information.
Most work in mobile robot mapping considers only how to
acquire the initial representation of the environment, but there
has been very little work on how to update the map during
long-term operation in changing environments.

An examination of the literature on visual mobile robot
localization and mapping reveals two main approaches: metric
methods [7, 18], which aim to estimate and track the absolute
position of a robot inside a geometric map, and appearance-
based topological methods [20, 19], which represent the envi-
ronment as a graph where the nodes of this graph correspond
to places in the real environment.

Between these two main branches, there is another approach
which forms a hybrid between them [15]. In a hybrid map the
environment is typically represented by a global topological
map which connects local metric maps. The need for this
hybrid type came from the complementary strengths and
weaknesses of metric and topological methods. Full metric
maps do not scale well to large-scale environments, while pure
topological maps cannot be used for accurate navigation inside
a node. However, the existing approaches (both topological
and metric) require a certain level of stability (static world
assumption). This leads to problems when applying these
methods in our everyday environments where we tend to
change the appearance of our surroundings by adding, remov-
ing or changing the arrangement of objects, which implies that
the localization and mapping methods must have flexibility,

Fig. 1. Proposed Hybrid Metric-Topological Map. The environment is
represented as an adjacency graph of nodes on a topological level and each
node on the metric level of the map represents the 3D location of image
features on a sphere. Our method represents the direction of the features (but
not their distance or depth) from the centre of the sphere, which corresponds
to the centre of that node.

robustness and adaptation ability along with some level of
geometric accuracy.

In this paper, we propose a method to update the reference
views of a hybrid metric-topological map for a changing
environment, where the environment is represented as an
adjacency graph of nodes on a topological level and each node
on the metric level of the map represents the 3D location of
image features on a sphere, as shown in Fig. 1. This spherical
representation of the nodes creates a connection between the
topological level and the metric level of the map, by using
the group of features as a qualitative descriptor for global
localization on the topological level, and also using the 3D
location of these features on the sphere for estimating the
rotation angle needed for the navigation system at the metric
level. In this way the proposed representation gives a balanced
solution between the accuracy of geometric maps and the
flexibility of topological maps.

The rest of this paper is structured as follows. Section II
presents our initial work on an adaptive appearance-based map
for long-term topological localization. Section III describes
how to use the hybrid map for navigation. Section IV describes
the method that updates the reference views at a geometric
level. Section V presents the experiments and results obtained.
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Fig. 2. The rehearsal stage in the STM shown as a finite state machine.

Finally we draw conclusions and discuss future work in
section VI.

II. BACKGROUND

In our previous work [6] we introduced a method to enable
a mobile robot to update the reference views of a topological
map for localization in a changing environment. In order to
achieve this we adopted short-term and long-term memory
concepts based on the multi-store model of human memory
proposed by Atkinson and Shiffrin [2]. This model, which
forms the basis of modern memory theories, divides human
memory into three stores:
• sensory memory (SM),
• short-term memory (STM),
• long-term memory (LTM).
The sensory memory contains information perceived by the

senses, and selective attention determines what information
moves from sensory memory to short-term memory. Through
the process of rehearsal, information in STM can be committed
to LTM to be retained for longer periods of time. In return,
the knowledge stored in LTM affects our perception of the
world, and influences what information we attend to in the
environment.

Applying these concepts to our approach for robotic map-
ping, the sensory memory will contain image features ex-
tracted from the current image. Then an attentional mechanism
selects which information to move to STM, which is used as an
intermediate store where new observations are kept for a short
time. Over this time the system uses a rehearsal mechanism
to select features that are more stable for transfer to LTM.
In order to limit the overall storage requirements and adapt
to changes in the environment, the system also contains a
recall mechanism that forgets unused feature points in LTM by
removing these features from the node. LTM is used in turn
by the attentional mechanism for selecting the new sensory
information to update the map.

