9 research outputs found

    impact of dehazing on underwater marker detection for augmented reality

    Get PDF
    Underwater augmented reality is a very challenging task and amongst several issues, one of the most crucial aspects involves real-time tracking. Particles present in water combined with the uneven absorption of light decrease the visibility in the underwater environment. Dehazing methods are used in many areas to improve the quality of digital image data that is degraded by the influence of the environment. This paper describes the visibility conditions affecting underwater scenes and shows existing dehazing techniques that successfully improve the quality of underwater images. Four underwater dehazing methods are selected for evaluation of their capability of improving the success of square marker detection in underwater videos. Two reviewed methods represent approaches of image restoration: Multi-Scale Fusion, and Bright Channel Prior. Another two methods evaluated, the Automatic Color Enhancement and the Screened Poisson Equation, are methods of image enhancement. The evaluation uses diverse test data set to evaluate different environmental conditions. Results of the evaluation show an increased number of successful marker detections in videos pre-processed by dehazing algorithms and evaluate the performance of each compared method. The Screened Poisson method performs slightly better to other methods across various tested environments, while Bright Channel Prior and Automatic Color Enhancement shows similarly positive results

    Development and integration of digital technologies addressed to raise awareness and access to European underwater cultural heritage. An overview of the H2020 i-MARECULTURE project

    Get PDF
    The Underwater Cultural Heritage (UCH) represents a vast historical and scientific resource that, often, is not accessible to the general public due the environment and depth where it is located. Digital technologies (Virtual Museums, Virtual Guides and Virtual Reconstruction of Cultural Heritage) provide a unique opportunity for digital accessibility to both scholars and general public, interested in having a better grasp of underwater sites and maritime archaeology. This paper presents the architecture and the first results of the Horizon 2020 iMARECULTURE (Advanced VR, iMmersive Serious Games and Augmented REality as Tools to Raise Awareness and Access to European Underwater CULTURal heritage) project that aims to develop and integrate digital technologies for supporting the wide public in acquiring knowledge about UCH. A Virtual Reality (VR) system will be developed to allow users to visit the underwater sites through the use of Head Mounted Displays (HMDs) or digital holographic screens. Two serious games will be implemented for supporting the understanding of the ancient Mediterranean seafaring and the underwater archaeological excavations. An Augmented Reality (AR) system based on an underwater tablet will be developed to serve as virtual guide for divers that visit the underwater archaeological sites

    Visibility in underwater robotics: Benchmarking and single image dehazing

    Get PDF
    Dealing with underwater visibility is one of the most important challenges in autonomous underwater robotics. The light transmission in the water medium degrades images making the interpretation of the scene difficult and consequently compromising the whole intervention. This thesis contributes by analysing the impact of the underwater image degradation in commonly used vision algorithms through benchmarking. An online framework for underwater research that makes possible to analyse results under different conditions is presented. Finally, motivated by the results of experimentation with the developed framework, a deep learning solution is proposed capable of dehazing a degraded image in real time restoring the original colors of the image.Una de las dificultades más grandes de la robótica autónoma submarina es lidiar con la falta de visibilidad en imágenes submarinas. La transmisión de la luz en el agua degrada las imágenes dificultando el reconocimiento de objetos y en consecuencia la intervención. Ésta tesis se centra en el análisis del impacto de la degradación de las imágenes submarinas en algoritmos de visión a través de benchmarking, desarrollando un entorno de trabajo en la nube que permite analizar los resultados bajo diferentes condiciones. Teniendo en cuenta los resultados obtenidos con este entorno, se proponen métodos basados en técnicas de aprendizaje profundo para mitigar el impacto de la degradación de las imágenes en tiempo real introduciendo un paso previo que permita recuperar los colores originales

    A Mirror-Based Active Vision System for Underwater Robots: From the Design to Active Object Tracking Application

