545 research outputs found

    Future directions for the development of Virtual Reality within an automotive manufacturer

    Get PDF
    Virtual Reality (VR) can reduce time and costs, and lead to increases in quality, in the development of a product. Given the pressure on car companies to reduce time-to-market and to continually improve quality, the automotive industry has championed the use of VR across a number of applications, including design, manufacturing, and training. This paper describes interviews with 11 engineers and employees of allied disciplines from an automotive manufacturer about their current physical and virtual properties and processes. The results guided a review of research findings and scientific advances from the academic literature, which formed the basis of recommendations for future developments of VR technologies and applications. These include: develop a greater range of virtual contexts; use multi-sensory simulation; address perceived differences between virtual and real cars; improve motion capture capabilities; implement networked 3D technology; and use VR for market research

    Human–Machine Interface in Transport Systems: An Industrial Overview for More Extended Rail Applications

    Get PDF
    This paper provides an overview of Human Machine Interface (HMI) design and command systems in commercial or experimental operation across transport modes. It presents and comments on different HMIs from the perspective of vehicle automation equipment and simulators of different application domains. Considering the fields of cognition and automation, this investigation highlights human factors and the experiences of different industries according to industrial and literature reviews. Moreover, to better focus the objectives and extend the investigated industrial panorama, the analysis covers the most effective simulators in operation across various transport modes for the training of operators as well as research in the fields of safety and ergonomics. Special focus is given to new technologies that are potentially applicable in future train cabins, e.g., visual displays and haptic-shared controls. Finally, a synthesis of human factors and their limits regarding support for monitoring or driving assistance is propose

    A game prototype for understanding the safety issues of a lifeboat launch

    Get PDF
    © 2018 The Author(s) Novel, advanced game techniques provide us with new possibilities to mimic a complicated training process, with the added benefit of enhanced safety. In this paper, we design and implement a 3D game with the support of virtual reality equipment which imitates the process of a lifeboat launch, involving both tractor manoeuvres and boat operations. It is a complex but vital process which can save lives at sea but also has many potential hazards. The primary objective of the game is to allow novices to better understand the sequence of the operations and manage the potential risks which may occur during the launch process. Additionally, the game has been promoted to the general public for educational purposes and to raise awareness of the safety issues involved. The key modules of the game are designed based on physical simulations to give the players enhanced plausible cognition and enjoyable interaction. We conducted two case studies for the two purposes of the games: one for training with volunteers without launching experience and the other for public awareness of the potential hazards with young children. The game is proven to be very promising for future professional training, and it serves the educational purpose of awareness of the safety issues for general public while being entertaining

    Multiple Exposition to a Driving Simulator Reduces Simulator Symptoms for Elderly Drivers

    Get PDF
    This study examines how older drivers responded to repeated exposures to a driver simulator. Older active and fit drivers participated in 5 simulator sessions within a 14-day period. For each session, simulator sickness symptoms were measured with the Simulator Sickness Questionnaire at baseline and post-session. In addition, participants completed a 10-cm visual analog scale (0= no symptom, 10= mild nausea) at baseline and after a familiarization scenario and post-session. Overall, older adults adapted to the driving simulator and by the fourth session, they showed no difference in sickness scores between the baseline and the post-session measurements. Increasing the exposure duration at session 5 yielded an increase in the sickness symptoms. These results suggest that shorterduration multiple exposures could reduce simulator sickness symptoms in elderly drivers and allow a more effective use of simulators for training by preventing early withdrawal of participants

    Computational Tools and Facilities for the Next-Generation Analysis and Design Environment

    Get PDF
    This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment

    From Driving Simulation to Virtual Reality

    Get PDF
    Driving simulation from the very beginning of the advent of VR technology uses the very same technology for visualization and similar technology for head movement tracking and high end 3D vision. They also share the same or similar difficulties in rendering movements of the observer in the virtual environments. The visual-vestibular conflict, due to the discrepancies perceived by the human visual and vestibular systems, induce the so-called simulation sickness, when driving or displacing using a control device (ex. Joystick). Another cause for simulation sickness is the transport delay, the delay between the action and the corresponding rendering cues. Another similarity between driving simulation and VR is need for correct scale 1:1 perception. Correct perception of speed and acceleration in driving simulation is crucial for automotive experiments for Advances Driver Aid System (ADAS) as vehicle behavior has to be simulated correctly and anywhere where the correct mental workload is an issue as real immersion and driver attention is depending on it. Correct perception of distances and object size is crucial using HMDs or CAVEs, especially as their use is frequently involving digital mockup validation for design, architecture or interior and exterior lighting. Today, the advents of high resolution 4K digital display technology allows near eye resolution stereoscopic 3D walls and integrate them in high performance CAVEs. High performance CAVEs now can be used for vehicle ergonomics, styling, interior lighting and perceived quality. The first CAVE in France, built in 2001 at Arts et Metiers ParisTech, is a 4 sided CAVE with a modifiable geometry with now traditional display technology. The latest one is Renault’s 70M 3D pixel 5 sides CAVE with 4K x 4K walls and floor and with a cluster of 20 PCs. Another equipment recently designed at Renault is the motion based CARDS driving simulator with CAVE like 4 sides display system providing full 3D immersion for the driver. The separation between driving simulation and digital mockup design review is now fading though different uses will require different simulation configurations. New application domains, such as automotive AR design, will bring combined features of VR and driving simulation technics, including CAVE like display system equipped driving simulators

    Digital factory – virtual reality environments for industrial training and maintenance

    Get PDF
    This study evaluates the use of virtual reality (VR) platforms, which is an integrated part of the digital factory for an industrial training and maintenance system. The digital factory-based VR platform provides an intuitive and immersive human–computer interface, which can be an efficient tool for industrial training and maintenance services. The outcomes from this study suggested that use of the VR platform for training and maintenance of complex industrial tasks should be encouraged and use of the VR platform for that purpose should be further evaluated. This paper highlighted the generic concept of the application of virtual reality technique within the digital factory to industrial maintenance and to build a low-cost VR application for a training and maintenance system. An application case on virtual reality technique in a power plant operations and maintenance is demonstrated within the scope of this research. Overall research implications on virtual reality concept in industrial applications are concluded with future research directions.fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore