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a b s t r a c t

Combinatorial optimization problems arise in many disciplines, both in the basic sciences and in
applied fields such as engineering and economics. One of the most popular combinatorial optimization
methods is the Ant Colony Optimization (ACO) metaheuristic. Its parallel nature makes it especially
attractive for implementation and execution in High Performance Computing (HPC) environments.
Here we present a novel parallel ACO strategy making use of efficient asynchronous decentralized
cooperative mechanisms. This strategy seeks to fulfill two objectives: (i) acceleration of the com-
putations by performing the ants’ solution construction in parallel; (ii) convergence improvement
through the stimulation of the diversification in the search and the cooperation between different
colonies. The two main features of the proposal, decentralization and desynchronization, enable a
more effective and efficient response in environments where resources are highly coupled. Examples
of such infrastructures include both traditional HPC clusters, and also new distributed environments,
such as cloud infrastructures, or even local computer networks. The proposal has been evaluated using
the popular Traveling Salesman Problem (TSP), as a well-known NP-hard problem widely used in
the literature to test combinatorial optimization methods. An exhaustive evaluation has been carried
out using three medium and large size instances from the TSPLIB library, and the experiments show
encouraging results with superlinear speedups compared to the sequential algorithm (e.g. speedups
of 18 with 16 cores), and a very good scalability (experiments were performed with up to 384 cores
improving execution time even at that scale).

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Combinatorial optimization studies problems where the deci-
ion variables are discrete [1]. In the last decades, many research
fforts have been carried out to develop new algorithms capable
f outperforming existing ones, whose computational require-
ents to solve complex real-world problems are frequently pro-
ibitive. Metaheuristic methods inspired by nature have arisen as
obust tools to solve NP-hard optimization problems, exploiting
heir ability to calculate precise solutions in reasonable execution
imes [2].

The Ant Colony Optimization method (ACO) is a metaheuris-
ic which, inspired by the social behavior of ant colonies, has
een particularly successful. ACO applies concepts such as col-
aboration, adaptation, and self-organization, inspired by those
isplayed by ant communities, in order to efficiently solve chal-
enging optimization problems [3,4]. The pheromone-based com-
unication of biological ants is the basis of the ACO algorithm.
hile exploring the environment, real ants deposit pheromones
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568-4946/© 2021 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
that guide each other to resources. Similarly, artificial ants calcu-
late the quality of their solutions and update a pheromone matrix
that is used in subsequent iterations to find better solutions. For
the most part, the procedures followed by each artificial ant are
independent of other ants, but are guided by prior information
on the success of the entire colony.

Given the parallel nature of the ACO metaheuristic and its
variants, it is not surprising that many parallel proposals can be
found in the literature [5] with the aim of solving large instances
of difficult problems in competitive times. However, most of
those proposals focus on a single problem instead of showing a
methodology that can be applied to other problems. In addition,
most of the proposals are based on a single programming model,
using either a (1) fine-grained parallelization approach, usually
shared memory models where the loops that present indepen-
dent iterations can be carried out in parallel, or proposals that
use accelerator devices such as GPUs to process those parallel
loops; or a (2) coarse-grained parallelization approach, where
ants are divided into independent colonies that may or may not
collaborate with each other. Furthermore, those fine-grained and
coarse-grained strategies are frequently based on synchronous
communications, which take place at certain time intervals or
when a certain number of iterations have been completed. This
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.asoc.2021.108058
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.108058&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:patricia.gonzalez@udc.es
https://doi.org/10.1016/j.asoc.2021.108058
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


P. González, R.R. Osorio, X.C. Pardo et al. Applied Soft Computing 114 (2022) 108058

f
w

i
p
p
i
m
w
e
b
o
a

act limits their scalability, that is, its effectiveness and efficiency
hen the number of computational resources increases.
In this work we propose a novel hybrid parallel ACO algorithm,

ntroducing parallelism at different levels with the aim of im-
roving scalability. On the one hand, a coarse-grained strategy is
roposed with multiple colonies that execute the ACO algorithm
n isolation but collaborate with each other by exchanging infor-
ation. On the other hand, a fine-grained strategy is proposed
ithin each colony that allows the most expensive loops to be
xecuted in parallel. The combination of both strategies allows
etter use of computational resources, improving the scalability
f single proposals. The main overall features of the new parallel
pproach proposed are:

• a hybrid approach using both a multicolony parallelization
to increase diversity in the search by means of different
colonies, and a fine-grained parallelization to accelerate the
search process in each colony;
• a fully decentralized approach, which, compared to the more

popular master–slave approaches, enables optimal use of
available resources;
• an asynchronous communication protocol to exchange infor-

mation between colonies, avoiding idle processes waiting
for information exchanged from other colonies;
• information exchange driven by quality of the solution ob-

tained in each colony, rather than by a elapsed time, result-
ing in more efficient cooperation between colonies.

The proposal is not only especially well suited for taking full
advantage of traditional HPC infrastructures, but is also applicable
for other distributed environments, such as cloud infrastructures
or local computer networks, in which a decentralized and desyn-
chronized approach allows to minimize the impact of unrealiable
communications or high latencies.

Two of the benefits of the proposed parallel solution are es-
pecially relevant in solving large instances of difficult problems
in reasonable times: (1) a more efficient use of resources, since
there is no central master consuming resources, and there are no
idle times in the processes waiting for communications between
colonies or with the master; and (2) a fault-tolerant solution,
since a failure in a colony will not interrupt the work of the rest,
which can continue and finish the execution. Moreover, there is
no master that represents a single point of failure (SPOF) in the
execution.

Efficient resource utilization has a beneficial impact not only
on the application performance in terms of execution time and
consumed resources but also saves money [6], which is especially
relevant in the increasingly frequent scenario, both in academia
and industry, of provisioning HPC resources from public cloud
providers under an on-demand, pay-per-use service model. Fault
tolerance is not a feature that most algorithms take into account,
generally assuming that it will be provided by the infrastructure.
However, it is increasingly important for parallel applications,
not only because the failure rates of massively parallel systems,
especially in the exascale era, could prevent the completion of
long executions [7,8], but also because of the high cost of launch-
ing and executing again failed experiments, especially for the
computing facility. In the Blue Water Cray Supercomputer, the
electricity cost of not using any fault tolerance mechanism in
applications over a period of 261 days was estimated to be almost
half a million dollars [9]. Thus, the impact of failures on applica-
tions may be significant and having an algorithm that completes
its execution even in the presence of failures is valuable.

For the experimental assessment of the proposal, the pop-
ular Traveling Salesman Problem (TSP) has been used. TSP is
a paradigmatic NP-hard combinatorial optimization problem. It
plays a key role in ACO proposals because it was used to test the
2

first proposal of an ACO algorithm and it has been used as test
problem for most of the ACO algorithms proposed later. TSP was
chosen in this work for two main reasons. First, because it is a
widely-used class of hard problems that has become a standard
testbed for new algorithmic ideas. Second, because it is easy
to understand, so the behavior of the algorithm is not eclipsed
by other technicalities unrelated to the proposed parallelization
schemes. However, the techniques described here can be easily
applied to other classes of problems. Further, our framework can
be used as a template to guide other researchers interested in
further parallel extensions of the ACO metaheuristic.

