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Abstract

Stability and Weight Smoothing in CMAC Neural Networks

by

David Paul Campagna 

University o f New Hampshire, May, 1998

Although the CMAC (Cerebellar Model Articulation Controller) neural network 

has been successfully used in control systems for many years, its property of local general­

ization, the availability o f trained information for network responses at adjacent untrained 

locations, although responsible for the networks rapid learning and efficient implementa­

tion, results in network responses that is, when trained with sparse or widely spaced training 

data, spiky in nature even when the underlying function being learned is quite smooth. 

Since the derivative o f such a network response can vary widely, the CMAC’s usefulness 

for solving optimization problems as well as for certain other control system applications 

can be severely limited. This dissertation presents the CMAC algorithm in sufficient detail 

to explore its strengths and weaknesses. Its properties of information generalization and 

storage are discussed and comparisons are made with other neural network algorithms and 

with other adaptive control algorithms. A synopsis of the development of the fields of neu­

ral networks and adaptive control is included to lend historical perspective. A stability anal­

ysis of the CMAC algorithm for open-loop function learning is developed. This stability 

analysis casts the function learning problem as a unique implementation of the model ref-

xiii
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erence structure and develops a Lyapunov function to prove convergence of the CMAC to 

the target model. A new CMAC learning rule is developed by treating the CMAC as a set 

o f simultaneous equations in a constrained optimization problem and making appropriate 

choices for the weight penalty matrix in the cost equation. This dissertation then presents a 

new CMAC learning algorithm which has the property of “weight smoothing” to improve 

generalization, function approximation in partially trained networks and the partial deriva­

tives of learned functions. This new learning algorithm is significant in that it derives from 

an optimum solution and demonstrates a dramatic performance improvement for function 

learning in the presence o f widely spaced training data. Developed from a completely 

unique analytical direction, this algorithm represents a coupling and extension of single- 

and multi-resolution CMAC algorithms developed by other researchers. The insights de­

rived from the analysis of the optimum solution and the resulting new learning rules are dis­

cussed and suggestions for future work are presented.

xiv
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Introduction

In this dissertation the CMAC (Cerebellar Model Articulation Controller or Cere­

bellar Model Arithmetic Computer) neural network is modeled in matrix form and its 

weight adaptation, or learning, process is structured as a constrained optimization prob­

lem. Properties of the resulting optimized weight update law are extracted for application 

in a modified CMAC weight adaptation law. The motivation for this effort is derived from 

the desire to improve the performance of the CMAC in control system applications. The 

new weight adaptation law will accomplish this performance enhancement by improving 

the function approximation capability of the CMAC network.

The idea o f ‘control’ is a familiar one with connotations o f forcing a person or sys­

tem to perform in some constrained way under the direction of and to the specifications of 

a ‘controller.’ The most common neural controller is the brain. The brain controls the 

complex kinematics and dynamics of the body enabling all living creatures to perform 

physical activities using their bodies. Human bodies are extremely complicated biome­

chanical systems with over 600 force generating actuators (muscles) connected to a struc­

tural framework with 200 independent segments (bones) with feedback provided by 

millions of sensors (nerves). All aspects of body control are also nonlinear meaning that 

the range of responses to stimuli are not simply scaled, filtered versions of the original 

stimuli. Man-made neural controllers attempt to mimic the capabilities of the brain with 

simple networks containing a large number of adjustable parameters. The range of control

systems will be explored in the following paragraphs, beginning with classical, linear con-

l
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trailers and progressing to nonlinear and adaptive controllers and finally to neural control­

lers. The CMAC neural network, that is the topic of study for this research, is often used in 

control systems which classify as neural control systems.

A control system is typically an electrical and/or mechanical system whose pur­

pose is to cause some other system, referred to as “the plant,” to perform in some pre­

specified or desired way. A classic example of a control system is the cruise control found 

in many cars. The desired behavior is for the car to travel at the speed set by the driver. 

The cruise control receives as input the vehicle speed, compares this speed to the desired 

speed set by the driver, determines an error signal from this comparison, and changes the 

throttle in order to make this error as small as possible. This is a feedback error controller 

since the control signal (throttle position) is determined by the error between a desired 

value and the measured plant output.

The classical design of such a cruise control might be of the PID (Proportional, 

Integral, Derivative) variety. There are three fixed parameters, called gains, in a PID con­

troller which determine the behavior of this system. They are the three system gains Kp, 

K{, and Kd. The choice of these parameters to achieve a particular type of behavior 

depends upon the properties of the plant being controlled. Armed with enough information 

about the plant, there are very well established design methodologies available to design a 

controller to exacting specifications for an “ideal, linear system.” In reality, however, few 

systems are truly linear. Fortunately, many are linear enough for this class of controllers to 

provide quite acceptable performance.

In many cases, full knowledge of the plant is not available. If the plant is linear, 

there are still several well developed methodologies available to the control system
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designer. Typically a mathematical form is assumed for a model of the plant and a control­

ler is designed with several adjustable parameters. Since the parameter values used in the 

controller depend upon the values in the plant model, accurate determination of the plant 

properties is essential. Often these parameter values can be determined mathematically 

from a study of the plant structure or experimentally. More sophisticated methods such as 

least squares are available when some or all o f the parameters cannot be determined by 

analysis or direct measurement.

For observable plants, where the internal properties of the plant can be determined 

from outputs or measurable states, the model parameters can be derived from sufficient 

measurement data in a process known as parameter identification. Once the identification 

procedure has converged to stable parameter values, the model is considered complete and 

a controller is designed to it. This controller is then used to control the actual plant. The 

performance of the controller is directly related to the quality of the model and its identi­

fied parameters.

In some cases the controller itself contains adjustable parameters. The values of 

these parameters are adjusted by an adaptation law while the controller is in operation. 

The adaptation algorithm is usually attempting to estimate postulated plant parameters for 

the mathematical model so that these estimates may be used in the control system. This 

process is referred to as simultaneous system identification and control. If plant parame­

ters are estimated and these estimates are used in the controller, the process is called indi­

rect control. If the parameters in the controller are adjusted without estimating the plant 

parameters, the process is called direct control. For linear systems this theory is well 

developed and includes detailed stability analyses. Two different approaches to this adap-
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4

tive control design are the Model Reference Adaptive Control (MRAC) strategy and the 

Self Tuning Regulator (STR) strategy. More will be said about these approaches in the 

Adaptive Control Section 1.4 of Chapter 1. It is usually important to keep the number of 

adjustable parameters small in order to keep the computational requirements manageable 

for real-time control applications. These techniques can break down if the plant is signifi­

cantly nonlinear.

For plants which are known not to be linear it is often possible to linearize the 

mathematical model about one or more operating points and still successfully apply the 

methods described above. A common example of a nonlinear system (and an unstable one 

too) is the inverted pendulum. Often referred to as the broom balancing problem, the goal 

is to balance the broom on the palm o f one’s hand. The inverted pendulum, in this case the 

broom, is a very popular benchmark problem in control systems since inverted pendulums 

are easy to build, relatively easy to model, easy to linearize about the balance point, but 

difficult to control well. The difficulty lies in the fact that the control effort needed to right 

the pendulum increases very rapidly with the deviation from vertical. In addition this plant 

is inherently unstable. The broom will fall over no matter how carefully the initial position 

is set (ignoring friction and other effects).

It is possible to linearize the inverted pendulum about the balance point but system 

performance is quickly degraded when the state of the plant is different than the operating 

point about which the model was linearized. Sometimes even small deviations from the 

operating point can lead to system instability.

One possible solution to this problem might be to choose more operating points 

and switch from one controller to the next as the system moves from operating point to
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operating point. This would involve many controllers, possibly even adaptive controllers, 

and many parameters to manage. Another approach that is gaining popularity as the num­

ber of successful applications increases is to use a neural network as all or part of the con­

troller. Neural networks can have thousands or even millions of adjustable parameters, 

called weights. The weights are adjusted by an adaptation law or learning rule specific to 

the particular network. The advantage of using neural networks is that they are capable of 

managing even the nonlinear aspects of the plant. There are mathematical proofs [187] for 

several network architectures stating that these types of networks can theoretically repre­

sent any kind of function. There are, unfortunately, almost no results suggesting how to 

construct a network for a particular task and then train it to represent the desired function. 

So, while it is comforting to know that a solution exists, knowing whether the particular 

network being used can actually solve the problem is still left to trial and error.

The important features o f neural networks is that they are capable of representing 

and storing both linear and nonlinear functions and they are capable of adjusting these 

stored functions in response to new training or performance information. These properties 

allow neural network based controllers to span the range from linear to nonlinear and 

adaptive controllers. They are often used to augment more traditional controllers. For 

example, a system might be stabilized with a linear controller while the neural network 

based controller learns system nonlinearitities and augments the linear controller outputs 

to compensate for system properties not accounted for in the primary controller.

It is important to note that there are many different types of neural networks. The 

historical overview of the next chapter will highlight the major network architectures. For 

now it is sufficient to note that each network architecture has certain properties that deter-
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mine the class o f  problems to which it can be applied. Self-organizing networks are good 

at extracting hidden patterns from data. Multi-layer perceptrons are good at determining 

global maps. Associative memories are good at building up a map from local information. 

When considering a network architecture for use in a control system, the concerns are: the 

speed at which learning occurs, the stability o f the learning algorithm, the stability of the 

closed-loop system including the controller, the accuracy of the learned function, and 

often quality of the derivative(s) of the learned function as well.

The focus of this dissertation is a network of the associative memory type: CMAC. 

The CMAC has been successfully used in control systems at the University of New 

Hampshire since the mid 1980’s and elsewhere since the early 1980’s. Advantages of the 

CMAC include rapid learning convergence and the availability of dedicated hardware 

accelerators. The most attractive property o f the CMAC algorithm, however, is that it can 

be easily implemented on even low-end, general purpose hardware like PC’s and still 

operate rapidly enough to provide real-time control of complex systems like the General 

Electric P5 five axis industrial robot. The CMAC networks learns orders o f magnitude 

faster than a comparable multi-layer perceptron network trained with the backpropagation 

algorithm. Some disadvantages of the CMAC include that it is not a universal function 

approximator [23] like the multi-layer perceptron and the radial basis function networks. 

That is, there exists a family of functions (quantized analog or digital) whose internal rep­

resentation is orthogonal to the representational basis in the weight space and therefore 

cannot be represented by the CMAC at all. Despite this theoretical limitation, the CMAC 

has been shown capable of learning many of the functions required for control applica­

tions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7

CMAC is a local learning network which has both advantages and disadvantages. 

The local learning property contributes to the remarkable speed o f the CMAC algorithm 

since any access to the network for learning or for retrieving information only requires 

that some small number (typically less than 256) of the network weights must actually be 

accessed. This property can also contribute to particularly rapid learning convergence 

when learning periodic and well sampled functions. In contrast, global learning networks 

like multi-layer perceptron networks require that all the weights be adjusted for training 

and all the weights can potentially contribute to the network response for any input.

Problems with the local learning property appear primarily when the CMAC net­

work is only partially trained. If the training points are close enough together then the net­

work generalization, its ability to share information among related input states, will enable 

the network to give reasonable responses at points in the vicinity of trained points where 

training has not actually occurred. The particular difficulty in control system applications 

and especially for optimization type problems is that the derivative o f the network output 

can often be grossly in error even when the network output itself is acceptable. One solu­

tion to this problem is to train the function derivative into the network as an additional out­

put. This increases the complexity of the system by essentially requiring a completely new 

network to learn the derivative. Additionally, a measured or estimated derivative may be 

corrupted by considerably more noise than the non-differentiated signal. This can make 

learning more difficult although the learning process in CMAC is inherently a low-pass 

operation.

Another more insidious problem with the existing learning algorithm for CMAC is 

that it allows some of the weight values to grow without bound. This poses less of a prob­
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lem in the theoretical treatment than it does in application. In the case where CMAC 

weights are represented by 16-bit integers, for example, it doesn’t take too much attention 

from the learning algorithm to cause a weight value to grow beyond that which can be rep­

resented by 16 bits. As a result, a weight value can suddenly change from a large positive 

number to an equally large negative number or from a large negative number to a large 

positive number. The effect of such a sign change can be catastrophic for the output(s) to 

which that weight contributes. Indeed, the effects can ripple throughout the network. A 

weight magnitude monitor has been added to the UNH CMAC algorithm as a fix. For each 

set of weights accessed during a training cycle, the weights are also adjusted so that devia­

tions from the set average value are kept small. This allows the weight structure to be 

trained in while preventing runaway weights.

The new learning rule developed in this dissertation specifically addresses the 

above problems. The new rule implements weight smoothing and automatic magnitude 

control thereby improving the network function approximation, the behavior of the differ­

entiated network output, the network generalization and the overall stability of the net­

work weights. The impact of this new algorithm on CMAC learning speed and quality are 

examined and examples are given.

Chapter 1 presents an historical perspective on the development of both the neural 

network field and the adaptive control field to provide some context for the discussion of 

CMAC. Performance comparisons are drawn from the literature to highlight CMAC char­

acteristics and motivate its use in control systems. Chapter 2 covers the detailed informa­

tion about the CMAC algorithm, documenting the evolution o f the algorithm since its 

original development in 1972. Chapter 3 addresses the issue o f learning convergence and
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stability for the CMAC algorithm. Chapter 4 lays the groundwork for developing the new 

weight adjustment law. The CMAC is modeled as a set of simultaneous equations and the 

solution is determined by solving a constrained optimization problem in the CMAC 

weights. Chapter 5 explores the requirements derived from the matrix rule developed in 

Chapter 4. In particular, the CMAC generalization property is studied and a modified gen­

eralization technique is developed in order to support the new weight adjustment law. A 

crude first attempt at implementing the new adjustment law in actual CMAC code is pre­

sented along with experimental results demonstrating the performance of this approxima­

tion to the new weight update rule. Comparisons with other update rules are provided. 

