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Abstract
by Kazi Tanvir Ahmed Siddiqui

Robots have been utilized to support disaster mitigation missions through exploration

of areas that are either unreachable or hazardous for human rescuers [1]. The great

potential for robotics in disaster mitigation has been recognized by the research com-

munity and during the last decade, a lot of research has been focused on developing

robotic systems for this purpose. In this thesis, we present a description of the usage

and classification of UAVs and performance metrics that affect controlling of UAVs.

We also present new contributions to the UAV simulator developed by ECSL and

RRL: the integration of flight dynamics of Hummingbird quadcopter, and distance

optimization using a Genetic algorithm.

kahmedsiddiqui@nevada.unr.edu
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Chapter 1

Introduction

Unmanned aerial vehicles (UAVs) have been utilized for both military and civilian

applications. The successful deployment of drones in military missions encouraged

many other countries and governments to start investing in drone development pro-

grams, hence modern unmanned aerial vehicles hold an important and permanent

position in the military arsenal of the US and many other countries across Europe,

Middle East, and Asia. In addition to the military usage, there is also a great po-

tential for using UAVs in numerous civilian applications. In recent years the research

and business communities became highly interested in exploring the possibilities of

using UAVs for civilian applications such as fire fighting, search and rescue operation,

product delivery, surveillance, construction and building inspection, film and tele-

vision production, mapping, agriculture, etc. However, the methods for controlling

these UAVs can vary greatly due to the nature of the tasks assigned to the UAVs, the
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communication possible between UAV and operator, and the regulatory environment

the UAVs are operating within. In this thesis, we will examine UAV user interfaces,

for a wide range of scenarios. We also introduced the simulation of an autonomous

Hummingbird quadcopter flying through user specified points in Reno, Nevada. We

used genetic algorithm [3] to optimize the total distance travelled by the UAV.

Despite the current uses for UAVs, there are numerous challenges that need to be ad-

dressed before their full potential can be utilized in the daily civilian applications. A

number of technical challenges related to navigation, sensing, communication, band-

width, autonomy, etc. need to be addressed before UAVs can be integrated into

the civilian airspace. Because of these concerns the US FAA has in place a set of

regulations that make it illegal to fly UAVs into the regular airspace or to conduct

flights over densely populated areas. Williams [4] suggests that the rate of accidents

for UAVs is several times higher than for manned aircraft. The development of UAV

user interfaces (UI) becomes more important as the FAA considers more autonomous

and beyond line-of-sight (BLOS) operation could soon be possible under proposed

regulation.

Crucial factor for UAV is the user interface design. For using UAVs in search and

rescue operation, which is often time critical and demands lots of attention from

the operator, the design of the user interface demands much attention. Numerous

research showed that the design of the user interface affects the awareness, workload

and performance of the operator.
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The remainder of the paper is organized as follows:

• Related Work: We describe significant research based on their ingenuity and

clarity for UAV classification and User Interface design. We also provided a

historical overview in this section so that a reader can understand how the

design evolved overtime.

• Level of Autonomy: In this chapter, we discuss level of autonomy, which

is one of the most important and contentious part in controlling UAVs. We

highlight research that defined and classified different levels of autonomy. We

also review how autonomy level affects interaction with UAVs, workload, and

performance.

• Performance Metrics for Sensory Control: This chapter is a collection

of literature on different performance measurement of UAV interfaces. We re-

viewed many performance metrics. We included as many performance metrics

as possible from various sources, and tried to combine them in broad categories.

• UAV Simulator: We describe the simulator architecture for UAV operators

in Reno, Nevada. We introduce a disaster zone that was built in Unity game

engine to simulate semi-autonomous flying of a Hummingbird quadcopter. We

also describe a genetic algorithm [3] for optimizing the total distance travelled

by the UAV.
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• Measuring Awareness and Workload: This chapter describes an experi-

ment we set up to show the correlation between level of autonomy versus situa-

tional awareness and operator workload. We used the NASA-TLX scale in this

experiment to show operator training effects.

• Conclusion and Future Work: We summarize the contributions of this the-

sis, and address critical problems that need to be solved in future.

1.1 Summary

UAVs are used for of civilian purposes such for: recreational photography, farming,

surveillance, drone delivery, and search and rescue operation. The increasing usage

of UAVs elements that we think about the user interface design for controlling the

UAVs, and their effects on operators’ performance. An increasing tendency towards

autonomous systems also instigated us to develop the autonomous path planning and

distance optimization by UAVs.
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Chapter 2

Related Work

Early systems used teleoperation as the main method for controlling UAVs. In this

approach a human operator sits at a ground station and maintains UAV control from

a distance. The control interface could be a joystick, waypoint navigation through a

graphical user interface, virtual reality headset, or any other innovative interface, but

the connotation of teleoperation is that the distance is too great for the operator to

see what the UAV is doing therefore the interface must have some type of display and

control mechanisms [5]. The major drawback of teleoperation is that it requires at

least one human operator per UAV, possibly more depending on mission objectives.

For example, some military UAVs require up to four human teleoperators plus a fifth

who specializes in takeoffs and landings [5]. To eliminate these drawbacks semi-

autonomous control was pursued, where the UAV and human operator share control

over the system. In general, a UAV has a set of lower-level operations that it can
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perform and an operator issues high-level commands that will then be executed in a

closed loop fashion by the UAV. Previous research has shown that a semi-autonomous

approach is well accepted by the emergency response community since they have more

confidence in a system that allows for such control [6, 7]. This thesis will refer to the

semi-autonomous approach for UAV control.

For both teleoperation and semi-autonomous control, the operator controls the UAV

from a distance, therefore it is necessary to have some type of interface not only to

issue commands but also to see what the UAV is doing. Previous work has addressed

the issue of achieving multi-robot control through well-designed interfaces that take

into account the cognitive and perceptual strengths and limitations of the human

operators [8, 9]. Others have focused on studying the user requirements and their

implications for the interface design, showing that interfaces are often overloaded

with unnecessary information, potentially causing data to be neglected by operators

[10, 11]. UAV literature generally discusses the human factors in terms of situational

awareness (SA) and operator cognitive load (CL). When discussing the human factors

associated with the design of interfaces for multiple UAV control our main focus will

be on the human—UAV interaction in terms of CL and SA. We are interested in ex-

ploring if human factors have been adequately addressed in the current UAV interface

development, and subsequently identify the best practices for UAV interface design,

and establish the appropriate levels of autonomy in order to optimize CL and SA.

For example, designers wish to maximize operator performance while simultaneously

reducing the workload of the human operator.
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Research has shown that the content and format of information displayed in the

interface has a potentially large effect on the system’s performance level [12]. In-

formation that is well organized, provides enough concrete details, and is consistent

tends to increase the level of trust that the operator has for the system. Baker et al.

(2004) have shown the importance of integrating visual information from incoming

video with the other robot sensor information [11]. Their study revealed that during

a disaster mitigation mission most of the users, except for those that were highly

experienced, focused solely on the video-stream window, while neglecting other in-

formation on the interface screen. On the other hand, simply incorporating all the

necessary information around the video window is not a solution since it may overload

the display and therefore increase the workload on a human operator. To overcome

the issue of increased monitoring requirements it is desirable to “hide” certain infor-

mation from the user and utilize “alarm-systems” to notify the operators as needed

about the critical events that need their attention. This leads to another research

question related to what type of information can be “hidden”, and at what mission

stages can this information be “hidden” without having any negative impact on the

system performance in general, as well as on the operator’s situational awareness in

specific?