The organization of this paper is as follows. Section 2 illus-
trates the significance of the proposal by means of a review of
recent applications in real-world case studies that would benefit
from the contributions of this work. Section 3 describes the
most popular approaches to parallelizing ACO metaheuristics. A
brief overview of the ACO metaheuristic for solving TSP prob-
lems is presented in Section 4. Section 5 describes the hybrid
MPI+OpenMP parallelization of the ACO algorithm proposed in
this paper. The performance of the proposed method is evaluated
in Section 6. Finally, Section 7 summarizes the main conclusions
of this work.

2. Applicability of the contribution

Since its proposal thirty years ago, ACO has been used in a
large number of applications. Most of them are NP-hard prob-
lems, for which computing time grows exponentially with in-
stance size. Therefore, parallel solutions are particularly appealing
for these problems in large scale domains. A recent review both
of the advances that have appeared over the years in the original
algorithm, and of the most notable applications, can be found
in [10]. Despite the relevance of the works mentioned there, all
of them were published before 2010.

To further illustrate the significance of the work presented
here, we add in this section a selected review of recent papers
that make use of ACO. This review focuses on works that use
real-world applications as testbeds. We find ACO applied to a
wide variety of problems. For instance, vehicle routing prob-
lems to solve important logistic activities within any city, such
as the collection of waste. Several works have recently tackled
this problem using ACO [16,23]. Robot path planning is another
application of ACO that can also be found in recent papers [24,
25]. Another important category is that of scheduling problems,
solved using ACO in a wide range of real-world applications, such
as the placement of Virtual Machines (VMs) in data centers [26,
27], or supply chains logistics [15,20], among others. ACO has
also been successfully applied in different challenging problems
that arise in bioinformatics, computational biology and compu-
tational chemistry applications. Among them, we highlight, due
to its significance, drug discovery [13,28]. In a recent overview
of the evolution of structure-based drug discovery techniques on
ligand–protein interactions [29], the use of HPC techniques is
emphasized as a mean to perform simulations on a scale that
otherwise would be infeasible. This list is not intended to be
exhaustive, but it is representative of a wide range of real-world
applications of the ACO algorithm that would profit from using
the parallel techniques proposed in this paper.

Papers that describe a parallel implementation of the ACO
algorithm and test it using real-world applications are summa-
rized in Table 1. Examples of the different types of parallelization
described in Section 5 and discussed throughout this paper have
been selected. The description of the parallelization, the testbed
used, and the most outstanding results reported, are briefed in the
table. Also, since combinations of artificial ants and local search
algorithms have become a method of choice for many approaches,
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able 1
elected recent publications that test parallel implementations of ACO with real-world applications.
Problem and application Reference Year LS Parallelization Testbed Results

TSP applied to
manufacturing time for a
CNC

Montiel et al. [11] 2012 ✔ Master–slave approach,
master in charge of
distribution of work and
updating of pheromones

Visual C#, run on Intel
Core i7 CPU 930
(2.80 GHz 6GB)

A 4x speedup with 6
slaves. Improvements in
the cutting time of
around 62% vs. a
commercial CAD/CAM
software solution

Feature selection applied
to text categorization

Meena et al. [12] 2012 ✔ Mapreduce
master–worker approach
to distribute the ants’
solution construction

Java and Hadoop, run on
6 nodes Intel Core2Duo
processor, 2 GB RAM

Parallel ACO reduces
time from 90 min to
15 min

Docking problem applied
to computer aided drug
design

Zaidman et al. [13] 2016 ✗ Single colony of 35 ants
performs each round in
parallel with a
synchronization between
them

DELL PowerEdge 2.8GHZ
computer with 20 cores
and 256 GB

Takes up to 24h to
design a peptide of 5-15
amino acids length

Permutation flow-shop
scheduling problem
subject to limited
machine availability

Huo et al. [14] 2016 ✔ Multicolony with
synchronization after a
certain number of
iterations

C++ with MPI, run in a
SGI cluster with up to
16 nodes

Maximum execution
time allowed for
sequential problems was
2400 s, 15.73x speedup
achieved

Job scheduling problem
applied to mining supply
chains

Thiruvady et al. [15] 2016 ✔ Shared-memory with
threads performing n
whole generations of
multiple ants in parallel

C++ with OpenMP, run
on a 4 hex-core Intel
Xeon processor:
1.87 GHz and 24MB

Parallel ACO reduces
time from 1h to 7 min

Vehicle routing problem
applied to waste
collection

Grakova et al. [16] 2018 ✔ Fine-grained
parallelization using one
single colony with 24 to
196 ants using from 2 to
24 threads

C# and .NET framework,
run on one HPC node:
2.5 GHz, 128 GB, 24
cores

Execution time not
reported. Speedups up to
6.89 with 24 threads
and 196 ants

Training neural networks
for predictions of turbine
engine vibration

ElSaid et al. [17] 2018 ✗ Master–slave with
asynchronous
communications. Master
in charge of the
pheromone updating

MPI with Python, run on
a HPC cluster with 31
nodes of 8 cores and
64GBs RAM per node

Each run for 200 ants
and 1000 iterations
using 208 cores took
approximately 4 days

Vehicle routing problem
applied to a bike sharing
system

Fan et al. [18] 2019 ✔ Multicolony approach
with synchronization on
every iteration to update
the pheromone matrix

R and Mahout, run on
an Intel Core i7-7500
CPU, 2.70 GHz, 8 GB

Sequential execution of
small problems lasts 300
s, a 3x speedup is
achieved with the
multicolony

Clustering problem
applied to home care
scheduling

Martin et al. [19] 2020 ✗ Multicolony with 64 ants
per colony synchronized
to update the
pheromone matrix

Google Cloud Platform
with Intel Xeon with 64
cores and 60 Gb of RAM
memory

For the largest problem
tested and 64 cores,
execution times exceed
2000 s

Scheduling problem for
supply chains in a
microchip producer

Dzalbs et al. [20] 2020 ✗ Two shared-memory
parallel algorithms: (1)
IAC, colonies distributed
to threads, (2) PA, ants
distributed to threads

C++ and OpenMP, run on
an AMD Ryzen
Threadripper 1950X (16
cores, 64GB), running at
3.85 GHz

PA outperforms IAC, a
25.4x speedup was
achieved with 32 threads

Scheduling problem
applied to cloud virtual
resources

Baniata et al. [21] 2021 ✗ Multicolony approach
with synchronization to
update the pheromone
matrix

Google Cloud Platform
using a C2-standard-8
instance (8 vCPUs,
3.8 GHz, 32 GB memory)

Time to allocate 3000
tasks into 30 virtual
resources exceeds 27 h
using 5 cores

Clustering problem
applied to fault diagnosis
of rolling bearing

Wan et al. [22] 2021 ✗ Mapreduce
master–worker approach
to distribute the ants’
solution construction

Scala and Spark, run on
a cluster with 1 master
node Intel Xeon E3-1225
v5 and 8 workers Intel
Core i7-9700k

Improvement in fault
diagnosis accuracy using
ACO: 5%. Parallel ACO
reduces execution time
from 592 min to 83 min
a column to indicate whether or not a local search is used in the
proposal is also included, labeled as LS.

Several of the works in Table 1 use fine-grained paralleliza-
ion [13,16,20], using a single colony and distributing the ants’ so-
ution construction between different threads. In all these cases,
he scalability of the proposal is limited by the overhead to
aunch new threads and synchronize them at the end of the
asks. Other works use the multicolony approach [14,18–21],
ut all of them use some kind of synchronization. In [18] the
olonies are synchronized on every iteration, so their perfor-
ance is poorer. In [14,21], synchronization is less frequent,
hich improves performance, however, during synchronization,
3

the global pheromone matrix is updated, which implies an over-
head in the communications. Master–slave approaches are pro-
posed in [11,12,17,22]. Most of them use synchronous communi-
cation protocols, such as those that are based on MapReduce [12,
22]. In [17] asynchronous communications between the slaves
and the master are performed, however, the master is in charge
of updating the pheromone matrix and of distributing new tasks
to the slaves, which implicitly implies a synchronization between
them. A decentralized and asynchronous scheme, like the one
proposed in this work, would improve the performance of all
these proposals.