    Get PDF
    A mirror-based active system capable of changing the view’s direction of a pre-existing fixed camera is presented. The aim of this research work is to extend the perceptual tracking capabilities of an underwater robot without altering its structure. The ability to control the view’s direction allows the robot to explore its entire surroundings without any actual displacement, which can be useful for more effective motion planning and for different navigation strategies, such as object tracking and/or obstacle evasion, which are of great importance for natural preservation in environments as complex and fragile as coral reefs. Active vision systems based on mirrors had been used mainly in terrestrial platforms to capture the motion of fast projectiles using high-speed cameras of considerable size and weight, but they had not been used on underwater platforms. In this sense, our approach incorporates a lightweight design adapted to an underwater robot using affordable and easy-access technology (i.e., 3D printing). Our active system consists of two arranged mirrors, one of which remains static in front of the robot’s camera, while the orientation of the second mirror is controlled by two servomotors. Object tracking is performed by using only the pixels contained on the homography of a defined area in the active mirror. HSV color space is used to reduce lighting change effects. Since color and geometry information of the tracking object are previously known, a window filter is applied over the H-channel for color blobs detection, then, noise is filtered and the object’s centroid is estimated. If the object is lost, a Kalman filter is applied to predict its position. Finally, with this information, an image PD controller computes the servomotor articular values. We have carried out experiments in real environments, testing our active vision system in an object-tracking application where an artificial object is manually displaced on the periphery of the robot and the mirror system is automatically reconfigured to keep such object focused by the camera, having satisfactory results in real time for detecting objects of low complexity and in poor lighting conditions

    Extraction and Integration of Physical Illumination in Dynamic Augmented Reality Environments

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Although current augmented, virtual, and mixed reality (AR/VR/MR) systems are facing advanced and immersive experience in the entertainment industry with countless media forms. Theses systems suffer a lack of correct direct and indirect illumination modeling where the virtual objects render with the same lighting condition as the real environment. Some systems are using baked GI, pre-recorded textures, and light probes that are mostly accomplished offline to compensate for precomputed real-time global illumination (GI). Thus, illumination information can be extracted from the physical scene for interactively rendering the virtual objects into the real world which produces a more realistic final scene in real-time. This work approaches the problem of visual coherence in AR by proposing a system that detects the real-world lighting conditions in dynamic scenes, then uses the extracted illumination information to render the objects added to the scene. The system covers several major components to achieve a more realistic augmented reality outcome. First, the detection of the incident light (direct illumination) from the physical scene with the use of computer vision techniques based on the topological structural analysis of 2D images using a live-feed 360-degree camera instrumented on an AR device that captures the entire radiance map. Also, the physics-based light polarization eliminates or reduces false-positive lights such as white surfaces, reflections, or glare which negatively affect the light detection process. Second, the simulation of the reflected light (indirect illumination) that bounce between the real-world surfaces to be rendered into the virtual objects and reflect their existence in the virtual world. Third, defining the shading characteristic/properties of the virtual object to depict the correct lighting assets with a suitable shadow casting. Fourth, the geometric properties of real-scene including plane detection, 3D surface reconstruction, and simple meshing are incorporated with the virtual scene for more realistic depth interactions between the real and virtual objects. These components are developed methods which assumed to be working simultaneously in real-time for photo-realistic AR. The system is tested with several lighting conditions to evaluate the accuracy of the results based on the error incurred between the real/virtual objects casting shadow and interactions. For system efficiency, the rendering time is compared with previous works and research. Further evaluation of human perception is conducted through a user study. The overall performance of the system is investigated to reduce the cost to a minimum

    Políticas de Copyright de Publicações Científicas em Repositórios Institucionais: O Caso do INESC TEC