Another human factor to be considered is related to the question of what sensory

input should be used to communicate important information to the operator, visual

(pop-up windows), auditory, or a combination of both? Audio alerts introduce less

overload on the operator, but in the other hand they provide less situational awareness
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as the operator needs to distinguish what a given signal is telling them. Wickens

(2002) suggests that cross-modal approach (information divided between one visual

and one auditory channel) is better than intra-modal (e.g. two visual channels) [13].

Finding the trade-off between these two factors is an interesting topic that needs to

be further investigated through experimentation. Further work needs to be done in

order to determine precisely what type of information is best presented visually and

what through audio signals, and how to integrate the two sensory inputs to achieve

an improved situational awareness while reducing the operator workload.

2.1 The Case For Simulation

A review of mobile robot simulation environments reveals that simulation is becoming

an increasingly important aspect of mobile robots [14], helping researchers perform

more experimentation in this area. A realistic graphical rendering system and ideal

physics simulations are the main features of a good simulator. Computer video game

engines often are used to power a robot simulation environment capable of simulating

multiple robots, people, and objects in the environment. Most game engines were

built for creating physically accurate simulation in the game world. We utilized this

physics engine to model the world where our UAV will be operating. This simulation

might not be perfect in terms of the physics governing the universe, but a close

approximation of how a real world UAV would behave.
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We simulated the flight dynamics of a Hummingbird quadcopter. For the autonomous

flying of this UAV, Michael et. al. [15] developed a mathematical model. To move the

UAV from point A to point B, the error in x, y, z position are calculated and used to

determine δax , δay , and δaz . To calculate the angular speed for each of the rotors and

their orientation, the changes in rotation angles eθ, eϕ, and eψ are calculated. Using

these values, the angular speed of the motors: Ω1, Ω2, Ω3, and Ω4 can be determined.

Using the values of angular speed of the rotors, we calculate the propeller force,

moments, and inputs for the rotors. Thus, the UAV advances to its destination.

2.2 Summary

In this chapter we reviewed the literature related to UAV user interface. The review

shows that there have been numerous work done in the field of UAV. We given a

brief background on how UAVs evolved overtime, and what are the possible ways to

improve them in future. We also discussed the importance of simulation in disaster

mission using UAVs.
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Chapter 3

Level of Autonomy

Autonomy of a UAV refers to the independence it has for navigation, coordination,

and decision making. A fully autonomous UAV should be able to accomplish its

mission without any human intervention. For example, in a search and rescue mission,

the UAV would need to identify a target, plan the shortest path towards that target,

and deliver the payload in a fixed time, while maintaining communication with other

UAVs in the fleet, and properly selecting tasks based on priority. It should also

have a safety mechanism so that a mid-air incident does not occur and cause harm

to anyone. Manually controlled UAVs are controlled by one or more operators who

maintain the speed, altitude, flight-path, manage any payload, check the fuel and

other status, avoid any obstacles, and make decisions about the target. Current

UAV usage primarily utilizes manual control, which causes heavy workload and less

awareness to the operators.
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The level of autonomy plays an important role in the performance of UAV operators.

According to Durst and Gray [16], three of the biggest challenges for autonomous

vehicles are: user acceptance of the unmanned system, effective test and evaluation

of autonomy, and defining a universal autonomy level for the system. This relates di-

rectly to the trust issue discussed above (and expanded further below). Though there

is novel research on integrating autonomy in UAVs, standards for UAV autonomy

remain elusive. The authors [16] categorized the frameworks for universal autonomy

level into two categories: contextual and non-contextual. Contextual methodologies

take account of the UAV’s mission complexity, environmental complexity, and human

independence. Mission complexity includes commanding structure, type of tasks,

collaboration, planning etc. Environmental complexity includes terrain structure,

object’s density/types, weather condition, threats decoy, and mapping etc. Human

independence includes interaction time, planning time, interaction level, workload

etc. Non-contextual methodologies do not take account of these factors.

Automation also influences the level of workload on human operators. While intu-

itively we might think that higher automation by default means less overload, this

is not always the case. Automation can often have the effect of merely changing

the nature of workload (reduce manual load while increasing the cognitive load), or

shifting the workload in time (support the pilot at times of low workload but fail to

do so when needed most). The research has shown that increased automation might

in occasions have such negative effect, thus the UAV system should be designed not

only to avoid overload, but under-load as well [17].
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The level of autonomy may have bearing on the trust of UAVs in search and res-

cue. Automation would help to reduce operator error and cognitive overload, but

on the other hand, previous research has shown that the emergency personnel have

little trust in fully-autonomous systems, since fully-automated systems need to be

governed by formal processes that would limit their flexibility to address certain sit-

uations. Therefore, tele-operated, semi-autonomous, rather than fully-autonomous

UAVs would be preferred. It might be advantageous to have a human operator ready

to take over when automation reaches its limits [10].

The prior paragraph suggests that reducing operator error through autonomy while

increasing operator trust in a UAV system may affect adoption of such technology.

Riley [18] showed that trust is the main factor that determines if an operator will

choose to use an optional automation or refuse to accept its usefulness altogether.

Research has shown that both extremes of trust can be potentially dangerous for the

success of the mission. Insufficient trust can lead to situations where the operator

refuses to make use of automation [19], while in the other hand over-trust may lead the

operator to rely on automation even in situations when better performance would be

achieved if the human took control over the system [20]. These issues need to be taken

into account when designing the human-UAV interaction strategies, and this leads to

an important research question: how to establish the appropriate balance between

autonomy and human control in order to achieve maximum trust and acceptance for

the UAV [21]?
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Figure 3.1: Autonomy vs. Situational Awareness. Situational Awareness rises
when autonomy rises upto a fixed level. After a threshold point, it decreases.

Another implication of semi- or full-autonomy is its effect on operator alertness or

situational awareness during the disaster mitigation mission. Bainbridge, et al., have

shown that operators have difficulty maintaining their attention during periods of low

task demand [22]. Hence, operator under-load should be taken into account because

reduced situational awareness may resultand result in the failure of a human operator

to observe important (even critical) moments during a disaster mitigation mission.

The effects of automation on SA are best described through the graph in Figure 3.1.

From the figure we can see that the SA increases autonomy up until the point when in

reaches the maximal SA. Increasing the autonomy beyond this point has the negative

effect of reduced SA because of the low task demand. Further research should be
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conducted in order to ascertain the optimal autonomy level that ensures the maximal

SA in a disaster mitigation scenario.

3.1 Summary

Research in autonomy level shows that for a disaster mitigation robot, it is bet-

ter to use a semi-autonomous robot rather than a fully autonomous robot. Semi-

autonomous robots give an operator the ability to share control to maximize joint

efficiency. In that way, the principle control of the system retains in the human hand.

Other research showed that people tend to rely less on fully autonomous robots. The

level of autonomy deserves a lot of discussion, as it is related to trust, awareness,

and workload. We presented an experiment in later chapter, where we tried to find a

correlation among level of autonomy versus situational awareness and workload.
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Chapter 4

Performance Metrics For Sensory

Control

Our goal is to design an interface that produces optimum level of cognitive load

and awareness. For this reason, it is important to measure some factors and re-

late them with the performance. Murphy emphasized the importance of designing

common metrics that would become the standard for evaluating HRI aspects in the

robot-assisted SAR systems [23]. However no such standard has been universally

accepted and researchers use different metrics that are often contradictory, evaluate

interfaces incorrectly, or evaluate one aspect of human-robot interaction correctly but

fail to properly validate the system as a whole. In this chapter, we discussed some

performance metrics which are related to the user interface for controlling multiple
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UAVs. We included mentioned numerous articles and tried to segment all the factors

responsible for performance metrics in broad categories.

