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A mirror-based active system capable of changing the view’s direction of a pre-existing
fixed camera is presented. The aim of this research work is to extend the perceptual
tracking capabilities of an underwater robot without altering its structure. The ability to
control the view’s direction allows the robot to explore its entire surroundings without any
actual displacement, which can be useful for more effective motion planning and for
different navigation strategies, such as object tracking and/or obstacle evasion, which are
of great importance for natural preservation in environments as complex and fragile as
coral reefs. Active vision systems based on mirrors had been used mainly in terrestrial
platforms to capture the motion of fast projectiles using high-speed cameras of
considerable size and weight, but they had not been used on underwater platforms. In
this sense, our approach incorporates a lightweight design adapted to an underwater
robot using affordable and easy-access technology (i.e., 3D printing). Our active system
consists of two arrangedmirrors, one of which remains static in front of the robot’s camera,
while the orientation of the secondmirror is controlled by two servomotors. Object tracking
is performed by using only the pixels contained on the homography of a defined area in the
active mirror. HSV color space is used to reduce lighting change effects. Since color and
geometry information of the tracking object are previously known, a window filter is applied
over the H-channel for color blobs detection, then, noise is filtered and the object’s
centroid is estimated. If the object is lost, a Kalman filter is applied to predict its position.
Finally, with this information, an image PD controller computes the servomotor articular
values. We have carried out experiments in real environments, testing our active vision
system in an object-tracking application where an artificial object is manually displaced on
the periphery of the robot and the mirror system is automatically reconfigured to keep such
object focused by the camera, having satisfactory results in real time for detecting objects
of low complexity and in poor lighting conditions.
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1 INTRODUCTION

Given the recent technological progress in the design of
unmanned underwater vehicles, either remotely operated
(ROVs) or autonomous (AUVs), these devices have become
available to many researchers in different areas of study. In
order to improve navigation of these vehicles, several methods
and technologies have been used to obtain information about the
marine environment, such as laser and sonar systems.
Nonetheless, these technologies are in general considered
invasive since both artificial-generated lightwaves and
soundwaves disrupt the natural environment of marine life.

For the development of submarine vehicles or robots, vision-
based systems are typically included within the set of sensors of
such platforms as the main means of perception, this is due to the
benefits they offer, such as the acquisition of high-resolution
images, non-invasiveness and low cost.

However, in order to perform a complete autonomous
navigation using only visual information, underwater
vehicles need accurate and reliable information (Zelinsky,
1992; Choset et al., 2005). That is to say, the captured
images must show as clear as possible, all the features of the
surrounding objects in any navigation path. Thus, the obtained
features must be enough to classify what is perceived in the
scene, in order to detect regions of interest to be followed and
obstacles to be avoided (Manley, 2003). Both cases involve
computing a set of feasible trajectories in real time in order to
get an autonomous-effective navigation.

Some of the challenges of underwater vision systems are
strictly related with inherent conditions to submarine
environments, e.g., sea snow, existence of pollutants, type of
local flora and fauna, changes in climate (Erdogan and Yilmaz,
2014); others are related with photometric aspects (Li et al., 1997),
(e.g., changes in coloration (Yamashita et al., 2007) due to the
source of illumination, and eventually, those that are caused by
changes in the light propagationmedium. All these conditions are
inevitable, and although the progress of underwater camera’s
sensors technology together with the knowledge on the capturing
process of objects in motion Silvatti et al. (2013) can help to
reduce some of their effects, adding complexity to the system will
always have an impact in the cost of developing any underwater
robotic platform. In recent years, the problem of detection and
tracking of underwater moving objects has received considerable
attention Zuzi et al. (2018); Panda and Nanda (2020) due to wide
applications in oceanographic research. It is clear thus, the need
of an autonomous navigation system capable of detecting and
tracking underwater moving objects of interest.

At this point, it is important to highlight two additional critical
factors for underwater navigation: narrow field of vision (FOV)
and image distortion. The reduction of the FOV is a crucial factor
that impacts the performance of any visual navigation strategy,
because a small FOV ties down information of surrounding
obstacles and, therefore, limits the response capacity in
maneuvers to avoid collisions. One could think that a practical
solution to this problem would be to add several cameras oriented
at different angles. However, distortion will persist in each
camera, and what is worse, the computational cost for image

analysis would increase linearly in proportion to the number of
cameras.

One of the alternatives used to obtain information from the
periphery, although not in a permanent way, is the use of a servo-
actuated camera capable of actively varying its orientation. The
use of this strategy in underwater robots also requires work for
conditioning the entire device to be waterproof and to support the
environment high pressures. Adding this robust system to a
commercial robot entails the loss of the hydrodynamic profile
of the AUV, and specially causing undesirable dynamic effects,
especially for the displacement, due to the action and movement
of the camera’s components and, in general, a modification of the
entire design of the AUV.

