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Underwater augmented reality is a very challenging task and amongst several issues,
one of the most crucial aspects involves real-time tracking. Particles present in water
combined with the uneven absorption of light decrease the visibility in the underwater
environment. Dehazing methods are used in many areas to improve the quality of digital
image data that is degraded by the influence of the environment. This paper describes the
visibility conditions affecting underwater scenes and shows existing dehazing techniques
that successfully improve the quality of underwater images. Four underwater dehazing
methods are selected for evaluation of their capability of improving the success of square
marker detection in underwater videos. Two reviewed methods represent approaches of
image restoration: Multi-Scale Fusion, and Bright Channel Prior. Another two methods
evaluated, the Automatic Color Enhancement and the Screened Poisson Equation, are
methods of image enhancement. The evaluation uses diverse test data set to evaluate
different environmental conditions. Results of the evaluation show an increased number
of successful marker detections in videos pre-processed by dehazing algorithms and
evaluate the performance of each compared method. The Screened Poisson method
performs slightly better to other methods across various tested environments, while
Bright Channel Prior and Automatic Color Enhancement shows similarly positive results.

Keywords: dehazing, image restoration, underwater images, augmented reality, markers, tracking

1. INTRODUCTION

In the past several years, dehazing was gaining more attention in research as technology using
digital imaging and computer vision is being used in more and more application domains.
Dehazing has a special importance in applications where the images are degraded significantly by
the environment. In scenes affected by haze, fog, or smoke, dehazing methods enhance or restore
the quality of the images to make them usable in further processing.

Specific attention of scholars was recently drawn to the problem of underwater dehazing because
digital imaging technology and computer vision became available for use under water in various
areas such as underwater exploration, tracking, and 3D reconstruction of underwater objects,
underwater archeology, or marine biology (Ludvigsen et al., 2007).

Physical properties of light propagation in water cause the underwater scenes to be affected
by the absorption and scattering of light in the turbid medium. The light as an electromagnetic
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radiation is significantly absorbed by the water as it propagates
(Jerlov, 1976). Moreover, based on current turbidity conditions,
water may contain a wide range of different solid particles
that obstruct, scatter, or refract incident light. As a result, the
images captured inside water suffer from low contrast, blur, color
distortion, and uneven attenuation.

Therefore, dehazing methods developed for underwater
scenes have to deal with the problems caused by the environment
differently than the dehazing methods used in conventional
scenes set in the atmosphere. Special methods for underwater
image restoration or enhancement are developed to improve the
visibility in images or videos created under water.

A technology that could benefit from dehazing methods
capable of increasing the quality of underwater images is
augmented reality (AR). As AR becomes popular and available
in mobile devices, it is applied in various environments
including scenes submerged in water. With devices capable
of underwater AR, there is opportunity to create novel
applications. A characteristic example would be maritime
archaeology, and this is our ultimate goal. In such a case real-
time reconstructions of ancient cities can be performed and
it can be used by archaeologists in research as well as by
tourists.

However, the image distortion created by water may affect the
performance of AR applications negatively. Especially the visual
tracking of objects in AR applications requires high quality of
input data. If the quality of video captured for the AR application
is decreased, the tracking may fail completely, making the rest
of the application unable to augment the scene by additional
information.

Understanding the way that hazy underwater environments
affect the marker detection can help improve the performance
of AR applications used underwater. This paper examines how
dehazing can be used to improve the quality of underwater
marker-based tracking for AR. First, well-known dehazing
algorithms are evaluated in terms of improving the marker
detection in different types of underwater scenes.

The possibility of improving the marker-based tracking
underwater is shown by a comparison of several state-of-the-
art dehazing methods developed for underwater environments.
The methods were implemented and evaluated on a set of
test videos showing various scenes. The evaluation considers
four different underwater sites with different environmental
conditions and aims to determine the effectiveness of selected
dehazing algorithms to increase the success of marker detection.

Although AR scenarios require a high performance of used
algorithms to ensure real-time responses, the focus of this paper
is only to explore methods that can improve results of marker
detection. The algorithms compared are not working in real-time
performance and will have to be optimized in future to be used
in AR.

The rest of this paper is structured as follows: section 2
provides a brief introduction to dehazing and marker detection,
while also presenting some current methods used to approach
these problems. Section 3 defines the evaluation of dehazing
methods carried out in this paper. The following section shows,
explains and discusses the results measured in the evaluation. The

last section concludes this paper, while providing suggestions for
future work.

2. BACKGROUND

Dehazing is needed in areas where the quality of acquired images
is decreased by the influence of the surrounding medium. While
this medium is usually the atmosphere, and the effects affecting
images are caused by weather, digital images are captured also in
other environments, especially in water. Designing a successful
dehazing method requires understanding of physical properties
of the medium and the propagation of light in this medium.
This section describes basic principles of dehazing algorithms
and shows existing dehazing methods. The use of dehazing is
especially important in areas where image processing sensitive to
image quality is used. The second part of this section provides
insight in marker detection that could be used in AR.

