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momentos de este trabajo. Además también tengo que agradecer al RobInLab,
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Resumen

Una de las dificultades más grandes en la robótica autónoma submarina es li-
diar con la falta de visibilidad en imágenes submarinas. La transmisión de la luz
en el agua degrada las imágenes dificultando reconocer objetos, plantas o animales
y consecuentemente poniendo en peligro el desarrollo de la intervención. Además,
tecnoloǵıas comúnmente utilizadas en la robótica como los sensores infrarrojos y
las cámaras que permiten recuperar información en 3D no son viables debido a la
rápida atenuación de la luz infrarroja bajo el agua. Sin embargo, si se consiguiera
superar estos problemas y el robot fuera capaz de percibir e interpretar correcta-
mente el entorno supondŕıa un gran avance en la robótica submarina que tendŕıa
un gran impacto en la sociedad facilitando la creación de estaciones de gas y pe-
tróleo offshore, investigación del océano, arqueoloǵıa submarina o investigación de
accidentes aéreos además de aplicaciones militares y recreacionales.

Las contribuciones de esta tesis son el análisis del impacto de la degradación
de las imágenes submarinas usadas en algoritmos de visión, y propuestas para
mitigarlo introduciendo un paso previo que permita recuperar los colores de la
imagen en tiempo real.

En primer lugar, dada la ausencia de herramientas capaces de simular y ana-
lizar las intervenciones submarinas desde la perspectiva de la investigación, se ha
desarrollado una arquitectura software para la investigación en robótica submarina.
Esta arquitectura está formada por un simulador de robots submarinos denomina-
do UWSim, y una herramienta de benchmarking capaz de evaluar objetivamente
algoritmos independientemente de cómo estén implementados y de donde proven-
gan. También se han añadido servicios en la nube a la arquitectura que permiten
lanzar simulaciones y benchmarks de manera remota, ofreciendo un espacio para
comparar resultados entre los usuarios de la herramienta.

El simulador UWSim es un proyecto de código abierto, disponible para la comu-
nidad cient́ıfica y que ya ha sido utilizado en múltiples proyectos financiados por la
comunidad europea y por centros de investigación como herramienta de simulación
de intervenciones submarinas. Por otra parte, la herramienta de benchmarking ha
sido utilizada en experimentos de diferente ı́ndole para evaluar o comparar solu-
ciones tan diversas como seguimiento de tubeŕıas, interfaces de usuario, dragado o
extraer estad́ısticas de intervención. Sin embargo, el principal uso en esta tesis es
para analizar las consecuencias que produce la turbidez submarina en algoritmos de
visión como seguimiento de objetos, mantener la posición o reconstrucción de obje-
tos en 3 dimensiones. Para ello se han llevado a cabo experimentos en simulación,
condiciones de laboratorio y mezclando ambas (Hardware In the Loop).
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Teniendo en cuenta los resultados de estos experimentos, donde se puede ver
que los resultados de visión son dependientes en gran medida de la turbidez del
agua, también se ha realizado un estudio de diferentes alternativas para eliminar la
turbidez en las imágenes. Para ello imágenes de diferentes lugares se han utilizado
para evaluar algoritmos enfocados a recuperar los colores de las imágenes con una
sola imagen como entrada.

Para evaluar estos algoritmos se utilizan mapas de profundidad obtenidos a
partir de cámaras estéreo y reconstrucción 3D a partir del movimiento que se com-
paran con resultados intermedios de los mismos. Generalmente los algoritmos que
eliminan la turbidez necesitan estimar la transmisión del medio, la cual está direc-
tamente relacionada con el mapa de profundidad. Por tanto, es posible establecer
métricas objetivas para evaluarlos utilizando los mapas de profundidad como datos
reales.

Por último, se han desarrollado dos soluciones basadas en deep learning que
permiten corregir la degradación producida por la turbidez del agua a partir de
una única imagen degradada. Estas soluciones explotan la capacidad de las redes
neuronales convolucionales de procesar imágenes adaptando el problema de resta-
blecer los colores para utilizarlo en una arquitectura convolucional. Las imágenes
de entrada se utilizan para entrenar una red neural que será capaz de producir
imágenes mejoradas y servirán de entrada a otros algoritmos de visión.

La primera solución propuesta utiliza pares de imágenes degradadas y restaura-
das a partir de un algoritmo que requiere una gran cantidad de imágenes y mapas
de profundidad del mismo lugar para recuperar los colores sin degradar. Estos datos
se utilizan para entrenar una red neural que es capaz de aprender la transformación
y directamente producir imágenes mejoradas para procesar en algoritmos de visión
a partir de una única imagen.

La segunda alternativa parte del punto de vista de la restauracion de imagenes
donde se necesita un modelo de formación de imagen para recuperar los colores
de la imagen. Uno de los parámetros fundamentales en este proceso es el mapa de
profundidad, por ello se utiliza una red neuronal para obtenerlo. Los resultados
muestran que no solo es posible hacer esto bajo el agua, sino que se consiguen
mejores resultados que en el aire al contar con la atenuación de la luz como pista
de la distancia. Utilizando este mapa de profundidad es posible estimar el resto de
parámetros y restaurar la imagen utilizando el modelo de formación de la imagen.



Abstract

Dealing with underwater visibility is one of the most important challenges in
autonomous underwater robotics. The light transmission in the water medium de-
grades images making the interpretation of the scene difficult and consequently
compromising the whole intervention, that usually depends on a correct unders-
tanding of the environment. Furthermore, it is not possible to use commonly used
technologies in robotics such as infrared projectors and associated cameras to detect
3D information due to the fast attenuation of infrared light underwater. However,
being able to perceive and interpret the environment would represent an enormous
advance in underwater robotics that would generate a great impact on society, faci-
litating oil and gas offshore industry, research of the ocean, underwater archaeology
or air crash investigations besides the military and hobby applications.

This thesis contributes, by analysing the impact of the underwater image degra-
dation in commonly used vision algorithms, and proposes to reduce these problems
by introducing a single image dehazing step capable of running in real time.

Firstly, a benchmarking framework for underwater robotics research is propo-
sed, motivated by the lack of suitable tools capable of simulating and analysing
an autonomous underwater intervention. The developed framework is made of an
underwater simulator (UWSim), and a benchmarking suite able to objectively eva-
luate software independently of its implementation or source. Furthermore, the
framework has been extended to be used as a cloud service, making it possible to
remotely launch simulations and benchmarks, automatically comparing the results
with other researchers using the software.

The simulator this is presented here, is offered as an open source tool for the
scientific community and has already been used in different EU funded projects
and research institutions as their simulation software for underwater interventions.
Regarding the benchmarking suite, several experiments have been conducted to
evaluate the developed software and compare it with solutions that have already
been proposed in the literature in different problems such as pipe following, na-
tural interfaces, dredging or intervention statistics. However, the main effort has
been made in analysing the effects of underwater visibility in vision algorithms like
tracking, station keeping and 3D reconstruction including simulation, hardware in
the loop and real experiments.

Secondly, motivated by the results of these benchmarking experiments that
show a performance drop when the water is turbid, study of different alternatives
to dehaze the image is presented. A group of images from different locations are
used to evaluate algorithms capable of restoring the original colors of images with
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a single image as input.
In order to evaluate the solutions, the depthmap retrieved with a stereo camera

and 3D from motion is compared with side results of the dehazing algorithms.
With the dehazing schemes it is usually necessary to estimate the transmission
of the medium which is directly correlated to depth, thus making it possible to
establish an objective metric for the comparison.

Finally, two approaches based on deep learning are proposed to correctly dehaze
images using a still image as input. Exploiting the performance of convolutional
neural networks in the image processing field, the dehazing problem is adapted to
use a set of images for training and then is able to produce haze free images. The first
approach makes use of restored images, obtained from an algorithm that requires
several images and depthmaps from the same location to recover the original colors,
in order to train a neural network to dehaze images.

A second alternative is proposed from the perspective of image restoration, using
an image formation model to restore the degraded image. As the key parameter
required to perform this restoration is the depthmap, a deep neural network is
trained to estimate it. The trained neural network shows the underwater haze is
a useful indicator for depth estimation as the attenuation is directly related to it.
Using this estimation it is possible to restore degraded images and consequently
enhance the performance of the autonomous underwater vehicle interventions.
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Caṕıtulo 1

Introduction

The oceans cover more then 2/3 of the Earth’s surface and the history of hu-
manity has been critically conditioned by them throughout time as described in
[Antonelli et al., 2008]. The oceans have provided a source of food through fishing
and served as a highway for commerce and communication between nations. No-
wadays, they are also an important source of food and other resources of utmost
importance such as oil and gas or pearls used in jewelry. Commercially valuable
minerals are also extracted from the sea such as salt, bromine, and magnesium.

Furthermore, the ocean is a key component of the ecosystem and specially of
the climate system. According to [Bigg et al., 2003], it provides a temperature
boundary for the atmosphere over 70% of the globe. It also absorbs over 97%
of solar radiation incident on it at certain angles and provides 85% of the water
vapour in the atmosphere among other major ecosystem effects.

However, the scientific exploration of the sea is still far from complete. The
knowledge of the ocean is mainly restricted to relatively shallow waters. The re-
sources and understanding, chemical, geological, or even archaeological, of the dee-
per waters remain a mystery. Although, this information is physically closer to the
humans the difficulties to explore it make it impossible in some cases.

The first explorations of the oceans were conducted through human occupied
vehicles that highly restricted the depth limits that could be reached. These vehicles
were substituted by Remotely Operated Vehicles (ROV’s) that avoided risking
human lives in the process.

Furthermore, ROV’s proved to be a valuable tool reaching depths that greatly
exceed the range of human divers. This new limits allowed to use them in the
exploitation of offshore oil and deploying and maintaining underwater structures
such as pipelines or underwater cables. Moreover, the ROV’s are capable of reaching
scientifically interesting zones, where they are able to recover information that is
especially interesting for chemists archaeologists and geologists, making possible
their study by researchers using cameras and bathymetic information.

However, these kinds of interventions are launched from support vessels, and
remotely operated by expert pilots through an umbilical communications cable and
complex control interfaces. ROV’s are normally large and heavy vehicles that need
significant logistics for their transportation and handling. Additionally, the complex
user interfaces and control methods require skilled pilots for their use. These two
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2 1. Introduction

Figura 1.1: Ocean exploration evolution, from left to right diver,
remote operated vehicle and autonomous underwater
vehicle.

facts significantly increase the cost of this type of applications. Moreover, the need
of an umbilical cable introduces additional problems of control, or range limitation.
Finally, the fatigue and high stress that users of remotely operated systems normally
suffer is another serious drawback.

Taking this into account, cheap and easy-to-use solutions for underwater inter-
ventions are needed. In order to solve this, a new concept that seeks for higher
autonomy levels in underwater interventions named Intervention Autonomous Un-
derwater Vehicles (I-AUV) arose [De Novi et al., 2009]. However, this technology
is still at an early stage of development, so further research is required to reach
higher levels of autonomy so that it may be used in a wider range of applications.
The figure 1.1 shows this evolution of the ocean exploration.

Poor visibility is one of the principal problems for I-AUVs as it has to make
sense of its environment through a camera. In this thesis underwater visibility
degradation is studied from a benchmarking perspective and a solution for sin-
gle image dehazing is proposed. For this purpose, different dehazing techniques
are compared and finally a machine learning strategy is designed to achieve the
desired features.

1.1. Previous research projects

The first pioneering works in the field of autonomous underwater robotics took
place during the early 90s such as the OTTER AUV [Wang et al., 1995], ODIN
vehicle [Choi et al., 1994] or the UNION project [Rigaud et al., 1998]. However, the
first simple autonomous intervention arrived in the last decade when the systems
were capable of demonstrating these features at sea.

The AMADEUS project, presented in [Lane et al., 1997], was the first attempt at
developing a dexterous gripper for underwater applications. A 3-fingered hydraulic
gripper was designed to mimic the motions of an artificial elephant trunk and
manipulate objects. In a second phase the project added two coordinated arms
with 7 degrees of freedom. The project started in 1993 and lasted until 1999.

During the 1996 to 1999 period, the Union project described in [Rigaud et al.,
1998] focused on developing methods in order to increase the autonomy and inte-
lligence of ROVs. The main effort was centred on the development of coordinated
control and sensing strategies for manipulator and vehicle. However, only experi-
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mental validation in simulated environment was achieved.
In [Evans et al., 2001] a hybrid ROV/AUV configuration for the SWIMMER

project is described where an AUV transports the ROV near a deepsea facility
which it can then operate. Additionally the ROV is connected to the umbilical
cable in the subsea location thus it can be controlled from the surface. The sys-
tem demonstrates an efficient way for inspection, maintenance and repair of oil
production stations. The project took place between 1999 and 2001.

Similarly, the ALIVE project presented in [Evans et al., 2003] aims to develop an
autonomous vehicle designed to dock in an unknown subsea structure similar to the
oil industry. Once docked the 7DOF manipulator can then operate the underwater
panel turning valves or connecting hot stabs. After 4 years, in 2004 the final demo
was able to demonstrate the capability to navigate, dock and operate the panel.

The SAUVIM project, described in [Yuh et al., 1998], that took place between
1999 and 2009 by the Office of Naval Research and carried out at the Autonomous
System Laboratory of the University of Hawaii focused on the design of an AUV to
recover missiles from the seabed. The vehicle is designed to be a semi-autonomous
vehicle with a fully functional manipulator controlled by a supervisor in a land
based station. The supervisor controls the vehicle and the arm movements, but in
an ideal case the vehicle could carry out the mission autonomously.

The expertise of the IRSLab in underwater robotics starts with the RAUVI
(Reconfigurable Autonomous Underwater Vehicle for Intervention Missions) project
in 2009. The main goal of the project was to develop the AUV technology necessary
for autonomously perform intervention missions in underwater environments. The
case of study proposed is the recovery of an object in the seabed as described in
[Prats et al., 2012c].

In order to do so, the approach is divided in two steps: survey and intervention.
The survey phase explores the zone looking for objects of interest using visual
and acoustic data. After that, the vehicle surfaces and the gathered information is
retrieved in order to prepare the intervention mission. The intervention mission is
specified using a human robot interface that describes the object to be recovered
and the vehicle autonomously recovers it from the seafloor.

The project demonstrated autonomous recovery of a flight recorder black box
using an autonomous vehicle and a 4 degrees of freedom robotic arm with a hook
in a pool and shallow water conditions. The system was capable of autonomously
surveying the zone searching for the black box mock-up in the survey phase and
autonomously grasp it with a hook in the intervention.

1.2. Context

The research for this thesis has been conducted in the Interactive and Robo-
tics laboratory (IRSLab) at the University Jaume I of Castellón. The group has
been doing research in underwater robotics since 2009 with the RAUVI project,
although the members of the group have been working in robotic manipulation for
a long time as part of the robotic intelligence laboratory (RobInLab). The group
expertise focuses on underwater robotic manipulation as in [Prats et al., 2012c] or
[Peñalver et al., 2015] using the 4 degrees of freedom lightweight ARM5E described
in [Fernández et al., 2013].
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Besides this, the efforts of the IRSLab have also been oriented towards the
development of other fields related to the development and control of autonomous
underwater vehicles. An example of this is the work related to human machine
interfaces in [Sanchez et al., 2015] or [Garcia et al., 2010] leading to innovative
ways of supervising or controlling an AUV. In the field of computer vision the
group also works in detecting graspable shapes from 3D point clouds that come
from stereo cameras as in [Fornas et al., 2016]. In [Fernández et al., 2015] a free
floating control of the vehicle and arm in a dredge intervention is showed. A new
research line in the group is the underwater wireless communications as preliminary
results in [Centelles et al., 2015] show.

The group is also the developer and maintainer of one of the most used under-
water simulators: UWSim. The simulator development is part of this thesis and it
is described in detail in Chapter 2. The software was designed as a tool for testing
and integrating perception and control algorithms before running them on the real
robots.

Although the study of low visibility in the underwater environment may seem
to fall outside the scope of the group expertise, the problem was already studied
in the GUARDIANS project. The test bed of this project was the navigation and
aid to fire and rescue service in an industrial warehouse in smoke. Consequently,
the laboratory had already studied algorithms to deal with poor visibility such as
[Sales et al., 2010] or [Marti et al., 2012].

Furthermore, the work presented in this thesis falls within the scope of the
different research projects in which the IRSLab has participated. An image of the
experimental validation of the projects can be seen in figure 1.2. Thus, the research
in it contributed to the following projects:

• FP6 EU ProjectGUARDIANS: Group of unmanned assistant robots deplo-
yed in aggregative navigation supported by scent detection (FP6-IST-045269)
funded by the european community. The project proposes the use of a swarm
of autonomous robots developed to navigate and search an urban ground.
The main example is an industrial warehouse in smoke, a very dangerous
situation where human senses can be severely impaired. Robots warn of to-
xical chemicals, provide and maintain communication links assisting in the
intervention.

• FP7 EU Project TRIDENT: Marine robots and dexterous manipulation
for enabling autonomous underwater multipurpose manipulation (FP7-ICT-
2009-248497) funded by the european community. The project proposes a
new methodology for underwater interventions combining autonomous tasks
with supervision. Dexterous autonomous manipulation was demonstrated re-
covering a flight recorder mock-up in a pool and shallow water conditions1.

• MINECO project TRITON: Multisensory Based Underwater Intervention
through Cooperative Marine Robots (DPI2011-27977-C03) funded by the
Spanish ministry. The project aims to develop technologies close to the real
needs of the final user facilitating the technological transfer of its results. The
test bed for this project was an experimental validation in an intervention

1Video of the TRIDENT final experiment https://www.youtube.com/watch?v=2qf7ukrUcCc

https://www.youtube.com/watch?v=2qf7ukrUcCc
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Figura 1.2: Images of the trials in the Trident (top left), Triton
(top right) and Merbots (bottom) projects.

panel where the vehicle autonomously docked and manipulated a valve and
hot stab in pool and sea conditions2.

• UJI Project MASUMIA: Towards a predictive interface in the context of
underwater robotics (P1 1B2011-17). The main goal of the project was to
further develop the UWSim simulator and create a distributed and predictive
interface for it. The results of the project show the development of abstraction
layers and tools that make it possible to easily interact with the simulator.

• MINECO project MERBOTS: Multifunctional cooperative marine robots
for intervention domains (DPI2014-57746-C3) funded by the Spanish mi-
nistry. In this ongoing project up to three heterogeneous vehicles cooperate to
achieve different goals related to underwater archaeology. The case of study
for this project is the autonomous cooperative localization, unearthing and
grasping of an amphora located in the sea floor. The project goals have been
achieved in pool conditions and will be tested in the sea soon.

2Video of the TRITON final experiment https://www.youtube.com/watch?v=xA2SGLi5TYg

https://www.youtube.com/watch?v=xA2SGLi5TYg
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Additionally, the thesis work also benefited from a 4 months research stay in
the marine Australian Centre for Field Robotics (ACFR) of the University of Syd-
ney (Australia). During the research stay the datasets and dehazing restoration
algorithms used in this thesis were studied and prepared.

1.3. Aims and scope

As mentioned in the introduction, the goal of this thesis is to study the problems
related with visibility degradation in the water medium and propose solutions that
make it possible to enhance the performance of autonomous underwater vehicles.
Taking into account the context of the thesis it is of utmost importance that the
proposed approach is able to run in real time so it can be directly used in an
intervention vehicle.

Furthermore, although most of the previous work in this field focuses on deha-
zing approaches that require several inputs or specific hardware, being able to
obtain a restored image from a single image would offer several advantages. For
instance, it will decrease the cost and payload of the vehicle making it possible to
use it in smaller AUVs and to use it on smaller cameras placed in robotic hands.

It is possible to divide this general goal into more detailed objectives as follows:

• Develop a suitable underwater simulation environment: An specific
tool designed for simulating autonomous underwater vehicles is necessary
for faster development of algorithms. For this reason, this objective focuses
on the development of a visually and physically realistic simulator covering
the specific needs of underwater robotics. Furthermore, the simulator should
be able to work as a supervision tool when the real robot is running the
intervention and, it is not possible to view the system directly.

• Design a generic benchmarking tool: In order to compare different so-
lutions it is necessary to have a tool capable of objectively measuring and
evaluating the performance. Consequently, a generic suite that makes it pos-
sible to measure well defined metrics using groundtruth information is the
main contribution of this goal. The tool needs to be abstractly defined so
that it is possible to use it in any context or intervention.

• Study the effect of underwater visibility: Before proposing a dehazing
algorithm, it is interesting to analyse how the water turbidity affects a vision
algorithm so the need of it is demonstrated. Making use of the previously
described benchmarking tool, experimenting with different algorithms under
decreasing visibility conditions is proposed in order to understand the impor-
tance of image dehazing in the underwater context.

• Propose a single image dehazing algorithm:Once the need of a dehazing
algorithm has been established, the development of this software is proposed.
In order to do so, state of the art methods will be analysed in the context of the
needs of autonomous underwater vehicles: real time performance and single
image as input. The results must be tested with state of the art alternatives
showing the feasability and limitations of the approach.
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1.4. Outline

The different topics introduced in this thesis are presented in 8 chapters struc-
tured as follows.

In Chapter 2 a framework suitable for underwater robotics research is pre-
sented. The need and development for a capable of benchmarking simulator is
explaining showing the different capabilities and features.

Chapter 3 describes new trends in cloud simulation and presents an approach
of the previously described framework in this context. Furthermore, two different
cases are introduced demonstrating the possibilities of these kind of tools.

A summary of the most relevant applications of the presented framework for
underwater research, besides the visibility study, are shown in Chapter 4, where
three different cases are presented: the characterization of real experiments, dred-
ging intervention evaluation and comparison of natural user interfaces.

The presented benchmarking suite is also used in Chapter 5 to study the
effect of water turbidity on vision algorithms. Three experiments are presented
to compare trackers and 3D reconstruction techniques under different visibility
conditions. The experiments include simulation, hardware in the loop and real
benchmarking scenarios.

In Chapter 6 single image dehazing algorithms are benchmarked in order to
determine the best option to enhance vision algorithms in the underwater context.
Alternatives capable of producing restored images in real time from single images
are specially analysed and studied.

Chapter 7 proposes the use of machine learning solutions to generalize deha-
zing solutions from samples of images. Two solutions are proposed, one from the
point of view of image enhancement and one from image restoration using an image
formation model.

Finally, conclusions and future work are described in Chapter 8 summarizing
the work developed in the thesis.

Additionally, the datasets used for image dehazing are described in detail in the
Appendix A.





Caṕıtulo 2

A framework for underwater

robotics research

This chapter presents the software framework developed through the thesis. The
proposed framework makes it possible to study the behaviour of algorithms under
different conditions, allowing objective comparison and evaluation. This has been
used to study how different algorithms respond to water turbidity, motivating the
work of this thesis. Firstly, the need for a framework with the described capabilities
is discussed. Secondly, the state of the art in underwater robotic simulators and
benchmarking suites is detailed. After that, the developed framework formed by
UWSim, an underwater simulator, and a benchmarking module is described. Fi-
nally, a brief discussion and some conclusions extracted from the use of this software
are outlined in order to show its validity.

The contents of this chapter have been published in different international peer
reviewed conferences and a book chapter. In [Prats et al., 2012b] the UWSim simu-
lator is initially presented. In the book chapter [Pérez et al., 2015] the benchmarking
framework and work methodology are described using various examples of bench-
marking. Finally, [Sanz et al., 2013] shows an application of UWSim simulating an
underwater panel manipulation.

2.1. Motivation

As discussed in the introduction, underwater robotics is a challenging field due
to the extensive resources required and the difficulty for researchers to observe the
robot working underwater. For these reasons, a simulator as realistic as possible
that allows to test and validate the system, is considered an extremely important
tool. Moreover, it is also important to have supervision capabilities, so a visual
reconstruction of what is happening to the robot in the experiment is available in
real time.

Another difficulty when running field experiments in open sea or lakes, is the
ever changing environment. Water turbidity, marine life, currents and tides are
difficult to predict and completely unavoidable. In this thesis, a benchmarking
step is proposed as a previous stage to field experiments. This software performs

9
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Figura 2.1: Methodology of experimental validation with increa-
sing complexity.

repeated tests on the proposed algorithm under different conditions, evaluating its
performance to detect weaknesses so that the researcher is able to fix them before
real experiments. This step helps to test the system in a wide range of conditions,
thus ensuring it will work under different environment conditions.

Besides this, a simulation software with hardware in the loop capabilities is
also a crucial tool for coordinating complex projects such as the ones described in
Chapter 1. It makes it possible to test different parts of the system without the
need of the complete hardware or software facilitating the researchers work.

Finally, after the real intervention is performed, analysis and conclusions of
the results achieved must be outlined. But, even if experiments are filmed by a
professional diver, it is difficult to analyse the system performance from the recorded
video. In order to deal with this, UWSim is capable of reconstructing the scene from
the captured logs and provide valuable feedback in a reproduced simulation of the
intervention. Furthermore, this reconstruction can be used to test new algorithms
for the next real intervention.

All of these features are summed up in the development methodology in figu-
re 2.1. As can be seen, the first step involves simulating the intervention. Secondly,
the proposed solution is benchmarked under different conditions. After that, a
Hardware In the Loop (HIL) benchmarking experiment takes place in a water tank
or pool, adding simulated information when needed. At this moment, the system is
ready to perform the real intervention. Finally, all the results from the intervention
are gathered and analysed using the simulation tool.

Taking into account this methodology, the simulation and benchmarking pha-
ses are crucial for the final results. These phases allow the researcher to detect
errors and possible weaknesses before actually performing the intervention, saving
resources and time.
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2.2. State of the art

The field of software tools for robotics has produced a vast amount of research.
There are well established robot simulators for almost every use case: industry,
humanoids, service, etc. However, the case of underwater robotics requires specific
features and tools that are not usually available or easy to add to existing softwa-
re. For instance, simulating the visual characteristics of water such as light back
propagation, wave dependant light attenuation or underwater particles requires
advanced graphic features (shaders, multi-pass rendering, render to texture, etc.)
usually not used in these kind of simulators. For dynamic simulation it is necessary
to add buoyancy, drag or current forces. For these reasons, the use of specific tools
is important to achieve the best possible result.

2.2.1. Underwater robot simulators

In recent years multiple simulators for autonomous underwater vehicles have
been developed, see [Craighead et al., 2007], [Matsebe et al., 2008] or [Cook et al.,
2014] for a survey. Unfortunately, most of the available simulators are not suitable
for underwater robotics research for multiple reasons. Some of them are specific for
a project and cannot be adapted to other purposes. Other cases are closed projects
that do not allow modifications, and, as a consequence it is difficult to interface
theses systems with existing control architectures. Furthermore, support for under-
water manipulators is not common in existing underwater simulators. Finally, some
of these simulators are obsolete lacking the latest sensors or visualization realism
desirable for proper simulation.

At the same time, adapting an existing field robotic simulator for the underwa-
ter environment is not an easy task. Although some simulators show water in their
demos, it is not always possible to correctly simulate an underwater vehicle. Crea-
ting water visualization effects from zero is a challenging and time consuming task,
but, adapting this to an existing architecture is not always feasible or worthwile.

Taking into account these restrictions only a few simulators, shown in figu-
re 2.2, are suitable for the purpose of this work. One of these is MORSE, presented
in [Echeverria et al., 2011], a general purpose academic robot simulator developed
and supported by Laboratoire d’Analyse et d’Architecture des Systèmes at the Uni-
versity of Toulouse, France. MORSE relies on Blender Game Engine and Bullet
physics engine. Although it is not an underwater robotic simulator, it is possible
to simulate underwater scenes through Blender but requires shader and Blender
Game Engine programming knowledge. The main advantage is that it is based on
largely supported and active projects assuring documentation and availability, but,
as the software is not specifically for the purpose of underwater robots, the learning
curve is steep.

Another popular simulator is Gazebo, described in [Koenig and Howard, 2004],
originally developed by University of Southern California and currently maintai-
ned by the Open Source Robotics Foundation (OSRF). It is built upon the Ogre3D
rendering engine and supports several physics engines including Open Dynamics
Engine (ODE), Bullet, Simbody and DART. It is probably the most suitable simu-
lator for robotics, however there is no built-in way to create water or underwater
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a) MORSE b) Gazebo c) V-REP d) Webots

e) OpenRAVE f) MARS g) Kelpie h) CO3-AUVs

i) ROVsim j) DeepWorks k) Vortex l) VROV

Figura 2.2: Screenshots of different reviewed robot simulators.

visual effects. It may be possible to create a plugin for this, but nowadays this
plugin does not exist.

One of the most popular available robot simulators is Webots, shown in [Michel,
2004] initially developed by the Swiss Federal Institute of Technology in Lausanne
and continuously maintained for 19 years. It uses ODE for dynamics simulation
and a custom rendering engine. Webots is available for free in a limited version but
the pro version can only be accessed after payment. It has support for underwater
vehicles, but only a few works talk about this features and screenshots do not show
realistic water rendering.

V-REP, shown in [Rohmer et al., 2013], is also a popular robotic simulator
with dual license: commercial and free educational. V-rep uses a custom rendering
engine with support for four physics engines: Bullet, ODE, Vortex and Newton.
Although the simulator natively supports underwater robots, there has been no
known application of it, and will possibly require to create and extend V-REP via
plugins.

In the context of manipulation, OpenRAVE from Carnegie Mellon University
robotics institute, detailed in [Diankov, 2010], is probably the most used tool. It
is built in a plugin architecture allowing different physics engines to produce the
desired results. The main drawback of this simulation tool is that it is focused on
manipulation, giving the rendering capabilities a secondary role.

Another interesting open source project is MARS, presented in [Tosik and
Maehle, 2014] and developed by Institute of Computer Engineering of University of
Lübeck. This simulation environment based in jMonkeyEngine and Bullet Engine is
specific for underwater and surface robotics. Unfortunately, MARS does not allow
the use of manipulators, has a small community and it is developed in Java limiting
the use of Robot Operating System (ROS) to the ROSJava library.

Kelpie, described in [Mendonça et al., 2013], is a specific simulator ROS-Based
simulator for surface and aerial vehicles developed for the RIVERWATCH expe-
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Cuadro 2.1: Parameters of different robot simulators suitable for
underwater research.

Simulator Availability Underwater Manipulators Community Previous use
MORSE Open source Possible Yes Medium Yes
Gazebo Open source No Yes Large No
V-REP Dual: pro+edu No Yes Large No
Webots Limited Possible Yes Large Yes
OpenRAVE Open source No Yes Medium No
MARS Open source Native No Small Yes
Kelpie Open source Native No Small Yes
CO3-AUVs private Native No Small Yes
ROVsim commercial Native Yes Medium Yes
DeepWorks commercial Native Yes Medium No
Vortex commercial Native Yes Medium No
VROV commercial Native Yes Medium Yes
UWSim Open source Native Yes Medium Yes*

riment in the ECHORD european FP7 project. This simulator core architecture
is based on Gazebo and is built upon OpenSceneGraph (OSG), using osgOcean
library to generate water rendering effects and Bullet as physics engine. However,
this project is not available for downloading, and it seems to be a dead project.

The CO3-AUVs simulator was developed during the project of the same name by
Jacobs university of Bremen, detailed in [Rathnam and Birk, 2011]. This simulator
uses OGRE as rendering engine and Bullet as physics engine. Although screenshots
available show nicely rendered scenarios, there is not much information about it as
it is not available for use and cannot be downloaded.

Besides generic robot simulators and underwater robot simulators, there is anot-
her group of suitable simulators: commercial simulators for Remote Operated Vehi-
cle (ROV) pilots. This is an interesting family of simulators due to the quality and
variety of available simulators. One of the most popular options is ROVSim [LLC,
2006] developed by Marine Simulation. It offers different products such as a vS-
HIP, ship simulator, ROVsim Pro, for near shore and inland marine operations,
ROVsim O& G, specific for the offshore oil and gas industry and ROVsim Web
delivered through web browser. All the products are focused on pilot training. But
there are other alternatives such as Fugro’s DeepWorks [Fugro, ], Vortex by CM
LABS [LABS, ] and GRi Simulations’s Virtual Remotely Operated Vehicle VROV
[simulations, 2009].

As can be seen there is no perfect simulator that covers all the needs of the
project. In table 2.1 a summary with the most desirable features of the reviewed si-
mulators can be seen. The most important parameters are availability, underwater
capabilities and manipulators support. Availability describes if it is actually pos-
sible to use the software and if it is free. Underwater labels if it is possible to use
it for underwater robots. Finally, manipulators indicates if the simulator allows to
introduce robotic arms, also known as kinematic chains or only vehicles are allowed.
Moreover, two more desirable features have been added: the users community size
and if the simulator has been previously used for underwater research purposes.

For these reasons, at the time of beginning this thesis a basic simulator was
being developed in the IRSlab. Through the thesis work this basic simulator was
developed, and improved until reaching the UWSim, the underwater simulator
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available nowadays. The main goals in mind while developing the simulator were:

• To be easily integrable with existing control architectures. Control algorithms
are external to the simulator that in many cases only work as a visualization of
the output computed by external programs. The software is mainly addressed
to researchers and developers working in the field of underwater robotics,
although special scenarios for ROV pilot training could also be implemented.

• To be general, modular and easily extendible. New robots can be easily in-
cluded with eXtensible Markup Language (XML) description files. Support
for widgets is also provided, making it possible to show useful information
superimposed to the scene.

• To include support for underwater manipulators, thus making it possible to
simulate underwater intervention missions. Kinematic chains can be created
and controlled.

• To be visually realistic, and enable the user to configure important parameters
such as water color, visibility, floating particles, etc.

A recent trend in robotic simulators are the web-based capabilities such as
[Tellez, 2017], [Pavin et al., 2015] or ROVSim web. This feature makes it possible
to concentrate the simulation in a dedicated server, or array of servers assuring
the hardware is able to run the software. Furthermore, it is possible for more
than one person to work with just one simulation server saving money and time.
The potential applications include education, batch simulation or even distributed
simulation for high precision requirements. In this research line, a web-based version
and cloud features have been developed for UWSim described in chapter 3.

2.2.2. Benchmarking suite

Additional to an underwater robotic simulator, a tool for performance mea-
surement of the developed solutions is also highly recommendable for underwater
environments as discussed previously. These kind of programs are commonly refe-
rred to as a benchmarking suite.

Concerning benchmarking in robotics, a lot of effort has been made over the last
few years. The robotics community has been very active in this context, and has
identified as a key area the interaction of a robotic manipulation system with its
environment. Indeed some recent European projects, like FP7-BRICS (Best Prac-
tice in Robotics), significantly contributed to this specific subject [Nowak et al.,
2010], promoting the interoperability of hardware and software components and
building a software repository of best practice robotics algorithms [Bischoff et al.,
2010]. Moreover, following previous research in this field [DEXMART, 2009], it is
clear that: “In the domain of robotics research, it is extremely difficult not only
to compare results from different approaches, but also to assess the quality of the
research. This is especially true if one wishes to evaluate the performance of intelli-
gent robot systems interacting with the real world.”There are many definitions for
the term “benchmark”, but a very simple one stated in the work mentioned above
will be used, that is defined as “adds numerical evaluation of results (performance
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metrics) as a key element. The main aspects are repeatability, independency, and
unambiguity”.

Comparative research in robotics has focused on competitions between systems
such as [Holz et al., 2013] or [Amigoni et al., 2013]. Although it is required to
share binaries or even source code, vital information such as configuration, build
instructions and which system is required, is usually missing. This makes it ex-
tremely difficult to replicate the results after the competition. Furthermore, these
competitions lead to very specific solutions for certain missions. In order to solve
this, a general benchmarking suite is proposed.

Several benchmarking suites have been developed in the field of robotics. Many
of them focus purely on a specific sub-field of robotic research but, to the best of the
authors’ knowledge, none of them is focused on autonomous underwater vehicles.
In the grasping field, several suites have been presented such as the OpenGrasp
Benchmarking suite [Ulbrich et al., 2011]. This suite is a software environment for
comparative evaluation of grasping and dexterous manipulation using the Open-
Grasp toolkit. It also provides a web-service that administers available benchmarks
scenarios, models and benchmarking scores.

Another interesting benchmarking suite in the field of grasping is VisGrab
[Kootstra et al., 2012], a benchmark for Vision-Based Grasping, which provides
tools to evaluate vision-based grasp generation methods.

Motion planners, trajectory tracking and path planning have been very active
research fields around benchmark metrics and benchmarking suites. In [Cohen et al.,
2012], authors describe a generic infrastructure for benchmarking motion planners.
This infrastructure makes it possible to compare different planners with a set of
measures. The key point of the contribution is the easy to compare design due to
ROS MoveIt! integration.

Rawseeds [Fontana et al., 2014], is a project focused precisely on benchmar-
king in robotics, although its global nature has been widely used for Simultaneous
Localization And Mapping (SLAM). The aim of the Rawseeds project is to build
benchmarking tools for robotic systems through the publication of a comprehensi-
ve, high-quality benchmarking toolkit composed of datasets with associated ground
truth, benchmark problems based on datasets and benchmark solutions for the pro-
blems. Unfortunately this project lacks an automated comparison system.

The work presented in [Weisz et al., 2016], robobench, is a recent approach to
a generic benchmarking platform. This approach uses software containers to avoid
incompatibilities and be able to simulate and run the software to be evaluated.
It also shows a set of benchmarks comparing software with different purposes.
Unfortunately this suite is not available for any suitable underwater simulator.

In the SLAM problem some suites have been proposed such as [Nardi et al.,
2015]. This software measures performance, accuracy and energy consumption of a
dense RGB-D SLAM system. It provides synthetic sequences with trajectory and
scene ground truth in order to compare different implementations and algorithms.
But, once again, this is a problem specific benchmark not suitable for other uses.

Finally, there have been proposals of web-based benchmarking suites such as
[Esteller-Curto et al., 2012] where authors propose an interesting test-bed internet-
based architecture for benchmarking of visual servoing techniques allowing users
to upload their algorithms.

As can be seen, none of the reviewed suites cover the underwater robotics issues.
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For this reason, a generic configurable benchmarking suite has been implemented
for the underwater simulator UWSim. This suite makes it possible to measure the
performance of any software using the ground truth from the simulator and ROS
as abstracting middleware.

2.3. UWSim, an open source simulator for underwater

robotics

At the moment of starting this thesis work, UWSim was being developed by
IRSLab in a very early stage. Only a simple non-configurable scene was available,
as it was necessary to modify the source code in order to make any change in
the environment or vehicle. Furthermore, the only available sensor was a non-
configurable camera. Physics simulation has not yet been implemented. Finally,
the only possible way to interact with UWSim was to send position messages to
the vehicle and kinematic chain, not even speed requests were implemented at that
moment. Due to the need for a capable simulation framework for the researchers in
the TRITON, MERBOTS and TRIDENT projects in which this thesis is framed,
UWSim has been improved until reaching the current state (version 1.4)1.

The simulator has been implemented in C++ and makes use of the OpenSce-
neGraph (OSG) [Osfield et al., 2004], Bullet physics engine [Coumans, 2012] and
osgOcean [Bale, 2012] libraries. UWSim is an active project available in http:

//www.irs.uji.es/uwsim/. OSG is an open source 3D graphics application pro-
gramming interface used by application developers in fields such as visual simu-
lation, computer games, virtual reality, scientific visualization and modeling. The
toolkit is written in standard C++ using OpenGL and runs on a variety of ope-
rating systems including Microsoft Windows, Mac OS X, Linux, IRIX, Solaris,
FreeBSD and recently also Android. Bullet is a free and open source physics en-
gine which simulates collision detection and soft and rigid body dynamics. It has
been used in video games and visual effects in movies and is the physics engine
of many previously reviewed simulators such as MORSE, Gazebo or V-REP. On
the other hand, osgOcean is another open source project that implements realistic
underwater rendering using OSG. osgOcean was developed as part of an EU funded
research initiative called the VENUS project [Chapman et al., 2006].

