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Abstract— This paper presents an algorithm that builds topo-
logical maps, using omnidirectional vision as the only sensor
modality. Local features are extracted from images obtained in
sequence, and are used both to cluster the images into nodes and
to detect links between the nodes. The algorithm is incremental,
reducing the computational requirements of the corresponding
batch algorithm. Experimental results in a complex, indoor
environment show that the algorithm produces topologically
correct maps, closing loops without suffering from perceptual
aliasing or false links. Robustness to lighting variations was
further demonstrated by building correct maps from combined
multiple datasets collected over a period of 2 months.

I. INTRODUCTION

There are two main types of maps for robots: metric and
topological. Because the metric map, which is a representation
of the world in two or three dimensions, typically is used for
detailed path planning and obstacle avoidance, it is required
that the map has a certain accuracy. This accuracy comes at
the cost of memory and processor cycles. The topological
map, on the other hand, stores only distinct places and the
links between these places, and is thus a more efficient
representation for large-scale navigation. However, to build a
correct topological map, a mapping algorithm must be able
to identify places reliably (correspondence problem), while
being robust to perceptual aliasing (where multiple places have
similar appearance).

The long term aim of our research is on-line mapping for
mobile robot navigation in both indoor and outdoor envi-
ronments. Many challenges await; outdoor environments can
be huge, unstructured and dynamic. Many of the existing
solutions to the robotic mapping problem indoors will not be
applicable outdoors [1], simply because the methods employed
do not scale well to larger and more complex environments.

Topological approaches use landmarks to define the nodes
(places) of the map. Clustering the sensor data into nodes
is one problem that all topological mapping schemes have
to solve. Existing approaches include defining the places by
hand, unsupervised clustering algorithms [2], and detection
of “distinctive places” [3]. If the whole set of landmark
observations is available, the mapping problem can be viewed
as a search to find the best topological map that fits the data.
The landmarks can be artificial landmarks such as beacons, or
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naturally occurring features extracted by sensors such as laser
range finders, sonars or cameras.

The incremental method we propose manages to accurately
construct a topological map, yet the algorithm remains fairly
simple. The link likelihood (section III-C) is determined by
visual similarity of image sequences, so the map can be
interpreted from a probabilistic viewpoint, while still being
computationally cheap.

II. RELATED WORK

There are many approaches to using vision for mobile
robot localization and mapping. Ulrich and Nourbakhsh [4]
used color histograms to calculate topological maps. Gaspar
et al. [5] applied principal component analysis to condense
a large data set of panoramic images into a smaller set of
eigenimages that was used for localization.

Extracting local features from panoramic images has proved
to be a successful approach to localization. Koséckd and
Li [6] showed that the descriptors of the Scale Invariant
Feature Transform (SIFT) were superior to using orientation
histograms as landmarks. Modified SIFT features were used
for topological localization in non-stationary environments by
Andreasson and Duckett [7], and Zivkovic et al. [8] combined
SIFT with geometrical constraints to obtain a topological map
from non-sequential images. Bradley et al. [9] showed that it
was possible to perform localization over several kilometers
using local features extracted from monocular images.

Closely related to the method presented in this paper is
the work by Tapus and Siegwart [10], where they extract
“fingerprints” from panoramic images and laser scan data.
New nodes are added to the map whenever an important
change in the environment (or, rather, to the fingerprint)
occurs. The approach by Tapus and Siegwart differs from ours,
in particular in that they rely on additional data from a laser
scanner and that their approach does not consider the problem
of loop closing.

III. TOPOLOGICAL MAPPING USING VISION

This section describes our proposal for topological mapping
using vision. The approach utilizes local features extracted
from panoramic images combined with a segmentation tech-
nique to derive a topological map from a sequence of images
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Fig. 1. Flowchart of the three processes that make up the incremental version
of the algorithm.

obtained by a mobile robot. Two versions of the algorithm
are presented. The first version performs the calculations in a
batch; it utilizes a greedy search to find the nodes and the links.
The second version is incremental, while the computation time
at each time step is approximately constant (i.e. although there
are variations from time step to time step, there will not be a
net increase over time). This is achieved by using a random
search, guided by heuristics, through the search space.

Both approaches have been shown to give good experimen-
tal results in a medium-sized, complex indoor environment
(Figure 5). Furthermore, the incremental version (Figure 1),
although being much faster, shows comparable results to the
batch version.