Another alternative that has gained popularity among the
research community in terrestrial and erial robots is the use of
fisheye cameras, which offer a wide FOV, with viewing angles up
to 180° (Ishibashi, 2010). However, one disadvantage that this
type of lenses presents is the spatial image distortion, having more
density information at the edges of the image, in other words, the
information that is concentrated in the center of the image has
high resolution and at the edges has very poor resolution (in
terms of space pixel density). Additionally, most of these camera
lenses have been designed for ground applications, where air is
the interface for light diffusion. Therefore, in underwater
applications (a different environment for which they were
designed), the fish-eye lenses advantages are reduced (Agrawal
et al., 2012).

There are research works in terrestrial environments
(Okumura et al., 2011; Lee et al., 2012; Okumura et al., 2013;
Lelais et al., 2019), where an active mirror system is capable of
tracking high-speed particles (like a bullet) (Lee et al., 2012) using
a robust and heavy recording hardware. Based on this strategy,
the proposed solution has a novel mountable device based on
mirror optics, which through the automatic movement of flat
mirrors (Agrawal et al., 2012) can change the main angle of the
preexisting fixed camera and obtain information from the
periphery of the AUV.

The main contribution of this research work is to enable
existing robotic platforms, which vision systems can no longer be
modified, with a wider viewing angle. The proposed solution is to
use active mirrors to change the angle of vision of a fixed camera
system. The weight and size of an active mirror system are usually
much smaller than the mechanisms used to move a complete
vision system. Additional benefit is the use of existing hardware
without having to invest in completely changing the design of the
platform, which in most cases is impossible to perform.

Designed for ocean exploration applications, the proposed
active mirror system has been experimentally tested to visually
track a moving target in a coral reef environment. Based on the
shape and color of the object of interest and using projective
geometry, it is possible to estimate the spatial location of the
object with respect to the robot’s referential frame. The visual
tracking is performed using a PID control strategy to generate the
motion directives of the active mirror system, having as an input
reference the position of the centroid of the object in the image
plane, its speed and the estimated position by using a Kalman’s
filter.
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To deal with the variations in color in underwater environments,
we use the HSV-space color space which has been successfully
reported for real-time applications due to its low computational cost.
To deal with possible sunlight reflections, the system’s own design
conceals the mirror system of direct Sun exposure with the robot’s
own body. For the analysis of active mirror visual information, a bi-
cubic interpolation method is used to compute the projection of
points that belong tomirror area, then a homography is computed to
extract an image blob of the reflective surface.

The outline of the paper is as follows. Section 2 presents
detailed information about prototype design, the kinematics of
the mirror movement as well as a virtual camera model. The
process of image analysis (segmentation and extraction of the
mirror projection region) is contained in Section 3, as well as the
method used for object tracking using a segmentation process in
the HSV color space. The control algorithm of the mirror system
is presented in Section 3.5, where all the blobs are geometrically
weighted to estimate the centroid of the object, then a Kalman
Filter is performed to predict the object velocity in image in order
to implement PID control. The experimental results and analysis
of the performance are presented in Section 4. Finally, the
conclusions and future work are given in Section 5.

2 MIRROR SYSTEM CONFIGURATION AND
DESIGN

Several research work on robot navigation and exploration have
successfully tested active-camera vision systems (Manley, 2003;
Yahya and Arshad, 2016; Vidal et al., 2018). Despite the diversity
of approaches in these works, the pan-tilt movement scheme has
been widely chosen because of its simplicity. Our work continues
on this trend but instead of using a mechanism to directly
generate directly pan-tilt motion in the camera, we use mirrors.

The idea of using mirrors in the design of our active system is
inspired by the mechanism of the single-lens reflex camera (SLR). In
this type of camera, a moveable mirror behind the lens reflects an
image through a pair of mirrors, onto the viewfinder. Thus, in an
inverse approach, one could think of changing the direction of light
beams from around the robot and focus them to the camera sensor
with the appropriate motion of themirror. Taking this approach as a
reference, it has to be considered the reflection of the principal axis of
view and that the mirrors must be on the camera’s FOV.

In this section, the details on the design and the kinematics of the
mirror system is described. First, we address a fundamental aspect in
the design of any mirror system: the distance between the mirror
and the camera. On one hand, if the mirror is placed very close to
the camera, the virtual image on themirror could present occlusions
caused by the reflection of the body of the robot, thus dramatically
reducing the useful field of view of the device (see Figures 1A,B). On
the other hand, if the mirror is placed too far from the camera
(Figure 1C), it would require a very large mirror in order to use the
majority of the image area due to the perspective. In addition, for
applications involving underwater or even erial vehicles, if we opt for
a long support with a mass at the end (mirror), it could change
dramatically the center of mass of the system which in turn will
change the dynamic parameters needed for dynamic-based
controllers. In Okumura et al. (2011), the authors try to solve
this problem by using a set of lenses called “pupil transfer lenses” as
an alternative to reduce mirror size. However, for the proposed
development, this is not a feasible solution for underwater
environments, due to variations in light propagation.