UWSim uses the above mentioned libraries and adds further functionality so
that underwater robots can easily be added to the scene, simulate sensors, and do
the interface with external control programs through the Robot Operating System
(ROS). Figure 2.3 shows the main components and classes of UWSim in its current
version. Basically, there is a Core module in charge of loading the main scene and its
simulated robots; the Sensors module is in charge of loading the configured sensors;
an Intefaces module that provides communication with external architectures; a
Dynamics module that implements underwater vehicle dynamics; a Physics module
that manages the contacts between objects in the scene; the osgOcean, in charge of
rendering the ocean surface and special effects, and theGUI module, that provides
support for visualization and windowing toolkits.

The main features of UWSim are described in the following sections.

1UWSim used in TRIDENT: https://www.youtube.com/watch?v=Hrj6wvTw3bc

http://www.irs.uji.es/uwsim/
http://www.irs.uji.es/uwsim/
https://www.youtube.com/watch?v=Hrj6wvTw3bc
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Figura 2.3: Architecture of UWSim, the underwater simulator.

2.3.1. Configurable environment

The 3D geometry to be loaded in UWSim can be easily configured with third-
party modeling software as Blender, 3D Studio Max, etc. The basic scene can be
freely modeled, including materials and textures. The resulting scene may be loaded
in the simulator as long as it is exported to any of the formats that OSG can read
(.ive, .3ds, .wrl, etc.).

In addition to the basic 3D structure, additional elements can be dynamically
added, modified and removed from the main program. OSG represents the virtual
scenario with a scene graph, where the nodes can be easily accessed and managed.
This includes not only geometry nodes, but also cameras, light sources, etc. The
complete scene can be described by the user with an XML file, or a Xacro file that
generates an XML, where the main tags that can be used are:

• The<oceanState> block, that allows the configuration of ocean parameters
such as wind direction and speed (controls the amount of waves), underwater
color, visibility and attenuation factors.

• The <simParams> block, that lets the user disable visualization effects, set
the window resolution, and set a world frame, given as an offset with respect to
the default one. Some general configuration options are inside this block too,
like physics solver, ambient light, gravity or physics solver. The augmented
reality markers such as followed paths are configured in this block.

• The <camera> block sets the main camera parameters. The main camera
is the viewer that observes the scene and renders to the main window. The
user can set the camera motion mode (free camera vs. look at camera), and
other parameters such as the field of view, aspect ratio and clipping planes.
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It is also possible to set the camera parameters from the intrinsic calibration
matrix.

• With the <vehicle> block, multiple underwater robots can be included.
The user has to specify a robot description file in Unified Robot Description
Format (URDF), default joint values in case the robot contains joints, the
pose of the robot in the scene, and vehicle sensors if needed.

• The<object> block makes it possible to add other 3D models into the scene
from existing file resources in any of the 3D formats supported by OSG.

• Finally, the <rosInterfaces> tags allows ROS interfaces to be attached to
certain objects. These provide sensor information to external software such
as pose of objects, images from virtual cameras, joint values, etc., and also
receive external references used for updating the pose of objects and robots
in the scene.

2.3.2. Simulated sensors

UWSim has twelve built in sensors for vehicles plus default position/velocity
sensors available for vehicles and manipulator joints in the current 1.4 version. The
default position and velocity sensors for vehicles provide 6DOF pose (x, y, z, r, p,
y) in the scene, and in the case of manipulators, position and velocity for each joint
is provided. Besides this, the following sensors are available:

• Camera: Provides virtual images of the 3D scene that can be used for de-
veloping vision algorithms. Can be initialized from intrinsic parameters, thus
allowing the definition of simulated cameras with the same properties of their
real counterparts. It is also possible to add gaussian white noise to add rea-
lism. This cameras can be declared in a stereo manner to simulate stereo
cameras. The output can be seen in figure 2.4.

• Range camera: Produces the same output as a regular virtual camera, but
only with range information. It can be initialized from intrinsic parameters
to simulate the properties of a real device. Depending on the selected output
interface, the result can be obtained in pointcloud or grayscale image formats.

• Range sensor: Single beam distance sensor. It measures distances to obsta-
cles along pre-defined directions, thus simulating range sensors. Range limits
can be specified to adjust to different simulated devices.

• Object picker: This sensor fakes a suction grasp when the object to be
caught is close enough to it. It proved to be an interesting feature for the
reproduction of mission logs when no physics simulation is performed.

• Pressure: Provides a pressure measure depending on the vehicle depth. It is
possible to add gaussian noise to it.

• DVL: Estimates the speed at which the vehicle is travelling in the vehicle’s
reference frame. In order to add difficulty it is possible to add gaussian noise
to the estimation.
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b) Structured light projector

a) Multibeam range sensor c) Range and texture camera d) Dredge tool

Figura 2.4: Screenshots of different sensor outputs.

• IMU: Estimates the vehicle orientation with respect to the world reference
frame.

• GPS: Provides an accurate estimation of the vehicle’s position relative to the
world frame. However, it only works when the vehicle is close to the surface
as happens with the real world GPS.

• Multibeam: Simulates an array of range sensors, providing distances to the
nearest obstacles in a plane at constant angle increments2. It is created using a
virtual camera and z-buffer implementation to obtain an efficient raytracing,
thus being able to achieve a good performance. It is possible to configure the
aperture of the sensor and the angle interval between rays, allowing a big
number of hardware devices to be simulated. The point cloud generated can
be seen in figure 2.4.

• Force: This sensor estimates the external force and torque applied to a vehicle
or a part of it. In other words, it measures the collision force of a vehicle or
a part of it, for instance, a robotic arm. In order to do so, every physics
step it measures the position difference of the target vehicle with respect to
another “ghost” vehicle, that does not collide with anything. This difference
is analysed to obtain the force and torque applied to each part of the vehicle.
Is specially interesting to have the information from this sensor so that the
hidrodynamic simulation can pass through an external node, and afterwards
add the collision forces to obtain a world response.

• Structured light projector: This device projects a laser or a light on the
scene. It is possible to use any light pattern using an image texture to con-
figure it. It also admits a field of view parameter to set the aperture of the
light projector. The different possible configurations are shown in figure 2.4.

• Dredge: Finally, the dredge tool simulates a device designed to unearth
buried objects in the seafloor. This device is designed for archaeology inter-
ventions such as the MERBOTS project final demonstration. A time lapse of
a simulated dredging intervention can be seen in figure 2.4.

2Multibeam in UWSim: https://www.youtube.com/watch?v=zm2IE0dJo2E

https://www.youtube.com/watch?v=zm2IE0dJo2E
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2.3.3. Network interfaces

All the different robots sensors and actuators can be interfaced with external
software through the network.

UWSim includes an interface for its integration with the Robot Operating Sys-
tem (ROS), that is a set of libraries and tools that assist software developers to
create robotic applications that has become a de facto standard. ROS is a dis-
tributed system where different nodes can run on different computers and mainly
communicate through topics via publishing/subscribing mechanisms. The ROS in-
terface of UWSim makes it possible to run the simulator as another ROS node that
can communicate with the rest of the architecture with the standard ROS commu-
nication facilities. This allows control methods developed in ROS to be seamlessly
validated, either on UWSim, on the real robots, or even logged real interventions
as long as they provide the same interface.

Through the ROS interfaces it is possible to access or update any vehicle po-
sition or velocity, to move arm joints, and to access the data generated by virtual
sensors. Interfacing with Matlab and Simulink is also possible through the ROS
Matlab support, added in the Robotic System Toolbox in Matlab R2015a3. Alt-
hough, it was possible to do it with previous versions of Matlab through IPC bridge,
but these methods are now outdated.

Furthermore, UWSim has support for ROS interactive markers, a message li-
brary for “regular” 3D markers and interactive markers that allow the user to
interact with them changing their position, rotation, clicking or selecting context
menu4. This feature allows new geometry to be dynamically moved, created or des-
troyed while the simulator is running. Thus, allowing a simple, configurable and
neat user interaction with the simulator. Moreover any existing ROS node should
work as long as they respect the messages protocol.

2.3.4. Physics simulation

Simulation of contacts is supported by the physics engine Bullet, wrapped in
osgBullet for its use with OSG. This allows collisions and forces to be detected,
and automatically update the scene accordingly. The different body collision shapes
can be automatically generated from the 3D models. This physics engine is also in
charge of estimating the force sensor values, providing collisions and reactions.

In order to perform dynamic simulation, an external simulation node, availa-
ble in the simulator stack, is used5. This node provides dynamic simulation of
underwater vehicles, interaction with simulated world which can be created using
force sensors as external forces on the vehicle. It is in charge of simulating the hy-
drodynamics: thruster forces, buoyancy forces, drag forces, etc. As input, specific
parameters of the vehicle that can not be inferred from urdf are needed, such as
underwater masses, gravity center, buoyancy center or drag coefficients.

The decision to keep dynamic simulation in a separated node makes it possible
to use different dynamic simulators until a generic complete solution is available.
For instance, in some works simurv 4.0 [Antonelli, 2014] was used to simulate a

3Controlling UWSim with Matlab Simulink: https://www.youtube.com/watch?v=038rdcyZ0iQ
4UWSim interactive markers: https://www.youtube.com/watch?v=AfW24fLMVTY
5Dynamic simulation in UWSim: https://www.youtube.com/watch?v=74R75S8cqgQ

https://www.youtube.com/watch?v=038rdcyZ0iQ
https://www.youtube.com/watch?v=AfW24fLMVTY
https://www.youtube.com/watch?v=74R75S8cqgQ
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Figura 2.5: UWSim scene with a ship sailing in a clear ocean.

multibody dynamic robot in Matlab while visualizing and simulating cameras in
UWSim. In [Kermorgant, 2014] the Gazebo simulator physics engine was used for
underwater vehicle manipulator dynamic simulation while keeping UWSim as a
visualization engine. Finally, it is also possible to not use a dynamic simulation at
all, and monitor a real intervention.

2.3.5. Widgets

Support for customizable widgets can be added to the main window. Widgets
are small windows that can be placed inside the main display in order to show
specific data to the user. An abstract interface for the creation of custom widgets
is provided. It allows specialized classes to be created for displaying useful data
depending on the specific application. For instance, the virtual camera view is dis-
played on a widget, the position and size of which can be modified during execution
by the user.

2.3.6. Visualization capabilities

UWSim exploits the potential of OpenSceneGraph using many advanced fea-
tures such as shaders, particles or Level-of-Detail to provide a high quality visual
simulation. osgOcean provides a visually realistic view of the ocean, as can be seen
in figure 2.5, that can be configured to simulate different ocean states such as calm,
stormy, windy, etc.

It is possible to seamlessly load complex meshes with multi-resolution textures
generated externally from bathymetry and imagery. The built-in support for data-
base paging that is used for loading different Level-of-Detail models from disk in
real time makes it possible without a noticeable drop in performance. Thus, models
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Figura 2.6: UWSim scene with multi-resolution terrain loaded.

generated in other projects like VirtualPlanetBuilder, that produce large terrains
and textures common in underwater robotics, can be introduced. Figure 2.6 shows
a multi-resolution terrain of a real reconstruction of a port in Soller, Mallorca,
Spain from a raw source with 11 million points.

Shaders, small GPU programs that determine 3D surface rendering, provide
a large number of visual effects such as godrays, underwater scattering, haze or
glare. But, the most interesting thing about shaders is that due to its parallelizing
possibilities there is almost no performance drop if it is properly coded. For instance,
random gaussian noise in virtual cameras had to be implemented using shaders
due to the huge performance drop it caused without them. Another interesting
application of shaders is the structured light projector.

osgOcean uses particles to simulate small floating things that disturb vision.
However, osg particles are used to simulate the dredging effect in the dredge tool.
This feature increase realism when the device is close to the seabed and mimics the
effect of sediments being stirred up on the seabed.

2.4. Benchmarking suite for UWSim

Together with UWSim, a generic module focused on evaluating and measu-
ring the performance of any intervention algorithm has been developed. This suite,
permits repeated tests to be performed in different environment conditions such
as increasing water turbidity. As the simulator, benchmarking module has been
implemented in C++ and uses ROS as middleware to interface with external soft-
ware and UWSim as ground truth source. For the development of the module, two
important objectives were taken into account:

• The first one was to be clear to the user, in other words, that it does not
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Figura 2.7: Benchmarking suite workflow diagram.

require major modifications to the algorithm that has to be evaluated.

• The second goal of the module development was that it must be adaptable
to all kinds of tasks in the underwater robotics field.

Taking into account these goals, the designed benchmarking module workflow
can be seen in figure 2.7. The evaluated algorithm takes the sensors input from
UWSim and performs the actions through ROS interfaces. Thus, already integrated
ROS software, a standard de facto nowadays, does not need any change, so the first
objective is fulfilled. In order to accomplish the second goal, several configuration
options are available in a XML file being able to activate or deactivate different
measures depending on events and updating the scene accordingly. These files,
abstract from specific scenes or implementations, describing how a task should be
evaluated. Each of them can be assigned to one or more UWSim scene configuration
files.

The benchmark configuration options are basically made up of three kinds of
entities: measures, triggers and scene updaters. These entities have been created in
a modular way, thus users can extend them and create new functionality easily.

• Measures: This entity is in charge of answering how to evaluate the algo-
rithm. It is possible to choose a set of measures to evaluate the software from
already implemented options such as time, path following integrated squared
error, reconstruction3D error, distance, etc. If the desired evaluation measure
is not available yet, it is possible to implement it filling a common interface
acquiring the ground truth from UWSim and results from ROS interfaces.
Finally, the last option is to introduce a static value, or dynamic through
ROS, as ground truth that will be compared with the result of the evaluated
algorithm obtained from an ROS interface.

• Trigger: Additionally to decide how to evaluate, it is possible to decide
when. Triggers activate or deactivate measures depending on specific events.
For instance, it is possible to activate a collisions measure while the vehicle
is navigating but stop it when the vehicle has to grasp an object. Because at
this moment, hand object contacts are not a bad result although they would
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be detected as collisions. Another existing possibility, is measuring the time
in different stages: for example measure the time it takes to search for the
object and the time to grasp it.

• Scene Updater: This configurable option controls the environment. It helps
to repeat the same experiment under different conditions without human
intervention. There are some scene updaters already available that can be
chosen, such as turbidity, illumination, current force or camera noise. But,
it is also possible to add new updaters filling the corresponding abstract
interface interacting with UWSim.

The features of the benchmarking suite are summed up in the following sections.

2.4.1. Automated results

Once the benchmarking has finished, caused by a stop trigger event, and all
the scene configurations in the scene updater have been tested, results are written
into output files. These output files are disaggregated for each scene configuration,
containing results for each measure and global results that are a combination of
multiple measure results. For instance, a navigation efficiency benchmark could use
two measures: distance travelled and battery consumption and a global result of
distance/battery under 3 different current forces. The results file would have a 3x3
matrix with results for each current force in lines, and distance/battery, distance
and battery as columns.

Additionally, each measure can be configured to log its result at regular inter-
vals in order to see its evolution over time, and not only the final result for each
scene configuration. As a result, for each logged measure, the benchmark will ge-
nerate a different output file, containing the variation among the measured results.
Furthermore, each measure can contain details, for instance position error can be
retrieved as a single absolute error in meters, or the error in each axis (x,y,z). Thus,
it is possible to show the summarized version of the measure or the complete one
depending on the situation.

The output file or files are written in a tabbed matrix form, making it possible to
further process with any spreadsheet manager such as Microsoft excel, LibreOffice
calc or google spreadsheets.

2.4.2. HIL benchmarking

In the case of visual algorithms, it is common to work with recorded images to
improve the algorithms. This benchmarking suite goes a step further in this concept,
allowing a real logged intervention to be used in the form of a rosbag. A rosbag is
a file that contains a timed copy of every ROS message in the network of a real
intervention. Using this information and filling the possible gaps with simulation it
is possible to reproduce the intervention and measure the performance of different
aspects of the real intervention, such as travelled distance, average velocity, etc.

Additionally, it is possible to mix simulation and real input using scene updaters
to test different situations in a Hardware In the Loop setup. For instance, in Chap-
ter 5 an application of this feature is showed. In the experiment a recorded video
of a black box mockup is increasingly blurred with simulated water turbidity. This
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makes the Hardware In the Loop experiment closer to the real world shortening
the gap between the two worlds.

2.4.3. Real benchmarking

Finally, it is also possible to benchmark a real process just redirecting the ROS
interfaces accordingly. As the ground truth is normally acquired from UWSim, a
previous calibration step is needed to configure the virtual scene as similar to the
real world as possible. Then the simulator will act as a ground truth source while
the real robot is performing the intervention.

The only feature that may need to be developed is scene updaters. In this case,
instead of modifying the simulated scene this entity should be able to interact
with the real world. For this reason, the scene updater should be able to send
messages to a real device. In Chapter 5 an application of this situation is presented
where different 3D reconstruction algorithms are compared in varying illumination
conditions. In order to control the illumination, different lamps were turned on or
off.

2.5. Discussion and conclusions

The developed framework for underwater robotics research is based on two
software packages: UWSim, an underwater robots simulator, and a generic bench-
marking suite capable of evaluating robotic algorithms. In order to interface with
these packages, ROS has been used as middleware, abstracting from implementa-
tion details and allowing any ROS based software to integrate with them.

UWSim, the underwater simulator developed, is an active open source project,
ready for use by the underwater robotics community. Some European Community
funded projects like MORPH [Kalwa et al., 2012] and PANDORA [Lane et al.,
2012] have decided to use it after a comparison of the state of the art alternatives
concluding: ÜWSIM is the most feature-complete simulator, and open to the ROS
community”.

Furthermore, at least 52 universities or institutes are known to use or have
used UWSim, see figure 2.8 to see the distribution. This fact shows the need for
a dedicated underwater robot simulator for research and that UWSim is actually
filling that gap.

The AUV simulators review [Cook et al., 2014], compares different available
open source softwares and concludes: .Overall, UWSim is an excellent fit for the
simulation of underwater vehicles.”. Although, it points some drawbacks too, for
example: large simulations require to manually edit an XML and the lack of a
convenient way to extend software. However, since the review, some work has al-
ready been done to solve these issues using Xacro macros to configure scenes, also
a generic plugin interface to create new sensors has been developed.

About the benchmarking suite, it is noticeable to say that it has been extensi-
vely used by the IRSlab research group for different purposes: evaluating trackers
under different turbidity conditions, position controllers depending on currents,
3D reconstruction algorithms, natural interfaces, dredging, path following and real
intervention among others.
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Figura 2.8: Known universities or institutes that use or have used
UWSim.

This chapter presented the framework developed for underwater robotics re-
search that is used in this thesis to study the effects of underwater turbidity in
vision algorithms. Providing enough information to be able to choose the most
convenient solution for each case and motivating further research in dehazing met-
hodologies.
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A benchmarking simulator on

the cloud

As discussed in Chapter 2, simulation capabilities are necessary to reduce costs
and development time in underwater robotics. Moreover, benchmarking features
to compare and evaluate the system are also desirable. After a thorough state
of the art review, a simulator with benchmarking capabilities was developed and
presented on Chapter 2.

This chapter, inspired by the recent“on the cloud”trends, proposes an extension
to the previous framework to provide online services for simulation, benchmarking
and evaluation. These services allows anyone with a connected device to configu-
re and launch experiments in a remote server being able to retrieve results and
immediately compare with other users.

The proposed architecture and ideas described in this chapter have been pu-
blished in international conferences and are under review for journal publication.
Concretely, it has been published in [Pérez et al., 2014] and [Perez et al., 2014]
showing different applications for the online execution simulation services.

3.1. Motivation

High fidelity simulation is a computationally expensive task. If the environment
is to be properly simulated, it requires a high-end computer with a good graphics
card. Furthermore, users that are using a different operative system or device might
find installing and configuring all the necessary libraries discouraging.

When benchmarking is added to the formula, several configurations and/or
algorithms may be tested, increasing the required time to simulate and compare
all the possibilities. In order not to distort the results, the system can not be used
while the simulation is running, and it is also convenient to use the same hardware
for an objective experiment comparison. Thus, the simulation hardware needs to
run for hours undisturbed to assure a fair comparison of the results.

Finally, nowadays users prefer to work with smaller portable devices such as
netbooks, tablets or smartphones. These devices are not suitable for simulation, as

27
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they rarely have a dedicated graphics card or enough computation capabilities. Ho-
wever, it is possible to connect almost every up-to-date device to Internet, reaching
a virtually unlimited amount of services. Thus, it is possible to stay connected and
work at home, while travelling, or at a different office: in fact almost everywhere.

Taking into account these facts, the next step for robotic simulators is to pro-
vide services through Internet. Allowing users to work with any device anywhere,
adapting to new demands while reaching higher standards of realism. To achieve
this, it is necessary to provide a simulation server that will carry the computation,
and, also a way to access and interact with it. This capability is often referred to
as “working on the cloud”.

3.2. State of the art

With this goal in mind, some robotic simulators already provide capabilities on
the cloud. This is the case of the construct sim [Tellez, 2017], capable of running
Gazebo or Webots simulators in any device, anywhere, without installation. This is
the most mature project where only a web browser is required to start simulating.
It also provides a wide amount of robot and environment models to start with
from their complete webinars and tutorials. However, it does not provide any tool
for underwater robotics. Unfortunately, this amazing service is not free, the price
depends on the number of simulation hours, and the CPU and GPU characteristics
needed.

In [Pavin et al., 2015] an Autonomous Underwater Vehicles cloud simulator is
proposed. In this case, the application is focused on navigation control problems and
offers very few sensors and simulation capabilities. The system runs on any device
through a reconfigurable web interface. However, there is not much information
about it as it is not available for the community.

The Open Source Robotics Foundation (OSRF), maintainers of Gazebo, develo-
ped its own tool to deploy and control simulation in the cloud: CloudSim [Founda-
tion, 2015]. This software allows simulations to be launched in a cloud of machines
over the Internet, allowing the users to access them and even teleoperate. Although
it does not provide a service ready for use, it offers software to create your own
service together with Gazebo.

UC Davis C-STEM Center has launched RoboBlockly in [Center, 2015]. This
resource is focused on teaching robotics and maths to young students. It relies on
Lego robots and the library Blockly from Google to generate executable C++ code
that can be run in simulation and in the real robot. The Blockly library is a visual
programming library in blocks format, that generates the code to be executed. The
main drawback of this platform is it is very basic and uses a naive simulator.

The Robot Programming Network (RPN), presented in [Cervera et al., 2016],
offers access to educational robot tools through a web interface. It allows the user
to directly create and test code in an integrated dialogue. The tool is organized
in moodle courses, that introduce different simulators or concepts to the students.
Unfortunately, it lacks the tools or resources needed for underwater robotics re-
search.

In the context of commercial ROV simulators, ROVSim, available at [LLC,
2006], also offers a web alternative. This software has the same graphics and physics
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as the regular ROVSim, but it is delivered through a web browser under Windows
and Mac. Although it still lacks compatibility in other platforms, such as android,
it proves the commercial simulators are also working in simulation on the cloud
alternatives.

Taking into account the advantages of these kind of suites, and that none of
them supports underwater robots or benchmarking features, an online service for
UWSim and the integrated benchmarking module has been developed.

3.3. Online execution

The online execution architecture for UWSim and the benchmarking module,
allows simulations and benchmark experiments to be launched in a remote server
using a web browser. It can be accessed in http://robotprogramming.uji.es/

UWSim/config to configure the use cases presented below1. This system focuses on
a simple solution that makes it possible to remotely execute simulations, configure
the scene and benchmark, run an arbitrary algorithm to interact with the simulator
and retrieve the results.

3.3.1. Configuration server

In order to interact with the system, only a web interface is needed, allowing it to
be used in any connected device as long as it supports a JavaScript capable browser.
This interface makes use of rosbridge through roslibjs, a library for interacting
with ROS from the browser that uses WebSockets. In the case of video streaming,
mjpeg server is used. This library produces a compressed video streaming server
via HTTP from ROS topics.

The web execution architecture can be seen in figure 3.1. The online server lis-
tens to web requests and serves the pages. Moreover, it also acts as an intermediary
with the simulation server, which is inaccessible from the outside, as it pertains to
the internal network servers in the domain uji.es and is protected by a firewall.
Thus, it redirects the calls from rosbridge and mjpeg server to itself. This way, the
interaction with the simulation server is transparent to the client, which only makes
calls through the JavaScript interface for rosbridge, and receives streaming video
using mjpeg server and results through rosjslib.

At the time of writing, it is possible to configure two types of benchmarks,
visibility and station keeping, but adding new configuration options is a simple
process. Just adding a few lines to the configuration interface, and making sure the
simulation server is able to run it, is enough to add more benchmarking scenarios.
Figure 3.2 shows a station keeping benchmark being configured under different
devices.

Besides the type of benchmark, the user is also able to choose from a set of
already implemented solutions for the problem. In both cases, different tracker
configurations are available, and in the case of station keeping, the parameters of
the controllers can be directly modified. Additionally, it is also possible to upload
a custom code so that it can be evaluated.

1Online benchmarking: https://youtu.be/2OCmMnQUwDs

http://robotprogramming.uji.es/UWSim/config
http://robotprogramming.uji.es/UWSim/config
https://youtu.be/2OCmMnQUwDs
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Figura 3.1: Architecture of the online UWSim benchmarking ser-
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Figura 3.2: Online benchmark configuration interface in MAC OS
and android.
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3.3.2. The simulation service

The functionality of the web execution service can be seen in figure 3.3. Firstly,
the user selects the desired configuration options using the previously described
configuration server. Once the user has configured the desired options, the bench-
mark is launched in the simulation server. In order to do that, a uwsimRequest
service is called and sent to the simulation server. This is a type of message, that
contains a dictionary of keys and values with the different configuration options in
the form of two vectors. This request is received by the webInterfaceLauncher ROS
node, located in the simulation server, that is responsible for executing the request.
The node will answer the configuration server whether the configured options are
valid or not.

Similarly, the users can upload their own code in the request, which will be
stored on the server until the execution. In this case, the code provided by the user
will replace the one already existing on the server by default. For simplicity and
security reasons, it is only possible to execute code written in Python, but it is
possible to allow execution of code written in C++, Matlab, Simulink or any ROS
based code. If the request is successful a user ID will be sent to the client, and an
instance of the simulator related to this ID is launched.

At the moment of writing, the simulation server is only capable of running
a single instance of UWSim assuring good performance. For this reason, and in
order to assure a fair comparison when running benchmarks, only one client can be
using the service at the same time. This is fulfilled through the user ID, denying new
connections while a user is running the service showing a server busy error. However,
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Figura 3.4: Online benchmark execution interface.

if the simulation server capabilities are extended this can be easily changed allowing
clients to be launched in different machines.

Additionally to this, it is necessary to provice another mechanism which will
indicate when a client leaves the simulation, and the service is ready for other
clients. Although the ideal situation is the client sends an exit message, trusting
the users good-will is not a reliable or robust method. Thus, two possible causes
can cause a simulation to abort: the user closed the browser or the experiment that
had been launched has finished.

In order to detect the first case, the JavaScript client is required to send a
webUWSimHeartBeat each second with the user ID. If the simulation service does
not receive a single heartbeat for 10 seconds, it considers the client has disconnected
and exits the simulation allowing other clients to use it. This assures the detection
of when the client left the web interface or lost connection, even if it was not on
purpose. The only drawback is that it then not possible to launch a large simulation
and consult the results in another session. This could be implemented requiring a
user login or asking for an email and send the results to it at the end of the
experiment.

The second abort case is the benchmark experiment ending. When a benchmark
experiment is launched, the simulation server is continuously sending results to the
client until the end. For this reason, the web interface launcher monitors the results
communication, and if the simulator is not sending it, it means the experiment has
already finished. When this happens, the user can still see the experiment results
but needs to start a new simulation for further experiments.

While the simulation service is running, the client can interact with the si-
mulator using the main feedback, secondary feedback and the results section, see
figure 3.4. The main feedback displays the simulator view. Users can interact with



3.4. Benchmarking on the cloud 33

Benchmark

Results

Replay

Data

Experiment

Results

UWSim & Benchmarking Spreadsheet ScoreCard

Figura 3.5: Benchmarking on the cloud workflow.

it by using the mouse, and can move through the virtual scene while the benchmark
is running, as they would do in a local simulator. The secondary feedback, placed
at the right part, shows information about the experiment that is being executed:
virtual cameras, configuration options, etc. Finally, the results section shows the
measures the benchmark module is computing using canvasJS library. CanvasJS
is a powerful tool that allows data charting in real time using HTML5, assuring
compatibility with different devices such as tablets, smartphones, etc. It is also
possible to download the raw information so that it can be further processed by
just pressing the corresponding button.

3.4. Benchmarking on the cloud

The previously described service allows remote simulations to be run and the
results to be retrieved. However, it is not possible to directly compare with other
simulation runs, it is required to download the data and run a different simulation so
it can be compared. Furthermore, there is no way to compare with other researchers
results, unless both researchers are already in contact.

In order to deal with this, a benchmarking on the cloud architecture has been
designed. This architecture makes it possible to automatically upload the results to
a comparison environment, and consult a scorecard interface with specific graphs
and results for the experiment. Additionally, it is possible to reproduce any com-
pared experiment from the stored results as a logged reconstruction, without any
code information to preserve privacy.

This architecture is composed of two main pieces, an “on the cloud” storage
space to hold all the results data and a web interface to show the results in the
most convenient way for the experiment. The data workflow between these main
parts can be seen in figure 3.5.

The “on the cloud” storage space uses Google spreadsheets. It is a common
online shared spreadsheet, but it is possible to feed data through its API and can
be consulted later. In order to feed the data, the UWSim benchmarking module
presented in Chapter 2 has been extended in order to be able to upload experiment
results to a previously configured spreadsheet. As the data to be uploaded is taken
from the benchmarking module, it can be used in the online and local execution.
From the user point of view only an authentication step is required with a valid
email, thus it is possible to identify the experiment execution.

The spreadsheet is shared and visible for anyone with the proper link. For this
reason some security measures are needed to avoid users deleting or modifying the
results of a different user. Thus, the spreadsheet is divided in different sheets, one
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for each user, that will be protected against modification by anyone but the user
that created it or the proprietor of the spreadsheet. This assures the results were
achieved by the user that owns the sheet and are not modified by anyone else.

The second piece, web interface scorecard, plays the role of a visualization tool.
It is a regular HTML file with JavaScript that can be placed in any server or even
executed locally. It uses Google Charts library to query the information from the
spreadsheet previously described, and produce a visual result. The design and type
of information displayed in this interface depends on the nature of the experiment,
but a wide variety of possibilities is available such as linecharts, pie charts, barplots,
tables, etc.

Besides this, it is also possible to visualize the performance of a target user. For
instance, it is possible to see the intervention of any user that has published results
and see how the vehicle moved in the scene. However, no code or details are stored
to preserve privacy, only the log information that makes the visualization possible.
This is a valuable tool for researchers, that can actually visualize the performance
and compare it to their own solutions. In order to do so, it is only necessary to put
the email of the user into the software and the system will automatically download
the information and run the simulation.

3.5. Use cases

The previously described online capabilities of UWSim have been used in dif-
ferent applications. In the online execution service two experiments are available
and can be configured: visibility and station keeping. Visibility experiments will be
presented in Chapter 5 with other water turbidity experiments. The station kee-
ping experiment aims to keep the vehicle in the desired position while underwater
currents perturb the system using a tracker to acquire pose information. For the
benchmarking on the cloud feature, an educational pipe following application is
proposed, where students learn basic robotic algorithms using the presented archi-
tecture.

3.5.1. Station Keeping

The purpose of this experiment is to test the online simulator execution in
a realistic simulation scenario. The use case focus on maintaining the simulated
vehicle, Girona500, in a relative position from a target, in this case a black box,
so it is able to start a manipulation intervention. However, the purpose of this
experiment is to demonstrate the capabilities of the developed framework, more
advanced and complex control techniques can be applied to properly solve the
problem but they are out of the scope of this work. In this case the software
architecture created to solve the problem, that can be seen in figure 3.6, is made
of four software nodes:

• Tracker: The tracker is the software which starts the action, finding the target
on a camera and publishing its position on the camera’s image. In this ex-
periment, two different trackers are used: ViSP’s [Marchand, 1999] and ESM
[Malis, 2004] with a choice of different configurable options available in the
configuration step.
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Figura 3.6: Software schema used in station keeping use case.
Orange: benchmark outputs, Green: evaluated soft-
ware available to configure online.

• VisualStationKeeper: This is the program that takes the tracker’s position
and converts it to the world’s distances (meters instead of pixels). With this
information, the software decides where the vehicle needs to move in order
to be in the best position to start a manipulation action. In order to do so,
it publishes the error between the vehicle position and goal position. In this
case, it just tries to keep the vehicle on the top of the object to start an
approach.

• Position controller: This controller is in charge of deciding the proper velocity
to reach the goal assigned by the visual station keeper. The web based execu-
tion tool offers a P and PI controller, allowing their constants to be changed
in the configuration step. It also provides an interface to upload Python code
to substitute the default controllers.

• Velocity controller: This program reads the velocity reference from the po-
sition controller and the vehicle velocity measured from a DVL (Doppler
Velocity Log) sensor. Then, it decides the effort needed on each thruster of
the vehicle to achieve the required velocity. The software developed in this
case is a proportional controller.

The simulation runs in “batch mode”, using the benchmarking module to test
different configurations sequentially. In this use case, the benchmark is restarted
every 120 seconds to increase perturbations, simulating the velocity of underwater
currents. Starting from no current at all, it tests from 0.0m/s to 0.4m/s in 0.1m/s
steps. The current velocity is modelled using equation 3.1. As can be seen it is
formed by constant current velocity, module, and a sinusoidal term, variation ∗
sin(time), multiplied by a random white noise factor, noise, in a pre configured
direction. This produces a sinusoidal noisy force that simulates the underwater
currents.
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Figura 3.7: Controllers comparison error (left X axis, right Y axis)
using Ki=0.02, Kp=0.5 on PI and Kp=0.5 on P con-
troller.

CurrentSpeed = (module+ variation ∗ sin(time)) ∗ noise (3.1)

The system has been tested with two different controllers. As can be seen on
figure 3.7, the P controller is not able to reach a 0 error when current force increases.
It is possible to see this on the graph, as every 120 seconds the system is restarted
using a higher current force. The minimum error it is able to achieve depends
on the current force. On the other hand, the PI controller is able to reduce this
error despite underwater currents, as was expected. Nevertheless, its sinusoidal
behaviour is caused by the sinusoidal nature of currents, for which PI controller is
not completely able to compensate.

Videos of the experiments can be seen in https://www.youtube.com/watch?

v=hOrXNQdKJwE using the P controller and https://www.youtube.com/watch?v=

EhjhJPNe2GE in the case of the PI controller. In the videos the current is displayed
with an arrow indicating the current direction with size proportional to the current
force.

As underwater currents have the sinusoidal component on the Y axis, the ex-
pected results are an increasing sinusoidal error on the Y axis. In the Y axis graph,
both controllers are centered on error=-5 pixels instead of zero. This is caused by
small errors on the tracker software which is guiding the vehicle to this position
instead of zero. As can be seen, PI controller gets slightly better results, but it is
not able to completely neutralize sinusoidal currents.

On the X axis, an increasing error is expected for P controller while PI controller
should be able to drive the error to zero independently from underwater currents.
Although in stronger underwater currents, PI controller needs around 30 seconds
to reach a zero error, it is able to do it, while P controller stabilizes around an
error of 14 pixels. Results when current force is low, or there is no current at all,
are similar for P and PI controllers.

Besides comparing two different controllers, it is also possible to test different
trackers and compare control results depending on the tracker used. Most trackers
do not present big differences, but in general, the PI controller helps the tracking
task due to its smoother movements. This means trackers achieve a slightly better
performance with PI controller because movements are smoother.

https://www.youtube.com/watch?v=hOrXNQdKJwE
https://www.youtube.com/watch?v=hOrXNQdKJwE
https://www.youtube.com/watch?v=EhjhJPNe2GE
https://www.youtube.com/watch?v=EhjhJPNe2GE
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Figura 3.8: Controllers repeatability comparison error (left X
axis, right Y axis) using Ki=0.02, Kp=0.5 on PI and
Kp=0.5 on P controller.

To conclude, an underwater robotics problem has been proposed and solved
using the developed framework. The experiment is available online, where it can
be seamlessly configured and run. The proposed framework provided an easy way
to objectively evaluate and compare different solutions under different underwater
current conditions.

Finally, to prove the online simulation does not introduce any additional error
or difference compared with a local execution, a repeatability experiment has been
conducted. This experiment focus on testing the same controllers, as controllers can
be easily developed in different languages ensuring the same behaviour, in different
setups and languages. The hypothesis to prove is: as different implementations,
setups and runs should achieve similar performance, the benchmarking module
should be able to abstract from this implementation details. Three different cases
are compared:

• Online C++: This is the previously described experiment. It was performed
using the online simulation execution service that uses C++ implementation
for the controllers. The experiment was performed in ROS hydro and UWSim
version 1.2. The computer used for the experiment is a desktop i5-650 at 3.20
Ghz with 12Gb DDR3 RAM and nvidia Geforce 960GTX.

• Matlab Simulink: This experiment was run locally in a laptop i7-3630 at
2.4Ghz with 8Gb DDR3 RAM and nvidia Geforce GTX 660M. In order to
test different languages, a Simulink implementation of the position controller
was developed in Matlab 2015b using the Robotic Toolbox. The system was
using ROS indigo and UWSim version 1.4.

• Python: The python implementation was tested in the online simulation
server but executed locally instead of through the web interface. Thus, the
computer specifications are the same as in the Online C++. However, a more
recent version of the software was used in the experiment: ROS indigo and
UWSim version 1.4.

The controllers tested, were chosen due to the simplicity to replicate the imple-
mentation in a different language. P and PI controllers are well-known mathemati-
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cal functions that can be easily parametrized. Besides online and local comparison,
Matlab Simulink was added in order to see if the ROS interface of Matlab added
any perturbation to the system and to demonstrate a completely different imple-
mentation.

The figure 3.8 shows the results of the repeatability experiment. As can be
seen, there is no significant difference between the three compared cases. The P
controllers of each implementation produce a result that is not able to reduce the
error to 0 as expected. On the other hand the PI controllers are able to control
the constant perturbation. However, none of them is able to completely control the
sinusoidal component as they were not designed for it.

This experiment demonstrates that the online simulation execution, as expec-
ted, does not introduce an additional error because the code is executed locally in
each case. The interface acts as a configuration tool and visualizer, and does not
interfere in the simulation. Furthermore different computers, languages and ROS
versions have been tested showing no appreciable differences in the results. Thus,
the benchmarking module is capable of objectively evaluating different software
sources, providing crucial feedback for underwater robotics research.

3.5.2. Educational pipe following

The previous experiment used the web based execution, however it did not
exploit the potential of the cloud results sharing. A potential application for these
kinds of features is educational robotics. Nowadays, there is increasing interest in
robotics on a global scale, commercial journals and TV programs talk about it. This
interest can be used as motivation for teaching, even in topics not directly related
to robotics because it stimulates social abilities, teamwork and creativity. There are
numerous studies about this like [Johnson, 2003],[Goldman et al., 2004],[Alimisis,
2013],[Eguchi, 2013] and [Benitti, 2012].

As a consequence, there are many robotic competitions for students where they
build and program a robot for a specific purpose. For instance FIRST Robotic
Competition, presented in [Haynes and Edwards, 2015], is a competition for teams
of 25 or more students to build industrial size robots to play a different game
each year. RoboCupJunior, described in [Eguchi, 2016], is a student robotic sports
competition with different disciplines such as football or dance.