A. Matching images using local features

The images are acquired by an omnidirectional camera,
which consists of a curved mirror lens mounted below a
camera. Local features are extracted from the images. We use a
variant of SIFT, the Scale-Invariant Feature Transform, which
was first presented by David Lowe in 1999 [11]. The main
characteristic of SIFT is that it uses a feature description that
is invariant to scaling and rotation. It is also partially invariant
to changes in illumination and camera location. In this work,
we use the Modified SIFT (MSIFT) algorithm of Andreasson
and Duckett [7]. The interest points are selected from the
image by using the algorithm GoodFeaturesToTrack proposed
by Shi and Tomasi [12]. The MSIFT algorithm uses the same
keypoint descriptors as the SIFT algorithm, but the descriptors
are only found in one resolution, because full invariance to
scale and translation is not required. In fact, in this application,
scale sensitivity is desirable, since we want to only recognize
a feature from viewpoints within a small area or “place”.

The local features extracted from one image can be matched
to features from another image. Using local features for image
comparison in this way has several advantages over methods

Fig. 2. Some of the features matched between two panoramic images.
Small circles indicate the positions of extracted MSIFT features, large circles
connected with a line indicate a match.

that use global features for the comparison: it is less sensitive
to occlusion and changing environments [13], and it is possible
to directly use the number of feature matches as a measure of
image similarity. There is, however, always a risk that some
features will be wrongly matched. We set a threshold N,y
for the minimum number of local feature matches before two
images are said to match each other.

The feature matching algorithm calculates the Euclidean
distance between each feature in image ¢ and all the features in
image j. (In the MSIFT algorithm, the keypoint descriptors are
not normalized (as in the original SIFT algorithm) before the
Euclidean distance is calculated.) A potential match is found
if the smallest distance is smaller than 60% of the second
smallest distance. Note that a feature f; in image ¢ may match
feature f; in image j, without f; matching f;. Therefore, the
potential matches are considered using the following rules:

o All reciprocal matches (i.e. features mutually matching
each other) are found.

o Any other match is found, where better (i.e. of higher
quality, as defined by GoodFeaturesToTrack [12]) features
are matched first.

¢« We only allow a feature in image ¢ to match once to a
feature in image j.

An example of feature matching is shown in Figure 2.

B. Nodes

In our approach, a node is a collection of images that are
considered similar enough, i.e., there is a sufficient number of
feature matches between the images. A node always consists
of images in sequence. By using only local feature matching
as the criterion for determining boundaries between nodes,
we do not require any knowledge about the geometry of the
environment. This gives the algorithm the potential to work
well in unstructured environments. On the other hand, there
is also a risk that we will misclassify an image because
of noise, occlusion or perceptual aliasing. Using geometrical
constraints in the algorithm might reduce the risk of such
misclassification, and incorporating odometry data is indeed
on the list for future work.



C. Links

To get a complete topological map, the nodes detected need
to be connected to each other. Because the images are assumed
to be obtained in sequence, there are weak links (following Lu
and Milios [14]) between consecutive nodes in the sequence.
In addition, a strong link exists between node A and node
B when an image in node A matches an image in node B.
We expect strong links to form between nodes in larger areas,
because some features are common to some images in the
nodes. Also, we expect that if we revisit a previously visited
area, a link will be created between the old and new nodes
corresponding to that area. Again, the feature matching is not
perfect, which means that there is a risk that false links will be
created. Working towards a probabilistic approach, we propose
the concept of link likelihood, which measures the probability
that two nodes share common features. Let the number of
feature matches between image ¢ and image j be denoted
C(i,7). The link likelihood L ap is a (heuristic) function of
the number of image matches between node A and B:
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where k is the number of image pairs where C'(4,5) > Npin,
Nyin 1s the minimum number of feature matches between
images for an image match, and p is a constant usually slightly
less than or equal to 1. Note that 0 < Lap < 1. The function
L sp is non-linear, and assigns a high likelihood to links that
have at least one high value of C'(4, j). The constant 0 < p < 1
gives a slightly higher likelihood to links that have more than
one similar value of C(i, j).

It is worth noting that in the data sets used in the paper,
the maximum value of C(i,7) was 70 (the total number of
extracted features V,,,, was 101). Even in the case of two
consecutive images, the slight change in position is sufficient
to reduce the number of matches substantially. In practice, it

is very rare to find a value of C(i, ) higher than Mmex.