To address possible robot-body occlusion a system composed
by two mirrorsM1 and M2 is proposed. Similarly to a pentaprism
in an SLR camera, two mirrors change the direction of view for the
camera user. Using this approach, the target ofM1 is to turn aside
the camera’s view direction toward M2, thereby M2 is responsible
for changing the gaze direction by moving in two axes and

FIGURE 1 | Illustrative comparison of virtual images produced by the mirror position. (A) General Overview of two scenarios. (B) Virtual Image produced when
mirror is placed near from the robot’s camera. (C) Virtual Image produced when mirror is placed near from the robot’s camera.
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generating a virtual camera. The virtual camera corrects image
inversion caused by M1, targeting principal view axis toward the
desired direction of observation. Figure 2 shows this interaction
between the two-mirror system and the AUV’s camera.

2.1 Virtual Camera Kinematics
One of the disadvantages of including a system of two mirrors in
relation to the system of a single mirror is that the mathematical
model of motion of the virtual camera grows in complexity.
However, with some design considerations, it is possible to
simplify the motion model of the system.

The first aspect that can been taken into account to simplify
the kinematic model is to consider a constant translation between

the reference frames of each of the mirrors, then the pose of the
first mirror M1, with referential frame Σ1, can be considered
constant over time. The gazing mirror M2 changes its pose and
consequently the pose of the virtual camera being driven by two
motors, which will be represented by the generalized coordinates
q � [q1, q2]T , where q1 and q2 are the tilt and pan angles,
respectively. The model complexity is reduced given that the
axes of rotation intersect at the center of the mirror surface and
the angle of the first mirror is fixed.

A simple scheme of this mirror-camera arrangement is
represented in Figure 3. It is assumed that reference frame Σ1

is attached to M1 and Σ2 is attached to M2, which has a pan-tilt
movement and is also displaced a distance d � d1 + d2 (see
Figure 3) w.r.t. the base frame Σc, which in this case yields to
reference frame assigned to camera.

First transformation (rotation and displacement d1) between both
reference frames Σ0 and Σ1, is a constant transformation given by:

T1
0 � [ [Rλ(α)] d1

0 1
] ∈ SO(4), (1)

where Rλ(α) is a rotation matrix over the λ axis, where
λ ∈ R3, λ � 1, α is the value angle of rotation which is always
α � π

2. Notice that since d1 is only displaced in the direction of the
positive z − axis of the camera, we have d1 � [0, 0, |d1|]T . The
matrix that transforms the values expressed in the Σ2 reference
frame to the Σ1 reference frame is given by:

T2
1 � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ [Rz(q1−π2)Ry(q2−π2)] d2

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ SO(4). (2)

Asmentioned above, we consider the origin of the reference Σ2

in the center of the second mirror. Thus, we have the center of the

FIGURE 2 | A two-mirror system design interacting with the AUV’s camera.

FIGURE 3 |Reference frames of the system. Since we assume a system
of fixed cameras on the robot, we consider a frame Σ0 at the origin of the
camera. The origins of the frames Σ1 and Σ2 are located in the center of the
mirrors 1 and 2, respectively.
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mirror located in 2Xe� [0, 0, 0, 1]. Please note that the upper
index 2 indicates the reference frame. Note also that by placing
the reference frame in the center of the mirrors and the center of
rotation axis, this vector is invariant for all values of generalized
coordinates vector q. Therefore, we have the vector Xe expressed
in the camera frame as:

Xe � T1
0 T

2
1
2Xe. (3)

So far, we have only discussed about the description of the
movement of the center of the mirror with respect to the center of
the camera as a function of the joint coordinates q1 and q2.
However, what is in our interest is the description of the
movement or pose of the virtual camera with respect to those
joints. One of the optical phenomena of mirrors is the formation
of a virtual image with depth equal to the actual distance of the
object to the mirror (see Figure 4). This property could be used to
describe the center of the virtual camera. As shown in Figure 4,
the position of S (representing a virtual object produced on the
mirror) keeps the same displacement h1 in the direction of the
specular surface. However, the displacement h1 on the normal
axis to the mirror surface is negative. Thus, we have that the
movement of the objects reflected on the mirror are symmetrical
on the plane of the mirror. In a reverse approach, we can say that
the movement of the virtual camera is symmetrical in the plane of
the mirror relative to a static light source.

As it can be seen, the mapping of the camera’s motion is
nonlinear, thereby it is difficult to model an inverse relationship
(i.e., there is not a unique inverse mapping) that allows us to
choose a joint configuration given a desired position of the virtual
camera. However, the true objective and challenge in most of the
active vision systems, is to find the necessary variations for a
system reconfiguration.

Different numerical and artificial intelligence methods have
been tested in order to solve this inverse mapping, restricted to
joint boundary and initial conditions. In this research work, we
focus on the development of the active vision system, its

kinematics model and its use in a real environment
applications. However, at this point, with a general model it is
not possible to describe completely motion constraints as well as
the practical functional limits (considering mirror pose). These
constraints depend entirely on the specific design of specific
prototype dimensions as well as the AUV to be used.
However, by ensuring these design landmarks, a different
prototype can be adjusted for a specific AUV platform.