Taking this motivating factor into account, an application for education has
been designed and used with students. Although the absence of physical robots is a
disadvantage, using a benchmarking on the cloud simulator like the one presented
in this kind of application has some interesting advantages from the point of view
of the educator like the following:

• Faster development: Abstracting from physical robot details helps to shor-
ten programming and debugging times. Furthermore, results are repeatable,
making it easier to properly identify weaknesses and understand the code. On
the other hand, students do not face real problems that may appear when
using the software in the real platform. In order to deal with this, some ro-
bots may be available as a final step in the work, combining the advantages
of both worlds.



3.5. Use cases 39

Figura 3.9: Different scenarios in the pipe following benchmarking
use case. From left to right straight, height changes
and turns.

• Availability: In these kind of applications a robot per student team is nee-
ded. However, robots are expensive and break down often, requiring frequent
repairs through their lifetimes. Using a simulator assures every student will
have a working framework to work with, and also allows expensive sensors to
be dispensed with or robots to be used that may not be available otherwise.

• Continuous learning: It is easy to control the learning curve and be sure
it is not too steep using information from the simulator when needed. For
instance, it is possible to deactivate water dynamics in order to learn how to
move the vehicle, and once the student feels confident enough activate it to
increase difficulty.

• Competitiveness: Being able to instantly compare with other students or
the teacher, motivates students to “win”, and makes students work harder
to obtain the best possible results. Furthermore, students are able to replay
other solutions and study why other teams are obtaining better results.

• Specific formation: As the developed software runs in a simulated envi-
ronment, it is possible to focus on a specific part. For example, it is possible
to deactivate physics and focus on vision algorithms, or obtain ground truth
object positions and learn robot manipulation techniques.

For this reasons, a pipe following application has been proposed to students of
telerobotics, from the master in robotics EMARO+, so that they can progressively
learn navigation, vision algorithms and basic control. The aim is to follow green
underwater pipes to detect possible leaks in them2 . Three different scenarios, see
figure 3.9, are designed to face different difficulties that may appear in real scenarios
such as straight lines, changes in heights and turns.

Moreover, an example implementation result is added to the comparison by the
teacher, thus students can compare and analyse the differences with their solution.
It also motivates students to achieve a better result, and try to “win” and achieve
better results than the teacher’s implementation.

The problem is divided into three steps to maintain a moderate the learning
curve. Each of these steps is evaluated separately, so students can check their pro-
gress as they work. This means nine different evaluations are computed one per

2Dynamic pipe following: https://www.youtube.com/watch?v=2rjFQoixIRs

https://www.youtube.com/watch?v=2rjFQoixIRs
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scenario and one per step. In the first step, students are asked to solve the problem
in a teleoperated manner, thus sending commands from keyboard input. Secondly,
the keyboard input is substituted by autonomous navigation with predefined way-
points. Finally, the vision algorithm is introduced, making it necessary to obtain
waypoints from a camera sensor available in the vehicle.

In order to make the work easier for students, the ideal trajectory and the tra-
jectory followed by the vehicle are shown in the rendered scenario with a green and
red line respectively to provide visual feedback. Additionally, all the required soft-
ware is provided in a virtual machine, so students can start working immediately.

Algorithm evaluation is carried by the benchmarking module. It uses the Inte-
grated Squared Error(ISE), the sum of the shortest distance to the ideal trajectory
in each time step. The performance is inversely related to this measure, as it increa-
ses with time and positioning error. The greater the speed and precision with which
an algorithm is able to reach the end of the pipe, the better it will be evaluated.
The final position error is also used to make sure the vehicle correctly reached the
end of the pipe.

Taking into account these measures, the algorithm is evaluated depending on the
average error avg(error), final error finalError and time time. Additionally, each
scenario has a time reference timeRef , experimentally estimated. This reference
describes the expected time for the operation, taking into account pipe distance,
turns and height changes. The final mark is computed following equation 3.2.

mark =
(
1− finalerror2

)
∗
(
0,1− avg(error)2

0,1

)
+

time− timeRef

100
(3.2)

This evaluation equation proved to be an objective manner by which an evalua-
tion for the pipe following problem could be provided. The first term evaluates the
final position of the vehicle. If the vehicle didn’t reach the end of the pipe it will
be penalised. The second term is the average error through the intervention, mea-
suring the precision during the intervention. Finally, the last one is a time bonus
depending on the time reference that rewards faster executions. Furthermore, the
results interface provides information of the evolution of these parameters through
the operation as figure 3.10 shows.

As can be seen in this capture, the students chose different strategies for the
pipe following predefined waypoints. The students“al01”and“al03”designed precise
solutions that required more time to complete the path. Even though, the average
and final error is really small they are heavily penalised for the time required and
obtain a worse mark.

On the other hand, faster strategies such as “al02” and “al08” forget about the
errors and try to move faster to the target position. This strategies are penalised in
the average and final error obtaining a medium mark. These results prove the metric
for evaluating the results is focusing on balanced strategies that try to accomplish
the task precisely and as fast as possible as in the case of “al07” or “al06”.

The complete results are available in http://www.irs.uji.es/uwsim/files/

benchmarks/pipefollowing.html with the comparison of the student results. The
students were asked to complete the dynamic version of the waypoints part and
optionally the vision task, besides the kinematic solutions. As can be seen, all
the students managed to complete the dynamic waypoints task reaching different

http://www.irs.uji.es/uwsim/files/benchmarks/pipefollowing.html
http://www.irs.uji.es/uwsim/files/benchmarks/pipefollowing.html


3.6. Potential applications 41

Figura 3.10: ScoreCard of the benchmarking on the cloud feature
showing a pipe following results summary.

marks. Furthermore, three students out of eight proposed a solution for the dynamic
version of the vision guided pipe following.

Although, only one solution was able to reach the end of the followed pipe in the
most challenging environment, the students were motivated to work further than
the required exercises proving the validity of the experiment. Furthermore, all the
students developed a fully functional solution for the waypoints case. Additionally,
complex concepts such as controllers were naturally learned using the example
understanding the need of these tools.

3.6. Potential applications

Besides the previously described use cases, the presented simulator on the cloud
can be used in very different applications. As discussed in the pipe following exam-
ple, is an excellent tool for education and may be used in many disciplines related
to robotics, and specially underwater robotics, such as vision, navigation, mani-
pulation or control. But, it can be also used in research, proposing benchmark for
specific problems allowing researchers to compare their results.

Furthermore, it is possible to use it as a tool to help with the integration pro-
blems derived from big projects as it helps to establish a common workplace where
integration problems may arise. Additionally, it forces to standardize the commu-
nications and architectures used in an early stage saving time in critical moments:
field experiments.



42 3. A benchmarking simulator on the cloud

Regarding simulation capabilities, an online simulation service permits dividing
the developing device from the machine that is actually running the simulation.
This division makes possible to use cheaper and more comfortable devices such as
tablets, or small laptops to design experiments and launch them in a more powerful,
and less portable, machine without loosing precision. Moreover, it is possible to
share a unique simulation machine and optimize resources in research groups.

However, in order to extend its use to other applications it is necessary to
configure some parts, apart from the hardware needs. On account of simplicity
most of the code developed has been designed in a generic way, permitting to
reuse it with different purposes. For instance, the software to upload results to the
cloud can be used with any benchmark as it automatically uploads the results, but
requires a “format” to label it appropriately.

Taking into account this, the required steps to create a new benchmark on the
cloud are the following:

• Configure the scene: Basically, create the necessary 3D models and robot
description files for the simulation and create an XML file with the scene
configuration, sensors and interfaces. It is the same requisites as configuring
UWSim locally.

• Configure the benchmark: Similarly, an XML file describing the measures
and scene updaters that will be used in the simulation is required. If the
measure or scene updater is already implemented it is possible to directly
use it, but if a new one is required it needs to be coded in the benchmarking
module.

• Configure the online execution: Once the benchmark can be launched
locally, it is necessary to edit the online execution service. For security reasons
the launcher does not allow to run arbitrary scenes or benchmarks, but it just
requires to modify a few lines to add a new configuration so it can be remotely
called using the same service. Besides this, the results in the website need to
be configured describing which output of the benchmark will be showed in a
graph and the type, legend and title of each graph.

• Configure the cloud comparison: Finally, the cloud comparison requires
some steps. A spreadsheet is required to place the results of the experiment.
The ID of this spreadsheet will be required together with a user ID configu-
red through the Google API for each participant in the cloud comparison.
Additionally the scorecard needs to be adjusted for the experiment, showing
the appropriate graphs from the specific benchmark results uploaded to the
spreadsheet.

3.7. Conclusions

In this chapter, the online capabilities of UWSim have been presented. Built
on the underwater simulator UWSim and the benchmarking modules previously
described in Chapter 2, online execution and benchmarking on the cloud services
have been implemented.
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Due to the new trends of online services, that make it possible to work everyw-
here with any Internet connected device, robotic simulators need to adapt in order
to be useful to researchers. Following this idea, the underwater simulator UWSim
has been extended allowing researchers to access simulation capabilities everywhere
with any device through a web interface. The advantages of these systems are avai-
lability, computation capabilities independent from device and offline simulation.

Furthermore, the benchmarking capabilities have even more possibilities in this
environment, because it opens the door to objective comparison between resear-
chers. Taking advantage of the online services, there is no need to install software
and it is possible to create a shared results space where users can evaluate their
implementations. It is also possible to store enough information to visualize an
intervention and analyse possible weaknesses to improve the algorithm.

Both developed services have been used in a different experiment. The online
simulation has been used in a station keeping experiment where two different posi-
tion controllers were tested in increasing current conditions. The results showed the
validity of the developed framework demonstrating PI controller performed better
than P as expected. But, the real results are that the framework was able to do
it using three different architectures: online, Matlab-Simulink and Python. These
simulations achieved the same results independently of the implementation details.
This proves the developed framework is able to objectively evaluate algorithms
from any source, without introducing any noise or perturbation.

Due to the increasing interest for robotics in society, the use of robotic plat-
forms has proved very motivating for students. For this reason, in the case of
benchmarking on the cloud, an educational robotics application has been designed
for validation. This is an interesting application as benchmarking can help to eva-
luate the students, and at the same time, motivate them to “win” in a competition
like environment thanks to the automatically computed results.

The results of this application showed that students were able to easily learn
and understand the basics of navigation, control and vision. The students compared
different strategies and analysed the results using the proposed architecture to
develop their pipe following approach. Furthermore, some students were motivated
to work on additional tasks developing solutions for optional exercises.

Many interesting applications and features remain open for the future. Some of
the most powerful robotic simulators have already started to develop their online
features, meaning this market may be exploited in the future. The possibilities
range from basic education for children to high end industrial robot simulations.
All the key elements are already available, but the main difference will be in the
communication interface, documentation and simulation capabilities. A powerful
interface able to control all the simulation characteristics and visualize it when
running is still needed, and an open research field. In this case, a simple application
focused interfaces have been developed to demonstrate the possibilities of an online
robot simulator.
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An application perspective of

benchmarking

Comparing solutions and establishing common metrics and benchmarks is one
of the cornerstones of scientific research. Being able to objectively evaluate an appli-
cation, method or procedure or at least decide if it is better than another option, is
of utmost importance for enabling relevant progress. Furthermore, allowing suitable
characterization of reproducible solutions is crucial to improve its robustness.

However, in the robotics field reproducing the results or comparing with ot-
her published results is difficult in some cases as pointed out in [Bonsignorio and
Del Pobil, 2015]. Different hardware, software barebones and sometimes lack of de-
tails makes it difficult to reproduce the results of an alternative solution. Increasing
the difficulty of working on the results of another researcher.

Moreover, robotics is not pure mathematics, thus a completely viable mathe-
matical solution may not be valid in some cases. Sometimes experimental proofs of
the performance of the proposed approaches are needed. As stated in the Group
on Good Experimental Methodology and Benchmarking (GEM) guidelines of the
European Robotics Network of Excellence (EURON) [Bonsignorio et al., 2008], it
is necessary to validate the results by replicating them or comparing them in terms
of the chosen performance criteria.

Even though robotics deals with a wide variety of problems, standard bench-
marks, metrics or protocols can be established to validate the results. Establishing
such standards will help to improve the quality of the research and contributions
in the field.

In this thesis different software pieces are devoted to this specific issue. The
framework presented in Chapter 2 formed by the UWSim simulator and the bench-
marking suite assure an objective comparison of algorithms. Furthermore, this fra-
mework has been extended to work in the cloud as described in Chapter 3 adding
interesting capabilities to the system. In Chapter 5 this software is used to study the
influence of water turbidity in different aspects of autonomous underwater vehicle
interventions.

Nevertheless, the proposed benchmarking framework has also been used in other
works not related to water turbidity or image dehazing. In this chapter, some
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of these experiments are described to show the capabilities and versatility of the
presented benchmarking framework.

4.1. Characterizing real scenarios

During the TRIDENT project, two experimental validation tests were perfor-
med at sea. As a great quantity of data was gathered for further processing it is
possible to reproduce the complete experiments in a simulated scenario to analyse
them and be able to establish a benchmark to compare them with.

The presented framework was used to monitor the system, gather information
and analyse it through benchmarking. The complete intervention was monitored
using the simulation framework as a representation of what was happening under
the water. The measures from sensors, positioning systems and cameras were mixed
to provide a simulated model of the vehicle and environment showing a view of the
real intervention. Furthermore, the complete intervention was logged in bagfiles,
ROS log data files including the most relevant information, for further study.

The analysis consists of reproducing the experiments in a simulated setup with
the information from the real intervention. Thus allowing a 3D view of the inter-
vention to study the weaknesses and errors and improve the final system. In order
to do so, a complete representation of the environment was reconstructed from the
logged information. After that, a simulated model of the vehicle replicates the real
movements in the simulated environment allowing to playback the real intervention
in a 3D view.

The use of a free 3D view, being able to draw trajectory lines or simulated
cameras can help to discover weaknesses or why the system did not achieve the
expected results. Additionally, it is also possible to use the benchmarking suite
to easily measure statistics such as travelled distances or positioning errors and
evaluate the performance of the system after the intervention took place.

An example of this situation can be seen in figure 4.1, where a playback of the
real intervention referenced to the reconstruction of the environment is showed.
As can be seen, the trajectory of the end effector has been added to show how
the hooking of the black box was performed. The image corresponds to the first
experiments in Roses harbour, Girona (Spain)1.

As can be seen, the replay of the intervention helps to understand what hap-
pened underwater, which may be difficult using only the video from the robot or
a diver video. The image shows that the approach used by the end effector can be
improved, even though it successfully hooked the target.

Besides the experimental analysis, the reconstruction of real environments in-
creases the realism of the simulator allowing new situations to be explored and
shortening the gap between real experiments. These new scenarios can be used to
try new algorithms under development and test them in a simulated representation
of the final location.

In the case of the final field experiments in Port de Soller (Mallorca, Spain), the
reconstruction used a 3D point cloud besides the photomosaic also used in the first
experiments. Using this information made it possible to create a 3D model of the

1Video TRIDENT roses: https://www.youtube.com/watch?v=ouCFOsOmnyA

https://www.youtube.com/watch?v=ouCFOsOmnyA
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Figura 4.1: Playback of the real intervention in Roses field expe-
riments using UWSim.

terrain that can be used for further analysis of the intervention or new simulations.
The reconstructed terrain can be seen in figure 4.2.

As can be seen, the survey path, displayed in white lines, perfectly matches the
reconstructed terrain changing depth. Furthermore, rocks, objects and a slope can
be seen close to the harbour wall. This 3D representation proved to be useful to
understand the vehicle movements during the experiments.

Finally using the benchmarking tool it was possible to establish the conditions
of the experiments in order to compare them with other alternatives. For instance,
survey altitude, distance, average velocity, time, maximum minimum and average
seafloor depth or visibility were computed from the logged information.

The characterization of the Roses and Soller interventions of the TRIDENT
project can be seen in table 4.1. Using these characteristics it is possible to es-
tablish a point of comparison between both experiments, and also with following
experiments in order to compare the results. The parameters measured are the
same but in the case of Soller the intervention is slightly different, as the grasping
approach did not require a previous visual algorithm.

But in any case, it is possible to compare both interventions. For instance, the
survey covers a much bigger terrain in the Soller experiments, thus the reconstruc-
ted terrain is bigger as can be seen in the figures. However, the required time for
the survey is similar in both cases as the vehicle moved faster during the second
intervention. For this reason, the second intervention is clearly better in the survey
phase because it obtained information of a bigger zone in almost the same amount
of time.

Regarding the altitude from the seafloor the Soller intervention required the
vehicle to fly higher from the seafloor, 1.5 meters due to the rocky environment.
This fact can make the resulting mosaic more imprecise as the cameras were further
from the target. However, the visibility in Soller was slightly better making it easier
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Figura 4.2: Playback of the real survey in Soller field experiments
using UWSim.

Cuadro 4.1: TRIDENT field experiments intervention characteri-
zation.

Survey
Roses Soller

Surveyed area 8x10 m 25x20 m
Survey grid 3 rows x 6 cols 5 rows x 11 cols
Survey altitude from seafloor 1.3 m 1.5 m
Survey distance 82.9 m 357.67 m
Survey average velocity 0.1 m/s 0.37 m/s
Survey time 814 s 957 s
Maximum seafloor depth 3.19 m 8.18 m
Minimum seafloor depth 2.12 m 4.88 m
Target depth 3.07 m 8.08 m
Water Sea water Sea water
Visibility 1.5 - 2.5 m 2 - 3 m
Currents Yes Yes

Intervention
Roses Soller

Target 12 x 15 x 40 cm black box mockup with 3 cm handle
Approach Visual station Visual free floating
Time of approach 87 s -
Intervention Hooking Grasping
Time of intervention 67.5 s 143 s
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to recognize objects from the distance thus in both cases the results are similar.
The roses environment is slightly less challenging due to the extremely shallow

waters. The maximum depth for the intervention was 3.19 meters. This makes the
work possible without additional illumination. Although in the Soller intervention
this was also possible, processing the images was more challenging.

In the case of the manipulation, the most significant difference, besides the
control strategy, is the grasping tool. The first intervention required that there was
a handle on the object in order to hook on it and retrieve it, while the second case
is capable of using a dexterous hand to grasp the object. Consequently, the Soller
approach is a more flexible solution that can be applied to a wider range of objects.
Regarding the control strategy, in the Roses field experiments a station keeping
approach was used while in Soller a more robust visual free floating approach was
taken.

In conclusion, benchmarking real interventions makes it possible to study in
detail the results in detail and establish metrics to compare between different ap-
proaches. Furthermore, the correct parametrization of the interventions helps other
researchers to compare and understand the results of their experiments.

4.2. Dredging benchmarking

Another problem studied using the presented framework is a dredging inter-
vention to unearth an amphora or similar object placed in the seafloor2. One of
the testbeds of the MERBOTS project is marine archaeology, this involves multi-
ple challenges such as detecting possible shipwrecks, dredging the mud around the
target and carefully manipulating the objects.

Furthermore, autonomous manipulation of these objects may not be the best
approach due to the value of the manipulated objects. Thus, a semi autonomous
solution where a user can monitor and decide high level commands is necessary. For
this reason, a framework such as the one presented in this thesis is an interesting
tool making it possible to monitor and easily specify high level actions so that the
required action can be carried out.

In order to demonstrate the capabilities of the system, a simulated experiment
involving the dredging intervention was designed. The main goal was to autono-
mously unearth a buried amphora placed in the seafloor using a dredging tool
attached to a robotic arm. In order to do so, the framework presented in Chapter 2
was used together with Simurv 4.0. An example of the initial and final state of the
target can be seen in figure 4.3.

Simurv, described in [Antonelli, 2014] is a kinematic and dynamic library for
Underwater Vehicle-Manipulator Systems (UVMS) control algorithms available in
Simulink - Matlab. Basically, it simulates the movements of vehicle with manipu-
lators in an underwater environment. The default dynamic simulator of UWSim
is substituted for simurv in order to increase the precision in dynamic multibody
simulation.

However, simurv does not simulate the environment, cameras, dredging... requi-
red for the simulation. Thus UWSim is used to simulate the world and communi-
cates with simurv in order to use the dynamic multibody simulation. Furthermore,

2Simulated dredging intervention: https://www.youtube.com/watch?v=sCoYF5WSI8Q

https://www.youtube.com/watch?v=sCoYF5WSI8Q
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Figura 4.3: Initial and final state of the dredging intervention.

it is also possible to develop the kinematic control using simulink tools as simurv
is already integrated in it.

The benchmarking module is in charge of measuring the results of the experi-
ment. This could also be achieved using Matlab, but the UWSim benchmarking
module can access groundtruth information from the simulation that is not availa-
ble for Matlab. Thus, the evaluation can be made from a more objective perspective
instead of relying on other sources of information.

The Intervention autonomous underwater vehicle is made up of the Girona 500
AUV [Ribas et al., 2012] with 6 degrees of freedom (DOF) and the light weight
ARM5E [Fernández et al., 2013] with 4 DOF assembled on it. The vehicle will
move using a free floating strategy that uses the DOF of the vehicle and the arm
to control the movement of the dredge tool through a desired trajectory.

It is assumed that an archaeologist supervises the trajectory to be followed by
the end effector using a 3D reconstruction of the area obtained in a previous inter-
vention. Furthermore, the target is selected by the end user in that georeferenced
3D map making it easier to create a trajectory from it.

Using this previously gathered data, a 3D point cloud of the target of interest
is the starting point for generating a path to be followed by the end effector of the
arm where the dredge pump is located. RANSAC based shape detection methods
[Schnabel et al., 2007] are used to segment the scene and extract the object points of
the pointcloud, discarding the seafloor. Then a path is calculated where this points
of the object collide with the seafloor, adjusting them to avoid colliding with the
target or the seafloor.

As a consequence, the metric used to benchmark this experiment is the distance
between the actual path and the optimal path to dredge the objects. The time
elapsed could also be considered using an Integrated Squared Error (ISE), but
as this is a precision task that should prevent collisions with the target, it was
finally discarded. This assumes a user or archaeologist has previously checked the
automatically created path to ensure that it is correct.
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Figura 4.4: Dredging pump distance to the desired trajectory du-
ring the intervention.

The results of this benchmarking can be seen in figure 4.4 where the distance to
the trajectory through time is depicted. The moment when the end effector arrives
at a waypoint and decides to move to the next is marked with vertical red lines.
As can be seen the initial distance is high and the controller reduces this quickly.
In spite of using a simple controller, the end effector is able to correctly follow the
path. The distance to the desired trajectory is limited, only small increments due
to target waypoint changes increase the error.

As the results show, the metric correctly evaluates the dredging intervention
without evaluating implementation details. Thus it is possible to use it for com-
parison with very different approaches in an objective manner. Furthermore, the
logged intervention allows the intervention to be played back and new metrics or
error that may be interesting to evaluate to be measured.

4.3. Natural user interface evaluation

The latest experiments demonstrate it is possible to evaluate devices and users
instead of the real or simulated algorithms of previous experiments. This is possible
by comparing the results when completing a task designed to be challenging while
using this devices. In this experiment, different devices designed to pilot a virtual
underwater vehicle are compared in terms of the advantages when moving around
a virtual scene3.

Controlling an underwater robot using a camera mounted on it is a difficult
task. This is caused by the lack of specialized training in using robots, lack of
time to interpret the information or missing information. As can be seen, the three
causes can be avoided, or at least reduced, using a good human machine interface

3Natural interfaces used: https://www.youtube.com/watch?v=mUun7yM8238
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Figura 4.5: Simulated scenario for natural interface evaluation.

(HMI) that provides the correct information at each moment and is easy enough
to use for non expert users.

Taking this into account a natural user interface has been designed giving users
the sensation of being inside the robot thus piloting the robot becomes as natural
as driving a car. In order to do this, the users should be allowed to control the
camera orientation with head rotations and control the vehicle using the hands.

However, the advantages of this interface must be evaluated as new problems
with the interfaces being used may arise. To evaluate this, a user experience ex-
periment was conducted where 26 participants were invited to control a simulated
underwater robot using slightly different setups. The participants had no previous
experience with the interface, although 17 declared previous experience with video
games. The performance of these participants was benchmarked measuring different
parameters relevant to the experiment.

The proposed testbed is an underwater environment where users have to pilot
the vehicle along a path through different rings. Furthermore, the simulator dy-
namics will detect collisions with the rings and any other obstacles in the scene
penalising the users that collide with them. The scenario can be seen in figure 4.5.

The framework described in Chapter 2 was used for this purpose. However, this
experiment required some modifications in order for the natural interface to be
tested. First of all, before a head-mounted display (HMD) that tracks the user’s
head movements to move the camera accordingly, and offers an immersive virtual
reality 3D perspective of the scene, could be used, it is necessary to set up stereo
visualization.
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Additionally, the use of two devices to move the vehicle were implemented, a
classic joystick and Leap Motion. Leap motion is a device capable of detecting the
hands of the user at a short range, thus transferring the hands position to robot
movements allows the vehicle to be moved intuitively in the simulated scene.

However, the use of a head mounted display abstracts the user from the real
environment making it difficult to use other devices. For this reason, different feed-
back techniques were implemented to facilitate the user task and to help him be
able to achieve the desired goals.

A virtual cockpit was added to the UWSim visualization to simulate being inside
a real vehicle and show relevant information such as depth, speed or proximity to
obstacles. Furthermore, the virtual cockpit also has a virtual representation of the
joystick showing its movements so the user knows if the command sent was correct.

Moreover, it is difficult for the user to use Leap Motion without seeing the
device directly, because it is not possible to judge the relative position of the hand
and the device. In order to solve this, two alternatives are proposed, the use of a
small fan so the user can sense the airflow and perceive the device position, and the
possibility of including the user hands in the virtual cockpit using an additional
RGB-D sensor.

In summary, the evaluated users performed the experiments with five different
setups. The five setups differs in the type of visualization and control in order to
obtain the best possible result. The sequence of experiments is randomized to avoid
learning effects through repetitions. The different configurations that were tested
are listed below:

• Setup 1: Joystick teleoperation with no virtual cockpit.

• Setup 2: Virtual cockpit and head mounted display for visualization and
camera orientation. The vehicle is controlled with a joystick.

• Setup 3: Virtual cockpit, head mounted display and leap motion device with
no feedback.

• Setup 4: Same as setup 3, with virtual representation of hands in the virtual
cockpit

• Setup 5: Virtual cockpit, head mounted display and leap motion with airflow
haptic feedback for device localization.

In the figure 4.6 the evaluated setups are shown. As can be seen the interface
is increasingly more natural and immersive, but at the same time more complex.
The experiment tries to determine the best option for non expert users so that it
can be made as easy as possible to use and produce the best possible results.

In order to do so four parameters have been automatically measured using the
presented framework explained below. Additionally, a subjective evaluation from
the users was made asking the participants to fill in a questionnaire related to
the ease of use, fatigue, precision and frustration encountered while operating the
system.

• Time: Navigation time for each segment of the route between rings. Rewards
completing the path quickly.
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Setup 1:

Joystick

Setup 2:

Joystick + HMD
Setup 3:

LP + HMD

Setup 4:

LP + HMD  + fan

Setup 5:

LP + HMD + hands

Figura 4.6: Screenshots and images of the evaluated natural in-
terfaces setups.

• Distance: Measures the travelled distance for each segment between rings,
thus penalising non linear trajectories.

• Collisions: Counts the number of times the vehicle collided with elements
in the scene, including rings.

• Steerings: Measures the number of changes in direction or steering com-
mands. A high number in this value will mean the user needed to correct the
trajectory many times.

Using this experimental setup it was possible to identify the control set up that
most favoured the non-expert user. The results showed that setup 2, head mounted
display and joystick, obtained the best mean times for all the segments between
rings. The users were capable of reaching the trajectory waypoints faster, with less
collisions and travelling less distance.

Although the leap motion devices seem a more natural interface, the results
showed it was difficult to manoeuvre the vehicle using it, leading to higher times
and collisions. The use of airflow feedback helped in the case of rotations as the users
could feel the position of the device and the hand visualization helped in altitude
changes. But, the users still felt that the device was more imprecise, supporting
the worse results with respect to joystick.

Regarding the first two setups, setup two with a head mounted display proved
to be a better option as the user could naturally move the camera using the head,
finding the targets faster and requiring fewer steering orders.

Finally, the use of a joystick to control the vehicle produced better results
even without the head mounted display. Previous knowledge and the fact that the
joystick device was easy to use proved to be a better option. The participants
felt the leap motion device was imprecise and perceiving mechanical feedback was
necessary for the experiment.
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4.4. Conclusions

In this chapter three different cases where the presented framework was used
have been described. The nature, objectives and evaluated software were comple-
tely different in each of them showing the versatility and usability of the designed
benchmarking framework for underwater robotic research.

In the first case, real experiments are characterized and analysed using the
UWSim simulator and benchmarking suite. Several parameters are measured using
the logged interventions and that also allows the vehicle movements to be played
back in order to have an additional view of the system for better understanding of
the results.

In the dredging scenario a simulated unearthing experiment is evaluated using
the described framework. Furthermore, the software uses an specific dynamic simu-
lation engine in Simulink together with the controller to be evaluated. Even in this
situation, the benchmarking suite is able to objectively measure the results and
proves to be a valuable software for the development of new solutions analysing the
weaknesses and results.

Finally, the natural user interface evaluation measures the user ability with
different devices for controlling a robot. Comparing the results of these experiments
it is possible to understand why a device is better for a specific task and the influence
of a stereo device when using an underwater vehicle.

As can be seen, the benchmarks are completely different. In the first case a
real intervention is analysed while in the second one a controller is benchmarked in
simulation and in the third case the focus is on interface devices. This proves the
proposed architecture offers a simple architecture to objectively evaluate and com-
pare algorithms. The only essential requirements are the use of ROS as middleware
and the configuration of objective metrics to evaluate the problem.

Furthermore, the software to be evaluated can be implemented in any language
as long as it is ROS compatible thus it can communicate with the rest of the
architecture. The use of UWSim is also interesting as the benchmarking suite can
access internal data, thus obtaining groundtruth information that does not need to
be transmitted.

The research leading to the results presented in this chapter is the result of colla-
boration with José Javier Fernández Fresneda in [Fernández et al., 2015] regarding
dredging, and Juan Carlos Garćıa Sánchez in [Sanchez et al., 2015] regarding natu-
ral interfaces. The corresponding experiments, besides the benchmarking, will be
part of their corresponding PhD. Thesis.
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The problem of water turbidity

in underwater robotics

One of the main drawbacks in underwater robotics is the difficulty of inter-
preting a captured image due to the water turbidity. Small particles reflect light
producing a veil that superimposes in the image. The light is absorbed as it travels
through the water column reducing the illumination of the environment. The light
is randomly scattered blurring the image. Finally the light is attenuated depending
on its wavelength producing bluish or greenish tones. Consequently, recognizing
objects in these degraded acquired images is a challenging task.

In this chapter, the framework presented in Chapter 2 is used to measure the
consequences of these degrading effects on image based algorithms. Being able to
establish functional limits to the evaluated software, and know which solution to
use depending conditions in the environment. For instance, to learn which is the
best object tracker for non degraded images and for turbid waters, and then, in the
real intervention, be able to choose the best option depending on the state of the
water in which the operation is taking place.

Three different experiments are presented to show the impact of water turbidity
on image based algorithms. Firstly, a visibility experiment, described in [Pérez
et al., 2013], is performed where a set of visual trackers is evaluated in an object
tracking situation as simulated turbidity increases. After that, the same experiment
is repeated in a hardware in the loop environment using real images as input.
Finally, a real experiment of 3D reconstruction that was published in [Perez et al.,
2015] is shown, using illumination to simulate different conditions comparing a
stereo camera and laser stripe reconstructions.

5.1. Introduction

The experiments which are presented here are focused on the TRIDENT project
experimental scenario, that was a search and recovery problem. In it, a completely
autonomous underwater vehicle had to look for a black box mock-up, previously
placed on the sea floor, and recover it. Moreover, since it is rarely possible to predict
the water state at sea, it is necessary to create a robust system.
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Figura 5.1: Visibility benchmark scenario. The Girona500 vehicle
is placed above a target object to keep track of it while
the visibility decreases.

Taking this into account, it is of the utmost importance to test the algorithms
under a great variety of situations. One of these is when the water turbidity changes.
Due to the underwater currents and changes in the composition of water, under-
water visibility can suddenly change, making it difficult to see through the water.
In the case of underwater robotics, these water turbidity affects any algorithm that
uses a camera, which is one of the most important inputs to solve any problem.

In the TRIDENT project two tasks were highly dependant on cameras: localiza-
tion and tracking of the target, and grasp planning. In the first case, it is necessary
to be able to recognize the target, in this case a black box mock-up, at a certain
distance allowing the vehicle to safely navigate in the area without colliding with
anything while searching. The second problem, requires being able to extract 3D
characteristics in order to compute the best grasping points to retrieve the object
from the sea floor using a robotic arm.

In order to benchmark the first situation, an experiment is presented in sec-
tion 5.2 recreating the environment in simulation. Then, in section 5.3, a hardware
in the loop configuration is shown to test it in a more realistic environment. The
second situation is studied in section 5.4, where different approaches are compared
reconstructing in 3D the target black box mock-up.

5.2. Visibility benchmarking

In this experiment the purpose is to analyse how the change in visibility af-
fects vision algorithms of detection and tracking. In the simulated setup shown in
figure 5.1, the Girona500 vehicle with the ARM5E arm is situated above a black
box target tracking it for further manipulation. The scene visibility is progressively
decreased until the tracker is not able to find the target to test the limits of the
algorithm to be compared. The experiment simulates the first phase of an inter-
vention, like the one in the TRIDENT project, where the water turbidity changes
due to an external cause like currents or mud from the bottom and the robot tries
to keep track of the target.
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5.2.1. Visual trackers compared

The trackers compared are the ones available in the ViSP (Visual Servoing
Platform, INRIA Lagadic), presented in [Marchand, 1999], for template tracking.
These trackers use image registration algorithms instead of the common feature
based approaches, being able to find the target in a sequence of images. Two diffe-
rent similarity functions can be configured so that they can be used with different
methods.

• Sum of Square Differences (SSD): That can be used in four ways, Inverse
Compositional (IC), Forward Compositional (FC), Forward Additional (FA)
and ESM.

• Zero-mean Normalized Cross Correlation (ZNCC): In this case only two of
the previously mentioned methods are available, Inverse Compositional and
Forward Additional.

Besides the registration criterion, ViSP allows different warps to be used. Warps
describe the transformation of the tracked template between images with respect
to the camera. Deciding which one to use, depends on the degrees of freedom of
the tracked object in the scene. Usually, the most restrictive warp that can model
the target movements in the camera is the best option. The ViSP library provides
five warp alternatives to choose from:

• Translation: The most simple transformation available. It only considers trans-
lation in the two axis of the camera(x,y). It is only suitable for planar move-
ments at a constant distance from the camera.

• Scale Rotation Translation(SRT): This warp considers a scale factor, rotation
on camera axis(z) and a 2D translation as the previous warp.

• Affine: This warping function preserves points, straight lines and planes.

• Homography: Estimates the eight parameters of the homography matrix H.

• HomographySL3: Stores the same information as the homography warp but,
the parameters are estimated in the SL3 reference frame.

Every possible combination of registration criterion and warp has been tested
in the visibility change benchmark. As the tracked target has little freedom of
movement with respect to the camera, the most restrictive warp should obtain the
best results in each similarity function.

5.2.2. Experimental setup

The benchmark measures the tracker error as can be seen in the software ar-
chitecture in figure 5.2. The error is measured in pixels as the sum of the error of
each target’s corner with respect to the tracker estimation nearest corner. Addi-
tionally, the centroid error between tracker estimation and simulator ground truth
is also measured. The fog updater is in charge of updating the scene to progres-
sively decrease the visibility. In order to do this, it modifies the fog parameter of
osgOcean.
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Figura 5.2: Software schema used in the visibility benchmarking.
Orange: benchmark outputs, Green: evaluated softwa-
re.

Figura 5.3: From left to right top to bottom, tracking algorithm
in decreasing visibility scenario.

The fog level is a value ranging from 0 to infinity that defines the visibility
in the water depending on the distance. Visibility will represent the intensity of
objects’ color that it is finally seen in the camera from 0 to 1. A 1.0 visibility is
a perfect situation where water does not degrade the image while in 0 visibility it
is not possible to see the object at all. The color of the object is mixed with the
water color depending on this factor. The visibility depends therefore on the water
fog level and the distance to the object as the formula 5.1 describes.

visibility = e−(fogfactor∗distance)2 (5.1)

As can be seen the visibility exponentially decreases with distance and the fog
factor, simulating a real underwater environment. As the distance is constant in
this experiment, the visibility only depends on the fog factor. In the figure 5.3
different screenshots of the benchmark execution can be seen, where the fog factor
controls the visibility of the target.

Finally, a small current has been added thus the vehicle moves slightly over the
target rather than being perfectly stationary. It is a precalculated cyclic movement
that guides the vehicle in a circular trajectory maintaining the target inside the
camera at every moment. Thus, the tracker needs to keep track of the target as it
moves inside the virtual camera.
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Figura 5.4: Results for the benchmarking visibility use case. Left:
warp performance comparison, right: registration cri-
terion comparison.

5.2.3. Results

The results are shown in figure 5.4. Additionally, in https://www.youtube.

com/watch?v=QO2NZmFYuOI a video of the visibility experiment can be seen. In the
graph on the left all the possible warps are compared using the same registration
criterion, SSD forward additional. As can be seen, every warp is able to keep track
of the object with slightly different performances ranging from 5 to 10 pixel error
when the fog factor is under 1.0. As the visibility decreases and, as a consequence,
difficulty increases the execution with less restrictive warps is not able to keep
track of the target. As expected, translation warp is the one that obtains the
best performance followed by SRT, then affine and homography SL3, and finally
homography, which is the most generic warp.

About the registration criterion, big performance differences can be seen. A com-
parison using SRT warp can be seen in figure 5.4 right. In general terms, ZNCC
methods seem to be much more resistant to visibility changes as both are able to
succesfully track the target during the whole experiment. Although SSD registra-
tion criterion is able to resist small visibility changes, it starts to fail around 0.9
fog factor for forward additional and ESM methods and 1.4 in the compositional
cases.

The complete results can be consulted in figure 5.5. This figure shows that the
ZNCC inverse compositional is the best tracker being able to track the target with
any warp during the whole experiment. In this experiment the translation warp is
the most suitable as it is the most restrictive but still able to represent the possible
movements between target and camera. However, in other cases where the vehicle
needs to move in a different manner, translation warp may not be able to keep
track of the target.

Compositional trackers show an interesting behaviour for this use case. They
keep the error to a minimum of 5 pixels until the very last moment, when they
start to loose the track. This is a desirable feature as the tracker does not obtain
false positives in the tracking task.

The currents applied to the problem show a small cyclic error variance in some
warps such as the homography ones. This is caused by different possible interpre-

https://www.youtube.com/watch?v=QO2NZmFYuOI
https://www.youtube.com/watch?v=QO2NZmFYuOI
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Figura 5.5: Results for the benchmarking visibility use case.
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tations of the position, that in the case of more restrictive warps are not possible
as not every move is allowed. Thus, small variations in the target position cause
errors in the tracking estimation.

This experiment is available and can be executed in the online service described
in Chapter 3. All the different combinations of registration criterions and warps are
available for configuration and testing online. Finally, the results can be downloaded
at any point of the experiment for further analysis.

5.3. Hardware In the Loop visibility benchmarking

The previously presented use case shows the tracker configuration is crucial
to optimize the performance. However, all the presented results were achieved in
a simulated environment, thus requiring additional experimentation in order to
validate the results for real situations. For this reason, the previous case has been
extended to benchmark the trackers being used in a more realistic scenario.

Nevertheless, a thorough experiment that allows the underwater visibility to be
controlled is difficult to design. Taking this into account, a Hardware In the Loop
(HIL) approach has been designed, allowing simulated sources to be mixed with
real inputs to explore new situations. This solution offers a good balance between
realism and the ease with which the experiment can be carried out.

