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ABSTRACT

The capabilities of flight control systems can be en-
hanced by designing them to emulate functions of natural
intelligence. Intelligent control functions fall in three cat-
egories. Declarative actions involve decision-making,
providing models for system monitoring, goal planning,
and system/scenario identification. Procedural actions
concern skilled behavior and have paralicls in guidance,
navigation, and adaptation. Reflexive actions arc sponti-
neous, inner-loop responses for control and cstimation.
Intelligent flight control systems learn knowledge of the
aircraft and its mission and adapt to changes in the flight
environment. Cognitive models form an cfficient basis
for integrating "outer-loop/inner-loop” control functions
and for developing robust parallel-processing algorithms.

INTRODUCTION

Recounting personal experiences in confronting wind
gusts, one of the Wright brothers wrote, "The problem of
overcoming these disturbances by automatic mcans has
engaged the attention of many ingcnious minds, but to my
brother and myself, it has seemed preferable 1o depend
entirely on intelligent control” [1, 2]. The Wright broth-
ers’ piloting actions depended on proper intcrpretation of
visual and inertial cues, demonstrating biological intclli-
gent control. In the past, human pilots flew aircraft
through manual dexterity, informed planning, and coordi-
nation of missions. As aircraft characteristics and tcch-
nology have allowed, an increasing sharc of the aircrafl's
operation has come to rcly on electro-mechanical sensors,
computers, and actuators. Panel displays have cnhanced
decision-making, stability augmentation systems have im-
proved flying qualities, and guidance logic has carricd
machine intelligence to the point of "hands-of(" flying for
much of a modem aircraft's mission.
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In a contemporary context, intelligent flight control
has come 1o represent even more ambitious plans o

» make aircraft less dependent on proper human
acuions for mission completion,

« cnhance the mission capability of aircraft,

« improve performance by learning from experience,

« increasc the rcliability and safety of flight, and

« lower the cost and weight of aircraft systems.

This paper presents concepts for intelligent flight control
through the aid of what were once called "artificial” de-
vices for sensing, computation, and control. We distin-
guish between control functions according to a cogni-
tive/biological hicrarchy that is bounded on one end by
declarative functions, which typically involve decision-
making, and on the other by reflexive functions, which are
spontancous reactions to external or internal stimuli.

In a classical fight control context, declarative func-
tions are performed by the control system's outer loops,
and reflexive functions are performed by its inner loops.
At an intermediate level, procedural functions -- like re-
flexive functions -- have well-defined input-output charac-
teristics but of a more complicated structure.  Traditional
design principles suggest that the outer-loop functions
should be dedicated to low-bandwidth, large-amplitude
control commands, while the inner-loop functions should
have high bandwidths and relatively lower-amplitude ac-
tions. There is a logical progression from the sweeping,
flexible alternatives associated with satisfying mission
goals to morc local concerns for stability and regulation
about a desircd path or equilibrium condition.

FOUNDATIONS FOR INTELLIGENT
FLIGHT CONTROL

Intcligent flight control design draws on two appar-
ently unrclated bodics of knowledge. The first is rooted in
classical analyses of aircraft stability, control, and {lying
qualitics. The sccond derives from human psychology
and physiology. The design goal is to find new control
structurcs that are consistent with the rcasons for flying
aircralt, that bring flight control systcms to a higher level
of overall capability.

Supported by government grant. See Acknowledgments.
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Aircraft Flying Qualities and Flight Control

An aircraft requires guidance, navigation, and control
1o perform its mission. As suggested by Fig. 1, a human
pilot can interact with the aircraft at scveral levels, and his
or her function may be supplanted by electro-mechanical
equipment. The pilot performs three distinct functions:
sensing, regulation, and decision-making. Thesc tasks
exercise different human characteristics: the ability to see
and fecl, the ability to identify and correct errors between
desired and actual states, and the ability to decide what
needs (o be done next. The first depends on the body's
sensors and the neural networks that connect them to the
brain. The second relies on motor functions cnabled by
the neuro-muscular system to execute learned associations
between stimuli and desirable actions. The third requires
more formal, introspective thought about the rcasons for
taking action, drawing on the brain's decp memory 1o re-
call important procedures or data. Sensing and regulation
are high-bandwidth tasks that allow little time for deep
thinking. Decision-making is a low-bandwidth task that
requires concentration. Each of these tasks exacts a
workload toll on the pilot.

Pilot workload has become a critical issuc as the
complexity of systems has grown, and furnishing ideal
flying qualities throughout the flight envelope has become
an imperative. It is particularly desirable 10 reducc the
nced to perform high-bandwidth, automatic funcions,
giving the pilot time to cope with unanticipated or un-
likely events. In the future, telecoperated or autonomous
systems could find increasing use for missions that expose
human pilots to danger.

Rescarch on the flying (or handling) qualities of air-
craft has identified ways to make the pilot's job casicr and
more effective, and it provides models on which auto-
matic systems might be based. The first flying qualitics
specification simply stated, "(the aircraft) must be steered
in all directions without difficulty and all time (be) under
perfect control and equilibrium” [3, 4]. Further cvolution
of flying qualities criteria based on dynamic modecling and
control theory has led to the widely used U. S. military
specification [S] and the succeeding military standard [6}.

Flying qualities research has led 1o the development
of control-theoretic models of piloting behavior. Most of
these models have dealt with reflexive, compensatory
tracking tasks using simple time-lag and transfer function
models [7, 8] or linear-quadratic-Gaussian (LQG) opti-
mal-control models {9, 10]. Some treatments go into con-
siderable detail about neuro-muscular systcm dynamics
[11, 12]. These models often show good corrclation with
experimental results, not only in compensatory tracking
but in more procedural tasks: the progression of piloting
actions from single- to multi-input strategics as thc com-
plexity of the task increases is predicted in [10], while
test-pilot opinion ratings are predicted by a "Papcr Pilot”
in [13]. These results imply that computer-based control
laws can perform procedural and reflexive tasks within
the fit error of mathematical human-pilot models. Insight
on the human pilot's declarative actions can be drawn
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from [14-16], which introduce the types of decisions that
must bc made in acrospace scenarios, as well as likely
formats for pilot-vehicle interface.

Decislon
Making

~#-| Guidance Lo Control || Alrcraft |

4
Estimation |e

Navigation [+

Figure 1. Guidance, Navigation, and Control Structure.

Figure 1 also portrays a hierarchical structure for
stabilily-augmentation, command-augmentation, autopi-
lot, and flight-management-system functions that can be
broken into reflexive and declarative parts.  Stability
augmentation is rellexive control provided by the inner-
most loop, typically implemented as a linear feedback
control law that provides stability and improves transient
response through an Estimation/Compensation block.
Forward-loop control provides the shaping of inputs for
satisfactory command response through a Con-
trol/Compensation block, again employing linear models.
The combination of control and estimation can be used to
change the flying qualities perceived by the pilot, or it can
provide a decoupled system for simplified guidance
commands [17-20]. A basic autopilot merely translates
the human pilot's commands to guidance commands for
constant heading angle, bank angle, or airspeed, while the
Guidance block can be expanded to include declarative
flight management functions, using inputs from Naviga-
tion sensors and algorithms.

Intelligent functions have been added to flight control
systems in the past. Gain scheduling and switching im-
prove performance in differing flight regimes and mission
phases. Control theory, heuristics, and reduced-order op-
timization have becn used to achieve near-optimal trajec-
tory management in many flight phases (e.g., {21-23]).
The Guidance, Navigation, and Control (GNC) Systems
for Project Apollo's Command/Service and Lunar Mod-
ules provide an early example of intelligent aerospace
control {24-26]). The state-of-the-art of aircraft flight
control systems has progressed 1o comparable levels and
beyond, as represented by systems installed in modem
transport and fighter aircraft (e.g., (27, 28]).