2.1. Dehazing
Applications using computer vision algorithms require a certain
degree of input image quality to provide successful results. Some
methods are particularly sensitive to artifacts that may appear
in images and videos captured in uncontrolled environments
such as noise, low contrast, color distortions, or lack of light
in the scene. As it is not possible to ensure ideal conditions in
all situations, additional processing has to be implemented to
mitigate the negative weather conditions in the environment.
One of such methods is dehazing, which aims to improve the
visibility of images that contain haze or fog. These phenomena
are usually present in outdoor scenes where different weather
conditions greatly influence the quality of acquired digital
images.

While traditional models describing the propagation of light
in a transparent medium assume the medium is the Earth’s
atmosphere, in fact any transparent environment where light is
capable of propagation can be a subject of study. The principles
of light propagation are the same in all environments; however,
the exact structure of the environment results in different effects
on acquired images. Dehazing methods have to be adjusted to
the type of environment where they are used in order to produce
optimal results.

Dehazing methods designed for underwater environment
must take into account the specific conditions of such scenes. The
light in water is reflected, scattered, and attenuated as it travels to
the camera, because water is constituted by particles interfering
with light (Dolin and Levin, 2007). However, the character of
particles in water is different than in the atmosphere. First of
all, the size of particles in water is greater than the wavelengths
of visible light. Also, various kinds of solid particles may be
substantially present in water under some conditions.

Scattering and absorption are the main factors altering the
light underwater because the majority of particles in water
is bigger than the wavelength of visible light. Attenuation of
light is much stronger in water compared to the atmosphere.
Furthermore, the amount of absorption is dramatically
increasing with the wavelength of light. So the color channels
of RGB images are not affected equally, which results in the red
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color channel being attenuated more than green and blue. It has
been observed that red light is almost completely attenuated
below the depth of ∼20 m. Green light becomes insignificant in
∼50 m (Jerlov, 1976). The remaining wavelengths are capable of
reaching up to 200 m deep in the water. The rapid absorption
of electromagnetic radiation by water makes the acquisition of
images deep under water impossible without an artificial source
of light. With a different source of light, the environment has a
different impact on images as well. Artificial light has a different
origin and direction than natural sunlight. At the same time, the
intensity of artificial light is very high, which can increase the
effect of light scattering in turbid water.

Water also contains a large variety of organic and inorganic
macroscopic particles collectively called marine snow. The
composition of marine snow is complicated and varies based on
the type of water, place, and temporal factors such as season or
weather. While some particles in marine snow are solid, others
may be transparent. The general turbidity of water affects the
physical properties of light propagation in water and contributes
to the unwanted blurring, attenuation, and back light occurring
in underwater images.

Most dehazing methods assume a simplified physics model of
fog formation such as the one presented by Duntley et al. (1957):

I(x) = J(x)t(x)+ A(1− t(x)). (1)

The observed image I(x) is a product of the haze free image
J(x) attenuated by the transmission of the scene t(x) and global
atmospheric light A. The scene transmittance t(x) defines the
portion of light that is transmitted by the medium without
scattering it. As Figure 1 shows, this effectively means that the
color observed in a pixel is a linear combination of the real color
of the object it shows and the color of the atmospheric light
present in the scene.

This model illustrates that the haze-free image J(x) can
be obtained from the hazy image I(x) provided that the
transmittance map of the scene t(x) and the atmospheric light
A are known:

J(x) =
I(x)− A

t(x)
+ A. (2)

This problem, however, is ill-posed because the physical structure
of the scene is complex and the transmittance and airlight are not
known from a single image.

To address that, some dehazing methods are designed to
require more information than just a single hazy input image.
There aremethods usingmultiple images of one scene in different
conditions (Nayar and Narasimhan, 1999; Schechner et al., 2001;
Narasimhan and Nayar, 2003), and additional depth information
about the scene acquired by special hardware (He and Seet, 2004),
or defined as a geometry of the scene (Kopf et al., 2008).

However, single image dehazing methods are of more practical
use because they can be used on any digital image without
additional information. Single image dehazing can be achieved
either by image enhancement or image restoration methods.
Image enhancement methods do not consider the physics model
of light propagation and fog formation in removing the haze.

FIGURE 1 | The image formation model used in dehazing, taken from He et al.
(2011).

Instead, the degraded images are processed by traditional image
processing methods in order to remove noise and enhance
the color, sharpness, or contrast. Image enhancement can be
achieved by techniques such as the Histogram Equalization
(Agaian and Roopaei, 2013), Unsharp Masking (Deng, 2011),
or the Probability-based (Fu et al., 2015) method. One of the
approaches in image enhancement techniques is to remove
uneven illumination and preform color balancing. A contrast
enhancement method ofMorel et al. (2014) uses Screened Poisson
Equation as a high-pass filter to remove uneven illumination
while preserving details of the image, and includes a simple
color balancing method to equalize colors of the result. Some
enhancement methods are based on modeling mechanisms of
the human visual system. One such method is the Automatic
Color Enhancement (Getreuer, 2012) that adapts local contrast
and equalizes colors similarly to the human eye. Mangeruga
et al. (2018) created a detailed comparison of underwater image
enhancement methods and evaluated them using quantitative
metrics in different environmental conditions. Although effective
in some cases, these approaches can be sensitive to noise and their
results often suffer from over-enhancement.

