4,876 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin

    Synthesis of formation control for an aquatic swarm robotics system

    Get PDF
    Formations are the spatial organization of objects or entities according to some predefined pattern. They can be found in nature, in social animals such as fish schools, and insect colonies, where the spontaneous organization into emergent structures takes place. Formations have a multitude of applications such as in military and law enforcement scenarios, where they are used to increase operational performance. The concept is even present in collective sports modalities such as football, which use formations as a strategy to increase teams efficiency. Swarm robotics is an approach for the study of multi-robot systems composed of a large number of simple units, inspired in self-organization in animal societies. These have the potential to conduct tasks too demanding for a single robot operating alone. When applied to the coordination of such type of systems, formations allow for a coordinated motion and enable SRS to increase their sensing efficiency as a whole. In this dissertation, we present a virtual structure formation control synthesis for a multi-robot system. Control is synthesized through the use of evolutionary robotics, from where the desired collective behavior emerges, while displaying key-features such as fault tolerance and robustness. Initial experiments on formation control synthesis were conducted in simulation environment. We later developed an inexpensive aquatic robotic platform in order to conduct experiments in real world conditions. Our results demonstrated that it is possible to synthesize formation control for a multi-robot system making use of evolutionary robotics. The developed robotic platform was used in several scientific studies.As formações consistem na organização de objetos ou entidades de acordo com um padrão pré-definido. Elas podem ser encontradas na natureza, em animais sociais tais como peixes ou colónias de insetos, onde a organização espontânea em estruturas se verifica. As formações aplicam-se em diversos contextos, tais como cenários militares ou de aplicação da lei, onde são utilizadas para aumentar a performance operacional. O conceito está também presente em desportos coletivos tais como o futebol, onde as formações são utilizadas como estratégia para aumentar a eficiência das equipas. Os enxames de robots são uma abordagem para o estudo de sistemas multi-robô compostos de um grande número de unidades simples, inspirado na organização de sociedades animais. Estes têm um elevado potencial na resolução de tarefas demasiado complexas para um único robot. Quando aplicadas na coordenação deste tipo de sistemas, as formações permitem o movimento coordenado e o aumento da sensibilidade do enxame como um todo. Nesta dissertação apresentamos a síntese de controlo de formação para um sistema multi-robô. O controlo é sintetizado através do uso de robótica evolucionária, de onde o comportamento coletivo emerge, demonstrando ainda funcionalidadeschave tais como tolerância a falhas e robustez. As experiências iniciais na síntese de controlo foram realizadas em simulação. Mais tarde foi desenvolvida uma plataforma robótica para a condução de experiências no mundo real. Os nossos resultados demonstram que é possível sintetizar controlo de formação para um sistema multi-robô, utilizando técnicas de robótica evolucionária. A plataforma desenvolvida foi ainda utilizada em diversos estudos científicos

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Beta Residuals: Improving Fault-Tolerant Control for Sensory Faults via Bayesian Inference and Precision Learning

    Full text link
    Model-based fault-tolerant control (FTC) often consists of two distinct steps: fault detection & isolation (FDI), and fault accommodation. In this work we investigate posing fault-tolerant control as a single Bayesian inference problem. Previous work showed that precision learning allows for stochastic FTC without an explicit fault detection step. While this leads to implicit fault recovery, information on sensor faults is not provided, which may be essential for triggering other impact-mitigation actions. In this paper, we introduce a precision-learning based Bayesian FTC approach and a novel beta residual for fault detection. Simulation results are presented, supporting the use of beta residual against competing approaches.Comment: 7 pages, 2 figures. Accepted at the 11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes - SAFEPROCESS 202