IntcHligent flight control! can be justified only if it
materially improves the functions of aircraft, if it saves

1 As used here “intelligent flight control” subsumes "intelligent
guidance, navigation, and control.”



the time and/or money required to complete a mission, or
if it improves the safety and reliability of the sysiem. In-
teresting philosophical problems can be poscd. Must ma-
chine-intelligence be better than the human intelligence it
replaces in order for it 10 be adopted? We are willing to
accept the fact that humans make mistakes; if a machinc
has a similar likelihood of making a mistake, shouid it be
used? Lacking firm knowledge of a situation, humans
sometimes gamble; should intelligent machines be al-
lowed to gamble? When is it acceptable for machince in-
telligence to be wrong {e.g., during learning)? Must the
machine solution be "optimal," or is "feasible” good
enough? Which decisions can the machine make without
human supervision, and which require human intcrven-
tion? In a related vein, how much information should be
displayed to the human operator? Should inteltigent flight
control ever be fully autonomous? If the control sysiem
adapts, how quickly must it adapt? Must learning occur
on-line, or can it be delayed until a mission is complcted?
All of these questions must be answered in every potential
application of intelligent control.

Cognitive and Biological Paradigms for In-
telligence

Intelligence is the "ability involved in calculating,
reasoning, perceiving relationships and analogics, lcarning
quickly, storing and retrieving information .... classilying,
generalizing, and adjusting to new situations" {29]. This
definition does not deal with the mechanisms by which
intelligence is realized, and it makes the tacit assumption
that intelligence is a human trait. Intelligence relates not
only to intellectuality and cognition but to personality and
the environment [30].

The debate over whether-or-not computers ever will
"think” may never be resolved, though this nced not re-
strict our working models for computer-based intclligent
control. One argument against the proposition is that
computers deal with syntax (form), while minds decal with
semantics (meaning), and syntax alone cannot producc
semantics [31]. This does not limit the ability of a com-
puter 1o mimi¢ natural intelligence in a limiled domain.
Another contention is that thinking is "non-algorithmic,”
that the brain evokes consciousness through a process of
natural selection and inheritance {32]. Consciousncss is
required for common sense, judgment of truth, under-
standing, and artistic appraisal, concepts that arc not for-
mal and cannot readily be programmed for a compulter
(i.e., they are not syntactic).

Conversely, functions that are automatic or "mind-
less” (i.e., that are ynconscious), could be programmed,
implying that computers have more in common with "un-
intelligent” functions. Godel's Theorem? is offered in

2 As summarized in [32}: Any algorithm used 1o establish a
mathematical truth cannot prove the propositions on which it is
based. Or another [33]: Logical systems have o be fixed up "by
calling the undecidable statements axioms and thereby declaring
them to be true,” causing new undecidable statements to crop up.

{33] as an example of an accepted proposition that may be
considered non-algorithmic; the statement and proof of
the thcorem must themselves be non-algorithmic and,
therclore, not computable. However, while the human
curiosity, intuition, and creativity that led to Godel's
Theorem may not be replicable in a computer, the state-
ment and proof are expresscd in a formal way, so they
might be considered algorithmic after all.

The notion that syntax alone cannot produce scman-
tics is attacked as being an axiom that is perhaps truc but
not knowable in any practical sense [34]; therefore, the
possibility that a computer can "think" is not ruled out. A
further defense is offered in [35], which suggests that
human inference may be based, in part, on inconsistent
axioms. This could lead to rule-based decisions that are
not logically consistent, that are affected by heuristic bi-
ases or sensitivities, that may reflect deeper wisdom, or
that may be wrong or contradictory. For example, knowl-
edge and belicl may be indistinguishable in conscious
thought; however, one implics truth and the other bias or
uncertainty. One might also postulate the use of meta-rule
bascs that govern apparently non-algorithmic behavior.
The process of scarching a data base, though bound by
cxplicit symbolic or numerical algorithms, may include
randomized behavior (e.g., genctic algorithms) that are
not immediately identifiable as algorithmic.

More to our point, it is likely that a computer capable
of passing a Nying-qualities/pilot-workload/control-theo-
rctic cquivalent of the Turing test3 [36] could be built
cven though that computer might not understand what it is
doing?. For intelligent flight control, the principal objec-
tive is improved control performance, that is, for im-
proved input-output behavior. The computer can achieve
the operative cquivalent of consciousness on its own
terms and in a limited domain, even if it does not possess
emotions or other human traits.

Discussions of human consciousness naturally fall
into using the terminology of computer science. Itis con-
venicnt -- as well as consistent with empirical data -- to
identify four types of thought: conscious, preconscious,
subconscious, and unconscious [37]. Conscious thought
is the thought that occupies our atiention, that requires fo-
cus, awareness, reflection, and perhaps some rehearsal.
Conscious thought performs declarative processing of the
individual’s knowlcdge or beliefs. It makes language,
emotion, artistry, and philosophy possible. Unconscious
thought "describes those products of the perceptual sys-
tem that go unatiended or unrehcarsed, and those memo-
rics that are lost from primary memory through display or
displacement” [37]. Within the unconscious, we may

3 Turing suggested that a computer could be considered "intelli-
gent” if it could “converse” with a human in a manner that is in-
distinguishable from a human conversing with a human.

4 Searle describes such a computer as a "Chinese Room" that
ranslates Chinese characters correctly by following rules while
not understanding the language in [31].
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further identify two important components. Subconscious
thought is procedural knowledge that is below our level of
awareness but central to the implementation of intelligent
behavior. It facilitates communication with the outside
world and with other parts of the body, providing the
principal home for the learned skills of art, athletics, con-
trol of objects, and craft. We are aware of perceptions if
they are brought to consciousness, but they also may lake
a subliminal (subconscious) path to memory. Precon-
scious thought is pre-attentive declaralive processing that
helps choose the objects of our conscious thought, opcrat-
ing on larger chunks of information or at a morc symbolic
level. It forms a channel to long-term and implicit mem-
ory, and it may play a role in judgment and intuition.

Whether we adopt a single-processor model of con-
sciousness such as Adaptive Control of Thought (ACT*
as in [38]) or a connectionist model like Parallcl Dis-
tributed Processing (PDP from [39]), we arc lcd to believe
that the central nervous system supports a hicrarchy of in-
telligent and automatic functions with declarative actions
at the top, procedural actions in the middle, and reflexive
actions at the bottom. Declarative thinking occurs in the
brain's cerebral cortex, which accesses the interior limbic
system for long-term memory [40]. Together, they pro-
vide the processing unit for conscious thought. Regions
of the cercbral corlex are associated with different intel-
lectual and physical functions; the distinction between
conscious and preconscious function may depend on the
activation level and duration in regions of the cercbral
cortex.,

The working memory of conscious thought has ac-
cess to the spinal cord through other brain parts that arc
capable of taking procedural action (e.g., the brain stcm
for autonomic functions, the occipital lobes for vision, and
the cerebellum for movement). Procedural action can be
associated with subconscious thought, which supports vol-
untary automatic processes like movement and sensing.
Voluntary signals are sent over the somatic nervous sys-
tem, transmitting to muscles through the motor ncural
system and from receptors through the sensory ncural sys-
tem.

The spinal cord itself "closes the control loop” for re-
flexive actions long before signals could be processed by
the brain. Nevertheless, these signals are available to the
brain for procedural and declarative processing. Wc are
all aware of performing some task (e.g., skating or riding
a bicycle) without effort, only to waver when we locus on
what we are doing. Involuntary regulation of the body's
organs is provided by the autonomic nervous system,
which is subject to unconscious processing by thc brain
stem. "Bio-feedback” can be lcarned, allowing a modcst
degree of higher-level control over some autonomic func-
tions.

Declarative, procedural, and reflexive lunctions can
be built into a model of intelligent control bchavior (Fig.
2). The Conscious Thought module governs the sysiem
by performing declarative [unctions, receiving informa-
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tion and transmitting commands through the Subconscious
Thought module, which is itself capable of performing
procedural actions. Conscious Thought is primed by Pre-
conscious Thought 141], which can perform symbolic
declarative functions and is alcried to pending tasks by
Subconscious Thought. These three modules overlie a
bed of deeper Unconscious Thought that contains long-
term memory. They are capable of inteliectual lcarning,
and while their physical manifestation may be like the
PDP model, they exhibit characteristics that are most
readily expressed by the ACT* model.

The Subconscious Thought module receives informa-
tion from the Sensory System and conveys commands o
the Muscular System through peripheral networks. Volun-
tary Reflexive Actions provide low-level regulation in par-
allel with the high-level functions, responding to critical
stimuli and coordinating control actions. High- and low-
level commands may act in concert, or onc may block the
other. Voluntary Reflexive Actions can be trained by
high-lcvel directives from Subconscious Thought, while
the learning capabilities of involuntary Reflexive Action
are less clear. Control actions produce Body motion and
can affect an external Controlled System, as in piloting an
aircraft. In learncd control functions, Body motion helps
internalize the mental model of Controlled System behav-
ior. The Body and the Controlled System are both di-
rectly or indirectly subjected to Disturbances; for exam-
ple, wrbulence would affect an aircraft directly and the pi-
lot indircctly. The Scnsory System obscrves External
Events as wcll as Body and Controlled System motions,
and it is subject lo Measurement Errors.