Methods of image restoration are more complicated and
usually take the depth and the physics properties of the scene into
account. As the laws of light propagation in the atmosphere are
similar to the laws of light propagation in water, it is possible to
use some dehazing techniques targeted at removing fog or haze
to restore underwater images. Fattal (2008) uses an assumption
that the surface shading and the medium transmission are locally
uncorrelated. They use an independent component analysis to
separate the two functions and recover an image without haze
from them. Although this approach proved to be effective in
restoring haze, it can not handle images heavily affected by fog
because the assumption may be broken. Furthermore, Fattal
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presents another dehazing technique based on a principle called
color lines (Fattal, 2014). In this method the formation of an
image is explained by the color lines principle and is used to
restore the haze-free image. Tan (2008) proposed an algorithm
maximizing the contrast of a single hazy image by assuming
that the contrast in a haze-free image is higher than in an
image affected by haze. This observation is used to design a cost
function in the framework of Markov random fields and the
input image is restored by optimizing this framework. Li et al.
(2015) perform single image dehazing using the change of detail
prior.

He et al. (2011) proposed a dark channel prior (DCP) by
noticing that in haze-free images, in every pixel’s regional
neighborhood at least one color channel contains pixels with very
low intensity. The low intensity is caused either by shadows cast
by objects or by very bright colors that have a high intensity in
only one or two color channels. They proposed a dark channel
of an image, which is the regional minimum of intensities across
color channels in every pixel. Their dehazing technique is based
on the observation that the haze increases the intensity of an
image’s dark channel proportionally to the amount of haze,
effectively approximating the transmission of the scene. This
prior has been adjusted and extended in a number of methods
(Gao et al., 2014; Liu et al., 2016, 2017; Xiao et al., 2017).

There are some dehazing techniques making use of latest
advancements in using neural networks. Ling et al. (2016)
developed a deep transmission network to robustly restore hazy
images with the use of all color channels and local patch
information. A convolutional neural network (CNN) consisting
of several convolving andmax-pooling layers has been developed
for image dehazing by Cai et al. (2016). Their CNN creates
the transmission map of input images that can be used to
remove haze by traditional techniques. Ren et al. (2016) use two
convolutional neural networks to first estimate the transmission
of the scene coarsely and then refine it into a precise transmission
map. The training stage of techniques based on neural networks,
however, is their biggest disadvantage because it requires a large
amount of training images with known ground truth. As large
datasets of hazy images with ground truth are not available,
most of these techniques rely on synthesizing haze in datasets of
images with depth maps. An RGBD dataset suitable for this was
presented in Silberman et al. (2012).

General dehazing methods used for outdoor images in the
atmosphere may fail to restore images acquired under water.
Methods designed for underwater conditions have been created
to address specifics of underwater scenes. Ancuti et al. proposed
a dehazing method based on multiscale fusion (Ancuti et al.,
2012) of two enhanced versions of a single input image. The
two enhanced images derived from the input are created to
improve the contrast and details in the result. Subsequently, the
two images are fused together using a multi-scale fusion process
guided by weight functions to create an optimal result across
different scales.

The dark channel method has inspired several methods
(Chiang and Chen, 2012; Wang et al., 2015; Gao et al., 2016)
specialized in underwater dehazing. The method described by
Chiang and Chen (2012) uses the unchanged dark channel prior

to initially estimating the depth of the scene. Additional steps
are implemented to handle specifics of underwater environments
and to compensate the effects of artificial light that might be
present in underwater images. Gao et al. (2016) adjusted the dark
channel prior to underwater scenes by defining a bright channel
prior.

Other methods make effort to use the different rate of
attenuation in different wavelengths of light inside water.
Galdran et al. (2015) remove the color distortion of underwater
images by restoring their highly attenuated red color channel. In
Carlevaris-Bianco et al. (2010), shows a simple method using the
difference between intensities in color channels to estimate the
depth map of an underwater image. The recovered depth is used
to determine the transmission of themedium. Alternatively,Wen
et al. (2013) redefined the dark channel prior only on the blue and
green color channels, omitting the red channel completely.

The key step in dehazing an image is to estimate the depth
of the scene in the image. A sequence of consecutive images,
or a video stream can be also used to restore depth of the
acquired scene. Drews et al. (2015) use the depth restored from
the sequence of underwater images in a model-based dehazing
approach to improve the ability to identify and match features in
the images.

2.2. Marker Detection
The popularity of AR has been increasing in recent years. Its
wide availability allows more applications to be developed across
many areas. To determine the exact location and orientation
of users and objects in AR, the objects of interest have to be
detected and identified and then their orientation is computed.
Different methods of tracking and detecting objects are used in
AR applications. While some make active use of sensors and
signals transmitted and received by the device and objects, the
majority of applications rely only on visual information from a
camera and the use of computer vision algorithms.