Chapter 6 summarizes the work presented in this dissertation and draws conclusions about 

the results. Suggestions for future work are also presented.
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Chapter 1

Background

1.1 What are Neural Networks

For the purposes of discussion in this dissertation, a neural network is defined to be 

any computer algorithm, mathematical model, or piece of hardware whose structure is 

either a) modeled, in whole or in part, after the connectivity and physical functioning of 

the neurons in the human brain, or b) whose structure is intended to duplicate the function­

ing of some cognitive unit of the human brain without paying specific attention to proper­

ties of biological neurons. It is worth noting at this point that the neural network field is 

not the same as the field of study known as AI or Artificial Intelligence. The term AI 

refers to the field of symbolic knowledge representation where computer programs manip­

ulate some knowledge base in an effort to mimic the high-level decision making and rea­

soning capabilities o f the human brain/mind. The boundary between neural networks and 

AI is ill-defined at best since one can certainly argue that neural networks form some 

abstract representation of the problem they are trained to solve. Based upon where neural 

networks find application, it seems more appropriate to refer to them as low-level cogni­

tive blocks used primarily for pattern recognition and function learning and to refer to AI 

for high-level cognitive blocks used in applications like expert systems where large 

amounts of information recognizable to humans as knowledge are manipulated and pre-

10
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sented in a way that is useful and helpful to users of that system.

1.2 A Brief History of Neural Networks

The field of neural networks began roughly in 1943 when Warren McCulloch and 

Walter Pitts developed the first model for a computing element based on some of the prop­

erties o f  biological neurons[93]. Much work followed demonstrating how networks 

formed of interconnected McCulloch-Pitts neurons could perform many useful functions. 

In 1949 Donald Hebb [62] presented a theory for learning suggesting that information 

could be stored in connections between individual neural computing elements and pre­

sented a learning rule, known as the Hebbian learning rule, to perform this connection 

update. This was the beginning o f “machine learning.”

The first neural network machine was built by Marvin Minski in 1951 and con­

sisted o f 40 neural computing elements with adjustable interconnections. At the same 

time, researchers were developing a fledgling theory involving adjustable parameters in 

automatic control systems that would grow to become the powerful field o f adaptive con­

trols. In 1958 the neural computing element known as the “perceptron” was developed by 

Frank RosenbIatt[136].

The early sixties were a time of powerful developments in the field of neural net­

works. The development o f the ADaptive LINEar combiner (ADALINE), the Widrow- 

Hoff learning rule to train it, and later the MAD ALINE (for Many ADELINES) by Ber­

nard Widrow and Marcian Hoff were significant advances [154], [155]. The Widrow-Hoff 

rule is very general and still finds frequent application today. Rosenblatt’s publication of 

“Principles of Neurodynamics”[137] in 1962 energized the field by presenting a well 

developed theory to accompany the perceptron. Still, there were troubles. Perceptron net-
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works could not always solve the problems which they were presented. Even some very 

simple problems could not be solved, no matter how large the network was. The bubble 

burst in 1969 when Marvin Minski and Seymour Papert published “Perceptrons”[l 17] in 

which they analyzed the perceptron and showed that a single layer of perceptrons was 

incapable of solving certain problems. A shadow of doubt was also cast upon the multi­

layer perceptron networks. Little could be done with them at the time since no learning 

rule to adjust the network connections was available. The following is taken from “P.er- 

ceptrons”, pp. 231-232.

The perceptron has shown itself worthy of study despite (and even because 

of.) its severe limitations. It has many features to attract attention: its lin­

earity; its intriguing learning theorem; its clear paradigmatic simplicity as a 

kind of parallel computation. There is no reason to suppose that any of 

these virtues carry over to the many-layered version. Nevertheless, we con­

sider it to be an important research problem to elucidate (or reject) our intu­

itive judgment that the extension is sterile. Perhaps some powerful 

convergence theorem will be discovered, or some profound reason for the 

failure to produce an interesting '‘learning theorem” for the multilayered 

machine will be found.

In the wake of this prediction regarding multi-layer perceptrons, the entire field of neural

network study practically vanished over night! The development of that interesting learning

theorem was only five years away but it would languish in obscurity for another twelve

years beyond that.

During the seventies scattered researchers continued their work on various types of 

neural networks. Kunihiko Fukushima [47] developed a class of network architectures 

known as neocognitrons for biologically motivated visual pattern recognition. Tuevo 

Kohonen[70] and James Anderson[13] were working independently on associative memo-
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ries which are more behaviorally based and less structurally based on brain-like activity. 

Stephen Grossberg[60] developed network architectures and theories that eventually led 

to his Adaptive Resonance Theory. Although Minsky and Papert’s “interesting learning 

theorem,” the solution to the problem of training networks consisting of multiple layers of 

perceptron, was developed in 1974 by Paul Werbos [193], it went completely unnoticed 

by neural network researchers until much later. Another development that achieved little 

notoriety at the time was the 1972 doctoral dissertation by James Albus in which he 

described his idea for the Cerebellar Model Articulation Controller (CMAC)[2]. It is inter­

esting to note that the mathematical model of cerebellar function developed by Albus in 

1971 [1] was also developed independently by David Marr [90] in Great Britain in 1969. 

Much more will be said about the CMAC since its analysis and improvement are the cen­

tral topics of this work.

The learning rule developed by Werbos and now known as backpropagation first 

attained widespread recognition by neural network researchers in 1986 when David 

Rumelhart, Geoffrey Hinton and Ronald Williams[139] presented their independent 

development of error backpropagation for the training of multi-layer perceptron networks. 

It was soon discovered that D. B. Parker had also independently developed the same algo­

rithm in 1982 and called it Learning Logic. The backpropagation algorithm caused a tre­

mendous resurgence of interest in neural networks (particularly in multi-layer perceptron 

networks).

The CMAC algorithm also began receiving some new attention in the 1980’s. Ersu 

et. al. [36] began working with the CMAC algorithm in 1981. They called their algorithm 

the Associative Memory System (AMS) and applied it primarily to simulated systems or
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to systems with slow dynamics (sampling rates on the order o f 1 second). By 1986 W. 

Thomas Miller [99], at the University of New Hampshire, had refined the Albus CMAC to 

the point where it could be applied to the real-time control o f complex systems with faster 

dynamics (15 states, sampling rates on the order of 10 milliseconds). Dedicated CMAC 

hardware was developed at the University o f New Hampshire in 1990 reducing CMAC 

response time to 1 millisecond or less.

It was in the late 1980’s that a detailed analysis of the CMAC algorithm began. 

Ellison, in 1988, first analyzed the convergence properties of the Albus CMAC. Subse­

quently, Militzer and Parks [94][128], Kraft and Campagna [74], Wong and Sideris [158], 

and Brown [19] have all studied the learning convergence of the CMAC neural network. 

Carter et. al. [28] has studied the fault tolerance of the CMAC.

1.3 Some Examples of CMAC Applications

The Robotics Laboratory at the University of New Hampshire has been applying 

the CMAC network to the solution of a wide assortment of problems since the mid 1980’s. 

Applications of the CMAC neural network include the following: ‘‘Application of a Sim­

ple cerebellar model to geologic surface mapping”[6l] (1991), “Deconvolution and Non­

linear inverse filtering using a neural network”[56] (1989), “Deconvolution using a 

CMAC neural network”[57] (1988), “Application of a general learning algorithm to the 

control of robotic manipulators”[102] (1987), “Real time application of neural networks 

for sensor-based control of robots with vision”[104] (1989), “Pattern Recognition using a 

CMAC Based Learning System”[63] (1988), “Practical demonstration of a learning con­

trol system for a five axis industrial robot”[64] (1988), “Real time dynamic control of an
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industrial manipulator using a neural network based learning controller” [105] (1990), 

“Bipedal Gait Adaptation for Walking with Dynamic Balance”[96] (1991), “Real-Time 

Neural network Control o f a Biped Walking Robot”[95] (1994), “Rapid Learning Using 

CMAC Neural Networks: Real Time Control of an Unstable System”[97] (1990), “On- 

Line Hand-Printed Character Recognition Using CMAC Neural Networks’̂  115] (1994), 

“A CMAC-based cursive handwriting recognizer for the Windows for Pen Computing 

operating environmental 4] (1994), Real-Time Control of a Robotic Pole Balancing Sys­

tem Using Complementary Neural Network and Optimal Techniques’̂  122] (1994), 

“Approximate nonlinear optimal control using CMAC neural networks’̂  12] (1994), 

“Control of pH Using a Self-Organizing Control Concept with Associative Memo­

ries”^ ]  (1983), “Shape recognition using a CMAC based learning system”[55] (1987), 

“Application of Associative memory Neural Networks to the Control of a Switched 

Reluctance Motor”[135] (1993), “Dynamic Control o f a Parallel Link Manipulator using a 

CMAC Neural network”[54] (1993), and “Analyzing Biological Signals with CMAC, A 

Neural Network”[156] (1991).

1.4 A Brief History of Adaptive Controls

The field of adaptive controls evolved essentially in parallel with, yet isolated 

from, the field of neural networks. Where neural network research attempted to produce 

some rudimentary brain-like behavior from their algorithms, the adaptive control 

researchers were developing solutions to problems by extending the existing linear system 

theory with adjustable parameters and supporting this extension with mathematical rigor.

The process o f adaptive control can typically be divided into two steps: system 

identification and system control. Adaptive control techniques are applied when the plant

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



16

to be controlled has unknown parameters but an assumed linear functional form. System 

identification is the process of converting plant input-output measurements into estimates 

of the linear function parameters. These new plant parameter estimates are then used to 

modify parameters in the system controller with the goals of stable control and good per­

formance relative to some performance measure.

It is also possible to combine the two steps of identification and control so that 

they occur simultaneously in a process called simultaneous identification and control. 

Under this approach the controller parameters are adjusted directly based upon system 

input-output measurements. This scheme is also referred to as direct control for this rea­

son. Control with separate identification and control is also referred to as indirect control. 

For linear systems this theory is well developed and includes detailed stability analyses. 

Two different approaches to this adaptive control design are the Model Reference Adap­

tive Control [194], [186] (MRAC) strategy and the Self Tuning Regulator [175], [165] 

(STR) strategy.

The goal of stable control with good performance is very elusive. Theoretical guar­

antees of system stability and performance are difficult to achieve even under very restric­

tive assumptions. MRAC systems are designed from the standpoint of guaranteed stability 

while STR systems have no guaranteed stability results. Both have found wide application 

and both have advantages and disadvantages governing where they may best be applied.

There are typically two kinds of control problems to be solved. The category into 

which a particular control problems falls depends primarily upon the control objective. 

Essentially, control is about keeping the plant outputs Yp within some prescribed limits. 

When these limits are defined in terms of some “desired” plant behavior Yd, the problem
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is of the model reference type. The goal is to keep the error e -  Yp - Y d within the pre­

scribed limits. The choice of mathematical form for Yd is important for tractability and Yd 

is usually implemented as the output o f a reference model — hence the name of this control 

strategy. If Yd is a constant, the control problem is referred to as “regulation” and if  Yd 

varies with time, the control problem is referred to as '‘tracking.” Both direct and indirect 

implementations of MRAC are possible.

It can be argued that the first mainstream adaptive control paradigm was the 

“M.I.T. Rule” developed by Whitaker et al [194] of the Massachusetts Institute of Tech­

nology in 1961. The M.I.T. Rule was a heuristic method for designing a model reference 

controller where the parameters of the controller were adjusted to minimize an error func­

tion using a gradient approach. The M.I.T Rule was difficult to analyze and Parks and oth­

ers soon discovered that it could lead to instabilities even for simple systems. The 

generally accepted solution to this problem was to redesign the model reference adaptive 

controller using Lyapunov’s direct method [186], [180] so that system stability was guar­

anteed from the outset.

The self-tuning regulator was originally proposed by Kalman [175] in 1958 for the 

stochastic minimum variance control problem. The STR has been studied extensively and 

many variations exist [165], [166]. STRs find application in noisy systems and are divided 

into two subcategories, explicit estimation and implicit estimation, corresponding to indi­

rect and direct MRAC respectively . Explicit STRs consist of an explicit estimation o f the 

process to be controlled followed by a tuning of the regulator parameters; implicit STRs 

are based on an implicit estimation of the process and a direct update of the regulator 

parameters.
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1.5 Prior Work in CMAC Learning Convergence

There are several groups o f researchers who have published or are working on 

proofs of CMAC learning convergence. All of these proofs are for the open-loop learning 

case. Openloop learning is defined to be the case where a CMAC neural network is placed 

in parallel with a system to be modeled. The CMAC is trained to duplicate the input-out- 

put relationship o f the system being learned. Figure 1.1 shows a typical block diagram.

Figure 1.1: Layout for open-loop CMAC 
training.The CMAC is trained to dupli­
cate the input-output behavior of the Ref­
erence Plant.

In 1988 Ellison published “On the Convergence of the Albus Perceptron” [34] 

where it was proved using a rank argument on the system of linear equations solved by the 

CMAC that, for the I-dimensional case, the optimum weight vector for which the output 

error was zero always existed. Since the I-dimensional case has fewer equations than 

unknowns, there are infinitely many weight vectors for which the output error is zero.

Parks and Militzer published their CMAC convergence proof in 1989 [128]. The 

analysis was based on a geometrical interpretation of the CMAC algorithm as a projection 

operation in the weight space. When convergence to a point in the weight space was indi-

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



19

cated (i.e. a unique weight vector exists), a Lyapunov function was constructed to prove 

convergence. When the convergence was to a limit cycle, an eigenvalue analysis was used 

to determine that all the eigenvalues were either on or inside the unit circle. In another 

paper, also published in 1989 (a similar paper, “A Comparison o f Five Algorithms for the 

Training o f CMAC Memories for Learning Control Systems”, was published in Automat- 

ica in 1992), Parks and Militzer examined the convergence properties o f five different 

CMAC update laws [130]. One of these update laws was the standard CMAC law for 

which they had already proved convergence. Convergence proofs were not developed for 

the other training rules.

In 1991 Ellison published a paper “On the Convergence o f the Multidimensional 

Albus Perceptron” [35]. 1992 saw more proof papers on the convergence of CMAC. First, 

in January, Wong and Sideras [158] equated the CMAC algorithm with iterative Gauss- 

Seidel solution for a set of linear equations and claimed that CMAC always converged to 

arbitrarily small output error. They presented a detailed proof for a 1-dimensional CMAC 

(maps 9? —> 9?). They also claimed that the proof could be extended to multidimensional 

CMACs (maps 9?" —> 91OT) but Brown and Harris [21] have demonstrated that this exten­

sion does not always exist in the multidimensional case.