There are many parallels and analogies to be drawn in
comparing the functions of human and computer-based
intclligence. It may be useful to ponder a few, especially
those rclated to knowledge acquisition, natural behavior,
aging, and control. Pcrhaps the most important observa-
tion is that learning requires error or incompleteness.
There is nothing new Lo be gained by observing a process
that is opcrating perfectly. In a control context, any oper-
ation should be started using the best available knowledge
of the process and the most complete control resources.
Conscquently, learning is not always necessary or even
desirable in a flight control system. Biological adaptation
is a slow process, and proper changes in behavior can be
made only if there is prior knowledge of alternatives. If
adaptation occurs too quickly, there is the danger that
misperceptions or disturbance effects will be misinter-
preted as parametric cffects. Rest is an essential feature
of intelligent biological systems. It has been conjectured
that REM (rapid-eye-movement) Sleep is a time of lcarn-

5. although the actual processing mechanism is not clear. In a
recent seminar at Princeton (March 9, 1992), Herbert Simon
noted that if you open the cabinet containing a sequential-pro-
cessing computer, the innards look very much like those of a
parallel processor.



ing, consolidating, and pruning knowledgce® [42]. Sys-
tems can learn even when they are not functioning by re-
viewing past performance, perhaps in a repelitive or
episodic way.

Mcasurcment
Errors

Reflexive
Actions

Sensory
System

Disturbances Exlernal

| 3] Controlled Events
System

Figure 2. A Model of Cognitive/Biological Control Be-
havior.

The cells of biological systems undergo a continuing
birth-life-death process, with new cells replacing old; na-
ture provides a means of transmitting genclic codes [rom
cell to cell. Nevertheless, the central nervous system is
incapable of functional regeneration. Once a portion of
the system has been damaged, it cannot be replaced, al-
though redundant neural circuitry can work around somc
injuries. Short-term memory often recedes into long-term
memory, where it generally takes longer to be retricved.
With time, items in memory that are less important are
forgotten, possibly replaced by more important informa-
tion; hence, information has a half-life that depends upon
its significance to our lives (and perhaps Lo its "refresh
rate”). Humans develop the capability to form chords of
actions that are orchestrated or coordinated to achicve a
single goal. Response to an automotive emergency may
include applying the brakes, disengaging the clutch, steer-
ing to avoid an obstacle, and bracing for impact all at
once. We develop "knee-jerk” reactions that combine

6 *In REM Sleep, the brain is barraged by signals from the brain
stem. Impulses fired to the visual cortex produce images that
may contain materials from the day's experiences, unsolved
problems, and unfinished business." [42]

declarative, procedural, and reflexive functions, like clap-
ping after the last movement of a symphony.

Nature also provides structural paradigms for control
that arc worth emulating in machines. First, there is a
richness of sensory information that is hard to fathom,
with millions of sensors providing information. This re-
sults in high signal-10-noise ratio in some cases, and it al-
lows symbolic/image processing in others. Those signals
requiring high-bandwidth, high-resolution channel capac-
ity (vision, sound, and balance) have short, dedicated,
parallel runs {rom the sensors to the brain. This enhances
the sccurity of the channels and protects the signals from
noise contamination. Dissimilar but related sensory in-
puts facilitate interpretation of data. A single motion can
be scnsed by the cycs, by the inner ear, and by the "seat-
of-the-pants” (i.e., by sensing forces on the body itself),
corroborating cach other and suggesting appropriate ac-
tions. When these signals are made to disagree in mov-
ing-cockpit simulation of flight, a pilot may experience a
sense of confusion and disoricntation,

There are hierarchical and redundant structures
throughout the body. The nervous system is a prime ex-
ample, bringing inputs from myriad sensors (both similar
and dissimilar) to the brain, and performing low-level rea-
soning as an adjunct. Many sensing organs occur in pairs
(c.g., cyes, cars, inncr cars), and their internal structures
are highly parallel. Pairing allows graceful degradation
in the event that an organ is lost. Sterco vision vanishes
with the loss of an ¢cye, but the remaining eye can provide
both foveal and peripheral vision, as well as a degree of
depth perception through object size and stadiamelric pro-
cessing. Our control effectors (arms, hands, legs, feet)
also occur in pairs, and there is an clement of "Fail-
Op/Fail-Op/Fail-Safe" design [43] in the number of fin-
gers provided for manual dexterity.

Structure for Intelligent Flight Control

The preceding section leads to a control system
structure that overlays the cognitive/biological modcel of
Fig. 2 on the flight control block diagram of Fig. 1 and
adds new functions. The suggested structure (Fig. 3) has
super-blocks identifying declarative, procedural, and re-
flcxive functions; these contain the classical GNC func-
tions plus ncw functions related to decision-making, pre-
diction, and learning. The black arrows denote informa-
tion {low for the primary GNC functions, while the gray
arrows illustrate the data flow that supports subsidiary ad-
justment of goals, rules, and laws.

Within the super-blocks, higher-level functions are
identificd as conscious, preconscious, and subconscious
attributes, not with disregard for the philosophical objec-
tions raiscd carlier but as a working analog for establish-
ing a compulational hicrarchy. The new functions relate
(o sctting or revising goals for the aircraft's mission, moni-
toring and adjusting the aircraft’s systems and subsystems,
identilying changing characteristics of the aircraft and its
environment, and applying this knowledge to modify the
structurcs and parameters of GNC functions.
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Figure 3. Intelligent Flight Control System Structure.
The suggested structure has implications for both DECLARATIVE SYSTEMS

hardware and software. Declarative functions are most
readily identified with single-processor computers pro-
grammed in LISP or Prolog, as decision-making is associ-
ated with list processing and the statcment of logical rela-
tionships. Procedural [unctions can be conceptualized as
vector or "pipelined” processes programmcd in FOR-
TRAN, Pascal, or C, languages that have been developed
for numerical computation with subroutincs, arrays, dif-
ferential equations, and recursions. Reflexive functions
seem best modeled as highly parallel processes imple-
mented by neural networks, which apply dense mappings
1o large masses of data almost instantaneously. Ncverthe-
less, parallel processes can be implemented using sequen-
tial processors, and sequential algorithms can be "paral-
lelized" for execution on parallel processors. The choice
of hardware and software depends as much on the current
state-of-the-art as on the closeness of computational re-
quirements and GNC functions.

In the remainder of the paper, declarative, procedural,
and reflexive control functions are discussed from an
aerospace perspective. In practice, the boundarics be-
tween mission tasks may not be well defined, and there is
overlap in the kinds of algorithms that might be applicd
within each group. A number of practical issucs rclaled o
human factors, system management, certifiability, main-
tenance, and logistics are critical to the successful imple-
mentation of intelligent flight control, but they are not
treated here.
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Goal planning, syslem monitoring, and control-mode
swilching arc declarative functions that require reasoning.
Alternatives must be evaluated, and decisions must be
madc through a process of deduction, that is, by inferring
answers from gencral or domain-specific principles. The
inverse process of Icarning principles from examples is
induction, and not all declarative systems have this ca-
pability. Most declarative sysicms have fixed structure
and parameters, with knowledge induced off-line and be-
fore application; declarative sysiems that learn on-line
must possess a higher level of reasoning ability, perhaps
through an internal declarative module that specializes in
training,.

Expert Systems

Expert Systems are computer programs that use phys-
ical or heuristic relationships and facts for interpretation,
diagnosis, monitoring, prediction, planning, and design.
In principal, an expert system replicates the decision-mak-
ing process of one or more experts who understand the
causal or structural nature of the problem [44]. While
human cxperts may employ "nonmonotonic rcasoning”
and "common sensc” to deduce facts that apparently defy
simple logic, computational expert systems typically are
formal and consistent, basing their conclusions on analo-
gous cases or well-defined rules’.