Many of the papers referred above do not use high-performance
programming libraries or infrastructures, including some of the
works in Table 1. As the need for faster and more robust software
exists, we think that most researchers do not resort to parallel
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odes due to the difficulties in using HPC libraries and tools,
nd in accessing suitable infrastructures. However, from the 12
eferences in the table, two of them, [19,21], make use of the
oogle Cloud Platform. Both are very recent papers, showing
hat this is an upward trend that will promote access to HPC
nfrastructures for many researchers. We believe that the frame-
ork presented here, together with the discussions about the
ifferent parallel strategies, its experimental assessment, and the
ossibility of using the available code as a template, can help
uture researchers interested in using and developing parallel
olvers for hard combinatorial optimization problems.
. Parallel ACO metaheuristics

Since most of the metaheuristics are conceived to face with
arge and complex problems, their parallelization has attracted
lot of attention in recent decades. The ACO metaheuristic has
een one of those algorithms, favored by its intrinsically parallel
ature.
Many works proposing parallel implementations of the ACO

etaheuristic can be found in the literature. To organize them in
his section we will follow the taxonomy proposed in [5], that
ategorizes the parallel implementation of ACO in:

• Master–slave model: with proposals that use a master pro-
cess to manage the global information (pheromone matrix,
best-so-far solution, etc.) and control the group of slaves
that carry out the parallel tasks. This category includes three
different models regarding the granularity of the parallel
tasks: coarse-grained, medium-grained and fine-grained mod-
els.
• Cellular model: where a single colony is structured in small

neighborhoods placed in a toroidal grid. Each cell has a local
pheromone matrix and communicates only with its close
neighbors using a diffusion model.
• Parallel independent runs model: where several sequential

ACOs concurrently run on a set of processes in a completely
independent way, without communications between them.
• Multicolony model: where several colonies explore the search

space isolately but including cooperation steps where infor-
mation is exchanged among colonies.
• Hybrid models: with proposals that feature characteristics

from several of the previous parallel models.

The vast majority of the proposals are within the master–slave
model classification. Most of these proposals use a coarse-grained
pattern [30–34]. They are usually based on the distribution of the
ants of a single colony among the available processors (slaves).
Each slave performs a cycle or several cycles of the basic algo-
rithm updating a local pheromone matrix, and with a certain
frequency (elapsed time or number of iterations) a synchroniza-
tion is carried out through the master, that manages the global
information, such as the global pheromone trials. However, some
solutions that implement a master–slave coarse-grained model
have also tested partial asynchronous implementations [35–37],
demonstrating their superiority over synchronous ones that in-
volve waits on the slaves that slow down the algorithm. Recently,
models for CPU-based SIMD architecture have been also investi-
gated in [38]. This work demonstrates that simple vectorization
strategy does not fit well on SIMD CPUs. Thus, in order to fully
exploit vector-level parallelism, a variant of the algorithm based
on vectors is proposed showing competitive results.

Few solutions follow a medium-grained or a fine-grained
master–slave model, probably due to the fact that this model
is not conceptually simple and is more difficult to implement
than coarse-grained ones. The medium-grained model follows
a divide-and-conquer approach, based on the decomposition of
the problem into pieces that are distributed among the slaves
4

that search for partial solutions for each piece and send them to
the master who builds the complete solution. Some examples of
medium-grained master–slave proposals are [39,40].

The fine-grained model distributes small tasks among the
slaves while the master is in charge of carrying out the update of
the global information and control the progress of the algorithm.
The first solutions of this type showed very poor performance re-
sults due to the high frequency of communications [41]. However,
more recently this model has been used in shared memory im-
plementations [31,42,43] where critical regions are used to avoid
the continuous updating of shared information and restricting it
to certain and not so frequent synchronization stages, showing
encouraging results.

The cellular model, which is a popular method for parallel
evolutionary algorithms, has hardly any presence among the ACO
parallel proposals. The best known works are those of Pedemonte
and Cancela [44] that show good results in terms of computa-
tional efficiency, but a degradation of the quality of the solution
compared to the sequential implementation.

The parallel independent runs model follows an embarrass-
ingly parallel strategy, where each processor executes a sequen-
tial ACO within a colony of ants, with no communication between
processes/colonies. Comparing this model with other multicolony
approaches, it has been found that it shows up as a competitive
approach, because although generally the models that involve
communications between the colonies find better solutions, the
embarrassingly parallel models may sometimes achieve better
efficiency [45–48].

One of the most widely adopted model of parallel ACO im-
plementation has been the multicolony model. This model is
based on executing sequential ACO algorithms in different pro-
cessors/colonies but incorporating some mechanism of cooper-
ation between them, which normally obtain better results than
the sequential algorithm. The differences between the various
proposals focus in features such as the frequency with which
communications are carried out between the colonies, which is
usually a function of the elapsed time; the topology used for
communications, such as star, hypercube, unidirectional ring, etc.
(specially applied to traditional HPC supercomputers); and the
information exchanged, which can be the pheromone matrix or
solely the best solutions found.

Michel and Middendorf [49,50] were the first to introduce
a multicolony model that has afterwards inspired many other
authors [36,51–53]. One of the limitations of this model is the
use of synchronous communications that limits the scalability
of the proposal. Variants that use asynchronous communications
and/or adjust the frequency of information exchanging can also
be found [54–56]. All of these studies confirm that a trade-off
between exploration within each colony and cooperation through
information exchanging is desirable to achieve accurate results
and performance.

Finally, there have also been a few proposals for parallel
hybrid ACOs, which combine features of more than one of the
previous parallel models. Some examples in this category are [42,
57–59].

Both the works referenced above, and the one proposed in
this paper, are focused on traditional parallel computing environ-
ments, such as multicore multinode computers. In recent years,
new types of hardware offering large amounts of parallel pro-
cessing power are available. Among them, the graphics processing
units (GPU) are the ones that attract most attention, also in the
field of ACO metaheuristics [60–64]. These proposals can also
be framed in one of the previous classifications. More recently,
proposals that use new distributed programming paradigms, such
as MapReduce or Spark, are also arising [65–68]. However, there
is still room for new proposals in this topic.
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Algorithm 1: Pseudocode of the Ant Colony Optimization
etaheuristic

1 Set parameters
2 Initialize pheromone trails
3 while termination condition not met do
4 ConstructAntsSolutions
5 LocalSearch
6 UpdatePheromones

The implementation we propose in this work is initially de-
igned to maximize efficiency in traditional HPC infrastructures
uch as multicore clusters. However, as it features decentraliza-
ion and asynchronous communication protocol, this proposal is
lso suitable for cloud environments or local computer networks,
here communications between nodes may not be reliable, or

atency be too high.

. Ant Colony Optimization for the TSP problem

Ant Colony Optimization (ACO) is a metaheuristic in which
colony of ants cooperates in finding good solutions to difficult
ptimization problems. An artificial ant in ACO is a stochastic
rocedure that gradually builds a solution by adding appropriate
lements to the solution under construction. Thus, the ACO meta-
euristic can be applied to combinatorial optimization problems
or which a constructive heuristic can be defined.