In 1993, Campagna and Kraft first used a Lyapunov function of the weight error 

between the CMAC being trained and a fully trained CMAC representing the desired 

function to show that learning always converges for values of the learning rate parameter 

between 0 and 2 as long as it could be postulated that a target set o f weights existed. This 

analysis was an extension of some of Parks and Militzer’s analysis in that the learning rate 

parameter was allowed to vary as opposed to being fixed at the value 1. Brown, in his
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work on Neurofiizzy Adaptive Modeling and Control [19], developed several theorems on 

CMAC’s ability to exactly model certain classes o f functions.
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Chapter 2

The CMAC Neural Network

2.1 CMAC Description and History

The CMAC algorithm, developed by James Albus in the early 1970’s as a model 

of human cerebellar functioning suitable for function approximation and manipulator con­

trol, is a mapping from a set o f possible inputs to a collection of weights. The CMAC is 

based on the perceptron developed by Rosenblatt and it has the following properties:

• Each of the inputs maps to exactly C o f the weights whose values are summed 

together to produce the CMAC output. This number C is often called the generaliza­

tion size.

• Inputs that are “similar” or “close” to each other in the input space will map to many, 

but not all, of the same weights thus producing outputs that are also “similar.” This 

property is known as generalization and makes it possible for the CMAC to produce 

an appropriate (or approximately so) response to an input that has not been presented 

before if that input is sufficiently similar to data the CMAC has already trained on.

• If the inputs are sufficiently “distant” from each other in the input space, the outputs 

will be independent.

Figure 2.1 shows the high-level representation of the CMAC algorithm illustrating 

the mapping of sets from the input space to sets of real memory location in the space of

21
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computer memory. An input vector is a collection o f N measurements representing sys-

ln put/State 
Space

Conceptual
Memory

A ’

Random

Mapping

Figure 2.1: High-level, set-oriented representation of the CMAC.

tern inputs, systems states, and/or desired system responses. Each input maps via the 

CMAC algorithm to a set of conceptual memory locations in the space labelled A in figure 

2.1. The number of elements in the input space grows very rapidly with the number of 

inputs and particularly with the number of discrete values each of these inputs may take 

on. Imagine, for instance, a CMAC with four inputs where each input is sampled analog 

data with I O-bit resolution. The resulting input space has 240 or over 1 trillion possible 

input vectors. The corresponding A memory must be at least as large. Since most systems 

only visit a small fraction of their total possible input space, a technique called hashing is 

used to map the A memory into a more practically sized A' memory. While hashing leads 

to a tremendous reduction in the memory requirement o f the CMAC, this benefit is not 

without an attached cost. Hashing makes it possible for widely separated vectors in the
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input space to be mapped to one or more of the same weights thereby violating the third of 

the above CMAC properties and resulting in a condition known as a collision or hashing 

collision. This problem can be mediated to some extent by utilizing certain collision 

avoidance enhancements to the algorithm.

Figure 2.2 is a diagram of a two-input Albus-type CMAC as implemented by the 

basic UNH CMAC algorithm. Each variable in the input vector S  is processed by a col-

&
nputefisors

/
\

State Space 
Detectors

Weights

^ Multiple Field 
110 Total Detectors 

Units
O  Logical AND unit 
o  Logical OR unit

Figure 2.2: A simple example of a CMAC neural network with two inputs and one 
output. The generalization parameter, C, is set to 4 and only a partial set of state 
space detectors is shown.

lection of input sensors with overlapping regions of sensitivity or receptive fields. In this 

case, each input sensor produces a binary output which is ON if the input falls within its
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receptive field and is OFF otherwise. Because of this, the Albus CMAC is often referred 

to as the Binary CMAC. The width of the receptive field of each sensor is what leads to 

input generalization. The offset of the adjacent receptive fields is a measure of the 

imposed quantization o f the input space. In a sampled data system the input space is 

already broken up by the sampling process into a number of discrete values determined by 

the number of bits used to represent the data. The CMAC quantization parameter deter­

mines the distance, measured in terms of some number of these discrete values, that an 

input must change by in order to activate a new receptive field.

A lower resolution view of an input variable is often quite sufficient for learning 

applications and sometimes masking small variations even helps to prevent or reduce the 

learning of system noise. Each input variable excites exactly C input sensors where C is 

the ratio of generalization width to quantization width. For the rest of this work it will be 

assumed that the parameter C  and the generalization width have the same value. This, of 

course, implies a quantization parameter value of unity.

The binary outputs of the receptive fields are combined in a series of logical AND 

units called state-space detectors. Each state-space detector receives one input from the 

receptive field sensors for each of the input variables. Only the state-space detectors hav­

ing all inputs in the logical ON state produce an output in the logical ON state. This effec­

tively creates a new sensor with a multidimensional receptive field. For the two- 

dimensional case, the receptive field of a state-space detector is the interior of a square in 

the input space. In general the state-space detector receptive field is the interior of a hyper­

cube in the input space. The state-space detectors are selectors for memory locations in the 

A memory.
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If the receptive field sensors were fully connected to the state-space detectors then

VC  memory locations m the A memory would be selected. To avoid having an unman­

ageable number o f state-space detectors, the input sensors are connected in a sparse and 

regular way such that exactly C state-space detectors are ON for any input vector. An 

effective way to visualize the input space coverage provided by this set of state-space 

detectors is to divide them into C classes such that the receptive fields for the detectors in 

each class completely cover the input space without overlap. These hyper-planes are then 

stacked with their origins displaced from one another in a predefined way. Each vector in 

the input space excites exactly C state-space detectors. The Albus receptive field place­

ment results in an ordered distribution of receptive fields along the main hyper-diagonal 

and parallel minor diagonals of the input space. In other words, the displacement of the 

receptive field hyper-planes is positive one unit along each axis o f the input space.

Although the Albus receptive field placement is easy to calculate and it does pro­

duce even, regular coverage in the input space, it results in highly nonuniform sampling in 

the weight space. The larger the value of C and the higher the input space dimension, the 

greater the non-uniformity becomes. This phenomenon along with alternative receptive 

field center distribution schemes has been explored in detail [9], [66], [129], The effect of 

this nonuniform sampling is to produce excellent generalization along certain trajectories 

in the input space and poor generalization along other trajectories. An [9], in his 1991 doc­

toral dissertation, developed a heuristic receptive field placement that produced a much 

more uniform distribution in the weight space. The solution explored by the above 

researchers is to arrange the receptive field centers in a manner analogous to sphere pack­

ing. This new mapping from input sensors to state-space detectors still results in uniform
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sampling in the input space and approximately uniform sampling in the weight space. 

Yan-Ping Jia [66] in her masters thesis explored CMAC weight allocation using the math­

ematically rigorous results obtained from the exploration o f the sphere packing problem. 

To date, results are only available for low dimension problems.

The CMAC was more widely used in control systems beginning in the early 

1980’s with Ersu et. al. who applied it primarily to simulated systems or to systems with 

slow dynamics (sampling rates on the order o f 1 second). They called their algorithm the 

Associative Memory System or AMS. By the mid 1980’s, Miller had refined the CMAC 

algorithm to the point where it could be applied to the real time control of complex sys­

tems with faster dynamics (15 states, sampling rates on the order of 10 milliseconds). In 

1990 hardware was developed that reduced CMAC response time to 1 millisecond or less 

depending upon the generalization size. Reay et. al.[l35] have also been using the CMAC 

as part of their control system research for the control of switched reluctance motors.

There has also been much theoretical interest in the CMAC. Militzer and 

Parks[94], Kraft and Campagna[74], Wong and Sideris[158], and Brown[19] have all 

studied the learning convergence of the CMAC neural network. Carter et. al.[28] has stud­

ied the fault tolerance o f the CMAC.

Much can now be said about the properties of the CMAC and some of the impor­

tant ones are summarized below:

• Since the CMAC is a  local learning algorithm, only a small number of network

weights need to be accessed on any pass through the network. This makes the CMAC 

especially well suited to real-time applications and allows for good performance even 

on relatively inexpensive general purpose hardware.
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• The theoretical analysis of CMAC shows that learning convergence can often be guar­

anteed in open-loop systems. The empirical evidence shows that it is usually well 

behaved in closed-loop systems as well.

In conjunction with even a poorly tuned controller, the CMAC generalization property 

often enables the network to essentially guide its own learning by progressively 

assuming control o f the plant. This makes the CMAC an excellent tool for system per­

formance enhancement since it can compensate for small system nonlinearities which 

have been ignored or linearized for the design of a traditional linear controller.

• Although trained information is distributed across a large number of network weights, 

the CMAC is still susceptible to the phenomenon of single weight dominance where 

one or two weights are the primary contributors to the network response. One conse­

quence of this is the occasional uncontrolled growth of a single weight leading to 

dynamic range problems, particularly with integer weights. This also reduces the fault 

tolerance of the network considerably.

• Partial derivative information derived from the CMAC output is extremely unreliable, 

particularly in regions where the training exemplar density is low. Local generaliza­

tion effects often lead to large magnitude errors and even sign errors in calculated par­

tial derivatives.

2.2 CMAC Parameters

A detailed explanation of the parameters is left to the user’s guide in the appendix. These

parameters are for the integer CMAC typically used at the University of New Hampshire.

2.2.1 Quant

The quantization parameter quant determines the amount of sampling performed
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on the CMAC input variables. If the value o f quant is 1, then all integer points in the input 

space are available for training. If the value of quant is set equal to 2, then the sampling is 

for every other sample in the input space. This parameter can be used, for example, to 

ignore the noisy least significant bits of data provided by some analog-to-digital converter.

2.2.2 Num_state

The parameter num_state tells the CMAC how many input states there are. For 

the 2-dimensional problems being studied here, num_state is always 2.

2.2.3 Num_resp

The parameter num_resp is the number of responses the CMAC is to provide for 

each input vector presented. An independent set of weights is allocated for each response.

2.2.4 Num_ceII

The parameter num_cell is the number of CMAC weights across which the input 

information will be spread during training. In the standard CMAC, it is also the number of 

weights which are summed together to produce an output during the remember phase. 

This parameter is also known as the generalization parameter.

2.2.5 Mem size

The parameter mem_size represents the number of integer memory words allo­

cated to store the information trained into the CMAC. Mem_size locations are allocated 

for each o f the desired outputs plus mem_size locations for collision avoidance tracking.

2.2.6 Collision_avoidance

When collision avoidance mode is enabled, learning performance is relatively 

independent of the amount of memory allocated as long as there is enough. Performance 

degradation is fairly abrupt when collision avoidance is enabled whereas it is gradual
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when there is no collision avoidance. A CMAC without collision avoidance enabled 

requires much more memory than does a CMAC with collision avoidance to achieve sim­

ilar learning performance. The parameter coIlislon_avoidance takes on values of I for 

avoidance disabled and 0 for avoidance enabled. Collision avoidance mode does not elim­

inate the possibility o f a learning collision; it merely makes such an event much less 

likely.

2.2.7 CMACJbeta

The parameter cmacjbeta, traditionally knows as beta, determines the weighting 

of new information as it is combined with existing information stored in the CMAC. From 

a theoretical standpoint, the value of cmac_beta can vary over the continuum from 0 to 2 

with typical use restricted to the range from 0 to 1. For the UNH CMAC, cmacjbeta takes 

on positive integer values beginning at 0. Since the UNH CMAC is an all-integer network, 

integer values of cm acjbeta are converted to multiplicative scaling factors of the form 

1 / 2 cmac-beta which can be implemented very efficiently in the computer as binary shifts.

In this thesis we will attempt to motivate “weight smoothing” during learning as a 

way to improve CMAC generalization, fault tolerance, and the quality of partial deriva­

tives calculated from partially trained CMAC function approximations. The methodology 

will be to represent the CMAC as a collection of linear equations in the network weights. 

We will treat this CMAC representation as a constrained optimization problem and dem­

onstrate the potential for improved performance available from this batch mode training. 

We will then take the batch mode optimization result and develop an iterative form to 

more closely represent the typical CMAC and comment on the results.
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2.3 The Matlab CMAC Toolbox

The basis for much of the research in this dissertation is the publicly available 

UNH CMAC C code. Since it was known that visualization would play a key role in this 

research, one o f the first tasks was the porting o f the UNH CMAC code to the Matlab 

environment. The resulting MAT_CMAC toolbox has already been used as a research tool 

in other thesis work [46]. The process of creating the MAT_CMAC toolbox consisted of 

writing a Matlab mexfunction wrapper in C for each of the externally available functions 

in the UNH CMAC code. In addition to the straight port o f the CMAC code, numerous 

extensions were added in support of this research. Table 2.1 is a listing of the

Table 2.1 MAT_CMAC neural network toolbox

adjust update CMAC weights with a correction you determine

aloccmac create a new CMAC

clrwgts set all CMAC weights to zero

delcmac delete a CMAC from the matlab environment

learn update CMAC weights with standard algorithm

memusage estimate memory usage by finding all nonzero weights

*reg_cmac register a new CMAC with the CMAC manager

remember get a response(s) from a CMAC

rstrcmac create a new CMAC and load it from a file

savecmac save a CMAC to a file

mapinput get weights and receptive field shapes corresponding to an input

*nh_coord get coordinates of receptive field comers activated by a particular input

setrfdis set receptive field displacement vector for a CMAC

*getrfdis get receptive field displacement vector and size from a CMAC

setrfmag set receptive field magnitude table for a CMAC

*getrfmag get receptive field magnitude table and size from a CMAC

*set gen set CMAC generalization parameter (use with caution)
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Table 2.1 MAT_CMAC neural network toolbox

*get_gen get CMAC generalization parameter

*comcoord find coordinates common to two lists of coordinates

*coomatch generate a matrix indexed by state representing number of matches 
between two lists of coordinates

*coomat2 faster version o f coomatch for most cases

*coomat2n normalized to only count matches once

*set_sgen set CMAC super generalization parameter

*get_sgen get CMAC super generalization parameter

MAT_CMAC toolbox functions. An asterisk beside the function name indicates that it is 

an extension developed as part of this research. Compiled MAT_CMAC toolboxes exist 

for both Matlab 4.2 and Matlab 5.1 on the PC. It has also been successfully compiled 

under UNIX on an Indigo workstation. Hie PC compilations were performed using 

Microsoft Visual C++ ver 5.0.
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Chapter 3

CMAC Stability

In this chapter the stability and convergence properties of CMAC networks are 

analyzed. This dissertation deals only with the open-loop case. The ability of CMAC to 

learn functions is studied. The class of linear and nonlinear systems which can be ade­

quately represented by a CMAC neural network is considered for this effort. The novel 

aspect of this approach to a convergence proof for the CMAC algorithm is that conver­

gence is shown not to the original system, but rather to its CMAC equivalent. Figure 3.1

Reference Plant

sOsl

y(k)

Figure 3.1: Layout for open-loop 
CMAC training.

shows the block diagram for open-loop CMAC training in the single-input, single-output 

case. The assumptions are:

• The reference plant is represented with arbitrary accuracy, over some region of inter­

est, as a completely trained CMAC neural network.