7 Experl systems can have tree or graph structures. In the for-
mer, there is a single root node, and all final (leaf) nodes are



A rule-based expert system consists of data, rules,
and an inference engine [46). It generates actions predi-
cated on its data base, which contains mcasurcments as
well as stored data or operator inputs. An cxpert sysiem
performs deduction using knowledge and beliefs cx-
pressed as parameters and rules. Parameters have values
that cither are external to the expert system or arc sct by
rules. An "IF-THEN" rule evaluates a premise by lesting
values of one or more parameters rclatcd by logical
"ANDs" or "ORs," as appropriale, and it specifies an ac-
tion Lhat set values of one or more parameters.

The rule base contains all the cause-and-cflect rela-
tionships of the expert system, and the infcrence engine
performs its function by searching the rule basc. Given a
set of premises (evidence of the current state), the logical
outcome of these premises is found by a data-driven
search (forward chaining) through the rules. Given a dc-
sired or unknown parameter value, the premiscs needed 10
support the fixed or free value arc identificd by a goal-di-
rected search (backward chaining) through the rules.
Querying (or firing) a rule when searching in cither dirce-
tion may invoke procedures that produce paramcicr valucs
through side effects [47].

Rules and parameters can be represcnted as objects or
Jframes using ordered lists that identify names and at-
tributes. Specific rules and paramelers arc represented by
lists in which values are given to the names and attributes.
The attribute lists contain not only valucs and logic but
additional information for the inference cngine. This in-
formation can be used to compile paramerter-rule-associa-
tion lists that speed execution [48]. Framcs provide usclul
parameter structures for related productions, such as ana-
lyzing the origin of one or more failurcs in a complex,
connected system [49). Frames possess an inheritance
property; thus a particular object lays claim to the proper-
ties of the object type.

Crew/Team Paradigms for Declarative Flight
Control

Logical task-classification is a key factor in the de-
velopment of rule-based systems. To this point, we have
focused on the intelligence of an individual as a paradigm
for control system design, but it is useful to consider the
hypothetical actions of a multi-person aircralt crew as
well. In the process, we develop an expert system of ex-
pert systems, a hierarchical structure that rcasons and
communicates like a team of cooperating, well-trained
people might. This notion is expanded in [50-53]. The
Pilot's Associate Program initially focused on a four-task
structure and cvolved in the direction of the multiple
crew-member paradigm [54-56).

AUTOCREW is an ensemble of nine cooperating
rule-based systems, each f{iguratively emulating a member

connected to their own single branch. In the latter, one or more
branches lead to individual nodes. Reasoning is consistent if an
individual node is not assigned differing values by diflerent
branches [45].

of a World War II bomber crew: executive (pilot), co-pi-
lot, navigator, {light cngincer, communicator, spoofer
(countcrmeasurcs), observer, attacker, and defender (Fig.
4) [53]. The executive coordinates mission-specific tasks
and has knowledge of the mission plan. The aircraft's
human pilot can monitor AUTOCREW functions, follow
iLls suggestions, cnler queries, and assume full control if
confidence is lost in the automated solution. The overall
goal is to reduce the pilot's nced to regulate the system
directly without removing discretionary options. AU-
TOCREW contains over 500 parameters and over 400
rules.
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Figure 4. AUTOCREW Configuration with Pilot/Aircraft
Interface (adapted from [52}).

AUTOCREW was developed by defining each mem-
ber cxpert sysiem as a knowledge base, according to the
following principles:

» Divide cach knowledge base into task groups: time-
critical, routine, and mission-specific.

» Order task groups from most to Icast time-critical
to quicken the inference engine's scarch.

» Break major tasks into sub-tasks according to nced
for communicating system functions.

+ Identify arcas of cooperation between knowledge
bases.

The five main task groups for cach crew member are:
tasks exccuted during attack on the aircraft, tasks executed
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during emergency or potential threat, tasks ordered by the
EXECUTIVE, tasks executed on a routine basis, and mis-
sion-specific tasks. Routine and mission-specilic 1asks
are executed on each cycle; emergency tasks arc exccuted
only when the situation warrants, Operation of AU-
TOCREW was simulated to obtain comparative expert-
system workloads for two mission scenarios: inbound
surface-to-air missile attack and human pilot incapacita-
tion [52]. In addition to the overall AUTOCREW systcm,
a functioning NAVIGATOR sensor-management expert
system was developed. Knowledge acquisition for the
system is challenging because traditional methods (e.g.,
domain-expert interviews) do not provide sufficiently de-
tailed information to design the system [57].

Additional perspectives on intelligent flight manage-
ment functions can be obtained from the literaturc on de-
cision-making by teams, as in {58-60]. Alicrnate ap-
proaches to aiding the pilot in emergencics are given in
[61,62].

Reasoning Under Uncertainty

Rule-based control systems must make decisions un-
der uncertainty. Measurements are noisy, physical sys-
tems are subject to random disturbances, and the cnvi-
ronment within which decisions must be made is ambigu-
ous. For procedural systems, the formalism of optimal
state estimation provides a rigorous and uscful mecans of
handling uncertainty {63]. For declarative systems, there
are a number of methods of uncertainty management, in-
cluding probability theory, Dempster-Shafer theory, pos-
sibility theory (fuzzy logic), certainty factors, and the the-
ory of endorsements [64].

Bayesian belicl networks [65), which propagate cvent
probabilities up and down a causal trce using Bayes's rule,
have particular appeal for intelligent control applications
because they deal with probabilities, which form the basis
for stochastic optimal control. We have applicd Baycsian
networks to aiding a pilot who may be flying in the vicin-
ity of hazardous wind shear [66). Figure 5 shows a ncl-
work of the causal relationships among meteorological
phenomena associated with microburst wind shear, as
well as temporal and spatial information that could affcct
the likelihood of microburst activity. A probability of oc-
currence is associated with each node, and a conditional
probability based on empirical data is assigned to cach ar-
row. The probability of encountering microburst wind
shear is the principal concern; however, cach time ncw
evidence of a particular phecnomenon is obtaincd, proba-
bilities are updated throughout the entire tree. In the pro-
cess, the estimated likelihood of acwally ecncountering the
hazardous wind condition on the plane's flight path is re-
fined.

The safety of aircraft operations near microburst wind
shear will be materially improved by forward-looking
Doppler radar, which can sense variations in the wind
speed. Procedural functions that can improve the rcliabil-
ity of the wind shear expert system include exiended
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Kalman filtcring of the velocity measurements at incre-
mental ranges ahcad of the aircraft [67].
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Figure 5. Bayesian Belief Network to Aid Wind Shear
Avoidance (adapted from [67]).

Probabilistic reasoning of a different sort has been
applied to a problem in automotive guidance that may
have application in future Intelligent Vehicle/Highway
Systcms [68-70). Intelligent guidance for hcadway and
lane control on a highway with surrounding traffic is
bascd on worst-plausible-case decision-making. 1t is as-
sumcd that the intelligent automobile (IA) has imaging
capability as well as on-board motion sensors; hence, it
can deduce the speed and position of neighboring auto-
mobiles. Each automobile is modeled as a simple dis-
crete-time dynamic system, and estimates of vchicle states
arc propagatcd using extended Kalman filters [63). There
arc limits on the performance capabilities of all vehicles,
and IA strategy is developed using time-to-collide, brak-
ing ratios, driver aggressivencss, and desired security fac-
tors. Plausible guidance commands are formulated by
minimizing a cost function based on these factors {70].
Both normal and emergency expert systems govern the
process, supported by procedural calculations for situation
assessment, traffic prediction, estimation, and control
(Fig. 6). Guidance commands arc formulated by mini-
mizing a cost function based on these factors {70].

Each of the cxpert systems discussed in this section
performs deduction in a cyclical fashion based on prior
logical structures, prior knowledge of parameters, and
rcal-time measurcments. Intelligent flight control systems
must deal with unanticipated cvents, but it is difficult to



identify acronautical applications where on-linc declara-
tive learning is desirable. Neverthcless, off-linc induction
is needed to formulate the initial declarative system and
perhaps (in a manner reminiscent of REM Sleep) to up-
grade declarative logic between missions.

[ Top Level Executive

Controller Command

Generation

Headway Trajeclory Lanc
Control Planning Control
Situation Normal Emergency Tralfic
Asscssment Expert Expert Prediction
Normal Normal Emergency | | Emergency
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Generation |{Comparison | | Generation | |Comparison

Figure 6. Intelligent Guidance for Automotive Headway
and Lane Control [69].