The Traveling Salesman Problem (TSP) is one of such problems,
hat consists in finding the shortest possible round trip through
given set of cities. It can be represented by a graph G =

N, A) with N the set of nodes/cities and A the set of arcs fully
onnecting the nodes. A weight dij is assigned to each arc (i, j) ∈ A,
representing the distance between cities i and j. The TSP problem
tries to find a minimum length Hamiltonian circuit of the graph,
where a Hamiltonian circuit is a closed tour visiting each node of
the graph only once.

Algorithm 1 shows the basic pseudocode of most ACO al-
gorithms, that consists of three main procedures: Construc-
tAntsSolutions, LocalSearch, and UpdatePheromones.
ConstructAntsSolutions manages a colony of artificial ants
that incrementally build solutions to the optimization problem by
means of stochastic local decisions based on pheromone trails and
heuristic information. Then, a LocalSearch procedure improves
he ants’ tours with some optional local search algorithm. And fi-
ally, the UpdatePheromone procedure modifies the pheromone

trails based both on the evaluation of the new solutions and on a
pheromone evaporation mechanism.

A large number of extensions of this basic ACO algorithm can
be found in the literature. They can be classified into two large
groups. A first group consists of proposals that maintain the same
solution construction procedure, and introduce the differences
with the basic algorithm in the management of pheromone trails
and the way in which the pheromone update is carried out. A
second group comprises the proposals that modify the way of
construction of the solutions, as well as those that more deeply
modify the structure of the basic algorithm or its features. The
parallel proposal presented in this work is valid and has been
tested with algorithms from the first group, although the general
ideas expressed here could easily be extended to algorithms from
the second group as well.

In the rest of this section the three basic procedures of the
ACO metaheuristic, used as a basis in the parallel implementation
proposed in this work, are described in depth for its use in solving

the TSP problem. τ

5

Fig. 1. Applying 3-opt local search: reconnection possibilities in a tour deleting
3 edges.

4.1. Ants’ solutions

Each individual ant in the colony is randomly assigned to a
city from where it travels to each new city until all cities are
visited. By returning to the starting city it forms a Hamiltonian
circuit. To decide the new city to visit, the artificial ant k applies
he following probabilistic transition rule that depends both on
heromone and heuristic values:

k
ij =

[τij]
α
[ηij]

β∑
u∈Nk

i
[τiu]α[ηiu]

β
(1)

here, Nk
i is the set of cities not visited yet by the ant k, τij

epresents the desirability of visiting city j just after city i, given
y the pheromone trails, and ηij is the heuristic information.
hen solving TSP problems, ηij is usually set to the inverse of the
istance dij between the cities. Parameters α and β are key in the
olution construction. Parameter α sets the amount of pheromone
n the edges that would vanish in every iteration. Parameter β

ets the relative significance of pheromone versus heuristic value.

.2. Local search

The ACO basic pseudocode includes the possibility of applying
local search routine, once ants have completed their solu-

ion construction. The coupling of solution construction with
ocal search achieves a good trade-off between exploration and
xploitation, which is at the core of modern metaheuristics [69].
Among the most popular local search procedures coupled with

CO algorithms, the one used in the implementation of the paral-
el proposal presented here was the so-called 3-opt. Basically, the
-opt local search deletes three edges in a tour, breaking it into
hree paths, and then reconnects these paths in the other possible
ays to select the best one. The 3-opt goes on applying the
rocedure until improvements cannot be found and the tour is
-optimal. Fig. 1 shows the 8 different reconnection possibilities
eleting 3 edges.

.3. Update pheromones

In this procedure the pheromone trails are modified, increas-
ng their values when ants deposit pheromone on promising tours
o guide other ants in constructing new solutions, or decreasing
heir values due to pheromone evaporation to avoid unlimited
ccumulation of pheromone trails and also to allow bad choices
o be forgotten.

The evaporation process prevents the algorithm from prema-
ure convergence to suboptimal regions and from getting stuck
n a local optimum, by decreasing τ by a constant rate ρ (the
heromone evaporation rate):
ij ← (1− ρ)τij (2)
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Then, ants deposit pheromone on the arcs they have crossed
in their tour:

τij ← τij +

m∑
k=1

∆τ k
ij (3)

where m is the number of ants and ∆τ k
ij is the amount of

pheromone ant k deposits on the arcs it has visited, defined as:

∆τ k
ij =

{
1/Ck, if arc(i, j) belongs to T k

0, otherwise (4)

where Ck is the length of the tour T k constructed by ant k.
As shown in the probabilistic transition rule, the possibility for

an ant to visit a city j just after i increases with the pheromone
trail. Thus, it is in the implementation of this procedure that many
of the variants of the ACO algorithm differ.

5. Hybrid parallelization of the ACO metaheuristic

The parallelization of the ACO metaheuristic aims to achieve
the following objectives [70,71]: (1) speed up the calculations, (2)
increase the size of the problems that can be solved, and/or (3)
attempt a deeper exploration of the solution space. Thus, the cou-
pling of a multicolony proposal and a fine-grained parallelization
in each single colony shows up as an appealing solution, as it can
help to address these objectives simultaneously.

In addition, today’s HPC systems include groups of multicore
nodes that can benefit from the use of a hybrid programming
model, in which a message passing model, such as MPI (Mes-
sage Passing Interface), is used for inter-node communication
while a shared memory programming model, such as OpenMP, is
used intra-node. Though hybrid programming requires an effort
from application developers, this model offers several advantages
such as reducing the communication needs and memory con-
sumption, as well as improving load balancing and numerical
convergence [72].

Parallel strategies have to focus both on the efficient use
of computational resources, leading towards scalable solutions,
and on fault tolerance, which allows the completion of the task
despite the presence of failures in part of the resources. In this
paper we present a decentralized and desynchronized hybrid
MPI + OpenMP parallel implementation of the ACO metaheuristic
designed to address these goals.

The implementation of the sequential ACO upon which we
have built our parallel solution is the one provided by Thomas
Stützle in http://www.aco-metaheuristic.org/aco-code.
This framework has been selected because it provides an im-
plementation of several ACO algorithms under a single high-
performance skeleton that allows us to develop a general pro-
posal that we can easily reuse and test with different variants.

In the following subsections we describe in detail the imple-
mentation of the parallel proposal, both at the multicolony (MPI)
level and at the fine-grained (OpenMP) level in each colony.

5.1. Multicolony parallelization

The multicolony parallelization proposed is based on the coop-
eration between parallel processes. When designing cooperative
parallel metaheuristics some key issues have to be addressed,
such as what information is exchanged, which processes are
involved in the communication process, when and how the in-
formation exchange takes place, and how the information re-
ceived from other colonies is used. The solution to these issues
may impact significantly the efficiency and efficacy of the par-
allel proposal. For instance, too many synchronizations between

processes can lead to too many idle times and poorly scalable

6

solutions. A low frequency in communications can lead to poor
collaboration schemes between colonies and a low efficiency of
the parallel approach, while a too high frequency could lead to
early convergence towards regions with local minima.