2.2 Prototype Design for the AQUA 2.0
Robot
We have considered so far a double mirror system as a
generalized way to study kinematics, however, factors such as
the AUV platform, camera parameters, etc., must always be
considered for the design of any prototype.

To follow the design line we present, we need to analyze first
the physical configuration of our AUV’s camera, i.e., to which
direction it is pointing at and its FOV. In this case, and without
losing generality, the AUV robot platform considered for our
prototype of the active mirror system is an AQUA 2.0 robot
manufactured by Independent Robotics (Georgiades et al., 2004).
This amphibious robot has a two-camera system on the front in a
stereo configuration, which does not allow visual information on
the sides and rear of the robot (an additional camera is located on
the back and it is commonly used to give commands via QR code
tags). Although this AUV is thrusted by fins and not by
propellers, this platform reflects many similarities with other
systems which also do not have an active vision system. From this
point forward, mirror system design discussed in this article is
based on the physical properties of this robot.

The second aspect to consider, being one of the main
discussions about the prototype design, is the position of the
first mirrorM1 with respect to the body of the robot. On the one
hand, we want to reduce the impact on AUV dynamics when
adding external objects but, on the other, we also want to reduce
possible occlusions and maximize the useful virtual camera
workspace by reducing the possibility of obstructions in its
view. For this reason, we decided to place the observation
mirror under the body of the robot, so it is necessary for the
first mirror to direct the axis of view downwards with an
inclination of 45° from the vertical, thus producing a deviation
of 90° according to Snell’s law (which describes the light reflection
on mirror surfaces). This configuration also allows both mirrors
to be covered from direct exposure to the Sun’s rays, as the
downward-facing mirror is fully covered and the same body of
the AUV covers the observation (gazing) mirror in most cases.

Now, with the main optical axis of the camera deviated
downwards, the third aspect to consider in the design is that
our current vertical view axis must coincide with articular axes of
the gazing mirror (which are coplanar), to simplify the kinematics
and, consequently, the controllability of the overall system.

Taking into account these three simple aspects, we can design a
mirror system according to the platform we are working with.
Figure 5 shows an overview of the full vision systemmounted on the
AUV, showing lateral (Figure 5A) and frontal (Figure 5B) views. It
can be noted in the front view (Figure 5B) that the variation of q1

FIGURE 4 | Virtual camera workspace. Since d1 + d2 remains constant,
the locus where the camera moves is an arc of radius r � d1 + d2 for 2D
projections, and the surface of an sphere for a 3D space with the same radius.
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will cause a rotation motion over a vertical axis, which in turn will
cause a rotation in the angle of vision. This rotation will be in the
same ratio as the movement of q1 since the projection of the main
optical axis always affects with the same angle on the plane of the
mirror, independently of the value of the joint. Figure 6 shows a
scheme of the prototype’s design for the specific platform AQUA
2.0, where mirrors are interacting with the robot’s camera. Since the
looking-downwardmirror remains always in the same position with

respect to the camera frame, the gazing mirror has full control of the
system’s view direction through its orientation.

2.3 Spherical Vision Range, Analysis and
Considerations
By varying the pose ofM2 rotating over q2, we can directly control
the direction of the normal to the surface, which is our main

FIGURE 5 | Lateral (A) and frontal (B) view schemes of the mirror system.

FIGURE 6 | Schematic diagram of the structure and degrees of freedom (DOFs) of the gazing mirror. q1 moves the mirror in roll and q2 in pitch.
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interest for our control issue since we can also deduce that the
control on the pitch axis of the virtual camera and the resulting
line of sight is given by the angle ϕ, measured from the main
optical axis. Thus, it is also easy to see that ϕ � 2α, which is a
relationship commonly used to describe the angle of reflection in
a specular surface.

For this case, what really matters is the opposite relation,
because the reflection vector in this analysis denotes the gaze
vector of the mirror system. To do this, we will define the state of
the system (orientation of the virtual camera) as:

Vcam � ( θ
ϕ
). (4)

There is a direct dependency between the value of θ that
describes the azimuthal value of the virtual camera with the value
of q1. The relationship between ϕ with respect to q2 has already
been described and then it is easy to see that the inverse
relationship is given by:

Vcam � ( θ
ϕ
) � ( q1 + θoffset

2(q2 + q2offset) + ϕoffset
), (5)

where θoffset is an offset value to align the references between the
control value of q1 and θ, q2offset is a constant offset value to align
the references between the control value q2 and the main optical
axis vector. Finally, ϕoffset is an offset value to align the references
between q2 and ϕ.

For rotational joint systems there are no unique inverse
kinematics solution and this case is not an exception. In this
particular case, the different solutions (set of joint values) can
achieve the desired orientation of the virtual camera in the same
period (0+ − 360+) –although this is purely theoretical since most
servomotors have joint limits with a range of 180+.