D. Finding the links

The link likelihood defined in (1) is based on the number
of image matches between node A and B. The affinity matrix
stores the results of the image comparisons so that the entry
at position (7,j) corresponds to the value of C(i,7). An
example affinity matrix is shown in Figure 3. The number
of possible image comparisons increases quadratically with
the number of added images. If we were to compare every
new image with all previous images, the computation required
would quickly grow beyond what is feasible, for all but very
small data sets. Comparing each image with every other image
could be viewed as doing an exhaustive search for links in a
quadratically growing search space. In terms of the affinity
matrix, this means calculating a new row for every image
added.
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Fig. 3. Affinity matrix, illustrating the number of feature matches between
images of a 602-image run.

IV. BATCH VERSION

The batch version of this algorithm uses a greedy search
to find the nodes in the map. The search attempts to divide
the entire image sequence into as few nodes as possible, or
— equivalently — to create as large nodes as possible. The
links are found by calculating the entire result matrix, i.e.
performing an exhaustive search. Doing an exhaustive search
is the only way to find all possible links, but there are other
ways to do the search if we can accept some uncertainty in
the answer. The batch version of the algorithm is seen as a
benchmark for the incremental version.

V. INCREMENTAL VERSION

In the incremental version, we add nodes and links to the
map at each step, without having any knowledge of future
data. A node is represented by a node representative. The node
representative R is the image that is most similar to all other
images within the node, with Np matches:
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where C(i,7) is the number of feature matches between
images 7 and j, and [ is the set of images within the
node. For each new image S obtained, a decision function
determines whether the image belongs to the current node
or whether a new node should be created. If there are more
than NV,,;, matches between the obtained image and the node
representative R, the image belongs to the current node and
is added to the set I and a new node representative R is
calculated. Otherwise, a new node is created. This technique
guarantees that each image in the node always has at least
N,nin, matches to the node representative.

In the simplest case, the calculation required in classifying a
new image S is just one execution of the comparison function

C.
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Fig. 4. Example probability density function used for selecting images, before
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Mexican hat function), assuming a match was found at index 16.

This occurs when

o the number of matches between the new image and the
node representative is higher than the number of matches
recorded for the node representative; C'(S, R) > Ng. In
this case, the node representative does not change.

« the number of matches between the new image and the
node representative is lower than N,;,; C(S,R) <
N,in. In this case, a new node is created.

In the case when N,,;, < C(S,R) < Ng, the number of
calculations required depends on the size of I. However, it is
always guaranteed that the number of executions of C' is less
than the size of I.

A. Searching the affinity matrix

The incremental version of the topological mapping algo-
rithm calculates a fixed number n¢ of feature matches C(4, 5)
at each time step. The image indices (i,7) in the affinity
matrix are selected by a search algorithm. The search is a
random sampling algorithm, where the sampling distribution
is updated by a heuristic function that increases the chance
of investigating already established links (and improving our
confidence in the calculated link likelihood). The first image
index i is selected from a discrete distribution that is common
for all images. The second image index j is selected from
an image-specific distribution stored for image . The initial
sampling distributions are uniform. When the comparison has
been performed, both the global distribution and the image-
specific distributions are updated depending on the result. The
heuristic function always lowers the sampling probabilities for
images ¢ and j (in order to avoid repeated evaluation). If
the resulting comparison gave a value C'(i,j) < Ny, the
sampling probabilities for images ¢+ and j are multiplied by
the function

Fig. 5. The robot in the environment used to obtain the images.
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where = denotes the (integer) image indices. If the comparison
gave a sufficiently high value, C(i,5) > Nyun, the sampling
probabilities of nearby images around ¢ and j are increased by
multiplication of the distribution with a Mexican hat function

if [z — j| < 8
otherwise.

(&)
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pi(z,j) = { i ( 2 50) if |z —j| < 8;
(6)

Figure 4 shows an example of the sampling distributions be-
fore and after a comparison in the case when C(i,5) > Npin.

There is a rationale behind the choice of these heuristic
functions. While we wish to improve our confidence about
an already existing strong link, we do not wish to “waste”
an image comparison by investigating images that are really
close to already compared images.

otherwise.

VI. EXPERIMENT
A. Experimental setup

The results presented below are based on five data sets (the
largest containing 602 panoramic images) collected over a pe-
riod of 2 months, using a teleoperated ActivMedia PeopleBot
equipped with a RemoteReality Netvision 360 panoramic lens.
The positions of the robot were estimated using data from
a SICK LMS200 laser scanner, passing the laser scan and
odometry data into a metric SLAM algorithm [15]. A new
image was obtained every 0.5 m travelled or every 15° turned.
The area covered in these experiments is an approximately 60
x 55 m indoor office area (Figure 5). 101 MSIFT features (or
less, if there were not sufficiently many strong features) were
extracted from each image (N,,q, = 101), and 15 features
were required for a match between two images (N, = 15).