To initialise the map, the image data from the robot’s first
tour of the environment is used. In this work, the location and
number of nodes in the map are selected by hand and assumed
to remain fixed throughout the experiments. For each node,
an image is recorded and local features are extracted using
the SURF algorithm [4]. These features are used directly to
initialise LTM, while STM for each node is initially assigned
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Fig. 3. The recall stage in the LTM shown as a finite state machine.

to be empty. Note that LTM represents the reference views
of the map, which the robot uses to localize, so it must be
initialized to contain the features from the first run, and STM
is set to be empty, ready to be used in the rehearsal and recall
stages for the subsequent runs.

Every time the robot visits an existing node (using an
appearance-based global localization method to determine the
current node), the processes of rehearsal and recall are carried
out. Fig. 2 shows the rehearsal process for a stored feature in
STM. In order to transfer a feature point from STM to LTM the
feature has to be seen frequently in that node. Features enter
STM from sensory memory and must progress through several
intermediate states (V1 to Vn) before transfer to LTM. Every
time the robot visits the node and finds the feature (“hit”),
the state of the feature is moved closer to LTM. However
if the feature is missing from the current view (“miss”), it is
returned to the first state (V1) or forgotten if it is already there.
This policy means that spurious features should be quickly
forgotten, while persistent features will be transferred to LTM.

Fig. 3 shows the recall process for a stored feature in LTM.
In order to remain in the LTM, a feature has to be seen
occasionally in that node. In contrast to rehearsal, features
enter LTM from STM and must progress through several
intermediate states (S1 to Sm) before being forgotten. Stored
features which have been seen in the current view are reset
to the first state (S1), while the state of features which have
not been seen is progressed, and a feature point that passes
through all states without a “hit” is forgotten.

The question we address in this paper is the possibility
to extend the above updating mechanism proposed for the
topological level to the metric level of the map. In other
words, is it possible to add and remove image features from the
reference view during long-term operation and still maintain
sufficient accuracy at the metric level to use the features for
navigation between the nodes?

Different methods have been introduced to enable a mobile
robot equipped with a visual topological map to navigate.
Recently, Goedeme et al. [9] presented a system based on
wide-baseline image features matching which enables the
robot to follow a pre-recorded sequence of omnidirectional
images. Guerrero et al. [10] presented a hierarchal localization
system which uses 1D three view geometry to achieve local
metric localization which can be used to navigate the robot.
Booij et al. [5] built their navigation system based on heading
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estimation to achieve a hill-climbing behaviour with no need
for a pre-recorded path to follow.

III. HEADING ESTIMATION USING THE SPHERICAL VIEWS

In many tasks, the robot needs not only to find its current
location, but also to use the sensory information along with
the map to navigate. In this section we describe the navigation
scheme we use.

Our approach does not store a global metric map of the envi-
ronment. Instead we estimate the heading of the robot relative
to the current node, by estimating the relative orientation of the
current view of the robot with respect to the stored reference
view. In this way, the reference views function as way-points
that the robot can use to travel from one place to the next.

In our case, the desired heading is estimated using the
epipolar geometry for spherical cameras [1]. The model of the
spherical camera consists of a unit sphere whose centre is the
centre of the curved mirror. The omnidirectional camera we
are using can be treated as a spherical camera because it is
a central omnidirectional camera. A central omnidirectional
camera has a point called an optical centre, on which all
projection rays meet. So after calibrating the camera using
the toolbox by Scaramuzza et al. [17], each reference image
is represented by a spherical view (Fig. 1) where the features
points are projected on a unit sphere.

Given two spherical views with centres C and C
′
, a scene

point P can be back-projected through the two spheres to
the centre of projection for each camera. Let X represent the
position of P in the reference frame of C and x represent the
projection of X on the sphere, then we can write:

λx = X, λ ∈ R+ (1)

In the same way for the second camera we will have:

λ′x′ = X ′, λ′ ∈ R+ (2)

where x′, X ′ are the 3D points in the frame of C
′
. Assuming

that C =
[
0 0 0

]T
with R and T expressing the transform

of the camera coordinates between C and C
′
, we can write:

X ′ = RX + T, (3)

then by substituting Eqs. 1 and 2 into Eq. 3, we get:

λ′x′ = λRx+ T. (4)

which leads to the following relation based on the epipolar
geometry for spherical cameras:

(x′)T Ex = 0, (5)

where E is the essential matrix. This matrix can be linearly
solved using eight pairs (or more) of corresponding points
from the two spheres [16]. In our case, the corresponding
points are generated from the two views using the descriptors
of the image features which will typically generate more than
8 correspondences between the two views. Due to that and the
fact that the false matches will always be part of the matching
process, using the RANSAC algorithm [8] is a very efficient
way to minimize the effect of the outliers and find the best
essential matrix to fit most of the points.

