13 research outputs found

    A Realistic Simulation for Swarm UAVs and Performance Metrics for Operator User Interfaces

    Get PDF
    Robots have been utilized to support disaster mitigation missions through exploration of areas that are either unreachable or hazardous for human rescuers [1]. The great potential for robotics in disaster mitigation has been recognized by the research community and during the last decade, a lot of research has been focused on developing robotic systems for this purpose. In this thesis, we present a description of the usage and classification of UAVs and performance metrics that affect controlling of UAVs. We also present new contributions to the UAV simulator developed by ECSL and RRL: the integration of flight dynamics of Hummingbird quadcopter, and distance optimization using a Genetic algorithm

    Sharing a work team with robots : The negative effect of robot co-workers on in-group identification with the work team

    Get PDF
    This study investigated whether the introduction of robots as teammates has an impact on in-group identification. We used two samples from the United States (N = 1003, N = 969). Participants were asked to imagine a hypothetical situation in which they were assigned to a work team at a new job. The number of robot teammates was manipulated, and the control group included only humans. Two studies examined perceived in-group identification with variance analysis and individual differences with regression analysis. Having a robot on the work team had a negative impact on in-group identification. The results suggest that when humans are members of minority subgroup within a work team, their subgroup identity is threatened. Identification with a work team including robot members is associated with individual factors such as attitude towards robots, technological expertise, and personality. Our findings indicate that introducing a robot as a teammate may affect in-group identification process negatively with some individual differences.acceptedVersionPeer reviewe

    FABRIC: A Framework for the Design and Evaluation of Collaborative Robots with Extended Human Adaptation

    Full text link
    A limitation for collaborative robots (cobots) is their lack of ability to adapt to human partners, who typically exhibit an immense diversity of behaviors. We present an autonomous framework as a cobot's real-time decision-making mechanism to anticipate a variety of human characteristics and behaviors, including human errors, toward a personalized collaboration. Our framework handles such behaviors in two levels: 1) short-term human behaviors are adapted through our novel Anticipatory Partially Observable Markov Decision Process (A-POMDP) models, covering a human's changing intent (motivation), availability, and capability; 2) long-term changing human characteristics are adapted by our novel Adaptive Bayesian Policy Selection (ABPS) mechanism that selects a short-term decision model, e.g., an A-POMDP, according to an estimate of a human's workplace characteristics, such as her expertise and collaboration preferences. To design and evaluate our framework over a diversity of human behaviors, we propose a pipeline where we first train and rigorously test the framework in simulation over novel human models. Then, we deploy and evaluate it on our novel physical experiment setup that induces cognitive load on humans to observe their dynamic behaviors, including their mistakes, and their changing characteristics such as their expertise. We conduct user studies and show that our framework effectively collaborates non-stop for hours and adapts to various changing human behaviors and characteristics in real-time. That increases the efficiency and naturalness of the collaboration with a higher perceived collaboration, positive teammate traits, and human trust. We believe that such an extended human adaptation is key to the long-term use of cobots.Comment: The article is in review for publication in International Journal of Robotics Researc
    corecore