Two-dimensional markers detected in video are a common
way of performing tracking for needs of AR applications because
it is a cheap solution and provides good tracking results. The
main disadvantage is that the environment needs to be populated
with markers prior to the AR experience. Markerless-based
tracking is a very popular approach nowadays but underwater is
not easy to be applied because the geometry of the environment
is changing its shape constantly (i.e., due to vegetation). We
chose to use marker detection in our evaluation because of its
simplicity. Markers provide a good means for testing in the
complicated underwater environment.

Existing marker detection algorithms use different approaches
to achieve better robustness, faster detection, and reliable
differentiation between markers. Corners detected on a square-
shaped marker are sufficient to compute the position of an
object using triangulation. The inner area of square markers
can be used to carry additional information making the markers
distinguishable if multiple markers are used. Marker recognition
using binary codes in form of a 2D matrix inside square markers
has shown to be very robust, especially if it utilizes error-
correcting codes (Kato and Billinghurst, 1999; Garrido-Jurado
et al., 2014).
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Although simply detecting at least three corners of a square
marker is enough to compute its position and orientation, there
are many ways to detect different types of markers providing
other advantages. Markers with more complicated shapes are
used to provide more accurate tracking robust to occlusions
(Bencina et al., 2005; Bergamasco et al., 2016). However, it is
more difficult to use the inner area of irregular shapes to carry
additional information. In addition, more computational power
is needed to detect the whole boundary of irregular shapes.

Little research has been done in successfully using underwater
AR because of a number of constraints. Only people with
sufficient training and equipment are able to dive. Diving requires
substantial amount of money for logistics and adjustments
to used equipment are hard to obtain. Moreover, physical
conditions in water make it impossible to use some of the
AR approaches such as GPS tracking. As a consequence, most
of the research conducted in the area of underwater AR is
tested and evaluated only in artificial conditions of a water
tank. dos Santos Cesar et al. (2015) compares marker detectors
in a simulated underwater environment in different levels of
turbidity, lighting conditions, viewing distances, and viewing
angles.

One of the areas where AR has been successfully used in
real-world underwater conditions is marine archeology. AR
applications developed in Bruno et al. (2016a,b) have been used in
waterproof tablets at an archaeological site submerged in water.
The tourists diving at the site were given tablets that guided
their way and provided additional information about artifacts
spotted. The application used ultra-sound sensors to track the
position of the user and to register the virtual scene to the real
world.

3. MATERIALS AND METHODS

This paper aims to evaluate how pre-processing by dehazing
algorithms affects the success of marker detection. Numbers of
successful marker detections in unprocessed underwater videos
are compared to the numbers of successful marker detections
in the same videos after processing it by a dehazing algorithm.
The markers were also identified by the tracking, allowing
to compare which marker was identified when detected. The
evaluation of every test video is then based on comparing
the number of successful marker detections when unprocessed,
and pre-processed by each dehazing algorithm, respectively. In
addition to the total counts of the successful marker detections,
the comparison shows the numbers of detections that were
added and that were lost in processed video compared to the
unprocessed version.

The marker detection algorithm used in the evaluation is
implemented in the OpenCV 3.2.0 library. The ARUco marker
detection algorithm from the ARUco AR library (Garrido-Jurado
et al., 2014) provides reliable real-timemarker detection robust to
different lighting conditions. The detection works on gray-scale
images and is based on detecting a square-shaped marker with
additional information encoded in the inner area of the marker.
The markers are identified by a 6× 6 binary matrix encoded with

error-correction that is capable of correcting up to 6 incorrectly
detected bits.

Compared videos contain markers from ARUco’s
DICT_6X6_50 dictionary printed on a sheet of paper and
plasticized. There appears one A4 size paper with a single larger
marker (∼15 cm wide) and another A4 paper with six smaller
markers (∼7 cm wide) arranged in a grid. Figure 2 shows the
marker configurations. While most of the videos capture only
one of the two papers, there are videos with both single and
multi marker papers. Each of the seven markers is considered
independently in the evaluation and the detection of each marker
is evaluated for every frame of the test videos.

3.1. Compared Dehazing Methods
The evaluation compares selected state-of-the-art methods
performing single image dehazing specialized for underwater
environments that use different key approaches. The methods
were selected for their good performance in enhancing contrast
and improving visibility in a wide range of environments. The
selection is based on an evaluation comparing underwater image
enhancement techniques in Mangeruga et al. (2018), or the
evaluations with other existing methods in the papers where they
were presented (Ancuti et al., 2012; Gao et al., 2016).

3.1.1. Multi-Scale Fusion
The fusion algorithm presented in Ancuti et al. (2012) restores
colors and enhances the contrast of underwater images using
two different restored versions of the input image. After the two
enhanced images are derived, they are used as an input to amulti-
scale fusion process that combines them based on several weight
functions computed from each image. To simplify the restoration
process, the two input images are derived using simple image
processing methods rather than complex physical properties of
the scene.

The first enhanced image is obtained by a modified Gray-
World (Buchsbaum, 1980) white balancing approach to correct
colors. To reduce noise and improve contrast in the underwater
scene, a second enhanced image is obtained from the color-
corrected image created in a previous step by applying a bilateral
filter followed by an adaptive histogram equalization.

