29,022 research outputs found

    Emergence and reconfiguration of modular structure for synaptic neural networks during continual familiarity detection

    Full text link
    While advances in artificial intelligence and neuroscience have enabled the emergence of neural networks capable of learning a wide variety of tasks, our understanding of the temporal dynamics of these networks remains limited. Here, we study the temporal dynamics during learning of Hebbian Feedforward (HebbFF) neural networks in tasks of continual familiarity detection. Drawing inspiration from the field of network neuroscience, we examine the network's dynamic reconfiguration, focusing on how network modules evolve throughout learning. Through a comprehensive assessment involving metrics like network accuracy, modular flexibility, and distribution entropy across diverse learning modes, our approach reveals various previously unknown patterns of network reconfiguration. In particular, we find that the emergence of network modularity is a salient predictor of performance, and that modularization strengthens with increasing flexibility throughout learning. These insights not only elucidate the nuanced interplay of network modularity, accuracy, and learning dynamics but also bridge our understanding of learning in artificial and biological realms

    A superconducting nanowire spiking element for neural networks

    Full text link
    As the limits of traditional von Neumann computing come into view, the brain's ability to communicate vast quantities of information using low-power spikes has become an increasing source of inspiration for alternative architectures. Key to the success of these largescale neural networks is a power-efficient spiking element that is scalable and easily interfaced with traditional control electronics. In this work, we present a spiking element fabricated from superconducting nanowires that has pulse energies on the order of ~10 aJ. We demonstrate that the device reproduces essential characteristics of biological neurons, such as a refractory period and a firing threshold. Through simulations using experimentally measured device parameters, we show how nanowire-based networks may be used for inference in image recognition, and that the probabilistic nature of nanowire switching may be exploited for modeling biological processes and for applications that rely on stochasticity.Comment: 5 main figures; 7 supplemental figure

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Flexible couplings: diffusing neuromodulators and adaptive robotics

    Get PDF
    Recent years have seen the discovery of freely diffusing gaseous neurotransmitters, such as nitric oxide (NO), in biological nervous systems. A type of artificial neural network (ANN) inspired by such gaseous signaling, the GasNet, has previously been shown to be more evolvable than traditional ANNs when used as an artificial nervous system in an evolutionary robotics setting, where evolvability means consistent speed to very good solutions¿here, appropriate sensorimotor behavior-generating systems. We present two new versions of the GasNet, which take further inspiration from the properties of neuronal gaseous signaling. The plexus model is inspired by the extraordinary NO-producing cortical plexus structure of neural fibers and the properties of the diffusing NO signal it generates. The receptor model is inspired by the mediating action of neurotransmitter receptors. Both models are shown to significantly further improve evolvability. We describe a series of analyses suggesting that the reasons for the increase in evolvability are related to the flexible loose coupling of distinct signaling mechanisms, one ¿chemical¿ and one ¿electrical.

    Evolution and development of complex computational systems using the paradigm of metabolic computing in Epigenetic Tracking

    Full text link
    Epigenetic Tracking (ET) is an Artificial Embryology system which allows for the evolution and development of large complex structures built from artificial cells. In terms of the number of cells, the complexity of the bodies generated with ET is comparable with the complexity of biological organisms. We have previously used ET to simulate the growth of multicellular bodies with arbitrary 3-dimensional shapes which perform computation using the paradigm of "metabolic computing". In this paper we investigate the memory capacity of such computational structures and analyse the trade-off between shape and computation. We now plan to build on these foundations to create a biologically-inspired model in which the encoding of the phenotype is efficient (in terms of the compactness of the genome) and evolvable in tasks involving non-trivial computation, robust to damage and capable of self-maintenance and self-repair.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented
    • …
    corecore