Inducing Knowledge in Declarative Systems

In common usage, "learning” may refer a) to collect-
ing inputs and deducing outputs and b) to inducing the
logic that relates inputs and outputs to specific tasks.
Here, we view the first process as the normal function of
the intelligent system and the second as "lcarning.”
Teaching an expert system the rules and paramcicrs that
generalize the decision-making process from specific
knowledge is the inverse of expert-systcm opcration.
Given all possible values of the parameters, what arc the
rules that connect them? Perhaps the most common an-
swer is to interview experts in an attempt to capturc the
logic that they use, or failing that, to study the problem
intensely so that one becomes expert enough to identify
naturally intelligent solutions. These approaches can be
formalized [71, 72], and they were the ones uscd in [67]
and [68]. Overviews of alternatives for induction can be
found in {45, 46, 73, 74].

Two approaches are considered in greater detail. The
first is called rule recruitment {75], and it involves the
manipulation of "dormant rules” (or rule templates). This
method was applied in the development of an intelligent
failure-tolerant control system for a helicopter. Each
template possesses a fixed premise-action structure and
refers to parameters through pointers. Rules are con-
structed and incorporated in the rule basc by delining
links and modifying parameter-rule-association lists.
Learning is based on Monte Carlo simulations of the con-

trolled systcm with alternate failure scenarios. Learned
parameter valucs then can be defined as "fuzzy functions”
[76] containcd in rule premiscs.

The second approach is to construct classification or
decision trees that relate autributes in the data to decision
classcs {52]. The problem is to develop an Expert Navi-
gation-Sensor Management System (NSM) that selects the
best navigation aids [rom available measurements. Sev-
eral aircraft paths were simulated, and the corresponding
measurements that would have been made by GPS, Loran,
Tacan, VOR, DME, Doppler radar, air data, and inertial
scnsors were calculated, with representative noise added.
The simulated measurements were processed by extended
Kalman filters 1o obtain optimal state estimates in 200
simulations. Using the root-sum-square error as a deci-
sion metric, Analysis of Variance (ANOVA) identifies the
factors that make statistically significant contributions 10
the decision metric, and the Iterative Dicholomizer #3
(ID3) algorithm {77-79] extracts rules from the training
sct by inductive infcrence. The 1D3 algorithm quantifies
the entropy content of cach attribute, that is, the informa-
tion gaincd by lesting the attribute at a given decision
node. It uscs an information-theoretic measure to find a
splitting strategy that minimizes the number of nodes re-
quired to characterize the tree. Over 900 examples were
uscd o develop the NSM decision tree.

PROCEDURAL SYSTEMS

Most guidance, navigation, and control systems
fielded to date are procedural systems using sequential al-
gorithms and processors. Although optimality of a cost
function is not always a nccessary or even sufficient con-
dition for a "good" system, lincar-optimal stochastic con-
trollers provide a good generic structure for discussion,

Control and Estimation

Wec assume that a nominal (desired) flight path is
gencrated by higher-level intelligence, such as the human
pilot or declarative machine logic. The procedural system
must follow the path, x*(1) in 1, <1 < (. Control is exer-
cised by a digital computer at time intervals of At. The n-
dimensional state vector perturbation at time tf is xk, and
the m-dimensional control vector perturbation is uk. The
discrete-time linear-quadratic-Gaussian (LQG) control
law is forimed as [63],

uk = u*k - CBINk - x*k] = CFy*k - CBXk (1

y*k is the desired value of an output vector (defined as

Hyxg + Hyug), and X is the Kalman filter estimate, ex-
pressed in Lwo sieps:

e

Xk(-) = DR-1(+) + Tuk-]
N
X

k = Rk(+) = Xk(-) + K[zk - HobsXk(-)] Q
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The forward and feedback control gain matrices are Cp
and Cg, ® and I' are state-transition and control-cifect
matrices that describe the aircraft’s assumed dynamics, the
estimator gain matrix is K, and the mcasurement vector,
zk, is a transformation of the state through Hgpg. The
gains Cp and K result from solving two Riccati cquations
that introduce tradeoffs between control usc and state per-
turbation and between the strengths of random distur-
bances and measurement error. CF, which provides
proper steady-state command responsc, is an algebraic
function of CR, @, I, and Hgphg. All of the matrices may
vary in time, and it may be necessary to compute K on-
line. In the remainder, it is not essential that Cg and K be
optimal (i.e., they may have been derived from cigen-
structure assignment, loop shaping, etc.), although the
LQR gains guarantee uscful propertics of the nominal
closed-loop system [63].

The control structure provided by cq. 1 and 2 is uitc
flexible. It can represent a scalar feedback loop il z con-
tains one measurement and u one control, or il can address
measurement and control redundancy with z and u dimen-
sions that exceed the dimension of the statc x. It also is
possible to incorporate reduced-order modeling in the cs-
timator. Assuming that & and I have the same dimcen-
sions as the aircraft's dynamic model (n X n and n X m),
the baseline estimator introduces n'f-order compensation
in the feedback control loop. The weights of the quadratic
control cost function can be chosen not only to pcnalize
state and control perturbations but to produce output
weighting, state-rate weighting, and implicit model fol-
lowing, all without modifying the dynamic modcl [63}.
Integral compensation, low-pass filter compensation, and
explicit model following can be obtaincd by augmenting
the system model during the design process, incrcasing
the compensation order and producing the control struc-
tures shown in Fig. 7.

These cost weighting and compensation {eaturcs can
be used together, as in the proportional-integral/implicit-
model-following controllers developed in {80}, lmplicit
model following is especially valuable when an ideal
model can be specificd (as identified in flying qualitics
specifications and standards {5, 6]), and integral compen-
sation provides automatic "trimming” (control that synthc-
sizes u*k corresponding to x*k to achicve zcro steady-
state command error) and low-frequency robustncss.
Combining integral and filter compensation produces con-
trollers with good command tracking performance and
smooth control actions, as demonstrated in flight tests
(81-83]. The LQG regulator naturally introduces an in-
ternal model of the controlled plant, a feature that facili-
tates control design [84]. It produces a stable approxima-
tion 1o the system inverse, which is at the heart of achicv-
ing desired command tracking.

The estimator in the feedback loop presents an cffi-
cient means of dcaling with uncertainty in thc mcasure-
ments, in the disturbance inputs, and (to a degree) in the
aircraft's dvnamic model. If measurements arc very noisy,
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the estimator gain matrix K is "small,” so that the filter re-
lics on extrapolation of the system model to estimate the
state. If disturbances are large, the state itself is more un-
certain, and K is "large,” putting more emphasis on the
measurcments. Effects of uncertain parameters can be
approximated as "process noise” that increases the impor-
tance of measurcments, leading to a higher K. If the sys-
tem uncertainties are constant but unknown biases or scale
factors, a better approach is to augment the filter state to
estimatc these terms dircetly. Parametric uncertainty in-
troduces nonlincaritly; henee, an extended Kalman filter
must be used {63].
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Figure 7. Structured Linear-Quadratic-Gaussian Regula-
tors.

Stability and Performance Robustness
Controlled system robustness is the ability to main-
tain satisfactory stability and performance in the presence
of parametric or structural uncertaintics in either the air-
craft or its control system. All controlled systems must



possess some degree of robustness against opcrational
parameter variations. The inherent stability margins of
certain algebraic control laws (c.g., the lincar-quadratic
(LQ) regulator [63, 85-87]) may bccome vanishingly
small when dynamic compensation (e.g., the estimator in
a linear-quadratic-Gaussian (LQG) regulator) is added
[88]. Restoring the robustness to that of the LQ regulator
typically requires increasing estimator gains (within prac-
tical limits) using the loop-transfer-recovery mcthod [89)
or the stochastic robustness approach described below,

Subjective judgments must be made in assessing the
need for robustness and in establishing corresponding
control system design criteria, as there is an inevitable
tradeoff between robustness and nominal system perfor-
mance [90]. The designer must know the normal operat-
ing ranges and distributions of paramcter variations, as
well as the specifications for system opcrability wilh
failed components, else the final design may alford oo lit-
tle robustness for possible parameter variations or (0o
much robustness for satisfactory nominal performance.
Robustness traditionally has been assessed dcterministi-
cally [91, 92}; gain and phase margins arc an inhcrent part
of the classical design of single-input/single-output sys-
tems, and there are multi-input/multi-output cquivalents
based on singular-value analysis (c.g., [93]). A critical
difficulty in applying these techniques is rclating singular-
value bounds on rewrn-difference and inverse-return-dif-
ference matrices to real parameter variations in the sys-
tem.