The robot in our case is working on a planar floor which
means that the rotation between the spherical views will only
be around the vertical axis. Using this fact, we can simplify
the process of estimating the essential matrix by restricting it
to the following sparse form [14], assuming translation in x-y
plane and rotation around z-axis:

E =

 0 0 e13
0 0 e23
e31 e32 0

 . (6)

Based on the method introduced by Hartley and Zisserman
in [11], the essential matrix is factored to give Eq. 7 which
contains the rotation matrix R ∈ SO(3) and the skew-
symmetric matrix [T]× of the translation vector T ∈ R3:

E = [T]×R. (7)

This will generate four possible combinations of T and R.
By choosing the combination which makes the reconstructed
points lie outside the sphere we can determine the correct one
(applying the positive depth constraint).

After the estimation of T and R, the robot can find the
heading toward the reference view, α, using the translation
direction T:

α = atan(T[y],T[x]), (8)

and also the rotation between the current view and the refer-
ence view, γ, using the rotation matrix:

R =

 cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1

 . (9)

IV. UPDATING THE SPHERICAL VIEWS

Updating the reference views of the map based on the
proposed memory model means removing old unused features
and adding new features during long-term operation of the
robot. So in order to preserve the ability to use the updated
spherical views for heading estimation, the feature points
which need to be moved to the STM and LTM stores of each
node should be located on the reference sphere as if these
features were seen from the same point where the node was
first created. This ensures that the robot will keep the ability to
use the reference views for heading estimation and therefore
navigate using the map.

In order to achieve this, we reconstruct the 3D position of
feature points shared between one view from the current visit
and one view from the previous visit to the node. The current
and previous views are each obtained by selecting the image in
the recorded sequence for that visit with the highest similarity
score to the reference view. The 3D position of the shared
points can determined to unknown scale as the norm of the
translation vector is fixed to unity. These points are divided
into three groups: the points which already exist in the LTM
store of the node, the points which already exist in the STM
store of the node and the new points which need to be added
to the STM.

In order to add these new features to the STM into their
correct position on the sphere we use a simplified version
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Fig. 4. Reference view updating. The current view C1 is matched with the
previous view C2 and the reference view Cref to estimate the coordinates
of new features in the spherical representation of the reference view.

of what is known in the computer vision literature as multi-
baseline stereo [13]. In our case, we only use two stereo pairs
between three views: the reference view and the last two views
of the node. The views are captured in different visits to the
node and we are not interested in recovering a 3-D map for a
large scene; instead we want to update a single spherical view
by adding new feature points to it. Linear triangulation is used
to obtain the desired 3D position of a point. More details of
the linear triangulation approach can be found in [11]

In Fig. 4, let Xo be one of the reconstructed positions for
an image feature which is shared between the three views
(C1, C2, Cref ) where Cref is the reference view of the node
and C1, C2 are the views from the current visit and the
previous one, respectively.

Based on the stereo views (C1, C2), we can write:

XC2
o = λ2xo, (10)

where λ2 is the depth of Xo based on the unknown scale of
the stereo views (C1, C2), XC2

o is the representation of Xo in
the reference frame of C1 and xo is the projection of XC2

o on
the unit sphere of C1.

Also, in the reference frame of the view C1 and based on
the stereo views (C1, Cref ), we can write:

Xref
o = λrefxo, (11)

where λref is the depth of Xo based on the unknown scale
of the stereo pair (C1, Cref ) and Xref

o is the representation
of Xo in the reference frame of C1.

Eqs. 10 and 11 mean that a point Xo shared between the
three views will have different values (Xref

o , XC2
o ) depending

on the scale of the reconstruction. This also means that we
can convert between the different unknown scales:

Xref
o = sXC2

o , s ∈ R. (12)

The value of s is estimated such that it minimizes the distance
error between the 3-D point’s correspondences between the
two stereo pairs (C1, C2) and (C1, Cref ). Outliers are rejected
using robust statistics [3].