5.3.1. Experimental setup

The goal of the experiment is the same as the previous use case: keep track
of a target in movement seen by the camera while the visibility conditions get
progressively worse. The main difference in this case is that real input images
will be used to benchmark the performance of visual trackers. As the visibility
conditions are difficult to control in a real environment, underwater turbidity will
be simulated, thus it is possible to see how the system reacts to new challenging
situations.

A schema of the experimental setup can be seen in figure 5.6. The first step
is to acquire images of the target that has to be tracked, in this case a black box
mock-up has been recorded in a water tank with almost perfect visibility conditions.
Image acquisition was made in a water tank with a uEye UI-1240ML-C-HQ camera
placed inside a cylinder moving on the water surface facing a black box mock-up
as can be seen in figure 5.7,

This recorded experiment will be used for two purposes. It will be the input
to UWSim in order to add simulated turbidity to it, and then be the input of the
tracking software. On the other hand, the raw image from the recorded experiment
is necessary for a ground truth of the tracking trajectory to be obtained.

In order to calculate the ground truth, a regular ESM tracker like [Malis, 2004]
has been used under human supervision. As previous experiments proved, any of the
evaluated trackers is able to achieve good performance with negligible error. Thus,
the output of ESM tracker in the raw captured images in almost perfect visibility
conditions is enough to obtain a ground truth that can be used for comparison.

Simultaneously, the raw image is also an input to UWSim which adds simulated
fog to the image. Creating a new fogged image suitable for the proposed tracking
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Figura 5.6: Software schema used in the HIL visibility benchmar-
king. Orange: benchmark outputs, Green: evaluated
software.

Figura 5.7: Image acquisition setup. Left: camera in a cylinder
moving in the water surface. Right: black box mock-
up captured from the camera.
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Figura 5.8: From left to right top to bottom, tracking algorithm
scenario in decreasing HIL visibility scenario.

evaluation. The model used to reduce the visibility to the real image uses the
previously described fog factor value in the equation 5.1.

As happened in the previous use case, the distance to the target is almost
invariable due to the camera planar movements and rotations. This means that
the only variable in the equation is the fog factor. Thus the simulator uses a fixed
distance of 80 centimetres , which is the real measured distance, to the black box
mock-up to calculate the amount of fog that needs to be added at every moment of
the experiment depending on the fog factor. The experiment is configured to slowly
increase the fog factor, reducing the visibility. The result of this fog addition can
be seen in figure 5.8.

Finally, the benchmarking module is the one in charge of evaluating the trac-
king, as in the previous experiment. But, in this case the tracking ground truth
comes from the ESM tracker instead of UWSim and sends the amount of fog to be
tested to UWSim that will process it in a real image. Thanks to ROS middleware,
this is transparent for the benchmarking module that sends and receives the same
information through ROS topics.

5.3.2. Results

Using this setup, the experiment has been repeated for the ViSP tracker pre-
viously described combining registration criterion and warps. The results are simi-
lar to the simulation case, the algorithms that performed better in simulation still
perform better in the HIL setup. However, there are substantial differences in the
exact moment at which a tracker starts to loose the target due to the differences
between real and simulated input.

Results can be seen in figure 5.9. In the graph on the left a warp comparison
using SSD forward compositional as registration criterion is shown. As the results
show, translation warp is still the best option due to the planar movements of the
experiment. However it looses the target faster than in the simulation environment
probably due to the rotation movements not present in the previous experiment.

The results also show a higher error value due to the difficulties that are created
by real input, but are almost impossible to simulate such as unpredictable noise,
light changes or transmission retards. These factors are also the cause of sudden
changes in the performance. But, in general terms, the most restrictive warp is still
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Figura 5.9: Results for the HIL benchmarking visibility use case.
Left: warp performance comparison, right: registra-
tion criterion comparison.

the best option due to the limited movements of the camera in the experiment.
In the case of similarity functions, represented in the graph on the right of

the figure, ZNCC registration criterion still offers the best performance. There are
no noticeable differences between ZNCC methods, but SSD performance is highly
influenced by the method used, FC and FA being much better than ESM and IC.

The other results, that can be seen in figure 5.10, follow the same trends as the
previous experiment. The main difference is the noisier result caused by the real
image input. But, ZNCC registration criterion and the simplest warp that is able
to encode the transform between camera and target, is still the best option .

As a conclusion, the experiment confirms the simulation results proving the pre-
sented framework to be a valuable tool. It allows the best option to be chosen from
a wide range of algorithms taking into account not only the goal of the intervention,
but a range of environmental conditions that may affect the result.

In this case, underwater visibility is a key parameter to consider when choosing
a template tracker. As can be seen, when the water turbidity is low, there is no
noticeable difference between all the compared alternatives. However, as the tur-
bidity increases performance drops for some of the reviewed algorithms letting the
researcher choose the best option depending on the situation.

5.4. 3D reconstruction benchmarking

The two previously presented cases used simulation to reproduce the underwater
turbidity and measure its effects on visual tracking algorithms. However, not only
do visual trackers suffer the degraded images consequences, but any algorithm that
uses a camera will be affected by low visibility conditions. Furthermore, simulation
and hardware in the loop experiments help to introduce and study the problem,
but real experiments must be conducted as the final step.

In this experiment a different use case is presented, comparing 3D reconstruc-
tion algorithms based on visual cameras. The objective is to be able to retrieve
a 3D pointcloud, a set of 3D points, of an unknown underwater object in front
of the vehicle. The experiment takes place firstly in simulation and then in a real
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Figura 5.10: Results for the HIL benchmarking visibility use case.
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Figura 5.11: Stereo (left) and laser stripe (right) reconstructions
comparison overlayed on ground truth simulated en-
vironment. Black points are filtered as ground, blue
are considered outliers and green points represent re-
constructed object.

laboratory environment using the framework presented in Chapter 2 as evaluation
software. In order to do this, a calibration step must be introduced to the workflow
so that the framework is able to model the real world.

5.4.1. 3D reconstruction algorithms

Two reconstruction algorithms have been compared in the benchmarking plat-
form. A stereo reconstruction using two cameras, and laser stripe segmentation.
These approaches are used to obtain a point cloud from the scene that will be
evaluated in terms of quality. Both algorithms are using exactly the same code
whether used in a simulation or in a real setup.

Figure 5.11 shows a simulation execution of both compared methods. The
pointcloud output is drawn in the simulated environment, providing visual feed-
back of the algorithm using a color schema for floor(black), object(green) and
outliers(blue).

The aim of the stereo reconstruction is to obtain 3D reconstruction in the
form of a dense point cloud, where each pixel of the image is used in order to obtain
a 3D point instead of computing them for certain features only: sparse reconstruc-
tion. A good reconstruction can be obtained only if the camera parameters are
properly estimated. The parameters are computed with camera calibration tools
and a calibration chequerboard.

In runtime, images from left and right side are undistorted and rectified using
the aforementioned camera parameters, so that their scanlines align for fast stereo
processing. Once the images are aligned, a local dense stereo correspondence algo-
rithm can be applied. In this case, OpenCV block matching algorithm [Konolige,
1998] implemented in a ROS package is fast enough for most robotic applications,
while only needing previous parameter tuning. With the chosen algorithm, both
disparity images and dense point clouds can be obtained. This method estimates
the corresponding pixel on the image on the right for every pixel on the image on
the left, thus comparing each pixel to a block on the other image. The displacement
between the two pixels is used to determine the 3D point coordinates based on the
camera geometry computed in the calibration step.
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In the case of laser stripe reconstruction, a laser light is used to project a
line in the scene that will be detected in a texture camera. Knowing the positions
of the camera and laser light, it is possible to retrieve a 3D point cloud of the
projected line. As the laser light is placed in a robotic arm, it is possible to move
it scanning the scene and in this way to obtain a scene reconstruction.

Before the system is able to perform a laser stripe reconstruction, it is necessary
to calibrate it. So, with the aid of a marker placed in the gripper of the arm,
the transformation between the camera and the end-effector cMe, is calculated as
explained in [Peñalver et al., 2014]. Then, using the Direct Kinematics of the arm,
the relationship between the base of the arm and the end-effector is obtained bMe.
So, using these two matrices the transformation between the base of the arm and
the camera is easy to calculate as equation 5.2 shows.

cMb =
cMe ∗ (bMe)

−1 (5.2)

The next parameter that has to be obtained is the relationship between the laser
and the end-effector bMe. The camera installed in the vehicle is a stereo camera
as a consequence, even though just one lens is used for the laser reconstruction,
in the calibration step the two lenses are used to increase precision. Using the
stereo camera, the 3D position of the pixels projected by the laser is obtained by
triangulation. Using those 3D points, the RANSAC algorithm is used to determine
the planar parameters of the laser plane [Inglis et al., 2012] cMl. These parameters
are referenced to the stereo camera using the previously obtained transformation
between the camera and the end-effector cMe. But, it is possible to reference the
plane with respect to the laser using equation 5.3.

lMe = (cMl)
−1 ∗ cMe (5.3)

Concerning the reconstruction, the floor is scanned moving the elbow joint of
the manipulator at a constant velocity between two predefined joint positions. At
the same time, the camera captures images of the scene onto which the laser is being
projected. For each image, a laser peak detector algorithm is used to segment the
laser stripe from the rest of the image. This algorithm discards the pixels that are
out of a predefined threshold of hue, saturation and value (HSV). Due to the laser
stripe pattern and the fact that the camera is placed parallel to that line, there is
only one point illuminated by the centroid of the laser at each column of the image.
As a consequence, for each column of the image, the pixel with the highest intensity
is selected. Using the center of masses algorithm, that is applied to this pixel and
the five pixels above and below it, the position illuminated by the centroid of the
laser is obtained with subpixel accuracy.

Finally, the segmented laser stripe is triangulated to obtain its 3D position
[Prats et al., 2012a]. In order to triangulate each selected pixel, it is necessary
to know the relationship between the camera and the laser lMc when the image
is captured. So, at the moment of image acquisition, the values of the joints are
stored. Using these values and the direct kinematics of the arm, the transformation
between the end-effector and the base of the arm bMe is calculated. Finally, using
this relation and the ones obtained in the calibration, the desired transformation
can be easily calculated through equation 5.4.
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Figura 5.12: Software schema used in the 3D reconstruction
benchmarking. Orange: benchmark outputs, Green:
evaluated software.

cMl =
cMb ∗ bMe ∗ (lMe)

−1 (5.4)

Although the compared algorithms are completely different and even use diffe-
rent hardware, it is possible to compare the results as both produce a 3D pointcloud.
This 3D pointcloud is a representation of the scene with points referenced to the
vehicle camera, allowing the robot to process it and decide the best approach to
interact with the world.

5.4.2. Experimental setup

The basic setup for the experiments can be seen in figure 5.12. UWSim provides
the camera input that will be used to reconstruct the scene and 3D object model
that will act as ground truth. The benchmarking module evaluates the algorithm
from the 3D object model from the simulator and the 3D pointcloud retrieved by it.
As perturbations, the amount of light in the scene and the noise in the camera will
be updated according to the benchmarking needs to test different environments.

In order to evaluate the 3D pointcloud produced by the 3D reconstruction
system, a 3D object model is required. In the case of simulation, the model that
is to be simulated can be used, but in the real benchmarking a high fidelity model
of the object to be reconstructed is needed. The benchmarking module takes this
object model as ground truth and a configuration file to get the position of the
object with which the results can then be calculated.

Results are divided in four metrics that provide different information about
the 3D reconstruction quality. These four metrics have been introduced in [Ou-
de Elberink and Vosselman, 2011], a work about reconstruction metrics, as quality
measures of 3D models, and are defined as follows:

• Outliers: The percentage of the reconstruction that it is further than a
threshold from the target. These points are considered reconstruction errors.
Every point that it is not an outlier is automatically defined as inlier.

• Mean error: Average distance from every 3D reconstruction inlier point to
the nearest point on the object surface. This metric offers a precision measure
of the reconstruction.
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• Standard deviation: Standard deviation for the previous error. A high value
in this deviation usually means misalignment in the reconstruction, due to
bad calibration.

• Coverage: Surface percentage that is nearer than a precision threshold to
a 3D reconstruction point. It measures the percentage of the target that is
correctly reconstructed. The threshold should be chosen depending on the
experimental setup. It is not an inlier measure, instead of measuring the
percentage of points near the target, it measures the percentage of the target
that has a reconstructed point nearer than a threshold. For instance, a perfect
reconstruction of 3 faces of a box would return 50% coverage instead of 100%
that an inlier metric would get.

However, these measures consider only reconstructed points of the object model
while reconstruction techniques, even if the object is the only one present, in the
scene do not distinguish between floor and object. For this reason, a previous
filtering step is needed so ground points are automatically discarded and they do
not interfere in the metrics.

In order to filter the ground points, an infinite plane at the base of the object
model is considered. Every point closer to this plane than to the object surface,
is labelled as floor. After this, each floor labelled point is then compared with
the outlier threshold against the floor instead of the object. Points further than
the outlier threshold are relabelled as outliers and the rest of the floor points are
discarded for metric computation.

Besides mathematical results, in this case, the benchmarking module is able
to overlay the labelled 3D reconstructed point cloud on the simulated 3D scene
to get a visual result of the reconstruction using UWSim as visualization engine.
Furthermore, 3D points are colored to show outliers, filtered ground points and
object points. This is of great value not only for showing results, but for debugging
reconstruction algorithms.

5.4.3. Simulation experiment

In the simulation experimentation, benchmarking capabilities have been exploi-
ted to test both reconstruction techniques under different conditions of illumination
and camera noise. These conditions try to simulate the complex and adverse condi-
tions in the underwater environment. Theoretically, the laser stripe reconstruction
should not be affected by low illumination conditions as it produces its own light,
but it may be more difficult to detect where the scene is brighter. The presence of
noise should cause poorer performance on both methods.

The algorithms have been tested in conditions where the amount of light varies,
ranging from 0 to 1.0 ratios where 0 means complete darkness while 1.0 is the
correct illumination (default values in UWSim), as can be seen on Figure 5.13.
This ratio affects all sources of light (ambient, directed and diffuse), but not that
produced by the vehicle itself such as a laser projector.

Besides this, Gaussian noise has been added to the camera output from 0.00%
standard deviation to 0.10%. This noise is added in an additive manner on RGB
channels in the shaders, so it does not produce a performance drop. Basically, it
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Figura 5.13: From left to right, top to bottom increasing light
conditions on virtual camera.

Figura 5.14: From left to right, top to bottom increasing noise
conditions on virtual camera.

adds a Gaussian random value to each pixel, adding white noise to the virtual
camera. Noise effect can be appreciated in figure 5.14.

Using these two scene updaters to test a wide variety of situations the 3D recons-
truction algorithm has been tested in simulation. The object to be reconstructed is
a black box mock-up as in the previous experiments, based on a search and recovery
problem. At this moment, the object is correctly found and tracked but the main
concern is to be able to reconstruct the target in order to compute good grasping
points and finally recover it.

Coverage results for laser stripe reconstruction and stereo vision can be seen in
figure 5.15. As expected, stereo vision reconstruction needs some light to achieve
a good reconstruction while laser is nearly immune to light variation. In the case
of stereo vision, the light ratio needed for good coverage depends on the added
noise ranging from 0.05 to 0.6. Laser stripe reconstruction is able to achieve a good
reconstruction in any case and slightly decreases its performance in conditions
where the light is bright.

Regarding noise, stereo vision is again more sensitive to noise, especially in
lower visibility conditions. On the other hand laser shows no noticeable differences
between different noises on coverage. This was the expected result as laser produces
its own light source, thus it is not affected by illumination changes, while stereo
needs to match pixels from both images that get degraded with low visibility and
noise.

In absolute terms, the laser is able to reconstruct 50% of the object in almost
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Figura 5.15: Coverage results on varying light conditions for dif-
ferent Gaussian noise on camera for Laser (left) and
Stereo camera (right).
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Figura 5.16: Outliers results on varying light conditions for diffe-
rent Gaussian noise on camera for Laser (left) and
Stereo camera (right).

every situation and stereo vision reconstructs 40% of the object in good light
conditions. This is a good result taking into account only one view of the object is
available, this means 3 out of 6 faces are not visible to the camera at any moment.
Different approaches that move the vehicle around the target to reconstruct the
object can be used to increase the performance, but this is out of the scope of this
work. In conclusion, the laser is clearly better for the tested environment due to
it’s immunity to changes in illumination

About the mean error and standard deviation, both algorithms show similar
results. In the case of mean error, due to the similar setup, both algorithms achie-
ve 0.004 meters, which is a good value given the experimental setup. In order to
increase the precision of both algorithms a higher resolution camera will be neces-
sary, as the results are at the limit of pixel resolution, or the possibility to move
the vehicle closer to the object. As the alignment of reconstruction and ground
truth is perfect on simulation, because no noise nor perturbation were added in the
calibration, the standard deviation is negligible.

Finally, the outliers results are depicted in figure 5.16 for both, the laser and
stereo vision cases. As the image shows, stereo vision generates more outliers in
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Figura 5.17: Physical benchmarking system: water tank, Light-
weight ARM5E manipulator, stereo camera, laser
stripe projector and black box mockup.

the absence of light, while the laser reconstruction produces a higher number of
outliers in brighter environments. In both cases higher Gaussian noise exacerbates
this behaviour increasing the percent of outliers.

In the case of stereo vision, noise and the absence of light make it more difficult
to match the pixels on both cameras, and a large number of outliers appear reaching
100% of outliers in extreme cases. On the other hand, in strong light conditions
it is more difficult to find the laser light on the camera, and mistaken detections
cause a high number of outliers.

It is also remarkable that there is a non-negligible percent of outliers in the
stereo vision results for 0.00% standard deviation noise. These outliers are caused
by small floating particles simulated in UWSim, which are correctly detected by
the system although they are not part of the object. The 3D stereo reconstruction
is not able to find these outliers when the noise is higher and its impact decreases
as more parts of the object are correctly reconstructed.

To conclude, laser stripe reconstruction seems to be a better option for the
tested environment. The immunity to low illumination environment reduces the
effect of noise and decreases the amount of outliers while maintaining precision.
However, in the tested environment the color of the objects is different to the color
of the laser laser and close to the camera, making the laser detection easier. When
objects are far from the camera or similar to the laser color detecting the projected
laser stripe will not be an easy task, thus reducing the performance.

In addition, real experiments need a camera laser projector calibration step that
has not been modelled in the simulation. For these reasons real experiments are
necessary to confirm the simulation results.
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5.4.4. Physical benchmarking experiment

In order to be able to evaluate the compared algorithms and validate the simu-
lated results in a real platform, a physical benchmarking platform has been used as
can be seen in figure 5.17. It is formed by the following elements, matching the main
elements in the virtual scene used in UWSim in order to reproduce the simulated
experiment in laboratory conditions:

• Water tank: Dimensions 2.0 m (width) x 2.0 m (length) x 1.5 m (height).

• Robotic arm: Four degrees of freedom ECA-CSIP Light-weight ARM 5E
manipulator, described in [Fernández et al., 2013].

• Floating structure: Simulates an underwater vehicle prototype to hold the
arm. In this work the floating structure has been fixed to the water tank thus
it does not introduce noise to the system.

• Color camera: Required to detect the laser, Bowtech DIVECAM-550C-AL
COLOUR camera is used.

• Laser stripe projector: The Tritech SeaStripe Laser Line Projector (MKIII)
is used to project a laser onto the object.

• Stereo camera: Videre stereo camera is used for stereo reconstruction.

• Object: Black-box mockup size 140 mm (width) x 300 mm (length) x 160
mm (height).

The previously used software architecture that can be seen in figure 5.12 needs
some changes if it is to work in a real environment. The schema used is shown
in figure 5.18. In this case the real experiment provides the ground truth models
and positions to UWSim that will process it to generate the ground truth model
required for evaluation. The evaluated algorithms no longer use the input from
UWSim, now they use the real camera output. Finally the light changes are carried
out in the laboratory instead of being generated by the benchmarking module.
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Figura 5.19: Camera image with manually initialized corners and
estimated box pose (left). Ground truth box pose
with the point cloud obtained with the stereo camera
(right).

Besides a high fidelity virtual 3D model of the object to be reconstructed,
relative positions between object and robot are required. In order to obtain that
ground truth that UWSim needs to evaluate the reconstruction, a calibration step
has been added. This step measures the position of the target to reconstruct with
respect to the camera and using the robot kinematic model as the vehicle base
reference.

In order to obtain the object pose ground truth, a pose estimation method has
been used to compute the relative position of the target object, in this case a black
box mock-up with respect to the camera. As dimensions of the object are well
known, the box corners can be used to estimate its pose. In the case of using a
different object, easily recognizable points could be used instead of corners. While
it is possible to detect them automatically, it has been decided that the manual
initialization by the user is less error prone, more general and best suited to get an
accurate ground truth for the benchmarking system.

First of all, using an image of the target from the robot camera for calibration,
the user clicks on the visible recognizable points, in this approach six corners were
visible. These recognizable points must be matched in the 3D model and then,
using the camera parameters, the object pose estimation is obtained using the
ViSP library. In this case, the frame is placed in the center of the top face of the
box, as can be seen in figure 5.19. As there are several methods in the ViSP library
that can be used to obtain the estimation, all of them are used to estimate the pose
and the one that minimizes the estimation error is selected.

This ground truth, however, is not perfect as small errors appear caused by the
limited camera resolution (actual pixel size), user accuracy and camera calibration.
Nevertheless, the resulting error is small enough to allow the object position to
be considered as a suitable ground truth so that the metrics described in this
experiment can be used. In fact, the camera calibration accuracy affects rectification
and undistortion in these cameras, thus obviously introducing some shared error in
this ground truth position and at the same time in the reconstruction processes.

In this experiment, conducted under real conditions, both systems have been
tested under three different light conditions shown in figure 5.20, in order to re-
plicate the simulation results. As the illumination of the environment is a key
characteristic in this experiment, a lux meter was used to assure the replicability
of the experiment. The lux meter was placed on a flat surface as near as possible
to the black box. The values obtained for the testing scenarios were 12, 147 and
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Figura 5.20: From left to right: low, medium and high light condi-
tions. From top to bottom: external view and camera
view.

207 lumens.

As can be seen in the first scenario, images on the left of the figure, there is
almost no illumination. In the case of the laser stripe reconstruction, top images,
the projector produces its own light thus it is the only visible clue, making it easier
to detect. In the intermediate scenario both methods should perform well as the
laser can be easily detected and there is enough light for the stereo reconstruction.
However in the last scenario the stereo reconstruction has some advantage because
the laser stripe is difficult to detect when projected onto a brightly lit surface.

In this case, the camera noise is not introduced as the real camera already
has white noise, making it difficult to control the amount and characteristics of
the addition of both signal noises (introduced and already present). Thus using
only the three illumination conditions, both reconstruction algorithms have been
compared using the presented benchmarking architecture.

Results for coverage are depicted in figure 5.21 on the left. Laser stripe recons-
truction results are slightly worse than simulated ones. In this case, laser achieves
around 32%-38% while in simulation it reached 50%. Although laser works bet-
ter in dark situations, it is highly resistant to light changes. On the other hand,
stereo reconstruction is completely dependent on light conditions, achieving a 38%
of coverage in good light environments. These results support the ones obtained in
simulation where both algorithms behave in a similar way.

Nevertheless, in both cases the results in the real environment are worse than
simulated ones. This fact is caused by the unpredictable nature of the real world
that introduces perturbations and noise that can not be easily simulated.

Regarding mean errors, laser and stereo have similar mean errors, around 0.008
meters. This result is noticeably higher than in simulation due to the added ground
truth estimation error. The standard deviation, though, is greater than the one
obtained in simulation, around 0.005 meters in stereo and 0.008 meters in the case
of laser reconstructions. However, it is small enough to conclude that the tested
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Figura 5.21: Reconstruction coverage (left) and outliers results
(right) for Stereo camera and Laser on real scena-
rio for different light conditions.

algorithms reached a good alignment and the ground truth estimation was fairly
good. The higher deviation in laser stripe reconstruction is caused by the added
difficulty to calibrate the relative positions of the camera and laser projector.

The outliers results depicted in the right figure 5.21 show that both algorithms
increase the number of outliers as light increases. In this case, stereo reconstruction
shows a 0% on outliers in the absence of light because is not able to obtain any
points. Once the stereo is able to retrieve some 3D points the percent of outliers
suddenly increases to around a 10% that is in line with the previously simulated
experiment.

Besides the numerical results the presented approach is also able to provide the
researcher with visual feedback of the reconstruction as can be seen in figure 5.22.
In this visual feedback real point clouds are displayed onto UWSim simulation while
being processed. In the images, black dots are filtered as ground points, green points
are considered object points and blue points are labeled as outliers. As happened in
simulation, laser reconstruction works better in low light environments while stereo
needs some light to work properly.

A further analysis of the visual results shows that although the appearance of
the laser reconstructions is better, there is a misalignment on the pointcloud, as the
standard deviation of the results suggested. 3D laser reconstructions are slightly
rotated with respect to the ground truth target due to small errors in camera to
laser projector calibration. In the case of the stereo reconstruction, the ground
reconstruction was very poor due to the absence of texture on it which meant that
it was unable to match images from both cameras.

5.5. Conclusions

In this chapter three experiments have been presented to show the impact of
underwater image degradation on robotics. The approach uses the previously des-



5.5. Conclusions 79

Figura 5.22: From left to right: low, medium and high illumina-
tion conditions. From top to bottom: real laser point
cloud reconstruction and real stereo point cloud re-
construction overlayed on UWSim.

cribed framework for simulation and benchmarking to measure the results of diffe-
rent vision algorithms under decreasing visibility conditions. The experiments have
been conducted in simulated, hardware in the loop and real conditions in order to
validate the results.

The experimental scenario is focused on the TRIDENT project where an un-
derwater vehicle searched for a black box mock-up to grasp it and recover the
information in it. The main stages that may be affected by underwater turbidity
are the detection and tracking of the target and the reconstruction to compute
suitable grasp points.

The first experiment showed the results for the first detection and tracking
stage in a decreasing visibility scenario. Different tracker configurations are tested
following the target in a simulated camera to decide the best possible option for
the final intervention. As can be seen, all the tested configurations are affected by
water turbidity but ZNCC based functions showed a more resistant behaviour to
visibility changes.

In the second experiment, the previous test was repeated in a hardware in the
loop setup, using real camera input and degrading the images according to the
needs of the experiment. This configuration allows the realism of the experiment
to be increased, shortening the gap with real experiments, but still permits a large
number of benchmarking tests to be carried out. The results confirmed the trends
of the first experiment where ZNCC obtained better results keeping the track in
decreasing visibility.

Finally, the last experiment introduced the 3D reconstruction scenario neces-
sary to grasp unknown objects. In this case two alternatives were compared, a laser
stripe reconstruction and a stereo camera. Both systems were tested in simulated
an real environment in a variety of illumination and camera noise conditions. As
expected, the laser alternative showed better performance in the absence of illumi-
nation due to the fact that it emits its own light while in brighter scenes it is more
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difficult to detect the projected laser. Although this could be solved mounting stro-
bes in the vehicle, this kind of illumination has some disadvantages: it exacerbates
backscattering, high battery consumption and requires control to provide proper
illumination at different distances.

In summary, every algorithm that makes use of an underwater camera will be
greatly affected by the degradation that the images suffered caused by the physical
properties of light transmission. Three different experiments have been presented
to prove these effects in the particular case of a search and recovery problem. These
experiments showed a thorough comparison of different alternatives helps to decide
the best option for the final intervention.

Furthermore, a benchmarking framework has been used exploiting the advan-
tages of these kinds of tools which can be used to conduct a set of experiments
without unnecessary complications. These tests can be performed in simulation,
real environments or even mixing both of them in a hardware in the loop setup.



Caṕıtulo 6

Underwater image dehazing

As discussed in Chapter 5, underwater turbidity makes working with cameras a
really challenging task. Classical vision algorithms to detect, track, reconstruct in
3D or even visually guided controllers are seriously affected by image degradation.
Furthermore, this image degradation is difficult to predict since it depends on
the underwater visibility conditions which are unpredictable, so it is not possible
avoid it. As a consequence, autonomous underwater vehicles need to be prepared
each time a robotic intervention mission is performed because water turbidity may
appear decreasing the visibility for its cameras at any moment.

The solution to this problem is to use a dehazing approach able to partially res-
tore the colors and characteristics of the acquired image. However, these techniques
usually require a long processing time, invalidating them for real time application
to increase robot performance in an underwater intervention.

This chapter discusses dehazing methodologies designed to decrease the effects
of turbidity on vision algorithms, that can be used by underwater vehicles. Diffe-
rent approaches are considered for use online in a real mission. Suitable techniques
for intervention are then objectively evaluated, using datasets acquired in real in-
terventions, in order to see their performance in real underwater environments.

6.1. Introduction

In order to deal with underwater image processing, it is necessary to consider
first the physics of light propagation in water medium. Physical properties of the
medium cause degradation effects not present when light is travelling through air.
Underwater images are essentially characterized by their poor visibility because
light is exponentially attenuated and scattered as it travels through water, resulting
in poor contrasted and hazy images. Attenuation and scattering of light limits the
visibility distance to about twenty meters in clear water and five meters or less in
turbid water making it difficult to detect objects that is necessary to manipulate.

The light attenuation process is mainly caused by two phenomena: absorption,
which removes light energy, and scattering, which changes the direction of the path
of lightwaves. The absorption and scattering processes of light in water influence
the overall performance of underwater imaging systems. Absorption reduces the

81
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Figura 6.1: Underwater light propagation physic effects that de-
grade images. From top to bottom, left to right wave-
length attenuation, scattering and vignetting.

amount of light as the robot goes deeper or further from the camera, colors drop
off one by one depending on their wavelengths. As can be seen in bottom figure 6.1,
the blue color travels the longest in the water due to the fact it has the shortest
wavelength, with the result that the underwater images are essentially dominated
by a blue color.

This is modelled in equation 6.1 as described in [Jaffe, 1990]. Where Lc is the
light getting to the camera, R(λ) is the reflectance of the surface depending on the
light power, b(λ) is the attenuation coefficient of the water for each wavelength λ
and d is the distance from the camera to the reflected surface. Thus, the light is
exponentially attenuated depending on the distance and the wavelength attenuation
coefficient.

Lc = R (λ) e−b(λ)d (6.1)

The scattering effect, represented in top left figure 6.1, changes the direction
of the light to the camera but, depending on the source of the deviated light two
main types are distinguished. Forward scattering, randomly deviated light on its
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way from an object to the camera, that generally leads to a blurring of the image
features. On the other hand, backward scattering, the fraction of the light reflected
by the water towards the camera before it actually reaches the objects in the scene,
generally limits the contrast of the images, generating a characteristic veil that
superimposes itself on the image and hides the scene, blurring the targets that
have to be manipulated.

An approximation of the scattered light arriving at the camera B(λ), can be
computed assuming a uniform directional distribution of the scattered light γ(λ)
using equation 6.2 as described in [Jaffe, 1990]. Where L(d) describes the light
arriving at each point of the camera line of sight, where it can be refracted to the
camera, in function of the distance along the line of sight d.

B (λ) =

∫ d

0

γ (λ)L (d) e−b(λ)ddd (6.2)

However, in practice it is possible to approximate L(d) as a constant, and then
compute the scattered light as in equation 6.3, as explained in [Bryson et al., 2016].

B (λ) =
γ (λ)L

b (λ)

[
1− e−b(λ)d

]
(6.3)

Absorption and scattering effects are caused not only by the water itself, but
also by other components such as dissolved organic matter or small observable
floating particles. The presence of floating particles known as “marine snow”, is
highly variable in kind and concentration, and increases absorption and scattering
effects. These particles, that may be visible in the camera, absorb or deviate light
of a specific wavelength depending on their size and characteristics.

The visibility range can be increased with artificial lighting. But, in addition to
scattering and absorption, it tends to illuminate the scene in a non uniform fashion,
producing a bright spot in the center of the image with a poorly illuminated area
surrounding it. Furthermore, if the camera is close to the lights it exacerbates
backscattering effects, increasing the amount of deviated light.

Besides these physics issues of the light propagation in water medium, additional
problems derived from the camera that captures the image may appear. Mainly,
two effects can degrade the acquired image in the camera: vignetting and the sensor
response function. Vignetting, described in top right figure 6.1 is a fading of the
light at the corners of the image. This is caused by the geometry of the lens, and
sometimes by the lens housing, that partially shades the light passing in from
greater angles to the principle axis of the camera.

Equation 6.4 sums up the vignetting effect as described in [Kim and Polle-
feys, 2008]. Where E is the irradiance that gets to the camera sensor, V (r) is the
vignetting effect for an image point at r distance from the image center.

E = V (r)Lc (6.4)

Using a simple camera model made of a thin lens with R radius and an image
plane at a distance l from it, the vignetting effect for a ray at θ angle with the
optical axis can be computed as equation 6.5.

E =
LcπR

2 cos4 θ

4l2
(6.5)
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The last degradation effect occurs when the light gets to the sensor. A sensor
response function is needed to transform this light into a value that represents the
amount of light. This is typically controlled by the camera firmware and, although
it is usually a linear and normalized function between zero and one, can take a
great variety of forms including non linear response functions.

Equation 6.6 shows a generic sensor response function f to form the image I in
the camera depending on the exposure constant k and the irradiance. In [Grossberg
and Nayar, 2004] a review of sensor response functions can be found.

I = f(kE) (6.6)

In summary, the images that are interesting for underwater robotics can suffer
from one or more of the following problems: limited range visibility, low contrast,
non uniform lighting, blurring, bright artifacts, faded color (bluish appearance),
vignetting and noise. Therefore, the use of standard computer vision techniques
in underwater imagery requires these added problems to be dealt with first. Once
solved, object detection and grasp planning can be executed normally.

Taking into account these physical degradation effects from which underwater
images suffer, the image processing can be addressed from two different points of
view: as an image restoration technique or as an image enhancement method:

• The image restoration aims to recover a degraded image using a model
of the degradation and of the original image formation; it is essentially an
inverse problem. These methods are rigorous but they require many model
parameters, such as attenuation and backscattering coefficients that charac-
terize the water turbidity, which are difficult to estimate in practice. Another
key parameter required is the depth estimation for every pixel in the target
image. Although it is interesting to restore the original image from an object
detection point of view, these techniques usually require a large amount of in-
formation and processing time. This processing time and required parameters
makes it difficult to use them in a real intervention, where real time results
are required from a single image.

• Image enhancement uses qualitative subjective criteria to produce a more
visually pleasing image and they do not rely on any physical model for the
image formation. These kinds of approaches are usually simpler and faster
than image restoration methods, allowing them to be used in a mission to
help vision algorithms. The main drawback, from an autonomous intervention
perspective, is the subjective criteria. A more pleasing image for the human
eye may not be the best for further image processing because object colors
may be exacerbated in the enhancement step producing “false” colors in the
results, complicating vision algorithms.

6.2. State of the Art

The proposed goal is to obtain a method to enhance images by restoring the
original colors in real time so that autonomous robot performance will be enhanced.
In order to do so, methods from both approaches, restoration and enhancement have
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been considered, as long as they produce images suitable for object detection and
grasping, since the possibility of working in real time with as few inputs as possible
is the main requisite.

Restoring degraded underwater images requires modelling and estimating many
parameters such as water absorption, scattering and depth map. These kinds of
inputs are difficult to estimate from a single image. For this reason, a large set of
images from the same location or a combination of different sensors are typically
used. There is a large amount of work on restoring underwater images, the work in
[Raimondo and Silvia, 2010] offers a detailed review.

The work in [Bryson et al., 2016] uses a whole dataset of images and depthmaps
from the same survey to accurately estimate the water, light and camera parame-
ters in order to restore the true colors of the image. As a result, the degraded input
images are restored, obtaining the original colors of the image set. The main draw-
back of this technique is, it requires a medium sized dataset of overlapping images
and depthmaps of the same area, which is not always available and makes it im-
possible to use it in real time applications. As a consequence, it is not applicable to
the proposed scenario which is to improve the robot performance in an underwater
intervention.

The authors in [Roser et al., 2014] propose a method using a stereo camera to
obtain a depthmap, and use it together with a single image in order to estimate the
remaining parameters to restore the image. This approach has several advantages,
for instance it does not require additional hardware, and can be used in a real time
application. However, this method depends on a dense depthmap that may not be
available when the environment is not textured enough for the stereo camera to
recover 3D information, such as mud or sand commonly present in underwater ima-
ges. In order to deal with this, it uses some heuristic methods to fill the gaps where
no 3D information is available. Finally, it is not feasible when only a monocular
camera is available.

The work in [Vasilescu et al., 2011] dynamically mixes the illumination of an
object in a distance dependent way by using a controllable multicolor light source
in order to compensate color loss. Given a distance to the object, the system com-
putes the known characteristics of water and adjusts the light to compensate the
attenuation. This approach achieves a great color correction, but the main problem
of these kinds of solutions is the need of specific hardware to solve the problem that
increases costs and hardware complexity. Additionally, as attenuation exponentially
increases with distance, the presented hardware works at a maximum of 5 meters
distance and it is not suitable for images with substantial depth changes.

Similarly, in order to deal with scattering some methods use long image se-
quences using structured illumination like [Jaffe, 2010], polarizers like [Treibitz and
Schechner, 2009] or changing the location of the light source as showed in [Trei-
bitz and Schechner, 2012]. The key idea in these methods is that controlling the
illumination between frames changes the backscatter. Thus it is possible to detect
it and remove it from the images. But, as happened with the previously described
method it requires specific hardware in the vehicle that adds complexity to the
hardware and sometimes introduces new issues such as signal attenuation in the
case of polarizers. Moreover, some of these methods require multiple images making
it impossible to use them online in a real intervention.

Recent work has examined the use of Markov Random Fields (MRF) and a
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training stage to learn how to assign the most probable color to each pixel [Torres-
Méndez and Dudek, 2005]. The MRF is trained by using pairs of input and output
images, learning transformations from a patch of degraded colors to restored colors.
In order to acquire the desired output images, a light source is used. This method
ignores the effect of the depth in the attenuation process, learning fixed trans-
formations for objects independently of its depth making it imprecise for object
detection.

In the context of single image dehazing, [Fattal, 2008] designed a theory based
on image analysis to detect hazy parts of the image and estimate the airlight color.
Using the image formation model it is possible to restore part of the original signal
in hazy scenes given a single input image. This research line focuses on using a
single image to estimate the required parameters to restore the image.

Continuing from this, [He et al., 2011] designs a new technique based on the
Dark Channel Prior (DCP) assumption. Dark Prior techniques are based on the
observation that in most of the non-background patches of outdoor haze-free ima-
ges, at least one color channel has some pixels whose intensity is very low and close
to zero. Using this knowledge, it is possible to obtain a dark channel of the image
that is closely related to depth and haze. This makes it possible to estimate enough
parameters of the image formation model to restore the original colors.

This has been proved to work in most outdoor air images, and has also been
adapted to underwater environments in [Chiang and Chen, 2012] or [Drews et al.,
2013]. The main disadvantage of this method is that it is based on a statistical
observation that may not be valid for some cases, and many works rely on sub-
jective visual results instead of objective numerical validation. However, it has the
requirements for the image preprocessing, so that autonomous manipulation: single
image input, image restoration and real time performance can be enhanced.

Although part of the DCP computation is highly time consuming, in some works
such as [Liang et al., 2014] or [Zhang and Zhao, 2017] the parallel possibilities have
been exploded, together with some simplifications, allowing to use it in a real time
pipeline. This proves it is suitable for enhancing autonomous underwater vehicles
performance.