A dehazed output image is created by blending the enhanced
versions with a multi-scale process using image pyramids. The
ratio of blending the images is determined by defining weight
maps for each enhanced image based on four measures: laplacian
contrast, local contrast, saliency, and exposedness.

This method was implemented in Matlab using its Image
Processing Toolbox in combination with the DipImage plug-in.
The saliency weight map is computed using the Matlab source
code available in Achanta et al. (2009). Figure 3 shows an image
processed by this algorithm along with its two enhanced input
images.

3.1.2. Bright Channel Prior (BCP)
The BCP underwater dehazing method was presented by Gao
et al. (2016) and originates from a dehazing technique for
atmospheric images developed in He et al. (2011). He et al.
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FIGURE 2 | Single marker (A) and a grid of multi markers (B) from the ARUco dictionary used in test videos.

FIGURE 3 | Example of an underwater image of a seafloor (A) processed by the fusion algorithm (B). Images (C) and (D) depict the two enhanced images created by
the algorithm. The result is a fusion of the two enhanced images.

observe that one of the color channels of a local area in haze-
free images has low intensity and call this assumption the Dark
Channel Prior. They statistically show that this assumption is
broken in hazed areas in an image. This fact can be used to
estimate the amount of fog present in the image.

While this assumption works for regular scenes, it fails for
images taken underwater because the dark channel of hazy areas
does not differ from the dark channel of haze-free areas. The
Bright Channel Prior method originates from this idea, and
takes into account the properties of light absorption in the
water. Visible light with longer wavelength is absorbed more
quickly, which results in underwater scenes being in general
green or blue due to very low intensities of the red color
channel. Because of this, the BCP method considers adjusted
values of color channels and defines the Bright Channel image as
follows:

Jbcp(x) = max
y∈�(x)

(max
c∈{r,g,b}

Inew(y)) (3)

where �(x) denotes a window neighborhood centered at pixel
x, and Inew is the adjusted input image, with the unchanged red
color channel r, and inverted green and blue channels g and b
respectively. It is observed that the bright channel image of the
haze-free underwater images have intensities close to 1. The value
of the bright channel is lower in pixels where haze is present.

The method using BCP to restore images first estimates the
bright channel, using the Equation (3). To improve stability, the
initial bright channel image is further rectified by blending it with
a Maximum Color Difference image defined as

Imcd(x) = 1−max(Cmax(x)−Cmin(x),Cmid(x)−Cmin(x), 0) (4)

where Cmax(x) is the color channel with the highest intensity in
the pixel x, Cmid(x) is the channel with the medium intensity, and
Cmin(x) is the channel with the lowest intensity in the pixel x.
The Bright Channel and the Maximum Color Difference images
are blended by the proportional coefficient λ. The value of the
proportional coefficient is set to be higher than 0.5 so that the
Bright Channel would be the main part of the rectified result. In
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practice, it is set as the maximum value of the saturation channel
of the input image in HSV color space.

Another estimation needed to be done to restore the degraded
image is the atmospheric light, which is a source of color
distortion in the image. Among the one percent of darkest pixels
in the dark channel image, the pixel with the least variance in the
respective variance image is selected as the atmospheric light.

Transmittance describes the properties of the environment,
which allows removing the haze from the image. It is
derived from the rectified bright channel image and estimated
atmospheric light by following equation

tc(x) =
(Jbcp(x)− Ac)

1− Ac
(5)

where c denotes one of the three color channels, tc(x) denotes
the transmittance in the respective channel, and Ac denotes the
channel of the estimated atmospheric light. The average value
across the different color channels in computed transmittances
is set as the initial transmittance image. This result still contains
some halos and artifacts introduced by the bright channel image.
Therefore, the preliminary transmittance is refined by using a
guide filter (He et al., 2013) with the grayscale version of the input
image as the guide image.

With the transmittance image and the atmospheric light, it
is possible to restore the degraded input image by the equation
derived from the physics model of the image formation as
shown on Equation (2). In this formula, the haze-free image
J(x) can be obtained from the degraded underwater image
I(x), estimated atmospheric light A, and the transmittance t(x).
Finally, the resulting image should be further corrected by the
deduced histogram equalization process. The equalization should
rectify the color distortion that occurs due to differences in
transmittance of each color channel.

The evaluated Matlab implementation of the BCP dehazing
method is using the built-in capabilities of the Image Processing
Toolkit, following the equations stated above. The bright channel
image is computed with the neighborhood size of 7. The same
size of neighborhood is used to compute the variance value
of pixels in an atmospheric light estimation step. To refine
the transmittance image, the following parameters are used in
Matlab’s imguidedfilter function: NeighborhoodSize of 50 and
DegreeOfSmoothing with the value of 0.01. The last step of
the histogram equalization was omitted in this implementation
completely. An example of an image processed by this method is
in Figure 4.

3.1.3. Automatic Color Enhancement (ACE)
The ACE technique of image enhancement was first developed
by Gatta et al. (2002). This method is based on a number of basic
mechanisms of human visual perception. The first mechanism,
Gray World, means that the average perceived color is gray. The
White Patch mechanism normalizes the colors perceived toward
a white reference. The mechanism of Lateral Inhibition causes
the contrast of neighboring objects to be increased. Furthermore,
this method also models the local/global adaptation mechanism
of human vision.