32
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• The reference plant CMAC and the CMAC being trained have the same size and form 

i.e. the same input, u, will select the same weights from the respective weight vectors 

to produce the output.

3.1 Proof for Open-Loop Learning in the Scalar Case

Define Yd as the vector of all possible outputs from the reference plant CMAC 

where S  is the selection matrix and wd is the constant vector of weights.

Yd = S_M,d Eqn 3.1

The selection matrix S is determined by the mapping from the input variable, u , to the 

weight space as defined by the CMAC algorithm. The input, u , is quantized into m distinct 

levels resulting in the selection matrix, S e. {0,1} m * n , where n is the number of weights 

in the weight vector wrf. This function causes a particular input u to map to a unique row 

of S.  This relationship is denoted by:

s.,„ = ith row of S at time k 

where the subscript for a row of S is:

Eqn 3.2

Each row, s , of S  has exactly C (generalization size) ones with all other elements in the -*(*) —

row being zero. The time index k in the subscript denotes that the active row of the selec­

tion matrix can vary from time step to time step as would be expected with a time varying 

input.

The ith output, y di(k) , is defined as follows:

i = im -r  Eqn 3 3
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wd e * n* \  f ixed  ^ ) 6 { a i } lXn

The defining equations for the output of the CMAC being trained are given below. As a 

result of the second assumption above, the selection matrix, S,  is the same for both 

CMACs.

Y = Sw(k) Eqn 3.4

y m  = U k ) ^  Eqn 3’5

”  s  *  f,w  £ W K

Define e{k) to be the output error at the i th  time step. This error is directly a result of the

weight error between the reference CMAC and the training CMAC, denoted as Aw(k) .

e(k) = = f ;U)Av<£) Eqn 3.6

Select the following Lyapunov function:

V(k) = Aiv(£)TAw(k) Eqn 3.7

The goal is to show:

V{k+ l)<  V{k) Vk Eqn 3.8

Choose the standard CMAC update law and write it as follows

A * *  + I )—Aw(k) = - f  Eqn 3.9

where p is the learning rate.

Substituting into V(k + l ) gives:

V(k+ 1) = V(k) + ( p 2 _ 2 p ) l^ l  Eqn 3.10

Since the term P2—2P is strictly less than zero for all P such that 0 < p < 2 and since e~
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and C are both strictly greater than zero, then V(k + 1) < V(k) and the learning does not 

diverge by the second method of Lyapunov. Learning continues until there is zero output 

error. Under conditions of persistant excitation, where all desired input states are repeatedly 

visited, the condition of zero output error for all inputs equates to zero weight error since 

the output error is directly related to error in some of the weights by Eqn 3.6.

3.2 Extension to the Multiple-Input, Single-Output Case

The above results are now extended to the case where the input to the CMAC is 

composed of multiple signals.

In this case,

u(k) = [u l(k)u2(k)...u^k)]T Eqn 3.11

which leads to Eqn 3.1 where

v_ '

x  n

S e {  a  1}

and mi is the quantization level of the ith component of the input vector.

From this point the proof is identical to the proof for the single-input, single-output 

case. While there is good agreement that the single-input, single-output CMAC will 

always converge ([19], [158]), the conditions under which the multidimensional CMAC 

error will converge to zero are less well understood. This proof shows that the excited 

weights in the trainable network will converge to the corresponding target weights.

3.3 Extension to the Multiple-Input, Multiple-Output Case

The extension to the multiple-input, multiple-output case can be accomplished by 

assigning a multiple-input, single output CMAC to each of the outputs being learned.
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Eqn 3.12

This representation is consistent with the practice of vector weights thereby enforcing a re­

quirement that all CMACs use the same selection matrix. The following Lyapunov function 

is chosen:

Since the individual Vj(Jc) have been shown to be Lyapunov functions, the sum must be al­

so. This result indicates that the multiple-input, multiple-output CMAC will converge pro­

vided that the individual multiple- (or single)-input, single-output CMACs converge.

3.4 Discussion

This dissertation presents a Lyapunov-based proof for the convergence of open- 

loop learning for CMAC. The only assumptions are that (1) the function being learned can 

be adequately represented by a fully trained target CMAC and (2) both CMACs are the 

same size so that their weight selection properties are the same.

The issue of the existence of a fully trained target CMAC is not addressed in this 

paper. Brown [19] examines some of these issues in his work. Further, this proof in no 

way guarantees that the weights being updated will eventually match the weights of the 

fixed network. It says only that the Lyapunov function will decrease for as long as there is 

a nonzero output error. At the point where the output error is zero for all training inputs, 

the CMAC weights will have converged to a solution, but the possible equality in Eqn 3.8 

allows for the existence of a nonzero weight error. Computer simulations have shown that 

the Lyapunov function decreases monotonically until learning is complete even though 

the system output error does not decrease monotonically.

Eqn 3.13
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In order to make a statement about global asymptotic convergence in the weight 

space, a requirement similar to observability in linear systems needs to be imposed. All 

weights must appear in the output error in a linearly independent manner. This requires 

persistent excitation of all the weights by the input. Asymptotic convergence of all the 

weights would be guaranteed under these conditions. Efforts in this dissertation have cen­

tered on forcing the CMAC weights to converge to a particular solution instead of allow­

ing it to select from the large family of acceptable weight solutions as is the case with the 

present algorithm.
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Chapter 4

CMAC Weight Smoothing

4.1 The CMAC as a Collection of Linear Equations

Begin by defining Y as the vector of all possible outputs from the CMAC where S 

is called the selection matrix and w  is the vector of weights.

Y = Sw Eqn 4.1

We are interested in the case of partial network training so there will be fewer 

training points than the total number of possible points in the quantized input space. In 

fact, for the case of all dimensions higher than one, training at all or almost all the possible 

inputs in the quantized space results in a selection matrix which is rank deficient. The 

allowable percentage of trainable input points before rank deficiency occurs also varies 

with the receptive field center placement strategy.

The selection matrix S is determined by the mapping from the input variable, u , to 

the weight space as defined by the CMAC algorithm. For the matrix analysis, the final 

step of hashing the weight memory addresses for improved storage has been omitted. For 

the Albus CMAC, the input, u , is quantized into m distinct levels resulting in the selec­

tion matrix, S & {0,1} r x ” , where n is the number of weights in the weight vector w and 

r <m  is the number of states in the quantized space which are actually used to train the

CMAC. Details of this map may be found in [2], [107]. Each quantized input u(k) maps to

38
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a unique row of S.  This relationship is denoted by:

s.,., = ith row of S at time k ./(*)

where the subscript for a row of S is:

‘(k) = A uik)) Eqn 4.2

For the Albus CMAC each row, s  , of S has exactly C (generalization size) ones 

with all other elements in the row being zero. The time index k in the subscript denotes 

that the active row of the selection matrix can vary from time step to time step as would be 

expected with a time varying input.

The ith output, , is a scalar in this discussion, although a vector formulation 

can be developed, and is defined as follows:

= £,-(*)"• Ecln 4 -3

m n x  I 1 x n
”  e  R  ? , » > s  « * >

A cost function can be defined as follows for the constrained optimization problem with Z  

representing the training sample vector:

J  = ^wlOw + X.‘( S w - Z )  Eqn 4.4

More will be said about the O matrix shortly. It is this matrix that determines the extra con­

straints the network weights must satisfy in addition to solving the original set of linear 

equations.

Finding the minimum of the cost equation in Eqn 4.4 selects the weight which best 

meets the constraints specified. For this research, the weight vector having minimum dif­

ference between adjacent values and also having small magnitudes is the vector selected
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by this process. Taking the partial derivative of the cost function with respect to the 

weights,

VHy  = Q w + t f X Eqn 4.5

and invoking the first order necessary condition (VUJ  = 0) for the minimization of J,

= 0 yields

w = Q~[St(SQ~lSl)~lZ  Eqn 4.6

The solution represented by Eqn 4.6 is a batch mode weight update law in that it 

requires all available training data to be present. It will be optimum with regard to what­

ever penalty matrix 0  is chosen. In general, the O matrix must be symmetric and positive 

definite. For example, the minimum length O matrix is the identity matrix while the min­

imum difference O matrix takes the following form for a case with 4 weights and extends 

along the diagonal for cases with a greater number of weights:

O = a

1 -1 0 0 1 0 0 0
- I 2 -1 0 + P 0 1 0 0
0 -1 2 -I 0 0 1 0

_0 0 -1 1_ 0 0 0 1_

, with (a  > 0)and(P > 0) Eqn 4.7

The portion of the O matrix pre-multiplied by a  represents a penalty on the dif­

ference between adjacent weights. This difference penalty is used to enforce the desired 

amount of smoothness in the weights. The portion of the 0  matrix pre-multiplied by P 

represents a penalty on the magnitude of the weights and is the minimum length penalty. 

A small amount o f magnitude control is usually applied so that O is non-singular. This 

minimum weight magnitude portion of the O matrix also serves to control the problem of 

certain CMAC weights creeping off to infinity as the result of repeated, uncompensated 

updates during learning, thereby stabilizing the CMAC weight dynamic range.
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4.2 Some interpretations

Many optimizations are possible. The optimization of quadratic costs is the focus 

of this work. Several important parameters are seen to influence the nature of the optimi­

zation. These include: the definition o f the term being optimized, the choice of penalty 

matrix O, and, for these CMAC optimizations, influences on the weight selection matrix, 

S,  such as the receptive field placement strategy and whether the receptive fields are 

tapered. Several optimizations are described below along with the traditional CMAC 

update law. The goal of this research is to extract information from formulating the 

CMAC as an optimization problem and then apply it to the CMAC learning algorithm.

4.2.1 Matrix Formulation of the Albus CMAC Weight Update Law

The Albus CMAC weight update law is a local update law. Network weights are 

updated according to the following rule:

where wa is the weight vector before the new data point appeared, d  is the new data value, 

s i(k) is the weight selection row vector for this location in the input space, P is the learning 

rate, C is the number of weights contributing to the CMAC response known as the gener­

alization factor, and w is the new weight vector after update. In words, an error value is 

calculated between the desired network response d  and the response produced by the ex­

isting network weights for that location according to the CMAC response law. This error is 

scaled by the learning rate and this new correction is added to each of the C contributing 

weights. This update law is made local by the presence of s^k) premultiplying the error.

Eqn 4.8

w = w0 + JlU)fpe Eqn 4.9
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Only the weights contributing to the CMAC response at this location are corrected. This 

simple algorithm results in very rapid network performance as compared with global up­

dating networks like the multi-layer perception.

4.2.2 Optimization of New Weights

The cost function for this problem is defined in Eqn 4.4 and the solution for batch 

mode weight updating is given by Eqn 4.6 and repeated here for convenience.

w =

For the case where the penalty matrix O is the identity matrix, this solution takes the form 

of the pseudoinverse of the selection matrix S  for the underdetermined case and is the min­

imum length solution and optimum in the least squares sense.

This rule is a batch mode weight assignment rule meaning that all the data are 

required in order to calculate the weight values and the weight values themselves are 

assigned as one operation. This is in contrast to the CMAC rule which is sequential and 

iterative in nature. Nevertheless, certain properties can be extrapolated from the study of 

the matrix O lSt(SO lSt) and will be presented later in this section.

4.2.3 Optimization of Weight Adjustments

The cost function for this problem is defined as follows:

J =  ^Aw‘OAw + \ ‘(S(wo + Aw)) — Z) Eqn 4.10

The solution to the minimization of Eqn 4.10 is:

Aw = Q~lSf(SQ~lS f ) ~ \ z - S w )  Eqn 4.11

w = vt  ̂+ Aw Eqn 4.12

This solution is much closer to the Albus CMAC update law especially when the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



43

penalty matrix O is the identity matrix. Again the solution takes the form of the pseudoin­

verse and in this case the weight update is minimum length. Unlike the Albus CMAC 

weight update law, the impact of adding a new data point is not limited to altering only the 

C selected weights nor is the same correction applied to all the weights. When the penalty 

matrix Q is set to minimize the difference between adjacent weights in order to enforce a 

smoothness penalty, the effect o f new information can extend for many generalization dis­

tances from the selected weights. Again, this is a batch update mle and is therefore funda­

mentally different from the CMAC algorithm.

4.3 Results of Batch Mode Optimization Experiment in 1 Dimension

A weight matrix with 26 weights was created using MATLAB® and the weights 

were trained to approximate a parabola using the standard CMAC update law with a learn­

ing rate of 1. The training set consisted of every third data point excluding the endpoints. 

The CMAC generalization parameter was set to 5 meaning that 5 weights were added 

together to produce the network response. This setting for the generalization also guaran­

teed that the training for individual data points would overlap by 1 weight in the weight 

space. The weights were arranged in a 1 -to-1 correspondence with the 26 data points of 

the parabola so that movement in the direction o f increasing sample number translates to 

shifting receptive fields in the CMAC. No hashing was used. The arrangement is illus­

trated in figure 4.1.

4.3.1 Function Learning

Figure 4.2 is a plot of the parabola trained into the CMAC for this experiment.

Five training passes were sufficient for this experiment. Figure 4.3 shows plots of the net­

work response at all possible input points for two different network update laws. The
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Training Data Points

CMAC Weights

Figure 4.1: Relationship between training 
data and CMAC weights.
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Figure 4.2: A plot of the parabola be­
ing trained into the CMAC. Every third 
data point was used for training

Figure 4.3: Plots of the network re­
sponse at all possible points.

jagged response is produced by the traditional CMAC update law. The function approxi­

mation is clearly very good at the eight training points and gets progressively worse as the 

distance from the queried point to the trained data increases. The smooth response is pro­

duced by a minimum weight difference law where a  = 1.0 and P = 0.1 in Eqn 4.7. The 

network response is a much closer match to the desired parabola despite the sparse train-
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network response is a much closer match to the desired parabola despite the sparse train­

ing data. This update law, in addition to being a batch mode law where all the data are 

used once in a single update, is also a globally updating law since all the weights are mod­

ified at once. Figure 4.4 shows plots of the network weights for the two update laws.

4.3.2 Weight Smoothing and Derivative Performance

Figure 4.5 shows plots of the two point derivative of the network response. The
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40

CMAC 
m m  dlff

30

20

25

Figure 4.4: Plots o f network weights
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Figure 4.5: Plots of the derivative of 
the network response at all possible 
points.

jagged curve is the derivative of the response for the standard CMAC update law and the 

smooth curve is the derivative of the response for the minimum weight difference law. 