Algorithm 2 shows a basic pseudocode for the proposed mul-
ticolony parallelization. Regarding what information should be
exchanged, most of the parallel ACO proposals that can be found
in the literature follow one or both of the following approaches:
(1) exchange information about the pheromone matrix (usually
the entire matrix), and/or (2) exchange the best routes found in
the different colonies. This information is used to update the local
pheromone matrix. Based on the experience during the tests car-
ried out in this work, exchanging the complete pheromone matrix
produces encouraging results for small problems. This happens
both in quality and in execution time, since the close cooperation
between colonies accelerates the convergence to the optimal
solution and, at the same time, the size of the matrix is not
excessively large to make the cost of communications skyrocket.
However, for large problems, the convergence results demon-
strate that the exchange and combination of the pheromone
matrices between colonies results in a loss of diversity that fre-
quently leads to premature convergence and stagnation at local
minima. Furthermore, the communications when the pheromone
matrix is very large affect the efficiency of the parallel code, and
there is also the problem of deciding the frequency of these com-
munications. Therefore, in the implementation presented in this
work, the exchange of information among cooperating colonies
is driven by the quality of the solutions obtained. New best tours
found so far in each colony are spread to the rest of the colonies.
Each colony has a promising-tour communication buffer to
asynchronously receive tours from the rest of the colonies, as
well as a global-best-tour-so-far to track the best tour
found so far among all the colonies. A new promising-tour
substitutes the global-best-tour-so-far when the former
outperforms the latter. Restricting the exchange of information
to a single global best tour allows each colony to evolve on its
own pheromone matrix while also benefiting from promising
solutions from other colonies as they arrive.

The communication protocol used in our approach is designed
to prevent processes from blocking waiting for messages that
have not arrived during a cycle of the ACO algorithm, allowing the
execution to progress in the colonies, whether or not they have
received new information. Both the emission and the reception
of the messages are performed using non-blocking asynchronous
operations (MPI_ISend(), MPI_IRecv(), MPI_Test()), allow-
ing the overlap of communications and computations and avoid-
ing synchronization steps that harm the efficiency of the parallel
approach.

5.2. Fine-grained parallelization in each colony

The most time-consuming task in the basic ACO algorithm
described in Section 4 is usually the LocalSearch procedure.
Among the ACO algorithms implemented in the framework, we
report in Section 6 results for Elitist Ant System (EAS). In these
tests 70% of the execution time to solve the pr2392.tsp in-
stance from TSPLIB [73] is spent in the LocalSearch procedure,
ollowed by the ConstructAntsSolutions procedure (21% of
he execution time). The UpdatePheromone procedure repre-
ents less than 10% of the execution time in all the experiments
eported in this work. Fortunately, both the LocalSearch proce-
ure and the ConstructAntsSolutions can be straightforward
arallelized since they consist of an iterative loop in which every
teration is independent from the rest. The procedure to update
heromone trails, on the contrary, has dependencies between
ifferent iterations of its loop, since all the ants contribute to a

http://www.aco-metaheuristic.org/aco-code
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Algorithm 2: Multicolony parallelization proposed
// Initialize MPI environment

1 MPI_Init
2 Initialize colony parameters
3 Initialize colony pheromone trails
// Prepare a reception buffer for asynchronous

communications
4 MPI_IRecv(promising-tour,request)
5 while termination condition not met do
6 ConstructAntsSolutions
7 LocalSearch

// When new local best tour is found, send it
asynchronously

8 if local-best-tour-so-far < global-best-tour-so-far then
9 MPI_ISend(local-best-tour-so-far)

10 UpdatePheromones
// Every cycle check the reception of foreign promising

tours
11 repeat

// MPI check asynchronous reception
12 MPI_Test(request, recvflag)
13 if recvflag then
14 if promising-tour < global-best-tour-so-far then
15 global-best-tour-so-far = promising-tour
16 UpdatePheromone_WithBestTour(global-

best-tour-so-far)

// Prepare a new reception buffer for next
receptions

17 MPI_IRecv(promising-tour,request)

18 until recvflag

global shared pheromone matrix. Thus, the UpdatePheromone
rocedure remains sequential in the fine-grained parallelization
roposed for each colony.
The ConstructAntsSolutions procedure consists of the

ollowing phases: (1) the ants’ memory is emptied, by making
ll cities unvisited; (2) the first city of each tour is selected ran-
omly; (3) each ant constructs a complete tour applying the ACO
ecision rule explained in Section 4; and (4) the ants move back
o the initial city and the tour length is computed. Each of these
hases can be performed in parallel for each ant, because they do
ot update the pheromone trails at construction time, thus, there
re no communication between them during the construction of
he solution. To increase the performance of the parallelization,
ll the parallel tasks in the construction of an ant’s tour have been
rouped in a single parallel loop. Algorithm 3 shows the basic
seudocode. Every time the solution construction procedure is
nvoked, a parallel loop is defined using the OpenMP library. The
xecution of the parallel loop is based on the fork-join program-
ing model. In the parallel section, the running thread creates a
roup of threads, so that the ants in the colony are divided among
he threads of the group and each tour construction is performed
n parallel. At the end of the parallel loop, the different threads are
ynchronized and finally joined again into only one thread. Due
o this synchronization, load imbalance in the parallel loop can
ause significant delays. Though in the basic ACO implementation
he time to construct each solution is more or less independent of
he ant k, in other extensions of the ACO algorithm this can vary.
hus, a guided schedule clause is proposed so that the assignment
f iterations to threads is dynamic. Iterations are handed out to
hreads in runtime, as they complete their previously assigned
asks.
7

Algorithm 3: Parallel ConstructAntsSolutions proce-
dure
1 $$ omp parallel (guided schedule)
2 for k = 1 to number_of_ants do
3 ClearVisitedCities
4 step = 1
5 SelectRandomlyFirstCity
6 while step < number_of_cities do
7 ApplyACODecisionRuleToSelectNextCity
8 step++
9 CloseCircuitWithFirstCity

10 ComputeTourLength

Algorithm 4: Parallel LocalSearch procedure
1 $$ omp parallel (guided schedule)
2 for k = 1 to number_of_ants do
3 3-opt
4 ComputeTourLength

Table 2
Benchmarks used in the experiments reported in this section.
Problem instance Number of Cities Best Known Solution

pr2392.tsp 2392 378032
rl5934.tsp 5934 556045
brd14051.tsp 14051 469385

There exist in the literature different approaches to apply the
local search to the tour solutions found by the colony. In the
implementation used in this work, the local search is applied to
all the solutions found in each cycle. Therefore, like the procedure
for construction, the local search consists of a for loop that runs
through each ant k, improving its tour solution, without com-
munications with the rest of the colony. The loop, therefore, is
directly parallelizable, as shown in Algorithm 4.

6. Experimental evaluation

In this section an exhaustive experimental evaluation of the
proposed parallel strategy is presented. The aim of this work is
not to study the efficacy of the ACO metaheuristic and its variants,
nor the effect of the selection of parameters such as α, β or ρ on
the performance of the algorithm. As discussed in Section 5, the
parallel proposal presented in this work can be directly applied to
several of the ACO algorithms in the literature and it is profitable
to the same extent regardless of the ACO parameters used for
the search. Therefore, in all the experiments reported in this
section, the same variant of the ACO algorithm and the same
execution parameters will be used as a basis, in order to make
a fair comparison between the different parallel versions that are
analyzed. In all cases, the Elistist Ant System (EAS) variant will
be used, as well as the default parameters α = 1.00, β = 2.00,
ρ = 0.5 parameters, and the number of ants m = 25.

