80 research outputs found

    How Can Bee Colony Algorithm Serve Medicine?

    Get PDF
    Healthcare professionals usually should make complex decisions with far reaching consequences and associated risks in health care fields. As it was demonstrated in other industries, the ability to drill down into pertinent data to explore knowledge behind the data can greatly facilitate superior, informed decisions to ensue the facts. Nature has always inspired researchers to develop models of solving the problems. Bee colony algorithm (BCA), based on the self-organized behavior of social insects is one of the most popular member of the family of population oriented, nature inspired meta-heuristic swarm intelligence method which has been proved its superiority over some other nature inspired algorithms. The objective of this model was to identify valid novel, potentially useful, and understandable correlations and patterns in existing data. This review employs a thematic analysis of online series of academic papers to outline BCA in medical hive, reducing the response and computational time and optimizing the problems. To illustrate the benefits of this model, the cases of disease diagnose system are presented

    Multilevel Thresholding of Brain Tumor MRI Images: Patch-Levy Bees Algorithm versus Harmony Search Algorithm

    Get PDF
    Image segmentation of brain magnetic resonance imaging (MRI) plays a crucial role among radiologists in terms of diagnosing brain disease. Parts of the brain such as white matter, gray matter and cerebrospinal fluids (CFS), have to be clearly determined by the radiologist during the process of brain abnormalities detection. Manual segmentation is grueling and may be prone to error, which can in turn affect the result of the diagnosis. Nature-inspired metaheuristic algorithms such as Harmony Search (HS), which was successfully applied in multilevel thresholding for brain tumor segmentation instead of the Patch-Levy Bees algorithm (PLBA). Even though the PLBA is one powerful multilevel thresholding, it has not been applied to brain tumor segmentation. This paper focuses on a comparative study of the PLBA and HS for brain tumor segmentation. The test dataset consisting of nine images was collected from the Tuanku Muhriz UKM Hospital (HCTM). As for the result, it shows that the PLBA has significantly outperformed HS. The performance of both algorithms is evaluated in terms of solution quality and stability

    A Review of the Family of Artificial Fish Swarm Algorithms: Recent Advances and Applications

    Full text link
    The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming, following and random behaviors. Owing to a number of salient properties, which include flexibility, fast convergence, and insensitivity to the initial parameter settings, the family of AFSA has emerged as an effective Swarm Intelligence (SI) methodology that has been widely applied to solve real-world optimization problems. Since its introduction in 2002, many improved and hybrid AFSA models have been developed to tackle continuous, binary, and combinatorial optimization problems. This paper aims to present a concise review of the family of AFSA, encompassing the original ASFA and its improvements, continuous, binary, discrete, and hybrid models, as well as the associated applications. A comprehensive survey on the AFSA from its introduction to 2012 can be found in [1]. As such, we focus on a total of {\color{blue}123} articles published in high-quality journals since 2013. We also discuss possible AFSA enhancements and highlight future research directions for the family of AFSA-based models.Comment: 37 pages, 3 figure

    Evolving Ensemble Models for Image Segmentation Using Enhanced Particle Swarm Optimization

    Get PDF
    In this paper, we propose particle swarm optimization (PSO)-enhanced ensemble deep neural networks and hybrid clustering models for skin lesion segmentation. A PSO variant is proposed, which embeds diverse search actions including simulated annealing, levy flight, helix behavior, modified PSO, and differential evolution operations with spiral search coefficients. These search actions work in a cascade manner to not only equip each individual with different search operations throughout the search process but also assign distinctive search actions to different particles simultaneously in every single iteration. The proposed PSO variant is used to optimize the learning hyper-parameters of convolutional neural networks (CNNs) and the cluster centroids of classical Fuzzy C-Means clustering respectively to overcome performance barriers. Ensemble deep networks and hybrid clustering models are subsequently constructed based on the optimized CNN and hybrid clustering segmenters for lesion segmentation. We evaluate the proposed ensemble models using three skin lesion databases, i.e., PH2, ISIC 2017, and Dermofit Image Library, and a blood cancer data set, i.e., ALL-IDB2. The empirical results indicate that our models outperform other hybrid ensemble clustering models combined with advanced PSO variants, as well as state-of-the-art deep networks in the literature for diverse challenging image segmentation tasks

    Reliable and Automatic Recognition of Leaf Disease Detection using Optimal Monarch Ant Lion Recurrent Learning

    Get PDF
    Around 7.5 billion people worldwide depend on agriculture production for their livelihood, making it an essential component in keeping life alive on the planet. Negative impacts are being caused on the agroecosystem due to the rapid increase in the use of chemicals to combat plant diseases. These chemicals include fungicides, bactericides, and insecticides. Both the quantity and quality of the output are impacted when there is a high-scale prevalence of diseases in crops. Plant diseases provide a significant obstacle for the agricultural industry, which has a negative impact on the growth of plants and the output of crops. The problem of early detection and diagnosis of diseases can be solved for the benefit of the farming community by employing a method that is both quick and reliable regularly. This article proposes a model for the detection and diagnosis of leaf infection called the Automatic Optimal Monarch AntLion Recurrent Learning (MALRL) model, which attains a greater authenticity. The design of a hybrid version of the Monarch Butter Fly optimization algorithm and the AntLion Optimization Algorithm is incorporated into the MALRL technique that has been proposed. In the leaf image, it is used to determine acceptable aspects of impacted regions. After that, the optimal characteristics are used to aid the Long Short Term Neural Network (LSTM) classifier to speed up the process of lung disease categorization. The experiment's findings are analyzed and compared to those of ANN, CNN, and DNN. The proposed method was successful in achieving a high level of accuracy when detecting leaf disease for images of healthy leaves in comparison to other conventional methods