The derivative approximation is dramatically improved with the minimum weight differ­

ence update law.

4.4 Results of Batch Mode Optimization Experiment in 2 Dimensions

The one-dimensional example above, although illustrative, has several limitations 

which make it the trivial case. The concept of receptive field center placement has no 

meaning in the one-dimensional case. Receptive fields are placed in a linear fashion along
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the data array with a receptive field center at every point in the quantized input space. 

There are always more weights (in unhashed and matrix representations) than there are 

states in the input space. The weight selection matrix is always full rank. None of these 

statements is true in the two-dimensional case. This makes the two-dimensional case the 

only case with all the problems and features of the CMAC which can be easily visualized 

using standard two- and three-dimensional visualization aids.

A parabola was again used as the desired function. The domain of the function was 

defined asLY ]<10,|F i<10 with the function itself defined as fiX, Y) = X1 + Y2 . A plot 

of this function is shown below in figure 4.6.

Figure 4.6: Desired function for two- 
dimensional experiment.

4.4.1 Function Learning

Figures 4.7 and 4.8 are examples of the matrix implementation Albus CMAC 

response at all points on the domain of the desired function depicted in figure 4.6. Figure 

4.7 is for the case with weight smoothing and Figure 4.8 is for the case without weight 

smoothing. Figures 4.9 and 4.10 are examples of the An CMAC, with Gaussian receptive 

fields, response at all points on the domain of the desired function depicted in figure 4.6.
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Figure 4.7: Matrix implementation, 
Albus law, network response, mini­
mum length solution with additional 
minimum difference penalty.

Figure 4.8: Matrix implementation, 
Albus law, network response, mini­
mum length solution without addition­
al minimum difference penalty.
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Figure 4.9: Matrix implementation, 
An law, network response, minimum 
length solution with additional mini­
mum difference penalty.

Figure 4.10: Matrix implementation, 
An law, network response, minimum 
length solution without additional min­
imum difference penalty.

Figure 4.9 is for the case with weight smoothing and figure 4.10 is for the case without

weight smoothing. Both were trained with a generalization of six. Figure 4.9 indicates that 

there is a bias in the matrix implementation of this weight smoothing law. The training 

points were equally spaced in both the X- and Y-directions yet smoothing has occurred 

preferentially in one direction. This results because the mapping of the higher dimensional
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weight space to the one-dimensional weight vector treats one dimension preferentially. 

Figures 4.11 and 4.12 are plots of the error between the desired function and the functions

A&us CMAC. U l RMS tiro r*  36 O M Sofror* U SO. wttghc jm ecthm g on 

•200

^ ------- 10

Y . . „  - '0  - .0  5  * t i o

Atbu* CMAC. faf RMS t« o r * 6 l  S .  m ed t RMS tm jr *  33.51. wwigtt smoothing of

Figure 4.11: Function learning error, 
matrix implementation, Albus law, 
minimum length solution with addi­
tional minimum difference penalty.

Figure 4.12: Function learning error, 
matrix implementation, Albus law, 
minimum length solution without addi­
tional minimum difference penalty.

of figures 4.7 and 4.8. The value of the RMS error is shown in the figure titles. The full 

RMS error is defined on the whole grid whereas the inside RMS error is defined on the 

grid excluding all points within three of the edges in an effort to eliminate contributions 

from edge effects.

Figures 4.13 and 4.14 are plots o f the error surface defined as the difference 

between the desired function and CMAC responses on the whole grid for a network with 

the An receptive field placement with and without weight smoothing, respectively. Again, 

RMS errors for each surface are in the plot title.

Figure 4.15 is a plot of the full RMS error for an Albus type CMAC trained with 

and without weight smoothing. Figure 4.16 is a plot of the inside RMS error for an Albus 

type CMAC trained with and without weight smoothing. The smoothing case is optimiza-
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Figure 4.13: Function learning error, 
matrix implementation, An law, mini­
mum length solution with additional 
minimum difference penalty.

Figure 4.14: Function learning error, 
matrix implementation, An law, mini­
mum length solution without addition­
al minimum difference penalty.
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Figure 4.15: Full RMS learning error 
with and without weight smoothing, 
Albus law, training point spacing = 9.
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45 length
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Figure 4.16: Inside RMS learning er­
ror with and without weight smooth­
ing, Albus law, training point spacing 
= 9.

tion with the minimum weight difference penalty matrix. The case without smoothing is 

optimization for minimum weight length and has the identity matrix for a penalty matrix. 

The abscissa is the generalization parameter and ranges from one to seventeen. It is inter­

esting to note that the first minimum for the Albus CMAC rms error occurs when the gen­

eralization is equal to the sample spacing. It is easier to see in some of the results from the
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following chapter that successive minima occur when the generalization is equal to a mul­

tiple of the sample spacing as well.

Figure 4.17 is a plot of the full RMS error for an An type CMAC with Gaussian 

tapered receptive fields trained with and without weight smoothing. Figure 4.18 is a plot

An. Gm i m h . Fu< RMS tffor of Function *». GcnentizaOon

1»

20

Figure 4.17: Full RMS learning error 
with and without weight smoothing, 
An law, training point spacing = 9.

An. Gaussian. Inside RMS v re ro f  Function « .  Gsneraftmten

d f

8
ui 25
0)1

20

Figure 4.18: Inside RMS learning er­
ror with and without weight smooth­
ing, An law, training point spacing = 9.

of the inside RMS error for an An type CMAC with Gaussian tapered receptive fields 

trained with and without weight smoothing. The abscissa is the generalization parameter 

and ranges from one to twenty.

These results show that, especially for values of the generalization parameter 

smaller than the training sample spacing, the optimum algorithm that incorporates a mini­

mum weight difference penalty and, therefore, imposes a weight smoothing property on 

the learning rule has superior performance. This performance improvement occurs despite 

the bias built into the matrix implementation. As will be seen below, powerful insights can 

still be derived from these learning rules.
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4.4.2 Weight Smoothing and Derivative Performance

Figure 4.19 is a close-up plot o f a region o f the CMAC weights for an Albus 

CMAC trained with and without weight smoothing. Figure 4.20 shows a close-up of a por-

Section of m i ^ t  voctor. Albus CMAC with and without wt i gftt  smooOwng

too

320 360 400 420300

Figure 4.19: Network weights for min­
imum difference (smooth curve) and 
minimum length solutions

Socsan  ofweig *  voctar. Gaussian RF. Afeus CMAC vwth and wrthout weight smoothing

120

100

i

300 320 340 420400
m

Figure 4.20: Network weights for min­
imum difference (smooth curve) and 
minimum length solutions.

tion of the CMAC weights for an An CMAC trained with and without weight smoothing. 

Both networks have the generalization parameter set to six. The weight smoothing is 

readily evident.

Two different tests were applied to evaluate derivative performance. First, the gra­

dient of the CMAC response in the X- and Y-direction were compared to the correspond­

ing gradients of the desired function. Figure 4.21 shows a plot of the RMS error in the X- 

gradient as a function of generalization for the Albus CMAC both with and without 

weight smoothing. Figure 4.22 shows a plot of the RMS error in the Y-gradient as a func­

tion of generalization for the Albus CMAC both with and without weight smoothing. Fig­

ure 4.23 and 4.24 show the corresponding X- and Y-gradient RMS error plots for an An 

CMAC.
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Figure 4.21: Full RMS error for X-gra- 
dient with and without smoothing, Al­
bus law, training sample spacing = 9.

Figure 4.22: Full RMS error for Y-gra­
dient with and without smoothing, Al­
bus law, training sample spacing = 9.
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Figure 4.23: Full RMS error for X-gra- Figure 4.24: Full RMS error for Y-gra­
dient with and without smoothing, An dient with and without smoothing, An
law, training sample spacing = 9. law, training sample spacing = 9.

Second, an approximation to the discrete Laplacian was used to evaluate the curva­

ture properties of the CMAC responses relative to that o f the desired function. The Lapla­

cian of the desired function is a constant. Figure 4.25 is a plot of the RMS error between 

the Laplacian o f the desired function and that of the Albus CMAC response for both the 

case when training is with weight smoothing and for the case when training is without 

smoothing. The abscissa is the generalization parameter which ranges from one to seven-
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teen. Figure 4.26 is a plot of the RMS error between the Laplacian o f the desired function
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Figure 4.25: Full RMS error for dis­ Figure 4.26: Full RMS error for dis­
crete Laplacian with and without crete Laplacian with and without
smoothing, Albus law, training sample smoothing, An law, training sample
spacing = 9. spacing = 9.

and that of the An CMAC response for both the case when training is with weight smooth­

ing and for the case when training is without smoothing. The abscissa is the generalization 

parameter which ranges from one to twenty. Figure 4.27 is a plot of

10*log,Q(min- lejng h- err0r) for the Albus CMAC. Figure 4.28 is a plot of 
min_diff_error

10 * log. 0(min- lejn.g h- errOr) for the An CMAC with Gaussian receptive field weightings. 
min_diff_error

4.5 The Recursive Form for the Optimization Problem

Based on the results from the batch mode experiments, a search was begun for a 

recursive form for the optimal update law represented by Eqn 4.6 in order to more closely 

approximate the behavior of an actual CMAC. Taking the solution o f Eqn 4.6 and adding 

a new data point yields:

=  2
-1 r 5 1Yr s  i

Q  1
r s  i

r\ -\rZi

-£ ,(*)- I r
-Zk-

Eqn 4.13
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Figure 4.27: Log performance im­
provement factor. Values greater than 
zero indicate improved performance 
with weight smoothing. Vertical axis is 
in dB.

Figure 4.28: Log perffomance im­
provement factor. Values greater than 
zero indicate improved performance 
with weight smoothing. Vertical axis is 
indB.

The lowercase letters with subscripts indicate the new sample being trained in at 

time k, and wk+ { is the new set of optimal weights. By taking advantage of the parti­

tioned form of the matrices [18], the final form for the solution is:

For ease of reference Eqn 4.14 is rewritten as follows:

w + j = Wscale* + Zscale* zk Eqn 4.15

where:

A, A l̂ SO~Xt f  S O ~ ' s ‘ ^
- = Eqn 4.16

_a 3 a 4

and

A j
-1

B x B 2 ( A x - A 2A 4 [A 3)~1 - a / A i J A i - A j A ^ A  2) 1

A  3 A  4 b 3 b 4
~A 4 A 3(A l ~ A 2A 4 A 3^ (A 4 ~  A 3A  | A 2)

The Wscale matrix forms a linear combination of the old weights to make up part
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of the new weights. In the Albus type CMAC, this matrix is the identity matrix. The 

Zscale term represents the contribution of the new data point to each of the weights. The 

experiment has all weights initially zero and certain training points are visited in random 

order exactly once. The CMAC learning rate is set to I. For the Albus CMAC the 

expected form of the Zscale vector is a group of C points with the same constant value and 

zeros for the rest o f the elements. The expected form for the Wscale matrix is the identity 

matrix.

4.6 Sequential Update — 1-Dimensional Experiment

The sequential update experiment was similar to the batch update experiment 

described above. The size of the weight vector has been expanded to 50 weights. The 

function to be learned was a parabola with data points arranged in a one-to-one correspon­

dence with CMAC memory locations. The parameters that were varied during the experi­

ment were the receptive field shape, the sample spacing for training, and the 

generalization width. CMAC learning rate was always unity. The sequential update law 

was always used once there were two or more samples available and the 0  matrix param­

eters were a  = 1.0 and p = 0.1. The batch mode law was used to train in the first sample. 

Training data were presented in random order. Values of both the Wscale matrix and the 

Zscale vector were monitored.

Figure 4.29 shows a plot of the Zscale vector for the case where the first two data 

points being trained into the CMAC are far apart in the input space. The weight index axis 

indicates the indexed location of the accessed group of weights in the weight vector. A 

feature to notice here is that the algorithm spreads information out into the weight space 

much farther than the generalization value of 2 would suggest. One might view this as a
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Figure 4.29: Plot of Zscale vector 
when the first two training points were 
widely separated in the input space. 
Receptive field: flat, generalization: 2, 
sample spacing: 3, point being trained: 
39.

Figure 4.30: Plot of Zscale vector 
when first two training points were 
close in the input space.
Receptive field: flat, generalization: 2, 
sample spacing: 3, point being trained: 
9.

way of improving smoothness and generalization by extrapolation of the training data. 

Figure 4.30 is a plot of the Zscale vector for the case where the first two data points are 

near each other in the input space. Note how the shape of the new update curve is such that 

the new data point makes zero contribution to the location corresponding to the previously 

trained data point. In essence, the algorithm takes into account how much information is in 

the vicinity of the current training point and alters the shape of the new sample weighting 

function accordingly. These two features, extended generalization and compensating for 

previously trained data in the vicinity of a new update, will be discussed in greater detail 

in the section of the two-dimensional problem.

Figure 4.31 is a plot o f the Zscale vector for the final training point in the series. 

For this flat receptive field shape, a new data point can affect almost all the weights in the 

network. The row o f Wscale corresponding to sample number 12 is identically zero indi­

cating that the update should come from the new data point. Figure 4.32 shows a plot of
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Figure 4.3 1 : Plot of Zscale vector for 
the last training point in the series. 
Receptive field: flat, generalization: 2, 
sample spacing: 3, point being trained: 
27.

Figure 4.32: Plot o f the Wscale row 
vector corresponding to sample point 
#30 during the training of sample point 
#27.
Receptive field: flat, generalization: 2, 
sample spacing: 3.

the row of the Wscale matrix corresponding to new weight number 15 (an adjacent train­

ing point) showing how the value stored in this new weight will depend upon the previous 

values of all the other weights in the network. In essence such an optimum CMAC would 

have to update globally on each training pass in order to satisfy the smoothness and mini­

mum weight size constraints. Figure 4.33 shows another plot of the Zscale vector for the 

final data point in the training series. In this case, however, the CMAC receptive field was 

set to a Gaussian shape. This was accomplished by changing the rows of the S matrix and 

the s i{k] vector so that the entries have a Gaussian profile instead o f the unity values for 

the flat receptive field. In this case the contribution of a new weight reaches out only a 

finite distance into the weight space. The plot in figure 4.34 shows that in this case the 

new weights are a linear combination of only nearby weights. Local updating behavior 

might be much easier to approximate with a CMAC using Gaussian receptive fields. Fig­

ures 4.35 and 4.36 show the effects of increasing the size of the generalization from 2 to 5
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Figure 4.33: Plot of Zscale vector for 
the last training point in the series. 
Receptive field: Gaussian, generaliza­

tion: 2, sample spacing: 3, point being 
trained: 24.