Several researchers have taken the approach of measuring the system performance,

hence workload and situational awareness, in terms of time required for an operator

to learn using the interface, time to complete a given mission, and minimization of

critical incidents during the operation [24]. In an attempt to compare operator per-

formance in supervisory vs. manual control, Geddes et al.[25] assessed the controller

task demand by measuring the number of actions required to complete the task, cog-

nitive workload, and time required for the task. The operator’s tasks were divided

into three hierarchical stages. In the first case, the operator controlled the aircraft

directly using commands for pitch, roll, thrust etc. In the second case, the operator

set the course, altitude, and airspeed. In the third step, the operator issued task level

commands such as line formation and trail formation. The experiment showed that,

in terms of task performance and cognitive workload, supervisory control required

fewer number of actions by the operator and much less cognitive workload.

Operator workload, trust in automation, operator multitasking performance, and

situational awareness are among the most critical factors for assessing performance

of UAV control. However, there are many other factors which may have significant

effects on the performance of UAV operator using a particular control interface design.

We decided to divide these factors into two broad categories: Subjective and Objective

measures.
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Subjective measures are the self-measurement of operator performance. These can

include: perceived difficulty level, physical and mental workload, effect of provision,

trust in automation, stress, anxiety, frustration etc. Objective measures are explicit

assessments of user performance, such as situational awareness, operator multitasking

performance, number of targets detected, area of the map covered, number of UAVs

controlled simultaneously etc.—basically the data which correspond directly to the

goal of a specific task. Some factors can be regarded as both subjective or objective,

and can be measured in both ways. The next two sections will explore these measures

in more details.

4.1 Subjective Measures

The subjective measurement scale evaluates the system performance from an opera-

tor’s perspective by measuring the amount of information retained in working memory

[26]. Subjective scales are more practical [27] and also the easiest method to assess

workload [26]. Measurements are taken during task or after the task. Casner and

Gore [28] categorized the subjective measurement scales in two groups. One asks the

operator to assign a numerical value for a particular task, while the other asks an

operator to compare the tasks according to difficulty and/or workload. Most of these

subjective measures use an n-point Likert scale. Some examples are: Instantaneous

Self Assessment, Bedford, NASA Task Load Index (NASA-TLX), Subjective Work
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Assessment Technique (SWAT), Modified Cooper-Harper scale, Dynamic Workload

scale, Overall Workload scale [27] etc.

John et. al. [29] also showed types of subjective rating scales and their strengths and

weaknesses:

Rating Scale Rating
Scale Type Strengths/Weaknesses

Air Force Flight Test
Center (AFFTC)

System Ad-
equacy, 6
point., Inter-
val, Bi-Polar

Strengths: No middle point-forced to
make choice. Weaknesses: Not used
outside AFFTC

AFFTC-modified
USAF-SAM (School of
Aerospace Medicine)

Workload, 7
point, Inter-
val

Strengths: Easy to use, fits on flight
cards. Weaknesses: General workload
not specific

Readability and
Strength

Comm Qual-
ity, 5 point.,
Interval

Strengths: Pilot friendly/familiar.
Weaknesses: Verbal anchors not de-
fined

Bedford Workload,
Ordinal

Strengths: Pilot friendly/familiar,
validated [30]. Weaknesses: Mid-
range semantic descriptors are vague,
interchangeable

Subjective Workload
Assessment Technique
(SWAT)

Workload,
100 point,
Interval, 3
Dimensional

Strengths: Easy to use, once learned.
Weaknesses: Requires card sort, spe-
cialized software, and training

Modified Cooper-
Harper

Workload,
Ordinal

Strengths: Pilot friendly/familiar.
Weaknesses: Non-interval scale

Situation Awareness
Global Assessment
Technique (SAGAT)

Situation
Awareness

Strengths: Widely used and accepted.
Weaknesses: Limited to simulations.

Table 4.1: Subjective Human-System Integration Measures of Performance
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4.1.1 Operator Workload

Operator workload can be defined as the level of work or attention required from

the operator in order to complete the mission in a successful and efficient manner.

Workload can be both physical and mental. In the context of operating UAVs, we

will only consider mental workload. Present works of measuring workload focus on

psychomotor, perceptual, or communication workload [31]. Nisser and Westin [32]

defined workload as the total amount of demands put on an operator and the subjec-

tive response of that operator to those demands. Gopher [33] described workload as

a cognitive resource required to perform a task. We believe that, operator workload

for controlling single or multiple UAVs, is a temporary state of mind which indicates

the amount of concentration required for successfully accomplishing a task. It can be

measured by monitoring brain activity while in the task. We also hypothesize that

more workload does not ensure better performance, rather we believe that perfor-

mance can be enhanced in a supervisory control task by becoming more familiar with

the system and interface.

Many different methodologies to measure workload exist. Miller [27] categorized the

workload measurement into three groups: physiological, subjective, and performance-

based measures. In physiological measures, the operators heart-rate, eye blink rate,

brain activity, blood pressure, respiratory rate etc. are measured. The underlying

belief is that sudden physiological changes indicate workload. Subjective measure
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asks the operator to rate the overall task. There are numerous methods for subjec-

tive measures, as we discussed earlier. Finally, the performance-based measurement

tries to estimate the workload from operator’s difference in performance versus the

difference in workload. Casner and Gore [28] also has the same classification, except

that they added a new category—Indirect Measurement. In Indirect Measurement,

workload is measured by adding a secondary task along with the primary task, to

measure how much spare capacity the user has. They also proposed to measure speed,

accuracy, and activity during the task as an indication of physiological workload.

4.1.2 Trust in Automation

There are three components of trust which are found almost universally. First, there

must a truster who put his/her trust on someone; there must be a trustee who was

trusted, and something is at stake in this relationship. Second, the trustee must have

an incentive, for example money, goodwill, or reputation to hold the trust. Finally,

there must a possibility that the trustee may break the trust [34]. According to

Lee and See [21], trust is the expectation of a favorable outcome from opposite end.

Trust is an untenable component in interpersonal relation. It is also very significant

in human-machine interaction [35].

Autonomy enables machines to follow particular patterns repeatedly without any

errors. It is the technology that “actively selects data, transforms information, makes

decisions, or controls processes” [21]. Human-automation labor systems can be very
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efficient and give people more freedom [35]. Studies showed that trust in automation

has both beneficial and deleterious effects. In a study conducted by Dzindolet et. al.

[36], people were asked to identify the presence or absence of a camouflaged soldier in

slides of a terrain using a decision making aide; most of their decisions were biased by

the aide. However, when they found out that the aide made mistakes, they hesitated

to utilize the aides, even if trust had been established prior. Chen [37] pointed out

that trust in automation is misleading as it has the “connotation of a prescribed

behavior.” Calibration is a more appropriate term in automation. Because, operators

will only intervene in the supervisory task when they believe that their decisions are

superior than machines’.

The level of reliability is also crucial to trust. Wickens and Dixon [38] showed that,

“a reliability of 0.7 was the ‘crossover point’, below which unreliable automation was

worse than no automation at all.” When there is a lack of reliability on autonomous

system than a manual one, people tend to misuse that system. Mosier and Skitka

[39] hypothesized that people rely on autonomous systems because they believe that

these systems are more reliable than manual ones. In addition, reliable automation

significantly reduces decision time compared to manual performance [40]. Therefore,

in terms of decision making and reliability, trust in automation is very important. As

UAV operators have to deal with autonomy and decision making continuously, trust

is a major concern for building a reliable user interface for UAVs.
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4.2 Objective Measures

In the previous section, we described how subjective measures contribute in the per-

formance of UAV operators. Though subjective measures are very important for

assessing performance, objective measures are the direct indication of system per-

formance [29]. For example in a human-robot cooperation task, objective measures

would measure the robot tasking time, mission execution time, and switching time

[41]. De Visser et. al. [42] measured robot performance and team performance as an

objective measure in another human-robot collaboration task. They defined Execution

Efficiency and Navigational Efficiency as two metrics to measure robot performance

while team performance was measured in MITPAS. Execution Efficiency is the ratio

of the time for executing a task vs. the total mission time. Navigational Efficiency is

the actual distance travelled by a robot compared to the preplanned route length.