FIGURE 4 | Underwater image showing markers (A) processed by the BCP
method (B). Subject provided written informed consent for publication of this
image.

As the original definition of this technique was
computationally complex, Getreuer (2012) proposed a fast
approximation of this method. The approximation reduces the
complex O(N4) ACE computation into convolutions, reducing
the complexity to O(N2 logN).

The evaluated videos were processed by the ANSI C code
provided by Getreuer (2012) adapted to process videos frame by
frame. All test videos were processed by the level interpolation
with eight levels. The weight parameter α was set to 5 and the
weighing functionωwas set to 1/||x−y||. An example of an image
processed by the ACE method is shown in Figure 5.

3.1.4. Screened Poisson Equation for Image Contrast

Enhancement (SP)
The SP presented in Morel et al. (2014) represents an approach
of image enhancement. It uses the Screened Poisson equation
in the Fourier domain to remove uneven illumination in the
image. The equation is used in each color channel independently
and each channel is also processed by a simple color balancing
algorithm (Limare et al., 2011) which equalizes the histogram of
the image before and after the Screened Poisson equation solving.
The method acts like a high-pass filter that in result enhances
colors and the contrast in the processed image.

This is controlled by two parameters: a trade-off parameter α

controlling the amount of enhancement in the screened poisson
equation; and s, specifying the level of saturation in the color
balance algorithm. In all processed videos the parameters were set
to α = 0.0001, and s = 0.2. The implementation of this method
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FIGURE 5 | Image with a diver holding a marker from test video 2_2 (A)

processed by the ACE method (B). Subject provided written informed consent
for publication of this image.

was adapted from the Supplementary Materials of Morel et al.
(2014) and is written in ANSI C. An open source library FFTw1

performs the Fast Fourier transform with required boundary
conditions needed by this algorithm. A sample image processed
by this method is in Figure 6.

3.2. Test Data
The evaluation of dehazing methods is a difficult task because the
ground truth data is often not available. In addition, it is difficult
to acquire visual data underwater as it requires specialized
equipment, trained personnel, and other logistics. One possibility
to create a dataset with ground truth images not affected by water
is to set up an artificial environment in a water tank. However, the
conditions simulated in an artificial environment can not imitate
the full range of different real-world environments in water.

The test data set used in this research consists of videos taken
in various sites in the Mediterranean Sea (Italy, Greece, and
Cyprus). To make the test data set more robust, it includes data
representing different kinds of environmental conditions that
occur underwater. The factors affecting the conditions are the
depth of the water, level of turbidity, characteristics of light in
the scene, and the presence of large-scale particles.

The data used for evaluation of dehazing algorithms in this
paper was taken from the underwater videos available in the i-
MareCulture project (Skarlatos et al., 2016). There are four groups
of test videos captured on different sites:

1FFTw open source library, available opnline at http://www.fftw.org/

FIGURE 6 | Image of marker on a seafloor (A) processed by the SP algorithm
(B).

1. The first test data set was acquired in May 2017 at Nisia,
Cyprus. ANvidia tablet enclosed in a waterproof case was used
to capture short uncompressed video sequences in a depth
of 9 m. This is the only set with data without compression,
which simulates the way the videos would be pre-processed if
dehazing was used to improve an AR application in practice.
The videos show single and multi marker papers in different
situations including lying on the seafloor or being attached to
a statue.

2. The second set of videos was shot in August 2017 near Athens,
Greece. Two videos capture divers in a depth of ∼10 m
holding the markers in their hands, and one video shows
markers lying on the seafloor. In all videos the camera moves
closer or further from the markers while focusing on them.
This is the only group containing videos with both single and
multi marker papers at the same time. The camera used for
this group of videos is a GoPro HERO4.

3. The third set of compared videos was shot in September 2017
at the Konstantis artificial reef in Cyprus. These videos were
captured in a depth of 22 m which means that the videos
are strongly affected by attenuation in red and green color
channels. Only the multi marker paper is used in this group
of videos. The marker is positioned on the top of a metal
shipwreck sunk at the bottom of the sea. This set of videos
was shot on a Garmin VIRBWE waterproof camera.

4. The last group of videos used for comparison was acquired
with an iPad pro 9.7 in a depth of 5–6 m. The videos show
a diver holding the paper with either single or multi marker
while the camera is changing the distance to the diver slowly.
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These videos were captured in the Underwater Archaeological
Park of Baiae near Naples, Italy in October 2017.

The full technical details about each test video can be found in
Table 1 and Figure 7 which show sample images from all groups
of videos.

4. RESULTS

In this chapter, the results of the proposed evaluation of dehazing
algorithms are presented. Results of each compared algorithm are
presented separately and summarized in tables.

The marker detection in all evaluated videos was first
inspected without any preprocessing. Table 2 shows the total
number of successful marker detections in the original videos.
Although the quality of the videos is decreased by the underwater
environment, the marker detection is still working if the marker
is well-visible or if the marker is very close to the camera.
However, the visibility conditions in the videos in group 3 were
causing the marker detection to fail significantly, especially for
the videos showing the single marker.