Now, let Xn be a reconstructed position of an image feature
shared between the two views (C1, C2) but which does not
exist in the view Cref . In order to find the projection of Xn

5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

Tour number

M
ea

n 
nu

m
be

r o
f u

nm
at

ch
ed

 p
oi

nt
s

Fig. 5. The average number of unmatched points between consecutive tours
as a measure for the changing appearance of the environment.

on the sphere of Cref , first we need to convert to the scale of
the stereo pair (C1, Cref ) using s:

Xref
n = sXC2

n , (13)

where XC2
n is the representation of Xn in the reference frame

of C1 based on the scale of the stereo views (C1, C2) and
Xref

n is the representation of Xn in the reference frame of C1

based on the scale of the stereo views (C1, Cref ).
Then, as shown in Fig. 4, the view C1 and the reference

view Cref are related by a rigid body displacement represented
by the rotation matrix Rref ∈ SO(3) and the translation
Tref ∈ R3. We can transform Xref

n to the frame of the
reference view Cref as follows:

XC1
n = RrefX

ref
n + Tref . (14)

Finally, the position of the new feature in the STM store of
the reference view sphere, xn, can be found by normalization:

xn =
XC1

n

‖XC1
n ‖

. (15)

V. RESULTS

The following experiment was designed to evaluate the
ability of the system to add and remove image features from
reference views of the map while at the same time still being
able to use the features for heading estimation.

Our experimental platform was an ActivMedia P3-AT robot
equipped with a GigE progressive camera (Jai TMC-4100GE,
4.2 megapixels) with a curved mirror from 0-360.com (see
Fig. 8). For local feature extraction we use the SURF algo-
rithm [4]. The experiment was carried out in our robotics lab
where we collected 1385 images by driving the robot in a
loop. The images were generated from 50 tours over a period
of 3 days. After each tour the appearance of the lab was
changed manually. The changes involved the arrangement of
the objects inside the room, including adding new objects like
boxes and posters, removing existing objects individually and
also covering them with movable office dividers for certain
periods. Fig. 9 shows two images taken from the same node
at different times.

To characterize the dynamics of the test environment, we
chose the following metric: the number of unmatched features
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Fig. 6. Ground truth positions of the recorded images obtained from the
laser-corrected odometry. The constructed map consists of seven nodes, each
colour representing the group of images which belong to the same node.
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Fig. 7. The similarity score for node 4 using the static view and the adaptive
view.

between omnidirectional images for the same location over
a period of time. The number of unmatched features is a
good measure for the changing appearance because it captures
the features from the old appearance which do not exist in
the new images of the location and also the features of the
new appearance which did not exist in the old images. If the
environment is static this number should be constant but in a
changing environment this number will change considerably.

For each consecutive tour, we find the average number
of unmatched points over all the nodes in the map. Fig. 5
shows how this number changes over time and we can see
that between tours 24 and 25 there was no great change but
between tours 20 and 21 the environment experienced a big
change.

In order to obtain the ground truth positions for the collected
data, the starting points for all 50 tours were initialized from
a fixed point inside the room while each image was recorded
along with a laser scan and odometry. This enable us to use
LODO [12], a library for laser-based correction of odometry,
attaching each image with a 2D position and a rotation relative
to the starting point. The first tour is used to create the
topological map which consists of 7 nodes (selected manually).
Fig. 6 shows the ground truth positions of the images, each
colour representing the group of images which belong to the
same node. The rest of the image sequence is used as input for

Fig. 8. The experimental platform. An ActivMedia P3-AT robot equipped
with an omnidirectional vision system.

the localization system. We used global localisation based on
place recognition using a similarity score between the current
and the reference views (winner-takes-all) as a first stage to
locate the robot in one of the nodes [6].

