
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Spring 1998

Stability and weight smoothing in CMAC neural
networks
David Paul Campagna
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Campagna, David Paul, "Stability and weight smoothing in CMAC neural networks" (1998). Doctoral Dissertations. 2005.
https://scholars.unh.edu/dissertation/2005

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F2005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F2005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F2005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/2005?utm_source=scholars.unh.edu%2Fdissertation%2F2005&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. I M

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter free, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality o f the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stability and Weight Smoothing in CMAC Neural Networks

by

David Paul Campagna

BSEE University of New Hampshire, 1986
MSEE University of New Hampshire, 1989

Dissertation

Submitted to the University of New Hampshire
in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

in

Engineering

May, 1998

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

UMI Number: 9831937

Copyright 1998 by Campagna, David Paul
All rights reserved.

UMI Microform 9831937
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

All Rights Reserved

© 1998

David Paul Campagna

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This dissertation has been examined and approved.

Dissertation Director, Dr. L. Gordon Kraft
Professor of Electrical Engineering

Dr. W. Thomas Miller III
Professor of Electrical Engineering

Dr. Filson Glanz
Professor Emeritus of Electrical Engineering

Dr. Michael J. Carter
Associate Professor of Electrical Engineering

Dr. Barry K. Fussell
Associate Professor of Mechanical Engineering

Dr. Donald W. Hadwin
Professor of Mathematics

Date

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Dedication

This dissertation is dedicated to my grandfather, Richard J. Campagna. Pepere, you

nurtured my interests in math and science right from the beginning. You helped me to learn

how to ask questions and to wonder why things are the way they are. I will always remem

ber with love and gratitude the many projects and experiments we did. The genetic study

of the soldier bean, model rockets, my first chemistry set, learning to play cribbage, rocks

and minerals, the electromagnet, my first Heathkit project, the slide rule, DC electronics,

blue potatoes and popcorn. If I thought I was interested in it, you’d help me look into it

more. Thank you, Pepere. I love you and I miss you.

iv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgments

This dissertation would not have become a reality without the help and support of

a great many people. I would like to express my deepest love and gratitude to my parents,

Paul and Therese Campagna, for their constant support and encouragement and for setting

such a wonderful life example. To Dr. Gordon Kraft, teacher, advisor, and friend, my heart

felt thanks for not giving up on me. Lord knows I didn’t make it easy, but you were always

there. To my committee, thank you for your willingness to work with me when this disser

tation suddenly reappeared from the mists. To Dr. Robert P. Hewes, you’re “top shelf’ in

my book. Some day we will get to work together again and “...woe to the wicked.” To Brian

Box, Ben Brown, Gerry Jankauskus, Jake Freedman, Steve Scalera, Allen Johnson, Steve

Neill, I don’t see how I’d have made it here without you. Thank you to my management at

Sanders for being willing to accommodate me in this undertaking. To my siblings, family

and friends, success is about the people in your life and, thanks to you, my life will always

be a success. To Sarah Robyn Thee, my Best Friend and Life Partner, my wife-to-be, a mil

lion thankyou’s with lots of spray on them. You’ve saved my life and given so much to sup

port me on this path. Without you this dissertation probably wouldn’t have happened, so

it’s yours as much as mine. Thanks you for staying. This work was supported in part by a

grant from the National Science Foundation (IRI-9112531).

v

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table of Contents

Dedication... iv
Acknowledgments...v
Table of Contents...vi
List of Tables... viii
List of Figures...ix
Abstract...xiii
Introduction... 1

Chapter I ... 10
Chapter 1 Background..10

1.1 What are Neural Networks..10
1.2 A Brief History of Neural Networks.. 11
13 Some Examples of CMAC Applications.. 14
1.4 A Brief History of Adaptive Controls..15
1.5 Prior Work in CMAC Learning Convergence..18

Chapter 2 ... 21
Chapter 2 The CMAC Neural Network.. 21

2.1 CMAC Description and History... 21
2.2 CMAC Parameters... 27

2.2.1 Quant..27
2.2.2 Num_state... 28
2.2.3 Num_resp...28
2.2.4 Num_cell..28
2.2.5 Mem size...28
2.2.6 Collision_avoidance...28
2.2.7 CMACJbeta.. 29

2.3 The Matlab CMAC Toolbox... 30
Chapter 3 ... 32
Chapter 3 CMAC Stability..32

3.1 Proof for Open-Loop Learning in the Scalar Case..33
3.2 Extension to the Multiple-Input, Single-Output Case.......................................35
3.3 Extension to the Multiple-Input, Multiple-Output Case...................................35
3.4 Discussion...36

Chapter 4 ... 38
Chapter 4 CMAC Weight Smoothing.. 38

4.1 The CMAC as a Collection of Linear Equations... 38
4.2 Some interpretations... 41

4.2.1 Matrix Formulation of the Albus CMAC Weight Update Law.............41
4.2.2 Optimization of New Weights..42
4.2.3 Optimization of Weight Adjustments...42

4.3 Results of Batch Mode Optimization Experiment in 1 Dimension.................43
4.3.1 Function Learning...43

vi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.3.2 Weight Smoothing and Derivative Performance_________________ 45
4.4 Results of Batch Mode Optimization Experiment in 2 Dimensions________ 45

4.4.1 Function Learning__ 46
4.4.2 Weight Smoothing and Derivative Performance___________________50

4.5 The Recursive Form for the Optimization Problem_____________________54
4.6 Sequential Update - 1-Dimensional Experiment-------------------- 55
4.7 Sequential Update — 2-Dimensional Experiment_______________________ 59

4.7.1 The smoothing matrix Q inverse.. 60
4.7.2 Term 1... 61
4.73 Term 2__ 62
4.7.4 Term 3 ... 63
4.7.5 Term 4 ... 64

4.8 The New CMAC Weight Smoothing Law.. 65
4.8.1 New Rule 1.. 65
4.8.2 New Rule 2 .. 66
4.8.3 New Rule 3 .. 67

Chapter 5 ...68
Chapter 5 The CMAC Weight Smoothing Law... 68

5.1 Issues of Generalization and Super Generalization... 68
5.2 Super Generalization Experiments..75

5.2.1 Experiment 1: Up Parabola...77
5.2.2 Experiment 2: Down Parabola..81
5.2.3 Experiment 3: Sin(X)*Sin(Y)...83

Chapter 6 ...88
Chapter 6 Conclusions and Suggestions for Future Work... 88

6.1 Summary...88
6.2 Conclusions...91
6.3 Suggestions for Future Work.. 94

References and Bibliography..97

vii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

MAT CMAC neural network toolbox

viii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

Figure 1.1: Layout for open-Ioop CMAC training.The CMAC is trained to duplicate the
input-output behavior of the Reference Plant...18
Figure 2.1: High-level, set-oriented representation o f the CMAC....................................22
Figure 2.2: A simple example of a CMAC neural network with two inputs and one output.
.. 23

Figure 3.1: Layout for open-loop CMAC training... 32
Figure 4.1: Relationship between training data and CMAC weights................................ 44
Figure 4.2: A plot of the parabola being trained into the CMAC. Every third data point was
used for training... 44
Figure 4.3: Plots o f the network response at all possible points.. 44
Figure 4.4: Plots of network weights...45
Figure 4.5: Plots o f the derivative of the network response at all possible points 45
Figure 4.6: Desired function for two-dimensional experiment...46
Figure 4.7: Matrix implementation, Albus law, network response, minimum length
solution with additional minimum difference penalty... 47
Figure 4.8: Matrix implementation, Albus law, network response, minimum length
solution without additional minimum difference penalty..47
Figure 4.9: Matrix implementation, An law, network response, minimum length solution
with additional minimum difference penalty..47
Figure 4.10: Matrix implementation. An law, network response, minimum length solution
without additional minimum difference penalty...47
Figure 4.11: Function learning error, matrix implementation, Albus law, minimum length
solution with additional minimum difference penalty... 48
Figure 4.12: Function learning error, matrix implementation, Albus law, minimum length
solution without additional minimum difference penalty..48
Figure 4.13: Function learning error, matrix implementation, An law, minimum length
solution with additional minimum difference penalty... 49
Figure 4.14: Function learning error, matrix implementation. An law, minimum length
solution without additional minimum difference penalty..49
Figure 4.15: Full RMS learning error with and without weight smoothing, Albus law,
training point spacing = 9...49
Figure 4.16: Inside RMS learning error with and without weight smoothing, Albus law,
training point spacing = 9...49
Figure 4.17: Full RMS learning error with and without weight smoothing, An law, training
point spacing = 9...50
Figure 4.18: Inside RMS learning error with and without weight smoothing. An law,
training point spacing = 9...50
Figure 4.19: Network weights for minimum difference (smooth curve) and minimum
length solutions...51
Figure 4.20: Network weights for minimum difference (smooth curve) and minimum
length solutions..51

ix

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.21: Full RMS error for X-gradient with and without smoothing, Albus law,
training sample spacing = 9...52
Figure 4.22: Full RMS error for Y-gradient with and without smoothing, Albus law,
training sample spacing = 9...52
Figure 4.23: Full RMS error for X-gradient with and without smoothing, An law, training
sample spacing = 9..52
Figure 4.24: Full RMS error for Y-gradient with and without smoothing, An law, training
sample spacing = 9... 52
Figure 4.25: Full RMS error for discrete Laplacian with and without smoothing, Albus law,
training sample spacing = 9...53
Figure 4.26: Full RMS error for discrete Laplacian with and without smoothing, An law,
training sample spacing = 9...53
Figure 4.27: Log performance improvement factor. Values greater than zero indicate
improved performance with weight smoothing. Vertical axis is in dB.............................. 53
Figure 4.28: Log perfromance improvement factor. Values greater than zero indicate
improved performance with weight smoothing. Vertical axis is in dB.............................. 53
Figure 4.29: Plot of Zscale vector when the first two training points were widely separated
in the input space.. 56
Figure 4.30: Plot of Zscale vector when first two training points were close in the input space.
.. 56

Figure 4.31: Plot of Zscale vector for the last training point in the series.........................57
Figure 4.32: Plot of the Wscale row vector corresponding to sample point #30 during the
training of sample point # 27...57
Figure 4.33: Plot of Zscale vector for the last training point in the series........................ 57
Figure 4.34: Plot of the Wscale row vector corresponding to sample point #27 during the
training of sample point # 24...57
Figure 4.35: Plot of Zscale vector for the last training point in the series........................ 58
Figure 4.36: Plot of the Wscale row vector corresponding to sample point #45 during the
training of sample point # 42...58
Figure 4.37: Plot of Zscale vector for the last training point in the series.........................59
Figure 4.38: Plot of the Wscale row vector corresponding to sample point #30 during the
training of sample point # 24... 59
Figure 4.39: Plot of one row of the matrix... 60
Figure 4.40: Zoomed view of the smoothing function from the matrix........................... 60
Figure 4.41: Wscale matrix before training fourth data point. Network generalization = 4,
3 samples have been trained previously, indices of previously trained weights are: 4, 33,
34, 35, 60, 61, 62, 63, 88, 90,91,117 ..61
Figure 4.42: Correction to linear combination of old weights prior to application of new
data point is a function of interaction between first and second trained points. Sample
spacing is large enough to prevent strong interaction.. 63
Figure 4.43: Correction to new sample scaling is a function of interaction between first and
second trained points. Sample spacing is large enough to prevent strong interaction 64
Figure 4.44: Scaling and distributed application of new data point is controlled primarily
b y ..65
Figure 5.1: Receptive field center allocation pattern for Albus CMAC with generalization
of4.o’srepresentthelowerleft-handcomerofareceptivefieldand*,srepresenttrainingpoints.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

...69
Figure 5.2: Receptive field center allocation pattern for Albus CMAC with generalization
of8. o ’ srepresentthe lower left-handcomer ofarecepti ve fieldand * ’ srepresenttraining points.
...69

Figure 5.3: Learning support in Albus CMAC with generalization of 4.................... 70
Figure 5.4: Learning support in Albus CMAC with generalization of 8.................... 70
Figure 5.5: Receptive field center allocation pattern for An CMAC with generalization of
4. o ’ s represent the lower left-hand comer of a receptive field and * ’ s represent training points.
...71
Figure 5.6: Receptive field center allocation pattern for An CMAC with generalization of
8. o ’ s represent the lower left-hand comer of a receptive field and * ’ s represent training points.
...71

Figure 5.7: Learning support in An CMAC with generalization of 4.........................71
Figure 5.8: Learning support in An CMAC with generalization of 8.........................71
Figure 5.9: Plot of support provided using the Albus receptive field center placement
strategy, training gen = 8, remember gen = 4.. 72
Figure 5.10: Plot of support provided using the An receptive field center placement
strategy, training gen = 8, remember gen = 4 .. 72
Figure 5.11: Receptive field center placement pattern for a single training point in an Albus
CMAC with generalization of 4. o’s represent the lower left-hand comer of a receptive field
and *’s represent training points...74
Figure 5.12: Receptive field center placement pattern for a single training point in an Albus
CMAC with super generalization of 16 and base generalization of 4. o’s represent the lower
left-hand comer of a receptive field and *’s represent training points...............................74
Figure 5.13: Learning support for a single training point with an Albus CMAC with
generalization of 4 ..75
Figure 5.14: Learning support for a single training point with an Albus CMAC with super
generalization of 16 and base generalization o f 4... 75
Figure 5.15: Receptive field shape for Super Generalization...76
Figure 5.16: Full rms error between desired function and learned functions...................78
Figure 5.17: Inside rms error between desired function and learned functions............... 78
Figure 5.18: Plot of the full rms error between the Laplacian of the desired function and
that of the learned function... 79
Figure 5.19: Plot of the inside rms error between the Laplacian of the desired function and
that of the learned function... 79
Figure 5.20: Plot of the full rms error between the X-gradient of the desired function and
that of the learned functions..79
Figure 5.21: Plot of the inside rms error between the X-gradient of the desired function
and that of the learned functions...79
Figure 5.22: Plot of the full rms error between the Y-gradient of the desired function and
that of the learned functions..80
Figure 5.23: Plot of the inside rms error between the Y-gradient of the desired function
and that of the learned functions...80
Figure 5.24: Plot of the full rms error for the function learning.......................................81
Figure 5.25
Figure 5.26

Plot of the inside rms error for the function learning...................................81
Plot of the full rms error between the Laplacian of the desired function and

XI

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

that of the learned functions..82
Figure 5.27: Plot o f the inside rms error between the Laplacian of the desired function and
that of the learned functions..82
Figure 5.28: Plot of the full rms error between the X-gradient o f the desired function and
that of the learned functions..82
Figure 5.29: Plot of the inside rms error between the X-gradient of the desired function
and that of the learned functions.. 82
Figure 5.30: Plot of the full rms error between the Y-gradient of the desired function and
that of the learned functions..83
Figure 5.31: Plot of the inside rms error between the Y-gradient o f the desired function
and that of the learned functions...83
Figure 5.32: Plot of the full rms error for the function learning..84
Figure 5.33: Plot of the inside rms error for the function learning................................... 84
Figure 5.34: Plot of the full rms error between the Laplacian of the desired function and
that of the learned functions..85
Figure 5.35: Plot of the inside rms error between the Laplacian of the desired function and
that of the learned functions..85
Figure 5.36: plot of the full rms error between the X-gradient of the desired function and
that of the learned functions..85
Figure 5.37: Plot of the inside rms error between the X-gradient of the desired function
and that of the learned functions...85
Figure 5.38: Plot of the full rms error between the Y-gradient of the desired function and
that of the learned functions..86
Figure 5.39: Plot of the inside rms error between the Y-gradient of the desired function
and that of the learned functions...86

xii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abstract

Stability and Weight Smoothing in CMAC Neural Networks

by

David Paul Campagna

University o f New Hampshire, May, 1998

Although the CMAC (Cerebellar Model Articulation Controller) neural network

has been successfully used in control systems for many years, its property of local general

ization, the availability o f trained information for network responses at adjacent untrained

locations, although responsible for the networks rapid learning and efficient implementa

tion, results in network responses that is, when trained with sparse or widely spaced training

data, spiky in nature even when the underlying function being learned is quite smooth.

Since the derivative o f such a network response can vary widely, the CMAC’s usefulness

for solving optimization problems as well as for certain other control system applications

can be severely limited. This dissertation presents the CMAC algorithm in sufficient detail

to explore its strengths and weaknesses. Its properties of information generalization and

storage are discussed and comparisons are made with other neural network algorithms and

with other adaptive control algorithms. A synopsis of the development of the fields of neu

ral networks and adaptive control is included to lend historical perspective. A stability anal

ysis of the CMAC algorithm for open-loop function learning is developed. This stability

analysis casts the function learning problem as a unique implementation of the model ref-

xiii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

erence structure and develops a Lyapunov function to prove convergence of the CMAC to

the target model. A new CMAC learning rule is developed by treating the CMAC as a set

o f simultaneous equations in a constrained optimization problem and making appropriate

choices for the weight penalty matrix in the cost equation. This dissertation then presents a

new CMAC learning algorithm which has the property of “weight smoothing” to improve

generalization, function approximation in partially trained networks and the partial deriva

tives of learned functions. This new learning algorithm is significant in that it derives from

an optimum solution and demonstrates a dramatic performance improvement for function

learning in the presence o f widely spaced training data. Developed from a completely

unique analytical direction, this algorithm represents a coupling and extension of single-

and multi-resolution CMAC algorithms developed by other researchers. The insights de

rived from the analysis of the optimum solution and the resulting new learning rules are dis

cussed and suggestions for future work are presented.

xiv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Introduction

In this dissertation the CMAC (Cerebellar Model Articulation Controller or Cere

bellar Model Arithmetic Computer) neural network is modeled in matrix form and its

weight adaptation, or learning, process is structured as a constrained optimization prob

lem. Properties of the resulting optimized weight update law are extracted for application

in a modified CMAC weight adaptation law. The motivation for this effort is derived from

the desire to improve the performance of the CMAC in control system applications. The

new weight adaptation law will accomplish this performance enhancement by improving

the function approximation capability of the CMAC network.

The idea o f ‘control’ is a familiar one with connotations o f forcing a person or sys

tem to perform in some constrained way under the direction of and to the specifications of

a ‘controller.’ The most common neural controller is the brain. The brain controls the

complex kinematics and dynamics of the body enabling all living creatures to perform

physical activities using their bodies. Human bodies are extremely complicated biome

chanical systems with over 600 force generating actuators (muscles) connected to a struc

tural framework with 200 independent segments (bones) with feedback provided by

millions of sensors (nerves). All aspects of body control are also nonlinear meaning that

the range of responses to stimuli are not simply scaled, filtered versions of the original

stimuli. Man-made neural controllers attempt to mimic the capabilities of the brain with

simple networks containing a large number of adjustable parameters. The range of control

systems will be explored in the following paragraphs, beginning with classical, linear con-

l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

trailers and progressing to nonlinear and adaptive controllers and finally to neural control

lers. The CMAC neural network, that is the topic of study for this research, is often used in

control systems which classify as neural control systems.

A control system is typically an electrical and/or mechanical system whose pur

pose is to cause some other system, referred to as “the plant,” to perform in some pre

specified or desired way. A classic example of a control system is the cruise control found

in many cars. The desired behavior is for the car to travel at the speed set by the driver.

The cruise control receives as input the vehicle speed, compares this speed to the desired

speed set by the driver, determines an error signal from this comparison, and changes the

throttle in order to make this error as small as possible. This is a feedback error controller

since the control signal (throttle position) is determined by the error between a desired

value and the measured plant output.

The classical design of such a cruise control might be of the PID (Proportional,

Integral, Derivative) variety. There are three fixed parameters, called gains, in a PID con

troller which determine the behavior of this system. They are the three system gains Kp,

K{, and Kd. The choice of these parameters to achieve a particular type of behavior

depends upon the properties of the plant being controlled. Armed with enough information

about the plant, there are very well established design methodologies available to design a

controller to exacting specifications for an “ideal, linear system.” In reality, however, few

systems are truly linear. Fortunately, many are linear enough for this class of controllers to

provide quite acceptable performance.

In many cases, full knowledge of the plant is not available. If the plant is linear,

there are still several well developed methodologies available to the control system

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

designer. Typically a mathematical form is assumed for a model of the plant and a control

ler is designed with several adjustable parameters. Since the parameter values used in the

controller depend upon the values in the plant model, accurate determination of the plant

properties is essential. Often these parameter values can be determined mathematically

from a study of the plant structure or experimentally. More sophisticated methods such as

least squares are available when some or all o f the parameters cannot be determined by

analysis or direct measurement.

For observable plants, where the internal properties of the plant can be determined

from outputs or measurable states, the model parameters can be derived from sufficient

measurement data in a process known as parameter identification. Once the identification

procedure has converged to stable parameter values, the model is considered complete and

a controller is designed to it. This controller is then used to control the actual plant. The

performance of the controller is directly related to the quality of the model and its identi

fied parameters.

In some cases the controller itself contains adjustable parameters. The values of

these parameters are adjusted by an adaptation law while the controller is in operation.

The adaptation algorithm is usually attempting to estimate postulated plant parameters for

the mathematical model so that these estimates may be used in the control system. This

process is referred to as simultaneous system identification and control. If plant parame

ters are estimated and these estimates are used in the controller, the process is called indi

rect control. If the parameters in the controller are adjusted without estimating the plant

parameters, the process is called direct control. For linear systems this theory is well

developed and includes detailed stability analyses. Two different approaches to this adap-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4

tive control design are the Model Reference Adaptive Control (MRAC) strategy and the

Self Tuning Regulator (STR) strategy. More will be said about these approaches in the

Adaptive Control Section 1.4 of Chapter 1. It is usually important to keep the number of

adjustable parameters small in order to keep the computational requirements manageable

for real-time control applications. These techniques can break down if the plant is signifi

cantly nonlinear.