Other researchers came up with different methods to implicitly measure operator

performance. Those include measuring physiological indication as mentioned ear-

lier, anthropomorphic measures which evaluates pilot’s surroundings in the cockpit,

perceptual measures evaluates the quality of display or auditory feedback system,

and operator/system performance is measured by flight control quality, situational

awareness, and workload measurement [29]. Situation Awareness Global Assessment

Test (SAGAT) is a widely used technique to assess the situational awareness, while

Mixed Initiative Team Performance Assessment System (MITPAS) is widely used for

human-robot team performance.
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4.2.1 Operator Multitasking Performance

In a task-network computer model developed by Army Research Laboratory (ARL)

[43] researchers simulated a combat environment, where a soldier has to do multi-

ple tasks: monitoring UAV feed, controlling an autonomous reconnaissance vehicle

(ARV), viewing ARV data, and providing ARV security [44]. Before multitasking,

gunners were recorded having less workload, because predominantly their job is to

scan targets. But, when they were assigned the task of controlling ARV, their per-

formance deteriorated rapidly.

Chadwick et. al. used a video game to simulate the collaboration of a human con-

trolling multiple robots [45]. In that study they found that it is really difficult for

humans to switch between tasks. To facilitate multitasking with robots, tasks needed

to be revised. For complex autonomous commands, participants tend to avoid those

commands if they generate unpredictable behavior or are too complex to understand.

For navigation, most of the participants lost track of one of the robots while working

with two in a single display. In dual display, they could keep track of both robots.

Military reconnaissance UAVs typically comprise two types of operators: one for

controlling airframe, and another for payload sensor control [46]. For search and

rescue operations, we need to manage these two tasks. Researchers have shown that

assignment of both tasks to a single operator with conventional UAV control display

can substantially reduce performance [47]. As a result, we need to redesign the

control interface with multitasking in mind. Also, it is important to understand
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crew communication [48] and focus on inter crew communication [4]. One way of

implementing multitasking is to incorporate multi-sensory input/output to the control

interface, such as tactile and auditory feedback. Moreover, there are no standards

for selecting and training teams of UAV operators. Therefore, it is important to

incorporate user studies in the design and development of UAV controllers.

4.2.2 Single vs. Team Performance

Robots will be required to accompany humans in complex and demanding tasks for

disaster mitigation operations. For human-human collaboration, each participant

plays a particular role, which results in a harmonious execution of the different parts

of a bigger task. To build upon this for human-robot collaboration, Nikolaidis et. al.

[49] used a cross-training method. In cross training, team members switch their roles

with one another which results in better understanding of everyone’s job. They also

introduced a mental model that allows the robots to coordinate their actions with

humans in a collaborative task. A comparison between the cross-training method and

reinforcement learning techniques showed that the former yielded better performance

in robots and increased trust in humans towards robots. In a similar study, Shah et.

al. [50] used a mobile robot to collaborate with humans in an assembling-blocks task.

They designed a system named Chaski which scheduled the robot actions according

to its human collaborator and thus minimized the human idle time by 85%.
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In Urban Search and Rescue (USAR) operations, robots are often desired as there

are potential dangers for human rescuers. Robots were first used in the 9/11 disaster

of World Trade Center (WTC) and ever since the need for rescue robot increased. In

a building collapse it is difficult for rescuers to search every corner. In nuclear plant

disaster it is not safe for the human rescuers to operate physically. In a 16-hour USAR

drill with teleoperated robots by Burke et. al. [51], operators spent 32% of their time

for search, while 54% of the time to comprehend state of the robots and surroundings.

As a result, robots were stationary around 50% of the time. These findings suggest

that operators have a great deal of difficulty in tele-kinesthesis and tele-proprioception

with robots, resulting in lower situational awareness. They suggested a new mental

model to bridge the cognition gap by filtering and pre-processing data from the robots.

Murphy [1] proposed a domain theory comprised of two parts for this problem: 1.

A work-flow model to identify the tasks, actions, and roles for each member of the

human-robot team. 2. An information flow model to integrate data from various

team members.

It is difficult to find what makes an effective human-robot team. For a team com-

prised of only humans, Bell and Cooke [52] conducted a 2-by-2 study. They found a

correlation between verbal working memory and grade point average (GPA) vs. team

and role performance. Participants in this study were university students with sup-

posedly no UAV or aircraft piloting experience. Verbal working memory of individual

participants was measured using the Air Force CAM 4 computerized test [53][54].
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The results of the experiment showed that verbal working memory was highly corre-

lated with role performance while GPA was indicative of better team performance.

Though it is impossible to measure the verbal working memory or GPA of a robot,

the result of their experiment can be extended to comprise a human-robot team.

4.2.3 Adaptability

Adaptability can be divided into two types: adaptive and adaptable systems [55].

According to Oppermann [55], in an adaptable system the flexibility of controlling

information and automation such as tuning the system parameters resides in the

hand of the user. Whereas in an adaptive system, the system tunes the parameters

and changes the environment itself based on the user data. The following figure by

Oppermann et al. [56] compares between adaptive vs. adaptable system:

Figure 4.1: Spectrum of adaptation in computer systems

The words “adaptive system,” “adaptive user interface,” and “adaptive automation”

are widely used currently, and their meaning corresponds to the definition by Op-

permann [57]—systems have the flexibility of controlling system parameters based on

user performance. Adaptive systems are widely used and Miller et al. [57] pointed



27

Figure 4.2: Performance trade-off in different level of adaptability

out some distinct advantages and disadvantages of this system. Adaptive system

tend to have greater speed of performance, reduced operator workload, less training

time, more flexibility in behaviors, and more consistency by effectively reducing con-

trol task from human agents. On the other hand, over reliance on adaptive systems

produces unwanted results. For example, a fully adaptive system can reduce human

engagement from control and decision making, thus decreasing situational awareness.

It can also increase over-reliance on a system, which might result in complacency, skill

degradation, etc. Finally, a fully adaptive system can result in an arise unbalanced

mental workload and decreased situational awareness or user acceptance [57]. Also,

to program adaptability in a system is a complex task, and requires more time and

cost. Miller et al. [57] showed the trade-off among workload, unpredictability, and

competency as three sides of a triangle in Fig. 4.

According to Oppermann et al. [56] a learning system takes input from the user

and acts according to the inputs. Controlling a UAV can be regarded as a learning
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system. In traditional Intelligent Learning Systems (ITSs), the system temporarily

applies some restrictions and recommends pedagogical strategies to the user [58].

The system evaluates a user’s behavior and learning outcome through tests. In the

case of UAV missions, researchers used sudden question/answer session while the

operators were in the middle of a mission. This was done to measure the situational

awareness and operator workload. When an intelligent learning system is used, the

system will collect real time user data through direct questions or machine learning

approaches [56]. The system then uses adaptive learning to tune its parameter to

set the difficulty level. However, fully adaptive systems can degrade performance.

Some system parameters should be controlled by the user. For example, audio level,

navigational panel, camera focusing etc. should be adaptable.

4.2.4 Situational Awareness

When discussing the situational awareness of the human operator, the most commonly

cited definition is the one given by Endsley [2]: “The perception of the elements in the

environment within a volume of time and space, the comprehension of their meaning

and the projection of their status in the near future.”