To find the similarity score between two groups of feature
points, we use the number of corresponding features Mij

between the two groups based on a nearest neighbour (NN)
matching scheme using the value 0.7 as a threshold between
the nearest and second-nearest neighbour, following [4]. The
similarity score between view Vj and a reference view Vi can
be defined as:

Sij =
Mij

Ki
∗ 100 (16)

where Ki is the number of features in the reference view Vi.
During a visit to a node in the map, the robot will capture

a number of images as it goes through the node. Among these
images the image with the highest similarity score is used
to represent the view of the node for that visit and it is then
used to update the reference view using the proposed updating
mechanism.

After the global localization step, the reference view of the
node and the input image is used to estimate the rotation
between the two views using Eq. 9, and then the estimated
rotation is compared with the ground truth obtained from
the laser-stabilized odometry. Using the sequence of collected
images we repeat the same experiment once using static
reference views for the map and then using the adaptive
views. The static reference views are created from the first run
(similarly the first run is used to intialise LTM as described in
Section II) and the subsequent runs are used for localization.

Table. I shows a comparison using several performance
measures, showing mean and standard deviation, between the

TABLE I
LONG-TERM LOCALIZATION RESULTS

Comparison measures
Measure Static Map Adaptive Map
Error in estimating the rotation 4.2o ± 4.1o 4.5o ± 4.6o

Mean number of matched points 81.8± 43.8 118.3± 54.4
Number of matched points > 50 77.0% 95.1%
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Fig. 9. Two panoramic views from the same place at different times.

two cases using 8 stages for the LTM and 3 stages for the
STM. As shown in the first row, the error in the estimation of
the rotation did not drop significantly whereas the average
number of the winning matched points, which is used for
the global localization, has increased noticeably when we
used the adaptive views, as shown in the second row. As
the environment changes over time, the winning number of
matched points became smaller when the static reference
views were used. As shown in the third row, during global
localization the winning number of matched points was over
50 in 77.0% of cases for the static map and 95.1% for the
dynamic map.

Fig. 7 shows how the similarity score changed over the 49
tours for node number 4 . As shown, using the adaptive views
gave a higher similarity score, while for the static view the
similarity score sometimes dropped below 10% as in tour 17.

VI. CONCLUSIONS

This paper introduced a method to enable a mobile robot
working in a non-static environment to update an internal
representation of its environment in response to the changes in
the appearance of that environment. We extended our previous
work on long-term mapping for a topological map [6], by
adding a metric level where each node represents the 3D
location of the corresponding image features on a sphere. The
updating mechanism is based on long-term and short-term
memory concepts which use local image features to update
reference views in a hybrid metric-topological map, while
preserving the ability to use the updated reference views for
heading estimation based on multi-view geometry of spherical
cameras.

In this work, the number of the stages in LTM and STM
were determined empirically based on the recorded sensor
data. As a future work, the number of the stages could be
learned depending on the dynamics of the real environment.
Bigger hybrid metric-topological maps will also be built and
further tests on localization and navigation will be carried out.
The adaptive capability of the map could be further extended
to the topological level, by making the robot able to add or
remove nodes and links from the map.
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[14] J. Košecká, F. Li, and X. Yang. Global localization and relative posi-
tioning based on scale-invariant keypoints. Robotics and Autonomous
Systems, 52:27–38, 2005.

[15] B. Kuipers and Y. T. Byun. A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations. Toward
Learning Robots. MIT Press, Cambridge, Massachusetts, page 47–63,
1993.

[16] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene
from two projections. Nature, 293:133–135, 1981.

[17] D. Scaramuzza, A. Martinelli, and R. Siegwart. A toolbox for easily
calibrating omnidirectional cameras. Proc. of the IEEE International
Conference on Intelligent Systems, IROS06, Beijing, China, 2006.

[18] S. Se, D. Lowe, and J. Little. Mobile Robot Localization and Mapping
with Uncertainty using Scale-Invariant Visual Landmarks. The Interna-
tional Journal of Robotics Research, 21(8):735, 2002.

[19] C. Valgren, A. Lilienthal, and T. Duckett. Incremental Topological
Mapping Using Omnidirectional Vision. In Proc. IEEE International
Conference on Intelligent Robots and Systems (IROS), 2006.

[20] Z. Zivkovic, O. Booij, and B. Kröse. From images to rooms. Robotics
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