Figure 4.34: Plot of the Wscale row 
vector corresponding to sample point 
#27 during the training of sample point 
#24.
Receptive field: Gaussian, generaliza­
tion: 2, sample spacing: 3.
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Figure 4.35: Plot of Zscale vector for 
the last training point in the series. 
Receptive field: Gaussian, generaliza­
tion: 5, sample spacing: 3, point being 
trained: 42.

Figure 4.36: Plot of the Wscale row 
vector corresponding to sample point 
#45 during the training of sample point 
#42.
Receptive field: Gaussian, generaliza­
tion: 5, sample spacing: 3.

(the central weight plus 2 weights on either side of it). All the other parameters were left 

unchanged from the first experiment with Gaussian receptive fields. There appears to be 

almost no difference between these scaling values and those presented in figures 4.33 and
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4.34. Had there been no pretrained data in the vicinity of this final training point, the curve 

would have been much more broad. The update law’s compensation nearby trained infor­

mation causes the curve to be so similar to the previous example. This compensation 

effect will be explained in more detail in the following section.

Figures 4.37 and 4.38 show the effect o f doubling the sample spacing parameter
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Figure 4.37: Plot of Zscale vector for 
the last training point in the series. 
Receptive field: Gaussian, generaliza­
tion: 5, sample spacing: 6, point being 
trained: 24.

Figure 4.38: Plot o f the Wscale row 
vector corresponding to sample point 
#30 during the training of sample point 
#24.
Receptive field: Gaussian, generaliza­
tion: 5, sample spacing: 6.

and leaving the others unchanged. The weighting functions are simply expanded so that 

their zeros again pass through the locations of the training data. This again demonstrates 

the self-limiting behavior of this optimum weight adjustment scheme.

4.7 Sequential Update — 2-Dimensional Experiment

Since the 2-dimensional case is representative of general CMAC characteristics it 

will be used as the case from which to derive the relevant features for the new weight 

smoothing CMAC weight adjustment law. The process begins with an examination of the
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components comprising the sequential update law repeated here for convenience.

e - V f i 2 + e - ' f 'w s 4)%

Rewriting to separate terms produces:

Each o f these four terms will now be examined individually.

4.7.1 The smoothing matrix Q inverse

Before looking at the individual terms in the weight adjustment law it is instructive 

to examine the inverse of the penalty matrix O since it is a premultiplier for all the terms 

in the weight adjustment law. Like 0 , 0  1 is symmetric and positive definite. Figure 4.39
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Figure 4.39: Plot of one row of the 
O matrix.

Figure 4.40: Zoomed view of the 
smoothing function from the O ma­
trix. —

shows a plot o f a typical row of the O 1 matrix while figure 4.40 zooms in on the smooth­

ing function. The functional form of this curve is

1.5617 Eqn 4.17
1.36426

This functional shape will form the basis for the weighting function in the new
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CMAC weight adaptation rule.

4.7.2 Term 1

Term 1 is defined as

S  Eqn 4.18

and premultiplies xvk . Components of terml are: S which is the matrix of all previously 

trained selection matrices; Q~l ; and = (A ( - A 2A^lA3) ' .  The Ai components are de­

fined in equation 4.14. Term 1 defines the averaging and smoothing function on the previ­

ously trained weights. The new weights, before adjustment, are defined as a scaled sum of 

old weights. Figure 4.41 is an intensity plot o f a portion o f the term 1 matrix during the early 

stages of learning. The contribution of 0 ~ l can clearly be seen in the intensity of the active 

regions. This plot is oriented in the natural matrix fashion with coordinate (1,1) in the upper 

lefthand comer of the plot.

4.7.3 Term 2

Term 2 is defined as s‘ .^B and premultiplies vv,. Components of term 2 

are: S  which is the matrix of all previously trained selection matrices; s* ^ which is the 

selection vector for the new data point; Q 1; and B = - A j lA3(A , - A 2A^lA3) ' .  Term 

2 identifies locations in the weight space where the newly selected weights interact in 

some way with previously trained information. Due to the extent in the weight space of the 

smoothing function introduced by O 1 interactions can occur with weights at seemingly 

great distances in the weight space, however the magnitude of contributions from term 2 

are often very small due to the decaying nature of the smoothing function. Figure 4.42 

shows an intensity plot of term 2 during the early stages of learning. The coordinates of 

the new weights being trained are 60,61,62, 63. Their location can be seen in figure 4.41.
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Figure 4.41: Wscale matrix before training fourth data point. Network generaliza­
tion = 4, 3 samples have been trained previously, indices of previously trained
weights are: 4,33, 34, 35, 60,61, 62,63, 88, 90, 91, 117

The tails of the smoothing functions are interacting in this case as can be seen in figure

4.41. This is the reason the amplitude of the correction is so small -- fully four orders of 

magnitude below other signal levels. When previously trained weights are close to the 

weights accessed by the new data point, this interaction can be quite strong. When interac­

tion is strong, the effect is to precompensate information already stored in the weights 

where the interaction will occur to minimize the effect of the interaction on the stored 

information. When training is dense, this compensation effect can ripple out a great dis­

tance into the weight space.
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Figure 4 .4 2 :  Correction to linear combination o f old weights prior to application of
new data point is a function of interaction between first and second trained points. 
Sample spacing is large enough to prevent strong interaction.

4.7.4 Term 3

Term 3 is defined as ~lSfB  ̂ and premultiplies zk . Components of term 3 are: S 

which is the matrix o f all previously trained selection matrices; O 1; and 

5 ,  = —A , lA2(A4 —A3A , lA2) ■ Term 3 is the transpose of term 2 and identifies correc­

tions to the new weight adjustment arising from interactions between the new weights and 

previously trained information. Figure 4.43 is a plot o f term 3 under the same conditions 

as those under which figure 4.42 was generated. It clearly shows a weak interaction with 

the data trained on the previous pass and stored in locations 4, 33,34, and 35. In this case, 

when interaction is strong, the learning function defined by term 4 is truncated in the
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Plot of Term 3

-0.5

w  -1 .5

-2 .5
500 100 150 200 250 30 0

Index into new weights

Figure 4.43: Correction to new sample scaling is a function of interaction between 
first and second trained points. Sample spacing is large enough to prevent strong in­
teraction.

direction of previously trained information in order to minimize the interference between 

previously trained data and the new training point.

4.7.5 Term 4

Term 4 is defined as O ls'.^B^ and premultiplies zk . Components of term 4 are:

s' k which is the selection vector for the new data point; O 1; and

(A4 — A3A j A-,) . The scalar term B is essentially — unless there is significant
A 4

interaction between the new sample’s weights and previously trained information. If there

were no smoothing and Albus receptive fields, B  ̂« ^ . Figure 4.44 is a plot of term 4 cre­

ated under the same conditions as those for figure 4.43. The weights being trained are at
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Plot of Term 4
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Figure 4.44: Scaling and distributed application o f new data point is controlled pri­
marily by 0~  .

locations 60, 61, 62, 63.

4.8 The New CMAC Weight Smoothing Law

Now that the components o f the optimal matrix sequential weight smoothing law 

have been broken out and studied, it is possible to specify several new weight adjustment 

rules which progressively approach an approximation to the optimum matrix solution pre­

sented above.

4.8.1 New Rule 1

The simplest new learning rule is to implement the portion of the adjustment law 

represented by term 4. This update rule will successfully spread information out into the
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weight space in a way that will greatly enhance learning and function approximation espe­

cially when training data are widely separated. Successful implementation of this rule 

requires a new kind of generalization in the CMAC. This is developed in the next chapter 

and leads to experiments using new rule 1. Using the technology available in the modified 

CMAC code developed under this research, rule 1 is implemented by moving Q~ls‘ 

back into the weight space and treating this function as a tapered receptive field. This new 

receptive field is defined to have a large area and dense support. The Super Generalization 

mechanism is described in detail in the next chapter. Performing rule I in the weight space 

rather than in the linear weight array removes any bias derived from the mapping from the 

n-dimensional weight space to the 1-dimensional weight array. This new weight update 

law does not explicitly perform weight smoothing. It spreads new training information out 

in a high density learning mode which will often provide much better coverage than other 

generalization techniques. The iterative training process in the CMAC actually performs a 

smoothing operation through the coupling of individual training points through common 

weights. This is greatly enhanced using rule 1.

4.8.2 New Rule 2

New rule 2 implements the functionality of term 1 as described above. This aver­

aging function should also be promoted back to the weight space in order to be performed 

correctly. The smoothing operation is really a weight averaging procedure performed on 

groups of weights selected using the base generalization. For every weight in the Super 

Generalization cell, that weight and its nearest neighbor weights, as defined by the base 

generalization selection function, are averaged together. The average is scaled by the 

weighting function for the Super Generalization cell at that point and this scaled average is
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set aside to become the new weight value at that location. This process is repeated for all 

the weights in the Super Generalization cell and then all the old weights are updated with 

the new values. This rule explicitly implements a weight smoothing operation.

4.8.3 New Rule 3

Rule 3 adds a measure o f context sensitivity to the overall weight update process. 

The process involves sampling the weight space corresponding to state space points along 

each of the dimensions of the problem looking for previously trained data. The size of the 

Super Generalization cell and possibly its shape as well should then be varied to provide 

the best coverage for the new training data point while at the same time minimizing the 

loss of information previously trained into the network. Some amount of training overlap 

would be prescribed to preserve smoothness and continuity across the training boundary. 

For the original Albus CMAC the optimum amount of overlap occurred when the general­

ization size was equal to the sample spacing. This was pointed out in the discussion of fig­

ures 4.15 and 4.16. Rule 3 would only be used in conjunction with either rule 1 or rule 2 to 

improve performance. A network trained with all three rules would most closely approxi­

mate the optimal solution as defined by the constrained optimization problem described in 

this dissertation. Others certainly are possible.
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Chapter 5

The CMAC Weight Smoothing Law

In order to implement the new weight adjustment law suggested by the optimum 

matrix solution, the CMAC algorithm must be modified so that it is possible to train with 

one value of the generalization parameter and remember with another value of the gener­

alization parameter. The existing CMAC properties make it ineffective to train the net­

work with one generalization value and then calculate network responses with a different 

value of generalization. The details of this issue are presented below along with the solu­

tion developed under this research. This new generalization technique, Super Generaliza­

tion, has been implemented in C as part of the UNH CMAC code and is used to implement 

the new weight adjustment law developed in the previous section. Experimental results are 

presented.

5.1 Issues of Generalization and Super Generalization

It is worthwhile to examine how the current CMAC code actually allocates 

weights for generalization. Generalization is really about determining how many receptive 

fields are excited by a point in the input space and about how the receptive field centers 

are distributed in the input space. Figures 5.1 and 5.2 show the receptive field center allo­

cation patterns for the two-dimensional Albus CMAC with two different values of the 

generalization parameter. Training points are marked by asterisks and the lower, left-hand

68
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Figure 5.1: Receptive field center allo­
cation pattern for Albus CMAC with 
generalization of 4. o’s represent the 
lower left-hand comer of a receptive 
field and *’s represent training points.
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Figure 5.2: Receptive field center allo­
cation pattern for Albus CMAC with 
generalization of 8. o’s represent the 
lower left-hand comer of a receptive 
field and *’s represent training points.

comers of the receptive fields are marked by ‘o’s. It is characteristic of the Albus receptive 

field center placement strategy for the centers to be arranged along diagonals. For this 

two-dimensional example the receptive fields can be thought of as having square bases. 

For the single output CMACs considered in this research each receptive field has a single 

weight associated with it. The coordinates used to generate these plots are the raw coordi­

nates of the receptive field comers and correspond to coordinates in the input space. No 

hashing or mapping to a linear memory array has been performed. Note that the patterns 

are different for the two different values o f the generalization parameter. Specifically, the 

spacing between the diagonal groupings of receptive field centers is equal to the generali­

zation size.

This section addresses the question o f what happens if the CMAC is trained with 

one value of generalization while network responses are determined with a different value 

of generalization. The specific issue can be phrased as follows: since training with large
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generalization spreads information out to a larger number o f weights and makes the 

effects of the training available to more points in the nearby input space, why not train 

with large generalization to get good spread o f information, particularly in the early train­

ing, and then use a smaller value of generalization, for better spatial resolution, to derive 

network responses and ultimately to refine the training as well.

Since the goal of this research is to improve the CMAC performance when training 

is sparse, it is instructive to explore how trained weights influence the network response 

for locations at which no training has occurred. Figures 5.3 and 5.4 show intensity plots of

AJbus center placement • generalization s  4 Albus center placement -  generabzaton *  9

H
H1S1HKE|

IQ 20 X JO SO 60

Figure 5.3: Learning support in Albus 
CMAC with generalization of 4.

Figure 5.4: Learning support in Albus 
CMAC with generalization of 8.

how many trained weights contribute to the CMAC response at every point in the input 

space. The actual training points can be identified as the high intensity points in the plot. A 

regular pattern of support is visible. The square shape of the receptive field bases is clearly 

visible in these figures. Figures 5.5 and 5.6 show the pattern of receptive field center 

placement when the An heuristic placement strategy is used. The pattern of receptive field 

center placements is more uniform. This arrangement of receptive field centers helps to
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Figure 5.5: Receptive field center allo­
cation pattern for An CMAC with gen­
eralization of 4. o’s represent the lower 
left-hand comer of a receptive field and 
*’s represent training points.

Figure 5.6: Receptive field center allo­
cation pattern for An CMAC with gen­
eralization of 8. o’s represent the lower 
left-hand comer of a receptive field and 
*’s represent training points.

reduce the problem of preferential generalization which can occur with the Albus place­

ment strategy. Figures 5.7 and 5.8 show the support this strategy provides for nearby

An h tw sh c  u n t t r  p ta c tm tft -  g tn p reh m o n  -  A An hcuntic  cprrtir p tac tm tm  -  g tw afcra ton  = 8o£2MMgH H gHH gHHH g13Q H
10 20 30 40 SO GO

Figure 5.7: Learning support in An 
CMAC with generalization of 4.