Based on the SA definition and Figure 4.3 we can say that measuring the situational

awareness is equivalent to measuring the operators ability to perceive relevant infor-

mation in the environment to integrate the data in conjunction with task goals, and

to predict future events and system states based on this understanding.
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Figure 4.3: Situational Awareness, Endsley [2]

The most common objective measure for SA is based on Endsley’s definition and is

called Situation Awareness Global Assessment Technique (SAGAT). In SAGAT, the

simulation is paused and the display is blanked while questions regarding the situation

are asked. Once a participant answers all the questions, the simulation is resumed

only to be stopped again at some later point for additional SAGAT questions. The

level of SA is measured as a number of correctly answered questions and the time

taken to answer the questions [2].

Visser et al. proposed the concepts of mission model memory and deviation detection

as objective measurements for interface usability. The goal of this approach is to

asses if the participants can remember which tasks were executed, which agent was
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responsible for each tasks, and how the tasks were related, which would in turn serve

as an indicator of their situational awareness [59].

On the other hand subjective measures are SA measurement techniques that aim to

evaluate people’s self-assessment of the SA [60]. In the past the SA has been measured

using techniques as direct interviews with the human operators [10]. One technique for

measuring the operator’s perceived SA is the Situation Awareness Rating Technique

(SART). The SART questionnaire requires participants to rate demand on attentional

resources, supply of attentional resources and understanding of the situation on a 1-7

scale. Responses to the SART result in a subscale for each of the aforementioned

dimensions as well as a combined score based on the difference between attentional

demand and the sum of supply and understanding ratings [61].

4.3 Summary

We reviewed the factors associated with human-UAV interaction and interface design.

We divided this spectrum into two broad categories, yet we know that there are some

metrics which cannot be classified in that manner. There has been a lot of research on

the human-computer interaction. As for human-robot integration, especially where

a flying robot is in supervised control by an operator, there have not been as many

studies of operator/interface performance. Each of these factors we discussed has a

significant effect on supervised UAV control.
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Chapter 5

UAV Simulator

A review of mobile robot simulation environments reveals that simulation is becoming

an increasingly important aspect of mobile robots [14], helping researchers perform

more experimentation in this area. A realistic graphical rendering system and ideal

physics simulations are the main features of a best simulator. Computer video games

engines are often used to power a robot simulation environment, capable of simulating

multiple robots, people, and objects in the environment. In this chapter, we intro-

duce a simulator developed by the Evolutionary Computing Systems Lab (ECSL)

and Robotics Research Lab (RRL) at University of Nevada, Reno to experiment the

design of user interface as well as the workload and situational awareness vs. level of

automony for swarm UAV control.

A more recent paper proposed a UAV-based solution to help on the search and rescue
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activities in disaster scenarios [62]. These UAVs are specialized to perform opera-

tional tasks (e.g., providing a temporary communication structure, creating up-to-

date maps of the affected region and searching for hot spots where the rescue teams

may have more chances of finding victims) and attain search-and-rescue objectives.

These robots utilize sensors fixed on the UAVs, such as infrared cameras, radars, or

portable devices for detecting radio signals [62]. All of these activities require specific

competences, and as such, more than one UAV or sensor type may be required to

accomplish all of them. This UAV-based fleet, to be efficient and useful in the terrain

needs to be semi-autonomous and more capable of self-organization.

Simulation is an important step before deploying a system. To use UAVs for search

and rescue operation, operators must be aware of their duty and up to date with the

real world state. Disasters can be very dissimilar from each other. So we have to make

sure that the training of the UAV operator along with the emergency personnel gets

as close as to the reality. As a result, the Robotics Research Lab and the Evolutionary

Computing Systems Lab teamed up to create a real-world simulation of a disaster

response mission using multiple UAVs [63].

In this simulation we developed a model of the city of Reno after an earthquake,

where a number of building had fallen over. We then used UAVs to detect cars and

humans in the disaster. The simulator allows an operator to fly up to 4 UAVs at a

time. We conducted a simple experiment regarding operator workload and situational

awareness based on different level of autonomy using this simulation. The simulator
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has been augmented to mimic the waypoint navigation control of a of a Hummingbird

quadcopter. In the end, using a Genetic Algorithm [3] the simulator can optimize the

path between different points in the map.

5.1 Simulator Design

The simulator was developed to simulate the operator interface for real world multi-

UAV control. In earlier chapters, we showed that people prefer semi-autonomous

UAVs more than fully autonomous UAVs. For that reason, in this simulation we kept

the flying part automated. But navigation, path planning, collision detection were

not automated. Although, total distance was optimized using automation.

Our simulation RenoRescueSim, was developed in Unity3d game engine, version 5.3.

The terrain in the simulation was rendered directly from Google Maps. We built a

earthquake ravaged city on top of that map. The model of the buildings resemble

the actual buildings in the city Reno, but they simulated destruction by earthquake.

The UAVs models resemble the Hummingbird quadcopter using two cameras. One

front-looking camera to look in the direction of flying and another camera beneath

the drone to see and tag people (see Figure 5.1). An operator can observe the world

through the bird’s eye view (Figure 5.4). The two cameras in the UAVs also render

in 4 mini screens.
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Figure 5.1: UAV model used in the simulator. This UAV has two cameras. One
for looking directly in front and other for looking below. It also simulates all the
sensors and actuators the hummingbird robot has (e.g., GPS, wireless communica-

tion, and inertial guidance system).

5.1.1 Simulator Architecture

The architecture of the simulator was designed such a way that it allows a supervisor

to manipulate the simulation using Configure Manager (see Figure 5.2). Another

principal component of the system is Scene Manager. The scene manager handles all

the movements of the UAVs, cars, people, and helicopters; thus handles the rendering

of the city terrain. Using an XML config file, a supervisor can control the scene

manager.
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Figure 5.2: System Architecture. The simulator developed in Unity game engine.
The configure manager can be changed using XML configuration file using Unity.
The Configuration manager changes Scene manager. The scene consists of a UAV,
which has two cameras. The cameras are used to render the view from the UAV.
The city is modeled, except the map , which is rendered from Google Maps. There
are numbers of random people, cars and helicopters roaming in the city. Their

movements are controlled using AI

5.1.2 3D Environment Modeling

The Unity game engine is very popular for its availability of assets. Also, it is free

to use for personal project, and there are tons of free models to use. The physics

engine can adequately simulates gravity and collisions effectively enough to run on

most consumer computers.

For our simulation of UAV flying, we used the gravity of Unity game engine, rather we

used the gravity constant mentioned by Michael et. al. [15]. As mentioned earlier,
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we used Google Maps data to load the terrain of the city. We developed building

models on top of the terrain to simulate the earthquake aftermath (see Figure 5.3).

The UAV we simulated is the Hummingbird quadcopter. The physical properties

of the UAV can be found [15]. We combined the specific parts of the UAV from

different models. We used separate models of: propellers, cameras, body frame,

motor, actuation, gyros, GPS, and battery (see Figure 5.1).

Figure 5.3: Simulation rendering of a damaged Reno downtown area in the Reno
Rescue Simulator. This matches the actual layout of the city of Reno, but some

buildings have been damaged and collapsed.

5.1.3 User-Interface Design

As we described earlier, the objective of this simulator is to measure the awareness

and workload of the operator controlling UAVs in disaster response. For this reason,
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the user interface plays a crucial role. We have tested different UI designs and chosen

the design depicted in Figure 5.4.