    Get PDF
    A progressiva transformação das práticas científicas, impulsionada pelo desenvolvimento das novas Tecnologias de Informação e Comunicação (TIC), têm possibilitado aumentar o acesso à informação, caminhando gradualmente para uma abertura do ciclo de pesquisa. Isto permitirá resolver a longo prazo uma adversidade que se tem colocado aos investigadores, que passa pela existência de barreiras que limitam as condições de acesso, sejam estas geográficas ou financeiras. Apesar da produção científica ser dominada, maioritariamente, por grandes editoras comerciais, estando sujeita às regras por estas impostas, o Movimento do Acesso Aberto cuja primeira declaração pública, a Declaração de Budapeste (BOAI), é de 2002, vem propor alterações significativas que beneficiam os autores e os leitores. Este Movimento vem a ganhar importância em Portugal desde 2003, com a constituição do primeiro repositório institucional a nível nacional. Os repositórios institucionais surgiram como uma ferramenta de divulgação da produção científica de uma instituição, com o intuito de permitir abrir aos resultados da investigação, quer antes da publicação e do próprio processo de arbitragem (preprint), quer depois (postprint), e, consequentemente, aumentar a visibilidade do trabalho desenvolvido por um investigador e a respetiva instituição. O estudo apresentado, que passou por uma análise das políticas de copyright das publicações científicas mais relevantes do INESC TEC, permitiu não só perceber que as editoras adotam cada vez mais políticas que possibilitam o auto-arquivo das publicações em repositórios institucionais, como também que existe todo um trabalho de sensibilização a percorrer, não só para os investigadores, como para a instituição e toda a sociedade. A produção de um conjunto de recomendações, que passam pela implementação de uma política institucional que incentive o auto-arquivo das publicações desenvolvidas no âmbito institucional no repositório, serve como mote para uma maior valorização da produção científica do INESC TEC.The progressive transformation of scientific practices, driven by the development of new Information and Communication Technologies (ICT), which made it possible to increase access to information, gradually moving towards an opening of the research cycle. This opening makes it possible to resolve, in the long term, the adversity that has been placed on researchers, which involves the existence of barriers that limit access conditions, whether geographical or financial. Although large commercial publishers predominantly dominate scientific production and subject it to the rules imposed by them, the Open Access movement whose first public declaration, the Budapest Declaration (BOAI), was in 2002, proposes significant changes that benefit the authors and the readers. This Movement has gained importance in Portugal since 2003, with the constitution of the first institutional repository at the national level. Institutional repositories have emerged as a tool for disseminating the scientific production of an institution to open the results of the research, both before publication and the preprint process and postprint, increase the visibility of work done by an investigator and his or her institution. The present study, which underwent an analysis of the copyright policies of INESC TEC most relevant scientific publications, allowed not only to realize that publishers are increasingly adopting policies that make it possible to self-archive publications in institutional repositories, all the work of raising awareness, not only for researchers but also for the institution and the whole society. The production of a set of recommendations, which go through the implementation of an institutional policy that encourages the self-archiving of the publications developed in the institutional scope in the repository, serves as a motto for a greater appreciation of the scientific production of INESC TEC

    Automated UAV and Satellite Image Analysis For Wildlife Monitoring.

    Get PDF
    Very high resolution satellites and unmanned aerial vehicles (UAVs) are revolutionising our ability to monitor wildlife, especially species in remote and inaccessible regions. However, given the rapid increase in data acquisition, computer-automated approaches are urgently needed to count wildlife in the resultant imagery. In this thesis, we investigate the application of convolutional neural networks (CNNs) to the task of detecting vulnerable seabird populations in satellite and UAV imagery. In our first application we train a U-Net CNN to detect wandering albatrosses in 31-cm resolution WorldView-3 satellite imagery. We compare results across four different island colonies using a leave-one-island-out cross validation, achieving a mean average precision (mAP) score of 0.669. By collecting new data on inter-observer variation in albatross counts, we show that our U-Net results fall within the range of human accuracy for two islands, with misclassifications at other sites being simple to filter manually. In our second application we detect Abbott’s boobies nesting in forest canopy, using UAV Structure from Motion (SfM) imagery. We focus on overcoming occlusion from branches by implementing a multi-view detection method. We first train a Faster R-CNN model to detect Abbott’s booby nest sites (mAP=0.518) and guano (mAP=0.472) in the 2D UAV images. We then project Faster R-CNN detections onto the 3D SfM model, cluster multi-view detections of the same objects using DBSCAN, and use cluster features to classify proposals into true and false positives (comparing logistic regression, support vector machine, and multilayer perceptron models). Our best-performing multi-view model successfully detects nest sites (mAP=0.604) and guano (mAP=0.574), and can be incorporated with expert review to greatly expedite analysis time. Both methods have immediate real-world application for future surveys of the target species, allowing for more frequent, expansive, and lower-cost monitoring, vital for safeguarding populations in the long-term

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov
    corecore