    Stability and weight smoothing in CMAC neural networks

    Get PDF
    Although the CMAC (Cerebellar Model Articulation Controller) neural network has been successfully used in control systems for many years, its property of local generalization, the availability of trained information for network responses at adjacent untrained locations, although responsible for the networks rapid learning and efficient implementation, results in network responses that is, when trained with sparse or widely spaced training data, spiky in nature even when the underlying function being learned is quite smooth. Since the derivative of such a network response can vary widely, the CMAC\u27s usefulness for solving optimization problems as well as for certain other control system applications can be severely limited. This dissertation presents the CMAC algorithm in sufficient detail to explore its strengths and weaknesses. Its properties of information generalization and storage are discussed and comparisons are made with other neural network algorithms and with other adaptive control algorithms. A synopsis of the development of the fields of neural networks and adaptive control is included to lend historical perspective. A stability analysis of the CMAC algorithm for open-loop function learning is developed. This stability analysis casts the function learning problem as a unique implementation of the model reference structure and develops a Lyapunov function to prove convergence of the CMAC to the target model. A new CMAC learning rule is developed by treating the CMAC as a set of simultaneous equations in a constrained optimization problem and making appropriate choices for the weight penalty matrix in the cost equation. This dissertation then presents a new CMAC learning algorithm which has the property of weight smoothing to improve generalization, function approximation in partially trained networks and the partial derivatives of learned functions. This new learning algorithm is significant in that it derives from an optimum solution and demonstrates a dramatic performance improvement for function learning in the presence of widely spaced training data. Developed from a completely unique analytical direction, this algorithm represents a coupling and extension of single- and multi-resolution CMAC algorithms developed by other researchers. The insights derived from the analysis of the optimum solution and the resulting new learning rules are discussed and suggestions for future work are presented

    An Efficient Ant Colony Optimization Framework for HPC Environments

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Combinatorial optimization problems arise in many disciplines, both in the basic sciences and in applied fields such as engineering and economics. One of the most popular combinatorial optimization methods is the Ant Colony Optimization (ACO) metaheuristic. Its parallel nature makes it especially attractive for implementation and execution in High Performance Computing (HPC) environments. Here we present a novel parallel ACO strategy making use of efficient asynchronous decentralized cooperative mechanisms. This strategy seeks to fulfill two objectives: (i) acceleration of the computations by performing the ants’ solution construction in parallel; (ii) convergence improvement through the stimulation of the diversification in the search and the cooperation between different colonies. The two main features of the proposal, decentralization and desynchronization, enable a more effective and efficient response in environments where resources are highly coupled. Examples of such infrastructures include both traditional HPC clusters, and also new distributed environments, such as cloud infrastructures, or even local computer networks. The proposal has been evaluated using the popular Traveling Salesman Problem (TSP), as a well-known NP-hard problem widely used in the literature to test combinatorial optimization methods. An exhaustive evaluation has been carried out using three medium and large size instances from the TSPLIB library, and the experiments show encouraging results with superlinear speedups compared to the sequential algorithm (e.g. speedups of 18 with 16 cores), and a very good scalability (experiments were performed with up to 384 cores improving execution time even at that scale).This work was supported by the Ministry of Science and Innovation of Spain (PID2019-104184RB-I00 / AEI / 10.13039/501100011033), and by Xunta de Galicia and FEDER funds of the EU (Centro de Investigación de Galicia accreditation 2019–2022, ref. ED431G 2019/01; Consolidation Program of Competitive Reference Groups, ref. ED431C 2021/30). JRB acknowledges funding from the Ministry of Science and Innovation of Spain MCIN / AEI / 10.13039/501100011033 through grant PID2020-117271RB-C22 (BIODYNAMICS), and from MCIN / AEI / 10.13039/501100011033 and “ERDF A way of making Europe” through grant DPI2017-82896-C2-2-R (SYNBIOCONTROL). Authors also acknowledge the Galician Supercomputing Center (CESGA) for the access to its facilities. Funding for open access charge: Universidade da Coruña/CISUGXunta de Galicia; ED431G 2019/01Xunta de Galicia; ED431C 2021/3

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms
    corecore