Figure 5.8: Learning support in An 
CMAC with generalization of 8.

untrained points in the input space. This receptive field center placement strategy provides 

more uniform support across the input space as can be seen from the intensity bar in figure
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5.8. Since the minimum value in the plot shown in figure 5.8 is 1, there is no point in the 

input space shown where no weights contribute to the network response. Contrast this to 

figure 5.4 where there are large areas of the input space that are not covered by any trained 

weights.

O f course, the real issue is how different generalization patterns interact as this 

will determine the effectiveness of learning and remembering with different generaliza­

tions. Figure 5.9 shows the support provided using the Albus receptive field center place­

ment strategy when training is done with a generalization o f 8 and network responses are 

obtained using a generalization of 4. A large amount o f the information trained into the 

network with the larger generalization is no longer available for generating network 

responses at the smaller generalization. Figure 5.10 shows the support provided using the

Albus -  tram s  B. R tm a m b sr*  4

•30 .20 .10

Figure 5.9: Plot of support provided 
using the Albus receptive field center 
placement strategy, training gen = 8, 
remember gen = 4.

An -  tram  = 8 . Remember *  4 IH
•30 -20 -10 0 10 20 30

|Q  5

Figure 5.10: Plot of support provided 
using the An receptive field center 
placement strategy, training gen = 8, 
remember gen = 4.

An receptive field center placement strategy when training is done with a generalization of 

8 and network responses are obtained using a generalization of 4. To understand why two
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different generalizations interact so poorly, it is useful to imagine a two-dimensional, n- 

dimensional in general, weight space K where there are as many weights as there are 

points in the input space. Such a weight space grows exponentially with the input dimen­

sion. CMAC receptive field center allocation strategies seek to identify subsets of K 

which project uniformly onto each input dimension. Each value of generalization directs 

the selection of a different subset and it is often the case that these subsets have only weak 

intersections.

With the existing CMAC, generalization is the only method available to determine 

how widely the value of new training data is spread out in the weight space. A larger value 

of generalization means a larger number of weights are updated. It also means that the 

physical extent of the generalization region is larger. This is accomplished by increasing 

the spacing between the diagonals of receptive field centers. A larger generalization 

region results in more filtering of high frequency spatial variation in the input space than 

does a smaller generalization region. The optimal solution for the weight smoothing algo­

rithm as developed in the matrix case requires that training be performed with a large gen­

eralization value, on the order o f 35-40 for unity scaled minimum difference penalty, as 

defined by the inverse of the penalty matrix. Network responses can be determined using 

any generalization but typically much smaller than the training generalization, so in most 

cases each network will require successful operation with two different generalizations.

This research proposes an addition to the existing CMAC algorithm capable of 

supporting the previously incompatible requirements of training with a (sometimes) large 

generalization yet being able to generate network responses using a smaller generaliza­

tion. Called Super Generalization, this new generalization technique trains a large region
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of the weight space using the receptive field center allocation pattern for a smaller value of 

generalization. Figure 5.11 shows the weight locations for a single point trained into a 

CMAC defined as having a base generalization o f 4. Figure 5.12 shows the weight loca­

30
(mb« gwwraizaoan ■ 4: sup«r gerwiftzMon ■ 4 bas« gencrainbon * 4: t ip c r  gcneraftnbon ■ 16
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-3i0 -20 -10 0 10 20 J 0 -3i0 -20 -10 0 10 20 30

Figure 5.11: Receptive field center Figure 5.12: Receptive field center
placement pattern for a single training placement pattern for a single training
point in an Albus CMAC with general­ point in an Albus CMAC with super
ization of 4. o’s represent the lower generalization of 16 and base generali­
left-hand comer of a receptive field and zation of 4. o’s represent the lower left-
*’s represent training points. hand comer of a receptive field and *’s

represent training points.

tions for the same point trained into a CMAC defined as having a base generalization of 4 

but using a Super Generalization value of 16. Recall that, for the two-dimensional case, a 

generalization value of 16 in the standard CMAC would pack 16 weights into the same 

region that Super Generalization has packed 64 weights. Super Generalization has been 

implemented in a straightforward way in the modified UNH CMAC code and in the Mat- 

lab port of that C code. When working in the raw coordinate space of the weight space, it 

is true that for every weight in the weight allocation pattern such as that in figure 5.11 

another weight can be found by stepping one base generalization distance in either direc­

tion along any dimension. For the case of base generalization equal to 4, once the four pri­
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mary weights are located using the standard CMAC method, all the other weights in the 

Super Generalization region can be located by beginning at one of the primary weights 

and using a simple recursive function call to traverse the Super Generalization region 

picking up copies of the primary weight. Figures 5.13 and 5.14 show the learning support

b i u  g tncrafesoon1 4

10 20 30

Figure 5.13: Learning support for a 
single training point with an Albus 
CMAC with generalization of 4

base g tn tn tm D o n  *  4; tup«rg«MfafezanoAs  16

Figure 5.14: Learning support for a 
single training point with an Albus 
CMAC with super generalization of 16 
and base generalization of 4.

provided by each of these methods. For the case with Super Generalization, training was 

done with Super Generalization while network responses were determined using the base 

generalization. The Super Generalization provides support to a larger region as if  that 

region were fully trained.

5.2 Super Generalization Experiments

Several experiments were run to test the effectiveness of Super Generalization. In 

order to explore the effects o f training sample spacing and sample spacing in general on 

the ability of the CMAC to learn and remember the function, the values of X  and Y were 

scaled by an integer value before presenting the states to the CMAC for learning. Every
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third sample in the domain of X  and Y was used for training and then remembering was 

performed over the entire domain. Random selection o f the training point order was not 

applied. The value of Super Generalization was fixed at 32 which is roughly the extent of 

the smoothing function as determined from the analysis of the matrix optimum solution. A 

new receptive field shape was defined for this problem and applied to the CMAC for 

learning with Super Generalization as part of the custom CMAC feature in the code. The 

receptive field shape is plotted below in figure 5.15. For Super Generalization regions

Super Generalization receptive field shape
500

450

400

350

300O)

2  250

200

150

100

200 40 60 14080 100 120
distance of weight from training point

Figure 5.15: Receptive field shape for Super Generalization.

smaller than the 128 units on a side for which the function is defined, the curve is sub­

sampled along its domain so that the shape is preserved.
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The experiment varies the base generalization parameter from 1 to 32 while the 

Super Generalization parameter remains fixed at a value of 32. The CMAC learning rate is 

fixed at 0.5. Quantization values are fixed at 1. Available memory is 30000 and collision 

avoidance is active. For each value of generalization three CMACs are defined. The first 

is the original Albus CMAC with 20 iterations o f training done across the whole training 

set, the second is a CMAC using only Super Generalization trained for 20 iterations, and 

the third is a CMAC trained for 4 iterations using Super followed by 20 iterations at the 

base generalization. For each value of generalization, the rms error between desired func­

tion and the learned functions for each of the three CMACs, the rms error between the X- 

and Y-gradients of the desired function and those of the learned functions for each of the 

three CMACs, and the rms error between the discrete Laplacian of the desired function 

and that of the learned functions for the three CMACs are calculated. All the rms errors 

were calculated for the full array as well as for the inside array which excluded the outer 3 

rows and columns in an effort to normalize for edge effects. This same experiment was 

performed for three different functions.

5.2.1 Experiment 1: Up Parabola

The function being trained is defined by Eqn 5.1.

Z = X2 + Y2, X , Y e  { -1 0 ,-9 ...9 , 10} Eqn5.1

The sample spacing parameter was set to a value of 4. Since every third sample 

was used, training samples were effectively spaced at a distance of 12 from each other in 

each dimension for presentation to the network. Figure 5.16 shows a plot of the full rms 

error for the function learning. Figure 5.17 shows a plot of the inside rms error for the 

function learning. These results indicate that the combination o f a standard CMAC with a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



78

A Im . F la t U  rms «m r

T20

3e
u
n1

A IM . Fist, m id *  rms error

60

| 4 0
ui
01

Figure 5.16: Full rms error between 
desired function and learned functions.

Figure 5.17: Inside rms error between 
desired function and learned functions.

Super Generalization CMAC has function learning performance that is superior to the 

standard CMAC especially at low values of the generalization parameter where Super 

Generalization has its most significant effect. As the value of base generalization 

increases, Super Generalization becomes more like standard generalization and the two 

CMACs converge in performance.

Figure 5.18 is a plot of the full rms error between the Laplacian of the desired 

function and that o f the learned functions. Figure 5.19 is a plot of the inside rms error 

between the Laplacian of the desired function and that of the learned function. The Lapla­

cian operator is a measure of the curvature of the function. These results indicate that the 

combination of regular CMAC with a Super Generalization CMAC has superior perfor­

mance for small generalizations and has similar performance to the standard CMAC at 

high generalizations.

Figure 5.20 is a plot of the full rms error between the X-gradient of the desired 

function and that o f the learned functions. Figure 5.21 is a plot of the inside rms error 

between the X-gradient of the desired function and that of the learned functions. Figure
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Figure 5.18: Plot o f the full rms error 
between the Laplacian of the desired 
function and that of the learned func­
tion.

Figure 5.19: Plot of the inside rms er­
ror between the Laplacian of the de­
sired function and that of the learned 
function.
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Figure 5.20: Plot of the full rms error 
between the X-gradient o f the desired 
function and that of the learned func­
tions.

Figure 5.21: Plot of the inside rms er­
ror between the X-gradient of the de­
sired function and that of the learned 
functions.

5.22 is a plot of the full rms error between the Y-gradient of the desired function and that 

o f the learned functions. Figure 5.23 is a plot of the inside rms error between the Y-gradi­

ent of the desired function and that of the learned functions. Once again, for small values 

o f base generalization, the combination of standard CMAC with Super Generalization 

CMAC produces the best derivative performance. Unlike the flawed matrix implementa-
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Figure 5.22: Plot of the full rms error 
between the Y-gradient of the desired 
function and that of the learned func­
tions.

Figure 5.23: Plot of the inside rms er­
ror between the Y-gradient of the de­
sired function and that of the learned 
functions.

tion o f the previous chapter, this network exhibits improvement in performance for both 

the X- and Y-gradients. Since the weight corrections and weighting functions are calcu­

lated prior to mapping to a physical memory array, biases from this mapping process can 

not affect the calculations.

It is worth noting that there are large differences between the performance plots for 

the full array and those for the inside array. This indicates that edge effects were a big con­

tributor to the CMAC error performance. This is not surprising since the CMAC has a nat­

ural bias toward zero. The edges o f this parabola function had values on the order o f 100. 

Since training was not guaranteed to occur at the exact edges due to the choice of every 

third sample, the weight information contributing to the network response at the edges is 

either zero if no generalization has reached that far or is information from training points 

on the parabola which are guaranteed to be smaller than the desired value. The next exper­

iment further highlights this point.
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5.2.2 Experiment 2: Down Parabola

The function being trained is defined by Eqn 5.2.

Z = IQ O -iJ P + Y 2), X, Y e  { -1 0 ,-9 ...9 , 10} Eqn5.2

The sample spacing parameter was set to a value of 4. Since every third sample 

was used, training samples were effectively spaced at a distance of 12 from each other in 

each dimension for presentation to the network. Figure 5.24 shows a plot of the full rms 

error for the function learning. Figure 5.25 shows a plot of the inside rms error for the

AJbus. Flat, fafl rms error

tso

160

140

120
5 «»

60

Afeus. F la t ra id *  rms error

tupergen200

ISO

3e
Ui
0)
I too

Figure 5.24: Plot of the full rms error 
for the function learning.

Figure 5.25: Plot of the inside rms er­
ror for the function learning.

function learning. For this function the performance o f the combination of regular CMAC 

with the Super Generalization CMAC is better at every value of base generalization. In 

many cases the performance was better by a factor o f two or more.

Figure 5.26 is a plot of the full rms error between the Laplacian of the desired 

function and that of the learned functions. Figure 5.27 is a plot of the inside rms error 

between the Laplacian of the desired function and that of the learned functions. For this
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Figure 5.26: Plot of the full rms error 
between the Laplacian of the desired 
function and that of the learned func­
tions.

Figure 5.27: Plot of the inside rms er­
ror between the Laplacian of the de­
sired function and that of the learned 
functions.

function the curvature performance of the combination of regular CMAC with the Super 

Generalization CMAC is better at every value of base generalization. In all but four cases 

the performance was better by a factor of 1.5 or better.

Figure 5.28 is a plot of the full rms error between the X-gradient of the desired 

function and that of the learned functions. Figure 5.29 is a plot of the inside rms error
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Figure 5.28: Plot of the full rms error 
between the X-gradient of the desired 
function and that o f the learned func­
tions.

Figure 5.29: Plot of the inside rms er­
ror between the X-gradient of the de­
sired function and that of the learned 
functions.
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between the X-gradient of the desired function and that of the learned functions. Figure 

5.30 is a plot o f the full rms error between the Y-gradient of the desired function and that 

o f the learned functions. Figure 5.31 is a plot of the inside rms error between the Y-gradi-
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Figure 5.30: Plot o f the full rms error 
between the Y-gradient of the desired 
function and that of the learned func­
tions.

Figure 5.31: Plot of the inside rms er­
ror between the Y-gradient of the de­
sired function and that of the learned 
functions.

ent of the desired function and that of the learned functions. For all but three cases, the 

derivative performance in both the X- and Y-directions of the combined standard CMAC 

plus Super Generalization CMAC was superior to the standard CMAC alone.

It is interesting to note that for this function, which has edge values near zero, the 

full and insides plots are very similar. This indicates that edge effects were not a signifi­

cant contributor to the errors

5.2.3 Experiment 3: Sin(X)*Sin(Y)

The function being trained is defined by Eqn 5.3.

Z = lOOsinX • sinY, X , Y e \ - K > £ : n \  Eqn5.3
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The sample spacing parameter was set to a value of 20. Since every third sample 

was used, training samples were effectively spaced at a distance of about 7.5 from each 

other in each dimension for presentation to the network.

Figure 5.32 shows a plot of the full rms error for the function learning. Figure 5.33

AJbus. R at. U i (ms error

S  30

A bus. Flat, m u d s  rms error

60

20

Figure 5.32: Plot of the full rms error 
for the function learning.

Figure 5.33: Plot of the inside rms er­
ror for the function learning.

shows a plot of the inside rms error for the function learning. The performance of the com­

bined regular plus Super Generalization CMAC is better than or equal to that o f the regu­

lar CMAC alone. For the high values of base generalization, where Super Generalization 

behaves almost exactly like the base generalization, function learning performance is 

identical. For small values of base generalization, function learning performance for the 

combined CMAC is up to five times better.