For plants which are known not to be linear it is often possible to linearize the

mathematical model about one or more operating points and still successfully apply the

methods described above. A common example of a nonlinear system (and an unstable one

too) is the inverted pendulum. Often referred to as the broom balancing problem, the goal

is to balance the broom on the palm o f one’s hand. The inverted pendulum, in this case the

broom, is a very popular benchmark problem in control systems since inverted pendulums

are easy to build, relatively easy to model, easy to linearize about the balance point, but

difficult to control well. The difficulty lies in the fact that the control effort needed to right

the pendulum increases very rapidly with the deviation from vertical. In addition this plant

is inherently unstable. The broom will fall over no matter how carefully the initial position

is set (ignoring friction and other effects).

It is possible to linearize the inverted pendulum about the balance point but system

performance is quickly degraded when the state of the plant is different than the operating

point about which the model was linearized. Sometimes even small deviations from the

operating point can lead to system instability.

One possible solution to this problem might be to choose more operating points

and switch from one controller to the next as the system moves from operating point to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5

operating point. This would involve many controllers, possibly even adaptive controllers,

and many parameters to manage. Another approach that is gaining popularity as the num

ber of successful applications increases is to use a neural network as all or part of the con

troller. Neural networks can have thousands or even millions of adjustable parameters,

called weights. The weights are adjusted by an adaptation law or learning rule specific to

the particular network. The advantage of using neural networks is that they are capable of

managing even the nonlinear aspects of the plant. There are mathematical proofs [187] for

several network architectures stating that these types of networks can theoretically repre

sent any kind of function. There are, unfortunately, almost no results suggesting how to

construct a network for a particular task and then train it to represent the desired function.

So, while it is comforting to know that a solution exists, knowing whether the particular

network being used can actually solve the problem is still left to trial and error.

The important features o f neural networks is that they are capable of representing

and storing both linear and nonlinear functions and they are capable of adjusting these

stored functions in response to new training or performance information. These properties

allow neural network based controllers to span the range from linear to nonlinear and

adaptive controllers. They are often used to augment more traditional controllers. For

example, a system might be stabilized with a linear controller while the neural network

based controller learns system nonlinearitities and augments the linear controller outputs

to compensate for system properties not accounted for in the primary controller.

It is important to note that there are many different types of neural networks. The

historical overview of the next chapter will highlight the major network architectures. For

now it is sufficient to note that each network architecture has certain properties that deter-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6

mine the class o f problems to which it can be applied. Self-organizing networks are good

at extracting hidden patterns from data. Multi-layer perceptrons are good at determining

global maps. Associative memories are good at building up a map from local information.

When considering a network architecture for use in a control system, the concerns are: the

speed at which learning occurs, the stability o f the learning algorithm, the stability of the

closed-loop system including the controller, the accuracy of the learned function, and

often quality of the derivative(s) of the learned function as well.

The focus of this dissertation is a network of the associative memory type: CMAC.

The CMAC has been successfully used in control systems at the University of New

Hampshire since the mid 1980’s and elsewhere since the early 1980’s. Advantages of the

CMAC include rapid learning convergence and the availability of dedicated hardware

accelerators. The most attractive property o f the CMAC algorithm, however, is that it can

be easily implemented on even low-end, general purpose hardware like PC’s and still

operate rapidly enough to provide real-time control of complex systems like the General

Electric P5 five axis industrial robot. The CMAC networks learns orders o f magnitude

faster than a comparable multi-layer perceptron network trained with the backpropagation

algorithm. Some disadvantages of the CMAC include that it is not a universal function

approximator [23] like the multi-layer perceptron and the radial basis function networks.

That is, there exists a family of functions (quantized analog or digital) whose internal rep

resentation is orthogonal to the representational basis in the weight space and therefore

cannot be represented by the CMAC at all. Despite this theoretical limitation, the CMAC

has been shown capable of learning many of the functions required for control applica

tions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7

CMAC is a local learning network which has both advantages and disadvantages.

The local learning property contributes to the remarkable speed o f the CMAC algorithm

since any access to the network for learning or for retrieving information only requires

that some small number (typically less than 256) of the network weights must actually be

accessed. This property can also contribute to particularly rapid learning convergence

when learning periodic and well sampled functions. In contrast, global learning networks

like multi-layer perceptron networks require that all the weights be adjusted for training

and all the weights can potentially contribute to the network response for any input.

Problems with the local learning property appear primarily when the CMAC net

work is only partially trained. If the training points are close enough together then the net

work generalization, its ability to share information among related input states, will enable

the network to give reasonable responses at points in the vicinity of trained points where

training has not actually occurred. The particular difficulty in control system applications

and especially for optimization type problems is that the derivative o f the network output

can often be grossly in error even when the network output itself is acceptable. One solu

tion to this problem is to train the function derivative into the network as an additional out

put. This increases the complexity of the system by essentially requiring a completely new

network to learn the derivative. Additionally, a measured or estimated derivative may be

corrupted by considerably more noise than the non-differentiated signal. This can make

learning more difficult although the learning process in CMAC is inherently a low-pass

operation.

Another more insidious problem with the existing learning algorithm for CMAC is

that it allows some of the weight values to grow without bound. This poses less of a prob

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8

lem in the theoretical treatment than it does in application. In the case where CMAC

weights are represented by 16-bit integers, for example, it doesn’t take too much attention

from the learning algorithm to cause a weight value to grow beyond that which can be rep

resented by 16 bits. As a result, a weight value can suddenly change from a large positive

number to an equally large negative number or from a large negative number to a large

positive number. The effect of such a sign change can be catastrophic for the output(s) to

which that weight contributes. Indeed, the effects can ripple throughout the network. A

weight magnitude monitor has been added to the UNH CMAC algorithm as a fix. For each

set of weights accessed during a training cycle, the weights are also adjusted so that devia

tions from the set average value are kept small. This allows the weight structure to be

trained in while preventing runaway weights.

The new learning rule developed in this dissertation specifically addresses the

above problems. The new rule implements weight smoothing and automatic magnitude

control thereby improving the network function approximation, the behavior of the differ

entiated network output, the network generalization and the overall stability of the net

work weights. The impact of this new algorithm on CMAC learning speed and quality are

examined and examples are given.

Chapter 1 presents an historical perspective on the development of both the neural

network field and the adaptive control field to provide some context for the discussion of

CMAC. Performance comparisons are drawn from the literature to highlight CMAC char

acteristics and motivate its use in control systems. Chapter 2 covers the detailed informa

tion about the CMAC algorithm, documenting the evolution o f the algorithm since its

original development in 1972. Chapter 3 addresses the issue o f learning convergence and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9

stability for the CMAC algorithm. Chapter 4 lays the groundwork for developing the new

weight adjustment law. The CMAC is modeled as a set of simultaneous equations and the

solution is determined by solving a constrained optimization problem in the CMAC

weights. Chapter 5 explores the requirements derived from the matrix rule developed in

Chapter 4. In particular, the CMAC generalization property is studied and a modified gen

eralization technique is developed in order to support the new weight adjustment law. A

crude first attempt at implementing the new adjustment law in actual CMAC code is pre

sented along with experimental results demonstrating the performance of this approxima

tion to the new weight update rule. Comparisons with other update rules are provided.

Chapter 6 summarizes the work presented in this dissertation and draws conclusions about

the results. Suggestions for future work are also presented.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Background

1.1 What are Neural Networks

For the purposes of discussion in this dissertation, a neural network is defined to be

any computer algorithm, mathematical model, or piece of hardware whose structure is

either a) modeled, in whole or in part, after the connectivity and physical functioning of

the neurons in the human brain, or b) whose structure is intended to duplicate the function

ing of some cognitive unit of the human brain without paying specific attention to proper

ties of biological neurons. It is worth noting at this point that the neural network field is

not the same as the field of study known as AI or Artificial Intelligence. The term AI

refers to the field of symbolic knowledge representation where computer programs manip

ulate some knowledge base in an effort to mimic the high-level decision making and rea

soning capabilities o f the human brain/mind. The boundary between neural networks and

AI is ill-defined at best since one can certainly argue that neural networks form some

abstract representation of the problem they are trained to solve. Based upon where neural

networks find application, it seems more appropriate to refer to them as low-level cogni

tive blocks used primarily for pattern recognition and function learning and to refer to AI

for high-level cognitive blocks used in applications like expert systems where large

amounts of information recognizable to humans as knowledge are manipulated and pre-

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

II

sented in a way that is useful and helpful to users of that system.

1.2 A Brief History of Neural Networks

The field of neural networks began roughly in 1943 when Warren McCulloch and

Walter Pitts developed the first model for a computing element based on some of the prop

erties o f biological neurons[93]. Much work followed demonstrating how networks

formed of interconnected McCulloch-Pitts neurons could perform many useful functions.

In 1949 Donald Hebb [62] presented a theory for learning suggesting that information

could be stored in connections between individual neural computing elements and pre

sented a learning rule, known as the Hebbian learning rule, to perform this connection

update. This was the beginning o f “machine learning.”

The first neural network machine was built by Marvin Minski in 1951 and con

sisted o f 40 neural computing elements with adjustable interconnections. At the same

time, researchers were developing a fledgling theory involving adjustable parameters in

automatic control systems that would grow to become the powerful field o f adaptive con

trols. In 1958 the neural computing element known as the “perceptron” was developed by

Frank RosenbIatt[136].

The early sixties were a time of powerful developments in the field of neural net

works. The development o f the ADaptive LINEar combiner (ADALINE), the Widrow-

Hoff learning rule to train it, and later the MAD ALINE (for Many ADELINES) by Ber

nard Widrow and Marcian Hoff were significant advances [154], [155]. The Widrow-Hoff

rule is very general and still finds frequent application today. Rosenblatt’s publication of

“Principles of Neurodynamics”[137] in 1962 energized the field by presenting a well

developed theory to accompany the perceptron. Still, there were troubles. Perceptron net-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

12
works could not always solve the problems which they were presented. Even some very

simple problems could not be solved, no matter how large the network was. The bubble

burst in 1969 when Marvin Minski and Seymour Papert published “Perceptrons”[l 17] in

which they analyzed the perceptron and showed that a single layer of perceptrons was

incapable of solving certain problems. A shadow of doubt was also cast upon the multi

layer perceptron networks. Little could be done with them at the time since no learning

rule to adjust the network connections was available. The following is taken from “P.er-

ceptrons”, pp. 231-232.

The perceptron has shown itself worthy of study despite (and even because

of.) its severe limitations. It has many features to attract attention: its lin

earity; its intriguing learning theorem; its clear paradigmatic simplicity as a

kind of parallel computation. There is no reason to suppose that any of

these virtues carry over to the many-layered version. Nevertheless, we con

sider it to be an important research problem to elucidate (or reject) our intu

itive judgment that the extension is sterile. Perhaps some powerful

convergence theorem will be discovered, or some profound reason for the

failure to produce an interesting '‘learning theorem” for the multilayered

machine will be found.

In the wake of this prediction regarding multi-layer perceptrons, the entire field of neural

network study practically vanished over night! The development of that interesting learning

theorem was only five years away but it would languish in obscurity for another twelve

years beyond that.

During the seventies scattered researchers continued their work on various types of

neural networks. Kunihiko Fukushima [47] developed a class of network architectures

known as neocognitrons for biologically motivated visual pattern recognition. Tuevo

Kohonen[70] and James Anderson[13] were working independently on associative memo-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

ries which are more behaviorally based and less structurally based on brain-like activity.

Stephen Grossberg[60] developed network architectures and theories that eventually led

to his Adaptive Resonance Theory. Although Minsky and Papert’s “interesting learning

theorem,” the solution to the problem of training networks consisting of multiple layers of

perceptron, was developed in 1974 by Paul Werbos [193], it went completely unnoticed

by neural network researchers until much later. Another development that achieved little

notoriety at the time was the 1972 doctoral dissertation by James Albus in which he

described his idea for the Cerebellar Model Articulation Controller (CMAC)[2]. It is inter

esting to note that the mathematical model of cerebellar function developed by Albus in

1971 [1] was also developed independently by David Marr [90] in Great Britain in 1969.

Much more will be said about the CMAC since its analysis and improvement are the cen

tral topics of this work.

The learning rule developed by Werbos and now known as backpropagation first

attained widespread recognition by neural network researchers in 1986 when David

Rumelhart, Geoffrey Hinton and Ronald Williams[139] presented their independent

development of error backpropagation for the training of multi-layer perceptron networks.

It was soon discovered that D. B. Parker had also independently developed the same algo

rithm in 1982 and called it Learning Logic. The backpropagation algorithm caused a tre

mendous resurgence of interest in neural networks (particularly in multi-layer perceptron

networks).

The CMAC algorithm also began receiving some new attention in the 1980’s. Ersu

et. al. [36] began working with the CMAC algorithm in 1981. They called their algorithm

the Associative Memory System (AMS) and applied it primarily to simulated systems or

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

to systems with slow dynamics (sampling rates on the order o f 1 second). By 1986 W.

Thomas Miller [99], at the University of New Hampshire, had refined the Albus CMAC to

the point where it could be applied to the real-time control o f complex systems with faster

dynamics (15 states, sampling rates on the order of 10 milliseconds). Dedicated CMAC

hardware was developed at the University o f New Hampshire in 1990 reducing CMAC

response time to 1 millisecond or less.

It was in the late 1980’s that a detailed analysis of the CMAC algorithm began.

Ellison, in 1988, first analyzed the convergence properties of the Albus CMAC. Subse

quently, Militzer and Parks [94][128], Kraft and Campagna [74], Wong and Sideris [158],

and Brown [19] have all studied the learning convergence of the CMAC neural network.

Carter et. al. [28] has studied the fault tolerance of the CMAC.

1.3 Some Examples of CMAC Applications

The Robotics Laboratory at the University of New Hampshire has been applying

the CMAC network to the solution of a wide assortment of problems since the mid 1980’s.

Applications of the CMAC neural network include the following: ‘‘Application of a Sim

ple cerebellar model to geologic surface mapping”[6l] (1991), “Deconvolution and Non

linear inverse filtering using a neural network”[56] (1989), “Deconvolution using a

CMAC neural network”[57] (1988), “Application of a general learning algorithm to the

control of robotic manipulators”[102] (1987), “Real time application of neural networks

for sensor-based control of robots with vision”[104] (1989), “Pattern Recognition using a

CMAC Based Learning System”[63] (1988), “Practical demonstration of a learning con

trol system for a five axis industrial robot”[64] (1988), “Real time dynamic control of an

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

industrial manipulator using a neural network based learning controller” [105] (1990),

“Bipedal Gait Adaptation for Walking with Dynamic Balance”[96] (1991), “Real-Time

Neural network Control o f a Biped Walking Robot”[95] (1994), “Rapid Learning Using

CMAC Neural Networks: Real Time Control of an Unstable System”[97] (1990), “On-

Line Hand-Printed Character Recognition Using CMAC Neural Networks’̂ 115] (1994),

“A CMAC-based cursive handwriting recognizer for the Windows for Pen Computing

operating environmental 4] (1994), Real-Time Control of a Robotic Pole Balancing Sys

tem Using Complementary Neural Network and Optimal Techniques’̂ 122] (1994),

“Approximate nonlinear optimal control using CMAC neural networks’̂ 12] (1994),

“Control of pH Using a Self-Organizing Control Concept with Associative Memo

ries”^] (1983), “Shape recognition using a CMAC based learning system”[55] (1987),

“Application of Associative memory Neural Networks to the Control of a Switched

Reluctance Motor”[135] (1993), “Dynamic Control o f a Parallel Link Manipulator using a

CMAC Neural network”[54] (1993), and “Analyzing Biological Signals with CMAC, A

Neural Network”[156] (1991).

1.4 A Brief History of Adaptive Controls

The field of adaptive controls evolved essentially in parallel with, yet isolated

from, the field of neural networks. Where neural network research attempted to produce

some rudimentary brain-like behavior from their algorithms, the adaptive control

researchers were developing solutions to problems by extending the existing linear system

theory with adjustable parameters and supporting this extension with mathematical rigor.

The process o f adaptive control can typically be divided into two steps: system

identification and system control. Adaptive control techniques are applied when the plant

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

to be controlled has unknown parameters but an assumed linear functional form. System

identification is the process of converting plant input-output measurements into estimates

of the linear function parameters. These new plant parameter estimates are then used to

modify parameters in the system controller with the goals of stable control and good per

formance relative to some performance measure.

It is also possible to combine the two steps of identification and control so that

they occur simultaneously in a process called simultaneous identification and control.

Under this approach the controller parameters are adjusted directly based upon system

input-output measurements. This scheme is also referred to as direct control for this rea

son. Control with separate identification and control is also referred to as indirect control.

For linear systems this theory is well developed and includes detailed stability analyses.

Two different approaches to this adaptive control design are the Model Reference Adap

tive Control [194], [186] (MRAC) strategy and the Self Tuning Regulator [175], [165]

(STR) strategy.

The goal of stable control with good performance is very elusive. Theoretical guar

antees of system stability and performance are difficult to achieve even under very restric

tive assumptions. MRAC systems are designed from the standpoint of guaranteed stability

while STR systems have no guaranteed stability results. Both have found wide application

and both have advantages and disadvantages governing where they may best be applied.

There are typically two kinds of control problems to be solved. The category into

which a particular control problems falls depends primarily upon the control objective.

Essentially, control is about keeping the plant outputs Yp within some prescribed limits.

When these limits are defined in terms of some “desired” plant behavior Yd, the problem

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17

is of the model reference type. The goal is to keep the error e - Yp - Y d within the pre

scribed limits. The choice of mathematical form for Yd is important for tractability and Yd

is usually implemented as the output o f a reference model — hence the name of this control

strategy. If Yd is a constant, the control problem is referred to as “regulation” and if Yd

varies with time, the control problem is referred to as '‘tracking.” Both direct and indirect

implementations of MRAC are possible.

It can be argued that the first mainstream adaptive control paradigm was the

“M.I.T. Rule” developed by Whitaker et al [194] of the Massachusetts Institute of Tech

nology in 1961. The M.I.T. Rule was a heuristic method for designing a model reference

controller where the parameters of the controller were adjusted to minimize an error func

tion using a gradient approach. The M.I.T Rule was difficult to analyze and Parks and oth

ers soon discovered that it could lead to instabilities even for simple systems. The

generally accepted solution to this problem was to redesign the model reference adaptive

controller using Lyapunov’s direct method [186], [180] so that system stability was guar

anteed from the outset.

The self-tuning regulator was originally proposed by Kalman [175] in 1958 for the

stochastic minimum variance control problem. The STR has been studied extensively and

many variations exist [165], [166]. STRs find application in noisy systems and are divided

into two subcategories, explicit estimation and implicit estimation, corresponding to indi

rect and direct MRAC respectively . Explicit STRs consist of an explicit estimation o f the

process to be controlled followed by a tuning of the regulator parameters; implicit STRs

are based on an implicit estimation of the process and a direct update of the regulator

parameters.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

18

1.5 Prior Work in CMAC Learning Convergence

There are several groups o f researchers who have published or are working on

proofs of CMAC learning convergence. All of these proofs are for the open-loop learning

case. Openloop learning is defined to be the case where a CMAC neural network is placed

in parallel with a system to be modeled. The CMAC is trained to duplicate the input-out-

put relationship o f the system being learned. Figure 1.1 shows a typical block diagram.

Figure 1.1: Layout for open-loop CMAC
training.The CMAC is trained to dupli
cate the input-output behavior of the Ref
erence Plant.

In 1988 Ellison published “On the Convergence of the Albus Perceptron” [34]

where it was proved using a rank argument on the system of linear equations solved by the

CMAC that, for the I-dimensional case, the optimum weight vector for which the output

error was zero always existed. Since the I-dimensional case has fewer equations than

unknowns, there are infinitely many weight vectors for which the output error is zero.

Parks and Militzer published their CMAC convergence proof in 1989 [128]. The

analysis was based on a geometrical interpretation of the CMAC algorithm as a projection

operation in the weight space. When convergence to a point in the weight space was indi-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19

cated (i.e. a unique weight vector exists), a Lyapunov function was constructed to prove

convergence. When the convergence was to a limit cycle, an eigenvalue analysis was used

to determine that all the eigenvalues were either on or inside the unit circle. In another

paper, also published in 1989 (a similar paper, “A Comparison o f Five Algorithms for the

Training o f CMAC Memories for Learning Control Systems”, was published in Automat-

ica in 1992), Parks and Militzer examined the convergence properties o f five different

CMAC update laws [130]. One of these update laws was the standard CMAC law for

which they had already proved convergence. Convergence proofs were not developed for

the other training rules.

In 1991 Ellison published a paper “On the Convergence o f the Multidimensional

Albus Perceptron” [35]. 1992 saw more proof papers on the convergence of CMAC. First,

in January, Wong and Sideras [158] equated the CMAC algorithm with iterative Gauss-

Seidel solution for a set of linear equations and claimed that CMAC always converged to

arbitrarily small output error. They presented a detailed proof for a 1-dimensional CMAC

(maps 9? —> 9?). They also claimed that the proof could be extended to multidimensional

CMACs (maps 9?" —> 91OT) but Brown and Harris [21] have demonstrated that this exten

sion does not always exist in the multidimensional case.