The display window is divided into several different small windows. The bottom

left corner (see Figure 5.5) is the mini map. This mini map window renders the

simulated area directly from Google Maps. The bottom-center window is divided

into three segments: selection bar, info bar, and order bar. The selection bar shows

the number of UAVs available for the mission (in this simulator, we used 4). When a

particular UAV is selected, the info bar shows the information e.g, battery percentage,

altitude of that particular UAV. The order bar shows the instructions that each or a

group of UAVs can take. In our simulator we have: Landing, Take-off, Recharge, and

Find-path. The bottom-right window renders the camera feed from a UAV when it

is selected.

A single click will select a UAV. Selected UAV can be controlled via keyboard button

W,S,A,D. Where W, and S moves the UAV forward and backward respectively. And,

A and D rotates the UAV counter-clockwise and clockwise respectively. UAVs cannot

move side wise when manually controlled. To select multiple UAVs at once and com-

mand collectively, uses draws a window around them by left-clicking. After selection,

a single right-click will command the UAV/UAVs to go to that point (Figure 5.6,

Figure 5.7).

The top bar of the main display is called Resource Bar. The resource bar shows

the Day/Night toggle mode, battery life, altitude, and speed of a single UAV when
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Figure 5.4: RenoRescueSim user interface. Center: is the main view, where
a user can get a top-down view of the world (rendered from Google Maps tiles);
Bottom-Left: minimap view of the entire city, with area viewable in the cen-
ter panel shown (blue-box); Bottom-Right: View from currently-selected UAV’s

camera; Top-Right: Views from all UAV’s cameras

selected. On the right of the screen, there are 4 mini-camera feed window shows real-

time camera-feed from 4 UAVs. When double clicked on any of these mini window,

that UAV is selected, and the bigger camera window shows the feed from that UAV.

The center of the display shows a birds-eye view of the city. This image comes directly

from Google Maps, and we modeled the earthquake affected installations on top of

that terrain. The center of the screen can be zoomed in/out using the mouse scroll

button. To zoom quickly a user will press shift button and simultaneously scroll

the mouse button. When the user touches the left/right edge of the screen with the

cursor, the central window moves to the direction of the cursor. The clicks once

in inside the bigger-camera window to tag person or car. When a person or car is

tagged, they receives a red cubicle over them, which remains with them throughout
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Figure 5.5: Minimap panel used to show entire map with locations of all UAVs
(red, yellow, green, and blue dots). Current view of center panel is shown (blue
rectangle). Users can change the center panel view or set waypoints from this panel.

the game. When a cursor is hovered onto a car or person, their size increases by 25%

to facilitate this clicking.

5.2 Simulated Dynamics for Full Autonomy

To address the realism of UAV movement, we turn to established models of UAV

dynamics. Michael et. al. [15] have provided an accurate aerodynamic model of

micro UAV (MAV) flying. MAVs are between 0.1-0.5 meters in length, and 0.1 to
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Figure 5.6: Single-UAV navigation with two sequential waypoints set (red lines)
(Level 2, 3 autonomy cases). Waypoints can be set by selecting a UAV and right-

clicking either in the center panel or in the minimap view.

Figure 5.7: Multiple-UAV navigation with several waypoints set for multiple
UAVs to move in formation (Red, Yellow, Cyan, Blue lines) (Level 3 auton-
omy).Waypoints can be set by selecting multiple UAVs and right-clicking either

in the center panel or in the minimap view.

0.5 kilograms in mass [64]. MAVs are commonly utilized for civilian applications;

therefore, they are the size class platform that we will simulate for this work.
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Michael’s model is specifically designed for the Hummingbird quadrotor sold by As-

cending Technologies. It has a 55 cm tip-to-tip wingspan, 8 cm height, and 500 grams

of weight including the battery. Also, it has a battery life of 20 minutes, and can carry

200 grams of payload [15]. The small size and dexterity of Hummingbird UAV made

it suitable to navigate through a constrained space. In this section, we implemented

the aerodynamics of the Hummingbird UAV using the formulae by [15].

To make the UAV movement more realistic and suitable for training purposes, some

critical aspects of UAV movement need to be considered. First, a UAV will not move

from point A to point B at a uniform rate as the dynamics of the system need to

be considered. Furthermore, as the UAV changes velocity in any direction, pitch

and roll changes occur. As it is likely that a fixed camera on a UAV will be what

an operator will use for a search-and-rescue task, simulating such attitude changes

would be crucial for an operator’s later proficiency with a real-world system.

We make our UAV’s simulated flight path mimic the state of a UAV for real-world

flight. Three axes x, y and z, that locate its position, and three angles ϕ, θ, and ψ that

measure the angular distance from respective axes are derived from this model. These

variables control the movement and orientation of a UAV. Each of these variables are

a function of the angular speed of the rotors. The angular speed of each rotor creates

thrust and lift, which are opposed by the forces due to drag and gravity. Though the

effect of wind is significant for the movement of such a small aircraft, we discarded

the effect of wind in this simulation for the sake of simplicity. We assume that, the
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UAV will be flying in a closed environment where the effect of wind is nominal.

When an operator provides a series of points for the UAV to follow, the simulated con-

troller will plan a trajectory to reach each goal, obeying the dynamics of the system.

The UAV updates its flight path by using a Proportional Derivative (PD) controller.

The movement and orientation of the UAV showed in the simulator represents real

world UAV flying. This results in the simulator tilting while turning and pitching

when accelerating/decelerating, which resembles a real world UAV flight. It also sets

a more dynamically appropriate trajectory than a carrot-style planner. We wanted to

simulate real world UAV flight for the purposes of training so that rescue operators

would have a solid understanding of how such a system would move during emergency

operations.

We implemented the flight dynamics of the UAV in two steps. In the first step,

we defined the physical properties related to the UAV flying. Those are: mass of

the UAV, gravitational acceleration, thrust co-efficient for motor, distance from the

center of the UAV to the rotors, PD control parameters (for controlling position and

orientation), and moment coefficient for motors.

Next, for each frame in the Unity game engine, we calculated the desired angular

speed, rotational speed, attitude control parameters, force, moment, and inputs for

each rotor, net force acted upon the UAV, and orientations (yaw, pitch, and roll

angles) with respect to three axes. We compensated the error of the UAV from the

desired flight path by using the PD parameter and added that error in every frame.
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Each frame in Unity represents the minuscule time interval dt. We used 60 frames

per second for this simulation [63].

Figure 5.8: Graph showing the difference in planned trajectory and current tra-
jectory (waypoint transitions are indicated by red rectangles)

The simulation showed us how the UAV followed the flight path created by the au-

tonomous flight dynamics algorithm. We show an example movement in Figure 5.9.

Our simulator showed that the UAV (brown) followed a flight path and is able to

repeatedly reached the destination. The flight path created by the UAV was reason-

able and quick to implement. The flight path was direct and slowed its velocity when
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Figure 5.9: Modified trajectory planner in action. The red UAV represents the
start position; the brown UAV is the current position (trajectory shown with blue

dots) and green UAV indicating the goal.

it was close to the destination (see Figure 5.8). Upon reaching the destination, the

UAV hovered to maintain its position and orientation.
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5.3 Distance Optimization

Optimizing the total distance travelled is very crucial for UAVs. If we have to travel

through N different points, then the order of visiting those points is very important

[65]. Because, crossing the path while travelling or visiting a point more than once

would cause us more time and energy. In a disaster response scenario, it is not

advisable.

Genetic Algorithm [3] is a popular way of solving this problem. It can optimize the

total distance in a very short time using less computation. For example, if we have

10 points, we would have 10! = 3,628,800 possible combinations of routes. If we were

to calculate the total distance of these routes and compare them with each other,

the computation and comparison would require an intractable amount of time and

computation power.