B. Results

Figure 6a) shows the result from “ground truth” of the
largest data set, i.e. the result from the batch version of the
algorithm. Darker lines indicate links with high likelihood;
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Batch Incremental Incremental Incremental

(full result matrix) | (30 comp./iter.) | (60 comp./iter.)

Number of nodes 74 92 92 92
Number of links 41 51 13.6 214

Fig. 7. Results table. For the incremental version, the results were determined
from 10 runs with random seeds.

weak links are not shown. (The coordinates of the nodes, as
well as the background map, are outputs of the laser-based
SLAM-algorithm, and are used for visualization only.) Figures
6b) and 6¢c) show the result from the incremental version, but
with the entire affinity matrix calculated. Although the number
of nodes is higher in the incremental version (92 compared to
74), the maps show a qualitative resemblance. Figure 7 shows
the result when the fixed number of comparisons per iteration
nc is set to 30 and 60, respectively.

C. Evaluation of the incremental algorithm

The total number of entries in the affinity matrix is approx-
imately 1.8 x 10° for the data set with 602 images. For values
of nc of 30 and 60, we see that we calculate approximately
one tenth or one fifth of the total number of comparisons
(Figure 9). Still, this algorithm manages to find, on average,
one quarter and two fifths respectively of the total number of
links. This shows that it is possible to produce correct maps
and yet avoid combinatorial explosion.

D. Additional data sets

The incremental algorithm was also applied to three smaller
datasets, calculating the entire result matrix for all three maps
(Figure 8). For all data sets, the loops were closed properly
and there were no false links. Further, the incremental algo-
rithm was applied to a large combined dataset, consisting of
four smaller datasets obtained at different times with varying
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Fig. 9. Total number of comparisons vs. image index.

lighting conditions (Figure 10). Correct strong links are found,
which shows that the algorithm has good potential for handling
dynamic environments.

VII. CONCLUSION AND FUTURE WORK

The approach suggested in this paper illustrates that it is
possible to utilize vision only to achieve correct topological
maps. It also shows that it is possible to calculate these maps
incrementally, and thus without performing a full exhaustive
search of the affinity matrix. Furthermore, the link likelihood
can be viewed as a confidence measure, giving the map some
probabilistic properties.

The algorithm has been tested with four different data sets
acquired by a mobile robot in an indoor, complex environment,
yielding good topological maps with loop closes, and avoid-
ing false links completely. The approach does not eliminate
the need for multi-hypothesis tracking; on the contrary, our
approach is intended to be incorporated into such a framework
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Fig. 8. Resulting map for three other runs with 316, 328 and 280 images (from left to right). The result was 31, 60, 30 nodes and 11, 63, 9 links respectively.

All entries in the affinity matrices were calculated. Weak links are not shown.

(e.g. [16]). However, because the method has been shown to
be quite insensitive to perceptual aliasing, the computational
explosion associated with multi-hypothesis algorithms could
possibly be mitigated to a great extent.

For this approach to work well, the environment cannot
have unlimited size. If the enviroment is limited, and there
is functionality for merging nodes, the size of the affinity
matrix will eventually stabilize around a specific size. Over
time, the number of accumulated comparisons will “catch up”
with the size of the search space. An additional requirement is
that the environment does not contain too many features that
can be seen everywhere. An example of such a global feature
is a distinct horizon feature outdoors that is visible from all
locations within the data set. Any such feature needs to be
removed; otherwise the resulting map may contain just a few
very large nodes.

Future work will include:

« implementation of node split/merge functionality,
« taking geometric constraints (e.g. from odometry) into
consideration.

The approach presented can potentially handle both large
and unstructured environments. To be able to handle dynamic
environments even better, we could track features from mul-
tiple images over time, and store only those features that
are stable. The feature database could thus change over time,
allowing robust relocalization in dynamic environments.
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Fig. 10. Topological map calculated by combining four different data sets collected in a real populated environment on different days under different
lighting conditions. Incremental algorithm, entire affinity matrix was calculated. The different SLAM-maps have been merged into a common map. Because
of inconsistencies between runs, the image positions have been slightly adjusted for visualization purposes. The inset figure highlights the links found between
the different datasets in one area of the environment where the respective submaps overlap. All strong links are shown in black.