In 1993, Campagna and Kraft first used a Lyapunov function of the weight error

between the CMAC being trained and a fully trained CMAC representing the desired

function to show that learning always converges for values of the learning rate parameter

between 0 and 2 as long as it could be postulated that a target set o f weights existed. This

analysis was an extension of some of Parks and Militzer’s analysis in that the learning rate

parameter was allowed to vary as opposed to being fixed at the value 1. Brown, in his

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

20
work on Neurofiizzy Adaptive Modeling and Control [19], developed several theorems on

CMAC’s ability to exactly model certain classes o f functions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

The CMAC Neural Network

2.1 CMAC Description and History

The CMAC algorithm, developed by James Albus in the early 1970’s as a model

of human cerebellar functioning suitable for function approximation and manipulator con

trol, is a mapping from a set o f possible inputs to a collection of weights. The CMAC is

based on the perceptron developed by Rosenblatt and it has the following properties:

• Each of the inputs maps to exactly C o f the weights whose values are summed

together to produce the CMAC output. This number C is often called the generaliza

tion size.

• Inputs that are “similar” or “close” to each other in the input space will map to many,

but not all, of the same weights thus producing outputs that are also “similar.” This

property is known as generalization and makes it possible for the CMAC to produce

an appropriate (or approximately so) response to an input that has not been presented

before if that input is sufficiently similar to data the CMAC has already trained on.

• If the inputs are sufficiently “distant” from each other in the input space, the outputs

will be independent.

Figure 2.1 shows the high-level representation of the CMAC algorithm illustrating

the mapping of sets from the input space to sets of real memory location in the space of

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

22
computer memory. An input vector is a collection o f N measurements representing sys-

ln put/State
Space

Conceptual
Memory

A ’

Random

Mapping

Figure 2.1: High-level, set-oriented representation of the CMAC.

tern inputs, systems states, and/or desired system responses. Each input maps via the

CMAC algorithm to a set of conceptual memory locations in the space labelled A in figure

2.1. The number of elements in the input space grows very rapidly with the number of

inputs and particularly with the number of discrete values each of these inputs may take

on. Imagine, for instance, a CMAC with four inputs where each input is sampled analog

data with I O-bit resolution. The resulting input space has 240 or over 1 trillion possible

input vectors. The corresponding A memory must be at least as large. Since most systems

only visit a small fraction of their total possible input space, a technique called hashing is

used to map the A memory into a more practically sized A' memory. While hashing leads

to a tremendous reduction in the memory requirement o f the CMAC, this benefit is not

without an attached cost. Hashing makes it possible for widely separated vectors in the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

23

input space to be mapped to one or more of the same weights thereby violating the third of

the above CMAC properties and resulting in a condition known as a collision or hashing

collision. This problem can be mediated to some extent by utilizing certain collision

avoidance enhancements to the algorithm.

Figure 2.2 is a diagram of a two-input Albus-type CMAC as implemented by the

basic UNH CMAC algorithm. Each variable in the input vector S is processed by a col-

&
nputefisors

/
\

State Space
Detectors

Weights

^ Multiple Field
110 Total Detectors

Units
O Logical AND unit
o Logical OR unit

Figure 2.2: A simple example of a CMAC neural network with two inputs and one
output. The generalization parameter, C, is set to 4 and only a partial set of state
space detectors is shown.

lection of input sensors with overlapping regions of sensitivity or receptive fields. In this

case, each input sensor produces a binary output which is ON if the input falls within its

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

24

receptive field and is OFF otherwise. Because of this, the Albus CMAC is often referred

to as the Binary CMAC. The width of the receptive field of each sensor is what leads to

input generalization. The offset of the adjacent receptive fields is a measure of the

imposed quantization o f the input space. In a sampled data system the input space is

already broken up by the sampling process into a number of discrete values determined by

the number of bits used to represent the data. The CMAC quantization parameter deter

mines the distance, measured in terms of some number of these discrete values, that an

input must change by in order to activate a new receptive field.

A lower resolution view of an input variable is often quite sufficient for learning

applications and sometimes masking small variations even helps to prevent or reduce the

learning of system noise. Each input variable excites exactly C input sensors where C is

the ratio of generalization width to quantization width. For the rest of this work it will be

assumed that the parameter C and the generalization width have the same value. This, of

course, implies a quantization parameter value of unity.

The binary outputs of the receptive fields are combined in a series of logical AND

units called state-space detectors. Each state-space detector receives one input from the

receptive field sensors for each of the input variables. Only the state-space detectors hav

ing all inputs in the logical ON state produce an output in the logical ON state. This effec

tively creates a new sensor with a multidimensional receptive field. For the two-

dimensional case, the receptive field of a state-space detector is the interior of a square in

the input space. In general the state-space detector receptive field is the interior of a hyper

cube in the input space. The state-space detectors are selectors for memory locations in the

A memory.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

25

If the receptive field sensors were fully connected to the state-space detectors then

VC memory locations m the A memory would be selected. To avoid having an unman

ageable number o f state-space detectors, the input sensors are connected in a sparse and

regular way such that exactly C state-space detectors are ON for any input vector. An

effective way to visualize the input space coverage provided by this set of state-space

detectors is to divide them into C classes such that the receptive fields for the detectors in

each class completely cover the input space without overlap. These hyper-planes are then

stacked with their origins displaced from one another in a predefined way. Each vector in

the input space excites exactly C state-space detectors. The Albus receptive field place

ment results in an ordered distribution of receptive fields along the main hyper-diagonal

and parallel minor diagonals of the input space. In other words, the displacement of the

receptive field hyper-planes is positive one unit along each axis o f the input space.

Although the Albus receptive field placement is easy to calculate and it does pro

duce even, regular coverage in the input space, it results in highly nonuniform sampling in

the weight space. The larger the value of C and the higher the input space dimension, the

greater the non-uniformity becomes. This phenomenon along with alternative receptive

field center distribution schemes has been explored in detail [9], [66], [129], The effect of

this nonuniform sampling is to produce excellent generalization along certain trajectories

in the input space and poor generalization along other trajectories. An [9], in his 1991 doc

toral dissertation, developed a heuristic receptive field placement that produced a much

more uniform distribution in the weight space. The solution explored by the above

researchers is to arrange the receptive field centers in a manner analogous to sphere pack

ing. This new mapping from input sensors to state-space detectors still results in uniform

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

26

sampling in the input space and approximately uniform sampling in the weight space.

Yan-Ping Jia [66] in her masters thesis explored CMAC weight allocation using the math

ematically rigorous results obtained from the exploration o f the sphere packing problem.

To date, results are only available for low dimension problems.

The CMAC was more widely used in control systems beginning in the early

1980’s with Ersu et. al. who applied it primarily to simulated systems or to systems with

slow dynamics (sampling rates on the order o f 1 second). They called their algorithm the

Associative Memory System or AMS. By the mid 1980’s, Miller had refined the CMAC

algorithm to the point where it could be applied to the real time control of complex sys

tems with faster dynamics (15 states, sampling rates on the order of 10 milliseconds). In

1990 hardware was developed that reduced CMAC response time to 1 millisecond or less

depending upon the generalization size. Reay et. al.[l35] have also been using the CMAC

as part of their control system research for the control of switched reluctance motors.

There has also been much theoretical interest in the CMAC. Militzer and

Parks[94], Kraft and Campagna[74], Wong and Sideris[158], and Brown[19] have all

studied the learning convergence of the CMAC neural network. Carter et. al.[28] has stud

ied the fault tolerance o f the CMAC.

Much can now be said about the properties of the CMAC and some of the impor

tant ones are summarized below:

• Since the CMAC is a local learning algorithm, only a small number of network

weights need to be accessed on any pass through the network. This makes the CMAC

especially well suited to real-time applications and allows for good performance even

on relatively inexpensive general purpose hardware.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

27

• The theoretical analysis of CMAC shows that learning convergence can often be guar

anteed in open-loop systems. The empirical evidence shows that it is usually well

behaved in closed-loop systems as well.

In conjunction with even a poorly tuned controller, the CMAC generalization property

often enables the network to essentially guide its own learning by progressively

assuming control o f the plant. This makes the CMAC an excellent tool for system per

formance enhancement since it can compensate for small system nonlinearities which

have been ignored or linearized for the design of a traditional linear controller.

• Although trained information is distributed across a large number of network weights,

the CMAC is still susceptible to the phenomenon of single weight dominance where

one or two weights are the primary contributors to the network response. One conse

quence of this is the occasional uncontrolled growth of a single weight leading to

dynamic range problems, particularly with integer weights. This also reduces the fault

tolerance of the network considerably.

• Partial derivative information derived from the CMAC output is extremely unreliable,

particularly in regions where the training exemplar density is low. Local generaliza

tion effects often lead to large magnitude errors and even sign errors in calculated par

tial derivatives.

2.2 CMAC Parameters

A detailed explanation of the parameters is left to the user’s guide in the appendix. These

parameters are for the integer CMAC typically used at the University of New Hampshire.

2.2.1 Quant

The quantization parameter quant determines the amount of sampling performed

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

28

on the CMAC input variables. If the value o f quant is 1, then all integer points in the input

space are available for training. If the value of quant is set equal to 2, then the sampling is

for every other sample in the input space. This parameter can be used, for example, to

ignore the noisy least significant bits of data provided by some analog-to-digital converter.

2.2.2 Num_state

The parameter num_state tells the CMAC how many input states there are. For

the 2-dimensional problems being studied here, num_state is always 2.

2.2.3 Num_resp

The parameter num_resp is the number of responses the CMAC is to provide for

each input vector presented. An independent set of weights is allocated for each response.

2.2.4 Num_ceII

The parameter num_cell is the number of CMAC weights across which the input

information will be spread during training. In the standard CMAC, it is also the number of

weights which are summed together to produce an output during the remember phase.

This parameter is also known as the generalization parameter.

2.2.5 Mem size

The parameter mem_size represents the number of integer memory words allo

cated to store the information trained into the CMAC. Mem_size locations are allocated

for each o f the desired outputs plus mem_size locations for collision avoidance tracking.

2.2.6 Collision_avoidance

When collision avoidance mode is enabled, learning performance is relatively

independent of the amount of memory allocated as long as there is enough. Performance

degradation is fairly abrupt when collision avoidance is enabled whereas it is gradual

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

29

when there is no collision avoidance. A CMAC without collision avoidance enabled

requires much more memory than does a CMAC with collision avoidance to achieve sim

ilar learning performance. The parameter coIlislon_avoidance takes on values of I for

avoidance disabled and 0 for avoidance enabled. Collision avoidance mode does not elim

inate the possibility o f a learning collision; it merely makes such an event much less

likely.

2.2.7 CMACJbeta

The parameter cmacjbeta, traditionally knows as beta, determines the weighting

of new information as it is combined with existing information stored in the CMAC. From

a theoretical standpoint, the value of cmac_beta can vary over the continuum from 0 to 2

with typical use restricted to the range from 0 to 1. For the UNH CMAC, cmacjbeta takes

on positive integer values beginning at 0. Since the UNH CMAC is an all-integer network,

integer values of cm acjbeta are converted to multiplicative scaling factors of the form

1 / 2 cmac-beta which can be implemented very efficiently in the computer as binary shifts.

In this thesis we will attempt to motivate “weight smoothing” during learning as a

way to improve CMAC generalization, fault tolerance, and the quality of partial deriva

tives calculated from partially trained CMAC function approximations. The methodology

will be to represent the CMAC as a collection of linear equations in the network weights.

We will treat this CMAC representation as a constrained optimization problem and dem

onstrate the potential for improved performance available from this batch mode training.

We will then take the batch mode optimization result and develop an iterative form to

more closely represent the typical CMAC and comment on the results.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

30

2.3 The Matlab CMAC Toolbox

The basis for much of the research in this dissertation is the publicly available

UNH CMAC C code. Since it was known that visualization would play a key role in this

research, one o f the first tasks was the porting o f the UNH CMAC code to the Matlab

environment. The resulting MAT_CMAC toolbox has already been used as a research tool

in other thesis work [46]. The process of creating the MAT_CMAC toolbox consisted of

writing a Matlab mexfunction wrapper in C for each of the externally available functions

in the UNH CMAC code. In addition to the straight port o f the CMAC code, numerous

extensions were added in support of this research. Table 2.1 is a listing of the

Table 2.1 MAT_CMAC neural network toolbox

adjust update CMAC weights with a correction you determine

aloccmac create a new CMAC

clrwgts set all CMAC weights to zero

delcmac delete a CMAC from the matlab environment

learn update CMAC weights with standard algorithm

memusage estimate memory usage by finding all nonzero weights

*reg_cmac register a new CMAC with the CMAC manager

remember get a response(s) from a CMAC

rstrcmac create a new CMAC and load it from a file

savecmac save a CMAC to a file

mapinput get weights and receptive field shapes corresponding to an input

*nh_coord get coordinates of receptive field comers activated by a particular input

setrfdis set receptive field displacement vector for a CMAC

*getrfdis get receptive field displacement vector and size from a CMAC

setrfmag set receptive field magnitude table for a CMAC

*getrfmag get receptive field magnitude table and size from a CMAC

*set gen set CMAC generalization parameter (use with caution)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

Table 2.1 MAT_CMAC neural network toolbox

*get_gen get CMAC generalization parameter

*comcoord find coordinates common to two lists of coordinates

*coomatch generate a matrix indexed by state representing number of matches
between two lists of coordinates

*coomat2 faster version o f coomatch for most cases

*coomat2n normalized to only count matches once

*set_sgen set CMAC super generalization parameter

*get_sgen get CMAC super generalization parameter

MAT_CMAC toolbox functions. An asterisk beside the function name indicates that it is

an extension developed as part of this research. Compiled MAT_CMAC toolboxes exist

for both Matlab 4.2 and Matlab 5.1 on the PC. It has also been successfully compiled

under UNIX on an Indigo workstation. Hie PC compilations were performed using

Microsoft Visual C++ ver 5.0.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

CMAC Stability

In this chapter the stability and convergence properties of CMAC networks are

analyzed. This dissertation deals only with the open-loop case. The ability of CMAC to

learn functions is studied. The class of linear and nonlinear systems which can be ade

quately represented by a CMAC neural network is considered for this effort. The novel

aspect of this approach to a convergence proof for the CMAC algorithm is that conver

gence is shown not to the original system, but rather to its CMAC equivalent. Figure 3.1

Reference Plant

sOsl

y(k)

Figure 3.1: Layout for open-loop
CMAC training.

shows the block diagram for open-loop CMAC training in the single-input, single-output

case. The assumptions are:

• The reference plant is represented with arbitrary accuracy, over some region of inter

est, as a completely trained CMAC neural network.

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

33

• The reference plant CMAC and the CMAC being trained have the same size and form

i.e. the same input, u, will select the same weights from the respective weight vectors

to produce the output.

3.1 Proof for Open-Loop Learning in the Scalar Case

Define Yd as the vector of all possible outputs from the reference plant CMAC

where S is the selection matrix and wd is the constant vector of weights.

Yd = S_M,d Eqn 3.1

The selection matrix S is determined by the mapping from the input variable, u , to the

weight space as defined by the CMAC algorithm. The input, u , is quantized into m distinct

levels resulting in the selection matrix, S e. {0,1} m * n , where n is the number of weights

in the weight vector wrf. This function causes a particular input u to map to a unique row

of S. This relationship is denoted by:

s.,„ = ith row of S at time k

where the subscript for a row of S is:

Eqn 3.2

Each row, s , of S has exactly C (generalization size) ones with all other elements in the -*(*) —

row being zero. The time index k in the subscript denotes that the active row of the selec

tion matrix can vary from time step to time step as would be expected with a time varying

input.

The ith output, y di(k) , is defined as follows:

i = im -r Eqn 3 3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

34

wd e * n* \ f ixed ^) 6 { a i } lXn

The defining equations for the output of the CMAC being trained are given below. As a

result of the second assumption above, the selection matrix, S, is the same for both

CMACs.

Y = Sw(k) Eqn 3.4

y m = U k) ^ Eqn 3’5

” s * f,w £ W K

Define e{k) to be the output error at the i th time step. This error is directly a result of the

weight error between the reference CMAC and the training CMAC, denoted as Aw(k) .

e(k) = = f ;U)Av<£) Eqn 3.6

Select the following Lyapunov function:

V(k) = Aiv(£)TAw(k) Eqn 3.7

The goal is to show:

V{k+ l)< V{k) Vk Eqn 3.8

Choose the standard CMAC update law and write it as follows

A * * + I)—Aw(k) = - f Eqn 3.9

where p is the learning rate.

Substituting into V(k + l) gives:

V(k+ 1) = V(k) + (p 2 _ 2 p) l^ l Eqn 3.10

Since the term P2—2P is strictly less than zero for all P such that 0 < p < 2 and since e~

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

35

and C are both strictly greater than zero, then V(k + 1) < V(k) and the learning does not

diverge by the second method of Lyapunov. Learning continues until there is zero output

error. Under conditions of persistant excitation, where all desired input states are repeatedly

visited, the condition of zero output error for all inputs equates to zero weight error since

the output error is directly related to error in some of the weights by Eqn 3.6.

3.2 Extension to the Multiple-Input, Single-Output Case

The above results are now extended to the case where the input to the CMAC is

composed of multiple signals.

In this case,

u(k) = [u l(k)u2(k)...u^k)]T Eqn 3.11

which leads to Eqn 3.1 where

v_ '

x n

S e { a 1}

and mi is the quantization level of the ith component of the input vector.

From this point the proof is identical to the proof for the single-input, single-output

case. While there is good agreement that the single-input, single-output CMAC will

always converge ([19], [158]), the conditions under which the multidimensional CMAC

error will converge to zero are less well understood. This proof shows that the excited

weights in the trainable network will converge to the corresponding target weights.

3.3 Extension to the Multiple-Input, Multiple-Output Case

The extension to the multiple-input, multiple-output case can be accomplished by

assigning a multiple-input, single output CMAC to each of the outputs being learned.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

36

Eqn 3.12

This representation is consistent with the practice of vector weights thereby enforcing a re

quirement that all CMACs use the same selection matrix. The following Lyapunov function

is chosen:

Since the individual Vj(Jc) have been shown to be Lyapunov functions, the sum must be al

so. This result indicates that the multiple-input, multiple-output CMAC will converge pro

vided that the individual multiple- (or single)-input, single-output CMACs converge.

3.4 Discussion

This dissertation presents a Lyapunov-based proof for the convergence of open-

loop learning for CMAC. The only assumptions are that (1) the function being learned can

be adequately represented by a fully trained target CMAC and (2) both CMACs are the

same size so that their weight selection properties are the same.

The issue of the existence of a fully trained target CMAC is not addressed in this

paper. Brown [19] examines some of these issues in his work. Further, this proof in no

way guarantees that the weights being updated will eventually match the weights of the

fixed network. It says only that the Lyapunov function will decrease for as long as there is

a nonzero output error. At the point where the output error is zero for all training inputs,

the CMAC weights will have converged to a solution, but the possible equality in Eqn 3.8

allows for the existence of a nonzero weight error. Computer simulations have shown that

the Lyapunov function decreases monotonically until learning is complete even though

the system output error does not decrease monotonically.

Eqn 3.13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

37

In order to make a statement about global asymptotic convergence in the weight

space, a requirement similar to observability in linear systems needs to be imposed. All

weights must appear in the output error in a linearly independent manner. This requires

persistent excitation of all the weights by the input. Asymptotic convergence of all the

weights would be guaranteed under these conditions. Efforts in this dissertation have cen

tered on forcing the CMAC weights to converge to a particular solution instead of allow

ing it to select from the large family of acceptable weight solutions as is the case with the

present algorithm.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

CMAC Weight Smoothing

4.1 The CMAC as a Collection of Linear Equations

Begin by defining Y as the vector of all possible outputs from the CMAC where S

is called the selection matrix and w is the vector of weights.

Y = Sw Eqn 4.1

We are interested in the case of partial network training so there will be fewer

training points than the total number of possible points in the quantized input space. In

fact, for the case of all dimensions higher than one, training at all or almost all the possible

inputs in the quantized space results in a selection matrix which is rank deficient. The

allowable percentage of trainable input points before rank deficiency occurs also varies

with the receptive field center placement strategy.

The selection matrix S is determined by the mapping from the input variable, u , to

the weight space as defined by the CMAC algorithm. For the matrix analysis, the final

step of hashing the weight memory addresses for improved storage has been omitted. For

the Albus CMAC, the input, u , is quantized into m distinct levels resulting in the selec

tion matrix, S & {0,1} r x ” , where n is the number of weights in the weight vector w and

r <m is the number of states in the quantized space which are actually used to train the

CMAC. Details of this map may be found in [2], [107]. Each quantized input u(k) maps to

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

39

a unique row of S. This relationship is denoted by:

s.,., = ith row of S at time k ./(*)

where the subscript for a row of S is:

‘(k) = A uik)) Eqn 4.2

For the Albus CMAC each row, s , of S has exactly C (generalization size) ones

with all other elements in the row being zero. The time index k in the subscript denotes

that the active row of the selection matrix can vary from time step to time step as would be

expected with a time varying input.

The ith output, , is a scalar in this discussion, although a vector formulation

can be developed, and is defined as follows:

= £,-(*)"• Ecln 4 -3

m n x I 1 x n
” e R ? , » > s « * >

A cost function can be defined as follows for the constrained optimization problem with Z

representing the training sample vector:

J = ^wlOw + X.‘(S w - Z) Eqn 4.4

More will be said about the O matrix shortly. It is this matrix that determines the extra con

straints the network weights must satisfy in addition to solving the original set of linear

equations.