Figure 5.34 is a plot of the full rms error between the Laplacian of the desired 

function and that of the learned functions. Figure 5.35 is a plot of the inside rms error 

between the Laplacian of the desired function and that of the learned functions. In all but 

five cases the performance of the combined CMAC was better than the regular CMAC for
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Figure 5.34: Plot of the full rms error 
between the Laplacian o f the desired 
function and that of the learned func­
tions.

Figure 5.35: Plot of the inside rms er­
ror between the Laplacian of the de­
sired function and that of the learned 
functions.

this performance metric. In no case was the performance of the combined CMAC less than 

90 percent of the regular CMAC.

Figure 5.36 is a plot of the full rms error between the X-gradient of the desired 

function and that of the learned functions. Figure 5.37 is a plot of the inside rms error
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Figure 5.36: plot of the full rms error 
between the X-gradient o f the desired 
function and that of the learned func­
tions.

Figure 5.37: Plot of the inside rms er­
ror between the X-gradient of the de­
sired function and that of the learned 
functions.
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between the X-gradient o f the desired function and that of the learned functions. Figure 

5.38 is a plot of the full rms error between the Y-gradient of the desired function and that 

of the learned functions. Figure 5.39 is a plot of the inside rms error between the Y-gradi-
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Figure 5.38: Plot of the full rms error 
between the Y-gradient of the desired 
function and that of the learned func­
tions.

Figure 5.39: Plot of the inside rms er­
ror between the Y-gradient o f the de­
sired function and that of the learned 
functions.

ent of the desired function and that of the learned functions. In no case was the derivative 

performance of the combined CMAC less than 93 percent of the regular CMAC and in 

most cases the performance was much better. Again, the similarity between the full and 

inside plots indicates that edge effects were not a factor in this experiment as would be 

expected for a function whose value is zero at the boundary of the training region.

Results with the Super Generalization CMAC were disappointing but the poor per­

formance arose because the receptive field normalization was calculated using the existing 

tapered receptive field algorithm. This algorithm normalizes the individual weight contri­

butions based upon the assumption that all the weights in the receptive field will be used 

to produce the network response. The effect of this was particularly catastrophic when the
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values o f the base generalization were very small. When the base generalization is very 

small there can be up to 1024 active weights within the Super Generalization region. Sev­

eral of these weights must lie very close to the center of the Super Generalization recep­

tive field and their weight values are assigned correspondingly high contributions of the 

input data point. For tapered receptive fields, the field normalization is applied both dur­

ing training and during remembering. When remembering with a small receptive field 

near the center of a Super Generalization cell, the normalization on the remember side is 

completely inadequate to compensate for the huge contributions stored in those weights 

during the training cycle and the resulting network response is excessively large resulting 

in a large rms error near these locations and a very spiky network response. When remem­

bering with the Albus law, the weights are simply summed to produce the network 

response resulting in even larger errors.

This effect was virtually eliminated by simply retraining the network with the stan­

dard Albus CMAC law after some initial training with Super Generalization. This served 

to renormalize the central set of weights in the Super Generalization cell and dramatically 

improved the overall network performance.

The overall results indicate that a CMAC trained with properly normalized Super 

Generalization can have superior performance over the standard CMAC when the training 

is sparse or incomplete. As the value of base generalization increases the performance of 

the new CMAC approaches that of the standard CMAC although even at large values of 

base generalization the performance o f the new CMAC was often still marginally better 

than the standard CMAC.
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Chapter 6

Conclusions and Suggestions for Future Work

6.1 Summary

The stability of the CMAC algorithm was analyzed and a Lyapunov stability proof 

was developed for the open loop, function learning case. The results indicated that as long 

as the function could be represented to the desired accuracy by a fully trained CMAC, then 

the weights in the CMAC being trained would eventually converge to the weights of the 

fictitious target CMAC. The Lyapunov function was defined on the error between the 

weights of the CMAC being trained and the weights o f the target CMAC. This weight 

error was shown never to increase and, in fact, for the weights being trained was monoton- 

ically decreasing.

This matrix formulation of the CMAC was also used to cast the learning algorithm 

as a constrained optimization problem. Lagrange multipliers were used and both batch and 

sequential updating were studied for the one- and two- dimensional problems. As much as 

possible of the CMAC structure was included in the matrix formulation. This was espe­

cially important for the two-dimensional case where both the Albus receptive field center 

placement strategy and the An receptive field placement strategy were supported. Tapered 

receptive fields were also supported in this matrix formulation with code from the original 

CMAC C code ported for the C to Matlab. Floating point weights were used which
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allowed for a larger dynamic range for learning in the matrix case than in the standard C- 

code implementation. In practice this was not significant. The purpose of this analysis was 

to explore weight smoothing or regularization from an optimization standpoint and deter­

mine if learning performance was improved. If this was the case, then important features 

of the optimum solution would be extracted and cast in a form suitable for the CMAC.

An important finding from this matrix analysis was that the point in the process of 

mapping from an n-dimensional input/weight space to a one-dimensional weight vector at 

which the weight adjustment occurred had a significant impact on performance. In all the 

matrix experiments the formulation required that operations be performed on the one­

dimensional weight vector. Some operations, like receptive field center placement, were 

performed in the higher dimensional space but all results were mapped to the linear space 

before the matrix algorithm was calculated. Even the weight penalty matrix developed for 

smoothing only smoothed on nearest neighbors in the weight array and not necessarily on 

nearest neighbors in the original weight space. This resulted in the documented bias to 

smoothing along a preferred dimension as shown by the first derivative tests on solutions 

from the matrix optimizations.

Despite the apparent flaw in the implementation, weight smoothing resulted in sig­

nificant improvements in learning performance. Three metrics in particular were deemed 

important: the network performance under partial training, the first derivative of the net­

work solution, and the smoothness, measured by the laplacian, of the network solution 

Performance graphs against these three metrics were presented in the previous chapter. 

Important properties of the weight smoothing solution derived from the optimum solu­

tions are listed here.
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1) Application of weight smoothing as derived from the solutions to the constrained opti­

mization problems resulted in a significant improvement in network performance par­

ticularly at the smaller values o f generalizations where the extended generalization 

effect of the weight smoothing was most strongly felt.

2) Application of weight smoothing as derived from the solutions to the constrained opti­

mization problems requires the introduction o f a new feature to the CMAC — Super 

Generalization. Whereas standard generalization in the CMAC defines a hypercube 

with dimension C on each side within which C receptive fields overlap. Super Gener­

alization defines a hypercube of integer dimension Gs on a side with GS> C . The dis­

tribution of receptive field centers in this larger region is the same as that defined by 

CMAC for generalization of C . In this way all the information trained into the CMAC 

will be available for network responses at nearby locations in the input space.

3) The kernel function for the weight smoothing solution is derived from the inverse of 

the penalty matrix O as defined in Eqn 4.7 and on average takes the form

1.5617 c ,  .
---------- kTTi Ecln 6 -1
1.36426 ol

This is the desired shape for training using Super Generalization although some 

changes to the actual parameters may be required to accommodate the present imple­

mentation strategy in the UNH CMAC for integer performance and tapered receptive 

field shapes.

4) The weight smoothing solution applies the kernel function, convolved with the weight 

selection vector, as a weighting factor for the new training point. This new weighting 

factor spreads the information out much farther into the weight space than is possible
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with all but the largest values of generalization. The significant feature is that the 

width o f the spreading is controlled by the scaling of the penalty matrix and this infor­

mation is applied to the weights in a manner that is independent of the base value of 

generalization for which the network was created.

5) The weight smoothing solution applies the kernel function to average the old weights 

before a new sample value is trained. This process, defined by term 1 (Eqn 4.18), 

enforces weight smoothing across the old weights and also acts to control the problem 

of runaway weights in the standard CMAC implementation. The requirement placed 

on the CMAC algorithm is that, for every training iteration, a pre-training step must be 

added which performs this weight averaging process across the accessible weights 

within the range of the smoothing kernel.

6) The weight smoothing solution determines a measure o f the interaction between the 

new training point and previously trained data and adjusts both the weight averaging 

function and the new sample training function in such a way as to minimize interfer­

ence with previously trained information while still enforcing the smoothness crite­

rion.

The UNH CMAC code was modified to support the kernel requirement of property 

4 above with the implementation of Super Generalization. This implementation evolved 

from a study of how the CMAC algorithm actually does generalization, how different val­

ues of generalization select sets of weights from the global weight space, and how these 

sets of weights interact under mixed generalization training and remembering. Experi­

ments were run with the new version of the CMAC algorithm.

6.2 Conclusions

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



92
Experiments were conducted with three different CMAC networks. The first was 

the standard Albus CMAC algorithm, the second was a CMAC where training was per­

formed with Super Generalization and remembering was performed with the standard 

Albus algorithm, and the third was a CMAC where the first few training passes were per­

formed with Super Generalization and the remaining training passes were performed with 

the standard Albus algorithm. Remembering for the third network was also performed 

with the standard Albus algorithm.

Results with the Super Generalization CMAC were disappointing but the poor per­

formance arose because the receptive field normalization was calculated using the existing 

tapered receptive field algorithm. This algorithm normalizes the individual weight contri­

butions based upon the assumption that all the weights in the receptive field will be used 

to produce the network response. The effect of this was particularly catastrophic when the 

values of the base generalization were very small. When the base generalization is very 

small there can be up to 1024 active weights within the Super Generalization region. Sev­

eral of these weights must lie very close to the center of the Super Generalization recep­

tive field and their weight values are assigned correspondingly high contributions of the 

input data point. For tapered receptive fields, the field normalization is applied both dur­

ing training and during remembering. When remembering with a small receptive field 

near the center of a Super Generalization cell, the normalization on the remember side is 

completely inadequate to compensate for the huge contributions stored in those weights 

during the training cycle and the resulting network response is excessively large resulting 

in a iarge rms error near these locations and a very spikey network response. When 

remembering with the Albus law, the weights are simply summed to produce the network
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response resulting in even larger errors.

This effect was virtually eliminated by simply retraining the network with the stan­

dard Albus CMAC law after some initial training with Super Generalization. This served 

to renormalize the central set o f weights in the Super Generalization cell and dramatically 

improved the overall network performance.

The overall results indicate that a CMAC trained with properly normalized Super 

Generalization can have superior performance over the standard CMAC when the training 

is sparse or incomplete. As the value of base generalization increases the performance o f 

the new CMAC approaches that of the standard CMAC although even at large values o f 

base generalization the performance of the new CMAC was often still marginally better 

than the standard CMAC.

The research performed for this dissertation indicates that, with a few more refine­

ments, this new CMAC learning algorithm will make it possible to use CMAC in applica­

tions for which it is now unsuited such as optimization problems. This is a particularly 

interesting result in that the training with Super Generalization does not, in and of itself, 

implement weight smoothing or even any obvious approximation to weight smoothing.

All Super Generalization training does is spread the trained information farther out into 

the weight space in a form that makes the network response much smoother for cases 

when the required network base generalization is small and/or the training data in all or 

portions of the state space are widely separated. Nevertheless, this result is significant 

since it has a low computational cost for modest problems. The computational scale factor 

is proportional to:

(super generalization parameter value^ Dimension
base generalization parameter value
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Despite the now exponential cost growth with dimension, this learning rule is still a local 

update learning rule and as such still maintains those traditional advantages over the global 

updating networks. Even if the entire weight smoothing rule were to be implemented, the 

algorithm would still be a local update law although the cost associated with all the weight 

averaging and smoothing would be proportional to:

(super generalization parameter value)D,mension 

In the final vision of how this new learning technique might be used, it is expected 

that Super Generalization and weight smoothing will be used only occasionally and not 

necessarily together. For those times when training is sparse and the differentiability of the 

network response is required then both will probably prove useful to maximize perfor­

mance. Training interaction detection will be implemented so that, in conjunction with 

variable Super Generalization cell size, the compensation mechanism o f the optimal solu­

tion can be approximated in the CMAC as well to minimize learning interference. For the 

case when data density is good, perhaps Super Generalization will not be necessary at all. 

In this case, however, it may still prove useful to perform weight smoothing using a scaled 

version of the smoothing kernel over some region closer in size to the base generalization 

just to implement local smoothing and weight magnitude control. In intermediate regions 

the training interaction detector can signal whether training data are sparse enough to war­

rant the application o f Super Generalization just for a single sample or short series of 

training data in order to create a reasonable base from which to draw network responses in 

future visits to that region of the input space.

6.3 Suggestions for Future Work

1) Since the Super Generalization technique appears to be viable, the first thing that
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should be done is to develop a Super Generalization receptive field normalization, 

based on the existing tapered receptive field technique, that the information stored in 

the weights will be scaled so that recovery of that information with the base generali­

zation will result in correctly scaled responses. This will eliminate the need to post 

train at the training points with an update law operating at the base generalization as 

was done in the experiments presented here.

2) A full-blown implementation o f weight smoothing for the old weights should be 

implemented and tested now that the optimal weight smoothing function has been 

derived from the optimal matrix implementation. While computationally more expen­

sive than other CMAC sub-algorithms, this could still be implemented with only table 

lookup and the basic arithmetic operations. The new computer hardware should be 

able to support the extra computation and still allow for good real time performance. 

Even a dedicated hardware implementation in Field Programmable Gate Array 

(FPGA) technology or Application Specific Integrated Circuitry (ASIC) should be 

possible.

3) One of the big strengths of the optimum matrix solution is the way the algorithm 

detects when there will be interaction between the new training point and existing 

trained weights and prescales both the smoothed old weights and the Super General­

ized new data point to minimize the disruption and in fact to improve the smoothness 

of the overall solution. This should be implemented even if weight smoothing is not 

implemented. Now that a form of variable generalization is available since Super Gen­

eralization Cell size can be adjusted dynamically without disrupting the underlying 

base generalization structure, it makes sense to dynamically adjust the cell size to get
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optimum coverage and to respond to changing density of training data.

4) If possible the matrix formulation used in the two-dimensional implementation of the 

optimization problem should be corrected to accurately implement smoothing in both 

the X- and Y-directions. If this can be accomplished and an appropriate penalty matrix 

can be constructed, then new insights into the properties of the weight smoothing algo­

rithm might present themselves.

5) The new weight adjustment law or some variation of it should be recast in matrix form 

so that the local generalization property is built into the algorithm in an explicit way, 

thereby differentiating it from the global form represented by the matrix optimum 

solution. This local update law should be analyzed for stability.
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