Physical movement constraint of actuators is not a trivial fact,
because as it has been expressed in Eq. 5, the variable θ is only
dependent on q1, as well as ϕ is only dependent of q2, which limits

the range of motion of the virtual camera to the range of motion
of the actuators. However, by analyzing the relationship between
ϕ and q2, we realize that the variation of q2 originates a variation
of double the movement in ϕ, so a range of movement of 180+ in
q2 is enough to cover a range of 360+ in ϕ, theoretically. However,
this is not possible because virtual images are not produced for
configurations where the specular surface is out of the camera’s
FOV. Integrating all movement range of q1 and q2, we observe
that we can theoretically vary the direction of the resulting axis of
vision in a workspace similar to a half of sphere.

Figure 7 assumes an elevation of 0+ in the looking direction of
the virtual camera and divides the regions in the periphery into
four quadrants. The challenge in this configuration will be given
only by the discontinuity that the every spherical coordinate
system presents in zenith, being limited by the speed and control
strategies to avoid these singularities.

3 METHODS

In the previous section, we established amirror system configuration
given a specific platform. We now present the general method for
tracking a moving object, which first extracts the visual information
provided by the virtual camera and then performs an overall control
system to be used for navigation.

3.1 Image Extraction
Due to our AUV’s load capacity, dynamics alteration, camera
perspective and other limitations already mentioned, the chosen
size of the mirrors may not cover the entire FOV. A guide on how
to determine the size is presented in Cortés-Pérez and Torres-
Méndez (2016). This fact will cause a scene divided into three
main regions, which corresponds to different directions in the
vision traces: the regular view region, the passive-mirror view
region (M1 projection) and the gazing-mirror view region (M2

projection). Figure 8 shows a typical capture of the AUV’s
camera through these three main regions. Each region in the
image has different characteristics that could be exploited by
different navigation approaches. Figure 8A shows the image
acquired in the RGB space. Of course, the region of interest in
our research is the region that corresponds to the active mirror.
Since prototype mirrors are rectangular-shaped, its projection on
the image will ideally be a quadrilateral, which can be roughly
delimited by the projections of its corners in the image plane. To
perform navigation tasks, this not so sophisticated approach
seems to be ideal due to the low computational cost compared
to more precise segmentation methods, so the problem of
extracting visual information from the gazing mirror is to
calculate the projections of such coordinates given an articular
configuration q � [q1, q2]T . There are two possible ways to do it:

1. Projective geometry: Analytical methods for computing
projections by knowing camera calibration parameters.

2. Numerical Methods: These methods included a wide variety
of analytical, heuristic, probabilistic, and machine learning
methods. Require a training phase for tuning the model
numerical parameters.

FIGURE 7 | Spherical vision range of the mirror system divided in
quadrants.
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We decided to use a numerical method, but before describing
it, we present the reasons for not using an analytical method.

3.1.1 Analytical Methods for Computing Projections
These methods have been extensively studied for 3D vision
applications, for both inertial and mobile robotics vision
systems, however, calibration of camera parameters in
underwater environments is complicated as the light
propagation medium changes the geometrical and photometric
properties of vision systems (Manley, 2003; Yamashita et al.,
2007). Yamashita et al. (2007) describe some of the phenomena of

light interaction with the camera along with the propagation
properties in the aqueous medium and through the camera lens.

To exemplify how the light direction varies with respect to the
camera sensor, several camera calibration tests were performed in
our laboratory, using GoPro Hero 4 and Samsung gear 360 2017
(with fisheye lenses) cameras equipped with underwater
housings. Both cameras where calibrated using MATLAB
camera calibration Toolbox at three different media: air,
distilled water and salt water.

In Figure 9, we can observe that in both cases the dimensions
of the calibration board change dramatically when entering an

FIGURE 8 | Red ball detection using HSV color space linear classification. (A): image acquired in the RGB space. (B): Homography projection of the active mirror
region. (C): Color threshold map in the HSV space.

FIGURE 9 | Comparison of two wide angle and fisheye cameras in different propagation medium. (A): wide angle camera on air. (B): wide angle underwater. (C):
fisheye camera on air. (D): fisheye camera underwater.
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aqueous medium, it can also be appreciated that the FOV is
reduced.

To quantify this alteration, we can review the result of the
camera calibration process and compare how parameters vary
(see Table 1) in the different media with a concentration of 30
parts per thousand. Note that the focal parameters are noticeably
modified as well as the center axis (standing for different radial
distortion).

Regarding the extraction of the corners of our mirror, in order
to effectively use an analytical projection method, it is necessary
to have an accurate calibration of the actuators, which adds
another challenge for the system.

3.1.2 The Nearest Neighbor Method
For the mentioned reasons in the previous section, we use a
numerical method to find the corners that define the
projection of the active mirror. The method we use for the
segmentation is known as “the nearest neighbor.” This
method fits in the second category, particularly, in the
classification of interpolation statistical methods. The
algorithm of the nearest neighbor selects the value of the
nearest point and does not consider the values of all the
neighboring points of the whole, producing a precise and
constant interpolation. The algorithm is simple and is
commonly used for 3D rendering.