Finding the minimum of the cost equation in Eqn 4.4 selects the weight which best

meets the constraints specified. For this research, the weight vector having minimum dif

ference between adjacent values and also having small magnitudes is the vector selected

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

40

by this process. Taking the partial derivative of the cost function with respect to the

weights,

VHy = Q w + t f X Eqn 4.5

and invoking the first order necessary condition (VUJ = 0) for the minimization of J,

= 0 yields

w = Q~[St(SQ~lSl)~lZ Eqn 4.6

The solution represented by Eqn 4.6 is a batch mode weight update law in that it

requires all available training data to be present. It will be optimum with regard to what

ever penalty matrix 0 is chosen. In general, the O matrix must be symmetric and positive

definite. For example, the minimum length O matrix is the identity matrix while the min

imum difference O matrix takes the following form for a case with 4 weights and extends

along the diagonal for cases with a greater number of weights:

O = a

1 -1 0 0 1 0 0 0
- I 2 -1 0 + P 0 1 0 0
0 -1 2 -I 0 0 1 0

0 0 -1 1 0 0 0 1_

, with (a > 0)and(P > 0) Eqn 4.7

The portion of the O matrix pre-multiplied by a represents a penalty on the dif

ference between adjacent weights. This difference penalty is used to enforce the desired

amount of smoothness in the weights. The portion of the 0 matrix pre-multiplied by P

represents a penalty on the magnitude of the weights and is the minimum length penalty.

A small amount o f magnitude control is usually applied so that O is non-singular. This

minimum weight magnitude portion of the O matrix also serves to control the problem of

certain CMAC weights creeping off to infinity as the result of repeated, uncompensated

updates during learning, thereby stabilizing the CMAC weight dynamic range.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

41
4.2 Some interpretations

Many optimizations are possible. The optimization of quadratic costs is the focus

of this work. Several important parameters are seen to influence the nature of the optimi

zation. These include: the definition o f the term being optimized, the choice of penalty

matrix O, and, for these CMAC optimizations, influences on the weight selection matrix,

S, such as the receptive field placement strategy and whether the receptive fields are

tapered. Several optimizations are described below along with the traditional CMAC

update law. The goal of this research is to extract information from formulating the

CMAC as an optimization problem and then apply it to the CMAC learning algorithm.

4.2.1 Matrix Formulation of the Albus CMAC Weight Update Law

The Albus CMAC weight update law is a local update law. Network weights are

updated according to the following rule:

where wa is the weight vector before the new data point appeared, d is the new data value,

s i(k) is the weight selection row vector for this location in the input space, P is the learning

rate, C is the number of weights contributing to the CMAC response known as the gener

alization factor, and w is the new weight vector after update. In words, an error value is

calculated between the desired network response d and the response produced by the ex

isting network weights for that location according to the CMAC response law. This error is

scaled by the learning rate and this new correction is added to each of the C contributing

weights. This update law is made local by the presence of s^k) premultiplying the error.

Eqn 4.8

w = w0 + JlU)fpe Eqn 4.9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

42
Only the weights contributing to the CMAC response at this location are corrected. This

simple algorithm results in very rapid network performance as compared with global up

dating networks like the multi-layer perception.

4.2.2 Optimization of New Weights

The cost function for this problem is defined in Eqn 4.4 and the solution for batch

mode weight updating is given by Eqn 4.6 and repeated here for convenience.

w =

For the case where the penalty matrix O is the identity matrix, this solution takes the form

of the pseudoinverse of the selection matrix S for the underdetermined case and is the min

imum length solution and optimum in the least squares sense.

This rule is a batch mode weight assignment rule meaning that all the data are

required in order to calculate the weight values and the weight values themselves are

assigned as one operation. This is in contrast to the CMAC rule which is sequential and

iterative in nature. Nevertheless, certain properties can be extrapolated from the study of

the matrix O lSt(SO lSt) and will be presented later in this section.

4.2.3 Optimization of Weight Adjustments

The cost function for this problem is defined as follows:

J = ^Aw‘OAw + \ ‘(S(wo + Aw)) — Z) Eqn 4.10

The solution to the minimization of Eqn 4.10 is:

Aw = Q~lSf(SQ~lS f) ~ \ z - S w) Eqn 4.11

w = vt ̂+ Aw Eqn 4.12

This solution is much closer to the Albus CMAC update law especially when the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

43

penalty matrix O is the identity matrix. Again the solution takes the form of the pseudoin

verse and in this case the weight update is minimum length. Unlike the Albus CMAC

weight update law, the impact of adding a new data point is not limited to altering only the

C selected weights nor is the same correction applied to all the weights. When the penalty

matrix Q is set to minimize the difference between adjacent weights in order to enforce a

smoothness penalty, the effect o f new information can extend for many generalization dis

tances from the selected weights. Again, this is a batch update mle and is therefore funda

mentally different from the CMAC algorithm.

4.3 Results of Batch Mode Optimization Experiment in 1 Dimension

A weight matrix with 26 weights was created using MATLAB® and the weights

were trained to approximate a parabola using the standard CMAC update law with a learn

ing rate of 1. The training set consisted of every third data point excluding the endpoints.

The CMAC generalization parameter was set to 5 meaning that 5 weights were added

together to produce the network response. This setting for the generalization also guaran

teed that the training for individual data points would overlap by 1 weight in the weight

space. The weights were arranged in a 1 -to-1 correspondence with the 26 data points of

the parabola so that movement in the direction o f increasing sample number translates to

shifting receptive fields in the CMAC. No hashing was used. The arrangement is illus

trated in figure 4.1.

4.3.1 Function Learning

Figure 4.2 is a plot of the parabola trained into the CMAC for this experiment.

Five training passes were sufficient for this experiment. Figure 4.3 shows plots of the net

work response at all possible input points for two different network update laws. The

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

44

Training Data Points

CMAC Weights

Figure 4.1: Relationship between training
data and CMAC weights.

1 6 9 -(* -1 1 5)*
ISO

160

120

100

netwcrti response tor CMAC d non dlff sofuaon
200

CMAC
rran d ff160

140

120
100

Figure 4.2: A plot of the parabola be
ing trained into the CMAC. Every third
data point was used for training

Figure 4.3: Plots of the network re
sponse at all possible points.

jagged response is produced by the traditional CMAC update law. The function approxi

mation is clearly very good at the eight training points and gets progressively worse as the

distance from the queried point to the trained data increases. The smooth response is pro

duced by a minimum weight difference law where a = 1.0 and P = 0.1 in Eqn 4.7. The

network response is a much closer match to the desired parabola despite the sparse train-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

45

network response is a much closer match to the desired parabola despite the sparse train

ing data. This update law, in addition to being a batch mode law where all the data are

used once in a single update, is also a globally updating law since all the weights are mod

ified at once. Figure 4.4 shows plots of the network weights for the two update laws.

4.3.2 Weight Smoothing and Derivative Performance

Figure 4.5 shows plots of the two point derivative of the network response. The

nctvmrtt w«nyn» tar CMAC and nw dff safcoon
40

CMAC
m m dlff

30

20

25

Figure 4.4: Plots o f network weights

Credent of ntCVMrfc responses

CMAC
nvndff20

&

•20

•25

Figure 4.5: Plots of the derivative of
the network response at all possible
points.

jagged curve is the derivative of the response for the standard CMAC update law and the

smooth curve is the derivative of the response for the minimum weight difference law.

The derivative approximation is dramatically improved with the minimum weight differ

ence update law.

4.4 Results of Batch Mode Optimization Experiment in 2 Dimensions

The one-dimensional example above, although illustrative, has several limitations

which make it the trivial case. The concept of receptive field center placement has no

meaning in the one-dimensional case. Receptive fields are placed in a linear fashion along

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

46

the data array with a receptive field center at every point in the quantized input space.

There are always more weights (in unhashed and matrix representations) than there are

states in the input space. The weight selection matrix is always full rank. None of these

statements is true in the two-dimensional case. This makes the two-dimensional case the

only case with all the problems and features of the CMAC which can be easily visualized

using standard two- and three-dimensional visualization aids.

A parabola was again used as the desired function. The domain of the function was

defined asLY]<10,|F i<10 with the function itself defined as fiX, Y) = X1 + Y2 . A plot

of this function is shown below in figure 4.6.

Figure 4.6: Desired function for two-
dimensional experiment.

4.4.1 Function Learning

Figures 4.7 and 4.8 are examples of the matrix implementation Albus CMAC

response at all points on the domain of the desired function depicted in figure 4.6. Figure

4.7 is for the case with weight smoothing and Figure 4.8 is for the case without weight

smoothing. Figures 4.9 and 4.10 are examples of the An CMAC, with Gaussian receptive

fields, response at all points on the domain of the desired function depicted in figure 4.6.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

47

AJbusCUAC.genwefczabon*6.weqr« smootfwngon

203 ̂e

to

-,Q 10

AJbuf CMAC. ganoofcza&on * 6. wight smocthmg at

e 200

T**,» ',0 10 *.am

Figure 4.7: Matrix implementation,
Albus law, network response, mini
mum length solution with additional
minimum difference penalty.

Figure 4.8: Matrix implementation,
Albus law, network response, mini
mum length solution without addition
al minimum difference penalty.

An CMAC. g a u ssa n rtcop taa folds, gonorahzatioft =* 6 . w ig h t smoothing on

. 3DQ1

An CMAC. gaussan rtcop tiw fo lds, gtnoralrcafian = 6. w ig ftt smoothing o t

•,0 -,0 5 * a „ ,

Figure 4.9: Matrix implementation,
An law, network response, minimum
length solution with additional mini
mum difference penalty.

Figure 4.10: Matrix implementation,
An law, network response, minimum
length solution without additional min
imum difference penalty.

Figure 4.9 is for the case with weight smoothing and figure 4.10 is for the case without

weight smoothing. Both were trained with a generalization of six. Figure 4.9 indicates that

there is a bias in the matrix implementation of this weight smoothing law. The training

points were equally spaced in both the X- and Y-directions yet smoothing has occurred

preferentially in one direction. This results because the mapping of the higher dimensional

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

48

weight space to the one-dimensional weight vector treats one dimension preferentially.

Figures 4.11 and 4.12 are plots of the error between the desired function and the functions

A&us CMAC. U l RMS tiro r* 36 O M Sofror* U SO. wttghc jm ecthm g on

•200

^ ------- 10

Y . . „ - '0 - .0 5 * t i o

Atbu* CMAC. faf RMS t« o r * 6 l S . m ed t RMS tm jr * 33.51. wwigtt smoothing of

Figure 4.11: Function learning error,
matrix implementation, Albus law,
minimum length solution with addi
tional minimum difference penalty.

Figure 4.12: Function learning error,
matrix implementation, Albus law,
minimum length solution without addi
tional minimum difference penalty.

of figures 4.7 and 4.8. The value of the RMS error is shown in the figure titles. The full

RMS error is defined on the whole grid whereas the inside RMS error is defined on the

grid excluding all points within three of the edges in an effort to eliminate contributions

from edge effects.

Figures 4.13 and 4.14 are plots o f the error surface defined as the difference

between the desired function and CMAC responses on the whole grid for a network with

the An receptive field placement with and without weight smoothing, respectively. Again,

RMS errors for each surface are in the plot title.

Figure 4.15 is a plot of the full RMS error for an Albus type CMAC trained with

and without weight smoothing. Figure 4.16 is a plot of the inside RMS error for an Albus

type CMAC trained with and without weight smoothing. The smoothing case is optimiza-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

49

A n CMAC. fcfl RMS « t v 3 S25D. >n**Je RMS error* 30 46. - t ig h t srnootfangon

-,0 -,0 5

An CMAC. ftjfl RMS erro r* 60.35. etvde RMS error* *3 2 3 . imootheig a t

^ -,0 -,0

Figure 4.13: Function learning error,
matrix implementation, An law, mini
mum length solution with additional
minimum difference penalty.

Figure 4.14: Function learning error,
matrix implementation, An law, mini
mum length solution without addition
al minimum difference penalty.

Albus. Fist. F u t RMS error of Fw cdon «s. G e n cra ttr to n

d f

60

w 50

40

20 .

Figure 4.15: Full RMS learning error
with and without weight smoothing,
Albus law, training point spacing = 9.

Afcus. Flat, h s id e RMS error of Ftaictwn ws. GenersfczsoeA

45 length

25

Figure 4.16: Inside RMS learning er
ror with and without weight smooth
ing, Albus law, training point spacing
= 9.

tion with the minimum weight difference penalty matrix. The case without smoothing is

optimization for minimum weight length and has the identity matrix for a penalty matrix.

The abscissa is the generalization parameter and ranges from one to seventeen. It is inter

esting to note that the first minimum for the Albus CMAC rms error occurs when the gen

eralization is equal to the sample spacing. It is easier to see in some of the results from the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

50

following chapter that successive minima occur when the generalization is equal to a mul

tiple of the sample spacing as well.

Figure 4.17 is a plot of the full RMS error for an An type CMAC with Gaussian

tapered receptive fields trained with and without weight smoothing. Figure 4.18 is a plot

An. Gm i m h . Fu< RMS tffor of Function *». GcnentizaOon

1»

20

Figure 4.17: Full RMS learning error
with and without weight smoothing,
An law, training point spacing = 9.

An. Gaussian. Inside RMS v re ro f Function « . Gsneraftmten

d f

8
ui 25
0)1

20

Figure 4.18: Inside RMS learning er
ror with and without weight smooth
ing, An law, training point spacing = 9.

of the inside RMS error for an An type CMAC with Gaussian tapered receptive fields

trained with and without weight smoothing. The abscissa is the generalization parameter

and ranges from one to twenty.

These results show that, especially for values of the generalization parameter

smaller than the training sample spacing, the optimum algorithm that incorporates a mini

mum weight difference penalty and, therefore, imposes a weight smoothing property on

the learning rule has superior performance. This performance improvement occurs despite

the bias built into the matrix implementation. As will be seen below, powerful insights can

still be derived from these learning rules.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

51
4.4.2 Weight Smoothing and Derivative Performance

Figure 4.19 is a close-up plot o f a region o f the CMAC weights for an Albus

CMAC trained with and without weight smoothing. Figure 4.20 shows a close-up of a por-

Section of m i ^ t voctor. Albus CMAC with and without wt i gftt smooOwng

too

320 360 400 420300

Figure 4.19: Network weights for min
imum difference (smooth curve) and
minimum length solutions

Socsan ofweig * voctar. Gaussian RF. Afeus CMAC vwth and wrthout weight smoothing

120

100

i

300 320 340 420400
m

Figure 4.20: Network weights for min
imum difference (smooth curve) and
minimum length solutions.

tion of the CMAC weights for an An CMAC trained with and without weight smoothing.

Both networks have the generalization parameter set to six. The weight smoothing is

readily evident.

Two different tests were applied to evaluate derivative performance. First, the gra

dient of the CMAC response in the X- and Y-direction were compared to the correspond

ing gradients of the desired function. Figure 4.21 shows a plot of the RMS error in the X-

gradient as a function of generalization for the Albus CMAC both with and without

weight smoothing. Figure 4.22 shows a plot of the RMS error in the Y-gradient as a func

tion of generalization for the Albus CMAC both with and without weight smoothing. Fig

ure 4.23 and 4.24 show the corresponding X- and Y-gradient RMS error plots for an An

CMAC.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

52

AJbus. F lat. FiA RMS « re r of ta c tio n Xfpadaflt vs. GancnfizsDon

ui ta

Albus. Rot. Ftrf RMS sn o ro f ta e tta n Y y a d e n t vs. Gonantizabon

d f

520«n
I

Figure 4.21: Full RMS error for X-gra-
dient with and without smoothing, Al
bus law, training sample spacing = 9.

Figure 4.22: Full RMS error for Y-gra
dient with and without smoothing, Al
bus law, training sample spacing = 9.

28
An. G aussian. Futf RMS «nor of tac tio n X p a d e n tw . G anaraftnbon

35
An. G aussian. Fug RMS «mar cf tacO on r p a d a n tv s . Genafafizaben

26

- Q rr«n d f
—q — ra n length

q - mm d f
q mm length

24

22

30

25
o o o W o -al

S
<u 20
01
sa:

18

16

8
u 20
01
I

IS

14
10

2 4 6 8 10 12
ganarafczaOan

14 16 18 20 < 2 4 6 8 10 12
ganaraftzaocn

14 16 IS 20

Figure 4.23: Full RMS error for X-gra- Figure 4.24: Full RMS error for Y-gra
dient with and without smoothing, An dient with and without smoothing, An
law, training sample spacing = 9. law, training sample spacing = 9.

Second, an approximation to the discrete Laplacian was used to evaluate the curva

ture properties of the CMAC responses relative to that o f the desired function. The Lapla

cian of the desired function is a constant. Figure 4.25 is a plot of the RMS error between

the Laplacian o f the desired function and that of the Albus CMAC response for both the

case when training is with weight smoothing and for the case when training is without

smoothing. The abscissa is the generalization parameter which ranges from one to seven-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

53

teen. Figure 4.26 is a plot of the RMS error between the Laplacian o f the desired function

25
Atxjs. Fiat. Fu* RMS w c f of Laptopm G «n«ff8zj6on

25
An. C a u u u n . Ful R M Scnor of L aptaaanw . G«ncraft»Oan

-q m n d f
. q _ fmnlanoDi

o m n 4 ff
- q ra n length

20
n \

20

t s
3c

\ \
IS

3e
m

1,0

S

\ \ at 2
* 10

s

i 2 4 6 8 10 12
gcncraizsoon

14 16 18 1 2 4 a 8 10 12
g m n S n O c n

M 16 18 20

Figure 4.25: Full RMS error for dis Figure 4.26: Full RMS error for dis
crete Laplacian with and without crete Laplacian with and without
smoothing, Albus law, training sample smoothing, An law, training sample
spacing = 9. spacing = 9.

and that of the An CMAC response for both the case when training is with weight smooth

ing and for the case when training is without smoothing. The abscissa is the generalization

parameter which ranges from one to twenty. Figure 4.27 is a plot of

10*log,Q(min- lejng h- err0r) for the Albus CMAC. Figure 4.28 is a plot of
min_diff_error

10 * log. 0(min- lejn.g h- errOr) for the An CMAC with Gaussian receptive field weightings.
min_diff_error

4.5 The Recursive Form for the Optimization Problem

Based on the results from the batch mode experiments, a search was begun for a

recursive form for the optimal update law represented by Eqn 4.6 in order to more closely

approximate the behavior of an actual CMAC. Taking the solution o f Eqn 4.6 and adding

a new data point yields:

= 2
-1 r 5 1Yr s i

Q 1
r s i

r\ -\rZi

-£ ,(*)- I r
-Zk-

Eqn 4.13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

54

I0*1og,a(c M jn n J c n g M d r f j im j l l)

c0

1
t
us
E
2Is

1 crtefl̂ de* JTW!J s ig tf i/d a f .m n .d f)
4 5

15

as

Figure 4.27: Log performance im
provement factor. Values greater than
zero indicate improved performance
with weight smoothing. Vertical axis is
in dB.

Figure 4.28: Log perffomance im
provement factor. Values greater than
zero indicate improved performance
with weight smoothing. Vertical axis is
indB.

The lowercase letters with subscripts indicate the new sample being trained in at

time k, and wk+ { is the new set of optimal weights. By taking advantage of the parti

tioned form of the matrices [18], the final form for the solution is:

For ease of reference Eqn 4.14 is rewritten as follows:

w + j = Wscale* + Zscale* zk Eqn 4.15

where:

A, A l̂ SO~Xt f S O ~ ' s ‘ ^
- = Eqn 4.16

_a 3 a 4

and

A j
-1

B x B 2 (A x - A 2A 4 [A 3)~1 - a / A i J A i - A j A ^ A 2) 1

A 3 A 4 b 3 b 4
~A 4 A 3(A l ~ A 2A 4 A 3^ (A 4 ~ A 3A | A 2)

The Wscale matrix forms a linear combination of the old weights to make up part

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

55

of the new weights. In the Albus type CMAC, this matrix is the identity matrix. The

Zscale term represents the contribution of the new data point to each of the weights. The

experiment has all weights initially zero and certain training points are visited in random

order exactly once. The CMAC learning rate is set to I. For the Albus CMAC the

expected form of the Zscale vector is a group of C points with the same constant value and

zeros for the rest o f the elements. The expected form for the Wscale matrix is the identity

matrix.

4.6 Sequential Update — 1-Dimensional Experiment

The sequential update experiment was similar to the batch update experiment

described above. The size of the weight vector has been expanded to 50 weights. The

function to be learned was a parabola with data points arranged in a one-to-one correspon

dence with CMAC memory locations. The parameters that were varied during the experi

ment were the receptive field shape, the sample spacing for training, and the

generalization width. CMAC learning rate was always unity. The sequential update law

was always used once there were two or more samples available and the 0 matrix param

eters were a = 1.0 and p = 0.1. The batch mode law was used to train in the first sample.

Training data were presented in random order. Values of both the Wscale matrix and the

Zscale vector were monitored.

Figure 4.29 shows a plot of the Zscale vector for the case where the first two data

points being trained into the CMAC are far apart in the input space. The weight index axis

indicates the indexed location of the accessed group of weights in the weight vector. A

feature to notice here is that the algorithm spreads information out into the weight space

much farther than the generalization value of 2 would suggest. One might view this as a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

56

0.6

0.5

0 4

0 3
5
** 0 2

0.1

20 30

0 6

0.5

0.3

0-t

weigh t w ctor

Figure 4.29: Plot of Zscale vector
when the first two training points were
widely separated in the input space.
Receptive field: flat, generalization: 2,
sample spacing: 3, point being trained:
39.

Figure 4.30: Plot of Zscale vector
when first two training points were
close in the input space.
Receptive field: flat, generalization: 2,
sample spacing: 3, point being trained:
9.

way of improving smoothness and generalization by extrapolation of the training data.

Figure 4.30 is a plot of the Zscale vector for the case where the first two data points are

near each other in the input space. Note how the shape of the new update curve is such that

the new data point makes zero contribution to the location corresponding to the previously

trained data point. In essence, the algorithm takes into account how much information is in

the vicinity of the current training point and alters the shape of the new sample weighting

function accordingly. These two features, extended generalization and compensating for

previously trained data in the vicinity of a new update, will be discussed in greater detail

in the section of the two-dimensional problem.