Benchmarks from the TSPLIB library [73] have been used to
carry out the experiments. We report here results for three differ-
ent popular instances summarized in Table 2. The results reported
in this section come from experiments that were performed at the
Galicia Supercomputing Center (CESGA) using the FinisTerrae-II
supercomputer. Each FinisTerrae-II node is composed of two Intel
Haswell E5-2680v3 CPUs running at 2.50 GHz, with 12 cores per
processor (24 cores per node), and 128 GB of RAM. The nodes are
connected using an InfiniBand FDR 56 Gbps interconnect using a
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at-tree topology. Due to the stochastic behavior of the algorithm,
00 runs are performed independently for each experiment, and
he distribution of the data is taken into account in the evaluation
nd discussion of the results.
To comprehensively evaluate the performance of parallel pro-

osals, tests are performed from different perspectives. Most of
he tests were performed with a quality stopping criterion. An
bjective value is pre-established and the effort needed to reach
he target solution is evaluated. These experiments have, as a
andicap, the long execution times required in some cases to
omplete the runs, especially if we attempt to compare with
equential executions. For this reason, other tests were carried
ut using a combined stopping criterion, establishing a target
alue and a predefined effort. The execution finishes when either
f the two criteria is met.

.1. Performance evaluation of the multicolony approach

The cooperation between colonies changes the systemic prop-
rties of the sequential algorithm and, therefore, its macroscopic
ehavior. Thus, in the first set of experiments the fine-grained
arallelization was disabled, since it does not alter the conver-
ence properties of the algorithm, in order to evaluate solely the
mpact of the multicolony approach.

Comparing the results of different parallel strategies proposed
n the literature is a hard task because the results reported in
he original works are seldom directly comparable. Factors such
s the optimization of the sequential algorithm; the parameters
ettings chosen; the programming language; the infrastructure
here the codes run, among others, impact performance and do
ot allow for a fair comparison. For this reason, in this work
e have implemented different popular parallelization strategies

rom the literature starting from a single sequential code, in order
o fairly compare the performance among them. Note again that
he aim of this work is not the study of the ACO algorithm or
ts variants, but the parallelization strategies and their impact. In
he following experiments the performance of the ACO algorithm
roposed (asyn-ACO) is compared with the sequential version
f the ACO algorithm (seq-ACO) and with two different paral-
el versions, namely: an embarrassingly-parallel non cooperative
CO (emb-ACO) and a synchronous cooperative version (syn-
CO). The emb-ACO consists of nc independent ACO runs (being
c the number of available cores) performed in parallel without
ooperation between them and reporting the best execution time
nd/or best value of the nc runs. On its turn, the synchronous
arallel version consists of exchanging the best solutions among
olonies every 100 iterations.
The first experiment carried out uses an objective value as

topping criterion (VTR: value-to-reach), thus allowing to study
he speedup of the methods to reach the target value. Table 3
shows, for each method, the average of the number of iterations
performed in each experiment, the average and standard devi-
ation of execution time (in seconds), and the speedup achieved
versus the sequential algorithm (computed as sp = Tseq/Tpar ).
As it can be seen, the proposed asyn-ACO outperforms both
the embarrasingly parallel method and the synchronous strat-
egy. In addition, it should be noted that the achieved speedups
are superlinear, that is, they exceed the number of cores used.
This is because, as already mentioned, the multicolony approach
changes the properties of the sequential algorithm. Specifically,
having different colonies attempts a deeper exploration of the
solution space, and with the cooperation between the colonies
the algorithm can get out of the local minima more easily.

Although the reported speedup is calculated from the av-
erage execution times of the 100 runs carried out per experi-
ment, the large dispersion of the results makes difficult to assess
8

Table 3
Results using as stopping criterion a value to reach (VTR) of 387500, and
comparing execution times for the pr2392.tsp instance problem.
Colonies Method Iterations Time (s) Speedup

1 seq-ACO 2949 146.36± 165.88 –

2

emb-ACO 5701 148.90± 150.14 0.98
syn-ACO 2086 54.37± 50.14 2.69
asyn-ACO 1821 47.45± 56.76 3.08

4

emb-ACO 11957 155.89± 167.89 0.94
syn-ACO 1574 20.97± 13.30 6.98
asyn-ACO 1402 18.41± 13.97 7.95

8

emb-ACO 19935 141.95± 133.90 1.03
syn-ACO 2339 16.96± 10.78 8.63
asyn-ACO 1909 14.00± 12.21 10.45

16

emb-ACO 38707 143.19± 133.97 1.02
syn-ACO 2816 11.16± 7.46 13.12
asyn-ACO 2122 8.25± 4.20 17.74

Fig. 2. Cumulative probability of reaching the VTR versus elapsed time for the
pr2392.tsp instance problem.

Fig. 3. Best value over iteration for the first 200 iterations in the pr2392.tsp
instance problem. Comparing a synchronous strategy exchanging the pheromone
matrix or the best found tour in each colony every 10 iterations with the
asynchronous strategy.

the different strategies attending only to the speedup. To better
illustrate the behavior of the different parallel strategies, the
results obtained in the experiments in Table 3 are graphically
depicted in Fig. 2, where the cumulative probability versus ex-
ecution time is represented. It can be seen how the parallel
versions significantly reduce the execution time as the number
of colonies increases. Their curves also exhibit a steeper slope,
which graphically demonstrates the robustness of the parallel
algorithm compared to the sequential one. In addition, it can
also be seen how asynchronous versions outperform synchronous
versions in all cases.

One of the recent works that proposes a parallelization of the
ACO [37], studies the behavior of the algorithm in the first 200
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able 4
verage iteration times (s) for different parallel strategies in the pr2392.tsp
nstance problem.
Colonies Synchronous strategy Asynchronous

strategy

Pheromones Best tours

2 0.065 0.053 0.054
4 0.083 0.054 0.055
8 0.123 0.059 0.058
16 0.218 0.062 0.060

iterations. We have carried out similar experiments to be able to
graphically confirm the behavior of the different parallelization
strategies. Fig. 3 shows the best tour length achieved for the first
00 iterations, for two different synchronous strategies: one in
hich the exchanged information is the complete pheromone
atrix, and another one where it consists of the best tours found.

n both cases, a high exchange frequency has been chosen (every
0 iterations a communication between colonies is performed).
he convergence curve for the asynchronous strategy proposed
n this work, where the exchange of information is driven by the
uality of the solutions found and not by the time elapsed (or
he number of iterations), is also included in the graph. These
esults correspond to executions using 8 colonies. The figure
hows that better results (in terms of convergence) are obtained
y exchanging only the best tours (which will subsequently par-
icipate in the pheromones update) than by sharing the entire
atrix. In addition, exchanging the pheromone matrix has other
isadvantages, such as that the exchange has to take place at
redetermined times forcing at least partial synchronization pro-
ocols among the colonies; also the size of the exchanged message
an be huge for very large problems, even turning it unfeasible,
nd always penalizing performance. Table 4 shows the times per
teration calculated for the three strategies: synchronous sharing
pheromone matrix every 10 iterations, synchronous exchanging
est solutions every 10 iterations, and asynchronous exchanging
he best solutions as they are found. As it can be seen, the
ost of the solution where the complete pheromone matrix is
hared increases considerably with the number of colonies, and
n all cases it is larger than the overhead of the other strategies.
n the other hand, the synchronous and asynchronous strate-
ies that exchange best tours present similar results in terms
f iteration time. But, although for a small number of colonies
he synchronous one obtains slightly better results because the
synchronous version has a small overhead due to the continuous
hecks for the arriving of new messages in each iteration, as
he number of colonies increases the cost of the synchronous is
lightly larger. Besides, the results are similar because these TSP
roblems have an almost constant cost per iteration throughout
he entire execution. In other problems where the time per iter-
tion is not as balanced as in this one, the asynchronous strategy
as clear advantages over the synchronous one. This question is
riefly addressed at the end of Section 6.3, where the possibil-
ty of configuring different colonies with different parameters is
roposed.
Focusing on the synchronous strategy that exchanges the best

ours, Fig. 4 shows the impact of the information exchange fre-
uency in the convergence of the algorithm. The more frequently
he information is exchanged the better. However, frequent syn-
hronizations will harm the overall execution time.
Finally, Fig. 5 demonstrates the improvement in the asyn-ACO

roposal when the number of colonies increases.
Most of the papers that can be found in the literature, report

esults for experiments that combine stopping criterion using
uality and predefined effort. Thus, another experiment was car-

ied out using a predefined effort as stopping criterion along with t

9

Fig. 4. Best value over iteration for the first 200 iterations in the pr2392.tsp
instance problem. Comparing a synchronous strategy using 8 colonies and
different communication frequency (10, 50 and 100 iterations).