This Genetic algorithm we use string chromosomes to represent a particular sequence

of waypoints. We then crossover and mutate the chromosomes with each other to find

new generation of chromosomes. Gene is called a particular portion of the chromo-

some in GA. While crossover or mutation, the GA keeps replaces the weak genes in

the new generations with stronger genes. In this example, gene represents a small set

of locations. If a particular gene has greater total distance than another gene, we call

that gene weak. And that weak gene is replaced in the crossover of mutation phase.
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One of the most common problem for optimization is the local minimum. We mutated

up to 10% the chromosomes in a generation. For crossover, if there were no new

chromosomes after crossover, we forced a mutation. We initialize the GA with 150

population and ran for 500 epoch.

Algorithm 1 Mutation Type-I: Swap Location
1: if (index1 < 0)or(index1 ≥ locations.length) then
2: ThrowOutOfRangeError
3: end if
4: if (index2 < 0)or(index2 ≥ locations.length) then
5: ThrowOutOfRangeError
6: end if
7: location1← locations[index1]
8: location2← locations[index2]
9: locations[index1]← location2

10: locations[index2]← location1

Algorithm 2 Mutation Type-II: Move Location
1: if (fromIndex < 0)or(fromIndex ≥ locations.length) then
2: ThrowOutOfRangeError
3: end if
4: if (toIndex < 0)or(toIndex ≥ locations.length) then
5: ThrowOutOfRangeError
6: end if
7: temp← locations[fromIndex]
8: if fromIndex < toIndex then
9: for i ∈ toIndex do

10: locations[i− 1]← locations[i]
11: end for
12: else
13: for i ∈ toIndex do
14: locations[i]← locations[i− 1]
15: end for
16: end if

In this GA we presented three different types of mutations. First one is Swap Location

[66]. This swaps random location with each other, not just change bits/location like
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Algorithm 3 Mutation Type-III: Reverse Range
1: if (startIndex < 0)or(startIndex ≥ locations.length) then
2: ThrowOutOfRangeError
3: end if
4: if (endIndex < 0)or(endIndex ≥ locations.length) then
5: ThrowOutOfRangeError
6: end if
7: temp← locations[fromIndex]
8: if endIndex < startIndex then
9: temp← endIndex

10: endIndex← startIndex
11: startIndex← temp
12: end if
13: while startIndex < endIndex do
14: temp← locations[endIndex]
15: locations[endIndex]← locations[startIndex]
16: locations[startIndex]← temp
17: startIndex++
18: endIndex−−
19: end while

usual GA (see Algorithm 1). Second type of mutation is called Move Location [66],

which moves one location to another position and rearranges the whole combination

of the waypoints (see Algorithm 2). The third one is Reverse Range [66], which

reverses part of the chromosomes (see Algorithm 3). For Crossover [66], we took

two random chromosomes in a generation until there were no leftover for crossing.

We picked up a random point in between zero and the chromosome length. Then

we swapped the rest of the chromosomes with each other. In this case, we confront

a problem which is duplicate locations in a chromosome. To solve this problem, we

first identify the duplicate locations. We then replace this locations from the pool

of unused locations for each chromosome (see Algorithm 4). After crossover, we did

Selection [66]. Selection divided the population in half and makes another set of
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Algorithm 4 Crossover
1: startPosition← GetRandomV alue(locations1.Length)
2: crossOverCount← GetRandomV alue(locations1.Length− startPosition)
3: for i ∈ crossOverCount do
4: locations2[i]⇔ locations1[i]
5: end for
6: index← 0
7: for value ∈ locations1 do
8: if !availableLocations.Remove(value) then
9: if toReplaceIndexes == Null then

10: toReplaceIndexes = newList < int >
11: end if
12: toReplaceIndexes.Add(index)
13: end if
14: index++
15: end for
16: if toReplaceIndexes! = Null then
17: enumeratorIndex← toReplaceIndexes.GetEnumerator()
18: enumeratorLocation← availableLocations.GetEnumerator()
19: while true do
20: if !enumeratorIndex.MoveNext() then
21: break
22: end if
23: if !enumeratorLocation.MoveNext() then
24: ThrowInvalidOperationException
25: end if
26: locations[enumeratorIndex.Current]← enumeratorLocation.Current
27: end while
28: end if

new generation. Selection chooses the best N number of chromosomes from the 2N

number of chromosomes, and discard the rest.

The result of this Genetic Algorithm working perfectly is shown in Figure 5.10. In this

figure we demonstrated how the GA worked found the shortest path for 18 waypoints.

When we randomly click in the simulator, the GA takes those coordinates as inputs

and finds the shortest path. The Figure 5.10 shows that there were no overlapping
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of the path and no point were visited twice. This observation proves that, we found

the shortest path.

Figure 5.10: Figure showing the shortest path found by the GA for 18 waypoints.
Smaller Aqua points are the waypoints the UAV has to visit. Bigger red points have

been already visited by the UAV.
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5.4 Summary

In this chapter we described about the simulator we developed in our lab. We also

briefly described the necessity of the simulation for search and rescue operation. We

also presented our architecture of the simulator. We believe this simulator will be

helpful to integrate disaster response team with robots. This simulator was also

helpful to understand the workload and awareness while in a disaster mission. We

described how each part of the simulator was designed and how different parts worked

together to make a real world simulation. The flight dynamics of Hummingbird

quadcopter was integrated in the simulator to provide a better understanding of the

physical property of the UAV. Genetic Algorithm was used to optimize the total

distance among the way points. Our future work regarding this simulator will be to

relay live video feed from real-world UAVs.
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Chapter 6

Measuring Awareness & Workload

We set up an experiment using the UAV simulator, to see the correlation between

level of autonomy versus operator workload and situational awareness [63]. Our initial

validation of the system addresses two research questions. First, is a RTS (Real-time

strategy) style interface effective for controlling multiple UAVs? Second, if a person

has prior experience playing a RTS game, does it affects his/her performance in our

simulation of search and rescue operation?

We divided the autonomy level of the UAVs into three categories. They are:

• Level 1: an operator can only control one UAV through direct flight control

(increase/decrease altitude, move forward, backward, turn in place, slew left-

/right).
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• Level 2: an operator is able to control one or more UAVs either through direct

controls or by setting a single destination waypoint.

• Level 3: an operator is able to set one or more waypoints for a UAV to follow

in sequence.

We performed a 3x3 between- and within-subjects study with two factors: autonomy

type and trial number. Autonomy type has three levels (described above). Trial

number has three levels: one, two, and three. We examined the simulator behavior

using several dependent variables: situational awareness, mental demand using the

simulator, physical demand, and frustration.

To measure situational awareness, we asked users after each 5-minute trial to answer

questions related to the health and location of their UAV fleet. We asked users to

estimate the battery level left (the level starts at 100, and decreases based on the

amount of movement and time in the air, which can be regenerated by navigating

back to the “home base” for the UAVs). The actual battery level is compared to the

estimated level to get an accuracy measure.

We used the NASA Task-Load Inventory (TLX) [67] to estimate a user’s mental and

physical demand as well as their frustration with the interface after each trial. This

is a well-established scale to measure an operator’s effort when completing tasks, and

has been applied for many general problems, especially user interfaces.

We hypothesized the following:
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• H1: Proficiency in the search-and-rescue task will increase the more an operator

uses the simulator (practice effects). This can be measured by comparing opera-

tor situational awareness changes over time (higher is better) and by comparing

the mental and physical demand of using the simulator (lower is better).

• H2: The robot autonomy type (described above) will affect user demand and

frustration with the interface (lower is better). The users will perform better

with greater autonomy.

6.1 Participant Recruitment

Fifteen undergraduate and graduate students (10 Males, 5 females) with no prior

experience with rescue operations or simulations of UAVs were recruited from the

department of Computer Science and Engineering, University of Nevada, Reno. We

recruited them by sending an email to invite them to participate in the experiment.