Statistical measures of robustness can use knowledge
of potential variations in real parameters. The probability
of instability was introduced in [94] and is further de-
scribed in {95, 96). The stochastic robustness of a lincar,
lime-invariant system, is judged using Monte Carlo simu-
lation to estimate the probability distributions of closed-
loop eigenvalues, given the statistics of the variable pa-
rameters in the system's dynamic model. Becausce the sys-
tem is either stable or not, the probability of instability has
a binomial distribution; hence, the confidence intervals
associated with estimating the metric from simulation are
independent of the number or nature of the uncertain pa-
rameters [95].

Considerations of performance robustncss are casily
taken into account in Stochastic Robustness Analysis
(SRA). Systems designed using a variety of robust con-
trol methods (loop transfer recovery, Hoo oplimization,
structured covariance, and game theory) arc analyzed in
[97], with attention directed to the probability of instabil-

ity, probability of settling-time exccedence, probability of

excess control usage, and tradeolfs bctween them, The
analysis uncovers a wide range of system responses and
graphically illustrates that gain and phase margins arc not

good indicators of the probability of inslabilityx. This

8 Real parameter variations affect not only the magnilude and
relative phase angle of the system’s Nyquist contour but its
shape as well [63]. Therefore, the points along the contour that

also raiscs doubts about the utility of singular values, as
they arc multivariable cquivalents of the classical robust-
ness metrics.  Incorporating SRA into the design of an
LQG regulator with implicit model following and filter
compensation leads 1o designs that have high levels of
stability and performance robustness [98). The reason for
improvement is that SRA measures the acal effects of
parameter variations on stability and performance rather
than incremental changes in the nominal margins.

Adaptation and Tolerance to Failures

Adaptation always has been a critical element of sta-
bility augmentation. Most aircraft requiring improved sta-
bility undergo large variations in dynamic characteristics
on a typical mission. Gain scheduling and control inter-
connects initially were implemented mechanically, pneu-
matically, and hydraulically; now the intelligent part is
done within a computer, and there is increased freedom to
usc sophisticated scheduling techniques that approach full
nonlincar control {81, 99).

Onc approach to improving failure tolerance is paral-
lel redundancy: two or more control strings, cach sepa-
racly capable of satisfactory control, are implemented in
parallel. A voting scheme is used for redundancy man-
agement. With two identical channels, a comparator can
determine whether or not control signals are identical;
henee, it can detect a failure but cannot identify which
string has failed. Using three identical channels, the con-
trol signal with the middle value can be selected (or
voled), assuring that a single failcd channel never controls
the plant. Parallel redundancy can protect against control-
system componcnt failures, but it docs not address failures
of plant components. Analytical redundancy provides a
capability to improve tolerance to failures of both types.
The principal functions of analytical redundancy are fail-
ure detection, failure identification, and control-system
reconfiguration |47,

Procedural adaptation and failure-tolerance features
will cvolve outward, to become more declarative in their
supervision and more reflexive in their implementation.
Declarative functions are especially important for differ-
entialing between normal and emergency control func-
tions and sensitivities. They can work to reduce trim
drag, 10 increase fatigue life, and to improve handling and
ride qualities as functions of turbulence level, passenger
loading, and so on. Gain-scheduling control can be
viewed as fuzzy control, suggesting that the latter has a
rolc to play in aircraft control systems [100-102). Reflex-
ive functions can be added by computational neural net-
works that approximate nonlincar multivariate functions
or classify failurcs.

establish gain and phase margin (i.c., the corresponding Bode-
plot frequencies) are subject to change.
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Nonlinear Control

Aircraft dynamics are inherently nonlincar, but acro-
dynamic nonlinearitics and incrtial coupling cflccts are
generally smooth enough in the principal operating re-
gions to allow linear control design techniques to be uscd.
Control actuators impose hard constraints on opcration
because their displacements and rates arc strictly limited.
Nonlinear control laws can improve control precision and
widen stability boundarics when flight must be conducted
at high angles or high angular rates and when the control-
actuator limits must be challenged.

The general principles of nonlincar inverse control
are straightforward [103]. Given a nonlincar sysiem of
the form,

x = f(x) + G(x)u 3

where G(x) is square (m = n) and non-singular, the control
law

u=-Glf) + G'lv C
inverts the system, since

% = £(x) + GEO[-G1(x) + G vl = v s
where v is the command input to the system.

In general, G(x) is not square (m # n); howcever,
given an m-dimensional output vector,

y = Hx 6

it is possible to define a nonlinear feedback control law
that produces output decoupling of the clements of y or
their derivatives such that y(d) = v. The vector y(d ) con-
tains Lie derivatives of y,

y(d) == r*(x) + G*(x)u (7

where d is the relative degree vector of differcntiation rc-
quired to identify a direct control effect on each element
of y. G*(x) and f*(x) are components of the Lic deriva-
tives, and G*(x) is guaranteed to be structurally inveruible
by the condition that defines relative degree [104]). The
decoupling control law then takes the form

u=-{G*@) 1M + [G*) v ®

The control law is completed by feeding y back as appro-
priate to achieve desired transient responsc and by pre-lil-
tering v to produce the desired command responsc (105].
Because the full state is rarely measurcd and mcasure-
ments can contain errors, it may be necessary to cstimate

x with an extended Kalman filter, substituting X for x in
control computations.
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Evaluating G*(x) and *(x) requires that a full, d-
differentiable modcl of aircraft dynamics be included in
the control system; hence the statement of the control law
is simple, but its implementation is complex (Fig. 8).
Smooth intcrpolators of the aircraft model (e.g., cubic
splines) arc nceded. Fecdforward neural networks with
sigmoidal activation functions are infinitcly differentiable,
providing a good means of representing this model on-line
and allowing adaptation [106, 107]. Limitations to the in-
verse control approach arc discussed in [108).

(G*x)] ! » Aircraft >
Aircraft
Model
iy
-l(;“‘(x)]—] P(x) Estimator >

Figurc 8. Dccoupling Nonlincar-Inverse Control Law.

REFLEXIVE SYSTEMS

Inner-loop control is a reflexive (though not necessar-
ily lincar) function. To date, most inner loops have been
designed as procedural control structures; computational
neural networks may extend prior results to facilitate non-
linear control and adaptation. Neural networks can be
viewed as nonlinear generalizations of sensitivity, trans-
formation, and gain matrices. Conscquently, compensa-
tion dynamics can be incorporated by following earlicr
models and control structures. Nonlincar proportional-
integral and model following controllers, as well as non-
lincar cstimators, can be built using computational neural
nctworks.

Computational Neural Networks

Computational neural networks are motivated by in-
put-output and lcarning properties of biological neural
systens, though in mathematical application the network
becomes an abstraction that may bear little resemblance to
its biological antecedent. Computational neural networks
consist of nodes that simulate the neurons and weighting
factors that simulate the synapses of a living nervous sys-
tem. The nodes are nonlinear basis functions, and the
weights contain knowledge of the system. Neural net-
works are good candidates for performing a variety of re-
flexive functions in intefligent control systems because
they are potentially very fast (in parallel hardware imple-
mentation), they are intrinsically nonlinear, they can ad-
dress problems of high dimension, and they can learn
from expericnee. From the biological analogy, the neu-
rons are modeled as switching functions that take just two
discrete values; however, "switching” may be softened to
"saturation,” not only to facilitate learning of the synaptic



weights but to admit the modeling of continuous, differ-
entiable functions.

The neural networks receiving most current atiention
are slatic expressions that perform one of two functions.
The first is to approximate multivariate functions of the
form

y="h(x) O

where x and y are input and output vectors and hi(+) is the
(possibly unknown) relationship betwecn them. Neural
networks can be considered (o be generalized spline func-
tions that identify efficient input-output mappings from
observations [109, 110]. The second application is 10
classify attributes, much like the decision trees mentioned
earlier. (In fact, decision trees can be mapped to ncural
networks [111].) The following discussion cmphasizcs
the first of these two applications.