In this method, N samples of different heights need to be
considered, that is, we have N triads (q1i, q2i, zi), where
zi � f (xi, yi). In this process, the estimation of zi is desired
given a set of articular values q1 and q2. To estimate zi we have:

z �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ΣN−1
i�0

zi

[(xi − x)2 + (yi − y)2]p/2
ΣN−1
i�0

1

[(xi − x)2 + (yi − y)2]p/2
zi other case,

∀xi ≠ x or yi ≠ y,

(6)

where p generally determines the relative importance of distant
samples. Note that the denominator gives a measure of how close
the estimated point of the samples is. Naturally, if a sample is
close, then it has a greater influence on the estimate.

In the case of estimating the corners in the active mirror, we
have the configuration of the servomotors q1 and q2 as input of
the model, that is to say xi � q1(i) and yi � q2(i). Then, we have a
function fj for estimating each coordinate of the set of points
P(x, y), that is: eight interpolation functions (model outputs),
which represent the four corners of the active mirror (composed
by the two coordinates x and y).

To accurately calculate each of the functions, it is necessary to
have sufficient and representative information in the training data
set covering the entire workspace of the mirror system.
Unfortunately, this is impossible to perform it online.
However, once the parameters for the regression have been
calculated, the interpolation method turns out to be very fast,
making it suitable for implementation in real-time applications.

Finally, to extract the visual information enclosed in the
quadrant, a homogenous transformation of each of the pixels
contained within the convex polygon of interest was performed to
obtain an image of constant dimension that represents the
rectangular surface of the mirror. In this way, any analysis will
be based only on the visual information of the active mirror.
Figure 8B shows an example of the projection of the pixels
contained in the active mirror by means of the calculated
homography matrix.

3.2 Target Detection
In 2015, a contest was launched in Piombino, Italy, for the
detection of buoys with underwater robots. Balazs Suto et al.
developed a method for the detection of yellow buoys in this
contest based on the change of color space (Süt}o et al., 2015). It
should be noted that in this test the location of buoys was made in
the open sea, always having a contrasting color between the blue
background and the buoy. However, since our work is oriented
toward the exploration of coral reefs, which are environments
rich in colors, we decided to have a red ball as our artificial object
to be tracked, being red the first frequency that is lost (Süt}o et al.,
2015), this represented an additional challenge.

There are several algorithms based on pixels, gradients,
textures and many other descriptors for object detection in
underwater vision systems (Sudhakar and Meena, 2019). Some
of the most used methods for circle detection are based on the
Hough transform, which require a high computational cost,
which translates in a slow performance for a system with
limited computational capabilities, as is the case with most the
AUVs. Other methods, such as EDCircles, use edge information
incorporating edge detectors such as prewire, Sobel and Canny
and, although they have been successfully tested for underwater
images, they depend on good scene lighting for the effective
computation of gradients, which it is not guaranteed at great
depths (?).

Given that the object to be tracked is of red color and of
circular shape, the key part of the detector is to identify the color
of the pixels that belong to the ball. However, due to the
photometric properties and light interactions underwater, the
“red” color will not be uniform, thus the color detector must be
robust to all the range of gradients according to shading. In
addition, as the color of the ball will be affected to depth (in the
sea), the detector had to be also robust to saturation. Although we
know that the target object has a specific geometry, we also know
that edge-detection based methods, which use frequency
information for compute gradient descriptors (like Canny and
Sobel), will have a poor performance compared when they are
used in a well lit enviroment (Sudhakar and Meena, 2019). We
decided to use the HSV color space similar to the work of Balazs
Suto et al, which has proven to have robustness properties for

TABLE 1 | Camera calibration parameters in different environments.

Cam 1 fx fy cx cy

Air 476.42 475.98 960.68 744.18
Distilled water 876.80 870.91 927.34 756.74
Saltwater 879.63 871.17 926.43 758.05
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color classification in addition to having a lower
computational cost.

Notice that by selecting an appropriate saturation window
(S channel), a linear classification with the thresholds of the
“red” tones in the hue channel could be made, which would be
a complex function if the representation is made in the RGB
color space. Therefore, only the homography projection image
is processed to detect the red ball, where the color in the HSV
space is trimmed with hue values corresponding to the red
tone. Figure 8C shows the resulting color threshold map in the
HSV space. Then, we use circular-shaped morphological filters
of erosion and dilation to reduce possible holes in the binary
segmentation mask, thus detecting the least number of red
spots in the image. OpenCV tools are used in the image in
order to find contours which will delimit color clusters in the
image. Then, all possible clusters that could contain a circle are
searched, determining its area and its center. The controller
will use the information of the centroid of these spots to
actively keep the view in it, moving the actuators of the
active mirror.