The number of successful marker detections was also
inspected in test videos processed by all compared dehazing
algorithms. Averaged results of the methods by the test video
group are shown in Table 3. Full results of marker detection
in the entire dataset are available in Supplementary Material

in form of a spreadsheet. Figure 8 shows demonstrative graphs
comparing marker detection results in selected videos from all
four locations. These graphs show how the dehazing methods
compare to each other and to the result of marker detection with
no dehazing. Each test video group is represented by a graph with
the most typical results for its group.

The measures showing the improvement of marker-based AR
tracking are the number of marker detections that are newly
found in the processed videos, and the number of marker

TABLE 1 | Summary of all videos used in evaluation.

Name Format Date Depth (m) Device Resolution Time

1_1 bytes May 9 Nvidia tablet 1,280 × 720 00:12

1_2 bytes May 9 Nvidia tablet 1,280 × 720 00:13

1_3 bytes May 9 Nvidia tablet 1,280 × 720 00:14

1_4 3GP May 9 Nvidia tablet 1,920 × 1,080 01:21

2_1 MP4 Aug 10 GoPro4 1,920 × 1,080 00:19

2_2 MP4 Aug 10 GoPro4 1,920 × 1,080 00:31

2_3 MP4 Aug 10 GoPro4 1,920 × 1,080 00:20

3_1 MP4 Sep 22 VIRB XE 1,920 × 1,440 00:15

3_2 MP4 Sep 22 VIRB XE 1,920 × 1,440 00:13

3_3 MP4 Sep 22 VIRB XE 1,920 × 1,440 00:13

3_4 MP4 Sep 22 VIRB XE 1,920 × 1,440 00:22

4_1 MPEG Oct 10 iPad pro 1,920 × 1,080 00:59

4_2 MPEG Oct 10 iPad pro 1,920 × 1,080 00:18

4_3 MPEG Oct 10 iPad pro 1,920 × 1,080 01:10

4_4 MPEG Oct 10 iPad pro 1,920 × 1,080 00:14

The names of videos show the number of test videos set and its number in the set.

detections that are lost, compared to the detections in the original
videos. The comparison shows that all methods can improve the
marker detection by detecting markers that were not detected in
the video without the preprocessing. At the same time, however,
there were somemarkers detected in the original videos that were
not detected in the videos after processing by dehazing. This
happens due to over-enhancement or artifacts that a dehazing
method can cause.

In general, the fusion algorithm causes the detection to
lose a portion of the markers and shows improvement in the
detection only in some of the videos. The relative amount
of marker detections lost is much more significant than
the amount of newly found detections. The percentage of
detections lost after processing test videos with the fusion
method reached up to 45% and at least some detections
were lost in each of the test videos, except the one where
no marker was detected without preprocessing. On the other
hand, the amount of newly detected markers in videos
processed by the fusion method is insignificant in most
videos.

The results of other compared methods (BCP, ACE, SP) show
similar results. The amount of newly detected markers is higher
than the number of lost detections in almost all of the test videos,
while the number of lost detections is not exceeding 18%. Graphs
in Figure 8 also show that these three methods yield similar
numbers of successful detections, while keeping the number of
successful detections higher than with no preprocessing.

The evaluation of the selected dehazing algorithms shows that
dehazing can be used to improve the success of marker detection
in different underwater environments. Results also suggest that
the SP algorithm is improving marker detection slightly more
than the other methods. However, numbers of successful marker
detections show that the success of the dehazing is not the same
in different underwater environments. However, the results of the
methods BCP, ACE, and SP are consistently similar to each other,
and show an improvement in different environments.

The first group of videos is showing considerable increases of
new marker detections, as well as a high number of detections
that were lost after dehazing. The results are bad especially in
videos 1_4, where the number of lost detections was much higher
than the newly detectedmarkers for all comparedmethods. In the
second group of test videos, the video 2_2 had an exceptionally
high rate of detection loss. The marker detection in other
videos of this group was successfully improved by all methods
except for the fusion method, which failed to make a significant
improvement. Except for the video 3_1, the number of newly
detected markers in the third set of videos was equally low for
all methods. The fusion algorithm caused much more markers to
be lost after the preprocessing than the other methods in videos
from this group.

The last set of test videos contains some extreme cases of
results. The video 4_2 had no markers detected in its original
version, so the percentage of lost and newly found markers
could not be determined. The rest of the test videos in this
group also had very low numbers of markers detected without
preprocessing. The dehazing algorithms dramatically increased
the success of marker detection in all the videos and the low
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FIGURE 7 | Sample image from test videos in group one (A), two (B), three (C), and four (D). Subjects provided written informed consent for publication of this image.

TABLE 2 | Results of marker detection in evaluated videos without preprocessing.