Interested participants signed up for a 45 minute time slot. The participants’ age

ranged from 17 to 25 years. All are regular users of computers. Most of them were

familiar with playing on-line computer video games.
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6.2 Experiment Procedure

After welcoming the participants the experimenter gave some basic information about

the purpose of this study asked them to sign a consent form. Prior to the experi-

ment, participants completed a pre-test questionnaire soliciting demographic data,

computer expertise, and familiarity with video games. The experiment began with

a training session to acclimate the users to the simulator and its operation and the

search and rescue goals. The experimenter demonstrated how to move the UAV to

various locations and also how to play the game by locating the people and the cars

and the scoring system. The training session was followed by actual experiment. The

NASA Task Load Index (TLX) as well as a situational awareness questionnaire are

presented to the operator 3 times, once after each 5-minute trial assessing the oper-

ator’s awareness of the scene and the UAVs they are controlling. Participants were

asked to accomplish the game tasks quickly and efficiently.

6.3 Experiment Setup

The experiment was performed in the ECSL (Evolutionary Computing Systems Lab),

University of Nevada Reno. It is a quiet room with no background noise so that

participants were able to concentrate more on the game. The participants were asked

to use a Windows workstation running the simulator. The computer used an Intel

Core i5 processor and 16 GB RAM. The system would execute the simulator and
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Figure 6.1: Situational awareness (higher is better) of a user by time spent in-
teracting with the simulator expressed by the user’s accuracy at estimating the

remaining Battery Life of the UAV fleet.

collect data from the experiment. We collected data from each trial using the data

logger built into the simulator for storage in XML files. These data included responses

to the questionnaires, and in-simulation usage data (actions-per-minute, overall health

of the UAV swarm)

6.4 Results

To examine hypothesis H1, we compared the values of situational awareness, mental

demand, physical demand, and frustration for each time trial. For H1 to be sup-

ported, situational awareness will increase and the others will decrease as more time
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Figure 6.2: Physical demand (lower is better) reported by operators of the UAV
after each trial (NASA-TLX survey). The decreased physical demand with each
successive simulation trial indicate that training with the simulator makes it easier

to use (p < 0.001).

is spent with the simulator.

Figure 6.1 shows the operators’ accuracy estimating the battery life of UAVs during

each experiment trial. The data show that as the operator gains more experience with

the simulator interface, the users’ accuracy estimating UAV battery life improved.

This accuracy increase suggests that operator situational awareness increased with

simulator practice. While these results were not significant, it is likely that a larger

sample size will improve the significance of these results.

Figures 6.2 and 6.3 show the users’ mental and physical demand level (measured

by the TLX survey) by trial. Later rounds show less mental and physical demand

was required (differences were not significant). This demonstrates that the more
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experience a user has with the simulator interface, their cognitive load decreases,

demonstrating a training effect.

To examine hypothesis H2, we compare the same factors with autonomy level as the

independent variable. We conducted a MANOVA with Physical Demand, Mental

Demand, and Frustration as the dependent variables and autonomy level as the inde-

pendent variable. The multivariate result was significant for autonomy level, Pillai’s

Trace = 0.43, F = 4.46, df = 36, p < 0.01. Follow-up univariate tests showed that

Frustration was significant, p < 0.001 and Mental Demand was marginally significant,

p = 0.058. Tukey’s HSD tests showed that Levels 2 and 3 were significantly lower

than Level 1.

6.5 Summary

These data partially support hypothesis H1, showing that there is a trend in the

direction pointed to by the hypothesis, but not enough to conclude that there is a

training effect due to the simulator. It is likely that given more time, and a larger

participant pool, the data would show a greater training effect.

These data support hypothesis H2. Lower mental demand and frustration were

observed when the robots behaved with more autonomy. These results make sense,

since a user was able to more easily operate the UAVs while also performing the
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Figure 6.3: Mental demand (lower is better) reported by operators of the UAV
after each trial (NASA-TLX survey). The decreased mental demand with each
successive simulation trial indicate that training with the simulator makes it easier

to use (p = 0.058).

search-and-rescue task. It is likely that given a greater simulator time, the users

would have as high or higher differences between the autonomy groups.

While these results are promising for the use of such as a system as a training sim-

ulator (H1) and to evaluate elements of UAV user interfaces (H2). As part of our

collaboration with UAV researchers, we identified several areas where the UAV did

not perform as accurately in simulation to what real-world behavior would be. As

this could have significance on the training value of such a simulator, we wish to

increase the realism, particularly of the UAV movement in simulation.
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Chapter 7

Conclusion & Future Work

7.1 Conclusion

We provided an inclusive overview of UAVs, how to use them for search and rescue

operation, how the disaster response can be simulated, how the path can be optimized,

and finally how the user interface of the UAV affects an operator’s workload and

awareness.

Chapter 2 presented some related work regarding UAVs classification, their usage in

disaster mission, justifications for the use of semi-autonomous UAVs, research on the

development of user interface for controlling UAVs etc. We also included research on

definition for the level of autonomy, and its effect on operator’s performance. We also

provided some brief discussion on the similarity between controlling UAV and playing
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RTS games. Finally, we described the work related to the dynamics of Hummingbird

quadcopter.

Chapter 3 discusses about various researchers’ contribution to classify autonomy lev-

els. We also presented some studies which showed the effect of autonomy level on

operator’s workload and situational awareness. We also presented our experiment re-

garding the effect of different level of autonomy users’ performance. We also discussed

how trust is related to the level of autonomy.

Chapter 4 reviews literature regarding the factors affecting the human-robot interac-

tion. By discussing the factors we came to a conclusion that certain factors are more

important than others while designing the user interface. A lot of researchers has

contributed in this field, but very few tried to classify these factors. We divided these

factors into two broad categories: Subjective and Objective. Thus we tried to answer

the question how and which category of factors affect the performance of the oper-

ators. We also discussed about some measurement scale for example, NASA-TLX,

SWAT, MITPAS, SAGAT etc.

In Chapter 5 we present about the UAV simulator that was developed in collaboration

with ECSL and RRL at University of Nevada, Reno. We described the objective

of developing the simulator, the architecture of the simulator, the modelling and AI

behind the movement of the objects in the simulator, and the design of the UI. We also

presented the flight dynamics of Hummingbird quadcopter, which was implemented in

this simulator. Finally, we described our effort to optimize the total distance covered
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by a UAV in a particular mission. We solved this problem by introducing Genetic

Algorithm [3], which lessen the time and computing by a far.

Chapter 6 presents an experiment where we tried to find a correlation between op-

erator workload and situational awareness versus level of autonomy. We used the

NASA Task Load Inventory (TLX) to measure the awareness of a user while they

were playing the simulation. We also answered the question that, whether earlier

experience of playing RTS games enhance the performance of a user. We also showed

that how level of autonomy affects the Mental Demand and Physical Demand while

in a simulated search and rescue mission.

Overall, this thesis thoroughly reviews UAV-UI designed for search and rescue oper-

ation. We have developed a realistic simulation that utilizes design best practices,

and evaluates that system in a training capacity.

7.2 Future Work

The future of UAVs in civilian application looks very promising. The UAV market

is increasing rapidly, and there are thousands of problems which can be solved using

this technology. We only aimed at the usage of UAVs in disaster response in this

thesis. Our future work will be to integrate a real UAV in the simulation. We are

trying to make the simulation more realistic. We are also working on to relay the

live camera feed from a UAV in real-world disaster scenario. Our next step will be to
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use UAVs in a real world search and rescue operation and see how it differs from the

simulation. We would also like to see the difference in performance, workload, and

awareness of the operators in the real-world versus simulated mission.
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