Fig. 5. Best value over iteration for the first 200 iterations in the pr2392.tsp
instance problem. Comparing results for asyn-ACO increasing the number of
colonies.

Table 5
Results using as stopping criterion a predefined effort (maximum time of 1000
s), reporting best, worst and average tour lengths, and comparing runs that
achieve a VTR = 387500 (%hits) for the pr2392.tsp instance problem.
Colonies Method Best Worst Average %hits

1 seq-ACO 385410 387657 386559± 443 0%

2
emb-ACO 385174 387238 386288± 367 4%
syn-ACO 384879 386556 385911± 433 20%
asyn-ACO 384669 387067 385959± 442 19%

4
emb-ACO 384791 386963 386088± 385 7%
syn-ACO 384114 386585 385654± 449 34%
asyn-ACO 384675 386376 385572± 401 45%

8
emb-ACO 385071 386593 385878± 331 14%
syn-ACO 384162 386123 385354± 424 72%
asyn-ACO 383427 386408 385369± 417 69%

16
emb-ACO 384176 386334 385650± 345 24%
syn-ACO 383546 386034 385169± 519 82%
asyn-ACO 383547 385958 385093± 416 93%

a VTR, and reporting the percentage of hits achieved for each
method. Table 5 shows, for each method, the best, the worst and
the average of final tour length in those runs, and the percentage
of hits.

To better illustrate the results of Table 5, Fig. 6 shows bean-
lots with the distribution of the achieved solutions, comparing
he synchronous and asynchronous solutions. As it can be seen,
he results achieved by both versions in these problems are
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Fig. 6. Beanplots for the results reported in Table 5.

imilar, since the cooperation strategy is also similar (exchanging
he best tours) and the time per iteration is almost constant,
hich keeps the colonies naturally synchronized. Nevertheless,
he asynchronous strategy has other benefits. On the one hand,
ooperation is more effective, since good solutions are shared
s soon as they are found, thus eliminating the need to intro-
uce the frequency of information exchange as an additional
arameter in the algorithm. Moreover, this feature would espe-
ially impact other problems where the colonies are not naturally
ynchronized. On the other hand, the decentralized and asyn-
hronous strategy makes the implementation fault-tolerant, since
he colonies will not wait for messages that have not yet arrived
rom neighboring colonies. Thus, delays in communications, or
ven permanent failures in nodes/colonies would not affect the
ompletion of the executions.
To demonstrate the benefit of the fault tolerance feature in

he proposed strategy we have carried out two additional exper-
ments injecting faults into executions using 4 initial colonies. In
ne of the experiments every 100 iterations a fault is injected
n a running colony until only one remains alive. In the second
xperiment a fault is injected only in one colony at iteration
00, while the rest of the colonies remain alive. Fig. 7 shows the
umulative probability curve versus execution time comparing
oth experiments with the sequential execution and with the
xecution of the fault-free asyn-ACO with 4 colonies. As it can
e seen, the results are impacted by the faults, being worse
han the fault-free execution, however, they still outperform the
equential execution. Note that not all runs performed in the
xperiments required more than 100 iterations to reach the VTR,
o they were not affected by fault injection.

.2. Performance evaluation of the fine-grained parallelization

The goal of the fine-grained parallelization is to perform the
onstruction of the solution for each ant using parallel threads,
hus, accelerating the execution without altering the properties of
he algorithm. As commented in Section 5, the OpenMP parallel
oops are located in the construction of the solution and the local
earch procedures. Fig. 8 shows the speedup obtained in these
rocedures isolated for the pr2392.tsp instance problem. As
t can be seen, the parallelization of the local search procedure
chieves a good performance, but the results for the construction
10
Fig. 7. Cumulative probability of reaching the VTR versus elapsed time. Com-
paring a sequential and 3 parallel asynchronous executions with 4 colonies: a
fault-free execution, an execution that experiments a fault in all the colonies
but one (3-faults), and an execution that experiments a fault in a single colony
(1-fault).

Fig. 8. Speedup of the OpenMP parallelization for the pr2392.tsp instance
problem. Results for the parallelization of the construction loop and local search
isolated and for the global iteration.

of the solutions are more limited. This is due to the overhead
associated with the creation and final synchronization of the
parallel threads. Note that for a single ant the construction of one
solution took less than 20 ms, while the local search took almost
50 ms. When the number of threads is small, more ants are
assigned to each thread, but as the number of threads increases,
the number of ants per thread is reduced to the lower bound of
one ant per thread. Whereas procedures with high computational
cost, such as local search, largely make up for that overhead,
lighter procedures do not.

The speedup for the global iteration is also shown in Fig. 8.
It stagnates over 8 threads and does not exceed a value of 4.
This complies with Amdahl’s law, which allows us to calculate
the maximum acceleration that we will achieve in a system if
we improve only a part of its execution. Given that 70% of the
execution takes place in the local search (which is the part that
clearly benefits from this parallelization), the maximum speedup
that, according to Amdahl’s law, we could reach would be 3.

6.3. Performance evaluation of the hybrid parallel method

To graphically illustrate the performance of the hybrid method,
Figs. 9 and 10 show, for the pr2392.tsp instance problem, the
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Fig. 9. Results of best tours encountered for a predefined effort of 1000 s, expressed as a percentage of the proximity to the optimal solution, for different
configurations of the number of colonies (MPI processes) and the number of OpenMP threads in each colony. Each entry is an average of 30 individual runs. Color
coded from worse in red, to best in green.
Fig. 10. Results of execution time needed to reach a VTR = 387500 for different configurations of the number of colonies (MPI processes) and the number of
OpenMP threads in each colony. Each entry is an average of 30 individual runs. Color coded from worse in red, to best in green.
Fig. 11. Efficiency attending to results in Fig. 10 computed as efficiency=time/#cores, where #cores includes all the cores reserved for each experiment in the
inisterrae-II. Color coded from worse in red, to best in green.
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esults obtained for different combinations of MPI colonies and
penMP threads both in an experiment with a predefined effort
Fig. 9), and in an experiment with quality stopping criterion
Fig. 10). At the sight of these results we can conclude that it is
ecessary to find a good balance between the number of colonies
n the coarse-grained parallelization and the number of threads
n the fine-grained strategy in order to maximize the efficiency
f the parallel algorithm. A popular metric in the HPC field is
fficiency (e), which is calculated as e=speedup/cores. To decide
hich combinations of MPI vs. OpenMP are the most advanta-
eous, both from a performance and computational efficiency
oint of view, it is necessary to take into account the total number
f cores allocated to each experiment. In our case, since the
inisterrae-II supercomputer allocates full nodes to users, this
eans that all the cores of a node (24) must be accounted for
ven if fewer are actually used. Fig. 11 shows the efficiency of
he results shown in Fig. 10 taking into account the total number
f nodes/cores reserved for each experiment, computed as

=
Timeseq

Timeparallel ∗ coresreserved
(5)

The performance results must be analyzed taking into account
both quality and execution time criteria, as well as efficiency.
11
In general terms, the choice would be to run a colony in each
computing node and as many threads as cores per node. However,
if the number of cores per node is large, and the work to be
distributed among the threads does not compensate for the use of
so many cores, as in this case, the number of threads per colony
should be reduced to locate more than one colony per node.
In view of the previous results, we can conclude that the best
combinations for these problems and the supercomputer that we
are using in this work is between 4 and 8 threads per colony
(which results in 3 to 6 colonies per node).