    NEW BACTERIA FORAGING AND PARTICLE SWARM HYBRID ALGORITHM FOR MEDICAL IMAGE COMPRESSION

    Get PDF
    For perfect diagnosis of brain tumour, it is necessary to identify tumour affected regions in the brain in MRI (Magnetic Resonance Imaging) images effectively and compression of these images for transmission over a communication channel at high speed with better visual quality to the experts. An attempt has been made in this paper for identifying tumour regions with optimal thresholds which are optimized with the proposed Hybrid Bacteria Foraging Optimization Algorithm (BFOA) and Particle Swarm Optimization (PSO) named (HBFOA-PSO) by maximizing the Renyi’s entropy and Kapur’s entropy. BFOA may be trapped into local optimal problem and delay in execution time (convergence time) because of random chemo taxis steps in the procedure of algorithm and to get global solution, a theory of swarming is commenced in the structure of HBFOA-PSO. Effectiveness of this HBFOA-PSO is evaluated on six different MRI images of brain with tumours and proved to be better in Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE) and Fitness Function

    HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images

    Get PDF
    Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics

    Fuzzy logic based approach for object feature tracking

    Get PDF
    This thesis introduces a novel technique for feature tracking in sequences of greyscale images based on fuzzy logic. A versatile and modular methodology for feature tracking using fuzzy sets and inference engines is presented. Moreover, an extension of this methodology to perform the correct tracking of multiple features is also presented. To perform feature tracking three membership functions are initially defined. A membership function related to the distinctive property of the feature to be tracked. A membership function is related to the fact of considering that the feature has smooth movement between each image sequence and a membership function concerns its expected future location. Applying these functions to the image pixels, the corresponding fuzzy sets are obtained and then mathematically manipulated to serve as input to an inference engine. Situations such as occlusion or detection failure of features are overcome using estimated positions calculated using a motion model and a state vector of the feature. This methodology was previously applied to track a single feature identified by the user. Several performance tests were conducted on sequences of both synthetic and real images. Experimental results are presented, analysed and discussed. Although this methodology could be applied directly to multiple feature tracking, an extension of this methodology has been developed within that purpose. In this new method, the processing sequence of each feature is dynamic and hierarchical. Dynamic because this sequence can change over time and hierarchical because features with higher priority will be processed first. Thus, the process gives preference to features whose location are easier to predict compared with features whose knowledge of their behavior is less predictable. When this priority value becomes too low, the feature will no longer tracked by the algorithm. To access the performance of this new approach, sequences of images where several features specified by the user are to be tracked were used. In the final part of this work, conclusions drawn from this work as well as the definition of some guidelines for future research are presented.Nesta tese é introduzida uma nova técnica de seguimento de pontos característicos de objectos em sequências de imagens em escala de cinzentos baseada em lógica difusa. É apresentada uma metodologia versátil e modular para o seguimento de objectos utilizando conjuntos difusos e motores de inferência. É também apresentada uma extensão desta metodologia para o correcto seguimento de múltiplos pontos característicos. Para se realizar o seguimento são definidas inicialmente três funções de pertença. Uma função de pertença está relacionada com a propriedade distintiva do objecto que desejamos seguir, outra está relacionada com o facto de se considerar que o objecto tem uma movimentação suave entre cada imagem da sequência e outra função de pertença referente à sua previsível localização futura. Aplicando estas funções de pertença aos píxeis da imagem, obtêm-se os correspondentes conjuntos difusos, que serão manipulados matematicamente e servirão como entrada num motor de inferência. Situações como a oclusão ou falha na detecção dos pontos característicos são ultrapassadas utilizando posições estimadas calculadas a partir do modelo de movimento e a um vector de estados do objecto. Esta metodologia foi inicialmente aplicada no seguimento de um objecto assinalado pelo utilizador. Foram realizados vários testes de desempenho em sequências de imagens sintéticas e também reais. Os resultados experimentais obtidos são apresentados, analisados e discutidos. Embora esta metodologia pudesse ser aplicada directamente ao seguimento de múltiplos pontos característicos, foi desenvolvida uma extensão desta metodologia para esse fim. Nesta nova metodologia a sequência de processamento de cada ponto característico é dinâmica e hierárquica. Dinâmica por ser variável ao longo do tempo e hierárquica por existir uma hierarquia de prioridades relativamente aos pontos característicos a serem seguidos e que determina a ordem pela qual esses pontos são processados. Desta forma, o processo dá preferência a pontos característicos cuja localização é mais fácil de prever comparativamente a pontos característicos cujo conhecimento do seu comportamento seja menos previsível. Quando esse valor de prioridade se torna demasiado baixo, esse ponto característico deixa de ser seguido pelo algoritmo. Para se observar o desempenho desta nova abordagem foram utilizadas sequências de imagens onde várias características indicadas pelo utilizador são seguidas. Na parte final deste trabalho são apresentadas as conclusões resultantes a partir do desenvolvimento deste trabalho, bem como a definição de algumas linhas de investigação futura

    Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification

    Get PDF
    Machine learning methods have been an interesting method in the field of medical for many years, and they have achieved successful results in various fields of medical science. This paper examines the effects of using machine learning algorithms in the diagnosis and classification of breast cancer from mammography imaging data. Cancer diagnosis is the identification of images as cancer or non-cancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. This article studied 93 different references mentioned in the previous years in the field of processing and tries to find an effective way to diagnose and classify breast cancer. Based on the results of this research, it can be concluded that most of today’s successful methods focus on the use of deep learning methods. Finding a new method requires an overview of existing methods in the field of deep learning methods in order to make a comparison and case study
    corecore