Name Single marker Multi marker Total

1_1 0 343 343

1_2 63 0 63

1_3 117 0 117

1_4 0 8,190 8,190

2_1 560 3,349 3,909

2_2 527 4,811 5,338

2_3 588 0 588

3_1 247 0 247

3_2 1,127 0 1,127

3_3 863 0 863

3_4 930 0 930

4_1 4 0 4

4_2 0 0 0

4_3 0 436 436

4_4 0 72 72

amount of successful marker detections in the original means
that the percentage of lost marker detections can be very high but
insignificant to the evaluation. The BCP, ACE, and SP methods
were successful in detecting markers in all four test videos in

TABLE 3 | Averaged results of the numbers of successful marker detections in
whole test video groups by dehazing method.

Test videos group Method Average detections

lost %

Average detections

added %

Group 1 fusion 16.90 09.58

Group 1 bcp 10.60 16.59

Group 1 ace 10.33 09.79

Group 1 sp 10.37 10.86

Group 2 fusion 02.30 01.38

Group 2 bcp 00.29 03.82

Group 2 ace 00.24 04.22

Group 2 sp 00.25 04.32

Group 3 fusion 22.19 01.66

Group 3 bcp 04.07 06.07

Group 3 ace 03.77 09.19

Group 3 sp 08.81 08.99

Group 4 fusion 62.60 117.59

Group 4 bcp 00.00 7099.22

Group 4 ace 00.00 4633.30

Group 4 sp 00.00 8967.52

this group while not losing any markers. In contrast, multi-scale
fusion dehazing improved the marker detection only in two out
of four videos.
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FIGURE 8 | Results of marker detection shown on graphs. Each test video group is represented by one video (labeled on top). Graphs are showing the cumulative
number of successful marker detections in videos for each dehazing method or no dehazing, respectively.

Although the dehazing algorithm evaluation was aiming to
cover a wide range of possible inputs, the variability of visibility
conditions underwater is much more diverse. The evaluation
could be improved by using larger a amount of data from more
different sites. More focus in the evaluation can be put on
considering the specifics of location and current condition in
each test video to understand more how these factors affect the
outcome of dehazing methods.

As the dehazing algorithms are usually not designed to work
in real-time, their performance is often time-consuming and they
are not designed to be fast. However using dehazing to improve
tracking in an AR application will require the dehazingmethod to
be able to run in real-time performance. Therefore, the evaluation
also considers the speed of compared algorithms. The fusion
algorithm was the slowest one, having an average processing time
of 7 s per frame. The BCP algorithm consists of simpler steps that
would allow for optimizations. The unoptimized implementation
used in the comparison took an average three seconds to process
a single frame of the video. The implementations of ACE and SP
were faster, both needing∼2 s to process a single image. All times

were measured on images with a resolution of 1,920 × 1,080
pixels on an HP laptop computer with 2.40 GHz Intel i7-5500U
CPU and 8GB of RAM.

At the moment, the processing time of the compared
methods is not suitable for a real-time application. However,
this evaluation shows the capabilities of dehazing in improving
marker detection and it can be used in the future to develop an
optimized method running in real-time.

5. CONCLUSIONS

This paper presented current methods of underwater image
dehazing that restore the visibility decreased by underwater
environments. Selected underwater dehazing methods were
evaluated to show their capability of improving marker-based
tracking for augmented reality applications.

The evaluation of dehazing techniques was carried out by
comparing the number of successful marker detections in a
number of test videos. The existing marker detection methods
were first described and the ARUco library was used to detect
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markers in the evaluation. For evaluation, four dehazingmethods
targeted for underwater scenes were selected from existing state-
of-the-art techniques and implemented. The multi-scale fusion
algorithm restores the images by creating two different enhanced
versions of an input image and combines them in a multi-scale
fusion process according to weights measuring the quality of
enhancement in the two derived images. The bright channel
prior algorithm defines a special bright channel of the image
and uses it to estimate the transmittance of the scene. The
transmittance is then used to restore the image according to the
formula of image formation. The automatic color enhancement
and screened poisson methods represent methods of image
enhancement and increase the contrast of the underwater images.

The results of the dehazing algorithm evaluation suggested
that the SP algorithm performs the best in improving the marker
detection. The BCP and ACE methods also showed significant
improvement in marker detection, although not as good as SP.

Furthermore, a different level of success in improving
the tracking was noticed in different groups of videos. This
shows that the marker tracking performance may differ greatly
according to depth, location, and the actual light and turbidity
conditions. In addition, it has been shown that in some cases the
dehazing caused a loss of some markers that were detected in the
video without preprocessing.

In the future, there are many opportunities to improve
and extend the evaluation presented in this paper. Extending
the evaluation with a larger and more diverse data set would
be beneficial. In addition, other dehazing methods should be
evaluated as there are many recent approaches addressing the
problem of underwater dehazing. The results of the evaluation
could be also supported by using data with ground truth acquired
in controlled conditions.

Other measures could be also included in the evaluation to
provide more insight in how dehazing affects the AR application
performance. With ground truth available in the test data set,
the accuracy of marker detection could be evaluated. Moreover,
different parameters of the dehazing methods and AR tracking
algorithms can be used to evaluate their influence on the
problem.

As the dehazing algorithms proved to be useful in improving
the marker detection underwater, they can be used in
AR applications targeted in underwater environments. Some
dehazing algorithms will allow optimization that will enable
an AR application to use dehazing as a preprocessing step to
effectively improve the success of tracking.
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