Table 6 shows results for problems pr2392.tsp, rl5934.tsp
nd brd14051.tsp tested using from 48 to 384 cores with
ifferent configurations of colonies and 8 threads per colony. The
topping criterion used was a predefined effort; and best, worst,
nd average distance tours are reported, as well as percentage
f hits that achieved a VTR. As it can be seen, the quality of the
olution continues to improve as the number of cores increases
nd the percentage of hits increases considerably even for high
umbers of processes, which demonstrates the good scalability
f the proposal.
Finally, it has already been commented that an interesting

pplication of combining multicolony strategy, an asynchronous
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Table 6
Results using a predefined effort of 1000 s as stopping criterion, and comparing execution times for the hybrid
proposal. All configurations use 8 threads per colony for the fine-grained parallelization except for the first
experiment that corresponds to the sequential execution. Different configurations are tested using different number
of colonies (cores/8) and nodes (cores/24).
Problem Cores Colonies Best Worst Average VTR %hits

1 1 385410 387657 385659± 443 384000 0%
48 6 384443 385567 384908± 301 384000 0%

pr2392.tsp 96 12 383634 385325 384531± 438 384000 13%
192 24 383740 385065 384382± 360 384000 17%
384 48 382878 384673 384017± 404 384000 50%

1 1 568474 572589 570858± 1104 568000 0%
48 6 567371 569832 568666± 682 568000 17%

rl5934.tsp 96 12 566952 569138 568227± 488 568000 33%
192 24 566811 568548 567941± 522 568000 60%
384 48 566210 568548 567499± 551 568000 87%

1 1 485722 486596 486226± 249 485400 0%
48 6 484896 485991 485598± 235 485400 17%

brd14051.tsp 96 12 484932 485788 485472± 234 485400 30%
192 24 485073 485764 485400± 174 485400 53%
384 48 484748 485549 485184± 221 485400 87%
o

Table 7
Configuration parameters for the heterogeneous multicolony
experiment reported in Table 8.
Colony α β ρ #ants

A 1 2 0.5 25
B 1 5 0.2 32
C 1 10 0.8 16
D 1 15 0.6 40

communication protocol, and sharing only the best found solu-
tions instead of the pheromone matrix, is to develop optimizers
where each colony uses different parameters, or even different
variants of the ACO. To demonstrate this point, as a proof of
concept, the largest problem (brd14051.tsp) has been executed
with 4 different variants of colonies each using a different pa-
rameter combination, specified in Table 7. The results obtained
re shown in Table 8, where it can be seen that they improve the
esults obtained with the homogeneous configuration used in the
xperiments reported in Table 6. Actually, the heterogeneous con-
iguration will not improve the results of the best homogeneous
onfiguration, but given that the appropriate values of the ACO
arameters for a new problem are not usually known in advance,
he execution in HPC environments with strategies such as the
ne presented in this work would allow to collaboratively explore
ifferent variants, taking advantage of the most successful ones.

. Conclusions

This paper presents a hybrid MPI+OpenMP parallel imple-
entation of the well-known Ant Colony Optimization (ACO)
etaheuristic. It combines multicolony parallelization, focused
n stimulating the diversification in the search and the coopera-
ion between different colonies, with fine-grained parallelization,
imed at accelerating the computation by means of performing
he construction of the solutions in parallel. This approach im-
roves the algorithm efficiency and leads to a better use of com-
utational resources through a balance between diversification
nd intensification.
The main contributions of this proposal are: (1) a completely

ecentralized approach, in contrast to the classical centralized
aster–slave approaches, which improves the efficient use of
vailable resources; (2) the exchange of information driven by
uality of the solutions, rather than by time elapsed or a fix
umber of iterations, in order to achieve a more effective cooper-
tion between colonies; and (3) an asynchronous communication
12
protocol between colonies, in order to avoid idle processes while
waiting for information exchanged from other colonies.

A comprehensive evaluation has been carried out using three
medium and large instances of the TSPLIB library, obtaining en-
couraging results. The main guidelines that can be extracted from
these experiments are:

• For large problems, or those that easily suffer from stag-
nation at local minima, it is better to prioritize the num-
ber of colonies over the number of threads per colony,
since in large problems stimulating diversification accel-
erates the convergence of problems and the cooperation
between colonies has demonstrated its effectiveness to get
out of local minima.
• The performance, taking the number of threads per colony

into consideration, is limited to the number of ants and the
execution time of the construction and evaluation of the
solution. Either a small number of ants, or an effortless prob-
lem where the construction and evaluation of the solution
were too fast, would cause the distribution of work between
the threads not to pay for the overhead of the fork-join
loops.

Therefore, it is important to reach a compromise between the
number of colonies and the number of threads per colony, being
convenient to use as many colonies as available computing nodes
and as many threads as cores per node, decreasing the number
of threads per colony to locate more than one colony per node
in case the number of cores per node was large enough and
diversification was favored over intensification.

The proposed implementation is initially designed to maxi-
mize efficiency in traditional HPC infrastructures such as mul-
ticore clusters. However, its key features, i.e. decentralization
and an asynchronous communication protocol, make the proposal
particularly suitable for cloud environments and local computer
networks, where communications between nodes may not be
reliable or latency be too high. Thus, a communication delay from
one colony (or even its absence, in case of failure) would not
cause the rest to stall, and the algorithm could continue until the
task was completed.

The proposal presented in this work lays the foundations for
future developments where the colonies can execute different
variants of the algorithm or with different parameters, coop-
erating with each other. Moreover, an adaptive method could
be developed that would allow colonies to self-reconfigure at
runtime based on the best tours found by other colonies with
different configurations.

The source code is made publicly available at DOI: https://doi.
rg/10.5281/zenodo.5711353.

https://doi.org/10.5281/zenodo.5711353
https://doi.org/10.5281/zenodo.5711353
https://doi.org/10.5281/zenodo.5711353
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Table 8
Results of the heterogeneous multicolony experiment for the brd14051.tsp problem using the variants described
in Table 7 and a predefined effort of 1000 s and a VTR = 484500 as stopping criteria. All configurations use
8 threads per colony for the fine-grained parallelization except for the first experiment that corresponds to the
sequential execution.
Variant Cores Colonies Best Worst Average VTR %hits

Colony A 1 1 485722 486596 486226± 249 484500 0%
Colony B 1 1 484437 485424 485177± 297 484500 10%
Colony C 1 1 484611 485543 485253± 265 484500 0%
Colony D 1 1 484916 485565 485286± 162 484500 0%

48 6 484118 484993 484653± 188 484500 20%
Heterogeneous 96 12 484085 484698 484432± 191 484500 60%
multicolony 192 24 483775 484574 484287± 225 484500 80%

384 48 483672 484567 484256± 196 484500 93%
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