3.3 Colored Spot Clustering
As a measure to reduce the noise of multiple pixel clusters
detected, in the control strategy each of the colored spots
received from the detection stage are weighted by using its
area and location of its centroid. To do this, we made a
geometric average considering giving more weight to the spots
of greater area for the calculation of a single centroid. The
equation that describes this weighting is:

Cx,y � P(ΣN
i�1
λixi
A

,ΣN
i�1
λiyi
A

), (7)

where λi is the area of each colored spot, xi and yi are the
coordinates of the centroids andA is the sum of the areas of all the
spots, that is A � ΣN

i�1λi.
Figure 10 shows an example of the centroid estimation when

the detector finds two colored spots. In this case, the first spot has
an area of 156 pixels and the area in the second spot is 256 pixels.
The estimated centroid of the object is shown in the figure with a
pink square. It can be seen that the centroid is on the line that
joins the centroids of the spots, closer to the right-down region,
which is where the stain has the largest area.

3.4 Kalman Filter
In order to reduce this noise, we incorporate a Kalman filter to
estimate the state from the previous measurements, helping to
generate references of the object of interest when it leaves the field
of vision of the active system. Once the possible centroid of the
object has been evaluated this information is used for location of
this point on the homography projection image. The Kalman
Filter equations are as follows:

xk � Ak−1xk−1 + Bk−1uk−1 + wk−1, (8)

zk � Hkxk + vk, (9)

where the state of the system at the k-th time instant xk is
represented by:

xk � (Cxk
Cyk

), (10)

which are the centroid coordinates at time k. Also, in Eq. 9, we
have that wk is the corresponding white noise with an average
value equal to zero and with varianceQk. vk is white noise with an
average value equal to zero and with variance Rk at time k. Ak−1 is
the state matrix and Bk−1 is the input matrix, both at the instant
k − 1. Hk is the output matrix at the k instant.

3.5 Gaze Control
Since the estimation of the object’s centroid is in the image plane,
our visual control works by keeping the centroid of the object of
interest always on the main optical axis, that is, at the center of the
homography transformation. The system error ex,y then is
defined as:

ex,y � [Cx − 1
2
Iw,Cy − 1

2
Ih], (11)

where Iw and Ih are the width and height of the homography
image, respectively. We also define an error vector of the
prediction ep(x,y) as:

epx,y � [px − 1
2
Iw, py − 1

2
Ih]. (12)

Note also that ep is directly related to the error in the pan
direction of the system and ex with the tilt error. Finally, the
control law used for the object tracking with the mirror system is:

FIGURE 10 | Centroid estimation of the ball by pondering all detected
clusters. This figure shows a mask where the black pixels represent visual
information completely outside the range of colors of the red ball, defined in
the HSV color space. The white pixels represent the part of the image
that has color information within the established range. The green boxes
represent two spots detected. The pink line joins green boxes centroids and
the pink box is the estimation of the centroid given to the position and areas of
green boxes.
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qd1(k) � q1(k−1) + kp1(ex(k) + ψep(x)(k)), (13)

qd2(k) � q2(k−1) + 1
2
kp2(ex(k−1) + ψep(x)(k−1)), (14)

where kp1 and kp2 are the movement gains of the actuators q1 and
q2, respectively and ψ is an enabler defined as:

ψ � { 1 if object is found.
0 if object is not found.

(15)

4 RESULTS

Field experiments were conducted by deploying our underwater
platform at 10–12 m of depth in a coral reef environment located
in CostaMaya, Mexico. We used the left front camera of the robot
to mount our prototype mirror system built of ABS plastic parts
printed on a 3D printer (substantially decreasing the cost) to
which we add a finishing surface based on automotive paint and
ceramic lacquer coat for hardening.

Hi-Tec HS-5086WP digital servomotors were used to generate
the roll and pitch movements of the active mirror. These motors
have a rotation speed of 60o/s according to their data sheet, which
implies a rotation speed of 120o/s of the virtual camera. That is,
system takes 1.5s to change the gaze direction 180o, which is a
reasonable time for underwater systems. Control electronics were
encapsulated in a stainless steel cylinder of its own design.
Necessary ports were added to communicate with the servos
and with the robot bymeans of optical fiber (only port available in
the platform). A photo of the prototype is shown in Figure 11. To
perform visual tracking experiments, the AUV was initialized in
hovering mode. We assume a static robot and a moving target
(red ball) which is not initially in the field of vision. A

multidirectional scanning routine moves the active mirror
initially over the entire span of the virtual camera in search of
the red ball. Once the object is found, the scanning routine is
switched to the visual tracking control strategy described in the

FIGURE 11 | Photography of the prototype of mirrors mounted in the AUV in the field trials at 10 m deep. The cylindrical module under the robot contains all the
control electronics of the mirror system, as well as the communication circuits by means of optical fiber with the robot’s computer.

FIGURE 12 | Flowchart of the active tracker for experimental trials. The
red line frames the process of detecting an object from colored spots in the
HSV space. The blue line frames the system control process.
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Section 3.5. When the target is lost, previous information about
the centroid of the object is used, however, if no information is
available, the system uses the last prediction for the next 30
frames to search for the target. If the object is still not found, the
environment is re-scanned to search for it. The workflow of the
algorithm is shown in Figure 12. Several tests were carried out at
10–12 m of depth. In all experiments, a skill diver guided the
target while swimming along the periphery of the AUV, making
trajectories in an open spiral path starting at the same depth of the
robot and then ascending and moving away. Supplemental
material to this article includes three of the experiments,
showing a recording of our AUV’s vision system in the field
trials. The download links are referenced in the Supplementary
Material section.