Figure 4.31 is a plot o f the Zscale vector for the final training point in the series.

For this flat receptive field shape, a new data point can affect almost all the weights in the

network. The row o f Wscale corresponding to sample number 12 is identically zero indi

cating that the update should come from the new data point. Figure 4.32 shows a plot of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

57

OS
Zm U W scale

0.4

0.3

0 2
•
*1

a 0 1

0

- a t
4 4

0.4

0.3

0.2
*3

* o .t

0

- a t

1 10 20 30 40 SO 6
index n to weight vector

0 to 20 30 40 50 6
index etto weight vector

0

Figure 4.3 1 : Plot of Zscale vector for
the last training point in the series.
Receptive field: flat, generalization: 2,
sample spacing: 3, point being trained:
27.

Figure 4.32: Plot o f the Wscale row
vector corresponding to sample point
#30 during the training of sample point
#27.
Receptive field: flat, generalization: 2,
sample spacing: 3.

the row of the Wscale matrix corresponding to new weight number 15 (an adjacent train

ing point) showing how the value stored in this new weight will depend upon the previous

values of all the other weights in the network. In essence such an optimum CMAC would

have to update globally on each training pass in order to satisfy the smoothness and mini

mum weight size constraints. Figure 4.33 shows another plot of the Zscale vector for the

final data point in the training series. In this case, however, the CMAC receptive field was

set to a Gaussian shape. This was accomplished by changing the rows of the S matrix and

the s i{k] vector so that the entries have a Gaussian profile instead o f the unity values for

the flat receptive field. In this case the contribution of a new weight reaches out only a

finite distance into the weight space. The plot in figure 4.34 shows that in this case the

new weights are a linear combination of only nearby weights. Local updating behavior

might be much easier to approximate with a CMAC using Gaussian receptive fields. Fig

ures 4.35 and 4.36 show the effects of increasing the size of the generalization from 2 to 5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

58

a s
ZicMm Ws c jJ«

0.5 &2S

0.4 0.2

0.3
1

* 0.2

0.15
-3

* 0.1

0
1

-0.1
v ° V V \

) 10 20 30 40 SO 61
n te x r t o wogftt vector

0 ti to 20 30 40 SO 6
*idex « ie w e#«t vector

0

Figure 4.33: Plot of Zscale vector for
the last training point in the series.
Receptive field: Gaussian, generaliza

tion: 2, sample spacing: 3, point being
trained: 24.

Figure 4.34: Plot of the Wscale row
vector corresponding to sample point
#27 during the training of sample point
#24.
Receptive field: Gaussian, generaliza
tion: 2, sample spacing: 3.

0.5

0.2
e1

■02
60

o.oa

0 0 6

0 0 2

•0 02

•0.04
60

vector

Figure 4.35: Plot of Zscale vector for
the last training point in the series.
Receptive field: Gaussian, generaliza
tion: 5, sample spacing: 3, point being
trained: 42.

Figure 4.36: Plot of the Wscale row
vector corresponding to sample point
#45 during the training of sample point
#42.
Receptive field: Gaussian, generaliza
tion: 5, sample spacing: 3.

(the central weight plus 2 weights on either side of it). All the other parameters were left

unchanged from the first experiment with Gaussian receptive fields. There appears to be

almost no difference between these scaling values and those presented in figures 4.33 and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

59

4.34. Had there been no pretrained data in the vicinity of this final training point, the curve

would have been much more broad. The update law’s compensation nearby trained infor

mation causes the curve to be so similar to the previous example. This compensation

effect will be explained in more detail in the following section.

Figures 4.37 and 4.38 show the effect o f doubling the sample spacing parameter

0 45

03 5

025

0 15

005

•0 05

0.3

0.25

0.2

0 15
m

i

0.05

■0 05
60

vector

Figure 4.37: Plot of Zscale vector for
the last training point in the series.
Receptive field: Gaussian, generaliza
tion: 5, sample spacing: 6, point being
trained: 24.

Figure 4.38: Plot o f the Wscale row
vector corresponding to sample point
#30 during the training of sample point
#24.
Receptive field: Gaussian, generaliza
tion: 5, sample spacing: 6.

and leaving the others unchanged. The weighting functions are simply expanded so that

their zeros again pass through the locations of the training data. This again demonstrates

the self-limiting behavior of this optimum weight adjustment scheme.

4.7 Sequential Update — 2-Dimensional Experiment

Since the 2-dimensional case is representative of general CMAC characteristics it

will be used as the case from which to derive the relevant features for the new weight

smoothing CMAC weight adjustment law. The process begins with an examination of the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

60

components comprising the sequential update law repeated here for convenience.

e - V f i 2 + e - ' f 'w s 4)%

Rewriting to separate terms produces:

Each o f these four terms will now be examined individually.

4.7.1 The smoothing matrix Q inverse

Before looking at the individual terms in the weight adjustment law it is instructive

to examine the inverse of the penalty matrix O since it is a premultiplier for all the terms

in the weight adjustment law. Like 0 , 0 1 is symmetric and positive definite. Figure 4.39

Row 123 ofQ hvcrsv motnx

1-2

i
£
O

02

SO too ISO 250200 300
vector

Zoomed View of Row t23 of Q inverse mean

12

mI
£a

0 6

0.4

0 2

<50<00 105 115 120 125<ndex vito weight

Figure 4.39: Plot of one row of the
O matrix.

Figure 4.40: Zoomed view of the
smoothing function from the O ma
trix. —

shows a plot o f a typical row of the O 1 matrix while figure 4.40 zooms in on the smooth

ing function. The functional form of this curve is

1.5617 Eqn 4.17
1.36426

This functional shape will form the basis for the weighting function in the new

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

61

CMAC weight adaptation rule.

4.7.2 Term 1

Term 1 is defined as

S Eqn 4.18

and premultiplies xvk . Components of terml are: S which is the matrix of all previously

trained selection matrices; Q~l ; and = (A (- A 2A^lA3) ' . The Ai components are de

fined in equation 4.14. Term 1 defines the averaging and smoothing function on the previ

ously trained weights. The new weights, before adjustment, are defined as a scaled sum of

old weights. Figure 4.41 is an intensity plot o f a portion o f the term 1 matrix during the early

stages of learning. The contribution of 0 ~ l can clearly be seen in the intensity of the active

regions. This plot is oriented in the natural matrix fashion with coordinate (1,1) in the upper

lefthand comer of the plot.

4.7.3 Term 2

Term 2 is defined as s‘ .^B and premultiplies vv,. Components of term 2

are: S which is the matrix of all previously trained selection matrices; s* ^ which is the

selection vector for the new data point; Q 1; and B = - A j lA3(A , - A 2A^lA3) ' . Term

2 identifies locations in the weight space where the newly selected weights interact in

some way with previously trained information. Due to the extent in the weight space of the

smoothing function introduced by O 1 interactions can occur with weights at seemingly

great distances in the weight space, however the magnitude of contributions from term 2

are often very small due to the decaying nature of the smoothing function. Figure 4.42

shows an intensity plot of term 2 during the early stages of learning. The coordinates of

the new weights being trained are 60,61,62, 63. Their location can be seen in figure 4.41.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

62

plot of active section o f T erm 1

0.3
i g

5 0
a 0 .2 5

o©
i 100OJ

ii i 0.2
-

a>
1 150_c

0 .1 5

a>■ac 0.1

200
- 0 .0 5

25 0 0
5 0 100 150 200 250

index into old w eight v ec to r

Figure 4.41: Wscale matrix before training fourth data point. Network generaliza
tion = 4, 3 samples have been trained previously, indices of previously trained
weights are: 4,33, 34, 35, 60,61, 62,63, 88, 90, 91, 117

The tails of the smoothing functions are interacting in this case as can be seen in figure

4.41. This is the reason the amplitude of the correction is so small -- fully four orders of

magnitude below other signal levels. When previously trained weights are close to the

weights accessed by the new data point, this interaction can be quite strong. When interac

tion is strong, the effect is to precompensate information already stored in the weights

where the interaction will occur to minimize the effect of the interaction on the stored

information. When training is dense, this compensation effect can ripple out a great dis

tance into the weight space.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

63

plot o f ac tive se c tio n o f T erm 2 x 10'5
0

-1

-2

50

O
o0)

i 1

S 100o>a)5
5a)
o 150_c
X
<D

T 3
C

200

250

-3

-4

-5

-6

-7

5 0 100 150 2 0 0 2 5 0
index into old w eight v e c to r

Figure 4 .4 2 : Correction to linear combination o f old weights prior to application of
new data point is a function of interaction between first and second trained points.
Sample spacing is large enough to prevent strong interaction.

4.7.4 Term 3

Term 3 is defined as ~lSfB ̂ and premultiplies zk . Components of term 3 are: S

which is the matrix o f all previously trained selection matrices; O 1; and

5 , = —A , lA2(A4 —A3A , lA2) ■ Term 3 is the transpose of term 2 and identifies correc

tions to the new weight adjustment arising from interactions between the new weights and

previously trained information. Figure 4.43 is a plot o f term 3 under the same conditions

as those under which figure 4.42 was generated. It clearly shows a weak interaction with

the data trained on the previous pass and stored in locations 4, 33,34, and 35. In this case,

when interaction is strong, the learning function defined by term 4 is truncated in the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

64

Plot of Term 3

-0.5

w -1 .5

-2 .5
500 100 150 200 250 30 0

Index into new weights

Figure 4.43: Correction to new sample scaling is a function of interaction between
first and second trained points. Sample spacing is large enough to prevent strong in
teraction.

direction of previously trained information in order to minimize the interference between

previously trained data and the new training point.

4.7.5 Term 4

Term 4 is defined as O ls'.^B^ and premultiplies zk . Components of term 4 are:

s' k which is the selection vector for the new data point; O 1; and

(A4 — A3A j A-,) . The scalar term B is essentially — unless there is significant
A 4

interaction between the new sample’s weights and previously trained information. If there

were no smoothing and Albus receptive fields, B ̂« ^ . Figure 4.44 is a plot of term 4 cre

ated under the same conditions as those for figure 4.43. The weights being trained are at

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

65

Plot of Term 4
1.4

1.2

© 0.8

0 .4

0.2

0 50 100 2 5 0150 200 3 0 0
Index into new weights

Figure 4.44: Scaling and distributed application o f new data point is controlled pri
marily by 0~ .

locations 60, 61, 62, 63.

4.8 The New CMAC Weight Smoothing Law

Now that the components o f the optimal matrix sequential weight smoothing law

have been broken out and studied, it is possible to specify several new weight adjustment

rules which progressively approach an approximation to the optimum matrix solution pre

sented above.

4.8.1 New Rule 1

The simplest new learning rule is to implement the portion of the adjustment law

represented by term 4. This update rule will successfully spread information out into the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

66
weight space in a way that will greatly enhance learning and function approximation espe

cially when training data are widely separated. Successful implementation of this rule

requires a new kind of generalization in the CMAC. This is developed in the next chapter

and leads to experiments using new rule 1. Using the technology available in the modified

CMAC code developed under this research, rule 1 is implemented by moving Q~ls‘

back into the weight space and treating this function as a tapered receptive field. This new

receptive field is defined to have a large area and dense support. The Super Generalization

mechanism is described in detail in the next chapter. Performing rule I in the weight space

rather than in the linear weight array removes any bias derived from the mapping from the

n-dimensional weight space to the 1-dimensional weight array. This new weight update

law does not explicitly perform weight smoothing. It spreads new training information out

in a high density learning mode which will often provide much better coverage than other

generalization techniques. The iterative training process in the CMAC actually performs a

smoothing operation through the coupling of individual training points through common

weights. This is greatly enhanced using rule 1.

4.8.2 New Rule 2

New rule 2 implements the functionality of term 1 as described above. This aver

aging function should also be promoted back to the weight space in order to be performed

correctly. The smoothing operation is really a weight averaging procedure performed on

groups of weights selected using the base generalization. For every weight in the Super

Generalization cell, that weight and its nearest neighbor weights, as defined by the base

generalization selection function, are averaged together. The average is scaled by the

weighting function for the Super Generalization cell at that point and this scaled average is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

67

set aside to become the new weight value at that location. This process is repeated for all

the weights in the Super Generalization cell and then all the old weights are updated with

the new values. This rule explicitly implements a weight smoothing operation.

4.8.3 New Rule 3

Rule 3 adds a measure o f context sensitivity to the overall weight update process.

The process involves sampling the weight space corresponding to state space points along

each of the dimensions of the problem looking for previously trained data. The size of the

Super Generalization cell and possibly its shape as well should then be varied to provide

the best coverage for the new training data point while at the same time minimizing the

loss of information previously trained into the network. Some amount of training overlap

would be prescribed to preserve smoothness and continuity across the training boundary.

For the original Albus CMAC the optimum amount of overlap occurred when the general

ization size was equal to the sample spacing. This was pointed out in the discussion of fig

ures 4.15 and 4.16. Rule 3 would only be used in conjunction with either rule 1 or rule 2 to

improve performance. A network trained with all three rules would most closely approxi

mate the optimal solution as defined by the constrained optimization problem described in

this dissertation. Others certainly are possible.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

The CMAC Weight Smoothing Law

In order to implement the new weight adjustment law suggested by the optimum

matrix solution, the CMAC algorithm must be modified so that it is possible to train with

one value of the generalization parameter and remember with another value of the gener

alization parameter. The existing CMAC properties make it ineffective to train the net

work with one generalization value and then calculate network responses with a different

value of generalization. The details of this issue are presented below along with the solu

tion developed under this research. This new generalization technique, Super Generaliza

tion, has been implemented in C as part of the UNH CMAC code and is used to implement

the new weight adjustment law developed in the previous section. Experimental results are

presented.

5.1 Issues of Generalization and Super Generalization

It is worthwhile to examine how the current CMAC code actually allocates

weights for generalization. Generalization is really about determining how many receptive

fields are excited by a point in the input space and about how the receptive field centers

are distributed in the input space. Figures 5.1 and 5.2 show the receptive field center allo

cation patterns for the two-dimensional Albus CMAC with two different values of the

generalization parameter. Training points are marked by asterisks and the lower, left-hand

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

69

AJbus canter p lsc tm frt — g m n C z a to n * 4

■30 _
•30

< v> V of
■V ✓

V

V

< *<P

Figure 5.1: Receptive field center allo
cation pattern for Albus CMAC with
generalization of 4. o’s represent the
lower left-hand comer of a receptive
field and *’s represent training points.

AJbus carter ptecamtftt - gcncraizaton » 8

♦

< ; /
sP *

rfp / V
/

cP ♦

. tf*5 / ^ * s V
S f i * *

Figure 5.2: Receptive field center allo
cation pattern for Albus CMAC with
generalization of 8. o’s represent the
lower left-hand comer of a receptive
field and *’s represent training points.

comers of the receptive fields are marked by ‘o’s. It is characteristic of the Albus receptive

field center placement strategy for the centers to be arranged along diagonals. For this

two-dimensional example the receptive fields can be thought of as having square bases.

For the single output CMACs considered in this research each receptive field has a single

weight associated with it. The coordinates used to generate these plots are the raw coordi

nates of the receptive field comers and correspond to coordinates in the input space. No

hashing or mapping to a linear memory array has been performed. Note that the patterns

are different for the two different values o f the generalization parameter. Specifically, the

spacing between the diagonal groupings of receptive field centers is equal to the generali

zation size.

This section addresses the question o f what happens if the CMAC is trained with

one value of generalization while network responses are determined with a different value

of generalization. The specific issue can be phrased as follows: since training with large

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

70

generalization spreads information out to a larger number o f weights and makes the

effects of the training available to more points in the nearby input space, why not train

with large generalization to get good spread o f information, particularly in the early train

ing, and then use a smaller value of generalization, for better spatial resolution, to derive

network responses and ultimately to refine the training as well.

Since the goal of this research is to improve the CMAC performance when training

is sparse, it is instructive to explore how trained weights influence the network response

for locations at which no training has occurred. Figures 5.3 and 5.4 show intensity plots of

AJbus center placement • generalization s 4 Albus center placement - generabzaton * 9

H
H1S1HKE|

IQ 20 X JO SO 60

Figure 5.3: Learning support in Albus
CMAC with generalization of 4.

Figure 5.4: Learning support in Albus
CMAC with generalization of 8.

how many trained weights contribute to the CMAC response at every point in the input

space. The actual training points can be identified as the high intensity points in the plot. A

regular pattern of support is visible. The square shape of the receptive field bases is clearly

visible in these figures. Figures 5.5 and 5.6 show the pattern of receptive field center

placement when the An heuristic placement strategy is used. The pattern of receptive field

center placements is more uniform. This arrangement of receptive field centers helps to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

71

An h tu istte canter placement - gencrriiz* on » 4

> * <b% Cb95 o%*

<*b9

<b*

% 9

0 ^ 10 20

heum ae center placement - g a n ir^ f u n ■ S

Figure 5.5: Receptive field center allo
cation pattern for An CMAC with gen
eralization of 4. o’s represent the lower
left-hand comer of a receptive field and
*’s represent training points.

Figure 5.6: Receptive field center allo
cation pattern for An CMAC with gen
eralization of 8. o’s represent the lower
left-hand comer of a receptive field and
*’s represent training points.

reduce the problem of preferential generalization which can occur with the Albus place

ment strategy. Figures 5.7 and 5.8 show the support this strategy provides for nearby

An h tw sh c u n t t r p ta c tm tft - g tn p reh m o n - A An hcuntic cprrtir p tac tm tm - g tw afcra ton = 8o£2MMgH H gHH gHHH g13Q H
10 20 30 40 SO GO

Figure 5.7: Learning support in An
CMAC with generalization of 4.

Figure 5.8: Learning support in An
CMAC with generalization of 8.

untrained points in the input space. This receptive field center placement strategy provides

more uniform support across the input space as can be seen from the intensity bar in figure

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

72

5.8. Since the minimum value in the plot shown in figure 5.8 is 1, there is no point in the

input space shown where no weights contribute to the network response. Contrast this to

figure 5.4 where there are large areas of the input space that are not covered by any trained

weights.

O f course, the real issue is how different generalization patterns interact as this

will determine the effectiveness of learning and remembering with different generaliza

tions. Figure 5.9 shows the support provided using the Albus receptive field center place

ment strategy when training is done with a generalization o f 8 and network responses are

obtained using a generalization of 4. A large amount o f the information trained into the

network with the larger generalization is no longer available for generating network

responses at the smaller generalization. Figure 5.10 shows the support provided using the

Albus - tram s B. R tm a m b sr* 4

•30 .20 .10

Figure 5.9: Plot of support provided
using the Albus receptive field center
placement strategy, training gen = 8,
remember gen = 4.

An - tram = 8 . Remember * 4 IH
•30 -20 -10 0 10 20 30

|Q 5

Figure 5.10: Plot of support provided
using the An receptive field center
placement strategy, training gen = 8,
remember gen = 4.

An receptive field center placement strategy when training is done with a generalization of

8 and network responses are obtained using a generalization of 4. To understand why two

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

73

different generalizations interact so poorly, it is useful to imagine a two-dimensional, n-

dimensional in general, weight space K where there are as many weights as there are

points in the input space. Such a weight space grows exponentially with the input dimen

sion. CMAC receptive field center allocation strategies seek to identify subsets of K

which project uniformly onto each input dimension. Each value of generalization directs

the selection of a different subset and it is often the case that these subsets have only weak

intersections.

With the existing CMAC, generalization is the only method available to determine

how widely the value of new training data is spread out in the weight space. A larger value

of generalization means a larger number of weights are updated. It also means that the

physical extent of the generalization region is larger. This is accomplished by increasing

the spacing between the diagonals of receptive field centers. A larger generalization

region results in more filtering of high frequency spatial variation in the input space than

does a smaller generalization region. The optimal solution for the weight smoothing algo

rithm as developed in the matrix case requires that training be performed with a large gen

eralization value, on the order o f 35-40 for unity scaled minimum difference penalty, as

defined by the inverse of the penalty matrix. Network responses can be determined using

any generalization but typically much smaller than the training generalization, so in most

cases each network will require successful operation with two different generalizations.

This research proposes an addition to the existing CMAC algorithm capable of

supporting the previously incompatible requirements of training with a (sometimes) large

generalization yet being able to generate network responses using a smaller generaliza

tion. Called Super Generalization, this new generalization technique trains a large region

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

74

of the weight space using the receptive field center allocation pattern for a smaller value of

generalization. Figure 5.11 shows the weight locations for a single point trained into a

CMAC defined as having a base generalization o f 4. Figure 5.12 shows the weight loca

30
(mb« gwwraizaoan ■ 4: sup«r gerwiftzMon ■ 4 bas« gencrainbon * 4: t ip c r gcneraftnbon ■ 16

20

10

0

-10

•20

20

10

0

•10

•20

-3i0 -20 -10 0 10 20 J 0 -3i0 -20 -10 0 10 20 30

Figure 5.11: Receptive field center Figure 5.12: Receptive field center
placement pattern for a single training placement pattern for a single training
point in an Albus CMAC with general point in an Albus CMAC with super
ization of 4. o’s represent the lower generalization of 16 and base generali
left-hand comer of a receptive field and zation of 4. o’s represent the lower left-
*’s represent training points. hand comer of a receptive field and *’s

represent training points.

tions for the same point trained into a CMAC defined as having a base generalization of 4

but using a Super Generalization value of 16. Recall that, for the two-dimensional case, a

generalization value of 16 in the standard CMAC would pack 16 weights into the same

region that Super Generalization has packed 64 weights. Super Generalization has been

implemented in a straightforward way in the modified UNH CMAC code and in the Mat-

lab port of that C code. When working in the raw coordinate space of the weight space, it

is true that for every weight in the weight allocation pattern such as that in figure 5.11

another weight can be found by stepping one base generalization distance in either direc

tion along any dimension. For the case of base generalization equal to 4, once the four pri

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

75

mary weights are located using the standard CMAC method, all the other weights in the

Super Generalization region can be located by beginning at one of the primary weights

and using a simple recursive function call to traverse the Super Generalization region

picking up copies of the primary weight. Figures 5.13 and 5.14 show the learning support

b i u g tncrafesoon1 4

10 20 30

Figure 5.13: Learning support for a
single training point with an Albus
CMAC with generalization of 4

base g tn tn tm D o n * 4; tup«rg«MfafezanoAs 16

Figure 5.14: Learning support for a
single training point with an Albus
CMAC with super generalization of 16
and base generalization of 4.

provided by each of these methods. For the case with Super Generalization, training was

done with Super Generalization while network responses were determined using the base

generalization. The Super Generalization provides support to a larger region as if that

region were fully trained.