Similarly, [Ancuti et al., 2011] relies on the same assumption as the DCP but
does a different processing. A semiinverse transformation is used to distinguish
haze free regions from sky or haze areas in a per pixel basis that makes it suitable
for parallelization. The main drawback of this technique is it relies on the same
observation as the DCP, that may not be valid for underwater images, and it has
not been tested in underwater environment.

The work in [Ancuti and Ancuti, 2013] follows a slightly different approach to
single image dehazing. It produces two images from the original input each one
accounting for a different degrading effect, chromatic casts and lack of visibility.
Then it mixes the result of both images to produce the best possible image using
the previously generated inputs. The work is refined in [Ancuti et al., 2016b] and
[Ancuti et al., 2016a] to produce three input images with the transmission, global
backscattering and local backscattering estimations and using a multi scale fusion
to obtain a single restored image. The transmission estimation steps also uses the
DCP estimation.

Other alternatives such as [Tarel and Hautiere, 2009], rely on assumptions that
are not fulfilled in underwater situations such as pure white color of fog regions in
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Cuadro 6.1: Comparison of different method properties for image
dehazing.

Method single image No additional hardware real time
Bryson15 [Bryson et al., 2016] X

√
X

Torres-Méndez05 [Torres-Méndez and Dudek, 2005]
√

X*
√

Roser14 [Roser et al., 2014] X
√ √

Vasilescu11 [Vasilescu et al., 2011]
√

X
√

Descattering [Jaffe, 2010] [Treibitz and Schechner, 2009] [Treibitz and Schechner, 2012]
√

X
√

DCP Based, He11 [He et al., 2011]
√ √ √

Ancuti16 [Ancuti et al., 2016b]
√ √ √

Histogram equalization [Garg et al., 2011]
√ √ √

white balanced images. In the case of underwater imagery, the fog may have a bluish
or greenish tone depending on the water characteristics. Using this assumption and
a similar observation to the DCP the method is able to estimate the atmospheric
veil and restore the image colors.

In the case of [Kratz and Nishino, 2009], the author proposes a Factorial Markov
Random Field (FMRF) to jointly estimate the albedo and depthmap in order to
dehaze the image. However, the FMRF requires scene specific priors as obtaining
information about albedo and depth is an inherently ill-posed problem. The main
drawback of this method is the priors proposed are based on the chromaticity of
the image that is completely distorted in an underwater environment, thus making
it impossible to use it in that context.

In terms of image enhancement, a histogram equalization is typically used as
described in [Garg et al., 2011]. These techniques analyse the histogram and trans-
form it to accomplish a determined distribution that produces visually pleasing
images. The main drawback of this approach is it amplifies the noise in homoge-
neous regions and creates false colors. Some research lines work to palliate this
problems like [Hitam et al., 2013], [Iqbal et al., 2010] and [Ghani and Isa, 2015]
combining different histogram equalizations, target distributions and contrast stret-
ching.

Another common strategy consists in maximizing the contrast of the image,
as hazy images have usually small contrast. The work in [Tan, 2008] follows this
strategy assuming a smooth layer of airlight. However, the results of this method
suffer from halos near depth discontinuities and does not produce good results in
saturated images.

As discussed before, an underwater image preprocessing technique that restores
degraded image colors from water turbidity is required in order to increase vision
algorithms performance. This technique needs to be executed in real time, thus it
is possible to use it in an autonomous underwater vehicle, with limited hardware
payload due to vehicle restrictions. For this reasons, in table 6.1 a comparison of
the different state of the art methods is shown with the most important features
of the system.

As can be seen only the histogram equalization and DCP, and other techniques
that use it, fully accomplish all the required features for the proposed use case.
The Markov random fields based solution in [Torres-Méndez and Dudek, 2005],
does not directly need additional hardware but it means that groundtruth dehazed
images have to be obtained, and that may be impossible to acquire without it. The
main disadvantage of histogram equalization techniques is that they do not assure
a realistic image restoration as they are usually not based in a formal model of the
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image formation. In any case, they will be compared with the proposed dehazing
solution in Chapter 7.

For this reason, in this chapter the performance of different dark channel prior
transmission estimations is benchmarked. The main goal of this study is to analyse
the possibilities of enhancing autonomous underwater vehicles performance prepro-
cessing the image to obtain a more suitable input for vision algorithms.

6.2.1. Dark Channel Prior dehazing

The original Dark Channel Prior, presented in [He et al., 2011], was designed
for hazy outdoor images instead of underwater imagery. However, it has also been
used in underwater images due to the similar physical model of both phenomena.
Its purpose is to recover the image without haze effects. In the process it estimates
the medium transmission and atmospheric light from a single image, and then,
using the image formation model, restores the original image.

The image formation model assumed by the DCP is expressed in equation 6.7
where E is the irradiance that reaches the camera sensor, R is the reflectance of the
object, t̃ is the transmission of the system and A is the global atmospheric light.

E = Rt̃+A
(
1− t̃

)
(6.7)

The transmission of the system for a pixel x is defined in equation 6.8. Thus,
the transmission t̃ depends on a constant attenuation b and the distance to the
object d.

t̃(x) = e−bd(x) (6.8)

As can be seen, this model is similar to the underwater image formation model
explained in section 6.1 combining attenuation as described in equation 6.1, and
backscattering effects, expressed in equation 6.3. The global atmospheric light is

now a constant describing the backscattering: A = γ(λ)L
b(λ) , and the transmission

is not dependant on the wavelength because light attenuation does not depend
on wavelength in air free images. For this reason, it is reasonable to use it in an
underwater application.

As the image formation model used is widely accepted for this process, although
more complex models may be used such as including vignetting or sensor response
functions, the most important part is the parameter estimation. As a consequence,
most of the DCP variants only change the process for estimating transmission and
atmospheric light, keeping the rest of the process unchanged.

The transmission estimation is done taking into account the DCP assumption
that non-background patches of the image have at least one color channel close to
zero in non-hazy images, expressed in equation 6.9

t̃(x) = 1− mı́n
yǫΩ(x)

(
mı́n
c

Ec(y)

Ac

)
(6.9)

In it, Ec(y) is the intensity of a pixel y for channel c and Ac the atmospheric
light for channel c. The first minimization corresponds to the search in the local
patch Ω(x) around a pixel x, and the second one around the RGB channels of the
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Figura 6.2: DCP dehazed images in different steps showing halos,
original source images from [He et al., 2011].

image. It looks for the minimum channel in a local patch around the target pixel,
if this minimum is high it means the image is hazy at this point as it contradicts
the previously declared assumption.

The estimation of the atmospheric light is made from the previous Dark Chan-
nel. As the Dark Channel is considered to be an estimation of the image haze, the
atmospheric light will be one of the haziest pixels. The authors propose to use the
brightest pixel of the top 10 percent of the haziest dark channel with the initial
atmospheric light guess.

In summary, in order to estimate the haze and the atmospheric light two steps of
the Dark Channel Prior will be made, one with an initial guess of the atmospheric
light, typically 1, and then the final estimation of the atmospheric light will be
calculated in order to refine the transmission estimation.

At this moment, the estimated transmission, usually called coarse estimation,
suffers from noise and halos caused by the estimation procedure. The noise can
be smoothed using any kind of denoising filter, but the main problem occurs at
object borders where there are sudden changes of haze density caused by changes
in depth.

Halos are artificial borders created in between two objects due to the nature of
the minimization function in a neighbourhood patch. This can be seen in figure 6.2,
in the coarse estimation the house is correctly estimated but there are halos in the
tree branches and leaves. As can be seen, the refinement step smooths this effect
and correctly removes the halos.

In order to solve this, a soft image matting step, as presented in [Levin et al.,
2008], takes place to smooth the transmission estimation using the original image
as a guide. The natural image matting is a process that extracts an object from
the foreground of an image. This process together with a bilateral filter, described
in [Tomasi and Manduchi, 1998], smooths the transmission respecting the original
borders and avoiding artifacts. This is possible due to the similarities between the
image formation model of the DCP, equation 6.7, and the image matting equa-
tion 6.10.

I = Fα+Bg(1− α) (6.10)

In the above equation, F and Bg are the foreground and background colors
respectively and α is the foreground opacity. As a consequence it is possible to
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Estimation

Guide image

Filtered image

Figura 6.3: Guided filter example used in depthmaps.

apply a closed-form of matting to obtain the foreground and background. Then,
the optimal refined transmission can be obtained solving a sparse linear system,
and use it in a bilateral filter to smooth the image.

As this is an extremely slow process due to the non linear time complexity, other
works propose the use of a guided filter, presented in [He et al., 2010], to make
it faster. The guided filter performs an edge preserving smoothing on an image,
using the content of a second guidance image. In this case, the coarse estimation is
smoothed using the raw original image

This effect can be seen in the figure 6.3, the estimation is smoothed respecting
the edges in the guide image. The black white images are represented as surfaces
in order to see the filtering effect clearly. As can be seen, the random noise in the
surface estimation has almost disappeared in the filter image, but it still preserves
the edges already present in the guide image, this is called structure transference.

Finally, the original image is restored using the inverse formula of equation 6.11
derived from the assumed DCP image formation model.

R =
E −A

t̃
+A (6.11)

From this initial DCP dehazing, several variations and enhancements have been
proposed to adapt it to the underwater environment. Most of them focus on small
changes in the dark channel calculation, expressed in equation 6.9. On the other
hand, other works change the smoothing step to accelerate the computation or to
increase the performance of the technique.

The authors in [Carlevaris-Bianco et al., 2010] propose using the different at-
tenuation of light for each color channel as a depth prior to estimate transmission
instead of the dark channel. The red color attenuates much faster than green and
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blue. Taking advantage of this fact, the so called Bianco prior (BP) compares the
maximum intensity of the red color to the maximum of green and blue over a small
image patch. Thus, the Bianco prior difference D (x) can be seen in equation 6.12.

D (x) = máx
yǫΩ(x),cǫr

Ec (y)− máx
yǫΩ(x),cǫ{g,b}

Ec (y) (6.12)

In it, Ec (y) is the intensity of a pixel x in color channel cǫ{r, g, b} in the image
E. The first maximum is computed for a patch in the red channel and the second
one for the blue and green channels. The transmission t̃ can be computed using
the largest difference D (x) that represents the closes point in the foreground using
equation 6.13

t̃(x) = D (x) +
(
1−máx

x
D (x)

)
(6.13)

Themedian dark channel prior (MDCP), presented in [Gibson et al., 2012],
observes there is a loose relationship between the dark channel and the transmission
when depth variation is not smooth and when the texture is high. This is partially
solved by the image matting smoothing step. However this step is extremely slow
and makes the whole process difficult to apply in real time applications. In order to
solve this, the authors propose the dark channel computation should be modified,
replacing a minimum with a median as equation 6.14 shows.

t̃(x) = 1−median
yǫΩ(x)

(
mı́n
c

Ec(y)

Ac

)
(6.14)

The variation proposed in [Drews et al., 2013], is based on the observation that
the dark channel in underwater images corresponds to the red channel due to the
extremely higher absorption of its wavelength. This red channel is independent from
the scene depth and, as a consequence, from the transmission in most images. In
this work an underwater dark channel prior (UDCP) is presented modifying
the original so that only in the green and blue channels. Thus the estimation of the
transmission is made through equation 6.15.

t̃(x) = 1− mı́n
yǫΩ(x)

(
mı́n

cǫ{g,b}

Ec(y)

Ac

)
(6.15)

The median underwater dark channel prior (MUDCP) is a combination
of the two previously described priors. Described in [Lu et al., 2015], it shows the
need of using a dual-channel, red and blue in this case, with a median operator as
described in equation 6.16. Using this transmission estimation, the authors derive
a depth map to further process the images.

t̃(x) = 1−median
yǫΩ(x)

(
mı́n

cǫ{r,b}

Ec(y)

Ac

)
(6.16)

Finally, authors in [Galdran et al., 2015] and [Codevilla et al., 2014] suggest
the use of the inverse of the red channel to achieve a more precise result. This
red channel prior (RCP) was suggested because of the fact that in underwater
environments red intensity decays faster as distance increases. As a consequence,
the transmission estimation step is modified accordingly as equation 6.17 expresses.
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t̃(x) = 1−min

(
mı́n
yǫΩx

1− ER (y)

1−AR
,mı́n
yǫΩx

EG (y)

AG
,mı́n
yǫΩx

EB (y)

AB

)
(6.17)

6.3. Dark Channel Prior Benchmarking

As discussed in previous sections the dark prior techniques are the best way to
enhance the performance of an autonomous underwater vehicle in real time. It is
possible to restore a degraded image with just a single image as input in reasonable
time to use it in a running intervention. Moreover, it does not require additional
hardware, and so it is possible to use it in any vehicle as long as it has a color
camera.

However, there are many variations and different adaptations to the underwater
environment. Furthermore, to the best of the authors knowledge, there is not an
objective comparison of these techniques in the context of autonomous underwater
vehicle imagery. For this reason, the existing dark prior adaptations are compa-
red in an objective experiment to decide which is the best method for the target
underwater vehicle images.

Bearing this in mind, a set of images have been prepared to test the DCP
variations under different objective metrics. The images dataset include depth in-
formation retrieved with stereo cameras, stereo in motion and odometry that will
serve as groundtruth of the transmission estimation. As the transmission estima-
tion is linearly dependant on depth, some metrics are proposed to estimate the
precision of the estimation using this groundtruth.

6.3.1. Image datasets

For this purpose, mainly two different datasets have been used to benchmark the
DCP dehazing, although three additional datasets have been used for further tests
and results. A full description of the datasets characteristics, acquisition details
and samples can be consulted in the Appendix A. In this case rocks and rocks and
sand have been extensively used.

These datasets were chosen due to the uniformity of the images and the avai-
lability of depth information. This information associated with each image allows
the performance of the algorithms to be measured compared with the transmission
estimation. The uniform texture across the images helps the DCP methodology
being a best case for it.

Example images from each dataset are shown in figure 6.4. Images cover a
different range of textures, vehicle depths, illumination conditions and distance
from the camera to the seafloor.

6.3.2. Metrics

Typical approaches that evaluate the performance of the DCP are based on
measuring different properties of the resulting image such as contrast, visibility, etc.
Another option is to use simulated imagery, so that it is possible to obtain both a
hazy and a clear image, to compare with a groundtruth image. But most of them,
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Figura 6.4: Images of the different datasets used in the thesis for
image dehazing.

to the best of the authors knowledge, do not evaluate the estimated parameters of
the image formation model that are the key to the technique.

In contrast, this work uses the dense depthmap obtained with a stereo came-
ra as groundtruth of the transmission estimation. This is reasonable because the
transmission estimated by the DCP is linearly proportional to the depthmap after
exponentiating as equation 6.8 shows.

In this equation, d corresponds to the depthmap and b(λ) is a function de-
pendant on the wavelength of the light caused by the different attenuation of the
light underwater. In the case of a single image it can be assumed b(λ) is constant
through all the image as the image covers a small region, so underwater turbidity
should be almost constant. In the case of DCP estimation, the transmission is in-
dependent from the wavelength of the light so it will be assumed b(λ) is constant
or the transmission estimated is for a concrete wavelength, the consequences of this
assumption in the results will be discussed later.

Taking into account this relation between transmission and depthmap, two me-
trics are proposed. The first is the sample Pearson correlation coefficient, expressed
in equation 6.18, which measures the linear correlation between two variables X,Y
giving a value between -1 and +1 where 1 is total positive correlation, 0 means the
two variables are not linearly correlated and -1 is total negative correlation.

ρX,Y =
cov(X,Y )

σXσY

, rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(6.18)

In order to calculate the correlation, the log(t̃) and the stereo depthmap are
used as variables X and Y, ignoring the pixels where the groundtruth depthmap
is not available. If the DCP is correctly working, the correlation should be close
to -1, but a positive correlation would be good too as it would mean the DCP is
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the inverse of the transmission. However, this would only happen if DCP worked
perfectly, any result above 0.5 is considered good in terms of correlation.

This metric is useful to know if both variables are similar in terms of appearance.
If both variables are represented as a surface, the correlation describes the similarity
of the shapes of both surfaces. Thus it can be considered as a local structure metric.

The second proposed metric is an Adjusted Root Minimum Squared Error
(ARMSE). As it is not possible to directly apply the RMSE, because the com-
pared variables are linearly proportional, multiplied by an unknown constant as
described in equation 6.19. Actually, this constant is the transmission attenuation
b, which is finally obtained from the groundtruth so both terms have the same
mean.

log t̃(x) = −bd (6.19)

In order to obtain the transmission estimation from the depthmap, the mean
of the log estimated transmission and groundtruth depth is calculated, and an
attenuation b is obtained to adjust the estimated transmission to estimated depth,
minimizing the mean error between estimation and groundtruth. As a consequence,
this is a best case RMSE that assumes the best possible value of b.

Furthermore, from the point of view of estimating a depthmap from a single
image, the parameter b is the scale factor. This makes sense as it is impossible to
obtain a 3D reconstruction from a still image due to the lack of scale information.
However, it is possible to estimate an unscaled depthmap. This makes reference to
the difficulty of distinguishing a photo of a realistic doll house from a photo of a
real house, or the need to use a known object for the purpose of estimating the size
of an unknown object in a photo.

Using this ARMSE metric also makes it possible to obtain an estimated depth-
map from the DCP transmission which can be directly compared visually and
numerically. Thus, 3D plots of the surfaces, error histograms, and RMSE can be
obtained for this measure as the one shown in figure 6.5.

6.3.3. Compared algorithms

The previously described metrics have been used to test a wide variety of dark
channel prior variations. The goal is to be able to decide which one works better in
the proposed datasets and choose the best option for an autonomous underwater
vehicle.

Besides the previously presented literature adaptations, 8 new versions have
been added to the comparison in order to test different aspects of the process.
Some of them are naive approaches to establish boundaries of a good performance
and discard situations where the raw image is already related to the depthmap.
This can be a common situation in underwater images due to the fast attenuation
of light that makes objects that are further away appear darker.

The first proposed variation is a blue channel prior that uses only the blue
channel of the image. It is a naive prior based on the observation that objects that
are further from the camera have a bluish tone. As a consequence transmission is
estimated using equation 6.20.
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Figura 6.5: Visualization of the image (top left), error histogram
(top right), DCP estimation surface (bottom left) and
depthmap surface (bottom right).

t̃(x) = 1− mı́n
yǫΩ(x)

EB(y)

AB
(6.20)

Similarly, the red channel attenuates faster than other channels. This fast atte-
nuation can be used to derive a depth estimation, assuming a uniform texture as
further objects will have a more attenuated red color than ones which are closer. It
is the inverse situation to the previous case. Equation 6.21 describes the only red
channel prior.

t̃(x) = 1− mı́n
yǫΩ(x)

ER(y)

AR
(6.21)

Following this way of thinking AUV images usually fade in intensity as depth
increases due to the illumination attenuation. However, in the RGB colorspace it
is difficult to detect this intensity fade out. For this reason, the pixels are initially
transformed to HSV (Hue, Saturation and Value) colorspace where the V axis
corresponds to the luminosity of the pixel. ThisHSV prior uses just the luminosity
information as equation 6.22 shows, whereHSV (X) is the transformation of a pixel
X to HSV colorspace.

t̃(x) = 1− mı́n
yǫΩ(x)

HSV (E(y))V

HSV (A)V
(6.22)
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Another colorspace typically used in vision algorithms is the CIELAB. This
colorspace also differentiates luminosity from color, in this case the l axis ranges
from 0, total darkness to 100, full luminosity. The equation 6.23 describes the
transmission estimation of the CIELAB prior casting the image to CIELAB co-
lorspace to compute the dark prior using the luminosity in it. Like the previous case,
CIELAB(X) denotes the transformation of a RGB pixel X to CIELAB colorspace.

t̃(x) = 1− mı́n
yǫΩ(x)

CIELAB(E(y))l

CIELAB(A)l
(6.23)

The following compared variation uses the ideas behind the median dark channel
prior that says there is a loose relationship between the estimated transmission and
the real transmission when depth variation is not smooth. But in this case, instead
of using the median, the mean of the minimum channel in the patch is used as shown
in equation 6.24. This mean dark channel prior should produce an image that
does not require a smoothing step.

t̃(x) = 1−mean
yǫΩ(x)

(
mı́n
c

Ec(y)

Ac

)
(6.24)

The inverse dark channel prior has been introduced as a boundary measure.
The tested hypothesis is if the DCP is a good estimation of the transmission the
inverse should produce bad results. Thus, instead of computing the minimumm
channel in the patch, it searches for the maximum. This can be computed using
equation 6.25.

t̃(x) = 1− máx
yǫΩ(x)

(
máx

c

Ec(y)

Ac

)
(6.25)

Another boundary method added to the comparison is a random prior. In this
case, a random channel of a random pixel in the patch is chosen to be representative
of the transmission. This control version will distinguish the cases where the input
image is already correlated with transmission and help to understand if the other
priors are improving this initial correlation or not. The equation 6.26 shows the
transmission estimation for this variant.

t̃(x) = 1− rand
yǫΩ(x),c

Ec(y)

Ac
(6.26)

Finally, the last proposed algorithm is the plane prior that estimates a cons-
tant transmission for the whole image. This prior will act as a boundary for the
ARMSE metric, anything above this error is worse than not predicting a surface
at all. This estimation can be expressed as equation 6.27 shows.

t̃(x) = 0,5 (6.27)

To sum up, the compared DCP variations are the 6 presented in the dark
channel section of the state of the art: standard DCP, Bianco prior, median DCP,
underwater median DCP, underwater DCP and red channel prior. Additionally, the
previously described 8 new implementations have also been included: only blue, only
red, HSV prior, CIELAB prior, mean DCP, inverse DCP, random and plane.
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6.4. Results

Four experiments have been conducted to test different aspects of the compared
algorithms. These experiments try to understand the steps of the dark channel prior
in order to benchmark all the possible combinations, and decide the best option
for the case under study. Each experiment focuses on a part, maintaining the rest
of the algorithm, thus at the end it is possible to deduce the importance of the
changes made. The experiment goals are described below.

• Original methods comparison: In this case, the original methods are com-
pared as described in the bibliography. The first dataset is used for the com-
parison as it is the least challenging environment, a single texture and colors.

• Atmospheric light estimation: The second important step in the dark
channel prior dehazing methodology is the atmospheric light estimation. Ho-
wever, almost none of the reviewed works adapt this computation for the
underwater environment. This experiment, omits this step in order to see its
impact on the final result. As in the previous case, the easiest dataset is used
to obtain a best case scenario.

• Refinement benchmarking: This experiment compares the two principal
refinement steps, image matting and guided filter as well as no refining at all.
The main focus is if the guided filter is able to perform similarly to image
matting as it is faster to comput, thus allowing a real time application.

• Different textures: The final test compares the most promising configura-
tion options in different datasets. Furthermore, it compares the performance
in cases where only one texture is present in the image with multi textured
images.

Although an experiment with the simulated software shown in Chapter 2 would
be interesting, using this dehazing algorithms in it was discarded because of the
differences between the simulated haze model and the real underwater image for-
mation. Some degradation effects such as scattering or vignetting are not properly
modelled in the osgOcean visual simulation, thus the results of the dehazing stra-
tegies would not be concluding. Moreover, simple processes can be designed to
restore the degraded images from the simulation that outperform the current state
of the art but would not work in real experiments, making it difficult to extrapolate
results to real environments. However, this is included as future work in Chapter 8.

6.4.1. Original methods

In the first experiment, the different implemented solutions to be compared
have been benchmarked without modifications, as described in the bibliography, in
order to see the performance of each algorithm. The choices between image matting,
guided filter or the method to estimate the atmospheric light have been respected
as described in the corresponding papers. About the new variations that have been
proposed, the settings from the paper that inspired them are used.

The rocks dataset, have been chosen due to the uniformity of the images. These
images show a rocky seafloor with uniform colors that may help to retrieve depth



98 6. Underwater image dehazing

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

s
ta

n
d

a
rd

D
P

B
ia

n
c
o

P
ri
o

r

M
e

d
ia

n
D

P

M
e

d
ia

n
R

B

U
D

C
P

R
C

P

B
lu

e
C

h
a

n
n

e
l

R
e

d
C

h
a

n
n

e
l

H
S

V

L
a

b

In
v
e

rs
e

D
P

M
e

a
n

R
a

n
d

o
m

P
la

n
e

A
R

M
S

E
 (

m
e

te
rs

)

Figura 6.6: DCP variants comparison for rocks dataset and ARM-
SE metric.

information from a single image. Furthermore, the use of strobes assures a better
illumination, reducing the errors caused by unexpected shadows.

The results for the ARMSE metric can be seen in figure 6.6, graph bars show the
mean value for the whole dataset, and the errorbars is the 95% confidence interval
of the images mean. The blue horizontal line marks the boundary of the plane
estimation. Anything above this error is worse than not estimating anything. The
comparison includes the complete set of DCP based versions already presented.

As expected, inverse DCP obtains the worst result which is even worse than
a constant estimation. Regarding other priors performance, it is possible to order
them in two groups depending on their performance. From higher to lower error, the
first group is around 0.25 meters and is formed by lab, RCP, blue channel, UDCP,
HSV and Bianco prior. The second group has a slightly smaller error, around 0.21
meters, including DCP, red channel, MDCP and UMDCP. Choosing a random pixel
in the neighbourhood performance is in the middle of both groups at 0.225 meters
error. Finally, the best algorithm according to ARMSE metric is the mean prior
with an error of 0.19 meters.

Both median priors perform exactly the same, this means the green and blue
channels of the image are not being used as they are never the minimum value
in the pixel. This is reasonable as the red channel attenuates much faster than
blue and green channels, thus the channel minimization is of little use in this case.
The minimization keeps choosing the red channel as can be seen in the “only red”
performance, which is very similar to standard DCP and median priors.

Avoiding the use of the red channel of the image, such as UDCP and blue
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Figura 6.7: DCP variations comparison using correlation metric
for rocks dataset.

channel priors do, or using the inverse of the red channel as in RCP, seems to
have a negative effect on the performance. Thus, it can be concluded that the red
channel contains valuable depth information.

The random performance shows that the image is already related to depth
due to the light attenuation. In terms of the ARMSE metric, only 5 out of 12
algorithms, boundary algorithms are not considered, performed better. However,
this good result of the random choice of the dark channel is enhanced by the
remaining steps of the dark channel prior dehazing algorithm, specially refinement
as will be discussed below.

In the case of correlation, the results confirm this first impression as figure 6.7
shows. The correlation data is shown as an absolute value as it is not important if
the relation is positive or negative. However, the mean correlation is made from the
raw results, so if an algorithm obtains positive and negative correlations the result
will be close to 0. The average and confidence interval for the dataset are shown
as in the case of the ARMSE metric using bar and errorbar. A horizontal line is
drawn with the random result as any estimation below this line is worse than the
already correlated image.

In this case, every variation of the DCP except the constant estimation shows
a medium to strong correlation with the groundTruth. The main drawback is that
the random also shows a good 0.65 correlation. This proves the raw data is already
correlated with the desired output and/or other stages of the process, mainly refi-
nement, which are also an important part of the method. Light attenuation may be
causing this effect as pixels closer to the camera are brighter than deep ones. As a
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consequence, choosing a random pixel in the case of underwater imagery, which is
not the set up that the DCP was originally designed for, is a good depth estimation.

It is important to remark that although a good correlation usually means a
good ARMSE, this is not always true. Inverse DCP has a fairly good correlation
value, near 0.69, but it is the worst algorithm in terms of the ARMSE metric. This
means the scale correction is wrong, although the ARMSE metric equals the mean
and is able to compare transmission and depth in absolute terms, the scale of both
measures is not adjusted.

Taking this into account, only 7 out of 12 approaches perform better than
the random algorithm: standard DCP, Mean, MDCP, UMDCP, RedChannel, In-
verseDCP and mean. The best result is obtained by the Mean, as happened in
ARMSE with 0.7629 correlation, more than 10% better than random selection.

The main conclusion of this experiment is the DCP is working because the
data is already showing some correlation with the transmission. However, the use
of certain priors and other steps of the dark channel prior dehazing algorithm
enhance the results, reducing the errors and increasing the correlation. The two
following experiments explore the atmospheric light estimation and the refinement
step impact in these results.

6.4.2. Atmospheric light estimation

The second experiment explores the atmospheric light Ac estimation of the
dark channel prior. Due to the difficulty of obtaining a valid groundtruth for this
parameter, the overall performance is compared using the proposed estimation for
each variant and omitting it. If the atmospheric light estimation is correct the
metrics should show an improvement when using it to dehaze the image.

Analysing the importance of this estimation in the dehazing algorithm in equa-
tion 6.8, it can be seen it is almost a change in the scale. Some points may change
as the atmospheric light intensity is different for each channel, but in practice this
does not happen for many pixels. As a consequence, this change should be more
noticeable in the ARMSE metric because correlation is invariant to scale changes.

As in the previous experiment, the rocks dataset has been used because it is
the easiest case for the dark channel prior estimation.

The results shown in figure 6.8 demonstrate that there is no big difference
between the raw transmission estimation and the one after atmospheric light esti-
mation in the case of AUV imagery. The only noticeable difference is in the case of
inverse DCP, where a bad choice of atmospheric light is producing big errors. As
can be seen, omitting the atmospheric light estimation only has a big impact in the
case of a wrong estimation, this case can be seen in the inverse DCP algorithm.

There is nothing to be compared with Bianco Prior because it never computes
the atmospheric light. Plane estimation has exactly the same transmission estima-
tion because it is independent from the atmospheric light estimation as it returns
a constant value. Now the plane estimation is the worst as expected.

The original DCP, mean channel and red channel work, take advantage of the
atmospheric light estimation. On the other hand cielab and the previously men-
tioned inverse DCP work better without it, meaning both techniques estimate the
atmospheric light wrongly and these errors lead to bad results according to the
ARMSE metric.
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Figura 6.8: DCP transmission estimation comparison depending
on atmospheric light estimation using rocks dataset.
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Figura 6.9: DCP transmission estimation comparison depending
on atmospheric light estimation using correlation me-
tric on rocks dataset.
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Figure 6.9 shows the results for the correlation metric. As expected, the dif-
ference between estimating the ambient light or omitting this step is negligible.
This result confirms the atmospheric light estimation is almost a scale change and
correlation is invariant to scale. Consequently, only small changes due to the recal-
culation of the algorithm after the scale change are produced, and the correlation
suffers minor changes.

In conclusion, the ambient light estimation is important for the dark channel
prior image dehazing so that the amount of haze that needs to be removed from the
image can be established. As this benchmark is based in comparing the transmission
with a depthmap, an unknown scale transform is required, making it very difficult
to decide if the ambient light estimation is good.

However, the ARMSE metric that assumes a perfect scale estimation in order to
compare the transmission estimation and the groundtruth depthmap, shows when
the ambient light estimation is not correct. In this situation the best implementation
is obtaining 0.19 meters of mean error from a dataset of an average 3.64 meters
that is 5% of mean relative error.

This is a good result, given the input is a single image, and means it is possible
to use the light degradation in water as a cue to estimate image depth. However,
a random choice of the pixel that forms the dark channel obtains a 0.22 mean
error that is around 6% relative error. The conclusion of this results is the image
intensity is already related to depth, and the DCP enhances these results.

But in any case, a mean error of 20 centimetres is acceptable for image dehazing
as it means the resulting image will only have a haze of 20 centimetres of water.
So, in this case the DCP is a good alternative for a real time underwater dehazing
when only a single image is available.

6.4.3. Refinement step

The last step of the dark channel prior algorithm is the refinement step. Until
this step, the method obtains a coarse estimation that usually suffers from “halos”
around objects. These halos are caused by the minimums applied in the neighbour-
hood in equation 6.9, and make the estimation more imprecise along the borders of
the objects. In order to obtain a higher quality result, it is necessary to refine this
coarse estimation and retrieve the lost borders around objects at different depths.

This experiment compares different alternatives in the literature for implemen-
ting the refinement step. The main reason for this experiment is not only to find
the performance differences, but to compare the running time as this is the most
time consuming step of the DCP. Although the DCP is able to run in a short time,
in the proposed use case of enhancing the robot performance in the intervention
this is a key parameter as the algorithm must run as fast as possible.

The original DCP used a soft matting, but this step is extremely slow due to its
computational complexity. For this reason many authors use a much faster “guided
image filter” as presented in [He et al., 2010]. In this experiment, the performance
of these techniques is compared in terms of the error produced in the transmission
to see if the faster execution is worthy or not, and if it can be used in real time
applications. An unrefined output has also been added to the comparison in order
to see the real impact of this step on the algorithm.
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Figura 6.10: Filtering step comparison using ARMSE metric for
different DCP variations.

The results of this experiment for the ARMSE metric can be seen in figure 6.10.
As in the previous experiments, the graph shows a bar with the mean error for each
algorithm, and errorbars for the 95% confidence interval. The blue bars are used
for the unrefined estimation, green bars for the guided filter and red corresponds
to the image matting version.

As can be seen in the results, the refinement step is a key stage that reduces
the error in all cases except the plane estimation that cannot be refined due to its
characteristics. In the cases of Bianco Prior and random estimation the filtering
step is crucial, reducing the error by more than 70%. There is also a lot of benefit
for the inverse DCP lab and HSV in this process, reducing the mean error by
around 40% for the ARMSE metric. The rest of the compared alternatives also
benefit from this error reduction ranging from 18% in RCP and UDCP cases to
6% in median and only red channel.

Given these results, it seems clear that the refinement step is an important
process and the impact on the final performance is high. Even in cases where the
initial coarse estimation is not good, it reduces the error to acceptable levels as in
the case of the Bianco prior, random estimation or inverseDP. In the rest of the
cases, even when the initial estimation is already good, it helps to enhance the
results decreasing the errors.

In the comparison of guided filter and image matting, the results are not con-
clusive. The image matting procedure seems to reduce the error to a higher degree
when the initial estimation was bad, as in the cases of Bianco Prior, HSV, CIELAB,
inverse DCP or random. However, when the initial estimation is more precise the
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Figura 6.11: Filtering step comparison for different DCP varia-
tions.

guided filter is able to enhance the results better than image matting. This happens
in the median priors, original DCP, only red channel and mean algorithms. In other
cases the results of both refinement filters is really similar.

A possible cause for this behaviour is that the image matting makes more use
of the guide image, the raw input in this case, to enhance the estimation. As a
consequence, the estimation is not as important as in the guided filter. However, if
the initial estimation is good the guided filter obtains more benefit from it.

The authors of MDCP suggest the refinement step is not needed due the nature
of the median operation. The results suggest that this is true as median and mean
priors are the ones with the smaller difference between not filtering and using image
matting or guided filter. Nevertheless, the use of these techniques still reduced the
error in the conducted experiments.

Figure 6.11 shows the correlation results for the various implemented priors. As
can be seen, image matting is the best filtering option, obtaining around a 10%
increase in most cases and much more when the initial coarse estimation was bad.
Guided filter performance increment follows the same pattern, but it is slightly
smaller, around 7.5% increase in most cases.

As happened with the ARMSE metric, the most interesting thing about this
step is that even bad initial estimations, such as the random prior that has 0.26
correlation before the refinement, ends with a good result, 0.65 in the case of
matting and 0.62 in the case of guided filter. Probably, this is the reason why
random choice is getting a good result, the filtering step is greatly enhancing the
results, using the information in the raw image.
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Figura 6.12: Filtering step computation time comparison for dif-
ferent DCP variations.

The main difference between this and the previous metric is the image matting
seems to perform better in all cases. The performance difference is still higher
when the coarse estimation is not good, but guided filter does not outperform
image matting in any case. On the other hand, median and mean priors get less
benefit from the refinement step due to the nature of the operation that already
avoids halos in the borders as happened with the ARMSE metric.

These last two figures show the need for a refinement step that makes use of
the raw image to increase the precision of the estimation. It is possible to see
that even in cases where the coarse estimation would be considered a bad result,
these techniques are able to refine it and finally obtain a fairly good result. As
a consequence, this is one of the most important steps in the dark channel prior
dehazing scheme.

As discussed before, the image matting procedure is extremely slow in terms of
computation. Consequently, it is difficult to add it to a dehazing pipeline in real
time that requires short processing times in order to be able to control the vehicle.
Furthermore, the image matting cpu and memory complexity depends on the image
size, making it impossible to use it on the raw images from modern cameras.

For this reason, the execution time has also been measured for the three refine-
ment alternatives in each implemented prior. The computing time results can be
seen in figure 6.12. The machine used for this experiment is a Intel Core i5 650 at
3.2Ghz with 10GB of DDR3 RAM using Matlab. The graph shows the processing
time per image for each refinement option and algorithm.

As the results show, the difference between matting and guided filtering is huge,
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Figura 6.13: Different groups of images in texture dataset.

in fact guided filter only took 0.8 seconds more per image than no filtering at
all. Thus there is no doubt that the guided filter is a good alternative in terms
of processing time. Furthermore, the required time for the guided filter increases
linearly with the number of pixels while the image matting is a squared progression.

About the different prior implementations, it is noticeable that although median
and mean performed better without filter, they require more than 40 seconds to
run while other alternatives such as DCP, blue channel or red channel only require
5 seconds. UDCP, RCP and random are in the middle of them requiring around 20
seconds to compute.

The results show that image matting is not feasible in real time applications.
Although guided filter obtains slightly worse results in the correlation metric, it is
the only option that mixes good performance and execution time, so it is the best
choice for the case of enhancing AUV interventions. With reference to the different
priors, median and mean offer good results but also a higher computation time,
thus DCP or red channel seem to be better options for a real time application.

6.4.4. Texture benchmarking

So far, experiments show that using DCP or some of its variants is feasible for
AUV imagery in terms of precision and computing time. But the dataset used for
validation is the best case scenario as it is only formed by rocks with a uniform
texture. In the following experiment the rocks and sand dataset, is used to test the
algorithms in a more challenging environment.

In order to understand the performance in a different environment, the dataset
was manually tagged into three groups of images, that can be seen in figure 6.13,
depending on the objects appearing in it. The first group, sand, is made of images
that do not show plants or rocks but only sand. The second group, rocks, is formed
by rocky images similar to the ones in the rocks dataset, but with a different color
scheme corresponding to the location of this dataset. Finally, the rest of the images
were included in a mixed group of images that contain rocks and sand textures.

In this experiment, the number of compared techniques has been reduced to
7, discarding the techniques used to validate the results (plane, inverse DCP and
random) and the ones with bad performance in the first dataset. The DCP variants
tested are DCP, Bianco, Mean, MedianRB, UDCP, RCP and only red channel.
Furthermore, the results shown are limited only to the use of image matting as it
was the configuration that produced better results, although other configurations
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Figura 6.14: DCP variations results using ARMSE metric for
rocks and sand dataset.

were tested.
Results for the ARMSE metric are shown in figure 6.14. As in the previous

cases, the mean error for each group of images is shown in a bar and the error bars
correspond to the 95% confidence interval. The red bars show the error for the
images with more than one texture, the ones with only sand are shown in green
and images with only rocks in blue color.

As can be seen, differences between the different group of images are significant.
All the compared algorithms obtain better results when images only contain a kind
of texture, except the Bianco and RCP priors for rocky images. This is caused by
the special treatment of the red color in these priors that negate its value together
with the reddish color of the rocks.

These two DCP variants expect the red color will attenuate at an extremely
fast rate, however the rocks in this dataset have a strong purple color. As the
assumption is not true for this group of images, the error in this cases is higher
than in other priors that do not rely on this assumption.

In the rest of the tested variants, the group of images that contains more than
one texture obtains a significantly higher error. The best results are for the sand
images, that are the ones with a more uniform texture that makes easier to detect
changes in the amount of haze due to its uniformity. The rocks dataset error is
smaller than the one of the mixed set as it contains only one texture, but still
higher than the sand because the texture has more color variation.

This behaviour can be explained if it is assumed that there is a constant attenua-
tion b(λ) independent from wavelength in the transmission estimation, equation 6.8.
This approach does not consider that the light attenuates faster depending on its
wavelength, so objects with different colors, or textures in this case, should be trea-
ted differently. This makes it difficult to achieve a good result in the underwater
environment, although the system is still able to produce a decent result.