An N-layer feedforward neural network (FNN) repre-
sents the function by a sequence of operations,

r(k) = s®)wik-1)pk-1)) 2 s®Om®) k=110N (10

where y = r(N) and x = r(®, wk-1) i5 2 marrix of
weighting factors determined by the learning process, and
s(k)[-] is an activation-function vector whosc clements
normally are identical, scalar, nonlincar functions Gj(n;)
appearing at each node:

s®m®) = (011K .onmnNT (1

One of the inputs to each layer may be a unity threshold
element that adjusts the bias of the layer's output. Nct-
works consisting solely of linear activation functions arc
of little interest, as they merely perform a lincar Lransfor-
mation H, thus limiting eq. 9 to the form, y = //x.

Figure 9 represents two simple feedforward ncural
networks. Each circle represents an arbitrary, scalar, non-
linear function oj(*) operating on the sum ol its inputs,
and each arrow transmits a signal from the previous node,
multiplied by a weighting factor. A scalar nciwork with a
single hidden layer of four nodes and a unit threshold cl-
ement (Fig. 9a) is clearly paralicl, yet its output can be
written as the series

y = ago((bx + cQ) + a1o1(b1x + c1) +a202(b2x + c72)
+a303(b3x +c3) (12

illustrating that parallel and serial processing may be
equivalent.

Consider a simple example. Various nodal activation
functions, oj, have been used, and there is no need for

each node to be identical. Choosing o((+) =(*), 0| = (-)2,

g2 = (-)3. o3 = (-)4, eq. 9 is represented by the truncated
powecr scrics,

y = ag(bgx + cg) + a1(byx + <:1)2 +a3(b2x + c2)3 +
az(b3x + c3)4 Q3

It is clear that nciwork weights are redundant (i.e., that
the (a, b, ¢) weighting factors arc not independent). Con-
scquently, more than one sct of weights could produce the
same functional relationship between x and y. Training
sessions starting at different points could produce differ-
ent scts of weights that yield identical outputs. This sim-
ple cxample also indicates that the unstructured feedfor-
ward network may not have compact support (i.e., ils
weights may have global effects) if its basis functions do
not vanish for large magnitudes of their arguments.

b) Double-Inpuy/Single-Output Network.

Figurc 9. Two Feedlorward Neural Networks.

The sigmoid is commonly used as the artificial neu-
ron. It is a saturating function: 6(n) = 1/(1 + e ™M) for out-
put in (0,1) or o(m) = (1 -e"2My/(1 + ¢72M) = 1anh 7 for
output in (-1,1). Recent results indicate that any continu-
ous mapping can be approximated arbitrarily closely with
sigimoidal networks containing a single hidden layer (N =
2) (112, 113]. Symmectric functions like the Gaussian ra-

dial basis function (6(n) = c'nz) have beltler convergence
propertics for many functions and have more compact
supporl as a consequence of near-orthogonality [109,
114]. Classical B-splines {115) could be expressed in par-
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allel form, and it has been suggested that they be uscd in
multi-layered networks [116]. Hidden layers strengthen
the analogy to biological models, though they arc not nec-
essary for approximating continuous functions, and they
complicate the training process.

In control application, neural networks perforim {unc-
tions analogous to gain scheduling or nonlincar control.
Consider the simple two-input network of Fig. 9b. The
scalar output and derivative of a single sigmoid with unit
weights are shown in Fig. 10. If u is a fast variablc and v
is a slow variable, choosing the proper weights on the in-
puts and threshold can produce a gain schedule that is ap-
proximately linear in one region and nonlincar (with an
inflection point) in another. More complex surlaces can
be generated by increasing the number of sigmoids. 1f u
and v are both fast variables, then the sigmoid can repre-
sent a generalization of their nonlinear interaction.

For comparison, a typical radial basis function pro-
duces the output shown in Fig. 11. Whercas the sigmoid
has a preferred input axis and simple curvature, the RBF
admits more complex curvature of the output surface, and
its effect is more localized. The most efficient nodal acli-
vation function depends on the general shape of the sur-
face 10 be approximated. There may be cases best han-
dled by a mix of sigmoids and RBF in the samc nctwork.

The cerebellar model articulation controller (CMAC)
is an alternate network formulation with somewhat diflcr-
ent properties but similar promise for application in con-
trol systems [117, 118]. The CMAC performs table look-
up of a nonlinear function over a particular rcgion of
function space. CMAC operation can be split inlo two
mappings. The first maps each input into an association
space A. The mapping generates a sclector vector a of
dimension ng, with ¢ non-zero elements (usually oncs)
from overlapping receptive regions for the input. The
second mapping, R, goes from the selector veclor a 1o the
scalar output y through the weight vector w, which is dc-
rived from training:

y=wTa (14

Training is inherently local, as the extent of the receptive
regions is fixed. The CMAC has quantized output, pro-
ducing "staircased" rather than continuous output. A rc-
cent paper proposes to smooth the output using B-splinc
receplive regions [119].

The FNN and CMAC are both examples of static
networks, that is, their outputs are essentially instanta-
neous: given an input, the speed of output depends only
on the speed of the computer. Dynamic networks rcly on
stable resonance of the network about an equilibrium
condition to relate a fixed set of initial conditions 1o a
steady-state output. Bidirectional Associative Mcmory
{(BAM) networks [120] are nonlinear dynamical systcms
that subsume Hopfield networks [121], Adaptive-Rcso-
nance-Theory (ART) networks {122], and Kohonen net-
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works {123]). Like FNN, they use binary or sigmoidal
ncurons and store knowledge in the weights that connect
them; however, the "ncural circuits” take time to stabilize
on an output. While dynamic networks may operate more
like biological ncurons, which have a refractory period
between differing outputs, computational delay degrades
aircrafl control functions.

Although ncural networks performing function ap-
proximation may gain little from multiple hidden layers,
nctworks uscd for classification typically require multiple
layers, as follows from the ability to map decision trees to
ncural networks [111). The principal values of perform-
ing such a mapping are that it identifies an efficient
structure (or parallcl computation, and it may facilitate in-
cremental learning and generalization.

b) x-Derivative of Sigmoid.

Figure 10. Example of Sigmoid Output with Two Inputs.

Neural nctworks can be applicd to failure detection
and identification (FDI) by mapping data patterns (or
feature veciors) associated with failures onto detec-

“torfidentification vectors (¢.g., [124-126]). To detect fail-



ure, the output is a scalar, and the nctwork is traincd (for
example) with "1" corresponding to failurc and "0"” corre-
sponding to no failure. The data patterns associated with
each failure may require feature extraction, pre-process-
ing that transforms the input time scries into a fcaturc
vector [124].  As an alternative, the fcature veclor could
be specified as a parity vector [127], and the ncural net-
work could be used for the decision-making logic in FDL.

b) x-Derivative of RBF.

Figure 11. Example of Radial Basis Function Output with
Two Inputs.

Reflexive Learning and Adaptation

Training neural networks involves either supervised
or unsupervised learning. In supervised learning, the net-
work is furnished typical histories of inputs and outputs,
and the training algorithm computes the weights that mini-
mize fit error. FNN and CMAC require this type of train-
ing, as discussed below. In unsupervised learning, the in-
ternal dynamics are self-organizing, tuning the network 1o
home on different cells of the outpul semantic map in re-
sponse to differing input patterns {128},

Backpropagaiion lcarning algorithms for the ele-

ments of W{(K) typically involve a gradient search (e.g.,
[129, 130]) that minimizes the mean-square output error

E= [rd - r(N)]T[rd - r(N)] (15

wherc rq is the desired output. For each input-output cx-
ample presented to the network, the gradient of the error
with respect 1o the weight matrix is calculated, and the
weights arc updated by

(k) (k) _ T
W0, =W+ prik 1)[d(k)] (16

B is the learning rate, and d is a function of the error be-
tween desired and actual outputs. For the output layer, the
crror term is

dM) = STWN-Dr(N-D] (g - r(N)y (7

where the prime indicates differentiation with respecttor.
For interior layers, the error from the output layer is prop-
agated from the output error using

a®) = §[wk-De(k-) [w(k—l)]Td(k—l) (18

Scarch rate can be modified by adding momentum or
conjugalc-gradicnt lerms 1o ¢q. 16.