5.2 Super Generalization Experiments

Several experiments were run to test the effectiveness of Super Generalization. In

order to explore the effects o f training sample spacing and sample spacing in general on

the ability of the CMAC to learn and remember the function, the values of X and Y were

scaled by an integer value before presenting the states to the CMAC for learning. Every

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

76

third sample in the domain of X and Y was used for training and then remembering was

performed over the entire domain. Random selection o f the training point order was not

applied. The value of Super Generalization was fixed at 32 which is roughly the extent of

the smoothing function as determined from the analysis of the matrix optimum solution. A

new receptive field shape was defined for this problem and applied to the CMAC for

learning with Super Generalization as part of the custom CMAC feature in the code. The

receptive field shape is plotted below in figure 5.15. For Super Generalization regions

Super Generalization receptive field shape
500

450

400

350

300O)

2 250

200

150

100

200 40 60 14080 100 120
distance of weight from training point

Figure 5.15: Receptive field shape for Super Generalization.

smaller than the 128 units on a side for which the function is defined, the curve is sub

sampled along its domain so that the shape is preserved.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

77

The experiment varies the base generalization parameter from 1 to 32 while the

Super Generalization parameter remains fixed at a value of 32. The CMAC learning rate is

fixed at 0.5. Quantization values are fixed at 1. Available memory is 30000 and collision

avoidance is active. For each value of generalization three CMACs are defined. The first

is the original Albus CMAC with 20 iterations o f training done across the whole training

set, the second is a CMAC using only Super Generalization trained for 20 iterations, and

the third is a CMAC trained for 4 iterations using Super followed by 20 iterations at the

base generalization. For each value of generalization, the rms error between desired func

tion and the learned functions for each of the three CMACs, the rms error between the X-

and Y-gradients of the desired function and those of the learned functions for each of the

three CMACs, and the rms error between the discrete Laplacian of the desired function

and that of the learned functions for the three CMACs are calculated. All the rms errors

were calculated for the full array as well as for the inside array which excluded the outer 3

rows and columns in an effort to normalize for edge effects. This same experiment was

performed for three different functions.

5.2.1 Experiment 1: Up Parabola

The function being trained is defined by Eqn 5.1.

Z = X2 + Y2, X , Y e { -1 0 ,-9 ...9 , 10} Eqn5.1

The sample spacing parameter was set to a value of 4. Since every third sample

was used, training samples were effectively spaced at a distance of 12 from each other in

each dimension for presentation to the network. Figure 5.16 shows a plot of the full rms

error for the function learning. Figure 5.17 shows a plot of the inside rms error for the

function learning. These results indicate that the combination o f a standard CMAC with a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

78

A Im . F la t U rms «m r

T20

3e
u
n1

A IM . Fist, m id * rms error

60

| 4 0
ui
01

Figure 5.16: Full rms error between
desired function and learned functions.

Figure 5.17: Inside rms error between
desired function and learned functions.

Super Generalization CMAC has function learning performance that is superior to the

standard CMAC especially at low values of the generalization parameter where Super

Generalization has its most significant effect. As the value of base generalization

increases, Super Generalization becomes more like standard generalization and the two

CMACs converge in performance.

Figure 5.18 is a plot of the full rms error between the Laplacian of the desired

function and that o f the learned functions. Figure 5.19 is a plot of the inside rms error

between the Laplacian of the desired function and that of the learned function. The Lapla

cian operator is a measure of the curvature of the function. These results indicate that the

combination of regular CMAC with a Super Generalization CMAC has superior perfor

mance for small generalizations and has similar performance to the standard CMAC at

high generalizations.

Figure 5.20 is a plot of the full rms error between the X-gradient of the desired

function and that o f the learned functions. Figure 5.21 is a plot of the inside rms error

between the X-gradient of the desired function and that of the learned functions. Figure

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

79

Albui. R at. L i (M 2 rm s v ro r

3eUi
01
I

30

A lb u . FIM. m ud» dsQ m «rror

40

3 25

30

Figure 5.18: Plot o f the full rms error
between the Laplacian of the desired
function and that of the learned func
tion.

Figure 5.19: Plot of the inside rms er
ror between the Laplacian of the de
sired function and that of the learned
function.

Albus. R at. LC Xgradfent rms error*

supcrgen

3e
iu 20
oi1

20

Albus. Flat. ra id * X-gradtatt rm s errors

20

» 12

2 io

Figure 5.20: Plot of the full rms error
between the X-gradient o f the desired
function and that of the learned func
tions.

Figure 5.21: Plot of the inside rms er
ror between the X-gradient of the de
sired function and that of the learned
functions.

5.22 is a plot of the full rms error between the Y-gradient of the desired function and that

o f the learned functions. Figure 5.23 is a plot of the inside rms error between the Y-gradi

ent of the desired function and that of the learned functions. Once again, for small values

o f base generalization, the combination of standard CMAC with Super Generalization

CMAC produces the best derivative performance. Unlike the flawed matrix implementa-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

80

AJbus. Flat. %M Y -psdan t rm s errors

30

8e
w 20
at

I

Afeua. Flat, in u d r Y -y sM n t rms errors

20

I «
; io

Figure 5.22: Plot of the full rms error
between the Y-gradient of the desired
function and that of the learned func
tions.

Figure 5.23: Plot of the inside rms er
ror between the Y-gradient of the de
sired function and that of the learned
functions.

tion o f the previous chapter, this network exhibits improvement in performance for both

the X- and Y-gradients. Since the weight corrections and weighting functions are calcu

lated prior to mapping to a physical memory array, biases from this mapping process can

not affect the calculations.

It is worth noting that there are large differences between the performance plots for

the full array and those for the inside array. This indicates that edge effects were a big con

tributor to the CMAC error performance. This is not surprising since the CMAC has a nat

ural bias toward zero. The edges o f this parabola function had values on the order o f 100.

Since training was not guaranteed to occur at the exact edges due to the choice of every

third sample, the weight information contributing to the network response at the edges is

either zero if no generalization has reached that far or is information from training points

on the parabola which are guaranteed to be smaller than the desired value. The next exper

iment further highlights this point.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

SI
5.2.2 Experiment 2: Down Parabola

The function being trained is defined by Eqn 5.2.

Z = IQ O -iJ P + Y 2), X, Y e { -1 0 ,-9 ...9 , 10} Eqn5.2

The sample spacing parameter was set to a value of 4. Since every third sample

was used, training samples were effectively spaced at a distance of 12 from each other in

each dimension for presentation to the network. Figure 5.24 shows a plot of the full rms

error for the function learning. Figure 5.25 shows a plot of the inside rms error for the

AJbus. Flat, fafl rms error

tso

160

140

120
5 «»

60

Afeus. F la t ra id * rms error

tupergen200

ISO

3e
Ui
0)
I too

Figure 5.24: Plot of the full rms error
for the function learning.

Figure 5.25: Plot of the inside rms er
ror for the function learning.

function learning. For this function the performance o f the combination of regular CMAC

with the Super Generalization CMAC is better at every value of base generalization. In

many cases the performance was better by a factor o f two or more.

Figure 5.26 is a plot of the full rms error between the Laplacian of the desired

function and that of the learned functions. Figure 5.27 is a plot of the inside rms error

between the Laplacian of the desired function and that of the learned functions. For this

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

82

Albus. FUc. U l de<2 rm s error

2 so

Albus. R st. nsid* deG rms error

60

5eui
0)
1

Figure 5.26: Plot of the full rms error
between the Laplacian of the desired
function and that of the learned func
tions.

Figure 5.27: Plot of the inside rms er
ror between the Laplacian of the de
sired function and that of the learned
functions.

function the curvature performance of the combination of regular CMAC with the Super

Generalization CMAC is better at every value of base generalization. In all but four cases

the performance was better by a factor of 1.5 or better.

Figure 5.28 is a plot of the full rms error between the X-gradient of the desired

function and that of the learned functions. Figure 5.29 is a plot of the inside rms error

Albus. FT*. U l X grsdem rms errors Albus. Fist, inside X ^ a d c n t rms errors

SO

45

■ o — emsc
, . sipergen
- £ 3— supergen*cmac

SO
^ - q . . cm sc

\ —t— supergen
\ ■ q — stpergen*em se

RM
S

Er
ro

r

40

5 3 0Ul
0)
1

20

10

> 5 10 15
generaAzsaon

20 25 30) 5 10 15 20 25 30
genersfezsbon

Figure 5.28: Plot of the full rms error
between the X-gradient of the desired
function and that o f the learned func
tions.

Figure 5.29: Plot of the inside rms er
ror between the X-gradient of the de
sired function and that of the learned
functions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

83

between the X-gradient of the desired function and that of the learned functions. Figure

5.30 is a plot o f the full rms error between the Y-gradient of the desired function and that

o f the learned functions. Figure 5.31 is a plot of the inside rms error between the Y-gradi-

AJbus. Flat. U l Y -^adcn t rms « i « s

ui
m
I

Afeus. R at. msid* Y - jn d s n t rms errors

SO

s 30 ••• **

20

20

Figure 5.30: Plot o f the full rms error
between the Y-gradient of the desired
function and that of the learned func
tions.

Figure 5.31: Plot of the inside rms er
ror between the Y-gradient of the de
sired function and that of the learned
functions.

ent of the desired function and that of the learned functions. For all but three cases, the

derivative performance in both the X- and Y-directions of the combined standard CMAC

plus Super Generalization CMAC was superior to the standard CMAC alone.

It is interesting to note that for this function, which has edge values near zero, the

full and insides plots are very similar. This indicates that edge effects were not a signifi

cant contributor to the errors

5.2.3 Experiment 3: Sin(X)*Sin(Y)

The function being trained is defined by Eqn 5.3.

Z = lOOsinX • sinY, X , Y e \ - K > £ : n \ Eqn5.3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

84

The sample spacing parameter was set to a value of 20. Since every third sample

was used, training samples were effectively spaced at a distance of about 7.5 from each

other in each dimension for presentation to the network.

Figure 5.32 shows a plot of the full rms error for the function learning. Figure 5.33

AJbus. R at. U i (ms error

S 30

A bus. Flat, m u d s rms error

60

20

Figure 5.32: Plot of the full rms error
for the function learning.

Figure 5.33: Plot of the inside rms er
ror for the function learning.

shows a plot of the inside rms error for the function learning. The performance of the com

bined regular plus Super Generalization CMAC is better than or equal to that o f the regu

lar CMAC alone. For the high values of base generalization, where Super Generalization

behaves almost exactly like the base generalization, function learning performance is

identical. For small values of base generalization, function learning performance for the

combined CMAC is up to five times better.

Figure 5.34 is a plot of the full rms error between the Laplacian of the desired

function and that of the learned functions. Figure 5.35 is a plot of the inside rms error

between the Laplacian of the desired function and that of the learned functions. In all but

five cases the performance of the combined CMAC was better than the regular CMAC for

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

85

Albus. R at. 14 d d 2 rm s error Afeus. R at. «m da daQ rm s «

20

1 «

a*41
30

Figure 5.34: Plot of the full rms error
between the Laplacian o f the desired
function and that of the learned func
tions.

Figure 5.35: Plot of the inside rms er
ror between the Laplacian of the de
sired function and that of the learned
functions.

this performance metric. In no case was the performance of the combined CMAC less than

90 percent of the regular CMAC.

Figure 5.36 is a plot of the full rms error between the X-gradient of the desired

function and that of the learned functions. Figure 5.37 is a plot of the inside rms error

AJbus. Flat. U fe jradkm rm s errors

S
ui
0)
3
e

20

Albus. Rat. ra id e X ^w Sent rms errors

20

3e
ui
a
1

Figure 5.36: plot of the full rms error
between the X-gradient o f the desired
function and that of the learned func
tions.

Figure 5.37: Plot of the inside rms er
ror between the X-gradient of the de
sired function and that of the learned
functions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

86
between the X-gradient o f the desired function and that of the learned functions. Figure

5.38 is a plot of the full rms error between the Y-gradient of the desired function and that

of the learned functions. Figure 5.39 is a plot of the inside rms error between the Y-gradi-

20

supcrgcn

Se
ui
a)
I

20

Figure 5.38: Plot of the full rms error
between the Y-gradient of the desired
function and that of the learned func
tions.

Figure 5.39: Plot of the inside rms er
ror between the Y-gradient o f the de
sired function and that of the learned
functions.

ent of the desired function and that of the learned functions. In no case was the derivative

performance of the combined CMAC less than 93 percent of the regular CMAC and in

most cases the performance was much better. Again, the similarity between the full and

inside plots indicates that edge effects were not a factor in this experiment as would be

expected for a function whose value is zero at the boundary of the training region.

Results with the Super Generalization CMAC were disappointing but the poor per

formance arose because the receptive field normalization was calculated using the existing

tapered receptive field algorithm. This algorithm normalizes the individual weight contri

butions based upon the assumption that all the weights in the receptive field will be used

to produce the network response. The effect of this was particularly catastrophic when the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

87

values o f the base generalization were very small. When the base generalization is very

small there can be up to 1024 active weights within the Super Generalization region. Sev

eral of these weights must lie very close to the center of the Super Generalization recep

tive field and their weight values are assigned correspondingly high contributions of the

input data point. For tapered receptive fields, the field normalization is applied both dur

ing training and during remembering. When remembering with a small receptive field

near the center of a Super Generalization cell, the normalization on the remember side is

completely inadequate to compensate for the huge contributions stored in those weights

during the training cycle and the resulting network response is excessively large resulting

in a large rms error near these locations and a very spiky network response. When remem

bering with the Albus law, the weights are simply summed to produce the network

response resulting in even larger errors.

This effect was virtually eliminated by simply retraining the network with the stan

dard Albus CMAC law after some initial training with Super Generalization. This served

to renormalize the central set of weights in the Super Generalization cell and dramatically

improved the overall network performance.

The overall results indicate that a CMAC trained with properly normalized Super

Generalization can have superior performance over the standard CMAC when the training

is sparse or incomplete. As the value of base generalization increases the performance of

the new CMAC approaches that of the standard CMAC although even at large values of

base generalization the performance o f the new CMAC was often still marginally better

than the standard CMAC.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Conclusions and Suggestions for Future Work

6.1 Summary

The stability of the CMAC algorithm was analyzed and a Lyapunov stability proof

was developed for the open loop, function learning case. The results indicated that as long

as the function could be represented to the desired accuracy by a fully trained CMAC, then

the weights in the CMAC being trained would eventually converge to the weights of the

fictitious target CMAC. The Lyapunov function was defined on the error between the

weights of the CMAC being trained and the weights o f the target CMAC. This weight

error was shown never to increase and, in fact, for the weights being trained was monoton-

ically decreasing.

This matrix formulation of the CMAC was also used to cast the learning algorithm

as a constrained optimization problem. Lagrange multipliers were used and both batch and

sequential updating were studied for the one- and two- dimensional problems. As much as

possible of the CMAC structure was included in the matrix formulation. This was espe

cially important for the two-dimensional case where both the Albus receptive field center

placement strategy and the An receptive field placement strategy were supported. Tapered

receptive fields were also supported in this matrix formulation with code from the original

CMAC C code ported for the C to Matlab. Floating point weights were used which

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

89

allowed for a larger dynamic range for learning in the matrix case than in the standard C-

code implementation. In practice this was not significant. The purpose of this analysis was

to explore weight smoothing or regularization from an optimization standpoint and deter

mine if learning performance was improved. If this was the case, then important features

of the optimum solution would be extracted and cast in a form suitable for the CMAC.

An important finding from this matrix analysis was that the point in the process of

mapping from an n-dimensional input/weight space to a one-dimensional weight vector at

which the weight adjustment occurred had a significant impact on performance. In all the

matrix experiments the formulation required that operations be performed on the one

dimensional weight vector. Some operations, like receptive field center placement, were

performed in the higher dimensional space but all results were mapped to the linear space

before the matrix algorithm was calculated. Even the weight penalty matrix developed for

smoothing only smoothed on nearest neighbors in the weight array and not necessarily on

nearest neighbors in the original weight space. This resulted in the documented bias to

smoothing along a preferred dimension as shown by the first derivative tests on solutions

from the matrix optimizations.

Despite the apparent flaw in the implementation, weight smoothing resulted in sig

nificant improvements in learning performance. Three metrics in particular were deemed

important: the network performance under partial training, the first derivative of the net

work solution, and the smoothness, measured by the laplacian, of the network solution

Performance graphs against these three metrics were presented in the previous chapter.

Important properties of the weight smoothing solution derived from the optimum solu

tions are listed here.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

90
1) Application of weight smoothing as derived from the solutions to the constrained opti

mization problems resulted in a significant improvement in network performance par

ticularly at the smaller values o f generalizations where the extended generalization

effect of the weight smoothing was most strongly felt.

2) Application of weight smoothing as derived from the solutions to the constrained opti

mization problems requires the introduction o f a new feature to the CMAC — Super

Generalization. Whereas standard generalization in the CMAC defines a hypercube

with dimension C on each side within which C receptive fields overlap. Super Gener

alization defines a hypercube of integer dimension Gs on a side with GS> C . The dis

tribution of receptive field centers in this larger region is the same as that defined by

CMAC for generalization of C . In this way all the information trained into the CMAC

will be available for network responses at nearby locations in the input space.

3) The kernel function for the weight smoothing solution is derived from the inverse of

the penalty matrix O as defined in Eqn 4.7 and on average takes the form

1.5617 c , .
---------- kTTi Ecln 6 -1
1.36426 ol

This is the desired shape for training using Super Generalization although some

changes to the actual parameters may be required to accommodate the present imple

mentation strategy in the UNH CMAC for integer performance and tapered receptive

field shapes.

4) The weight smoothing solution applies the kernel function, convolved with the weight

selection vector, as a weighting factor for the new training point. This new weighting

factor spreads the information out much farther into the weight space than is possible

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

91

with all but the largest values of generalization. The significant feature is that the

width o f the spreading is controlled by the scaling of the penalty matrix and this infor

mation is applied to the weights in a manner that is independent of the base value of

generalization for which the network was created.

5) The weight smoothing solution applies the kernel function to average the old weights

before a new sample value is trained. This process, defined by term 1 (Eqn 4.18),

enforces weight smoothing across the old weights and also acts to control the problem

of runaway weights in the standard CMAC implementation. The requirement placed

on the CMAC algorithm is that, for every training iteration, a pre-training step must be

added which performs this weight averaging process across the accessible weights

within the range of the smoothing kernel.

6) The weight smoothing solution determines a measure o f the interaction between the

new training point and previously trained data and adjusts both the weight averaging

function and the new sample training function in such a way as to minimize interfer

ence with previously trained information while still enforcing the smoothness crite

rion.

The UNH CMAC code was modified to support the kernel requirement of property

4 above with the implementation of Super Generalization. This implementation evolved

from a study of how the CMAC algorithm actually does generalization, how different val

ues of generalization select sets of weights from the global weight space, and how these

sets of weights interact under mixed generalization training and remembering. Experi

ments were run with the new version of the CMAC algorithm.

6.2 Conclusions

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

92
Experiments were conducted with three different CMAC networks. The first was

the standard Albus CMAC algorithm, the second was a CMAC where training was per

formed with Super Generalization and remembering was performed with the standard

Albus algorithm, and the third was a CMAC where the first few training passes were per

formed with Super Generalization and the remaining training passes were performed with

the standard Albus algorithm. Remembering for the third network was also performed

with the standard Albus algorithm.

Results with the Super Generalization CMAC were disappointing but the poor per

formance arose because the receptive field normalization was calculated using the existing

tapered receptive field algorithm. This algorithm normalizes the individual weight contri

butions based upon the assumption that all the weights in the receptive field will be used

to produce the network response. The effect of this was particularly catastrophic when the

values of the base generalization were very small. When the base generalization is very

small there can be up to 1024 active weights within the Super Generalization region. Sev

eral of these weights must lie very close to the center of the Super Generalization recep

tive field and their weight values are assigned correspondingly high contributions of the

input data point. For tapered receptive fields, the field normalization is applied both dur

ing training and during remembering. When remembering with a small receptive field

near the center of a Super Generalization cell, the normalization on the remember side is

completely inadequate to compensate for the huge contributions stored in those weights

during the training cycle and the resulting network response is excessively large resulting

in a iarge rms error near these locations and a very spikey network response. When

remembering with the Albus law, the weights are simply summed to produce the network

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

93

response resulting in even larger errors.

This effect was virtually eliminated by simply retraining the network with the stan

dard Albus CMAC law after some initial training with Super Generalization. This served

to renormalize the central set o f weights in the Super Generalization cell and dramatically

improved the overall network performance.

The overall results indicate that a CMAC trained with properly normalized Super

Generalization can have superior performance over the standard CMAC when the training

is sparse or incomplete. As the value of base generalization increases the performance o f

the new CMAC approaches that of the standard CMAC although even at large values o f

base generalization the performance of the new CMAC was often still marginally better

than the standard CMAC.