About the individual performance, DCP and only red channel are the best
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Figura 6.15: DCP variations results using correlation metric for
rocks and sand dataset.

option, obtaining around 25 centimeters of error in the mixed group of images and
close to 20 in the sand and rocks images. However, as this dataset has been taken
from a shorter distance, it translates to a 10% relative error in mixed and close to
8.5% in the sand and rocks.

Median and Mean priors achieve a similar result, around 10% relative error in
the rock and sand groups of images and 13% in the mixed dataset. Bianco prior
obtains the best result for sand images, but it does not perform as good in the
other group of images. UDCP results are extremely bad for this dataset, probably
due to its use of the red channel.

The results for the correlation, showed in figure 6.15, are an even stronger proof
of this fact. Although, in the ARMSE metric the compared algorithms are still able
to achieve a good result for the mixed group of images, in the case of correlation
this does not happen.

The results for the complete dataset show weak to no linear correlation. This
means that the DCP algorithms were not able to extract a good transmission
estimation for them, as it should be linearly correlated to it. If the estimation and
the depthmap are represented as surfaces they will have a different shape.

In the case of only sand images, they show a strong relationship and rocky ima-
ges a moderate to strong relationship. This proves the previously stated hypothesis:
when the image textures are more uniform it is easier to extract a transmission es-
timation. This is a logical consequence because if the texture image is a plain color
the only color changes would be caused by the haze, thus making the transmission
estimation easier.

The confidence intervals show the metric is stable in the case of the single
textured group of images, while the confidence interval is huge in the mixed group
of images. This means the algorithms are not robust in this environment, some
images will be correctly estimated and some others will not.

According to the correlation metric, DCP and only red channel achieve the
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best results for every group of images. On the other hand, Bianco prior is the one
which performs worst in this experiment. Even RCP and bianco priors present this
behaviour, although their treatment of the red channel is probably not the best for
red rocks.

6.5. Discussion and conclusions

Although enhancing underwater images for autonomous underwater robots is
a highly interesting feature, real time single image dehazing is still a challenging
task. Several dehazing alternatives have been reviewed in this chapter, analysing
the feasibility of using them as a preprocess step for vision algorithms in underwater
robotics.

These dehazing frameworks have been classified depending on their hardware
and software needs, selecting those suitable for the use in a real time application.
Interestingly, the more suitable family of algorithms are based in the dark channel
prior. Motivated by the lack of objective benchmarking, different experiments have
been conducted to analyse the performance of these kind of solutions in real AUV
imagery.

In order to do so, a complete set of datasets have been used, formed by the
raw images in different locations, to cover a wide range of textures such as rocks,
sand, kelp or corals. Additionally, a depthmap from a stereo camera linked to these
images is also included so that it is possible to know the depth of most of the
pixels in the image. This depthmap has been used as groundtruth for an objective
evaluation, given that the estimated transmission in the DCP algorithms should
be linearly related to it.

The metrics proposed to evaluate the approaches include an adjusted root mean
squared error and the pearson correlation. These metrics are able to measure the
performance of the DCP based algorithms, exploiting the linear relation between
transmission and depthmap. Using this experimental setup four different experi-
ments have been carried out to test different parts of the methodology.

In the first of them, several different alternatives are compared as described
in the bibliography, concluding the DCP based solutions are feasible for under-
water image dehazing. In the second experiment, the ambient light estimation is
benchmarked showing it is important to determine the amount of haze in an image.

The third experiment focuses in the refinement step, and the use of guided filter
as an alternative to run in real time. The conclusion of this experiment is that
image matting is too slow for use in a robot, as images need about 90 seconds to be
processed using this method. However, the refinement step has a big impact on the
final performance. For this reason the use of a compromise solution is suggested,
using a guided filter the performance of which is slightly worse than image matting
but can be computed in 0.8 seconds.

The last experiment tests the most promising DCP alternatives in three groups
of images containing different objects. The results show the DCP based algorithms
have difficulties dealing with multitextured images reducing its performance. When
the image contains only a uniform texture, the DCP variants are able to correctly
estimate the transmission. However, images that contain multiple objects with dif-
ferent textures obtain worse results due to the increased difficulty.
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Taking this into account, it can be concluded that dark channel prior dehazing
is a good alternative for single image dehazing. However, there is room for impro-
vement when the images show different textures. As a consequence the following
chapter focuses on this problem and proposes a neural network based solution.



Caṕıtulo 7

Deep learning for single image

dehazing

Deep learning, presented in [LeCun et al., 2015], is an extremely fast growing
methodology that has been reintroduced into many different contexts in recent
years. Deep learning is a machine learning technology, based on Artificial Neu-
ral Networks (ANNs), obtained by composing simple but non-linear layers that
transform the data so that it is represented in a more abstract way. Using this
transformation compositions, it is possible to learn very complex functions from
raw data and obtain a higher-level interpretation of that data. This chapter is
devoted to the use of this technology in a single image dehazing problem.

Although the first ANN dates from 1943, when Walter Pitts modelled it using
electrical circuits in [McCulloch and Pitts, 1943], the training algorithms known at
that moment made training multilayer networks impossible, limiting the amount of
applications. In the 1980’s with the discovery of the back propagation algorithm, a
method which can be used to automatically train a neural network used in [Williams
and Hinton, 1986], the ANNs had a rebirth.

However, the multi layered back propagation network required too much itera-
tions for the computers at that moment. Even though, some problems were “sol-
ved” using ANNs such as recognizing handwritten digits in [LeCun et al., 1989].
This back propagation enthusiasm continued through the 1990’s, but the required
computation and the lack of promising results discouraged researchers who started
using other kinds of machine learning such as Support Vector Machines (SVM) or
Random Forests (RF).

Finally, in 2006-2010 with the increase of pure computational power and a
rebranding to deep learning, instead of the already forgotten ANNs, the field un-
derwent a revolution. The use of Graphic Processing Units (GPU) made learning
70 times faster due to the parallel computing of millions of parameters. This allo-
wed to bigger networks to be trained, and this in turn achieved results far beyond
other state of the art approaches. Additionally, deep learning also benefits from
another trend in computing: Big Data [McAfee et al., 2012]. This commonly used
term refers to the huge amount of data available to train neural networks that helps
to generalize the training, avoiding to learn specific samples of the data.

111
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In Chapter 6 several underwater image dehazing algorithms are reviewed and
compared in the context of autonomous intervention. However, most of the algo-
rithms capable of restoring the image require a huge amount of data in order to
estimate the parameters required to dehaze the image. On the other hand, neural
networks are proven to be good at generalizing complex problems and learning
complex functions to transform data. Furthermore, deep learning approaches have
achieved good results in similar problems such as colorizing black and white images
in [Iizuka et al., 2016] or defogging images for autonomous driving in [Hussain and
Jeong, 2015].

For these reasons, in this chapter two deep learning approaches are proposed
to dehaze underwater images from a still image input. Additionally, once trained
the neural network estimations are produced quickly, allowing this methodology to
be used in a real system to enhance other vision algorithms that may lead to more
robust autonomous robots.

7.1. The fundamentals of Deep learning

All the deep learning methods are based on a common concept: find patterns
and model high level abstractions in data. The term ”Deep learning̈ıs a rebranding
for artificial neural networks inside the machine learning field. The goal of this
methodology is to replace handcrafted algorithms with efficient solutions learned
from raw data.

The main motivation for this, is the difficulty of characterizing every single
case in problems where the input is not restricted. A classic example that reflects
this situation is the handwritten text recognition problem. Several non learning
approaches have been proposed to recognize handwritten text through time, but
it is necessary for every possible situation where a character or letter is to be
recognised to be explicitly expressed. On the other hand, neural network solutions
are able to outperform classical approaches without any prior knowledge about the
language used, and nowadays are achieving performances comparable to human
efforts.

In order to do so, neural networks take a large amount of handwritten text
images, known as a training set. A system which is able to learn from it and infer
rules is then used so that characters and words can be automatically recognised.
Furthermore, increasing the number of examples increases the accuracy, as the
system is able to generalize and generate even more precise rules.

7.1.1. Architecture

The data can be represented in many different ways depending on its nature and
the purpose of the neural network. Some representations may be more effective than
others, for instance image representations work better using matrices than vectors,
because matrices keep the logical structure better. This input can be labelled as in
the case of supervised learning, attaching information related to the solution of the
problem to the dataset, or not in which case is known as unsupervised learning.

In this thesis, the proposed solutions are based on supervised learning. This
means that besides the input, a “label” that contains the desired output is also
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Figura 7.1: Basic representation of a perceptron.

needed in the learning process. This information will be used to correctly train the
neural network, so that it produces the desired output for each input, and also test
the system once trained. In the case of unsupervised learning, the neural network
tries to find patterns or statistically relevant information.

Another key characteristic of deep learning is the layered structure, from which
the word “deep” is derived. The neural networks are formed by small units simu-
lating real neurons called perceptrons, usually represented as figure 7.1 shows. A
perceptron is a small processing unit that takes several inputs and produces a single
output. Different functions can be coded into these units, a basic one is a weighted
sum of the inputs x plus a bias b and a threshold value to decide a binary output
as can be seen on equation 7.1.

output =

{
0, if

∑
j wjxj + b ≤ threshold

1, if
∑

j wjxj + b > threshold
(7.1)

The weights, bias and threshold in the perceptron will decide the function in
it. As an example, the decision to take an umbrella when going to work can be
expressed in an artificial neuron depending on three inputs: is it raining, will it rain
when I come back according to forecast and I will drive to the office. Depending on
the weights assigned to each input, the bias and the threshold the answer to the
problem will change accordingly. For instance, assigning a negative weight to the
car input will result in a decrease in the possibilities of taking an umbrella while a
big number on the raining weight will increase them.

However, a single perceptron is not able to model a complex system, in fact it is
only able to model a single decision. For this reason, perceptrons are usually com-
bined forming totally connected layers from the inputs to the outputs as figure 7.2
shows. The first layer is commonly known as input layer, as it has the raw inputs
of the problem, and it needs as many neurons as the input of the problem. Simi-
larly, the last layer is the output layer requiring the same outputs as the expected
output. All the layers between these two are called hidden layers, and may have
any number of perceptrons.

The real power of this methodology lies in the fact that, using this architecture
and a different number of hidden layers and units in them, it is possible to create
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Figura 7.2: Basic representation of a neural network.

an architecture capable of expressing a huge number of complex functions. Con-
sequently, the next tool required is a way to automatically decide the weights of
the network so that it chooses the right function to solve a specific problem. This
process is known as learning because it uses examples or raw data to automatically
estimate the optimal weights of the network for them.

For this purpose, the available input data is usually organized in two sets. The
first set is the training dataset that will be used to obtain the best possible network
weights. The second set, test dataset, is used to measure the performance and decide
the best network architecture, such as the optimal number of layers or neurons.
The results obtained are always referenced to this test dataset, ensuring that the
neural network has not learned specific details of the data, a situation known as
overfitting. Furthermore, when there is enough data a third validation dataset that
will only be used in the last evaluation of the neural network is created, thus
avoiding overfitting the system unintentionally through different training iterations
within the test dataset.

7.1.2. Automatic learning

The next step in the training process is to define a function to quantify how well
the neural network is achieving the goal, known as cost or loss function. In the case
of supervised learning it usually measures the distance of the neural network result
with respect to the “label” or groundtruth. Unsupervised learning cost functions
focus on measuring desired characteristics of the output.

Nevertheless, the used function depends on the problem and different functions
may change the training result, thus is an important design decision. For instance,
it is advisable to use smooth cost functions that reflect the consequences of small
changes in the weights rather than functions that require big changes in order to
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see a change in the result.
Now, an algorithm is needed to compute the neural network parameters in a

way that minimizes the cost function for the training data. A possible way to solve
the problem is using calculus to analytically find the minimum. However, neural
network cost functions often depend on billions of parameters, making it impossible
to use calculus to minimize it. For this reason, the most commonly used technique
for this is gradient descent and its different variants or optimizations.

Basically, what gradient descent does is to initialize randomly all the weights
in the neural network and to modify them in the direction that minimizes the cost
function through iteration. It is possible to imagine this as finding the minimum
of a valley, the deepest point, starting at any point and moving down through the
steepest slope. But in the case of a neural network, instead of a 3D valley the space
may have millions of dimensions.

∆C ≈ ∇C ·∆~w =
∂C

∂w1
∆w1 +

∂C

∂w2
∆w2 + ...+

∂C

∂wn

∆wn (7.2)

Equation 7.2 express the cost variation ∆C depending on the weight change
∆~w. What gradient descent does is choose the right weights ~w so as to make the
cost variation ∆C negative. The gradient vector ∇C can be seen as an operation
that relates changes in the weights with changes in C.

As a consequence, using equation 7.3 it is possible to obtain the right weights to
make the cost function negative. The η is a small positive value, commonly referred
to as learning rate, that controls the “step”moved in the minimization direction. In
other words, the gradient indicates the direction of the movement and the learning
rate the amount of movement, so that this will be another parameter which has to
be chosen in the neural network training.

∆~w = −η∇C (7.3)

Using this, it is just necessary to iteratively compute new gradients for the
current weights and update them with the new values that are obtained. This
algorithm will constantly decrease the cost function until it reaches a minimum.

It is possible to prove that this weight computation always decreases the cost
function by substituting it in equation 7.2. This leads to equation 7.4, where
‖∇C‖2 ≥ 0 guaranteeing ∆C ≤ 0 due to the previous definition of η, small positive
value. This is true for the limits of the approximation.

∆C ≈ −η∇C · ∇C = −η‖∇C‖2 (7.4)

The limits of this approximation are mainly dependant on the learning rate.
If the learning rate has a high value, the computed gradients may not be a good
approximation with the result that the cost function variation will increase. Ho-
wever, choosing a small learning rate will require too many iterations, making the
optimization too slow.

Several research works try to deal with this problem computing second order
derivatives, that describe the variation of the gradient, in order to automatically
obtain the learning rate that it is better at each moment of the training. Although
the automatic computation of the learning rate is a great advantage, the time
consumed by this computation can be an important drawback.
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Adding this to an already computationally complex gradient descent may be
impossible. It is important to remember the gradient computation for the cost fun-
ction requires the training data as parameter, with labels in the case of supervised
learning. Consequently, if the training set is big, it requires a lot of time to compute
all the gradients required to update the network weights. This step may be needed
thousands or even hundreds of thousands times until the network is trained and
reaches a minimum, making the training stage extremely slow.

A simple optimization to handle the slow computation time drawback is the
stochastic gradient descent. In this case, instead of using the whole training
dataset a small subset of randomly selected samples, usually known as batch or
minibatch, is used. This is a fairly good optimization, as the gradient direction
may not be completely accurate, but as the algorithm is already taking small steps
towards the minimum it is not important. In the long run it may require a higher
number of iterations through the whole training set, known as epochs, but the
faster computation of the gradients make it worthwhile.

It is important to remember this method finds a local minimum, where the
gradient vanishes. The search for an absolute minimum in a reasonable period
of time is still an active research field. However, this problem can be off set by
initiating the weights randomly several times and choosing the best performing
trained network. It may be still a local minimum, but the chances of finding a
minimum close to the optimal increase.

Finally, the meaning of these discovered weights is hard to interpret. Being able
to understand it could help to enhance the software, leading to better performance.
Unfortunately, in most cases how the neural network is capable of producing a good
result is still unknown. Several researchers are working on understanding how the
artificial intelligence of a neural network works. Although some advances have been
recently presented such as [Yosinski et al., 2015] this is still an active research field.

7.1.3. Computing gradient descent: backpropagation

To compute the previously presented optimization requires a gradient ∇C that
describes the changes in the cost function depending on the changes in the weights.
The most common method to obtain it in a neural network is the backpropaga-
tion algorithm introduced in the 1970s but popularized after the presentation in
[Williams and Hinton, 1986].

Unfortunately, it is not possible to directly apply backpropagation to any cost
function, the cost function must meet two requirements. It must be possible to
compute it for a single training sample and average the results of them obtaining
an average cost, thus it is possible to obtain the gradients from them. Secondly,
it must be a function of the output from the neural network, and eventually the
desired output of the sample.

Taking into account the previous description of a perceptron, its output is the
result of an activation function that will be noted as σ. This activation function is
computed from the weights of the l layer wl, and the activations of the neurons of
the previous layer al−1 plus the bias bl. The equation 7.5 express this relation in a
vectorized form, note the weights and activation are vectors.

al = σ
(
wl · al−1 + bl

)
(7.5)
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Considering this, the error in the output layer OL, ǫOL can be obtained using
the derivative of the activation expression for each neuron activation function. The
equation 7.6 shows the error for the j activation function of the output layer.
Similarly, a vector expression can be derived to obtain an error vector ǫOL that
covers all the neurons in the output layer.

ǫOL
j =

∂C

∂aOL
j

σ′
(
wOL · aOL−1 + bOL

)
(7.6)

In this expression, the first term corresponding to partial derivatives, measure
the influence of the neuron j in the cost function. On the other hand, the second term
controls how fast the activation function is changing. The multiplication of both
terms produces an indicator of the part of the error that the neuron is responsible
for in the cost function.

Both terms should be easy and fast to compute. Specially the second term that
is partially known in the direct computation of the neuron. The first term depends
on the cost function used as the partial derivatives are required.

Using this cost error equation it is possible to obtain the cost for each neuron
in the output layer. The next step consists in propagating this error backwards,
backpropagation, obtaining an error for each neuron in the network. In order to
obtain the errors in the layer l from the next layer it is possible to use equation 7.7.

ǫl =
((

wl+1
)T

ǫl+1
)
∗ σ′

(
wl · al−1 + bl

)
(7.7)

As happened with the error in the output layer expression in this case the first
term is a measure for the importance of this neuron in the next layer. The second
term is equal to the one in equation 7.6, indicating the weight of the activation
function of the neuron. As can be seen the transposed matrix is actually moving
backward the error of l + 1 layer to the layer l.

Using this last two expressions it is possible to compute the error ǫl for all the
neurons in every layer in the network. Starting from the cost function the error is
backpropagated layer by layer until the input layer. However, the rate of change of
the cost with respect to biases and weights is still needed.

In order to obtain the error, equation 7.8 shows the error computed for a neuron
j is actually the bias rate needed for this neuron j. So using the backpropagation
means it can be computed directly and be able to train the biases of the neural
network.

∂C

∂blj
= ǫlj (7.8)

This computation is logical as the bias of the neuron does not depend on any
weight coming from earlier stages. As a consequence, its learning rate is dependant
on the error produced in this neuron only, not from earlier stages of the neural
network.

Finally, the gradient of the cost with respect to a weight of the neuron k in layer
l − 1 to neuron j in the l layer can be computed using equation 7.9. In this case,
only the activation function of the neuron from which the weight comes is required
besides the neuron error.
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∂C

∂wjkl
= al−1

k ǫlj (7.9)

An interesting consequence is that if the activation is close to 0, the weight will
learn slowly. This makes sense, because if the previous neuron is not activated the
final impact of this weight in the result is small. It can only be compensated by a
high error coming from the neuron that would require big changes in the weights
that get to this neuron.

These four equations described in this section can be derived from the chain
rule from multivariable calculus. Further details about this can be consulted in the
original work [Williams and Hinton, 1986] or in the online resource of [Nielsen,
2015], where most of the information summarized in this section was extracted
from.

Another important characteristic of backpropagation is that it allows all the
weight derivatives to be computed with just a forward and a backward pass through
the network. Other methods require a single pass for each weight, consuming a lot of
time and making it impossible to train big networks. The backpropagation method
does a smart computation, sharing results so it can be done in just one pass, and
permitting its use in bigger networks.

Using this knowledge it is possible to calculate the gradients needed for the
gradient descent optimization in a neural network. The equations show a sigmoid
activation function and fully connected layers, however other activation functions
and different network architectures may be used changing the equations accor-
dingly.

7.1.4. Convolutional networks

Since the introduction of backpropagation, several network architectures ha-
ve been designed and used in different problems. The recurrent neural networks
family, described in [Karpathy et al., 2015], are used for sequential data such as
machine translation [Sutskever et al., 2014], speech recognition [Graves et al., 2013]
or image captioning [Karpathy and Fei-Fei, 2015]. Another popular architecture is
the autoencoder, capable of reducing the dimensionality of data, commonly known
as compressing and decompressing, using a neural network as presented in [Hinton
and Salakhutdinov, 2006].

However, when dealing with image inputs, the best performing, and probably
the most popular architecture, is the biologically inspired convolutional network
described in [LeCun et al., 2010]. These types of networks are able to detect fea-
tures hierarchically and are invariant to position changes. This makes it possible
to abstract from position details and focus on recognizing objects and forms in the
input images such as lines, circles in the first layers or animals, faces and objects
in the last layers. The most popular application is image classification [Krizhevsky
et al., 2012], but any problem based on image processing such as face detection
[Farfade et al., 2015] or image upscaling [Dong et al., 2014] is suitable for this
architecture.

For this reason, in the underwater image dehazing application proposed in this
work, two different convolutional neural networks are used in order to solve the
problem. The main advantage of these networks is they actually take advantage
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Figura 7.3: Connections of the input of a convolutional network
with the next layer.

of the spatial structure of the images. The convolutional network does the same
process for every pixel independently of its location in the image.

The main difference with regular neural networks, known as Multi Layer Per-
ceptron (MLP), is the connection between neurons. In a convolutional network, the
neurons are organized as matrices whose value corresponds to the pixel intensities
in the input. In the case of MLP, each neuron was connected to every other neuron
in the next layer. In contrast, in a convolutional network only the local receptive
field, also called kernel, is connected to the next layer. This local field is a small
region of neurons around the center of the corresponding neuron in the next layer.

An example of these connections can be seen in figure 7.3. The neurons in the
top left red square with continuous lines of the input layer are connected with the
top left neuron of the first hidden layer. Then the receptive field window is moved
to the right, and the neurons in the green dashed square are connected to the
second neuron of the first hidden layer. Similarly the third neuron connections are
depicted with a blue double dashed square.

As happened in the MLP, each neuron in the receptive field of the input layer
will be multiplied by a weight and added to the result together with a bias. The
result of this operation will be the input to an activation function that will decide
if the output neuron should be activated.

The example shows a window size of 3x3 neurons that will be connected to the
next layer. However, bigger sizes are used as 5x5, 7x7. The size of this receptive
field causes the output to be smaller, in this case the input has 12x12 neurons and
the first hidden layer has 10x10. If the window size is bigger the next layer size will
be even smaller. In order not to reduce the size of the network, it is possible to use
zero padding in the margins, that is by adding fake neurons with 0 value.

Another important parameter is the stride length, which defines how many
neurons the receptive field moves each time. In this case a stride of one has been
used, in the case of using stride 2 the first hidden layer will be half its size and the
green dashed neuron will not exist.

The second difference with this method and MLP is the weights and bias in the
receptive field are shared for each of the hidden layer neurons. For this reason, all the
neurons in the first hidden layer are detecting the same feature, and consequently
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Figura 7.4: Convolutional layer producing 3 feature maps.

called features instead of layers. For example, a receptive field able to find horizontal
lines will find it in all the image independently of its position.

Consequently, several features will be needed in each layer in order to detect
different characteristics of the image, as figure 7.4 shows. Each feature map will
be defined by a shared receptive field of weights and a bias. That is the reason
why each layer of a convolutional neural network is formed by multiple feature
matrices. It should also pointed out that the input layer is commonly formed by
three features of the image, the red, green and blue channels.

The weight sharing has another important characteristic, the number of para-
meters of the network is greatly reduced. As each feature map only needs a receptive
field to produce an input size layer of resulting neurons, the number of parameters
is small compared with an MLP. This will make training faster and allow deeper
models to be created assuming the translation invariance of the model.

The last difference between MLP and convolutional networks that is relevant
for this work, is that of the the pooling layers. In addition to the already described
convolutional layers, convolutional neural networks also use pooling layers. These
layers reduce the amount of information in the layer, retrieving a summary of the
activated neurons. The resulting network is consequently reduced in size depending
on the pooling receptive field. For instance, a 2x2 pooling will halve the feature map
size.

These types of layers are typically used after a convolution to reduce the in-
formation, the main idea behind them is, once a feature has been found the exact
position is not important. So it is a good idea to reduce the information, keeping
only that which is most relevant at each moment. There are different pooling fun-
ctions, but the most common is max pooling that retrieves the maximum of the
activated neurons in the receptive field.

t̃(x) = 1− mı́n
yǫΩ(x)

(
mı́n
c

Ec(y)

Ac

)
(7.10)

It is interesting to compare the convolution operations to the dark channel prior
methodology described in 6.2.1. The transmission t̃(x) estimation of the DCP can
be expressed as equation 7.10 shows. It basically searches for the minimum intensity
channel in the window around the pixel Ec(y) and divides it by the airlight Ac.
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On the other hand, in a convolutional network it is possible to express it with
a convolution followed by a pooling. The convolution operation can be modelled
as equation 7.11, where WS is the window size of the receptive field, w and b the
weights and bias of the convolution kernel and x the pixel input. If the convolution
weights are set to 0 for every pixel but the central, that has a −1/Ac, the max
pooling naturally returns the negative DCP.

Conv(x) = σ




WS∑

i=1

WS∑

j=1

(xi,jwi,j) + b


 (7.11)

As can be seen, both operations are really similar as they iterate in a reduced
window around the pixel to detect a feature, and then reduce the information
using a maximization. Similarly, every variation of the dark prior described in
equation 6.2.1 can be expressed using convolutions and poolings easily, except the
median.

With reference to the image matting step, it is not possible to directly express it
in a convolution. However, the alternative to it, guided filter, can be expressed in a
few convolutional and pooling layers. Thus, the DCP could be easily implemented
with convolutional operations, this suggests that this is a good architecture for an
image dehazing solution.

Furthermore, many other haze feature based methods such as the contrast ope-
rations can also be naturally modelled with convolutions. For this reason, it seems
a natural step to let a convolutional network automatically learn the best features
for haze detection and restore the degraded image. If the DCP is the best option,
the neural network should discover it and use it in the dehazing scheme. What is
more, if the best option is a combination of different haze detectors, the neural
network should be able to learn it.

7.2. State of the art

The growth of available data in computers for processing [McAfee et al., 2012],
combined with the increasing processing capabilities of computers, initiated the
deep learning revolution. Although applications are not restricted to image proces-
sing tasks, this is the domain that has seen the biggest change in response to the
introduction of the deep learning methods. Classic problems that have seen little
progress for years have been solved, as explained in [LeCun et al., 2015], and new
applications are continually being proposed in other contexts such as the discovery
of new pharmaceutical products [Ma et al., 2015] or even discover exotic physics
particles [Baldi et al., 2014].

In the case of learning approaches for image dehazing, only a few papers have
been published and none of them, to the best of the author’s knowledge, are tes-
ted in underwater environments. In [Cai et al., 2016] the authors propose a deep
learning solution to remove haze from outdoor air free images. The first step of
this approach is to use a convolutional neural network to estimate the medium
transmission, t̃ of equation 6.8.

Due to the difficulty of obtaining good pairs of hazy and haze free images the
authors use synthetically generated images to train and validate the network. A
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medium transmission is generated using the image formation model. In a second
step, using the medium transmission predicted by the neural network the images
are dehazed using the image formation model. The main drawback of this method
is the use of synthetic images that often ignore many of the problems of real images.

However, the results compared with other methods in real images show the
neural network is able to learn from the synthetic images obtaining reasonably
good results. Furthermore, the required computation time is smaller than other
approaches due to the parallelism of neural networks.

In [Hussain and Jeong, 2015], the authors propose a classical MLP network to
directly produce a dehazed image from a fogged input. The system is tested using
synthetic gray scale images with and without fog. The application proposed in the
paper is automatic dehazing and is designed to help drivers in foggy conditions.

As happened in the previous approach, the use of synthetic images may ignore
many other problems present in real images that do not follow exactly the image
formation model. Moreover, the validation only includes synthetic images of the
same dataset and does not show real application results. Finally, the use of black
and white images may be interesting for some cases but reduce the difficulty of the
problem avoiding color correction problems.

Other learning approaches use random forests as in the case of [Tang et al.,
2014]. This approach uses a list of haze feature detectors from other works, in
particular dark channel prior, local max contrast, hue disparity and local max
saturation, to use them in a random forest regression. The trained random forest
decides from the input of these features the best transmission estimation to dehaze
the image afterwards.

Once again, the difficulty of obtaining good training images makes authors to
use synthetic images. In this case, a transmission map is artificially created together
with a depthmap in order to train the random forest. An interesting conclusion of
the paper is that the dark channel prior is the most relevant feature for predicting
the transmission in images.

However, the random forest also relies on other techniques to refine the estima-
tion and finally outperforms any of the initially used estimations. In some way, it is
similar to a sensor fusion as it includes several approximations to produce one that
is better than any single estimation. The work also shows results in real images,
demonstrating that the training with synthetic images is valid.

The work in [Zhu et al., 2015] uses a slightly different learning approach. Firstly,
a linear model that relates the depth of the scene with brightness and color satura-
tion is derived from statistical information of hazy images. Then, this linear model
is trained with synthetic images with artificial depthmaps in order to obtain an
approximation of the correct parameters. Finally, the estimated depth is used in
the image formation model to obtain a haze free image.

Besides the training with synthetic images, the approach relies on a depth esti-
mation that may be incorrect. The system is tested with real images again showing
it is possible to obtain good results after training with synthetic images.

The authors in [Mai et al., 2014] perform a similar computation estimating the
depth of the image as an input to the dehazing step. In order to do so, the first step
is a depth estimation from the colors of the image using a MLP neural network
that takes an RGB pixel as input and produces a depth value. The depthmaps are
artificially created to obtain a valid training set for the neural network. After that,
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the depth information is used to dehaze the image through the image formation
model.

The results show that the method actually dehazes images. However, the results
of the depth estimation from a single RGB value are not validated and might be
far from the real ones as they depend on the intensity of a single pixel. As a
consequence, an image of a plane with different colors will have different depths.

The main drawback of these learning approaches arises from the fact that they
use synthetic images created from non-hazy images to train a neural network that
estimates transmission because of the difficulty of finding hazy and non-hazy pairs.
These synthetic images ignore many problems of real images. Furthermore, none of
them tries to use them in an underwater environment, as is proposed in this thesis.

As can be seen, the learning based dehazing approaches can be classified in
two types of image processing described in the previous chapter: image restoration
and enhancement. Some works try to estimate different parameters to restore the
image such as the transmission or the depthmap. While others try to enhance the
degraded image directly in order to create a more visually pleasing image.

To overcome the problem of synthetic images, many of these works mention
the possibility of using a depthmap groundtruth in order to train the networks as
transmission is linearly related to it. But obtaining a good depthmap in open air
hazy images is also a challenging task given the distance to the targets.

There is a very active research line that focuses on obtaining a 3D representa-
tion of the environment due to the importance of this kind of information when
interpreting a scene. This is the reason why there is so much prior work on sensors
able to sense this kind of information such as stereo cameras, motion cameras or in-
frared camera/projector, popularly known as Kinect. Unfortunately, these sensors
are not suitable for open air images, stereo cameras and motion cameras require
the objects to be close, and infrared light projection is undetectable in sun light.

However, in the case of underwater imagery, where images need to be close to
the seafloor so that interesting objects or features can be detected, it is possible
to use stereo and motion cameras. This allows a training dataset with real depth
information as groundtruth to be obtained so that a neural network capable of
estimating it in new samples can be trained. The infrared projector is still not
viable since the infrared light suffers a big attenuation due the water absorption.

Nevertheless, the depthmap information may still be impossible to retrieve in
many situations, for example where the seafloor is not textured enough to obtain
features that can be recovered, and even when the system is capable of doing this,
the depthmap will still have gaps or zones without depth information. For these
reasons, being able to estimate 3D from still images is a nice feature to have beyond
the single image dehazing capability.

7.2.1. Depthmap estimation from a still image

As the depthmap is a key value in dehazing restoration techniques, it is inter-
esting to review different alternatives in the literature to estimate it from a still
image. Using this estimation of the depthmap, it will finally be possible to dehaze
the image.

One of the first works to address this problem from a learning perpective was
[Saxena et al., 2008], which uses a linear regression and a MRF for predicting the
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depth in a set of images. The system starts by training with a set of monocu-
lar images, including indoor and outdoor environments, and their corresponding
groundtruth depthmaps. The approach relies on different features to obtain relati-
ve and absolute depth, so that the MRF can model the relationship between this
parts to obtain a global spatial structure.

The model was recently extended in [Saxena et al., 2009] to create and include
a system for 3D model generation. However, the main drawback of this system is
that it relies on the horizontal alignment of patches, and suffers a performance drop
in less controlled settings.

The work in [Ladicky et al., 2014] simultaneously performs depth estimation
and semantic labelling on the same dataset. It can be concluded that doing it
at the same time benefits both processes improving the results, knowing the label
helps to estimate the depth and vice versa. However, this method uses hand crafted
features that may not be useful in other contexts.

In [Eigen et al., 2014] a deep convolutional network is used to estimate 3D depth
in different images. The work introduces an interesting concept of coarse estimation
that predicts a global scale and then refines it in a second iteration. The network is
divided in two, the first coarse network predicts a global depth with 5 convolutional
and pooling layers followed by two fully connected, non convolutional, layers. This
produces an initial estimation at a small resolution that lacks details, but has a
general idea of the structure of the scene.

The result of this network is concatenated in another one that uses the whole
image in 3 convolutional and 3 pooling layers to obtain an output of 1/4 resolution.
This second network refines the result of the previous one, increasing the resolution
and recovering details lost in the first estimation.

Another interesting addition is a scale invariant mean squared error for the cost
function in the training. Due to the nature of still images, it is impossible to obtain
the correct scale from it unless there is an object with a known size. A proof of this
is the fact that it is sometimes impossible to distinguish a photo of a dolls house
from a real house. In order to solve this, the authors introduce a loss function that
considers relative distances between pixel depths instead of absolute distances.

The results of this work outperform previous alternatives obtaining a 0.215
relative error in the test images. It may not seem an impressive result but it is
important to consider previous approaches achieved 0.349 in the case of Make3D
for the same dataset.

This work was extended in [Eigen and Fergus, 2015], maintaining the idea of
coarse and fine estimation but adding a new scale network for even higher resolu-
tion, obtaining an output of half the input resolution. This new network receives
the feature maps from the second fine estimation, scales them up and convolutes
with the raw image to produce a higher resolution, more precise than the previous
ones.

In addition, this work adds gradients to the scale invariant mean squared error.
The aim of this is also to minimize the local structure of the image using the dif-
ference of the vertical and horizontal gradients of the estimation and groundtruth.
Furthermore, the neural network is able to predict normals and per pixel semantic
labeling besides depth.

The introduction of these enhancements, results in a performance increase in
the depth prediction, reducing the relative error to 0.158 and an absolute error of
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0.65 meters.
The authors in [Baig and Torresani, 2015] also use a coarse estimation followed

by a refining step. But in this case a slightly different approach for refining the
results is used while maintaining a convolutional deep network for coarse estimation.
The local refinement regresses directly to pixel depth using the global estimate as
a feature. Both steps are trained over a depth dictionary and a regression mapping
simultaneously producing better results than separated learning.

An interesting feature of this approach is instead of using a scale invariant loss
to avoid the scale prediction problems, the authors propose a zero mean depthmap.
In order to obtain it, the original depthmap is preprocessed subtracting the mean
depth map computed from the entire dataset. Thus the training predicts deviations
from the mean depth map instead of absolute distances. After the prediction, the
depth map is added to the prediction to generate the final output.

The results of this work are slightly worse than the previous network for the
same dataset. But the output image sizes are bigger than the approach in [Eigen
and Fergus, 2015] obtaining images closer to the input size.

The approach in [Liu et al., 2015] proposes a different alternative from the
previous coarse and fine estimations. The images are segmented in superpixels
containing image patches that will be processed to obtain the depth map. A convo-
lutional neural network connected to a MLP takes these superpixels to produce a
single depth value for it. Simultaneously, a fully connected network uses the super-
pixels similarities as input to produce a 1 dimensional similarities vector for each
pair.

Both network outputs are taken by a conditional random field (CRF), a model
for structured prediction, and finally predict the depth of the image. This approach
obtains similar results to the coarse fine alternatives for outdoor and indoor images
demonstrating that alternatives to this concept are able to obtain state of the art
results.

As can be seen, none of the reviewed methods have been used in an underwater
environment. To the author’s knowledge there is no previous work using deep lear-
ning in this context, although other dehazing alternatives obtain this information
as a side result. Although monocular images do not contain direct data on the
distance to objects in the scene, within a constrained set of environmental parame-
ters various visual cues, such as shading and variations in contrast caused by light
moving through different distances in the water column, may provide information
about scene depth.

Taking this into account, two deep learning solutions for underwater single ima-
ge dehazing are proposed. The first is an end-to-end approach that directly dehazes
the images from the raw input without considering the image formation model. In
the second algorithm presented, the deep learning step estimates a depthmap to
obtain a transmission estimation and finally dehaze the image using the image
formation model.

These approaches have two important advantages with respect to other state
of the art alternatives such as dark channel prior or image restoration alternatives.
Due to the parallelism of neural networks, it is possible to run the algorithms fast
enough to include them in a real time performing system, making it possible to use
them in a intervention. The approach does not require any hardware or additional
information, all that is required is the raw image that needs to be enhanced, thus
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making possible to use it in any robotic platform.

7.3. Direct underwater dehazing using deep learning

The first approach to still underwater image dehazing is an image enhancement
procedure that directly produces the result without taking into account the image
formation model. A convolutional neural network is trained to produce visually
pleasing images from raw degraded inputs. The main goal is to improve the per-
formance of other vision algorithms such as trackers or grasp planning algorithms
using this output instead of the acquired image.

However, the approach proposed is not completely an image enhancement met-
hod due to the learning stage. The groundtruth images used to train the network
are introduced from a restoration technique described in [Bryson et al., 2016]. Here
it is shown that even though the image formation model is not explicitly included
in the methodology, the neural network may be able to learn the intrinsics of it
from the samples used to train.

For this reason, the solution may not be completely labelled as image enhance-
ment method. On the other hand, as discussed in the previous section it is difficult
to understand exactly how the neural network produces the results. So it cannot
fairly be classified as image restoration also, because it is not specifically using the
image formation model or any parameter estimation.

Basically, the proposed approach is an image enhancement algorithm inferred
from image restoration. Furthermore, it make the best of both worlds: single image
as input and real time performance like image enhancement methods, while trying
to obtain results as close as possible to image restoration techniques.

7.3.1. Image datasets

The image datasets to train and evaluate the system require a pair of raw
and restored images. In this experiment, six datasets have been used to train, test
and validate the results of the proposed approach. A detailed description of the
dataset, as well as acquisition details, can be consulted in the Appendix A. As
depth information is not required, all the images in the datasets can be used to
train the system, including the kelp dataset where the depth information is not
reliable due to its nature.

The images cover a wide variety of textures and objects at different depths in
order to generalize the learned transformation, being able to work in new environ-
ments instead of learning fixed transformations for the trained textures. Sample
images for each dataset can be seen in figure 7.5.

The images have been taken by an underwater camera mounted in an autono-
mous underwater vehicle [Williams et al., 2012] during different real underwater
interventions in different locations. The images have been divided into 6 groups
depending on the characteristics of the images and the location of the acquisition.

The dataset division allows the use of only some sets of images in the training
stage and to keep others for the validation stage. Thus it is possible to use images
from different interventions, locations and conditions for the validation, and test
the system generalization. Besides this, each dataset has been grouped in a training
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Figura 7.5: Images of the different datasets used in the direct un-
derwater dehazing.

set and a testing set with images randomly selected to measure the performance in
each dataset.

