101,795 research outputs found

    Data collection methods for task-based information access in molecular medicine

    Get PDF
    An important area of improving access to health information is the study of task-based information access in the health domain. This is a significant challenge towards developing focused information retrieval (IR) systems. Due to the complexities of this context, its study requires multiple and often tedious means of data collection, which yields a lot of data for analysis, but also allows triangulation so as to increase the reliability of the findings. In addition to traditional means of data collection, such as questionnaires, interviews and observation, there are novel opportunities provided by lifelogging technologies such as the SenseCam. Together they yield an understanding of information needs, the sources used, and their access strategies. The present paper examines the strengths and weaknesses of the traditional and the more novel means of data collection and addresses the challenges in their application in molecular medicine, which intensively uses digital information sources

    ‘Do you see what I see?’ Medical imaging: the interpretation of visual information

    Get PDF
    Röntgen's discovery of x-rays in 1895, gave to medicine the extraordinary benefit of being able to see inside the living body without surgery. Over time, technology has added to the sophistication of imaging processes in medicine and we now have a wide range of techniques at our disposal for the investigation and early detection of disease. But radiology deals with visual information; and like any information this requires interpretation. It is a practical field and medical images are used to make inferences about the state of peoples' health. These inferences are subject to the same variability and error as any decision-making process and so the criteria for the success of medical imaging are based not entirely on the images themselves but on the performance of the decision-makers. Research in the accuracy of medical imaging must draw on techniques from a wide range of disciplines including physics, psychology, computing, neuroscience and medicine in attempting to better understand the processes involved in visual decision-making in this context and to minimise diagnostic error

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Initial specification of the evaluation tasks "Use cases to bridge validation and benchmarking" PROMISE Deliverable 2.1

    Get PDF
    Evaluation of multimedia and multilingual information access systems needs to be performed from a usage oriented perspective. This document outlines use cases from the three use case domains of the PROMISE project and gives some initial pointers to how their respective characteristics can be extrapolated to determine and guide evaluation activities, both with respect to benchmarking and to validation of the usage hypotheses. The use cases will be developed further during the course of the evaluation activities and workshops projected to occur in coming CLEF conferences

    Immediate ROI search for 3-D medical images

    Get PDF
    The objective of this work is a scalable, real-time, visual search engine for 3-D medical images, where a user is able to select a query Region Of Interest (ROI) and automatically detect the corresponding regions within all returned images. We make three contributions: (i) we show that with appropriate off-line processing, images can be retrieved and ROIs registered in real time; (ii) we propose and evaluate a number of scalable exemplar-based image registration schemes; (iii) we propose a discriminative method for learning to rank the returned images based on the content of the ROI. The retrieval system is demonstrated on MRI data from the ADNI dataset, and it is shown that the learnt ranking function outperforms the baseline

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals

    Crisis Analytics: Big Data Driven Crisis Response

    Get PDF
    Disasters have long been a scourge for humanity. With the advances in technology (in terms of computing, communications, and the ability to process and analyze big data), our ability to respond to disasters is at an inflection point. There is great optimism that big data tools can be leveraged to process the large amounts of crisis-related data (in the form of user generated data in addition to the traditional humanitarian data) to provide an insight into the fast-changing situation and help drive an effective disaster response. This article introduces the history and the future of big crisis data analytics, along with a discussion on its promise, challenges, and pitfalls

    Designing games for the rehabilitation of functional vision for children with cerebral visual impairment

    Get PDF
    Evidence has accumulated that visual rehabilitation for patients with neurological visual impairment can be effective. Unfortunately, the existing therapy tools are repetitive, uninteresting, and unsuitable for use with children. This project aims to improve the engaging qualities of visual rehabilitation for children, through the design of therapy tools based on game design principles. Development is ongoing in a participatory, user-centred manner in conjunction with a specialist centre for childhood visual impairment. This paper outlines design requirements and briefly reports early findings of the development process
    corecore