The CMAC nctwork learning algorithm is similar to
backpropagation. The weights and output arc connected
by a simple lincar operation, so a lcarning algorithm is
casy Lo prescribe. Each weight contributing Lo a particular
output value is adjusted by a fraction of the difference be-
tween the network output and the desired output. The
fraction is determined by the desired Icarning speed and
the number of receptive regions contributing to the output.

Learning speed and accuracy for FNN can be further
improved using an extended Kalman filter {106, 107,
131]. The dynamic and observation models for the filter
are

Wk =Wk + (k-1 (19
7k = h(wk, rk) + nk 20

where wi is a vector of the matrix Wi's elements, h(*) is
an obscrvation function, and qk and nk are noise pro-
cesses. I the network has a scalar output, then zk is
scalar, and the extended Kalman filter minimizes the fit
crror between the training hypersurface and that produced
by the nctwork (cq. 15). It has been found that the fit er-
ror can be dramatically reduced by considering the gradi-
ents of the surfaces as well (106, 107]. The observation
vector becomes
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h(wg,ry)
Zk = g_:.‘(wk’rk) +ng 21

with concomitant increase in the complexity of the filter.
The relative significance given to function and derivative
error during training can be adjusted through the mca-
surement-error covariance matrix used in filter design.

Recursive estimation of the weights is usclul when
smooth relationships between fit errors and the weights
are expected, when the weight-vector dimension is not
high, and when local minima are global. When one of
these is not true, it may speed the computation of weights
to use a randomized search, at least until convergent re-
gions are identified. Such methods as simulaied anneal-
ing or genetic algorithms can be considered (and (he latter
has philosophic appeal for intelligent systems) {132-134].
The first of these is motivated by statistical mechanics and
the effects that controlled cooling has on the ground states
of atoms (which are analogous (o the nctwork wceights).
The second models the reproduction, crossover, and mu-
tation of biological strings (e.g., chromosomcs, again
analogous to the weights), in which only the fittest com-
binations survive.

Suatistical search methods can go hand-in-hand with
SRA (o train robust neural networks. Following [98], the
randomized search could be combined with Monte Carlo
variation of system parameters during training, numcri-
cally minimizing the expected value of fit error rather than
a deterministic fit error.

We envision an aerodynamic model that spans the
entire flight envelope of an aircraft, including post-stall
and spinning regions. The model contains six neural nct-
works with multiple inputs and scalar outputs, three for
force coefficients and three for moment cocfficicnts (for
example, the pitch moment network takes the form Cpy, =
g(x,u), where x represents the state and u the control). If
input variables are not restricted (o those having plausible
aerodynamic effect, false correlations may be created in
the network; hence, attitude Euler angles and horizontal
position should be neglected, while physically mcaningful
terms like elevator deflection, angle of attack, pitch rate,
Mach number, and dynamic pressure should be included
[107].

The aircraft spends most of its flying time within
normal mission envelopes. Unless it is a traincr, the air-
craft does not enter post-stall and spinning rcgions; con-
sequently, on-line network training focuscs on normal
flight and neglects extreme conditions. This implics not
only that networks must be pre-trained in the latter regions
but that normal training must not destroy knowledge in
extreme regions while improving knowledge in normal
regions. Therefore, radial basis functions appear (o be a
better choice than sigmoid activation functions for adap-
tive networks.
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Elements of the input vector may be strongly corre-
lated with cach other through the aircraft's equations of
motion; hence, nciworks may not be able to distinguish
between highly corrclated variables (c.g., pitch rate and
normal acceleration). This is problematical only when
the aircraft is outside its normal flight envelope. Pre-
training should provide inputs that are rich in frequency
content, that span the state and control spaces, and that are
as uncorrclated as possible. Generalization between
training points may provide smoothness, but it does not
guaranltce accuracy.

Control Systems Based on Neural Networks

Ncural networks can find application in logic for
control, estimation, system identification, and physical
modcling. In addition to work already referenced, addi-
tional cxamples can be found in [135-140].

Figure 12a illustrates an application in which the neu-
ral nciwork forms the aircraft model for a nonlinear-in-
verse control law. The aircraft model of Fig. 9 is imple-
mented with a neural network that is trained by a dedi-
cated (weight) extended Kalman filter (the thick gray ar-
row indicating training). The extended Kalman filter for
stalc estimation is expanded 1o estimate histories of forces
and moments as well as the usual motion variables.

It is possiblc to conduct supervised lcarning on-line
while not interfering with normal operation because the
state Kalman filter produces both the necessary inputs and
the desired outputs for the network training algorithm.
There is no need to provide an ideal control response for
training, as the form of the control law is fixed. Procedu-
ral and refllexive functions are combined in this control
implementation, under the assumption that the direct ex-
pression of inversion is the most efficient approach.

Figure 12b shows a logical extension in which the in-
verse control law is implemented by neural networks. In-
version is an implicit goal of neural-network controllers
(135, 136], and the formal existence of inversion net-
works has been explored {141). Although Fig. 12b im-
plies that the inversion networks are pre-trained and fixed,
they, 100, can be traincd with the explicit help of the net-
work that modcls the sysiem [136].

If a desired control output is specified (Fig. 12c), then
the formal model of the aircraft is no longer needed. The
control networks learn implicit knowledge of the aircraft
modecl. Rcferring to Fig. 10 and eq. 1 and 2, control and
estimation gains, state-transition and control-effect matri-
ces, and mecasurcment transformations can be imple-
mented as static neural networks with either off-line or
on-line lcarning.

Dividing control networks into separate feedback and
forward parts may facilitate training to achieve design
goals. A fecdback neural network has strongest effect on
homogeneous modes of motion, while a forward neural
nciwork is most effcctive for shaping command (forced)
response.  This structure is adopted in [139), where the



forward and feedback networks are identificd as reason
and instinct networks. In pre-training, it is plausible that
the feedback network would be trained with initial condi-
tion responses first, to obtain satisfactory transicnt re-
sponse. The forward network would be trained next 1o
achieve desired steady states and input dccoupling. A
third training step could be the addition of command-crror
integrals while focusing on disturbance inputs and param-
eter variations in training sets.
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Figure 12. Adaptive Control Structures Using Necural
Networks.

Once basclines have been achieved, it could prove
uscful to admit limited coupling between forward and
feedback networks o enable additional nonlinear com-
pensation.  In adaptive applications, networks would be
pre-traincd with the best available models and scenarios to
establish satisfactory baselines; on-line training would
slowly adjust individual systems to vehicle and mission
characteristics.

Including the intcgral of command-vector error as a
ncural network input produces a proportional-integral
structurc [140], while placing the integrator beyond the
nelwork gives a proportional-filter structure (Fig. 10).
The principal purpose of these structures is, as before, to
assurc good low- and high-frequency performance in a
classical sense. Exiension of neural networks to state and
weight filters is a logical next step that is interesting in its
own right as a means of more nearly optimal nonlinear es-
timation.

CREW-STRUCTURED INTELLIGENT
AIRCRAFT CONTROL

The declarative AUTOCREW paradigm presented
carlicr can be expanded to include procedural and reflex-
ive functions, recognizing that conuol of flight is just one
of scveral control functions in the aircraft. An intelligent
control system for a civil aircraft might take the form of
Fig. 13; functions represented by crew-member equiva-
lents are linked o cach other by a communications net-
work and to aircraft systems via a scparate network. This
concept remains to be explored.

CONCLUSION

Intelligent (light control systems can do much to im-
prove the opcerating characteristics of aircraft. An exami-
nation of cognitive and biological models for human con-
trol of systems suggest that there is a declarative, procedu-
ral, and reflexive hicrarchy of functions. Top-level air-
craft control functions are analogous to conscious and
preconsctous thoughts that arc transmitted to lower-level
subsystems through subconscious, ncural, and reflex-like
activitics.  Human cognition and biology also suggest
models for lcarning and adaptation, not only during opera-
tion but between periods of activity.

The computational analogs of the three cogni-
tive/biological paradigms are expert systems, stochastic
controllers, and ncural networks. Expert systems organize
decision-making clficiently, stochastic controllers opti-
mize estimation and control, and ncural networks provide
rapid, nonlincar, input-output functions. It appears that
many functions at all levels could be implemented as neu-
ral networks. While this may not always be necessary or
cven desirable using sequential processors, mapping
declarative and proccedural functions as ncural networks
may prove most uscful as a route to new algorithms for
the massively parallel processors of the future.
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