7.3.2. Neural network architecture

A convolutional neural network was the architecture chosen because of the ad-
vantages that these types of layers bring to the processing of images. The network
hyperparameters that best fit the problem have been decided experimentally, com-
paring results for different network architectures. Figure 7.6 shows a schematic
representation of the final network configuration.

As can be seen, the image input is a raw degraded image at high resolution,
1360 x 1024 pixels. Initially, the RGB intensities are converted from 0-255 to the 0-1
range in order to facilitate the network processing. This image is processed through
the neural network to produce a reduced 454 x 343 pixels enhanced image. In order
to do so, six consecutive convolutional layers are introduced with an increasing
number of features to produce the final result.

As a result, after the first layer the image is transformed into 10 feature maps,
that increase to 25 after the second convolution and keep increasing until reaching
55 after 5 stages. The last convolution needs to reduce this feature maps to 3 that
will become the RGB channels of the resulting image.

Each convolution operation uses a Rectifier Linear Unit (ReLU) activation fun-
ction, except the last one. This activation function can be seen in equation 7.12. It
just returns the maximum between the result of the convolution x and 0. Although
this activation function does not directly produce a performance increase, it redu-
ces the training time. Furthermore, as the output needs to be in the range of 0 to
1 the activation function just discards the negative values, making it easier to find
a valid model.
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Figura 7.6: Architecture of the convolutional network used to
dehaze underwater images.

f (x) = max (0, x) (7.12)

In the first layer, additionally to the convolution operation, a pooling takes place
to reduce the amount of information to the most relevant features. The convolution
window has been set to 3x3 pixels with zero padding to maintain the image borders
in order not to crop the resulting image.

In order to train the weights and biases of the neural network, the second order
gradient descent Adam (Adaptative Moment Estimation) optimizer, described in
[Kingma and Ba, 2014], has been used. This optimizer estimates second order
moments to automatically set the best learning rate in each moment and decrease
the required iterations to train the network.

The cost function used to minimize the error is commonly known as the l2 loss
function. The l2 loss function computes the squared sum of the differences between
the estimated y′ and groundtruth y values, as can be seen in equation 7.13. In this
case minimizing the l2 loss means minimizing the differences of intensities between
the restored image, and the ones estimated by the neural network.

l2 =

n∑

i=0

(yi − y′i)
2 (7.13)

As a consequence, if the neural network perfectly learns to perform the same
transformation applied with the restoration methodology, it will produce exactly
the same result. However, the restoration method used for training requires a depth-
map and a whole dataset of images, while the neural network will need to do it
with just a single image. For this reason, it is unlikely to achieve the perfect result,
but it should be able to obtain a good approximation.

Furthermore, the neural network will try to mimic illumination, contrast and
other details present in the groundtruth results, although strictly they do not form
part of dehazing. This fact is also a reminder of the need to provide high quality
datasets to train the network, and obtain a good trained neural network. In this
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case, the datasets only contain a dehazing transformation so further work is not
necessary. Another possible alternative to deal with this is to modify the loss fun-
ction to ignore unnecessary image characteristics, such as illumination or contrast,
and learn only the dehazing transformation.

The neural network has been trained with TensorFlow, described in [Abadi
et al., 2016], using an Nvidia Geforce GTX 960 with 4GB of RAM. TensorFlow is an
open source software library focused on deep learning developed by researchers and
engineers working on the Google Brain Team. It provides numerical computation
using data flow graphs that represent mathematical operations on multidimensional
data arrays known as tensors.

7.3.3. Compared algorithms

Two experiments have been conducted to evaluate the precision of the neural
network estimations. In the first case, all the datasets have been used to train and
see if the system is able to learn and correctly predict the test images of these
datasets. However, the experiment does not show a realistic situation: training
images for the intervention location are usually not available at training time.

Consequently, a second experiment has been designed to simulate this situa-
tion. In the second experiment, a dataset is left out in the training stage, that is
performed with the five remaining datasets. Then, the trained network is validated
with images from a location that it has never seen in the training. This experiment
tests the validity of the system, generalizing the solution to be used in a different
location.

Additionally, four simple commonly used image enhancement techniques have
been added to the comparison in order to see the real performance of the learning
approach. In first place, a histogram equalization has been compared with the
proposed solution. Histogram equalization is based on the analysis of the histogram
of a raw image, displacing it to follow a desired distribution that maximizes certain
parameters.

There are different implementation options depending on the desired final dis-
tribution of the histogram, in this work the most widespread, normal distribution
for each channel, is used. The main drawback of these kinds of techniques is they
tend to produce unrealistic effects in photographs, creating false colors and con-
trast, known as overcorrecting the image. Furthermore, it may increase the noise
while decreasing the original signal depending on the input.

A simple variation of the histogram equalization that deals with these kinds
of problems is the Contrast Limited Adaptive Histogram Equalization (CLAHE).
These types of techniques have been used in underwater image dehazing in [Hitam
et al., 2013], and in other situations to locally increase contrast.

The main difference with the previous technique is that it divides the images
in tiles and computes several histograms to redistribute the intensity values in the
image. The contrast limited addition is an approach to prevent the overamplifica-
tion of noise typical in these kinds of techniques. The algorithm has been applied
in the Lab colorspace only to the luminosity component, in order to preserve co-
lors and reduce overcorrecting, and in the case of RGB colorspace to the three
components separately.
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Cuadro 7.1: Required time to process a single image for image
enhancement algorithms

Proposed ACE histeq CLAHE CLAHERGB
0.013s 1.5s 0.013s 1.7s 0.3s

Finally, the last compared algorithm is an Automatic Color Enhancement (ACE),
as explained in [Getreuer, 2012], that is also used in underwater environments in
[Iqbal et al., 2007] for dehazing. This technique enhances the image based on a
simple model of the human visual system, inspired by different techniques such
as gray world transformation, white patch assumption, lateral inhibition and local
global adaptation. The main drawback of this technique is it is computationally
complex, each image requires around 1.5 seconds in a Intel i5 at 3.2Ghz with a
Geforce 960GTX while the time to process a single image in a neural network is
0,013 seconds.

Even though all the compared algorithms are classified as image enhancement,
they show different computational complexities, thus making it difficult to the use
of some of them in a real time applications. In table 7.1 the required time to process
a 1360 x 1024 pixel single image for each of them is shown.

As can be seen the neural network and the histogram equalization require a
similar amount of time since they are the fastest to compute by far. The CLAHE
on the RGB colorspace is still a fast algorithm, and could be easily included in
a real time solution. However, the CLAHE on lab workspace is noticeably slower,
requiring 1.7 seconds per image due to the colorspace change before and after the
adaptative histogram equalization takes place. The ACE is also a slow process that
requires almost 1.5 seconds per image.

7.3.4. Experiment 1: Test from same dataset

In this experiment, all the datasets have been used to train the neural network,
keeping a few images of each in order to test its performance. In order to train
the images, each epoch of the training set is divided in randomly selected smaller
batches of 10 images so it is possible to execute them in the GPU memory. During
every epoch, the batches are randomized automatically choosing a different set of
images in the group, avoiding overfitting for the batch.

Furthermore, the test images are periodically checked to detect an early stopping
scenario. This is the case when the training error decreases, but the test error
increases due to an overfit with the training set. However, this did not happen
in this the experiment so the training stopped when the training error reached a
minimum over 100 epochs.

The system has been trained for 1700 epochs, reaching a 5.6% training error.
This error corresponds to the cost function, the mean difference between each
intensity pixel and its groundtruth counterpart. In order to show percentage errors
and facilitate network learning, intensities are transformed from 0-255 to 0-1 range.

The results for the test images of each dataset can be seen in table 7.2, together
with the image enhancement techniques. As can be seen, the proposed method ob-
tains the best results in all cases. This is not surprising as it is training with images
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Cuadro 7.2: Results for the direct neural network dehazing expe-
riment 1: Training with all the datasets.

Technique Rocks Kelp Rocks-Sand Deep Medium Shallow
Proposed 3.5% 6.5% 5.1% 4.1% 3.4% 3.2%
ACE 6.8% 9.1% 15.3% 15.7% 7.5% 9.1%
histeq 25.6% 37.9% 29.4% 20.5% 27.6% 27.5%
CLAHE 16.2% 6.7% 9.8% 27.1% 8.2% 9.0%
CLAHERGB 16.5% 6.6% 9.7% 27.2% 9.2% 9.3%

from the same survey, so it has similar examples that help to dehaze the raw image.
But it is important that the neural network is able to learn the transformation and
correctly apply it to new images never seen before, even though similar to others
in the training set.

With regard to the image enhancement algorithms, it can be seen that they
perform very differently depending on the dataset. Furthermore, while some of
them may have a good result for a concrete dataset it does not mean this dataset is
easiest to dehaze, because other enhancement methods produce bad results for it.
For instance, the ACE dehazing has a result close to the neural network performance
for the rocks datasets while CLAHE results are far from it. In the case of deep corals,
ACE and CLAHE alternatives obtain the worst performance while the histogram
equalization is the best case.

This means each technique can be more or less appropriate according to the type
of image. As the datasets cover different types of textures, and different visibility
and illumination conditions, there is no perfect solution for all of them. For this
reason, developing a technique able to treat the images differently depending on
their characteristics seems a good alternative. This is probably the reason why
the neural network is outperforming the image enhancement methods, it is able to
adapt dynamically to the image characteristics and dehaze it depending on them.

The ACE and both CLAHE applications perform best, besides the neural net-
work solution. CLAHE algorithms seems to work better in kelp and rocks and sand
datasets, while ACE is better in rocks and deep corals. In the medium and shallow
corals datasets both approaches perform similarly. But in any case, the results are
still far from the neural network performance.

Although using CLAHE in the L of lab colorspace seems to be a more commonly
used approach, the results show there is not a big difference with a direct application
on the RGB components. The results of both configurations are similar for all the
datasets due to the similarities in the procedure. For this reason, the CLAHERGB
may be a better option for real time applications due to its fastest computation
time.

The histogram equalization is by far the worst performing in all the datasets
except the deep corals where it is better then the CLAHE alternatives. Anyway,
it may be an interesting alternative to other techniques for real time applications
given the faster computation.

In any case, the difference with the restored image may be a bad metric of
the dehazing process, different illumination, contrast, etc, may result in a high
difference but still be good at dehazing. Taking this into account, the visual results
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Figura 7.7: Comparison of the direct image dehazing using diffe-
rent techniques when using all the datasets in training
(part 1).
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Figura 7.8: Comparison of the direct image dehazing using diffe-
rent techniques when using all the datasets in training
(part 2).
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Proposed GT

Figura 7.9: Halos in the border of the images present in neural
network dehazing.

of the dehazing can be seen in figure 7.7 and figure 7.8. In the figures, a test image
of every dataset for each compared technique is shown together with the raw and
groundtruth (GT) images.

As can be seen, the proposed method and the groundtruth images are indis-
tinguishable in most cases, and in the cases that are different, such as RocksSand
dataset test image, it is difficult to decide which one is better. The neural network
dehazing is darker, probably resulting in a higher difference, but providing a mo-
re visually pleasing result than the groundtruth image that it is overilluminated.
However, in terms of restoring the original image without the water degradation
effects, the ground truth may produce a better dehazing result.

About the image enhancement methods, the ACE methodology obtains slightly
uncorrected images. The algorithm is not completely able to remove the haze, obtai-
ning bluish, in the case of medium and shallow corals, or greenish images depending
on the input. Even though the neural network and groundtruth techniques were
able to completely correct the water color in the images, the ACE algorithm greatly
enhances the image from the raw input.

On the other hand, histogram equalization overcorrects the images, producing
unnatural images with extreme colors in some cases, such as the kelp dataset. In the
case of the rocks dataset, it exacerbates the colors absorption, showing a reddish
tone for the rocks closer to the camera that diminishes with the distance. Besides
this, it demonstrates that although the numeric difference with the groundtruth is
high, part of this difference is caused by the brightness of the equalized images.

In the case of CLAHE, the images of both configurations are indistinguishable
as numerical results suggested. Even though images are enhanced with respect to
the raw image, the colors are not corrected and still show a bluish or greenish tone.
The obtained images are similar to the ones from the ACE algorithm but slightly
darker.

A noticeable drawback of the proposed method is the halo in the borders of the
image that can be seen on figure 7.9. As can be seen in the zoom of the rocks dataset
image, blurred lines parallel to the border appear surrounding the image. These
unnatural borders are caused by the zero padding configured in the convolutional
operations. The zero padding convolutes with a 0 input in the borders that is
misinterpreted by the network, resulting in halos in the borders of the image.

As a conclusion, the proposed algorithm is clearly the best alternative in numeric
and visual results. Furthermore, it can be computed extremely quickly being the
best option for a real time dehazing application. However, the results need further
validation as the neural network was trained with images from the same survey as
the test, making it easier to learn the dehazing transformation for them.
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7.3.5. Experiment 2: Validating with a different dataset

Taking into account the results of the previous experiment, this test simulates
the situation of using a trained neural network in a different environment. The
increased difficulty is caused by the fact that the system has never seen images
from this location, so it is impossible to use past knowledge of the location in order
to produce a restored image. This will test the generalization capabilities of the
neural network.

In order to test this generalization algorithm, one of the available dataset must
be left for validation. The deep corals dataset has been chosen because its bad
results with the best image enhancement techniques make it a more challenging
scenario. For this reason, the remaining datasets are included in the training scheme
and a new neural network has been trained with them.

The training procedure is exactly the same as in the previous experiment. In
this case, the neural network required 2500 epochs to reach a similar amount of
training error, 5.5%. This was probably caused by a inferior random initialization
of the parameters, as the neural network used the same datasets and reached a
similar training error.

The numerical results for the validation dataset show that the difference with
the groundtruth image is closer to the ACE performance, but it is still performing
better. The mean intensity difference for the validation dataset is 14.1%, while
the ACE technique obtains 15.7%, histogram equalization 20.5% and CLAHE is
around 27.2% far from the groundtruth images. As expected, the test images for
the resting datasets maintain the distance error to the groundtruth images around
4.5%.

This results are logical as the neural network was trained with similar ima-
ges in the previous experiment. However, the system is still able to generalize and
produce a fairly good result when dehazing completely unknown images. Further-
more, the proposed approach performed better than any of the image enhancement
alternatives and it is possible to process the images much faster than most of them.

As the previous experiment showed, although the cost function is good for
training, sometimes the difference with the restored image does not mean it is a
good dehazing. For this reason, samples of the validation dataset for the proposed
method, input image, groundtruth and compared enhancement methods can be
seen in figure 7.10. The images for the best and worst performances for the neural
network, according to the difference with the restored image, are displayed together
with two images close to the mean difference.

These results show the neural network solution slightly overcorrects the images
with respect to the groundtruth. It is possible to see that because the corals in the
image have a higher red component than the restored images. But in any case, the
images look natural with no signs of the greenish tone of the raw acquired images.
Moreover, the two images close to the mean difference are just darker than the
restored images having a more natural appearance.

Besides this, the neural network processed images still suffer from small halos
around the borders of the image. This effect is caused by the zero padding and may
be removed croping the image when processing it or applying a specific postprocess
to remove it. However, it only affects a few pixels in the borders that are not im-
portant for the image appearance or further automatic processing for autonomous
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robotics.
Beyond the dehazing process, an unexpected result is the neural network also

learned to deal with vignetting. As can be seen in the raw, histogram equalization
and specially in ACE processed images, the corners of the images are darker than
the rest of the image. On the other hand, the restoring methodology used to train
images, described in [Bryson et al., 2016], takes into account the vignetting, and this
effect has been translated to corrected images that do not have this degradation.
The trained neural network was able to learn this correction and the enhanced
images do not have dark corners.

Regarding histogram equalization, it also overcorrects the image but in a much
higher amount, producing unnatural images far from the desired result. Further-
more, it is possible to observe the different light wavelength attenuation as the
objects closer to the camera are mainly red, the intermediate have a greenish tone
and objects further away are blue. Additionally, some parts of the image are too
bright and some others too dark, making it difficult to interpret the image.

In the case of ACE, images are not completely corrected and processed images
have a greenish color compared with raw images. The image has improved from the
acquired source increasing the brightness and reducing the degradation from the
water. However, the colors of the corals in it are still attenuated making it difficult
to distinguish them.

Finally, the CLAHE and CLAHERGB offer very similar performance being
impossible to see any difference between them. The enhanced images are far from
the groundtruth target showing a dark green tone.

This experiment proves the neural network performance is better than the com-
pared alternatives, although numerical results seem to be close to the ACE per-
formance, visual results look much more natural. The system was able to learn a
dehazing transformation successfully, correcting different degradation effects such
as attenuation, scattering and vignetting at the same time.

From the tested algorithms, it was the only one able to produce naturally looking
images without the underwater haze that are visually pleasing at the same time.
Furthermore, the computation time is much shorter making it possible to include
it in a real time system as a preprocessing step. Finally, it is important to remark
that the training never saw an image of the validation dataset demonstrating that
it is possible to use images to train in a different location from the intervention.

7.4. Estimating depth for still image dehazing

As discussed previously, an estimation of the depthmap of the scene is a key
parameter for underwater image restoration techniques. The depth is directly rela-
ted to the transmission that degrades the image. For this reason, many approaches
estimate transmission with a depthmap, as the restoration alternatives, or directly
estimate the transmission as in the case of DCP. Obtaining 3D information is pos-
sible through a stereo camera, however untextured terrain or the need to dehaze
single images requires the use of other techniques.

For this reason, an alternative to the previous approximation that directly en-
hances the image without taking into account the image formation model is to
make an estimation of the depthmap and then dehaze it accordingly. In order to
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Figura 7.11: Images of the different datasets used in the deep lear-
ning approach for estimating 3D depth.

do so, the proposed approach makes use of deep learning and datasets with depth
information to train a neural network able to predict depth from still images.

A key idea in this approach is that although single images do not contain depth
information, visual cues such as shading and specially the light attenuation as
it travels through different distances may allude to it. As a consequence, a deep
learning approach may be able to learn to detect features and extract a depthmap
useful for single image dehazing.

Furthermore, as described in section 7.2.1 using deep learning for depth esti-
mation has already been done in air free images obtaining promising results. These
approaches may obtain even better results in an underwater environment, whe-
re the image degradation caused by the light transmission underwater is a strong
depth cue.

7.4.1. Image datasets

In this case, the deep learning solution needs to be trained and validated with
images that have 3D information. For this reason, the kelp dataset was discarded,
and the rocks dataset is used only for the cases where a depthmap is available.
Finally, five datasets where used: rocks, rocks and sand and the three corals data-
sets. The dataset acquisition method and details about the characteristics can be
consulted on Appendix A.

Example images from each dataset used in this approach are shown in figu-
re 7.11. As can be seen, images cover a different range of textures, illumination
conditions and distance to camera. This will help the neural network to generalize
and be able to correctly predict depth independently of the location and conditions
of the image.

In order to augment the data used in the experiment, the datasets are aug-
mented in the training stage. The augment techniques consist of the application
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of simple transformations to the input data apparently increasing the number of
examples, helping to generalize and learn a more abstract solution to the problem.
In this case, the training images are randomly flipped horizontally and vertically
with 0.5 probability, multiplying the effective training set by 4x. These random
flips abstract local details like specific image positions of depth cues or common
camera angle with respect to the ground.

7.4.2. Proposed approach

The proposed approach is based on the restoration algorithms, as a consequence
parameters derived from the water state are estimated to use them in the image
formation model explained in section 6.1. One of the most important parameters
is the transmission that attenuates the light and is directly related to depth. As
discussed before this can be done with a convolutional neural network, consequently
this parameter will be estimated using a deep learning approach.

The proposed method consists of three steps: (1) Obtain a coarse estimation of
the depthmap using a neural network, (2) refine the estimation with a guided filter
and (3) the final application: dehaze the image using this estimation. The first two
steps are similar to neural networks for 3D estimation explained in section 7.2.1,
firstly obtaining a coarse estimation and then refining it to obtain more detail.

The first step, coarse estimation, is performed through a convolutional neural
network. Once trained, the neural network receives an RGB image as input and pro-
duces a rough depthmap. The training stage also requires depth estimation so the
network is able to learn depth cues from the example pairs: image and depthmap.
Although a previously trained network may be able to make a good estimation in
a different environment allowing its use in monocular cameras, it is recommended
the neural network to be trained with images similar to the environment where the
AUV will finally work for better performance. This step may be necessary if the
textures and features are extremely different from the ones used for training, as the
neural network needs to learn depth cues in this new environment. For this reason,
the datasets used include a wide variety of textures and environments.

The refinement step is made through a guided filter as described in [He et al.,
2010]. However, merging it with the previous step in another neural network, similar
to other works in the state of the art, has also been tested. In this case, an initial
estimation of the depthmap obtained in the previous step and the original RGB
image serve as input to produce a more precise and detailed depthmap than the
rough estimation from the neural network.

The final step involves image dehazing. This step uses the previously estimated
depthmap and the original image to produce the enhanced image. The transmission
of the image is estimated using the depthmap, and it is applied with a histogram
equalization in order to recover the original colors of the image.

As in the previous case, the system has been trained with TensorFlow, described
in [Abadi et al., 2016], using an Nvidia Geforce GTX 960 with 4GB of RAM.

Coarse estimation

The coarse estimation is made using a convolutional neural network that receives
a single raw image, and returns a depthmap of the same size. In order to do so, the
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Figura 7.12: Architecture of the convolutional network used to
estimate depth.

image is processed through multiple convolutional and pooling steps. As discussed
before, these kind of operations to obtain a depthmap are reasonable as many
heuristics such as DCP or contrast operations can be expressed as convolutions.
The main advantage of this approach is the neural network will have the freedom
to learn the best weights and parameters to extract the correct features for depth
estimation.

The use of fully connected layers has been discarded because it requires a num-
ber of neurons that depend on the image size. This fact makes it impossible to use
in high resolution images or requires the output to be resized. Furthermore, the
type of transformation required should be spatially invariant, thus a convolutional
neural network appears to be the more logical approach.

Several neural network configurations have been tested, but the architecture
proposed here can be seen in figure 7.12. The neural network is made of five con-
secutive operations of convolution and pooling, and a final upscale to recover the
original size. After this, a coarse output is obtained that will be refined to obtain
a filtered output.

As figure 7.12 shows, five layers of convolution and pooling have been used. The
first layer reduces the image size with a 5x5 pooling, while the others maintain the
size. The number of filters increases in each layer until the last one, that is reduced
to one, the output.

The initial layer is a 5x5 followed by a 5x5 max pooling that takes a 768x579
image with RGB channels and reduces it to 16 feature maps with size 154x116,
containing the most interesting features. The input images are previously scaled to
0-1 range to make the training easier in the neural network. This is an important
step as it helps to reduce the amount of information that will be processed in the
subsequent layers of the neural network, making possible to train it faster without
loosing precision.

As a consequence, after the last convolutional layer is computed a biliniar ups-
cale is required to restore the original image size at the output. This step is included
inside the neural network, the cost function is computed using the upscaled image,
thus it can adjust the cost using this knowledge.

Alternatives to this drastic reduction of the feature size have been tested, but
the results showed no benefit. For this reason, working with a reduced feature map
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appears to be a better option as it increases the training speed without reducing
the precision. Using a max pooling lets the neural network decide the best features
to keep in order to estimate the depth.

After these initial convolutional layers, the next three layers increase the number
of features at each layer until 64 in the fourth layer. Then, the features will be
reduced to one at the final layer, corresponding to the depthmap prediction. In
these layers, the max pooling is made using a strides configuration of 1 pixel, as a
consequence the size of the feature maps maintain the same size through the rest
of the network. Furthermore, every convolutional layer is configured to use zero
padding and maintain the size of the feature maps and consequently the output
size.

The influence of the number of layers has also been compared. The conclusion
in this case is that 5 layers is the best option to avoid overfitting while obtaining
the best possible results with this architecture. The details of this comparison are
included in the experiments results.

As in the previous approach, all the hidden layers use a ReLu activation function
with the exception of the last convolutional layer which is linear. This is also a
natural option as the negative values are not possible, thus discarding the models
that produce negative values will decrease the training time.

Similar to the previously presented neural network, the optimization function
used is the Adam optimizer. This is a second order gradient descent algorithm that
estimates second order moments to automatically set the best learning rate in each
moment, and decrease the required iterations. It usually makes the system converge
faster than regular backpropagation methods, slightly increasing the computational
complexity.

With regard to the cost function, the l2 loss function, squared difference between
estimation and desired output, is not the best option due to the impossibility of
determining the right scale from a single image. In other words, it is impossible to
estimate real distances from a single image with a single image without a known
object or scale, thus direct difference of distances is not a good choice for the cost
function. For instance, it is not possible to tell the difference between a picture of
a real house from a perfect mock-up or model, that is the reason why a scale is
needed.

For this reason, using the absolute or squared difference of the estimated depth
and groundtruth depth may make the training stage more difficult. In the state of
the art mainly two different alternatives have been presented to solve this problem.
The first one is preprocessing the data to use relative distances in the training set
and learn to predict relative distances. The main disadvantage of this alternative
is the system will need to transform back these relative distances back again.

The second option, described in [Eigen et al., 2014], uses a scale invariant error
when training. This cost function controls the amount of error coming from a wrong
scale choice, thus a prediction with the same mean squared error will have a smaller
cost if it is linearly related to the groundtruth. The advantage of this approach is
that it tries to estimate an absolute distance but the training also minimizes the
relative estimation, thus assuring a good relative prediction but still producing a
scale guess even though it might be wrong.

Taking this into account, a scale invariant error cost function has been used
to train the neural network. Additionally, a common transformation is measuring
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the error in log scale as it will help in the error computation. As a result, the loss
function used in the deep learning approach can be seen in equation 7.14.

Loss (gt, y) =
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The loss function depends on the groundtruth depthmap gt and the neural
network prediction y. The diffi term is defined as the difference between a pre-
dicted point yi and the corresponding groundtruth point gti in logarithmic scale:
diffi = log yi− log gti. Besides this, n is the number of pixels in the prediction, ba-
sically height ·width, and α ∈ [0, 1] is a coefficient that controls the scale invariant
term.

The first part of the cost function is the Root Mean Squared Error (RMSE),
which penalises individual predictions far from the groundtruth values in absolute
terms. However, the scale invariant addition is the second term of the equation
that counteracts the first term when the prediction mean is different from the
groundtruth mean.

For example, assuming α is 1 if gt = 0,5y then diffi = log 2 for every number.
When diffi = k for every number in the series the equality in equation 7.15 is true.
This means when the prediction and groundtruth are linearly related both terms
are equal and the cost function is 0, ignoring scale changes.
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On the other hand, if pair predictions are gt = 1
k
y and the other half are gt = ky

then diffi = log k if i%2 = 0 and diffi = log 1
k
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term of the cost function 0 as equation 7.16 shows, thus the error will be the MSE.
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Taking this into account, the cost function will measure if the neural network
output and the groundtruth values are linearly related, returning a value close to 0
when they are. In other words, the scale invariant term added to the MSE detects
when both depthmaps are the same with a different scale factor and counteracts the
MSE. As a consequence, minimizing equation 7.14 finds the best linearly related
depthmap, independent of the absolute values.

However, it is also interesting to obtain accurate absolute predictions for the
depth. In order to achieve this, the coefficient α has been introduced, when it is
close to 1 the neural network will search for scale independent solutions, and when
it is close to 0 it will search for absolute predictions. Taking this into account, an
intermediate 0.5 value has been used, being able to achieve a good absolute and
relative prediction minimizing both terms.

Lastly, the groundtruth depthmaps do not provide a valid depth for every point
in the image, because they were acquired using stereo cameras that require texture
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to retrieve 3D. In order to deal with this, the loss function is only evaluated in points
with valid depth, adjusting n for each image, and performing the summations only
when a valid depth point is available.

In [Eigen and Fergus, 2015] adding gradient differences to the loss function is
proposed, but experiments in these datasets showed no benefit. Calculating image
gradients consumes a lot of time and memory, furthermore using it in a reduced
dataset did not enhance the results. For these reasons, it is discarded from the
proposed solution, but is still a feasible area for future work and the results of this
alternative are compared with the proposed solution. In that case, the cost function
is the one expressed in equation 7.17.
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Guided filtering

Once the coarse estimation is obtained using the neural network, a blurred image
containing the estimated depthmap can be estimated. The coarse map comes from
an upscale of a neural network, so it does not have enough details and proper
borders to be useful. In the state of the art an additional convolutional network is
proposed to refine the results using the coarse estimation together with the input
image.

However, this problem is similar to the refinement to prevent halos in the dark
channel prior explained in section 6.2.1. The solution proposed by the DCP authors
in [He et al., 2011] is an image matting able to smooth the results while maintaining
the borders. Unfortunately, this is an extremely slow non linear process. For this
reason, other authors substitute this by a guided filer as described in [He et al.,
2010]. In the experiments of Chapter 6 both alternatives are compared, concluding
that the small performance gain of image matting is not worth the required compu-
ting time. Furthermore, as the application studied, enhancing underwater images
for increasing autonomous capabilities of underwater robotcs, requires almost real
time processing only guided filtering is considered.

In this case both alternatives, additional convolutional network and guided fil-
tering, have been tested. The results showed guided filtering was able to refine the
image better than a convolutional neural network. Taking this into account, the
approach described uses a guided filter to smooth the coarse estimation and finally
obtain a depthmap. The results of this alternative are included in the comparison.

The guided filter is an image filter that computes the filtering output considering
the content of a guidance image, as figure 7.13 shows. This is supposed to filter the
image, smoothing it but preserving the edges already present in the guide image.
This effect can be seen in the figure 7.13, the estimation is smoothed respecting
the edges in the guide image. As can be seen, the random noise in the estimation
surface has almost disappeared in the filtered image, but it still preserves the edges
already present in the guide image. In this case, the input of the guided filter is the
depthmap estimation calculated by the neural network, and the guide used is the
original image.
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Figura 7.13: Guided filter smoothing of two surfaces example.

Dehazing

The final step is the use of the estimated refined depthmap in an application, in
this work it is used in the problem of image dehazing. A simple solution analogue
to DCP has been chosen to work in real time, although more advanced techniques
may achieve better results. The DCP used a heuristic called dark channel in order
to estimate the image transmission that describes part of the degradation of the
image. This transmission is directly related to image depth, thus it is possible to
use the previously estimated depth instead of the heuristic used in DCP.

As discussed before, this is a reasonable assumption as the convolutional neural
network should be able to naturally learn the DCP heuristic using convolutional and
pooling operations. Furthermore, if the DCP is the optimal solution to transmission
estimation it is highly probable that the deep learning solution will find it, but it
has enough freedom to learn the operation that produces the best results in the
training set of images.

In this case, the depthmap estimation is used as transmission t̃, in order to do
so the exponentiated depth d is multiplied by a constant attenuation b(λ). This
attenuation is the density of haze in the environment, that can be approximated
to be constant in a reduced zone. In this dehazing scheme, the value of the most
distant pixel (RGB) proved to be a good estimator for attenuation b(λ) as proposed
by the DCP algorithm.

Using this transmission, the image can be processed to recover the original
colors from the attenuation. Thus the inverse of the simplified attenuation function
7.18 is used as described in equation 6.7, being I the image acquired by the camera,
and J the image without noise.

I = Jt̃(x) = Je−b(λ)d (7.18)

It is only necessary to use the previously estimated values for depth d, atte-
nuation b(λ) and the captured image I to restore the “original” image J . Finally, a
histogram equalization is applied to enhance the colors of the image that may be
displaced due to the attenuation estimation.

Other image formation models may be used to achieve more precise results, for
instance considering the sunlight or introducing a more complex estimation of the
attenuation coefficient. This simple model was chosen to show the validity of the
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depth estimation in this context, and allow real time single image dehazing.

7.4.3. Metrics and evaluation.

In order to evaluate the performance of the neural network, 20% of the images
are left in a validation set. This set of images is chosen randomly from each dataset.
This approach ensures that the different environments used for testing are repre-
sented equally in the validation set. Consequently, all the datasets have enough
images in the validation set in order to measure the performance of the proposed
approach.

The validation set is only used for final results, while the training stage uses the
rest grouped in minibatches small enough to fit in GPU memory, in this case 10
images, but the number may be different depending on the memory requirements
of the network architecture. As in the previous neural network approach, the mini
batches are randomized after each epoch avoiding the selection of the same group
of images together. Furthermore, as described before each time an image is used to
train it may be flipped horizontally or vertically to augment the number of training
images and avoid overfitting.

Although the cost function used for training is a good function for this purpose,
it is not a good measure for the system performance. It is a good idea to separate
the absolute estimation and the relative estimation from the cost function. This
will make it possible to decide which kinds of applications can benefit from the 3D
estimation, and facilitate comparing with other alternatives such as the DCP or
other alternatives that estimate depth.

Due to the nature of the application, three different metrics are used to check
the validity of the estimation: Correlation, Root Minimum Squared Error(RMSE)
and Adjusted Root Minimum Squared Error(ARMSE). Each of them will measure
a different aspect of the result. In the first case, the correlation measures the linear
similarity between estimation and groundtruth, which is a measure of the structure.
The RMSE evaluates the absolute difference of the prediction of the neural network
and the real value, describing the precision. Finally, ARMSE is an adjusted RM-
SE useful to compare with other dehazing approaches that estimate transmission
instead of depthmaps.

In order to measure linear correlation, the sample Pearson correlation coeffi-
cient that can be seen in equation 7.19 is used. In it, x and y are estimated and
groundtuth depth values respectively. It measures the linear correlation between
two variables X,Y producing a value between -1 and +1 where 1 is total positive
correlation, 0 is no correlation and -1 is total negative correlation.

ρX,Y =
cov(X,Y )

σXσY

, rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(7.19)

This metric is useful to know if both surfaces are similar in terms of appearance.
As neural networks are trained to minimize the error between surfaces, the result
should be close to 1 the higher the better. However, two depthmaps may be really
similar and not be linearly related, for this reason it should be complemented with
other metrics. This correlation is not dependant on scale, so it is a good measure
to use with transmission estimations after taking logarithms as well as depthmaps.
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The second proposed metric is a Root Minimum Squared Error. It is actually
one of the terms of the minimization function, so the lower the better. Although,
the cost function has also an invariant scale term that can make this result increase.
In this case, it is measuring the point-to-point error so surfaces could be different
in shape but still have a good RMSE value. For this reason, it is reasonable to also
measure the correlation or the ARMSE error.

Finally, an Adjusted Root Minimum Squared Error is proposed. This measure
equals the means of the estimation and groundtruth depthmap so the scale uncer-
tainty problem, that is the impossibility to distinguish a real house from a dollhouse
in a 2D picture, is avoided given that both depthmaps now have the same scale.
This is a good measure for the dehazing problem as the depthmap is multiplied by
the attenuation, which has to be estimated afterwards. As a consequence, the scale
of the estimation is not so important as in other applications. Furthermore, this
measure can be extracted from the transmission estimation allowing the results to
be compared with other techniques that do not directly estimate depthmaps.

In addition, these last two metrics are also computed relative to the groundtruth
depth, so a percentage error is obtained. This helps to understand the precision of
the proposed approach in relative terms. The equations to calculate this error for
an estimation x and groundtruth y measures can be seen in equation 7.20, using
an adjusted x provides ARMSE and RARMSE metrics.
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√
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In terms of visualization, 3D plots of the estimated and groundtruth depthmaps,
pixel error histograms, and RMSE can be obtained similar to the one shown in
figure 7.14. This is valuable information for interpreting the performance of the 3D
estimation and checking if the neural network is providing good results.

For instance, in this figure the top left bar chart shows a histogram of the depth
estimation errors for the top right image. This histogram accumulates the number of
pixels with similar errors in bars representing the amount of pixels within a range
of error. If the estimation was accurate, it should show a gaussian distribution
centered in the 0 error. A displacement in the error axis will show an incorrect
scale estimation. Furthermore, the smaller the standard deviation the better it is
at estimating the depthmap. It is also possible to generate this type of graphics
with ARMSE and relative errors.

The bottom surfaces are the stereo groundtruth depth map on the right side,
and the neural network estimation on the left side. This kind of visualization has
been used to check the validity of the metrics and the performance of the neural
network. In this case, it can be seen that both surfaces are similar in the structure,
thus it is a good estimation of the depth of the image.

In order to compare with other state-of-the-art algorithms, the DCP technique
presented in [He et al., 2011] has been used in the image datasets. The correlation
and ARMSE metrics are also computed and shown. In order to compute the ARM-
SE metric it is necessary to use the transmission estimation of the DCP shown in
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Figura 7.14: Visual metrics and evaluation for depthmap estima-
tion: (top right) Visualization of the image, (top left)
error histogram, (bottom right) groundtruth depth-
map surface and (bottom left) neural network esti-
mation surface.

equation 7.21, where b(λ) is the attenuation and d the depthmap. The optimal b(λ)
has been used to obtain the depthmap to be compared with the groundtruth.

t̃(x) = e−b(λ)d (7.21)

In the case of the dehazing step only qualitative results are shown due to the
difficulty of using an appropiate measure that focuses on the dehazing instead of
illumination, contrast, colors, etc. However, in this case other alternative methods
that require the same input as the proposed approach are included so that they
can be easily compared with the dehazing.

To show the validity of the depth estimation in the context of still underwater
dehazing, three experiments have been conducted. In the first experiment, different
neural network architectures and other non neural network solutions are compared
in a small scale test using only deep coral dataset. This initial experiment helps
to decide the most promising parameter configurations that are tested in a second
experiment that uses all the datasets to validate the previous results.

These two experiments only compared the depthmap estimation stage, coarse
and refined estimations. However, the final image dehazing was not compared or
evaluated as the depth estimation can be singularly benchmarked. The final expe-
riment focuses on comparing the results of the proposed depthmap estimation in a
simple image dehazing system with other dehazing techniques from the literature
that require the same input.
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7.4.4. Experiment 1: Testing on deep corals dataset

The objective of this experiment is to decide the optimal neural network that
will be used to estimate depthmaps in the rest of the datasets and validate the
approach. In order to test the training of the network, 20% of the images are
randomly selected to test the system while training and detect possible overfitting
of the data. The results presented correspond to the evaluation of the previously
described metrics on this test samples.

Each neural network architecture has been trained until the test cost function
showed no improvement for 100 epochs. The test error stabilized around 5000 to
6000 epochs, depending on the initialization and the onset of increase caused by
the overfitting in the training set. For this reason, the training used early-stopping
in order to obtain the maximum performance in images besides the training set.

The deep corals dataset was used in this initial experiment to decide which was
the best possible architecture in terms of its difficulty. The deep corals dataset is
the one with the greater quantity of different textures and depth variations, so it is
a good environment to do reduced scale experiments that can be moved to a bigger
dataset. Furthermore, using a simple dataset such as the rocks images could lead
to specific solutions with non realistic results in a more generic case.

Different network architectures have been tested in this experiment. In the
following a description of each of the implemented architectures can be seen:

• Proposed: The previously described architecture with 5 convolutional layers
plus a guided filter for refining the estimation. The first convolutional layer
reduces the information with a max polling with strides 5x5 and before the
cost function evaluation is upscaled back to the original size. The cost function
is the one in equation 7.14.

• Noguided: This approach uses exactly the same neural network and training
as the previously compared system but it does not use the guided filtering
refining step. This approach shows the importance of the refining step and
the improvement of the guided filtering.

• Coarsefine: In this case the neural network described in [Eigen et al., 2014]
is implemented with a small variation to compare it with the same dataset
of underwater images. Due to the image sizes it was not possible to use
fully convolutional layers at the end of the first coarse networks. For this
reason, these layers have been substituted with convolutional layers. Thus
the architecture uses 6 convolutional layers that reduce the image size to a
coarse estimation that is upscaled back to original size and convoluted with
3 additional layers with the original image in order to refine the estimation.