The research performed for this dissertation indicates that, with a few more refine

ments, this new CMAC learning algorithm will make it possible to use CMAC in applica

tions for which it is now unsuited such as optimization problems. This is a particularly

interesting result in that the training with Super Generalization does not, in and of itself,

implement weight smoothing or even any obvious approximation to weight smoothing.

All Super Generalization training does is spread the trained information farther out into

the weight space in a form that makes the network response much smoother for cases

when the required network base generalization is small and/or the training data in all or

portions of the state space are widely separated. Nevertheless, this result is significant

since it has a low computational cost for modest problems. The computational scale factor

is proportional to:

(super generalization parameter value^ Dimension
base generalization parameter value

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

94
Despite the now exponential cost growth with dimension, this learning rule is still a local

update learning rule and as such still maintains those traditional advantages over the global

updating networks. Even if the entire weight smoothing rule were to be implemented, the

algorithm would still be a local update law although the cost associated with all the weight

averaging and smoothing would be proportional to:

(super generalization parameter value)D,mension

In the final vision of how this new learning technique might be used, it is expected

that Super Generalization and weight smoothing will be used only occasionally and not

necessarily together. For those times when training is sparse and the differentiability of the

network response is required then both will probably prove useful to maximize perfor

mance. Training interaction detection will be implemented so that, in conjunction with

variable Super Generalization cell size, the compensation mechanism o f the optimal solu

tion can be approximated in the CMAC as well to minimize learning interference. For the

case when data density is good, perhaps Super Generalization will not be necessary at all.

In this case, however, it may still prove useful to perform weight smoothing using a scaled

version of the smoothing kernel over some region closer in size to the base generalization

just to implement local smoothing and weight magnitude control. In intermediate regions

the training interaction detector can signal whether training data are sparse enough to war

rant the application o f Super Generalization just for a single sample or short series of

training data in order to create a reasonable base from which to draw network responses in

future visits to that region of the input space.

6.3 Suggestions for Future Work

1) Since the Super Generalization technique appears to be viable, the first thing that

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

95

should be done is to develop a Super Generalization receptive field normalization,

based on the existing tapered receptive field technique, that the information stored in

the weights will be scaled so that recovery of that information with the base generali

zation will result in correctly scaled responses. This will eliminate the need to post

train at the training points with an update law operating at the base generalization as

was done in the experiments presented here.

2) A full-blown implementation o f weight smoothing for the old weights should be

implemented and tested now that the optimal weight smoothing function has been

derived from the optimal matrix implementation. While computationally more expen

sive than other CMAC sub-algorithms, this could still be implemented with only table

lookup and the basic arithmetic operations. The new computer hardware should be

able to support the extra computation and still allow for good real time performance.

Even a dedicated hardware implementation in Field Programmable Gate Array

(FPGA) technology or Application Specific Integrated Circuitry (ASIC) should be

possible.

3) One of the big strengths of the optimum matrix solution is the way the algorithm

detects when there will be interaction between the new training point and existing

trained weights and prescales both the smoothed old weights and the Super General

ized new data point to minimize the disruption and in fact to improve the smoothness

of the overall solution. This should be implemented even if weight smoothing is not

implemented. Now that a form of variable generalization is available since Super Gen

eralization Cell size can be adjusted dynamically without disrupting the underlying

base generalization structure, it makes sense to dynamically adjust the cell size to get

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

96
optimum coverage and to respond to changing density of training data.

4) If possible the matrix formulation used in the two-dimensional implementation of the

optimization problem should be corrected to accurately implement smoothing in both

the X- and Y-directions. If this can be accomplished and an appropriate penalty matrix

can be constructed, then new insights into the properties of the weight smoothing algo

rithm might present themselves.

5) The new weight adjustment law or some variation of it should be recast in matrix form

so that the local generalization property is built into the algorithm in an explicit way,

thereby differentiating it from the global form represented by the matrix optimum

solution. This local update law should be analyzed for stability.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

References and Bibliography

[1] Albus, J. S., “A Theory of Cerebellar Functions,” Mathematical Biosciences 10, pp.
25-61, 1971.

[2] Albus, J. S., “Theoretical and Experimental Aspects of a Cerebellar Model.” Ph.D.
Dissertation, University of Maryland, 1972.

[3] Albus, J. S., “The Cerebellar Model Articulation Controller, Trans. ASME. Series
G, vol. 97, No. 3, 1975.

[4] Albus, J. S., “A New Approach to Manipulator Control: the Cerebellar Model
Articulation Controller (CMAC).” Trans. ASME, J. Dynamic Syst. Meas. Contr.,
Transactions of ASME, vol 97, pp. 220-227,1975. (September 1975)

[5] Albus, J. S., “Data Storage in the Cerebellar Model Articulation Controller
(CMAC),” Journal o f Dynamic Systems, Measurement, and Control, Transactions
of ASME, PP. 228-233, September 1975.

[6] Albus, J. S., “A Model of the Brain for Robot Control Part3: A comparison of the
Brain and Our Model,” Byte Magazine, 1979.

[7] Albus, J. S., "Mechanisms of Planning and Problem Solving in the Brain," Mathe
matical Biosciences, Vol. 45, pp. pp. 247-293, 1979.

[8] Albus, J. S., Brains, Behavior and Robotics, BYTE Publications Inc., Peterborough,
New Hampshire, 1981.

[9] An, P.-C. E., “An Improved Multi-Dimensional CMAC Neural Network: Receptive
Field Function and Placement.” Ph.D. Dissertation, Univ. of New Hampshire,
Durham. NH, September, 1991.

[10] An, P.-C., E., Miller, W. T., and Parks, P. C., “Design Improvements in Associative
Memories for CMAC.” Proc. ICANN '91, vol. 2., pp. 1207-1210, (North Holland
Pub.). Helsinki, June 24-28, 1991.

[11] Anagnost, S. M., and Glanz, F. H., “CMAC Neural Network Binary Output Capac
ity.” UNH Intelligent Structures Group Technical Report No. ECE.IS.91.01, ECE
Dept., Univ. of New Hampshire, Durham, NH, 1991.

[12] Anagnost, S. M., “Approximate non-linear optimal control using CMAC neural
networks,” Masters Thesis, University of New Hampshire, 1994.

[13] Anderson, J. A., Silverstein, J. W., Rite, S. A., and Jones, R. S., “Distinctive Fea
tures, Categorical Perception, and Probability Learning: some Applications of a
Neural Model,” Psych. Rev. 84 413-451, 1977.

[14] Arehart, K.. F., “A CMAC-based cursive handwriting recognizer for the Windows
for Pen Computing operating environment,” Masters Thesis, University of New
Hampshire, 1994.

[15] Bergantz, D. and Barad, H., "Neural network control of cybernetic limb prosthe-
ses," Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, New Orleans, LA, Vol. 3, pp. 1486- 1487,1988.

[16] Botros, S. M., and Atkeson, C. G., “Generalization Properties of Radial Basis Func-

97

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

98

tions.” In Neural Information Processing Systems 3, edited by R. P. Lippmann,
John E. Moody, and David S. Touretzky, Morgan Kaufmann Publishers, San
Mateo, CA, pp. 707-713, 1991.

[17] Briggs, R., and Glanz, F. H., "Parameter Influence on a CMAC Neural Network.”
UNH Intelligent Structures Group Technical Report No. ECE.IS.91.02, ECE Dept.,
Univ. of New Hampshire, Durham, NH, 1991.

[18] Brogan, W. L., Modern Control Theory, third edition, Prentice Hall, Englewood
Cliffs, New Jersey, 1991, p. 131.

[19] Brown, M, “Neurofuzzy Adaptive Modelling and Control,” Ph.D. Thesis,
Southampton University, 1993.

[20] Brown, M., Harris, C. J. and Parks, P. C., “The Interpolation Capabilities of the
Binary CMAC,” Neural Networks, Vol. 6, No. 3, pp. 429-440, 1993.

[21] Brown, M, and Harris, C. J., “Comments on ‘Learning convergence in the Cerebel
lar Model Articulation Controller,’” IEEE Trans, on Neural Networks

[22] Brown, M., Harris, C. J., and Parks, P. C., “The Interpolation Capabilities of the
Binary CMAC,” Neural Networks, v6, no 3, p. 429, 1993

[23] Brown, M.and Harris, C. J., "The modelling abilities of the binary CMAC," IEEE
international Conference on Neural Networks, Orlando, Florida, Vol. 3, pp. 1335-
1339, 1994.

[24] Brown, M. and Harris, C. J., Neurofuzzy Adaptive Modelling and Control. Hemel
Hempstead, UK: Prentice Hall, 1994.

[25] Burgin, G, “Using Cerebellar Arithmetic Computers,” AI Expert, vol 7, no 6, p 32,
June I, 1992.

[26] Calcev, G., "Self-tuning neurofuzzy controller," IEEE International Symposium on
Intelligent Control, Chicago, IL, pp. 577-580, 1993.

[27] Carlson, R., Lee, C., and Rothermel, K., "Real time neural control of an active
structure," International Conference on Artificial Neural Networks in Engineering,
pp. 623-628, 1992.

[28] Carter, M. J., Rudolph, F., and Nucci, A., “Operational Fault Tolerance of CMAC
Networks,” appears in Advances in Neural Information Processing Systems 2, D.S.
Touretzky (Ed.), San Mateo, CA: Morgan Kaufmann, 1990

[29] Chapeau-Blondeau, F., Chauvet, G, “A Neural Network Model of the Cerebellar
Cortex for Performing DynamicAssociations,” Biological Cybernetics, vol 65, no
4, p 267, 1991.

[30] Cotter, N. E. and Guillerm, T. J., “The CMAC and a Theorem of Kolmogorov,”
Neural Networks. 5,221-228,1992.

[31] Cotter, N. E. and Mian, O. N., "A pulsed neural network capable of universal
approximation," IEEE Transactions on Neural Networks, Vol. 3, pp. 308-314,
1992.

[32] Daarla and Zhao, "A learning algorithm for a CMAC-based system and its applica
tion to classification of ultrasonic signals," Ultrasonics, Vol. 32, pp. 91-98, 1994.

[33] Eldracher, M., Staller, A., and Pompl, R., “Function Approximation with Continu
ous-Valued Activation Functions in CMAC,” acquired via ftp from Munich Tech
nical University.

[34] Ellison, D., “On the Convergence of the Albus Perceptron,” IMA Journal of Math.
Control and Info., Vol. 5, pp. 315-331, 1988.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

99

[35] Ellison, D., “On the Convergence of the Multidimensional Albus Perceptron,”
International Journal of Robotics Research, 10(4), pp. 338-357, 1991.

[36] Ersu, E., “A Learning Mechanism for an Associative Storage System,” Proc. of
IEEE International Conference on Cybernetics and Society, pp. 26-28, Oct., 1981.

[37] Ersu, E., “On the Application of Associative Neural Network Models to Technical
Control Problems,” Localization and Orientation in Biology and Engineering,
Varju/Schnitzler Eds., Springer Verlag, 1983

[38] Ersu, E. Mao, X., “Control of pH Using a Self-Organizing Control Concept with
Associative Memories,” Int. IASTED Conf. on Applied Control and Identification,
Copenhagen, Denmark, 1983.

[39] Ersu, E., “Real-Time Implementation o f an Associative Memory Based Learning
Control Scheme for Non-linear Multivariable Processes,” 1st Measurements and
Control Sysmpsium on Application o f Multivariable Systems Techniques, pp. 109-
119, Plymouth, UK, 1984

[40] Ersu, E.eds., On the application of associative neural network models to technical
control problems, Springer Verlag, 1984, pp. 90-93.

[41] Ersu, E. and Militzer, J., "Real-time implementation o f an associative memory-
based learning control scheme for non-linear multivariable processes," 1st Mea
surements and Control Symposium on Applications o f Multivariable Systems
Techniques, Plymouth, UK, pp. 109-119, 1984.

[42] Ersu, E. and Tolle, H., “Learning Control Structures with Neuron-Like Associative
Memory Systems,” in Organization of Neural Networks, W. von Seelen, G. Shaw,
U. M. Leinhos, Eds, VCH Verlagsgesellschaft mbJ, Weinheim, FRG, pp. 417-438,
1988.

[43] Ersu, E. and Tolle, H., “A New Concept for Learning Control Inspired by Brain
Theory,” Proc. of IFAC World Congress, Budapest, Hungary, July 2-6, 1984.

[44] Ersu, E. and Tolle, H., “Heirarchical Learning Control—An Approach with Neuron-
Like Associative Memories,” IEEE Conf. on Neural Information Processing Sys
tems -- Natural and Synthetic, Nov. 8-12, Denver, CO, 1988.

[45] Eskandarian, A., Bedewi, N. E., Kramer, B., and Barbera, A. J., "Dynamics model
ing of robotic manipulators using an artificial neural network," Journal of Robotic
Systems, Vol. 11, pp. 41-56, 1994.

[46] Freedman, J. J., “Adaptive Control of Groundwater Flow Using the CMAC Neural
Network,” Masters Thesis, University o f New Hampshire, 1996.

[47] Fukushima, K. and Miyaka, S. “Neocognitron: A Self-Organizing Neural network
Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position,”
Biol, Cybem. 36(4), 193-202, 1980.

[48] Fukuda, T . , Saito, F., and Arai, F., "Study on the brachiation type of mobile robot
(Heuristic creation of driving input and control using CMAC)," 12th. International
Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Br.,
Vol. 2, pp. 478-483, 1989.

[49] Gehlen, S., Hormel, M., and Bohrer, S., "A learning control scheme with neuron
like associative memories for the control of biotechnological processes," neural net
works, Nimes, France, pp. 1988.

[50] Gehlen, S. and Kreuzig, J., "Learning by interpolating memories for modelling of
fermentation processes," Advanced Control of Chemical ’91, Toulouse, France, pp.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

100
273-278,1991.

[51] Geng, Z. and Haynes, L., "Neural network solution for the forward kinematics
problem of a Stewart platform," 1991 IEEE International Conference on Robotics
and Automation, Sacramento, CA, Vol. 3, pp. 2650-2655, 1991.

[52] Geng, Z. and Haynes, L. S., "Dynamic control of a parallel link manipulator using
CMAC neural network," IEEE International Symposium on Intelligent Control,
Arlington, VA, pp. 411-416,1991.

[53] Geng, Z. and Haynes, L. S., "Neural network solution for the forward kinematics
problem of a Stewart platform," Robotics and Computer-Integrated Manufacturing,
Vol. 9, pp. 485-495, 1992.

[54] Geng, Z and Haynes, L. S., “Dynamic Control of a Parallel Link Manipulator using
a CMAC Neural network,” Computers and Electrical Engineering, vol 19, no 4, p.
265, July, 1,1993.

[55] Glanz, F. H., Miller, W. T., “Shape recognition using a CMAC based learning sys
tem,” Proceedings SPIE: Intelligent Robots and Computer Vision, Cambridge,
Mass., Nov., 1987.

[56] Glanz, F. H., and Miller, W. T., “Deconvolution and Nonlinear Inverse Filtering
Using a Neural Network,” International Conference on Acoustics and Signal Pro
cessing, Glasgow, Scotland, Vol. 4, pp. 2349-2352, 1989

[57] Glanz, F. H., and Miller, W. T., “Deconvolution using a CMAC neural network,”
First Annual Conference of the International Neural Network Society, Boston, MA,
September 6-10, 1988, p. 440.

[58] Glanz, F. H., and Yang, J., “Experimental parameter studies for the CMAC neural
network,” IJCNN-91, Seattle, WA, p. 975, 1991.

[59] Glanz, F.H, Miller, W.T., and Kraft, L.G., “An overview of the CMAC neural net
work,” IEEE Conference on Neural Networks for Ocean Engineering, Washington,
DC, pp. 301-308, 1991.

[60] Grossberg, S., “Classical and Instrumental Learning by Neural Networks,” in
Progress in Theoretical Biology, New York, Academic Press, vol 3, pp 51-141,
1977.

[61] Hagens, A, and Doveton, J. H., “Application of a Simple Cerebellar Model to Geo
logic Surface Mapping,” Computers and Geosciences, vol. 17, no 4, p 561, 1991.

[62] Hebb, D. O. The Organization o f Behavior, A Neuropsychological Theory, New
York, John Wiley, 1949.

[63] Herold, D. J., Miller, W. T., Kraft, L. G., Glanz, F. H., “Pattern Recognition using a
CMAC Based Learning System,” Proceedings SPIE: Automated Inspection and
High Speed Vision Architectures II, Vol. 1004, pp. 84-90, 1988.

[64] Hewes, R. P., and Miller, W. T., “Practical demonstration of a learning control sys
tem for a five axis industrial robot,” Proceedings SPIE: Intelligent Robots and
Computer Vision, vol. 1002, pp. 679-685, 1988.

[65] Jager, R., “Fuzzy Logic in Control,” Ph.D. Dissertation, Delft University of Tech
nology, The Netherlands, 1995.

[66] Jia, Y, “Use of the Sphere Packing Lattice to Investigate the Quality of CMAC
Receptive Field Placement,” Masters Thesis, University of New Hampshire, 1994.

[67] Jin, Y., Pipe, T., and Winfield, A., "Stable neural network control for manipula
tors," International Joint Conference on Neural Networks, Nagoya, Jpn, Vol. 3, pp.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

101
2775-2778, 1993.

[68] Kano, H. and Takayama, K., “Learning Control o f Robotic Manipulators Based on
Neurological Model CMAC,” Proceedings of the 11th Triennial World Congress of
the International Federation of Automatic Control, Tallinn, USSR, p. 249-254,
Aug. 13-17, 1990.

[69] Kim, H, “CMAC-Based Adaptive Critic Self-Learning Control,” IEEE Trans, on
Neural Networks, vol. 2, no 5, p 530, 1991.

[70] Kohonen, T., Associative Memory: A System-Theoretical Approach, Berlin,
Springer Verlag, 1977.

[71] Kolez, A. and Allinson, N. M., “Realisation of a modified CMAC architecture
using reconfigurable logic devices.” 3rd Workshop on Neural Networks: Aca-
demic/Industrial/NASA/Defense, Auburn, AL, SPIE Vol. 1721, pp. 195-206,1993.

[72] Kraft, L. G., and Campagna, D. P., “A Comparison of CMAC Neural Network and
Traditional Adaptive Control Systems.” Proc. of the 1989 American Controls
Conf., Pittsburgh, Pa., May, 1989

[73] Kraft, L.G., An, Edgar, and Briggs, E., “Convergence Properties o f CMAC Neural
Network Controllers”, Proceedings of the 1991 American Controls Conference,
Boston, Mass, June, 1991.

[74] Kraft, L. G., and Campagna, D. P., “Comparison of Convergence Properties of
CMAC Neural Network and Traditional Adaptive Controllers.” Proc. 28th Conf. on
Decision and Control, pp. 1744-1745, Tampa, Fla., December, 1989b.

[75] Kraft, L. G., An, E., and Campagna, D. P., “Comparison of CMAC Controller
Weight Update Laws.” Proc. 28th Conf. on Decision and Control, pp. 1746-1747,
Tampa, Fla., December, 1989.

[76] Kraft, L. G., and Campagna, D. P., “A Summary Comparison o f CMAC Neural
Network and Traditional Adaptive Control Systems.” IEEE Control Systems Maga
zine, April, 1990.

[77] Kraft, L. G., and Campagna, D. P., “Comparison of CMAC Architectures for Neu
ral network Based control,” Proceedings of the 29th IEEE Conference on Decision
and control Part 6 (of 6), Honolulu, HI., Pp. 3267-3269, Dec. 5-7, 1990.

[78] Kraft, L. G., “Optimal Control Using CMAC Neural Networks.” In Neural Net
works and Intelligent Control, edited by D. A. White and D. A. Sofge, Van Nos-
trand-Reinhold, New York NY, Scheduled release in 1992.

[79] Kraft, L. G., Miller, W. T., and Dietz, D., “Development and Application of CMAC
Neural Network-Based Control”, In Handbook o f Intelligent Control: Neural,
Fuzzy and Adaptive Approaches, edited by D. A. White and D. A. Sofge, Van Nos-
trand-Reinhold, New York NY, 1992.

[80] Kraft, L.G., An, E. and Ho, S., “Stability Properties of CMAC Neural Networks,”
Proceedings of the American Control Conference, pp. 1586-1591, 1991.

[81] Kuc, T.-Y. and Nam, K., "CMAC based iterative learning control of robot manipu
lators," 28th. IEEE Conference on Decision and Control, Tampa, FL, Vol. 3, pp.
2613-2618, 1989.

[82] Lane, S., Handelman, D., and Gelfand, J. J., "Higher-order CMAC neural networks-
theory and practice," American Control Conference, Boston, MA, Vol. 2, pp. 1579-
1585, 1991.

[83] Lane, S.H., Handelman, D. A., and Gelfand, J. J., “Theory and Development of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

102
Higher-Order CMAC Neural Networks,” IEEE Control Systems Magazine, Vol.
12, pp. 23-30, April 2,1992

[84] Lee, J. and Kramer, B., "On-line fault monitoring and detection using an integrated
learning and reasoning approach," Japan-USA Symposium on Flexible Automa
tion, San Francisco, CA, Vol. 1, pp. 235-242, 1992.

[85] Lee, J. and Kramer, B. M., "Analysis of machine degradation using a neural net
work baded pattern discrimination model," Journal of Manufacturing Systems, Vol.
12, pp. 379-387, 1993

[86] Lin, Chun-Shin and Kim, Hyongsuk, “CMAC-Based Adaptive Critic Self-Learning
Control,” IEEE Transaction on Neural Networks, Vol. 2, No. 5, pp 530-533, Sep
tember 1991.