During the execution of the experiments, even though the
object to track were lost at some time intervals due to the lighting
variations, the active system was able to find it and continue to
track it. Error plots and Supplementary Videos show these
instants, which are particularly present when the ball is on top
of the robot and the view direction points toward the sea surface
(sunlight). It is important to mention that in all experiments, the
object of interest is being detected despite the high brightness in
the scene produced by the Sun, thus resulting in successful
experiments despite poor lighting conditions and visibility. A
clear limitation of our evaluation framework is not being able to
give numerical indicators, since that would require precise
knowledge of the trajectory followed of the object with respect

to the robot’s position and actuators of our mirror-based active
system.

Supplementary Video S1 shows all the stages involved in
detection and tracking of the target. First, the image obtained by
the robot camera is shown, where the different areas of mirrors
M1 and M2 can be observed. Then the segmentation of the area
corresponding toM2 and its projection using homography matrix
are presented. Subsequently, the result of color segmentation in
the HSV space is displayed, where the red colors are highlighted.
At the end of the video the object tracking process is presented.

Figure 13 shows the error signals defined in pixels on both axis
of the homography image over time for three different
experiments, and the corresponding control signals of the
servomotors are depicted in Figure 14. The black lines denote
the part of the execution where the detector finds an object in the
scene. The red lines show the prediction made with the Kalman
filter. Note that in Figures 13A, 14A, the purple boxes indicate
the time intervals when the detector loses sight of the moving
object. However, by using the predictions of the Kalman filter the
tracking of the object is recovered (see Supplementary Video S2).
In Figures 13B, 14B, the mirror only moves following the
prediction information (see Supplementary Video S3).
Figures 13C, 14C illustrate circle (ball) detections, however
due to poor lighting the tracking becomes impossible (see
Supplementary Video S4). The first 30 s of each experiment
corresponds to a preliminary routine that verifies functional
communication.

FIGURE 13 | For each of the three experiments (A,B,C): Reference signals u1 and u2 calculated using proposed control law. Black lines indicate time intervals when
target was detected. Red lines indicate time intervals when controller used the Kalman filter prediction.
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Supplementary Videos S2, S3, S4 show the performance of
the system in the field tests. However, by tuning some parameters
of the detection algorithm (color threshold and width-height
ratio) in offline tests, the detection results improved significantly.
Supplementary Video S5 shows a comparison between detection
with the original parameters used in the field test and offline
detection using different parameters (a greater detection range in
the H channel).

5 CONCLUSION AND FUTURE WORK

The optic mirror-based system presented has the ability to change
the direction of view 360° around the AUV and it can have
azimuth elevations to detect objects above the robot in order to
perform more complex evasive maneuvers.

Fine-tuning of the controller’s gains will allow rapid change of
gaze direction, as the angle of view ratio changes twice as much as
the movement of the mirror (reflection properties).

Despite the variation of the hydrodynamic parameters of the
system, with a suitable ballasting, the AUV can achieve neutral
buoyancy.

The method based on HSV color detection is a functional
alternative despite poor lighting conditions, also, it has low
computational cost and can be implemented for real-time
navigation. The right tuning of the tracker’s parameters for
the desired color selection will improve its performance.
However, the detection process can be modified according to

the task, such as the detection of marine fauna, coral species, free
space to navigate, divers, rocks, etc., and easily integrated with the
proposed controller (PD), considering that the design of the
mirror system makes easy the implementation of simple
control laws.

Future work includes path planning strategies using the
vision system in closed loop with the robot, to be applied to
navigation and exploration schemes already studied. As for the
prototype itself, it needs an activation and deactivation
mechanism, to be able to integrate it into the robot’s
cameras and use its maximum resolution. Another point to
improve is the automatic calibration of the mirror system.
Since the servomotors were used to make this prototype, there
is no direct feedback on the state of the system. In addition, a
visual estimate is subject to camera calibration and is still
difficult to achieve since for small variations in the system
there are small image modifications when the normal to the
gaze-mirrorM1 approaches the axis of the main view projected
by M2.

Another important point is the robot’s communication
protocol, as one of the design premises was not to make
irreversible modifications to the AUV. In the proposed
prototype the only available communication port was used:
optical fiber Ethernet. In case the AUV had an additional USB
port that could be used for data transmission and even activation,
the design of the mirror system would be drastically improved,
making it more compact, simpler and increasing the
autonomy time.

FIGURE 14 | For each of the three experiments (A,B,C): Error plots signals e(x) and e(y) used for control law in three experiments. Black lines indicate time
intervals when target was detected. Red lines indicate time intervals when controller used the Kalman filter prediction.
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