• Coarsefine guided: This network shares the same training as the previous
one but it also makes use of the guided filter refinement used in the proposed
methodology. This checks if the refinement step in the network proposed by
[Eigen et al., 2014] can be further improved using a guided filter as proposed
in the DCP techniques.

• 7 layers: This approach increases the number of convolutional and pooling
layers to 7. The main goal of this network is to see if a deeper solution helps
to solve the problem or increases the overfitting problems.
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Cuadro 7.3: Results of different neural network architectures on
dataset 5.

Network Corr. RMSE(m) RRMSE(%) ARMSE(m) RARMSE(%)
Proposed 0.7909 0.1003 3.9471 0.0819 3.1481
Noguided 0.7506 0.1099 4.2939 0.0933 3.5524
coarsefine [Eigen et al., 2014] 0.7101 0.1196 4.6446 0.1015 3.8186
coarsefine guided 0.7585 0.1074 4.2184 0.0877 3.3598
7 layers 0.7597 0.1089 4.1839 0.0923 3.5171
6 layers 0.7692 0.1101 4.3343 0.0894 3.4692
4 layers 0.6705 0.1399 5.8538 0.1044 4.0513
gradients [Eigen and Fergus, 2015] 0.7888 0.1015 3.9469 0.0834 3.2055
nostrides 0.7448 0.1207 5.0060 0.0878 3.3865
Dark prior [He et al., 2011] 0.0464 - - 0.1893 7.4065

• 6 layers: As in the previous case, this approach increases the number of
layers to six in order to see the impact in the final results.

• 4 layers: In this case, the number of convolutional and pooling layers is
reduced in order to see if a smaller neural network is still capable of learning
a valid solution with similar performance as the 5 layers version.

• Gradients: In this experiment the cost function used is that proposed in [Ei-
gen and Fergus, 2015], which can be seen in equation 7.17, adding gradients
to learn local structure. Forcing the gradients to be similar ensures that local
structure, such as depth changes, is learned but greatly increases computatio-
nal complexity introducing the gradient calculation for estimated depthmaps.
Furthermore, the groundtruth does not provide a valid depth for every pixel
thus making it impossible to compute the gradients in some points. For this
reason a pre processing stage was added to compute the valid gradient points
for each groundtruth image and accelerate the computation.

• Nostrides: This network maintains the image size through the convolutional
layers configuring strides 1 in the operations. This is a hybrid between the
coarsefine network and the proposed approach as it tries to obtain a refined
estimation using the original image size but it does not downscale and upscale
the image as in the proposed approach. This is also a slower neural network
due to the higher feature maps managed by the network.

• Dark Prior: The dark channel prior presented in [He et al., 2011] is compared
with the previous deep learning solutions obtaining a transmission estimation
that can be compared in the correlation and adjusted metrics.

The results of this experiment are shown in table 7.3 for the different network
architectures described. The results of the five proposed metrics are included for
every alternative but the DCP, because it is not possible to compute unadjusted
metrics as it directly estimates transmissions instead of depthmaps. The best results
for each metric are highlighted in the corresponding column using bold numbers.

As can be seen, the best performing approach is the proposed methodology as it
obtains the best results for each metric except the relative root mean squared error
(RRMSE) that is 0.0002% worse than the gradients approach. For this reason, it
can be considered the best option for further validation experiments.
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Regarding specific parameter comparison, the first noticeable thing is that using
a guided filter helps to improve the results. Even if the network has a part devoted
to it, as in the case of the coarsefine network, using the guided filter enhances the
results. The proposed network and the coarsefine approach are enhanced when using
a guided filter with the original image. Furthermore, the rest of neural networks also
experience the same behaviour although these results are not included to highlight
the most interesting findings.

In terms of the number of layers, 5 convolutional and pooling layers appears
to be the optimum value as it obtains the best results in the metrics. When using
less than 5 layers, the system is not able to model correctly the complexity of the
problem and does not overfit independently of the number of epochs. However, the
results achieved are far from those of the 5 layer approach. On the other hand more
than 5 layers start to overfit when reaching the optimum, reducing the train error
but increasing the test error that does not improve the proposed network results.
For this reason 5 layers where kept as the optimum number of layers.

About the loss function, the use of gradients to force the learning of local struc-
ture has been tested. However, the results showed no benefit, obtaining similar
results to the regular scale invariant cost function trained network. The main draw-
back of this technique is the increased training time of computing gradient errors,
around 50%, even with precalculated gradients for ground truth images. Further-
more, it also increased memory consumption by 400%, due to the precomputed
gradients and valid gradients in X and Y axis.

Similarly, as the nostrides solution works with the complete image through all
the layers, the training time is much higher than the pooling version. However,
according to the metrics used, this longer training time does not pay off in terms
of results. It seems that using reduced feature maps helps the neural network to
produce a higher quality coarse estimation that can be further refined to produce
better results, despite the upscale required after the convolutions.

The dark channel prior results are added to compare the deep learning approa-
ches with a state of the art dehazing method suitable for single image dehazing. It
is only possible to obtain adjusted results because of the nature of the algorithm,
that estimates the transmission instead of the depthmap. The ARMSE results are
computed assuming perfect attenuation estimation, thus this is a best case for the
DCP technique.

Taking this into account, the DCP is still far from the results achieved by deep
learning solutions. The correlation metric shows the transmission estimated by the
DCP is not linearly related to the depthmap when it should be, according to the
transmission definition. Furthermore, the adjusted root mean squared error results
are 200% worse than those of the neural network ones.

Finally, the numbers achieved by the neural network are really good in terms
of retrieving 3D information from a single image. The measured correlation for
the test images, 0.7909, is a strong correlation between the estimation and the
groundtruth, demonstrating the linear relation. Moreover, the absolute unadjusted
mean error is around 10 centimeters, and the relative is slightly under 4%, which
means it is possible to retrieve a really precise depthmap with just a single image.
The scale adjusted error is above 8 centimeters that means a 3.15% error which is
also an impressive estimation from a single image

Comparing these results with the ones in [Eigen et al., 2014] that achieved a
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Cuadro 7.4: Results of different neural network architectures
using all the datasets

Network Corr. RMSE(m) RRMSE(%) ARMSE(m) RARMSE(%)
Proposed 0.8181 0.1293 5.2632 0.0982 3.6668
Noguided 0.7878 0.1430 5.6955 0.1141 4.2351
coarsefine [Eigen et al., 2014] 0.7047 0.1653 6.0099 0.1342 4.5998
coarsefine guided 0.7447 0.1508 5.5593 0.1169 3.9949
nostrides 0.6904 0.1816 7.3358 0.1214 4.6501
Dark prior [He et al., 2011] 0.0737 - - 0.2788 10.8783

21% unadjusted error in open air images, proves the underwater haze is a strong
depth cue that can be used to estimate depth. Using a really similar neural network
architecture produced much better results. For this reason, using a deep learning
solution to extract 3D information is an interesting alternative not only for dehazing
but for any other application that requires a depth estimation from a single camera.

7.4.5. Experiment 2: Validation with the complete dataset

However, the previous results were only for images from a single location, and
the neural network is specialized in images from that specific location characteristics
such as, water color, textures, illumination... So, trying to estimate depth in images
from another location will probably fail. Consequently, a more generic experiment
must be conducted to analyse the capabilities of 3D estimation.

In this experiment, the five datasets with reliable depth information have been
used to train a generic network capable of estimating depth from any underwater
image. For this purpose, the neural network has been trained and validated using
the previously described procedure.

Taking into account the previous results, the neural network has been trained
using all the datasets in a second experiment, but only for the most promising
architectures. The four, six and seven layers architectures have been discarded as
the previous experiment showed five layers were enough to model the problem
without overfitting. Additionally, the tests with different cost functions have also
been discarded as the gradient computation was too computationally expensive
and without any beneficial results.

The results obtained can be seen in table 7.4. As in the previous experiment, the
complete metrics results are showed for proposed, noguided, coarsefine, coarsefine
guided, nostrides and DCP. The best results for each metric are highlighted in bold
numbers.

As can be seen the proposed architecture offers the best results when all the da-
tasets are mixed. Furthermore, the proposed deep learning solution clearly achieves
the best results for each metric. All the compared alternative results are conside-
rably worse than the one presented in this section.

As happened in the previous experiment, the guided filter is proved to be a good
filtering alternative to an additional convolutional network. The cause of this may
be the additional convolutional layers to be trained make it more difficult to learn
the proper weights and biases thus requiring a bigger amount of data to become
properly trained. In any case, the guided filter has already a good performance thus
there is no need to train an additional network.
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Another interesting result is that the network which does not reduce the image
size, labelled as nostrides, is the worst performing. Probably the need to work with
the whole image makes it difficult to learn a convenient function. When the range of
different images that are used as input increases, as in this experiment, generalizing
with bigger images gets more difficult. As a consequence, the performance of this
solution notably decreases with respect to the previous experiment.

In the case of coarsefine, the results are still worse than the proposed archi-
tecture. The addition of images from different locations did not affect the results
with respect to the proposed solution. Nevertheless, using a guided filter after the
neural network still enhances the results proving the refinement step is not properly
working, or at least, it could work better.

In comparison with the previous results corresponding to only one dataset the
RMSE error increases significantly due to the difficulty of choosing the right scale.
In the previous experiment, the difference of this error with respect to the adjusted
metric was really small. Using images from different locations showed choosing the
right scale is more challenging, increasing from 3.9% error to 5.2%.

Nevertheless, this results are still far from the achieved in open air images where
the light attenuation does not provide a strong depth cue. Errors in that case are
close to 20% while the use in an underwater environment reduces it in 400%.
However, it is important to remember that the underwater images used only show
seafloor images in small distance ranges compared to the open air use case, for this
reason comparing absolute errors is not valid.

On the other hand the adjusted metric shows a slight increase caused by the
different sources of images in this experiment. The adjusted error increases from
3.1% to 3.6% which in absolute terms is around 10 centimeters, still a very accurate
estimation for many applications. Because in this experiment there is a greater
range of textures, water characteristics, etc the difficulty has increased and the
errors have increased.

Regarding the correlation, surprisingly the results show an increase from 0.79
to 0.81. This is a really good result as the estimated depthmap is highly correlated
with the groundtruth demonstrating the estimation is very similar in terms of
structure.

Finally dark channel prior estimation results are also far from the ones achieved
by neural networks. This is especially true in the correlation metric where dark prior
shows no correlation with depthmap while the learning solution shows a strong
relationship. This proves that although the DCP may produce visually pleasing
images it is not a good depthmap estimator, so it should not be used for other
purposes. This result is also caused by the fact that the DCP is sometimes directly
related and some others is inversely related causing the mean to be close to zero.

Additionally to numeric results it is also possible to display histograms for the
relative errors that show the performance difference with respect to other techni-
ques. In figure 7.15 adjusted errors and relative errors for each pixel in each image
are depicted in a histogram chart comparing DCP, blue color, and neural network,
red color.

These histograms show the amount of pixels that have an error within a range.
In order to compute this, all the pixels in every validation image have been used to
count the number of pixels that have an error within a specific range. The optimal
case should show 100% pixels with zero error.
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Figura 7.15: Error histograms, ARMSE (left) relative ARMSE
(right), for all the images pixels comparing neural
network and dark channel prior.

The histogram on the left represents the percent of pixels of every validation
image in the y axis and the depth estimation error in the x axis. The histogram
on the right corresponds to the relative error instead of absolute error. As can be
seen the neural network obtains much better results showing a smaller deviation in
results.

Both algorithms show a gaussian distribution of the error around the zero as it
is an adjusted metric. However, the neural network has almost no errors below 0.5
meters or 20% while DCP may obtain errors over 1 meter or 50%. This means,
the neural network is also much more robust than the DCP.

7.4.6. Experiment 3: Dehazing comparison

Finally, the last experiment focuses on an application of the 3D estimation:
single image dehazing. The previously described depthmap estimation can be used
in other applications that do not require a high precision estimation but would
require an estimation for every pixel in the image or an estimation from a mono
camera. Some applications that would be feasible are:

• 3D stereo completion: The stereo cameras usually retrieve an incomplete es-
timation of 3D when the objects are not textured enough to find matches
between both cameras or are out of the range. Using a deep learning solu-
tion to estimate the pixels where the stereo system was unable to obtain an
estimation may be a nice feature to have. Futhermore, the system could be
simultaneously trained using the pixels with valid information, adapting to
the current location.

• Basic obstacle avoidance: Although the depth estimation is not precise enough
to directly allow object manipulation it should be sufficient for obstacle avoi-
dance. Many budget ROV’s or platforms lack of stereo cameras and rely on
a single camera to navigate. A 3D estimation from single image would allow
possible obstacles to be detected and automatically avoid them while moving
close to the seafloor.
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The performance of the image restoration from the neural network 3D esti-
mation can be seen in figure 7.16. In this figure one representative image and
groundtruth depthmap of each dataset can be seen with the results of depthmap
estimation and an image dehazed using the neural network estimation.

As can be seen the groundtruth and estimated depthmaps are really similar
in appearance and local structure. The main difference is the estimation has less
details than the groundtruth depthmaps that may detect smaller changes in depth.

In figure 7.17 and figure 7.18 the dehazing results are compared with other state
of the art techniques. The figure shows the raw image, neural network dehazing,
restoration from [Bryson et al., 2016] as groundtruth, histogram equalization, ACE
and CLAHE. Although other dehazing alternatives may produce better results, the
proposed method is only compared with dehazing solutions that share the same
inputs.

As can be seen the proposed approach produces visually pleasing images similar
to the groundtruth restoring technique of the previous section. The methodology
was able to successfully restore the colors for images of every dataset showing it is
capable of generalizing and producing good results in different environments.

Comparing with other techniques the results are similar to the direct underwater
dehazing neural network. The histogram equalization obtains overcorrected images
with colors that are too bright and showing the effects of attenuation. For instance
in the rocks example images, the parts that are closer to the camera are reddish
while the parts further from it are bluish. However, depending on the image it is
able to produce good results such as the medium corals sample.

In the case of ACE the algorithm is not able to remove completely the original
colors of the water, thus images for rocks, rocks and sand and deep corals have a
greenish tone and medium and shallow corals look bluish.

With the CLAHE dehazing, the results are similar but the images look darker
than the ACE algorithm. On the other hand the proposed approach is able to
remove this water color in most of the images while dehazing the inputs.

Finally, it is important to remember the dehazing algorithm uses the DCP
approach. However, other dehazing processes may make use of the depthmap in
a different way to correctly estimate attenuation and other important parameters
to achieve better results. But in this work, a simple fast solution that is easy to
compute was chosen so it can be carried out it in real time.

7.5. Results discussion

In the two previous sections, two deep learning solutions have been presented in
order to dehaze underwater images from still images. Both of them have their own
advantages and drawbacks. In the case of direct dehazing, resulting images may
have colors different from the original image. On the other hand, dehazing using
depth estimation from a neural network does not completely remove the water haze
color.

Figure 7.19 shows this situation. Although both methods produce results beyond
the state of the art in the field of single image dehazing, none of them is perfect.
Images are greatly enhanced from the raw acquired input making it possible to use
them in a real time robot vision pipeline as a preprocessing step.
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Figura 7.17: Image dehazing results using deep learning depth es-
timation compared with other still image dehazing
techniques (part 1).
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Figura 7.18: Image dehazing results using deep learning depth es-
timation compared with other still image dehazing
techniques (part 2).
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Figura 7.19: Comparison of the single image deep learning deha-
zing methods proposed in this chapter.
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Taking this into account, the proposed solutions may have different applications.
When it is not necessary to produce very realistic colors, but a haze-free image is
required, direct dehazing is a better option. However, in the cases where real colors
are important dehazing through depth estimation produces better results.

Nevertheless, both methods can be improved through training with ground-
truth images acquired in a bigger number of different locations, allowing the neural
network to generalize even more.

Besides this improvement, depth estimation may improve using additional infor-
mation such as sonars or stereo cameras, and the dehazing can be further improved
using the estimated depth information. On the other hand, direct dehazing can also
make use of the depth information to produce more precise results.

Unfortunately, the use of this additional information to improve the results
is out of the scope of this thesis, that focuses on dehazing with the minimum
information.

7.6. Conclusions

In this chapter two new approaches for single image dehazing using deep lear-
ning have been presented. The approaches are based on emerging methodologies of
deep learning and convolutional neural networks capable of learning complex trans-
formations and producing results beyond the state of the art of classic algorithms.

The two new approaches are inspired by the main two points of view of under-
water images processing: image restoration and image enhancement. In the image
enhancement approach a direct transformation from the raw image to a dehazed
image is learned using a state of the art image restoration technique as groundtruth.
The image restoration approach uses a depthmap gathered with stereo cameras to
learn the estimation of relevant parameters and dehaze the image using the image
formation model.

However, direct underwater dehazing using deep learning should not be con-
sidered a full image enhancement technique because it learns from a restoration
method. The neural network is trained using restored images from an approach
that uses a big set of images from the same location, depth information and the
image formation model. For this reason, the neural network is capable of learning
an estimation of this transformation and produce visually pleasing images.

The results show this solution outperforms other state of the art alternatives
such as histogram equalization, Automatic Color Enhancement (ACE) or Contrast
Limited Adaptative Histogram Equalization (CLAHE). Moreover, the deep learning
solution is able to learn other image enhancements such as vignetting removal and
simultaneously apply them to the input images. Furthermore, the proposed neural
network is much faster due to the GPU processing of convolutional operations
allowing it to run in real time environments.

The option of image restoration presented focuses on estimating the depthmap
of the image which is a key parameter to accurately dehaze the image. The main
idea is that the haze is a strong depth cue that can be used to estimate the depth
at each point similar to DCP or other heuristics. Furthermore, the state of the
art image transmission estimation operations can be modelled as convolutions with
fixed weights and biases, thus training the neural network will naturally discover
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them if they are the optimum estimators.
The results show it is possible to estimate the 3D structure of an underwater still

image with a fairly good error close to 4%. These results are far from those obtained
in open air images where the haze does not provide reliable depth information. This
proves the light attenuation underwater can be used to extract the depthmap and
use it in other applications such as completing stereo depthmaps, basic obstacle
avoidance or image dehazing.

Finally, the estimated depthmap is used in an image dehazing application sho-
wing it is possible to obtain better results using a good parameter estimation.
However, it would be possible to enhance the results even more using a more com-
plex dehazing algorithm that exploits the depthmap estimation to characterize the
water characteristics such as attenuation, backscattering or ambient light.
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Conclusions

This chapter concludes the thesis presented in this document. It first comments
on the main contributions of the research summarizing the most relevant contents
in each chapter and describing the achieved results. Additionally, it points towards
interesting future lines of work that have not been addressed throughout the thesis.
Finally, the publications related to this work are listed.

The current technology of underwater interventions requires a great deal of
development in order to satisfy the needs of those working in this environment. In
order to perform an intervention in the ocean, the robot has to perform several
steps correctly. The first is the scene interpretation, the robot needs to perceive the
surroundings through all the possible sensors in order to understand its situation in
the world. After that, the robot needs to decide the best possible action according
to its interpretation of the world to achieve the specified goal. Finally, the robot
has to perform the action while monitoring the environment for possible changes
or unexpected situations. This thesis focuses on the first step, the interpretation of
the scene, as it is a key process that determines subsequent actions.

Furthermore, the images acquired in underwater robotics are affected by diffe-
rent phenomena such as attenuation or scattering that degrade them making even
more difficult to understand and, as a consequence, decide what action should be
taken with regard to the information contained in them. However, humans are ca-
pable of correctly interpret these degraded images and can even form an idea of how
the images would look like out of the water. For this reason, a dehazing approach
is implemented in this work, restoring the original appearance of images in order
to make the scene easier to understand.

However, the first step in this work corresponds to the design and implementa-
tion of a suitable framework for underwater robotics research. A software capable
of simulating underwater interventions is a useful tool for the to study and analysis
of the influence of underwater visibility on other vision algorithms. Consequently,
the development of an underwater simulator, UWSim, is described in Chapter 2.
This software is not only designed for simulation but supervision and monitoring
when the vehicle goes deep into the sea and it is not possible to have a direct view
of the system.

Moreover, the capacity of evaluating the robot actions with respect to a given
metric or groundtruth is of the utmost importance. So a benchmarking suite is
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also presented in Chapter 2. The suite allows the results of simulated as well as
real interventions to be measured, obtaining a valuable log of results that can be
analysed.

These tools have also been made accessible through internet using a cloud ser-
vice as described in Chapter 3. This service makes possible the use of the tools
without previous installation and using any device able to connect through a web
browser.

These tools have been extensively used in various applications besides the study
of underwater visibility. Chapter 4 includes a summary of the most interesting appli-
cations of the developed benchmarking software. In first place, the characterization
of the TRIDENT experiments is described, explaining how the experiments were
supervised and replayed in the simulation tool and afterwards the benchmark of
both interventions is shown. Secondly, a simulated dredging intervention is eva-
luated through the benchmarking suite. Finally, the software is used to compare
different devices to control autonomous underwater vehicles.

In Chapter 5 the previously developed software is used to analyse the performan-
ce of various types of vision software in decreasing visibility conditions. Basically
three types of algorithms are evaluated: trackers, station keeping and 3D recons-
truction. The results show the water turbidity greatly influences the performance
making it necessary to discard some of the compared algorithms that may be fea-
sible in air conditions. Furthermore, as the water turbidity increases, the precision
and reliability of the compared solutions decreases, showing its importance.

Motivated by this results, a comparison of single image dehazing algorithms is
presented in Chapter 6. Dehazing solutions are discussed from the perspective of
autonomous underwater vehicles: real time performance and single image input.
The conclusion is that none of the state of the art alternatives is suitable for the
case under study. The solutions that achieve the best performance are too slow or
require a big amount of information not available at the intervention time while
the rest do not work in every situation.

Finally, in Chapter 7 two dehazing approaches are proposed for enhancing the
results in autonomous underwater vehicles. Due to the recent enormous increase of
deep learning solutions in the field of image processing, results far beyond the state
of the art of classical algorithms have been obtained. The proposed approaches
use deep learning to process the images. In the first case a direct transformation
is learned from the raw image to the desired dehazed output of a slower image
restoration technique. The second case uses deep learning to estimate the required
parameters to use an image formation model that restores the original colors.

8.1. Contributions

The main goal of the thesis has been fulfilled developing a dehazing approach
capable of enhancing the images for real time applications from a single image. Furt-
hermore, the problem has been solved from two points of view obtaining promising
results. The proposed approach is simple to use and can be extended by training
with new images to produce better results. However, in the research for this goal
various research contributions were achieved. These contributions are listed below:
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• AUVs simulator, UWSim: A simulator for autonomous underwater vehi-
cles have been developed. The simulator is offered as an open source tool
available for researchers to develop AUV’s. It is also possible to use the soft-
ware to supervise interventions providing an integrated view of the robot
sensors when it is underwater. The tool has a medium sized community as
some European Community funded projects have decided to use it and at
least 56 universities or institutes have used UWSim.

• Generic benchmarking platform: An abstract suite for evaluating and
comparing algorithms have been developed. The tool makes it possible to
evaluate through configured metrics any type of intervention in an objecti-
ve manner using ROS as middleware. The suite has been extensively used
through the thesis to evaluate vision algorithms, control, real interventions
and even interfaces. Furthermore, the generic nature allows it to be used in
simulated, hardware in the loop and real experiments.

• Cloud simulation and benchmarking: Besides the local simulation and
benchmarking software, cloud services have been developed to provide re-
mote simulation and benchmarking capabilities. This allows experiments to
be launched with any device connected to internet independently of its pro-
cessing power. The service also provides a comparison interface where resear-
chers can directly compare the results of their experiments. As an application
example, the cloud services have been used in education where students parti-
cipated in a competition to obtain the best possible results in path following.

• Analysis of the effects of turbidity: The benchmarking module has also
been used to study the consequences of underwater image degradation in
vision algorithms. The study reveals that turbidity is a major issue that
may make it impossible to correctly find an object or reconstruct in 3D.
Furthermore, some alternatives such as the laser stripe projector are more
interesting in the underwater environment than stereo reconstruction due to
the immunity to haze.

• Benchmark of single image dehazing algorithms: A review of suitable
techniques for single image dehazing on real time is provided. The study is
made with objective metrics that prove none of the reviewed options offers
precision and robustness at the same time. The precise methods require too
much computation time or inputs to be used in real time strategies while
faster methods do not work in every situation.

• Deep learning single image dehazing: Two different approaches for single
image dehazing are proposed. In the first case, a direct enhancement neural
network is trained using restored images from other slower algorithms that
require several inputs. The trained neural network is able to generalize and
produce dehazed images from degraded images never seen in the training
stage producing results beyond the state of the art. The second alternative
estimates the depth map from single RGB images using the haze as a depth
cue. Using this estimation it is able to restore the colors of the image.
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• Underwater 3D estimation from single image: As a side result from
the single image dehazing proposed approach 3D estimation, a 3D depthmap
estimation is obtained. The results show the relative error of this estimation is
around 4% demonstrating that underwater image degradation provides very
useful information for this task. Furthermore, this fact can be used in other
applications beside image dehazing as discussed in the next section.

8.2. Future lines

This thesis has produced several related publications dealing with simulation,
benchmarking, underwater visibility and dehazing. However, every aspect presented
in this thesis can be improved and there are still several open questions that can
expand the research presented.

Autonomous underwater simulation

Although the developed simulator UWSim is used in several research institu-
tions and universities numerous features could be added or improved. The simu-
lator offers dynamic simulation of vehicles, taking into account water physics and
external multibody simulation, but makes it necessary to create the vehicle cha-
racteristics and relies on external software for the multibody simulation. For this
reason a generic complete dynamic simulation should be addressed as part of the
simulator to help researchers with autonomous navigation.

New sensors and devices are continuously being developed in the robotics field,
for this reason the maintenance of a simulator involves constantly developing new
simulated devices. Furthermore, the implementation of some of the simulated sen-
sors can be improved, for instance adding housing aberrations to cameras, camera
motion blur or noise in arm joint articulations.

The implementation of interactive markers in OSG is still incomplete, the basic
functionality of movement, spawning or deleting is available but advanced features
such as menus are still not developed. This would help with the integration with
ROS which has become a standard de facto in robotics and allowing the compati-
bility with software developed for other purposes.

Improving the supervision features is also an interesting line of work as the
simulator can be used to monitor a real intervention. The simulator already shows
the frames of the different objects in the scene, but it would be interesting to be
able to add more objects via ROS transforms so it would be possible to easily detect
errors in the intervention more easily. Another interesting addition in this line of
work is being able to measure distances between objects or pointclouds.

Finally, the simulator lacks a simple interface that makes it more user friendly.
Even though most actions can be done through keys (i.e. showing cameras), or
console commands (i.e. moving vehicles), the development of a user interface to
perform simple actions would be an important addition.

Cloud simulation and benchmarking

Besides the development of the simulation capabilities, the online features are
also an interesting future line of work. As discussed in Chapter 3, the cloud services
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have many advantages allowing experiments to be launched from any device without
installation or configuration. For this reason, extending the current capabilities is
an important step that some simulators are already working on.

The main issue of the current implementation lies on the reduced set of envi-
ronments accessible through the web interface. Only a small group of scenes are
available and nowadays is not possible to remotely configure them. A simple way
to include new scenes, vehicles and models is needed to increase the usability of
the system.

The benchmarking experiments need to be manually created. An automatic
way to create new benchmarks that can be shared with other researchers could be
interesting so that a common place to compare the results could be provided. An
example of this situation is the pipe following educational application previously
described, where students entered a competition to improve their software.

The dehazing strategies described in Chapters 6 and 7 should be benchmarked
together with the tracking and station keeping algorithms, so they can be analy-
sed in detail. This would prove the dehazing approaches proposed are capable of
enhancing autonomous underwater vehicles.

Single image dehazing

In Chapter 7 two deep learning single image dehazing strategies are proposed.
Even though both strategies are tested in real dataset images it would be interesting
to test them in a real intervention when the vehicle is moving in a new environment.

Furthermore, both neural networks are trained with a relatively small set of
images, in order to make the system more robust it would be necessary to train
with larger sets of images that include several locations. This would make the
neural network more general and capable of obtaining good results in any possible
location.

Additionally, the use of stereo cameras or sonar information is common in the
underwater robotics field. However, this information is not used in the deep lear-
ning approaches presented. Introducing, depthmaps from stereo images or sonar
information to the neural network will probably improve the results obtained. Dif-
ferent neural networks architectures can be tested using information from other
sensors that can help in the dehazing problem.

Underwater depthmap estimation from single image

As a required parameter for the image dehazing the second neural network
proposed in Chapter 7 obtains a depthmap from single images. The results show
that the obtained depthmap is far more precise than that obtained in air images
using a similar network architecture. This demonstrates the light transmission in
water can be used to estimate a depth estimation just using a single image.

This finding can be used in other applications besides dehazing. For instance
it is possible to fill the gaps in a stereo reconstruction when there is not enough
texture to find matching pixels in both cameras. Furthermore, it would be possible
to retrain with the existing depth pixels in the camera and obtain the rest of the
estimation through a neural network.
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Although the precision of the depthmap estimation does not allow precise ma-
nipulation of objects it would be possible to navigate using mono cameras. The
estimated depthmap is accurate enough to produce rough information about obs-
tacles, that may be sufficient for safe navigation.

Finally, it is possible to use it in any application that requires a depth estimation
for every pixel in the camera but which does not require a high precision.
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Apéndice A

Image datasets for dehazing

Through the chapters 6 and 7 a group of image datasets is repeatedly used to test
and compare different image dehazing alternatives. These datasets were acquired by
the AUV Sirius [Williams et al., 2012] of the Australian Centre for Field Robotics
in the University of Sydney, Australia who also provided and prepared the data.

Each image dataset consists of a group of images taken at the same survey in
specific locations. Along with each image a dense stereo depthmap has also been
gathered providing information about the depth of almost every pixel. Additionally,
a restored image using the methodology described in [Bryson et al., 2016] is also
included showing a haze free image derived from the raw image acquired by the
camera.

The 3D information was retrieved using stereo cameras that were post-processed
and combined with adjacent image pairs to produce a feature-based stereo depth
map as described in [Johnson-Roberson et al., 2010]. In order to increase the ac-
curacy of the depth computation, the images are processed using adjacent pairs to
correct the light using a form of “gray world” transformation. Using these corrected
images increases the number of feature matching stereo pairs in the underwater
environment, increasing the amount of 3D points.

Then they are reprojected back into each camera, with a spatial resolution of
2.5 cm, and sub-centimeter depth accuracy, based on analysis of residual feature
errors. However, due to the characteristics of the 3D estimation not every image
has a completely reliable depthmap available. For this reason, some of the datasets
were not used depending on the needs of the experiment such as the kelp dataset
for depth estimation.

In order to try different environments, illumination, textures and water condi-
tions six different datasets have been created to use in the thesis. This is necessary
to benchmark the dehazing algorithms in different conditions and generalize in the
deep learning approaches. The only thing in common is that the images are taken
in an AUV and are pointing at the seafloor. The specific details of each dataset are
shown in table A.1.

As can be seen the data has been taken at different depths ranging from 2 meters
in the case of the shallow corals to 27 meters. The image range is the maximum and
minimum distance in the dataset images, the objects which are closer and further
away in the dataset. The mean distance is the average distance of objects in the
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Cuadro A.1: Description of datasets used in the thesis.

Description images depthmaps depth image range mean distance strobes
Rocks 60 19 27 m 2.18 - 4.78 m 3.64 m Yes
Kelp 60 0 27 m - - Yes
Rocks sand 94 94 27 m 0.46 - 4.17 m 2.29 m Yes
Shallow corals 100 100 2 m 0.34 - 2.73 m 1.91 m No
Medium corals 99 99 7 m 1.06 - 4.77 m 1.50 m No
Deep corals 100 100 18 m 0.97 - 4.83 m 4.03 m Yes

image, for instance in the medium corals dataset the vehicle is closer to the seafloor,
1.5 meters average distance, but in deep corals the vehicle flies higher. Finally the
strobes column indicates the use of artificial lightning mounted in the vehicle.

Images were acquired by the AUV Sirius [Williams et al., 2012] at five different
field locations across Australia. The first three datasets of rocks, kelp and rocks
and sand were acquired over boulderfields at St Helens, Tasmania. The resting
datasets, corals at different depths, were acquired over coral reefs at One Tree
Island (shallow corals) and Heron Island (medium corals), on the southern Great
Barrier Reef and Houtman Abrolhos Islands, Western Australia (deep corals). All
images were captured using a calibrated stereo-pair consisting of two prosilica 1.3
MPix cameras. Given the depth in the first three datasets and deep corals, artificial
lighting was provided by two xenon strobes mounted to the AUV, in the case
of shallow and medium depth corals they were captured in shallow waters and
illuminated by sunlight.

In the following pages several images of each dataset are included to show the
different environment and their characteristics.
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Figura A.1: Rocks dataset samples.
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Figura A.2: Kelp dataset samples.
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Figura A.3: Rocks and sand dataset samples.
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Figura A.4: Shallow depth corals dataset samples.
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Figura A.5: Medium depth corals dataset samples.
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Figura A.6: Deep depth corals dataset samples.
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Petersen, H., and KrÃijger, N. (2012). Visgrab: A benchmark for vision-based
grasping. Paladyn, 3(2):54–62. (Cited on page 15.)

[Kratz and Nishino, 2009] Kratz, L. and Nishino, K. (2009). Factorizing scene al-
bedo and depth from a single foggy image. In Computer Vision, 2009 IEEE 12th
International Conference on, pages 1701–1708. IEEE. (Cited on page 87.)

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105. (Cited on page 118.)

[LABS, ] LABS, C. Vortex. (Cited on page 13.)

[Ladicky et al., 2014] Ladicky, L., Shi, J., and Pollefeys, M. (2014). Pulling things
out of perspective. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 89–96. (Cited on page 124.)

[Lane et al., 1997] Lane, D. M., Davies, J. B. C., Casalino, G., Bartolini, G., Can-
nata, G., Veruggio, G., Canals, M., Smith, C., O’Brien, D. J., Pickett, M., et al.
(1997). Amadeus: advanced manipulation for deep underwater sampling. IEEE
Robotics & Automation Magazine, 4(4):34–45. (Cited on page 2.)

[Lane et al., 2012] Lane, D. M., Maurelli, F., Kormushev, P., Carreras, M., Fox,
M., and Kyriakopoulos, K. (2012). Persistent autonomy: the challenges of the
pandora project. IFAC Proceedings Volumes, 45(27):268–273. (Cited on page 25.)

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.
Nature, 521(7553):436–444. (Cited on pages 111 and 121.)

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to
handwritten zip code recognition. Neural computation, 1(4):541–551. (Cited on
page 111.)

[LeCun et al., 2010] LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Convo-
lutional networks and applications in vision. In Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on, pages 253–256. IEEE.
(Cited on page 118.)



BIBLIOGRAF́IA 185

[Levin et al., 2008] Levin, A., Lischinski, D., and Weiss, Y. (2008). A closed-form
solution to natural image matting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(2):228–242. (Cited on page 89.)

[Liang et al., 2014] Liang, Z., Liu, H., Zhang, B., and Wang, B. (2014). Real-time
hardware accelerator for single image haze removal using dark channel prior and
guided filter. IEICE Electronics Express, 11(24):20141002–20141002. (Cited on
page 86.)

[Liu et al., 2015] Liu, F., Shen, C., and Lin, G. (2015). Deep convolutional neural
fields for depth estimation from a single image. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 5162–5170. (Cited
on page 125.)

[LLC, 2006] LLC, M. S. (2006). Rovsim. (Cited on pages 13 and 28.)

[Lu et al., 2015] Lu, H., Li, Y., and Serikawa, S. (2015). Single underwater image
descattering and color correction. In Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, pages 1623–1627. IEEE.
(Cited on page 91.)

[Ma et al., 2015] Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., and Svetnik, V.
(2015). Deep neural nets as a method for quantitative structure-activity rela-
tionships. Journal of chemical information and modeling, 55(2):263–274. (Cited
on page 121.)

[Mai et al., 2014] Mai, J., Zhu, Q., Wu, D., Xie, Y., and Wang, L. (2014). Back
propagation neural network dehazing. In Robotics and Biomimetics (ROBIO),
2014 IEEE International Conference on, pages 1433–1438. IEEE. (Cited on
page 122.)

[Malis, 2004] Malis, E. (2004). Improving vision-based control using efficient
second-order minimization techniques. In Robotics and Automation, 2004. Pro-
ceedings. ICRA ’04. 2004 IEEE International Conference on, volume 2, pages
1843 – 1848 Vol.2. (Cited on pages 34 and 63.)

[Marchand, 1999] Marchand, E. (1999). ViSP: a software environment for eye-
in-hand visual servoing. In Robotics and Automation, 1999. Proceedings. 1999
IEEE International Conference on, volume 4, pages 3224–3229 vol.4. (Cited on
pages 34 and 59.)

[Marti et al., 2012] Marti, J. V., Sales, J., Marin, R., and Jimenez-Ruiz, E. (2012).
Localization of mobile sensors and actuators for intervention in low-visibility con-
ditions: the zigbee fingerprinting approach. International Journal of Distributed
Sensor Networks, 2012. (Cited on page 4.)

[Matsebe et al., 2008] Matsebe, O., Kumile, C., and Tlale, N. (2008). A review of
virtual simulators for autonomous underwater vehicles (auvs). IFAC Proceedings
Volumes, 41(1):31–37. (Cited on page 11.)

[McAfee et al., 2012] McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D.,
and Barton, D. (2012). Big data. The management revolution. Harvard Bus
Rev, 90(10):61–67. (Cited on pages 111 and 121.)



186 BIBLIOGRAF́IA

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical
calculus of the ideas immanent in nervous activity. The bulletin of mathematical
biophysics, 5(4):115–133. (Cited on page 111.)

[Mendonça et al., 2013] Mendonça, R., Santana, P., Marques, F., Lourenço, A.,
Silva, J., and Barata, J. (2013). Kelpie: A ros-based multi-robot simulator for
water surface and aerial vehicles. In 2013 IEEE International Conference on
Systems, Man, and Cybernetics, pages 3645–3650. IEEE. (Cited on page 12.)

[Michel, 2004] Michel, O. (2004). Webotstm: Professional mobile robot simulation.
arXiv preprint cs/0412052. (Cited on page 12.)

[Nardi et al., 2015] Nardi, L., Bodin, B., Zia, M. Z., Mawer, J., Nisbet, A., Kelly,
P. H., Davison, A. J., Luján, M., O’Boyle, M. F., Riley, G., et al. (2015). In-
troducing slambench, a performance and accuracy benchmarking methodology
for slam. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 5783–5790. IEEE. (Cited on page 15.)

[Nielsen, 2015] Nielsen, M. A. (2015). Neural networks and deep learning. Deter-
mination Press. (Cited on page 118.)

[Nowak et al., 2010] Nowak, W., Zakharov, A., Blumenthal, S., and Prassler, E.
(2010). Benchmarks for mobile manipulation and robust obstacle avoidance
and navigation. In Deliverable D3.1 from FP7-BRICS Project (Best Practice in
Robotics). (Cited on page 14.)

[Osfield et al., 2004] Osfield, R., Burns, D., et al. (2004). Open scene graph. (Cited
on page 16.)

[Oude Elberink and Vosselman, 2011] Oude Elberink, S. and Vosselman, G.
(2011). Quality analysis on 3D building models reconstructed from airborne
laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing,
66(2):157–165. (Cited on page 70.)

[Pavin et al., 2015] Pavin, A., Inzartsev, A., Eliseenko, G., Lebedko, O., and Panin,
M. (2015). A reconfigurable web-based simulation environment for auv. In
OCEANS 2015-MTS/IEEE Washington, pages 1–7. IEEE. (Cited on pages 14
and 28.)
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[Pérez et al., 2013] Pérez, J., Sales, J., Prats, M., Mart́ı, J. V., Fornas, D., Maŕın,
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