[87] Lin, C.-S. and Kim, H., "Selection of learning parameters for CMAC-based adap
tive critic learning," International Conference on Artificial Neural Networks in
Engineering, pp. 153-160, 1992.

[88] Lin, Y. and Song, S.-M., "Kinematic control and coordination of walking machine
motion using neural networks," 1991 IEEE International Joint Conference on Neu
ral Networks - IJCNN ’91, Singapore, Singapore, pp. 248-253, 1991.

[89] Linse, D.J. and Stengel, R. F., “Neural networks for Function Approximation in
Nonlinear Control,” Proceedings of the 1990 American control Conference, San
Diego, CA., pp 674-679, May 23-25, 1990.

[90] Marr, D., “A Theory of Cerebellar Cortex,” Journal of Physiology, v 202, p 437-
479, 1969.

[91] Marshall, A. M., Ellison, D., Samson, W. B., and Swanston, M. T., “Adapting
CMAC for Improved Adaptive Control,” acquired via ftp from the University of
Abertay Dundee.

[92] Marshall, A. M., Ellison, D., Samson, W. B., and Swanston, M. T.. “A Technique
for Adding Global Generalisation to CMAC,” acquired via ftp from the University
of Abertay Dundee.

[93] McCulloch, W. S. and Pitts, W. H., “A Logical Calculus of the Ideaslmminent in
Nervous Activity,” Bull. Math. Biophy, 5:115-133, 1943.

[94] Militzer, J. and Parks, P. C, “Convergence Properties in Learning Control Sys
tems.” Automation and Remote Control, 50 (1989), No. 2 Part 2, 254-286.

[95] Miller, W. T., “Real-Time Neural network Control of a Biped Walking Robot,”
Control Systems Magazine, February, 1994, pp 41-48.

[96] Miller, W. T., Latham, P. J., and Scalera, S. M., “Bipedal Gait Adaptation for
Walking with Dynamic Balance,” Proceedings of the 1991 American Controls
Conference, Boston, Mass., vol. 2, pp. 1603-1608, June, 1991

[97] Miller, W. T., and Aldrich, C. M., “Rapid Learning Using CMAC Neural Net
works: Real Time Control of an Unstable System.” Proceedings of the Fifth IEEE
International Symposium on Intelligent Control, pp. 465-470, Phil., PA, Sept. 5-7,
1990.

[98] Miller, W. T., and Hewes, R. P. “Real time experiments in neural network based
learning control during high speed, nonrepetitive robot operations”. Proceedings of
the Third IEEE International Symposium on Intelligent Control, Washington, D.C.,
August 24-26, 1988.

[99] Miller, W. T.: A Nonlinear Learning Controller for Robotic Manipulators. Proc of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

103

the SPIE: Intelligent Robots and Computer Vision 726:416-423. 1986.
[100] Miller, W. T.: A Learning Controller for Nonrepetitive Robotic Operations. Proc. of

the Workshop on Space Telerobotics, JPL Publication 87-13,11:273-281, Pasadena,
C A, January 19-22, 1987.

[101] Miller, W. T., “Sensor based control of robotic manipulators using a general learn
ing algorithm,” IEEE Journal of Robotics and Automation RA-3:157-165, 1987b.

[102] Miller, W. T., Glanz, F. H., Kraft, L. G., “Application of a general learning algo
rithm to the control of robotic manipulators,” International Journal of Robotics
Research 6.2:84-98. 1987.

[103] Miller, W. T., “Real time learned sensor processing and motor control for a robot
with vision,” First Annual Conference of the International Neural Network Society,
Boston, MA September 6-10, 1988, p. 347.

[104] Miller, W. T., “Real time application of neural networks for sensor-based control of
robots with vision,” IEEE Transactions on Systems, Man, and Cybernetics, Spe
cial Issue on Information Technology for Sensory-Based Robot Manipulators, vol.
19, pp. 825-831, July/August, 1989.

[105] Miller, W. T., Hewes, R. P., Glanz, F. H., and Kraft, L. G., “Real time dynamic
control of an industrial manipulator using a neural network based learning control
ler,” IEEE Journal of Robotics and Automation, vol. 6, pp. 1-9, 1990.

[106] Miller, W. T., An, E., Glanz, F. H., and Carter, M. J., “The Design of CMAC Neu
ral Networks for Control.” Proceedings o f the Sixth Yale Workshop on Adaptive
Systems, New Haven, CT, August 15-17, pp. 140-145, 1990.

[107] Miller, W. T., Glanz, F. H., and Kraft, L. G.: CMAC: An associative neural net
work alternative to backpropagation. Proceedings o f the IEEE, Special Issue on
Neural Networks, II, vol. 78, pp. 1561-1567, October, 1990.

[108] Miller, W. T., Sutton, R. S., and Werbos, P. J. (editors): Neural Networks for Con
trol. Cambridge, MA, MIT Press, December, 1990.

[109] Miller, W. T., “The CMAC Architecture and Its Implementations.” Presented at the
workshop “From Theory to Prototype: Developing Relationships Between Univer
sities and Industries in Eastern Europe and the United States,” sponsored by the
Digital Equipment Corporation, the University of New Hampshire, and the Techni
cal University o f Budapest, Budapest, Hungary, Sept. 4-6,1991.

[110] Miller, W. T., Box, B. A., Whitney, E. C., and Glynn, J. M., “Design and imple
mentation o f a high speed CMAC neural network using programmable logic cell
arrays.” In Advances in Neural Information Processing Systems 3, edited by R.P.
Lippmann, J.E. Moody, and D.S. Touretzky. Morgan Kaufmann, San Mateo, CA,
pp. 1022-1027, 1991.

[111] Miller, W. T., Kraft, L. G., and Glanz, F. H., "Real time comparison of neural net
work and traditional adaptive controllers," The Yale Conference on Adaptive Con
trol, May 20-22,1992, Yale University, New Haven, CT, pp. 99-104.

[112] Miller, W. T., "Real-time neural network control of a biped walking robot," IEEE
Transactions on Automatic Control, 1993.

[113] Miller, W. T., "Real-time control of a biped walking robot," World Conference on
Neural Networks, Portland, OR, pp. 1993.

[114] Miller, W. T., "Learning dynamic balance o f a biped walking robot," IEEE Interna
tional Conference on Neural Networks, Orlando, Florida, Vol. 5, pp. 2771-2776,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

104

1994.
[115] Miller, W. T., Arehart, K. F., Scalera, S. M., and Gresham, H. L., “On-Line Hand-

Printed Character Recognition Using CMAC Neural Networks,” Internal Report
1994.

[116] Miller, W. T., Arehart, K. F., Scalera, S. M., and Gresham, H. L., "On-line hand
printed character recognition using CMAC neural networks," World Conference on
Neural Networks, Portland, OR, July 12-15, 1993, pp. IV10-IV13.

[117] Minsky, Marvin L. and Papert, Seymour A., Perceptrons Expanded Edition, Cam
bridge, MA, MIT Press, 1969,1988.

[118] Moody, J. and Darken, C., "Fast learning in networks of locally-tuned processing
units," Neural Computation, Vol. 1, pp. 281-294, 1989.

[119] Moody, J. and Darken, C., "Learning with localized receptive fields," Connection-
ists Models Summer School, pp. 1988.

[120] Moody, J. and Darken, C., "Speedy alternatives to back propagation," International
Neural Network Society First Annual Meeting, Boston, MA, pp. 202, 1988.

[121] Motor, T. “Machine Printed Character Recognition Using Multiple CMAC Neural
Networks and Polar-Log Mapping for Feature Extraction,” Masters Thesis, Univer
sity of New Hampshire, 1995.

[122] Nelson, J., “Real-Time Control of a Robotic Pole Balancing System Using Comple
mentary Neural Network and Optimal Techniques,” Masters Thesis, University of
New Hampshire, 1994.

[123] Nie, J.and Linkens, D. A., "Fuzzified CMAC self-learning controller," Second
IEEE International Conference on Fuzzy Systems, San Francisco, CA, pp. 500-505,
1993.

[124] Norris, G., “Development and Control o f a 6 Degree-of-Freedom Biped Walking
Robot.” M.S. Thesis, ECE Dept., U. o f New Hampshire, Durham, NH, December,
1991.

[125] Ozawa, J., Hayashi, I., and Wakami, N., "Formulation of CMAC-fiizzy system,"
IEEE international Conference on Fuzzy Systems - Fuzz-IEEE, San Diego, CA, pp.
1179-1186, 1992.

[126] Park, H. and Cho, H. S., "CMAC-based learning controller for pressure tracking
control of hydro forming processes," Winter Annual Meeting of the American Soci
ety of Mechanical Engineers, Dallas, TX, pp. 101-106, 1990.

[127] Parks, P. C. and Militzer, J., “Convergence Properties of Associative Memory Stor
age For Learning Control Systems,” in IF AC Symposium on Adaptive Syst. in
Control and Signal Processing, Glasgow, UK, 1989.

[128] Parks, P. C. and Militzer, J., “Convergence Properties of Associative Memory Stor
age For Learning Control Systems,” in Automation and Remote Control, Plenum
Press, New York. vol. 50, No. 2,254-286, 1989.

[129] Parks, P. C. and Militzer, J., "Improved allocation of weights for associative mem
ory storage in learning control systems," IFAC Design Methods of Control Sys
tems, Zurich, Switzerland, pp. 507-512, 1991.

[130] Parks, P. C., Militzer, J. “A Comparison of Five Algorithms for the Training of
CMAC Memories for Learning Control Systems,” Automatica, Vol. 28, No. 5. pp
1027-1035, 1992.

[131] Peterson, J. K., "On-line estimation o f optimal control sequences," International

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

105

Conference on Artificial Neural Networks in Engineering, pp. 579-584, 1992.
[132] Peterson, J. K. and Shelton, R. O., "Use of CMAC neural architectures in obstacle

avoidance," 3rd. Workshop on Neural Networks: Academic/Industrial/NASA/
Defense, Alabama, AL, Vol. 1721, pp. 187-194, 1993.

[133] T. Poggio and F. Girosi, A Theory for Approximation and Learning, MIT AI Lab,
Rept. no. No. 1140, July, 1989.

[134] Ramesh, N. and Sethi, I. K., "Nearest neighbor classification using CMAC," IEEE
international Conference on Neural Networks, Orlando, Florida, Vol. 5, pp. 3061-
3066, 1994.

[135] Reay, D. S., Green, T. C., and Williams, B. W., “Application of Associative mem
ory Neural Networks to the Control of a Switched Reluctance Motor,” Proc.
IECON ‘93, Maui, HI, pp. 200-206, 1993.

[136] Rosenblatt, F., “The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain,” Psych, Rev. 65: 386-408, 1958.

[137] Rosenblatt, F., Principles o f Neurodynamics, New York, Spartan Books, 1962.
[138] Rudolph, F., “Locally Optimizing Neural Networks in Adaptive Robot Path Plan

ning.” Proc. IJCNN, Washington, D.C., Jan 15-19, 1990.
[139] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning Internal Represen

tations by Error Propagation,” in Parallel Distributed Processing, vol 1, pp. 318-
362, New York, American Institute of Physics, 1986.

[140] Sebald, A. V. and Schlenzig, J., "Minimax design of neural net controllers for
highly uncertain plants," IEEE Transactions on Neural Networks, Vol. 5, pp. 73-82,
1994.

[141] Sebald, A. V., Sebald, C. A., and Schlenzig, J., "Use of neural net control strategies
in difficult adaptive control problems closed loop control of drug infusion," 23rd.
Annual Asilomar Conference on Signals, Systems and Computers, Pacific Grove,
CA, Vol. 1, pp. 342-345, 1989.

[142] Shelton, R.O. and Peterson, J.K., “Controlling a Truck with an Adaptive Critic
CMAC Design,” Simulation, Vol. 58, no. 5, pp 319-326, May 5, 1992.

[143] Shelton, R. O. and Peterson, J. K., "Controlling a truck with an adaptive critic tem
poral difference CMAC design," 3rd. Workshop on Neural Networks: Academic/
Industrial/NASA/Defense, Auburn, AL, SPIE Vol. 1721, pp. 195-206, 1993.

[144] Simpson, G. and Reinhard, K., A new approach to event location, UNH - GRO-
Comptel Group, Rept. no. COM-TN-UNH-F70-044, June 9, 1988.

[145] Simpson, G. and Li, K., Artificial neural networks: solutions to problems in remote
sensing, Earth Observation Sciences, Ltd (EOS), Rept. no. EOS-92/00(16000)-RP-
001, March 1993

[146] Suwiijo, J., “A CMAC based hand-eye coordination system,” Masters Thesis, Uni
versity o f New Hampshire, 1992.

[147] Tolle, H., Parks, P. C., and Ersu, E., “Learning Control with Interpolating Memo
ries—General Ideas, Design layout, Theoretical Approaches and Practical Applica
tions,” International Journal of Control, vol 56, no 2, p 291, Aug 1992.

[148] Tolle, H. and Ersu, E., Neurocontrol. Berlin Heidelberg: Springer-Verlag, 1992.
[149] Verrall, D. and Simpson, G., Neural networks for meteosat cloud classification.

Earth Observation Sciences, Ltd. (EOS), Rept. no. EOS-92/078-RP-001, Oct. 1992.
[150] Wasser, D. J.,Hislop, D. W., and Johnson, R. N., "Evaluation of a neural network

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

106
for fault-tolerant, real-time, adaptive control," Images of the Twenty-first Century -
11 Annual International Conference of the IEEE Engineering in Medicine and Biol
ogy, Seattle, WA, pp. 2027-2028, 1989.

[151] Wen, R.-C., et al., "A CMAC neural network chip for color correction," IEEE Inter
national Conference on Neural Networks, Orlando, Florida, Vol. 3, pp. 1943-1948,
1994.

[152] Wemtges, H., "Delta rule-based neural networks for inverse kinematics," 1990
International Joint Conference on Neural Networks, San Diego, CA, Vol. 3, pp.
415-420, 1990.

[153] Wheeler, K., “Fault Tolerant Feedforward Control Using CMAC Neural Net
works.” M.S. Thesis, ECE Dept., Univ. of New Hampshire, Durham, NH, May,
1991.

[154] Widrow, B., and Hoff, M. E., “Adaptive Switching Circuits,” IRE Western Electric
Show and Convention Record, part 4, pp. 96-104, August, 23, 1960.

[155] Widrow, B. “Generalization and Information Storage in networks of Adaline ‘Neu
rons’,” In Self-organizing Systems. M. C. Jovitz, G. T. Jacobi, and G. Goldstein,
eds., Washington, D. C., Spartan Books, 435-461, 1962.

[156] Wilson, E. D. and LaCourse, J.R., “Analyzing Biological Signals with CMAC, A
Neural Network,” Proceedings of the 17th Annual IEEE Northeast Bioengineering
Conference, Hartford, CT, pp 3-4, April 4-5, 1991

[157] Wong, Y.-F., “CMAC Learning is Governed by a Single Parameter,” IEEE Conf.
on Neural Networks, San Francisco, CA, pp. 1439-1443, March, 1993.

[158] Wong, Y. and Sideris, A., “Learning Convergence in the Cerebellar Model Articu
lation Controller,” IEEE Transactions on Neural Networks, Vol 3, No. 1, pp 115-
121, January, 1992.

[159] Xu, L., Jiang, J.-P., and Zhu, J., "Supervised learning control of a nonlinear poly
merization reactor using the CMAC neural network for knowledge storage," IEE
Proceedings:Control Theory and Application, Vol. 141, pp. 33-38, 1994.

[160] Yao, S. and Bo, Z., "Learning convergence of CMAC in cyclic learning," Interna
tional Joint Conference on Neural Networks, Nagoya, Jpn, Vol. 3, pp. 2583-2586,
1993

[161] Yang, B., “A VLSI Implementation of the CMAC Neural Network.” MS Thesis,
University of New Hampshire, 1992.

[162] Yang, X. J.,"Experimental parameter studies for the CMAC neural network," MS
Thesis, University o f New Hampshire, 1993.

[163] Zhu, J. J., Xiao, W., “Case Studies on CMAC Neural Network in the Control of
Time-Varying Dynamical Systems,” ICANNE, 1992.
References and Bibliography (Non-CMAC related)

[164] Axelby, G. S. and Parks, P. C., “Lyapunov Centenary,” Automatica, vol 28, no 5, p
863, Sept. 1992

[165] Astrom, K. J., and Wittenmark, B., “On Self-tuning Regulators,” Automatica, vol 9,
pp 185-199, 1973.

[166] Astrom, K. J., Borrison, K. Ljung. L. and Wittenberg, B., “Theory and Applications
of Self-tuning Regulators,” Automatica, 1977.

[167] Astrom, K. J., and Wittenmark, B., Adaptive Control, Addison-Wesley, 1995.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

107

[168] Carroll, R. L. and Lindorff, D. P., “An Adaptive Observer for Single-Input Single-
Output Linear systems,” IEEE Transactions on Automatic Control, AC-18, No. 5,
October, 1973.

[169] Chen, C. T., Introduction to Linear System Theory, Hold, Rinehart and Winston,
Inc. New York, New York.

[170] Dudgeon, D. E. and Mersereau, R. M., Multidimensional Digital Signal Processing.
Prentice-Hall, Inc., 1984.

[171] Eykhoff, P. and Parks, P. C., “Identification and System Parameter Estimation:
Where Do We Stand Now?” Automatica, vol 26, no 1, p 3, Jan 1990.

[172] Joel Franklin, Matrix Theory, Prentice-Hall, 1968
[173] M. I. Friedlin and A. D. Wentzell, Random Perturbations o f Dynamical Systems,

New York: Springer-Verlag, 1984.
[174] G. C. Goodwin and D. Q. Mayne, “A parameter estimation perspective of continu-

ous-time model reference adaptive control,” Automatica, vol. 23, no 1, pp. 57-70,
1987.

[175] Kalman, R. E., “Design of a Self Optimizing Control System,” Transactions of the
ASME, 80, pp. 468-478, 1958.

[176] Kirk, D. E., Optimal Control Theory: An Introduction, Prentice-Hall, Englewood
Cliffs New Jersey, 1970.

[177] Kreisselmeier, G. “Adaptive Observers with Exponential Rate of convergence,”
IEEE Transactions on Automatic Control, Vol. AC-22, No. 1. February 1977, pp.
2- 8 .

[178] Kudva, P. and Narendra, K. S., “Synthesis of an Adaptive Observer Using
Liapunov’s Direct Method,” Becton Center Technical Report, CT-55, Yale Univer
sity, New Haven, CT, March, 1973.

[179] Kushner, H. J., “On the Convergence of Lion’s Identification Method with Random
inputs,” IEEE Transactions on Automatic Control, Vol. AC-15, No. 6. December
1970, pp. 652-654.

[180] Monopoli, R., “Liapunov’s Method for Adaptive Control-System Design,” corre
spondence re: Parks [186], in IEEE Trans, on Automatic Control, pp. 334-335,
June, 1967.

[181] Monopoli, R., “Model Reference Adaptive Control with Augmented Error Signal,”
IEEE Transactions on Automatic control, vol. AC-19, No. 5, October 1974, pp.
474-484.

[182] Moody, J. and C. Darken, “Learning with Localized Receptive Fields,” Yale Uni
versity Research Report YALEU/DCS/RR- 649, September, 1988.

[183] Narendra, K. S. and Annaswamy, A. M., Stable Adaptive Systems, Prentice Hall,
Englewood Cliffs, NJ, 1989.

[184] Narendra, K. S. and Parthasarathy, K, “Identification and Control of Dynamical
Systems Using Neural Networks,” IEEE Trans, on Neural Networks, Vol. 1, No. I,
pp 4-27, March, 1990.

[185] Oppenheim, A. V. and Schaferr, R. W ., Discrete-Time Signal Processing. Engle
wood Cliffs, N.J.: Prentice Hall, 1989.

[186] Parks, P. C., “Liapunov Redesign of Model Reference Adaptive Control System,”
IEEE Transactions on Automatic control, vol. AC-11, No. 3, July 1966

[187] Parthasarathy, K. and Narendra, K. S., “Stable adaptive control of a class of dis-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

108

crete-time nonlinear systems using radial basis neural networks.” Technical report,
Center for systems Science, Yale University, New Haven, CT, February 1991.

[188] Pereiras, A., Kim, C. H. and Lindorff, D. P., “Convergence Properties of Adaptive
Observers,” IEEE Conference on Decision and Control, 1974, pp. 295-300.

[189] Peterson, D. and Middleton, D., "Sampling and reconstruction o f wave-number
limited functions in N-dimensional Euclidean spaces," Information and Control,
Vol. 5, pp. 279-323,1962.

[190] Poggio, T., and Girosi, F., “Networks for Approximation and Learning.” Proc.
IEEE, Vol. 78 (9), pp. 1481- 1497, September 1990.

[191] Sanders, J. A. and Verhulst, F., Averaging Methods in Nonlinear Dynamical Sys
tems, New York: Springer-Verlag, 1985.

[192] Sontag, E. D., Mathematical Control Theory, Springer-Verlag, New York, 1989
[193] Werbos, P. J., “Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences”, Doctoral Dissertation, Harvard University, August 1974.
[194] Osbum, P. V., Whitaker, H. P., and Kezer, A, “New Developments in the Design of

Model Reference Adaptive Control Systems,”, in Proceedings of the IAS 29th
Annual Meeting, New York, NY, 1961.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IMAGE EVALUATION
TEST TARGET (Q A - 3)

150mm

I I W 1 B E . I n c
1653 East Main Street
Rochester. NY 14609 USA
Phone: 716/482-0300
Fax: 716/288-5989

0 1993. Applied Image. Inc.. Alt Rights Reserved

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 1998

	Stability and weight smoothing in CMAC neural networks
	David Paul Campagna
	Recommended Citation

	tmp.1525704849.pdf.0EDw4

